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Abstract

Modern systems are increasingly complex, interconnected, and influenced by various decision makers.

This introduces new challenges for designing dynamic decision laws which ensure such systems behave

as expected, respond appropriately to inputs, or operate safely autonomously - particularly if decision

makers have incomplete information regarding the system dynamics or performance criteria. The

objective of this thesis is to develop game theoretic and data-driven methods for dynamic decisions

towards tackling such challenges.

Dynamic game theory concerns the dynamic interaction of strategic decision makers called players. As

games involve multi-objective optimisation problems, the “best” strategy for each player is typically

not obvious, and various solution concepts exist. In this thesis, feedback Nash equilibrium solutions of

linear quadratic discrete-time dynamic games are considered. Computing such solutions is generally

challenging, and multiple solutions with different outcomes may exist. To build intuition, conditions

characterising the number of solutions and certain properties are derived for games involving scalar

dynamics. To address the challenges associated with obtaining solutions in the general case, a notion

of approximate Nash equilibrium is introduced, and iterative Nash equilibrium finding methods are

proposed.

Data-driven control exploits measured data to recover or replace missing information for designing

dynamic decision laws. In this thesis, a framework to design control laws directly using data, while

providing performance guarantees, is extended to the class of linear time-varying systems, and methods

are developed to represent control objectives using data.

Combining the above, methods are proposed to overcome incomplete information in multi-player

dynamic decisions. First, games in which one player lacks system and cost information are considered,

before iterative data-driven methods are designed to determine a solution if all players have incomplete

information.

The results are illustrated and motivated via numerical examples and practically relevant case studies,

including macroeconomic policy design, power systems, snake-like robots, and human-robot interac-

tion.
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Chapter 1

Introduction

1.1 Motivation

From navigating social interactions to steering a car through traffic or managing inventory, dynamic

decisions, big and small, are a constant part of our lives. Dynamic decision-making is characterised by

taking place in real time in an environment which evolves over time, both due to past decisions and due

to events and factors out of the influence of the decision maker. On a larger scale, situations involving

dynamic decision-making include air traffic control, military strategy, economic policy making and

managing emergency situations [1].

Deriving laws governing dynamic decisions is key to successful automation. Both in our everyday

life and in the larger scale examples above, automation becomes ever more prevalent, such as the

use of autonomous robots in disaster response [2]. The question is then how to derive decision laws

to tackle complex challenges, such as to enable a robot to move autonomously through challenging

environments or to interact safely with humans?

If the evolution of the decision-making process can be modelled as a dynamical system, control theory,

the branch of engineering concerned with studying and shaping the behaviour of dynamical systems,

provides powerful tools for dynamic decisions. Many of these tools fall into the category of model-based

control. Namely, the methods rely on a mathematical model of the dynamical system, for example

a state-space description or transfer function, to determine input laws, also referred to as strategies,

with the aim of providing guarantees regarding properties of the dynamical system under the action

of these strategies. For instance, the properties to be shaped include stability of an equilibrium point

of the system, performance with respect to a control objective such as minimising actuation effort or

tracking a desired trajectory, and robustness to external disturbances. As modern engineering systems

are becoming increasingly complex due to technological advances in areas including microprocessors

and memory, digital technologies, artificial intelligence, and robotics, deriving accurate system models
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becomes increasingly challenging. Examples include modern robotic systems such as snake-like robots,

which due to their excellent mobility achieved by mimicking the movements of biological snakes show

potential for a wide range of applications in challenging environments, including for search and rescue

missions, for inspection and maintenance tasks and for space exploration. However, the locomotion

of the underactuated snake-like robot relies on the complex friction forces between robot and ground,

which are difficult to model accurately [3]. Another example are modern “smart grid” power systems,

which are required to cope with ever increasing demand while receiving intermittent supply from

renewable energy sources such as solar and wind power [4, 5]. The increasing use of digital tools in

this context also opens new challenges such as preventing cyber-attacks to power grid control systems

[6]. Even if an accurate model of such complex systems is available, it may be too complex and

hence not well suited for control design [7]. While not a new topic in control theory, data-driven

control methods, which aim to learn or replace system models by using measured data, have recently

become increasingly popular, due to advances in sensing capabilities and computational resources [8].

A central question in the context of data-driven control is how to substitute a system model with data,

while providing similar stability, performance and robustness guarantees to the ones characteristic of

model-based control.

Classical control problems involve a single decision maker designing decision laws for the inputs to a

dynamical system. With systems becoming increasingly interconnected and influenced by the inputs

of various decision makers, new challenges arise. Dynamic game theory [9], a sub-field of game theory,

is concerned with the dynamic interaction of strategic decision makers, also called players. Each

player aims to optimise a performance criterion via the choice of decision law for the player’s action

or input. The players’ performance criteria can involve both team-based and possibly conflicting

individual objectives and hence may or may not be such that the players are in direct competition.

Thus, dynamic game theory finds application in wide range of interaction scenarios. For example,

consider a monetary union of several countries with a common central bank, such as the Eurozone, the

interaction of the national fiscal policies and the monetary policy of the central bank can be studied as a

dynamic game [10]. Further examples of dynamic decision-making problems which can be modelled as

a dynamic game include military strategy [11], and environmental and epidemic management [12, 13].

The dynamic game formulation also naturally captures control problems involving multiple decision

makers influencing a dynamical system. In fact, certain classes of dynamic games can be interpreted

as a generalisation of optimal control problems from the single-player case to the multi-player case

[14]. This ranges from designing controllers to attenuate disturbances [15] or to trade off between

performance and disturbance attenuation objectives [16], to control of cyber-physical systems [17],

power systems [18, 19], robotic systems [20, 21, 22, 23, 24] or general multi-agent systems. In the

context of the latter, tools from dynamic game theory can be harnessed to tackle problems such as

18
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collision avoidance [25, 26] and formation control [27] and have recently gained attention for distributed

control design [28, 29], i.e. to design controllers for each agent based on limited locally available

information with the aim of achieving a desired collective behaviour for the entire multi-agent system.

