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We apply the topological theory of symmetry indicators to interaction-induced exciton band structures in
centrosymmetric semiconductors. Crucially, we distinguish between the topological invariants inherited
from the underlying electron and hole bands and those that are intrinsic to the exciton wave function itself.
Focusing on the latter, we show that there exists a class of exciton bands for which the maximally localized
exciton Wannier states are shifted with respect to the electronic Wannier states by a quantized amount; we
call these excitons shift excitons. Our analysis explains how the exciton spectrum can be topologically
nontrivial and sustain exciton edge states in open boundary conditions even when the underlying
noninteracting bands have a trivial atomic limit. We demonstrate the presence of shift excitons as the lowest
energy neutral excitations of the Su-Schrieffer-Heeger model in its trivial phase when supplemented by
local two-body interactions.
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Introduction—The notion of topological insulators has
revolutionized our understanding of electronic properties
in condensed matter systems [1–3]. Among these, topo-
logical crystalline insulators (TCIs) are notable due to their
reliance on crystalline symmetries to protect gapless sur-
face and hinge states [4,5]. The classification of TCIs is
now quite mature, especially for the subclass of symmetry-
indicated topological bands [6–11]. There is therefore
now a growing interest in generalizing band topology to
incorporate electronic interactions, with particular focus
on ground state properties of TCIs in the presence of
interactions [12–15].
Excitons are bound states of electrons and holes and, as

interaction-induced excitations, are a promising alternative
for exploring topological phenomenon in the presence of
interactions. This is because the exciton band structure,
unlike the band insulating ground state, can be modified
substantially even by interactions with characteristic energies
much lower than the insulating gap. In this Letter, we apply
the topological theory of symmetry indicators to exciton
band structures in centrosymmetric semiconductors. A key
aspect of our study is distinguishing between topological
invariants inherited from electron and hole bands and those
intrinsic to the exciton wave function. While previous work

has focused on the former (e.g., excitons in Chern bands
[16–20]), here we focus on the latter and introduce shift
excitons, which exhibit maximally localized excitonWannier
states shifted relative to the electronic Wannier states by a
quantized amount [21]. We demonstrate nontrivial exciton
bands, and exciton edge states, in a simple interaction
generalization of the Su-Schrieffer-Heeger (SSH) model
with trivial underlying electronic bands.
Theory of shift excitons—We introduce shift excitons

for centrosymmetric semiconductors in one dimension
(1D). We focus on a spinless two-band tight-binding
model at half filling; the definition of shift excitons
[e.g., Eq. (5) below] has a straightforward generalization
though to n electronic bands in d dimensions. We
assume that the occupied band is gapped from the
empty band at all momenta and that both bands realize
an unobstructed atomic limit [8], i.e., their Wannier
centers are located at the atomic ions at the unit cell
center; this assumption can be relaxed [22]. The elec-
tronic bands then have the same inversion I eigenvalues
at both high-symmetry points k ¼ 0; π in the 1D
Brillouin zone (BZ) if the inversion center is the unit
cell center [23]. We study the resulting exciton bands in
the presence of interactions.
Let ck;occ (ck;emp) annihilate an electron in the occupied

(empty) band at crystal momentum k∈ ½0; 2πÞ. The non-
interacting ground state is given by jGSi ¼ Q

k c
†
k;occj0i,

where j0i is the fermionic vacuum. The low energy exciton
spectrum can be found by projecting the Hamiltonian into
the variational exciton basis c†pþk;empck;occjGSi, where p is
the total momentum of the electron-hole pair that is
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conserved due to translational symmetry, and k cycles
through different relative momenta. An exciton eigenstate
with total momentum p takes the form