As with all decisions, the information available to each decision maker plays a key role in the outcome

of a game. For example, any hierarchy among the players or whether the players can measure the

current state of the decision-making process or only know the initial state can affect the type of

solution sought. In many scenarios which can be modelled as dynamic games it is possible or even

likely that different and incomplete information is available to each player. For example, consider a

robotic system interacting with a human operator for arm reaching movements. Such a scenario may

arise in a manufacturing setting to support the lifting of heavy objects or in a rehabilitation setting to

train a patient’s motor skills. The interaction between the human operator and the contact robot can

be modelled as a dynamic game. However, the contact robot cannot know the human operator’s motor

behaviour and performance criteria a priori [20, 21]. Even in the “classical” game formulation with

complete information, i.e. all players know the full system dynamics and the performance objectives

of themselves and all other players, dynamic games constitute multi-objective optimisation problems,

which are generally not straightforward to solve. Multiple solution concepts exist, and even with focus

on a specific type of solution, there may exist multiple such solutions with different outcomes, which

are more or less favourable for different players [9]. A commonly considered solution concept is the

Nash equilibrium. At such a solution, the players’ strategies are in equilibrium in the sense that no

player has an incentive to deviate from the solution strategy while the other players’ strategies remain

unchanged, since such a deviation would incur a higher cost. Finding feedback strategies which satisfy

this criterion is generally challenging. Notably, for games involving nonlinear dynamics, closed-form

solutions do not generally exist. Even in the linear quadratic case - which in the single-player optimal

control setting is well understood and can be solved using readily available techniques - multiple

solutions may exist in the multi-player setting, and computing such equilibrium solutions involves the

solution of coupled matrix equations which are generally challenging to solve [9, 30]. While feedback

Nash equilibrium solutions and their computation have been extensively studied for certain classes of

linear quadratic dynamic games, many interesting questions remain.

As the title suggests, the objective of this thesis is to study and develop game theoretic and data-

driven methods for dynamic decisions, considering scenarios ranging from complete to incomplete

information. Towards this objective, the following three sub-objectives are tackled.

1. Considering multi-player dynamic decision problems which can be cast as a class of linear

quadratic dynamic games and are generally difficult to solve, with complete information, study

feedback Nash equilibrium solutions and propose novel approximate solution concepts and iter-

ative solution methods.
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2. Considering control problems which are well understood in the complete information context,

including stabilisation, optimal control and robust control of linear systems, in the context of

incomplete information, namely if the system dynamics and/or the cost parameters are unknown

to the decision maker, propose methods to solve the problems utilising data by extending recent

data-driven control design methods.

3. Combining results from the previous two points, propose data-driven approaches to solve certain

classes of linear quadratic dynamics games with incomplete information.

How this thesis addresses these three objectives is outlined in more detail in the following section.
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1.2. Organisation and overview of contributions

1.2 Organisation and overview of contributions

The thesis is organised as illustrated in Figure 1.1. The main contributions of the following chapters

are summarised below.

Chapter 2: Before the main results of this thesis are presented in Chapters 3-5, a review of the

relevant literature and an introduction to important background material are provided in Chapter 2.

To this end, Section 2.1 focuses on dynamic game theory, before Section 2.2 dives into preliminaries

on data-driven control.

Chapter 3: In the first main results chapter, the focus lies on dynamic game theory, and in par-

ticular deterministic, non-cooperative, nonzero-sum, infinite-horizon, linear quadratic, discrete-time

dynamic games and their feedback Nash equilibrium solutions. The contribution of this chapter is

threefold. First, the study of the special case in which the dynamics of the game are described by scalar

variables in Section 3.2 gives insights into the possible number and properties of different solutions.

This is achieved by proposing a graphical representation of the conditions characterising feedback

Chapter 1:
Introduction

Chapter 2:
Background and literature review

Chapter 3:
Infinite-horizon dynamic games

Chapter 4:
Direct data-driven control methods

Chapter 5:
Data-driven methods for dynamic games

Chapter 6:
Conclusion

Figure 1.1: Organisation of the thesis.
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Nash equilibria for the considered class of games. Via geometric arguments conditions in terms of

the model and cost parameters are derived under which the game admits a certain number of feed-

back Nash equilibrium solutions and under which they possess certain properties. For scalar games

involving two players, an alternative graphical representation is derived, which allows to confirm the

results from a different perspective and provides additional insights. The results are illustrated via

numerical examples. Second, shifting the focus back from scalar games to games involving general

linear dynamics, a notion of approximate feedback Nash equilibrium is proposed in Section 3.3. The

solution concept provides guarantees on the rate of convergence of the trajectories of the resulting

closed-loop system. Its characterisation via matrix inequalities, the degree of approximation and the

computation of solutions are discussed. The results are demonstrated via a macroeconomic policy

design example in simulation. Third, four iterative methods to determine feedback Nash equilibrium

solutions of the considered class of games are proposed and discussed in Section 3.4. The methods rely

on the iterative solution of uncoupled matrix equations, more precisely Lyaponov or Riccati equations,

to solve the set of coupled matrix equations associated with feedback Nash equilibrium solutions. Lo-

cal convergence criteria are provided. The efficacy of the presented algorithms is demonstrated and

compared to alternative algorithms by means of two illustrative numerical examples.

Chapter 4: The second main results chapter deals with direct data-driven control and features

two main contributions. First, in Section 4.1 a recent data-driven control framework, which allows

to design feedback controllers directly using data via the solution of convex optimisation problems

by representing both the controller and the resulting closed-loop system with a comparatively small

amount of measured data, is extended to the class of linear time-varying systems. Methods to design

controllers with trajectory boundedness and performance guarantees for unknown linear time-varying

systems based purely on an ensemble of input-state data, and without explicitly identifying the system

dynamics, are proposed and discussed. No prior knowledge regarding the underlying time-variation

is required. However, it is shown how such information can be utilised to relax the data require-

ments and derive infinite-horizon results from finite-length data for periodically time-varying systems.

Both noise-free systems and systems affected by both measurement and process noise are considered.

To demonstrate the efficacy and relevance of the results, both illustrative numerical examples and

two practically motivated examples involving a voltage source converter and a snake-like robot are

provided. Second, motivated by the fact that in many practical settings performance criteria are

often not obvious a priori, linear quadratic optimal control problems with unknown cost functions

are considered. In Section 4.2, a method to represent the cost function in a similar manner to the

system dynamics using non-optimal finite-length data of the response of the state and a performance

variable to exploring inputs is proposed. It is shown that in combination with the data-driven system

representation this cost representation allows to solve optimal control problems with both unknown
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dynamics and unknown cost functions via purely data-dependent convex optimisation problems.

Chapter 5: In the final main results chapter, findings of Chapter 3 and Chapter 4 are combined to

derive data-driven methods for dynamic games. The contribution is twofold. First, in Section 5.1 a

class of infinite-horizon linear quadratic discrete-time dynamic games, in which different information

is available to different players is considered. More precisely, assume one of the players does not

know the cost functions which the other players are aiming to minimise and may not know the system

dynamics. Hence, this player cannot determine a Nash equilibrium solution of the game using classical

methods or using the dynamic game results of Chapter 3. It is shown that the data-driven control

results of Section 4.2 are relevant for this class of games with asymmetric information structure and

allow the “uninformed” player to compute a feedback Nash equilibrium strategy by compensating for

the lack of information with measured data. The efficacy and relevance of the proposed results is

demonstrated via a simulation example involving human-robot interaction. Second, in Section 5.2 the

focus shifts to games in which not just one of the players is faced with incomplete information, but all

players in the infinite-horizon linear quadratic discrete-time dynamic game have limited information

available to them. Namely, each player only knows the own performance objective, but not the cost

functions which the other players are aiming to minimise. Additionally, the players may not know the

system dynamics. Data-driven versions of the algorithms in Section 3.4 are proposed to overcome this

lack of information. By utilising measured data, in a similar way as proposed in Section 5.1, in the

context of the iterative update laws from Section 3.4, it is shown in Section 5.2 that the players are

able to jointly converge to a Nash equilibrium solution via scheduled experiments by taking turns to

collect data to update their strategies. The performance of the data-driven algorithms is demonstrated

and discussed via two illustrative numerical examples, before the practically motivated human-robot

interaction example from Section 5.1 is revisited.

Chapter 6: The final chapter rounds off with a summary of the work and provides concluding

remarks.
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1.3 Published results
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Table 1.1: Overview of published results.

Chapter 3 Section 3.1 Two-player versions of the proofs of Theorem 3.1.1 and Corollary 3.1.1
also appear in [31].

Section 3.2 Preliminary results (the two-player case in Section 3.2.4 and the two
player examples in Section 3.2.5) are published in [BN3].

Section 3.3 Published in [BN4] apart from Section 3.3.4.
Section 3.4 Published in [BN1], preliminary results for scalar games are published

in [BN5].

Chapter 4 Section 4.1 Noise-free results in Section 4.1.2 are published in [BN2], [BN7].
Robust control results in Scection 4.1.3 and results for periodically time-
varying systems in Section 4.1.5 are published in [BN2].
The numerical LQR example in Section 4.1.6 is published in [BN7].
The snake-like robot example in Section 4.1.6 appears in [32].

Section 4.2 Published in [BN6].

Chapter 5 Section 5.1 Published in [BN6] apart from the proof of Corollary 5.1.1.
Section 5.2 Published in [BN1], preliminary results for scalar games are published

in [BN5].
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1.4 Notation

The sets of complex numbers, real numbers, integers and natural numbers are denoted by C, R, Z

and N, respectively. The zero matrix of appropriate dimension is denoted by 0 and the n× n identity

matrix by In. Given a scalar λ ∈ C, |λ| denotes the modulus of λ. Given a vector v ∈ Rn, ∥v∥ denotes

its Euclidean norm and given a matrix M ∈ Rm×n, ∥M∥ denotes the induced 2-norm of M . The

transpose of a vector (matrix) is denoted by v⊤ (M⊤) and the conjugate transpose by vH (MH). The

vectorisation of M is denoted by vec(M). The block diagonal stacking of matrices M and N is written

as diag (M,N). Given a square matrix A, Tr(A) denotes its trace, and A ≻ 0 (A ⪰ 0) denotes that

A is positive definite (positive semi-definite). The spectral radius of A is denoted by ρ(A). If A is

invertible, A−1 denotes its inverse. Given a matrix B of full row rank, B† denotes its right inverse.

In matrix inequalities ⋆ denotes blocks (or matrices), which can be inferred by symmetry. Given a

signal z : Z → Rσ the sequence {z(k), . . . , z(k + T )} is denoted by z[k,k+T ] with k, T ∈ Z and we

denote |z|k = sup {∥z(j)∥, 0 ≤ j ≤ k} ≤ ∞. The space of square-summable sequences is denoted by

ℓ2. A function γ : R≥0 → R≥0 is a class K-function if it is continuous, strictly increasing and γ(0) = 0.

Throughout the thesis the superscript ⋆ refers to an exact solution and the superscript ∗ indicates an

approximate solution.
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Chapter 2

Background and literature review

Modern life heavily depends on complex systems, from the aeroplanes bringing us to destinations

across the world and the satellite constellations enabling satellite navigation to advanced robots man-

ufacturing our cars and smart power grids seamlessly integrating renewable energy sources. We take

it for granted that such systems behave as expected, respond appropriately to our inputs, or even

operate safely autonomously. However, many natural and engineered systems are governed by dy-

namics which may be complex and may exhibit unexpected and potentially dangerous behaviours. By

providing tools to analyse systems and to design and implement laws governing dynamic decisions,

control theory allows us to understand and modify the behaviour of dynamical systems. However,

with systems becoming increasingly complex, intelligent, digital and interconnected due to significant

advances in microprocessors and memory, digital technologies, artificial intelligence and robotics over

the last forty years, new challenges have been arising in the context of control design. A central

question is how to design controllers guaranteeing stability and performance in the face of uncertainty

or limited information. This is particularly true for systems influenced by the inputs of multiple de-

cision makers. This thesis addresses this question by combining tools from the fields of game theory

and data-driven control design. The following two sections aim to summarise the background and

state-of-the-art in these two fields to put the results of the following chapters into perspective.
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2.1 Dynamic game theory

Collisions of interest predate humankind and have been ubiquitous throughout our history. Conflict

situations have shaped our societies, have provided motifs for art and literature and have fuelled

technological advances. Conflict arises when interacting individuals or parties pursue their own indi-

vidual interest, which may at least partly be clashing with the others’ interests. Each individual or

party has to make decisions from a set of options, where each possible decision will likely lead to a

different outcome. However, this outcome also depends on the decisions taken by the other parties

involved, and different possible outcomes may be valued differently by the different decision makers

[9]. While thoughts about and insights into this type of problem date back to ancient times, appearing

for example in texts of Plato [33], a systematic mathematical framework to model and analyse conflict

situations, or more generally multi-person or multi-party decision making (which does not necessarily

involve direct conflict), has been pioneered in the 1930 and 1940 by von Neumann and Morgenstern

[34] and is called game theory.