jϕpi ¼
X
k

ϕp
k c

†
pþk;empck;occjGSi; ð1Þ

where ϕp
k ∈C is the exciton wave function. This exciton

wave function can describe Frenkel excitons (for ϕp
k

independent of k) and Wannier-Mott excitons (when ϕp
k

decays with k) [22,24,25]. The theory of shift excitons
applies to both these regimes. We omit the basis state jGSi
in the variational exciton wave function, as its contribution
is negligible if the exciton band is sufficiently gapped from
the ground state. Crucially, this exciton eigenstate expan-
sion makes it clear that topological invariants can
be contributed by the noninteracting Bloch states, which
enter the exciton state in Eq. (1) via the electron and hole
operators c†pþk;emp, ck;occ, and/or the exciton wave function
itself. We here focus on the exciton wave function to
establish a rigorous bulk-boundary correspondence; the
bulk topology of the noninteracting electronic bands
does not give an exciton bulk-boundary correspondence.
This can be seen by considering a 2D system with
electronic bands that have a nonzero Chern number. In
such a system the Coulomb interaction may give rise to
chiral exciton edge states inherited from the electronic edge
states [16–20]. However, despite these chiral exciton edge
states, the bulk excitons can remain trivial or even gapless
and so there is no bulk-boundary correspondence.
As a simple example of intrinsic exciton topology,

we investigate the crystalline topology of exciton bands
using the symmetry indicators of I symmetry [6–8,23]. We
differentiate between topologically distinct exciton bands
using the I eigenvalues of the exciton states at the high-
symmetry points p̃ ¼ 0; π of the BZ.
We choose a convenient gauge for the Bloch states jψp;αi

associated with the underlying noninteracting bands, such
that c†p;α ¼

P
ihp; ijψp;αic†p;i, α∈ focc; empg, and c†p;i

creates a Bloch wave with wave vector p on sublattice
or orbital i in the unit cell. We adopt the gauge
jψ−p;αi ¼ λαI UIjψp;αi. Here, the unitary matrix UI repre-
sents I symmetry in the single-particle Hilbert space, and
λαI denotes the I eigenvalue of the noninteracting band at
both high-symmetry points p̃ ¼ 0; π, which are equal by
our assumption of trivial electronic bands.
It follows that Îc†p;αÎ† ¼ λαI c

†
−p;α, where Î represents I

symmetry in the many-body Hilbert space. Consequently,
at p̃ ¼ 0; π, the I eigenvalue can be separated into four
contributions:

Îjϕp̃i ¼ ðλoccI λemp
I λGSI Þ

X
k

ϕp̃
−kc

†
p̃þk;empck;occjGSi

≡ ðλoccI λemp
I λGSI ÞλexcI ðp̃Þjϕp̃i: ð2Þ

There are contributions from the I eigenvalue of the ground
state (λGSI ) as well as the underlying electronic bands.
However, the only contribution which varies between
different high-symmetry points is the excitonic contribution
λexcI ðp̃Þ from ϕp̃

k ¼ λexcI ðp̃Þϕp̃
−k. We refer to an exciton wave

function with λexcI ð0Þ ¼ λexcI ðπÞ as trivial; otherwise it is
nontrivial. Nontrivial excitons can therefore arise even in a
trivial single-particle band structure, as long as the I
eigenvalues of the exciton wave function differ at p̃. Just
like for electronic Wannier states, the Wannier centers of
the maximally localized exciton Wannier states [21] then
shift by a quantized amount [23].
To demonstrate the exciton shift, we define the

excitonic Wannier state jWR0 i centered at position R0,
jWR0 i ¼ ð1= ffiffiffiffi

L
p ÞPp e

−ipR0 jϕpi. This can be expanded as

jWR0 i ¼
X
R;Δ

WR−R0
Δ c†R;empcR−Δ;occjGSi: ð3Þ

Here, c†R;α ¼ ð1= ffiffiffiffi
L

p ÞPp e
−ipRc†p;α are the maximally

localized electronic Wannier states associated with the
band α∈ femp; occg at unit cell R, and

WR
Δ ¼ 1

L
ffiffiffiffi
L

p
X
p;k

eipReikΔϕp
k : ð4Þ

We assume that a smooth gauge (as a function of p) has
been found for the exciton wave function ϕp

k so that the
jWR0 i (andWR

Δ) are exponentially localized in space (R); in
1D this is always possible [26]. Note that the spread ofWR

Δ
in Δ depends on the electron-hole separation so is greater
for Wannier-Mott compared to Frenkel excitons. We define
the exciton shift for the exciton Wannier state at unit cell
R0 ¼ 0 as

sexc ¼
X
R;Δ

jWR
Δj2R: ð5Þ

While we have so far assumed that the electronic Wannier
centers are xocc ¼ xemp ¼ 0, in general [22],

sexc ¼ hW0jx̂ðeÞempjW0i − xemp ¼ hW0jx̂ðhÞoccjW0i − xocc; ð6Þ

where x̂ðeÞemp ¼
P

RðRþ xempÞc†R;empcR;emp [x̂ðhÞocc ¼P
RðRþ xoccÞcR;occc†R;occ] is the empty-band electron