Solution concepts in game theory

In contrast to single-person or single-party decision making, where the concept of optimality is un-

ambiguous, the “best” solution is equivocal if multiple decision makers are involved. Hence, game

theory concerns the design of strategies (decision rules) based on which the rational decision makers -

referred to as players - take their actions to achieve a certain outcome. This type of problem is called

a game. A classical case is the two-player zero-sum game, which is defined by a single performance

criterion, with one player aiming to minimise it and the other player aiming to maximise it via their

respective choices of actions. What one player gains the other loses, or in other words, their objective

functions sum up to zero. An example is the rope-pulling or “tug of war” game, in which two players

(which can be individuals or teams) pull on opposite ends of a rope with the aim of moving the rope

and the other player a certain distance in one direction. If the two opponents are equally strong,

the most favourable strategy for each player is clearly to pull the rope as hard as they can in the

opposite direction to the other player and the rope does not move. The strategies are in equilibrium,

that is, each player’s strategy is optimal against the other’s strategy. Such a solution is known as a

saddle-point solution [9, 35].

The solution of a game becomes less straightforward if there are N > 2 players involved or if each

player is trying to optimise their own performance criterion, and the game is such that the players’

performance criteria do not add up to zero, i.e. nonzero-sum games. To illustrate this, consider the

well-known prisoners’ dilemma (see e.g. [35]). Two prisoners are awaiting their trial. If found guilty,

they will face a 10 year prison sentence. The prisoners are held separately and each offered the chance

to testify and give evidence incriminating the other prisoner. If only one of the prisoners testifies,
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the other prisoner will be found guilty and the testifying prisoner will be set free. If both choose to

testify, each will receive a reduced 5 year sentence. If neither prisoner testifies, they can both only be

convicted of a lesser crime with a shorter sentence of 2 years. This results in the following bimatrix

game

Player 2

nt t

C1 = 2 10 nt
Player 1,

0 5 t

Player 2

nt t

C2 = 2 0 nt
Player 1.

10 5 t

(2.1)

The matrix C1 (C2) shows the cost incurred by Player 1 (Player 2) for the possible combinations of the

actions taken by the two players, where each player can choose between the options nt (no testimony)

and t (testimony).

Does there exist an equilibrium solution with similar properties as the one observed in the rope-pulling

example? If both players play t, then neither player can reduce their cost by unilaterally changing

strategy, i.e. C1(t, t) ≤ C1(nt, t) and C2(t, t) ≤ C2(t, nt). The pair of strategies (t, t) is called a Nash

equilibrium solution (named after John Nash who introduced the concept in [36], [37]) of the game

(2.1). Note that, in general, a bimatrix game may admit multiple Nash equilibrium solutions with

different outcomes. If that is the case, the outcome of one Nash equilibrium solution may be more

favourable than the outcome of another Nash equilibrium solution for one or both of the players.

Despite the solution (t, t) being the unique Nash equilibrium of the game (2.1), it is clearly not an

optimal solution. A better outcome for both players is achieved if they both choose not to testify, i.e.

by playing the pair of strategies (nt, nt). Note that this pair of strategies is not an equilibrium, since

each player could benefit from changing their strategy. As such, this solution is vulnerable to cheating.

However, this highlights that the players could benefit from cooperating by agreeing to both play nt.

The solution (nt, nt) is such that the cost for each of the players cannot be improved simultaneously,

i.e. there exists no other solution such that at least one player achieves a lower cost and no other

player is worse off. This is called a pareto-optimal solution [38, 9, 35].

In a non-cooperative setting, another solution of interest arises if the players choose their strategy to

minimise their cost against the worst possible strategies the opponents could choose. As such, the

players effectively each play a two-player zero-sum game, aiming to minimise their own cost assuming

all other players collectively aim to maximise it, and do not take the performance criteria of the other

players into account. This mimimax solution [9, 35] may be a pessimistic choice, however, it gives the

players a level of security if they are not sure how the rivals will select their strategies. This may be

relevant if there are multiple equilibria which are more or less favourable for different players or if a

player is not aware of the other players’ performance criteria. In the game (2.1), Player 1 can mitigate
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against the most harmful action of Player 2 (t) by choosing t as well. Similarly, Player 2 can alleviate

the effect of the most detrimental action of Player 1 (which is also t) by playing t. Hence, the pair of

strategies (t, t) constitutes a minimax solution. Note that in this special case, the minimax solution

coincides with the unique Nash equilibrium solution of the game and is a natural choice if there is no

cooperation between the players. However, in general, a minimax outcome is worse or equally good,

but not better than any Nash equilibrium outcome.

Nash equilibrium, pareto-optimal and minimax solutions have in common that they are relevant if

the roles of the players are symmetric. A natural question is then what a favourable solution looks

like if there is a hierarchy among the players in the decision process. In the game (2.1), let Player 1

be the leader, who announces the chosen strategy first, and let Player 2 be the follower, who reacts

rationally to the leader’s decision. Hence, Player 1 has to take the possible responses of Player 2 into

account when choosing the most favourable strategy. If Player 1 chooses nt, the best response for

Player 2 is t, resulting in the cost C1(nt, t) = 10. If Player 1 instead plays t, the best response for

Player 2 is still t, giving C1(t, t) = 5. Hence, the latter is the most favourable choice for Player 1

in this hierarchical decision process. The solution (t, t) is called the Stackelberg equilibrium solution

[39] of the game (2.1) with Player 1 as the leader. While in this example the Stackelberg equilibrium

coincides with the Nash equilibrium and the minimax solution, this is not always the case. In fact, a

Stackelberg equilibrium outcome may be more favourable for one or both of the players compared to

the other solution outcomes.