(occupied-band hole) projected position operator [26].
Correspondingly, the electron and hole making up the
exciton Wannier state are shifted on average by the same
amount sexc with respect to the noninteracting electron and
hole Wannier centers, respectively. Equivalently, sexc rep-
resents the shift with which the actual exciton center of
mass is offset from the “naive” exciton center of mass
obtained by simply pairing up electron and hole Wannier
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states in each unit cell. We next demonstrate that the
excitonic shift is quantized to sexc ¼ 0; 1=2 in centrosym-
metric systems. I symmetry requires that ϕp

k ¼ eiαðpÞϕ−p
−k ,

where eiαðpÞ can always be chosen to be a smooth function
of p in 1D [23]. The I eigenvalues at the high-symmetry
points constrain αðpÞ. For trivial exciton bands we have
λexcI ðp̃Þ ¼ λexcI , and hence the gauge αðpÞ can be chosen
constant, i.e., αðpÞ ¼ α, where eiα ¼ λexcI . From Eq. (4),
this leads to WR

Δ ¼ λexcI W−R
−Δ and hence sexc ¼ 0 [22].

However, for nontrivial exciton bands, the I eigenvalues
differ at the high-symmetry points. The required gauge
is therefore αðpÞ ¼ α − p, where α is defined via

eiα ¼ λexcI ðp̃ ¼ 0Þ. This gauge choice leads to WR
Δ ¼

λexcI ðp̃ ¼ 0ÞW−ðR−1Þ
−Δ and hence sexc ¼ 1=2 [22]. Figure 1

demonstrates the difference between shift excitons and
trivial excitons and shows explicitly calculated exciton
Wannier states for the model introduced in the next section.
A nonzero exciton shift sexc ¼ 1=2 gives a counting

mismatch of exciton eigenstates between periodic boun-
dary conditions (PBC) and open boundary conditions
(OBC), in analogy to the filling anomaly of obstructed
atomic limits [27]. For this, it is crucial to consider an OBC
termination that does not cut through any single-particle
Wannier states. (Compare this with the usual condition in
TCIs that the OBC termination not cut through unit cells.)
Given a lattice of N unit cells, there will then be N exciton
states that form a band in PBC. If and only if this band
has a nontrivial shift sexc ¼ 1=2, it will consist of N � 1

contiguous exciton states in OBC, potentially (in the case
of N − 1 states) with 2 midgap exciton states localized at
opposite edges of the system. Since these edge states are
exponentially localized and exchanged by I symmetry,
they must remain degenerate. In particular, merging them
with the bulk excitons does not remove the counting
mismatch N � 1 ≠ N with respect to PBC.
Shift excitons in the SSH model—Shift excitons can be

realized in an interacting generalization of the spinless 1D
centrosymmetric SSH model in its trivial phase—that is,
there are no single-particle edge states in OBC when
terminating with full unit cells. In our conventions, this
model has two sublattices labeled A and B and a hopping
(−v) between sites within the unit cell and (−w) between
adjacent unit cells. I symmetry inverts about the center of
the unit cell, exchanging A and B. The Coulomb interaction
introduces quartic terms to the tight-binding Hamiltonian,
the form of these is shaped determined by the atomic
orbitals. We begin by focusing on the intraunit and interunit
cell extended Hubbard interactions, U and U0, which are
the simplest due to the spinless nature of the model:

Ĥ ¼ −v
X
R

ðc†R;AcR;B þ c†R;BcR;AÞ

− w
X
R

ðc†R;BcRþ1;A þ c†Rþ1;AcR;BÞ

þU
X
R

nR;AnR;B þ U0X
R

nR;BnRþ1;A: ð7Þ

We first consider the system in PBC with v ¼ 1 and
w;U;U0 treated perturbatively on top of the noninteracting
ground state of the dimerized SSH model (i.e., the ground
state at v ¼ 1, w ¼ U ¼ U0 ¼ 0). Since the interunit cell
hopping w is zero, there are clearly no edge states in OBC
when terminating with full unit cells. Correspondingly, the
noninteracting part of the model is in the trivial phase with
respect to I symmetry: since we can localize the sublattices
A and B at the center of the unit cell without loss of
generality, it realizes an unobstructed atomic insulator [8].
This corresponds to an unperturbed ground state jGSi ¼Q