Static versus dynamic, information structures and cooperation

The above examples highlight the importance of the role of information available to each player in

the solution of games. The most appropriate strategy for each player depends on the knowledge of

the objectives of the other players, on whether the other players are happy to cooperate and can

be trusted, and on the hierarchy among the players. The aforementioned examples are both static

games, in the sense that the players only act once, and the outcome of the interaction depends on

that single instantaneous decision. A game is dynamic if the interaction evolves over time, if the

order in which a player makes decisions is important and if the players can use strategies which

depend on previous actions. While illustrated by means of static examples, the solution concepts

introduced above also extend to the dynamic case. In dynamic games, the players’ strategy choices

are further influenced by whether the underlying information structure is feedback, that is, each player

knows exactly to which state the game has evolved at each point in time, or open-loop, in which case

only the initial state is known. The prisoner’s dilemma example (2.1) highlights how cooperation

can lead to a better outcome for the players involved. Games (both static and dynamic), which

allow players to work together to their advantage or form coalitions are called cooperative games.
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A survey of dynamic cooperative games is provided in [40]. In the commonly considered setting in

which all players cooperate to achieve their objectives by communicating and entering into binding

agreements, without side-payments taking place (see e.g. [30]), the multi-objective game problem can

be reduced to a single-objective problem with the performance criterion being a weighted sum of the

individual performance criteria of the players. This single-objective optimisation problem leads to a

pareto-optimal solution parameterised with respect to the weighting parameters. In the dynamic game

setting this single-objective problem can be solved using tools from optimal control theory. In general,

many different pareto-optimal solutions may exist for a given game. While by definition any pareto-

optimal solution is such that the outcomes for all players cannot be improved simultaneously, different

pareto-optimal solutions may be more or less attractive for certain players. Hence, the question arises

as to which is the “best” solution for the players (with potentially conflicting interests) to agree on.

Bargaining theory [41] provides approaches to answer this question by comparing the benefits, which

the players can gain by cooperating, to the solution of the corresponding non-cooperative problem.

A game is a non-cooperative game, if the players pursue their own individual, often partly conflicting

interests without collaboration. This is the type of games considered in this thesis. A comprehensive

analysis of dynamic non-cooperative games is provided in [9].

Differential games and discrete-time dynamic games

The focus of this thesis is on a class of dynamic games in which the interaction is described by the

evolution of a dynamical system influenced by the inputs of the N ∈ N players. In reference to the

type of dynamic equation involved, these dynamic games are also known as differential games in a

continuous-time context [11, 35] and as difference games (or simply discrete-time dynamic games,

which is how they are referred to throughout this thesis) in a discrete-time context [9]. Namely,

consider the dynamical system

ẋ = f c(x, u1, . . . , uN ), (2.2)

with f c : Rn × Rm1 × . . . × RmN → Rn such that f c(0, 0, . . . , 0) = 0 is an equilibrium point, where

x ∈ Rn denotes the state of the system and ui ∈ Rmi is the input or action of player i, for i = 1, . . . , N .

Under the assumption that the players are rational, let each player i aim to minimise a cost functional

Ji (x(0), u1(·), . . . , uN (·)) = gci (x(T )) +

∫ T

0
lci (x(τ), u1(τ), . . . , uN (τ)) dτ, (2.3)

over the time interval t ∈ [0, T ], where gci : Rn → R represents a terminal cost and lci : Rn × Rm1 ×

. . . × RmN → R represents a running cost, via the choice of control strategy for the action ui, for

i = 1, . . . , N . The dynamics (2.2) and cost functionals (2.3), i = 1, . . . , N , describe a (finite-horizon)

differential game. If the asymptotic behaviour of the interaction of the players is of interest, i.e. the
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case in which T →∞, the performance criterion becomes

Ji (x(0), u1(·), . . . , uN (·)) =
∫ ∞

0
lci (x(τ), u1(τ), . . . , uN (τ)) dτ, (2.4)

and the game (2.2), (2.4), i = 1, . . . , N , is an infinite-horizon differential game. Similarly, consider

the discrete-time dynamical system

x(k + 1) = fd (x(k), u1(k), . . . , uN (k)) , (2.5)

for k ∈ Z, with fd : Rn ×Rm1 × . . .×RmN → Rn such that fd(0, 0, . . . , 0) = 0 and the cost functional

Ji (x(0), u1(·), . . . , uN (·)) = gdi (x(Nf )) +

Nf−1∑
k=0

ldi (x(k), u1(k), . . . , uN (k)) , (2.6)

with gdi : Rn → R and ldi : Rn×Rm1× . . .×RmN → R, which player i aims to minimise via the choice of

control strategy for the action ui over the time interval k = 0, . . . , Nf , for i = 1, . . . , N . The dynamics

(2.5) and cost functionals (2.6), i = 1, . . . , N , describe a (finite-horizon) discrete-time dynamic game.

Analogous to the continuous-time case, in the limit as Nf → ∞, the terminal cost is zero and the

performance criterion becomes

Ji (x(0), u1(·), . . . , uN (·)) =
∞∑
k=0

ldi (x(k), u1(k), . . . , uN (k)) , (2.7)

and the game (2.5), (2.7), i = 1, . . . , N , is an infinite-horizon discrete-time dynamic game. In the

infinite-horizon context (both in continuous-time and discrete-time) it is common to restrict the search

for solution strategies to stabilising strategies, which ensure the value of the cost functionals (2.4) or

(2.7), for i = 1, . . . , N , remains finite.

Definition 2.1.1. A set of strategies {ϕ1(·), . . . , ϕN (·)} is admissible if the set of control actions

{u1, . . . , uN}, with ui = ϕi(·) for i = 1, . . . , N , renders the zero equilibrium of the continuous-time

system (2.2) or the discrete-time system (2.5) (locally) asymptotically stable.