R c
†
R;þj0i, where c†R;þ is the creation operator for the

Wannier state at unit cell R for the filled electronic band.
In the dimerized limit, the Wannier states of the occupied
(þ) and empty (−) bands are compact and localized to a
single unit cell [28]:

c†R;� ¼ c†R;A � c†R;Bffiffiffi
2

p ; Îc†R;�Î
† ¼ �c†R;�: ð8Þ

Excitons consist of excitations of electrons from the
occupied Wannier states (I eigenvalue þ1) to the empty
Wannier states (I eigenvalue −1). We therefore project the
Hamiltonian in Eq. (7) into the variational exciton basis
c†RþΔ;−cR;þjGSi to give an effective exciton Hamiltonian

(a)

(b)

FIG. 1. Conceptual diagram comparing the exciton and elec-
tronic Wannier states (in black and red, respectively) for (a) trivial
and (b) shift excitons. The right-hand panels show calculated
exciton Wannier states for the interacting generalization of the
SSH model (introduced in the text) as a function of absolute
position R and relative spread Δ. The inversion center for the
Wannier states is shown as a red dot, indicating a nontrivial
exciton shift sexc ¼ 1=2 for (b).
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matrix HR;R0;Δ;Δ0 . Note we do not include a coupling
between the ground state and the exciton basis states
because, since we consider w;U;U0 perturbatively,
the ground state is sufficiently gapped for this coupling
to be negligible. The resulting matrix HR;R0;Δ;Δ0 describes
the scattering between excitons centered at R, R0,
with electron-hole separations Δ;Δ0. The Hamiltonian
is translationally invariant, HR;R0;Δ;Δ0 ¼ HR−R0;0;Δ;Δ0 ;
hence we perform a Fourier transform resulting in an
effective exciton Hamiltonian HΔ;Δ0 ðpÞ depending on total
momentum p,

HΔ;Δ0 ðpÞ ¼ δΔ;Δ0

�
2vþ UδΔ≠0 þ

U0

4
ðδΔ≠1 þ δΔ≠−1 − 2Þ

−
U0

2
δΔ;0 cosp

�

−
w
2
ðδΔ0;Δþ1 þ δΔ0;Δ−1Þ

h
1þ eipðΔ0−ΔÞ

i
; ð9Þ

where we have abbreviated δΔ≠x ≡ 1 − δΔ;x. The exciton
spectrum above the ground state for the choice U ¼ U0 and
w ¼ 0 is shown in Fig. 2(a) and exhibits a trivial dispersive
band of Frenkel excitons (Δ ¼ 0) [22] gapped from a
lower set of flat bands (which are doubly degenerate with
Δ ¼ �1) and a higher set of flat bands (the electron-hole
continuum).

To construct a nontrivial exciton band at lowest energy,
we begin by lowering the energy of the doubly degenerate
flat band by decreasing the interaction strength U with
respect to U0 [see Fig. 2(b)]. These flat bands hybridize
with the dispersive band when the interunit cell hopping
term w is turned on. However, this does not result in a
nontrivial exciton band (with opposite I eigenvalues at
p ¼ 0; π) gapped at p ¼ π [see Fig. 2(c)]. This can be
understood by considering a projected exciton Hamiltonian
H0ðpÞ restricted to Δ ¼ 1; 0;−1. The spectrum of this
restricted Hamiltonian approximates the low energy phys-
ics well because the 3 lowest energy bands in the exciton
spectrum are bound states so are exponentially localized in
Δ. In the basis Δ∈ f1; 0;−1g, we obtain