Applications and relevance

The defined classes of dynamic games are applicable to model interactions which may, or may not, be

competitive in a variety of fields, with applications ranging from ecology [42, 43, 44, 12], economics

[45, 44, 12], epidemiology [46, 13], robotics [20, 21, 47, 22, 23, 26] and power systems [18, 19] to politics

[48], military strategy [11] and cyber-security [17]. Differential games and discrete-time dynamic

games can be considered as a generalisation of optimal control problems to the multi-player case

[14, 9]. Hence, the classes of games apply naturally to various problems arising in control theory. For
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instance, worst-case design problems, such as the H∞-control problem, can be formulated and solved

as a zero-sum dynamic game [15]. Nonzero-sum dynamic games, on the other hand, can capture

the mixed H2/H∞-control problem [16, 49] and have found applications, for instance, in multi-agent

collision avoidance [25, 23, 24, 26], formation control [27] and distributed control [28, 29].

Nash equilibria and associated challenges

As illustrated on the basis of the prisoner’s dilemma example (2.1), Nash equilibrium solutions are of

natural interest and hence a commonly considered solution concept in non-cooperative games, which

are the focus of this thesis. For the considered classes of games, Nash equilibria are defined as follows.

Definition 2.1.2. A set of strategies1 {ϕ⋆
1(·), . . . , ϕ⋆

N (·)} constitutes a Nash equilibrium solution of

an N -player differential game or discrete-time dynamic game, if the inequality

J⋆
i = Ji (x(0), ϕ

⋆
1(·), . . . , ϕ⋆

N (·)) ≤ Ji
(
x(0), ϕ⋆

1(·), . . . , ϕ⋆
i−1(·), ϕi(·), ϕ⋆

i+1(·), . . . , ϕ⋆
N (·)

)
, (2.8)

holds for all {ϕ⋆
1(·), . . . , ϕ⋆

i−1(·), ϕi(·), ϕ⋆
i+1(·), . . . , ϕ⋆

N (·)}, for i = 1, . . . N. The strategy ϕ⋆
i (·) is referred

to as a Nash equilibrium strategy of player i, i = 1, . . . , N , whereas the set {J⋆
1 , . . . , J

⋆
N} is the

corresponding Nash equilibrium outcome.

Under a feedback information structure, i.e. if ϕi(·) = ϕi(t, x(t)) (continuous-time) or ϕi(·) =

ϕi(k, x(k)) (discrete-time), dynamic programming [50] arguments can be used to show that Nash

equilibrium solutions of differential games are characterised by the solutions of a set of coupled partial

differential equations (PDEs) and Nash equilibrium solutions of discrete-time dynamic games by the

solutions of a set of coupled difference equations. More precisely, in the continuous-time context,

consider the Hamiltonian associated with player i,

Hi

(
x, u1, . . . , uN ,

∂Vi

∂x

)
= lci (x, u1, . . . , uN ) +

(
∂Vi

∂x

)⊤
f c(x, u1, . . . , uN ), (2.9)

where Vi(t, x(t)) is the value function of player i, namely, the infimum of the cost functional of player i

over all permissible control strategies for ui, such that Vi(0, x(0)) = J⋆
i , for i = 1, . . . , N . In the finite-

horizon game (2.2), (2.3), i = 1, . . . , N , the value function is also such that Vi(T, x(T )) = gci (x(T )).

In line with Definition 2.1.2, and according to Bellman’s principle of optimality, Vi is the solution of

the PDE

−∂Vi

∂t
= min

ui

Hi

(
x, ϕ1, . . . , ϕi−1, ui, ϕi+1, . . . , ϕN ,

∂Vi

∂x

)
. (2.10)

Since there are no constraints on the permissible strategies2, the control action minimising the right

1In the infinite-horizon games (2.2), (2.4), i = 1, . . . , N , (continuous-time) and (2.5), (2.4), i = 1, . . . , N , (discrete-
time), the search for a Nash euqilibrium solution is restricted to admissible strategies in the sense of Definition 2.1.1.

2Apart from admissibility in the sense of Definition 2.1.1 in the infinite-horizon game (2.2),(2.4), i = 1, . . . , N .
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hand side of (2.10), u⋆i = ϕ⋆
i , is such that

∂Hi

(
x, ϕ1, . . . , ϕi−1, ui, ϕi+1, . . . , ϕN , ∂Vi

∂x

)
∂ui

= 0.

Hence, a Nash equilibrium solution {ϕ⋆
1, . . . , ϕ

⋆
N} satisfies the coupled PDEs

−∂Vi

∂t
= Hi

(
x, ϕ⋆

1, . . . , ϕ
⋆
N ,

∂Vi

∂x

)
, (2.11)

for i = 1, . . . , N , subject to the system dynamics (2.2). Note that in the infinite-horizon game (2.2),

(2.4), i = 1, . . . , N , Vi(t, x(t)) = Vi(x(t)), for i = 1, . . . , N , hence the coupled PDEs become

0 = Hi

(
x, ϕ⋆

1, . . . , ϕ
⋆
N ,

∂Vi

∂x

)
, (2.12)

for i = 1, . . . , N , subject to (2.2). Similarly, in the discrete-time context, recall Definition 2.1.2 and

consider the functional equation of dynamic programming for player i,

Vi(k, x(k)) = min
ui

(
ldi (x(k), ϕ1(k), . . . , ϕi−1, ui, ϕi+1, . . . , ϕN (k)) + Vi(k + 1, x(k + 1))

)
, (2.13)

where the value function associated with player i, Vi(k, x(k)) is such that Vi(0, x(0)) = J⋆
i , and in

the finite-horizon game (2.5), (2.6), i = 1, . . . , N , Vi(Nf , x(Nf )) = gi(x(Nf )). The right hand side of

(2.13) is minimised by ui = ϕ⋆
i . Hence, a Nash equilibrium solution {ϕ⋆

1, . . . , ϕ
⋆
N} satisfies the coupled

difference equations

Vi(k, x(k)) = ldi (x(k), ϕ
⋆
1(k), . . . , ϕ

⋆
N (k)) + Vi(k + 1, x(k + 1)), (2.14)

for i = 1, . . . , N , subject to the system dynamics (2.5). Note that in the infinite-horizon game (2.5),

(2.7), i = 1, . . . , N , Vi(k, x(k)) = Vi(x(k)), for i = 1, . . . , N , hence the coupled difference equations

become

Vi(x(k)) = ldi (x(k), ϕ
⋆
1(k), . . . , ϕ

⋆
N (k)) + Vi(x(k + 1)), (2.15)

for i = 1, . . . , N , subject to (2.5).