H0ðpÞ ¼

0
BB@

2vþU − U0
4

−w
2
ð1þ e−ipÞ 0

−w
2
ð1þ eipÞ 2v− U0

2
cosðpÞ −w

2
ð1þ e−ipÞ

0 −w
2
ð1þ eipÞ 2vþU − U0

4

1
CCA:

ð10Þ

Clearly, at momentum p ¼ π, the term multiplying w
vanishes, implying that the negative I eigenstate
ð1; 0;−1ÞT and the positive I eigenstate ð1; 0; 1ÞT have
the same energy.
Although the gap at p ¼ π can be opened using longer-

range hopping terms, we aim to not only obtain a nontrivial
band gapped at any given momentum, but also to fully gap
the nontrivial band across all momenta such that the gap
persists in OBC.We show below that when this occurs edge
localized excitons can exist. In order for the gap to remain
in OBC, however, the highest energy state in the nontrivial
band must be lower in energy than all states in the
remaining bands. This requirement can never be achieved
in the spectrum of the reduced Hamiltonian in Eq. (10), and
adding longer-range hopping or further Hubbard-type
terms also cannot fully gap the nontrivial band [22].
Generically, however, the Coulomb interaction projected

into tight-binding models leads to quartic terms beyond
Hubbard-type terms. For example, one can obtain pair
hopping terms and these can fully open the gap. Consider,
for instance, the pair hopping term

ĤV ¼ V
X
R

ðc†Rþ1;BcR;Ac
†
R−1;AcR;B

− c†R−1;BcR;Ac
†
R−1;AcR;BÞ þ H:c:; ð11Þ

which when projected into the effective 3 × 3 exciton
Hamiltonian adds the term

H0
VðpÞ ¼

0
B@

4V cosðpÞ 0 −4Ve−ip

0 0 0

−4Veip 0 4V cosðpÞ

1
CA: ð12Þ

(a) (b)

(c) (d)

FIG. 2. Construction of a nontrivial exciton band in the
interacting SSH model by hybridizing trivial bands. The relevant
I eigenvalues are marked at the high-symmetry momenta. In
(a) the lowest energy flat band is twice degenerate so is marked
with two I eigenvalues; the flat band above this is highly
degenerate. All spectra have v ¼ 1, and the remaining parameters
are (a) U ¼ 0.15, U0 ¼ 0.15, w ¼ 0, (b) U ¼ 0.05, U0 ¼ 0.15,
w ¼ 0, (c) U ¼ 0.05, U0 ¼ 0.15, w ¼ 0.03, (d) U ¼ 0.05,
U0 ¼ 0.15, w ¼ 0.03, and pair hopping V ¼ 0.01.
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For reasonable parameter choices, this term opens up the
gap at all momenta [see Fig. 2(d)]. In addition to being able
to gap out a nontrivial exciton band, it can be made
completely flat [22], potentially leading to strongly corre-
lated exciton condensate states.
The nontrivial shift sexc ¼ 1=2 of the exciton Wannier

centers that follows from their opposite inversion eigen-
values at p̃ ¼ 0; π leads to a bulk-boundary correspondence
as explained above. We find that when the jvj > jwj chain
is terminated with full unit cells (and not cutting through
any single-particle Wannier states), there are no edge states
in the noninteracting SSH model and yet the interaction-
induced nontrivial topology of the exciton bands leads to
exciton edge states. Figs. 3(a) and 3(b) show the spectrum
and profile of the midgap exciton edge state at the left-hand
edge of the chain. These edge states correspond to exciton
states which can be excited at the edge and not the bulk;
hence the local optical conductivity can be used to detect
shift excitons [29–31] (see Ref. [22] for explicit calcula-
tions). Note that one can also obtain exciton edge states by
terminating the chain on a weak bond (w). This termination
can lead to single-particle states which have an edge
localization which can be inherited by exciton states.
However, the resulting exciton edge states differ substan-
tially from those exciton edge states which arise from the
bulk exciton topology [22].
Discussion—Our work generalizes the topological clas-

sification of TCIs to excitons in semiconductors, paving the
way for future explorations into the interplay of topology
and interaction-induced bound states in condensed matter
systems. Firstly, investigating higher-symmetry groups
beyond I symmetry and applying topological quantum
chemistry principles to exciton band structures will uncover
new topological phases of excitons. The composite nature

of excitons also suggests the possibility of entirely novel
topological properties not possible for (quasi)electrons.
Additionally, the condensation of shift excitons might lead
to a new state of matter, termed a shift-excitonic insulator,
with unique collective excitations and phase transitions.
Finally, our approach can be naturally generalized to other
excitations, such as plasmons, magnons, polarons, mag-
non-magnon pairs, and triplons.

Note added—Recently, Ref. [32] appeared, where it is
suggested that organic semiconductors may realize shift
excitons.
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