Feedback Nash equilibria of discrete-time dynamic games are the main focus of the game theoretic

results in this thesis. As in optimal control problems (which are effectively a special case of the

considered class of dynamic games with N = 1), an alternative approach to determining necessary

conditions for a solution is via variational methods. This approach relying on Pontryagin’s Maximum

Principle [51] is a natural choice if open-loop Nash equilibrium solutions are considered.

Determining a solution, if any exists, to the coupled PDEs (2.11), (2.12) or the coupled difference
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equations (2.14), (2.15), i = 1, . . . , N , associated with feedback Nash equilibrium solutions is generally

challenging, particularly for games involving large systems influenced by many players [35, 52]. With

the exception of certain special cases, closed-form solutions cannot readily be found. In this thesis, the

focus lies on the class of linear quadratic (LQ) dynamic games, i.e. games defined by linear dynamics

and quadratic cost functionals. In addition to their practical relevance (LQ dynamic games arise, for

example, in many engineering and economics applications [30]), some analytical results can be derived

for this class of games. Hence, LQ dynamic games, in particular the continuous-time case, i.e. LQ

differential games, have been extensively studied in the literature [30, 9]. While reminiscent of the well-

known linear quadratic regulator (LQR) problem for optimal control of linear systems influenced by the

input of a single decision maker (see e.g. [52]), general multi-player LQ dynamic games are neither as

well understood nor as easily solved as the single-player counterpart. For example, while the solution

to the LQR problem is well known to be a static state-feedback law, multiplayer LQ dynamic games

may admit nonlinear feedback strategies as Nash equilibrium solutions [53]. However, in this thesis, the

attention is focused on linear state-feedback strategies, as is common in the context of LQ games (see

e.g. [30, 9])3. This not only has the advantage of preserving the linearity of the system in closed-loop,

but also results in the conditions characterising feedback Nash equiblibrium solutions, namely the

coupled PDEs (2.11), (2.12) or the coupled difference equations (2.14), (2.15), i = 1, . . . , N , reducing

to coupled ordinary differential equations (ODEs) or simpler difference equations, respectively, in

the finite-horizon case, or coupled algebraic equations in the infinite-horizon case. While this is

computationally appealing, even in this simpler setting solving the coupled equations characterising

feedback Nash equilibrium solutions is generally challenging and multiple solutions with different

outcomes may exist [9, 35, 30]. Consequently, the existence, uniqueness and computation of feedback

Nash equilibria in LQ dynamic games has been extensively studied, particularly in the continuous-

time context, see e.g. [9, 54, 55, 56, 57, 58, 30]. The infinite-horizon, discrete-time case, however, has

received less attention, see e.g. [9, 59]. Note that in this case, additional mixed product terms of the

decision variables appear in the coupled algebraic equations associated with feedback Nash equilibria

[59], which leads to additional challenges and complications in the solution of LQ discrete-time dynamic

games compared to the continuous-time counterpart.

Iterative and approximate solution methods

Due to the difficulties of solving the coupled equations associated with feedback Nash equilibrium

solutions of dynamic games, approximate or iterative solution methods are of interest. Approximate

Nash equilibrium solution concepts for differential games have been introduced in [60, 61, 62]. A

3As common in the dynamic games literature, the search for equilibrium strategies is restricted to linear feedback
strategies acting on the full state vector. Solutions in terms of strategies which act on a subset of states are beyond the
scope of this thesis.
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common notion of approximation is the ϵ-Nash equilibrium. A set of strategies4 {ϕ∗
1(·), . . . , ϕ∗

N (·)}

constitutes an ϵ-Nash equilibrium solution of an N -player dynamic game, if the inequality

J∗
i = Ji (x(0), ϕ

∗
1(·), . . . , ϕ∗

N (·)) ≤ Ji
(
x(0), ϕ∗

1(·), . . . , ϕ∗
i−1(·), ϕi(·), ϕ∗

i+1(·), . . . , ϕ∗
N (·)

)
+ ϵ, (2.16)

holds for all {ϕ∗
1(·), . . . , ϕ∗

i−1(·), ϕi(·), ϕ∗
i+1(·), . . . , ϕ∗

N (·)}, for i = 1, . . . N , for some ϵ ≥ 0. The strategy

ϕ∗
i (·) is referred to as an ϵ-Nash equilibrium strategy of player i, i = 1, . . . , N , whereas the set

{J∗
1 , . . . , J

∗
N} is the corresponding ϵ-Nash equilibrium outcome. The additional term ϵ on the right

hand side of (2.16) represents a degree of approximation. Depending on the problem formulation, the

degree of approximation can be influenced by various factors, which leads to different variations of

this notion of approximate Nash equilibrium [61, 62].

Even the computation of approximate Nash equilibria may be challenging. In practice, it can hence

be of interest to numerically determine solutions. Algorithms to iteratively determine Nash equilibria

have been suggested in [63, 64] for general nonlinear differential games and in [65, 30, 66, 67, 68, 69] for

LQ differential games. Most algorithms are presented without a proof of convergence or convergence

guarantees are limited to approximate equilibria or the special case in which there exists a unique

feedback Nash equilibrium. Note that in general the number of feedback Nash equilibria can range

from zero to infinity [30]. While the literature in the context of iterative solution methods for feedback

Nash equilibria in dynamic games focuses mainly on the continuous-time setting, methods in the

discrete-time setting include [70] for finite-horizon games, as well as [71] for nonlinear and [72, 73]

for LQ discrete-time dynamic games in the context of reinforcement learning. Similar limitations

on convergence guarantees as in the continuous-time case apply. However, in [74] a policy iteration

algorithm is provided with conditions ensuring convergence to a Nash equilibrium.

Games with incomplete or local information, inverse games, and uncertainty

The discussion above, in particular in the context of the prisoners’ dilemma example (2.1), highlights

the role of information in game problems, including how it can influence the choice of solution concept.

Even with focus on feedback Nash euqilibria of games it is important to specify the information

available to each player. In the “classical” dynamic game formulation, each player has full knowledge

of all system parameters and the performance criteria of all players [35]. However, in many settings,

different and incomplete information may be available to each player.

On the one hand, in many dynamic games applications the system dynamics are complex and difficult

to model. Algorithms to determine feedback Nash equilibrium solutions for games with unknown

4In the infinite-horizon games (2.2), (2.4), i = 1, . . . , N , (continuous-time) and (2.5), (2.4), i = 1, . . . , N , (discrete-
time), the search for an approximate Nash euqilibrium solution is restricted to admissible strategies in the sense of
Definition 2.1.1.
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system dynamics have been proposed in [64, 75, 69] for the continuous-time case and [76, 72, 73, 74]

for the discrete-time case.

On the other hand, in a competitive environment, a player is often unlikely to know in advance the

full system or the objectives (performance criteria) of all the other players. Examples include multi-

agent systems [29], cyber-physical systems [77] or human-robot systems [20]. In particular if systems

are large-scale or comprise interconnected subsystems, scalability or communication constraints can

make a centralised solution of the game infeasible. In [29] approximate Nash equilibria of distributed

differential games, in which each player only communicates with its neighbours via a directed graph

and hence only has access to limited local information, are determined via (fictitious) local differential

games. Reinforcement learning algorithms for similar graphical games, in which only local information

is available to each player, are introduced in [78] in a discrete-time setting and in [79] in a continuous-

time setting. A distributed learning algorithm to compute Nash equilibrium strategies for the control of

networked systems is proposed in [80]. If performance criteria are unknown, but the system dynamics

are available and “expert data” corresponding to a solution of the game, such as equilibrium strategies

or trajectories, can be collected, then inverse dynamic game methods (see e.g. [81] and references

therein) can be used to learn or reconstruct the performance criteria of some or all players.

The class of dynamic games considered in this thesis and defined above is deterministic, i.e. the

dynamics (2.2) or (2.5) governing the evolution of the interaction between the players and their envi-

ronment do not involve randomness. A common and powerful approach to model system uncertainties

and handle random noise and disturbances is by modelling the dynamics as a stochastic process [82].

Games involving such dynamics are known as stochastic dynamic games (for an overview see e.g.

[83, 30, 9]). This class of games also naturally lends itself to the study of decentralised, distributed

or local computation of solutions [84, 85, 86, 87]5. In this context, team theory problems (see e.g.

[90] and references therein) should be mentioned. Team problems concern multiple decision makers

influencing a stochastic process with the aim of optimising a common performance criterion, however,

each decision maker has access to different information regarding the underlying uncertainties. Team

theory hence has similarities with cooperative stochastic game theory [40]. Stochastic counterparts to

the class of games considered in this thesis are analysed in [9, 30]. Under the standard assumption

that the disturbances and the initial states are independent Gaussian random vectors and that the

disturbances are white noise with zero mean, the conditions characterising feedback Nash equilibria in

the LQ setting coincide with those of the corresponding deterministic problem [30]. This highlights the

relevance of studying the number, properties and computation of feedback Nash equilibrium solutions

of deterministic LQ dynamic games.

5The references listed here and in the paragraph above in the context of decentralised or distributed control are
examples of the use of game theoretic methods (involving games similar to the class of games considered in this thesis)
in this context. For a comprehensive overview of decentralised control see e.g. [88, 89].
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In this thesis, the focus lies on feedback Nash equilibrium solutions to deterministic, non-cooperative,

nonzero-sum, infinite-horizon, LQ, discrete-time dynamic games. Despite being of practical relevance

in many applications ranging from economics to engineering and control, this class of games has up

to now received limited attention in the literature compared to its continuous-time counterpart. In

Chapter 3, Section 3.2 starts with the study of scalar games, i.e. games involving scalar dynamics

and scalar inputs, via geometric approaches to determine conditions under which a game admits a

certain number of feedback Nash equilibria. This analysis allows to establish some intuition regarding

the existence and uniqueness of solutions of the considered class of games. In the following sections,

the focus shifts back to games involving general linear dynamics. Motivated by the challenges of

computing feedback Nash equilibrium solutions, a notion of approximate feedback Nash equilibrium

with guarantees on the rate of convergence of the trajectories of the resulting closed-loop system is

introduced in Section 3.3, and iterative Nash equilibrium finding algorithms are proposed and analysed

in Section 3.4. While the results in Chapter 3 rely on full system and cost information, Chapter 5

deals with the solution of games under partial information. By combining the results in Chapter 3

with data-driven methods, results for games with asymmetric information are presented in Section 5.1

and data-driven Nash equilibrium-finding algorithms are introduced in Section 5.2.
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2.2 Data-driven control

As humans we are constantly learning. Whether intentionally or inadvertently, through practice, from

our past experiences, through the observation of others or from literature and historical records - the

interaction with our environment shapes our behaviour and decisions. The idea of machines learning

from their environment in a similar way is at the core of to the notion of artificial intelligence, which has

received increasing attention since the 1940s. Today it plays an ever-expanding role in our lives, from

recommending us which YouTube videos to watch to opening up new possibilities (and challenges) in

engineering and robotics, thanks to improving computational capacities allowing to collect, store and

process large amounts of data.

Learning from data for dynamic decisions

Mathematical models are a key tool to analyse and influence systems, and as such form the basis

of model-based control, which provides many powerful methods for dynamic decision making. With

modern engineered systems becoming increasingly complex, obtaining accurate system models is in-

creasingly challenging, if not impossible, and models derived from first principles may be too complex

for control design. However, modern processes generate and store large amounts of data. Conse-

quently, various methods have been developed to exploit this vast resource and use measured data -

in different ways and with different objectives - to recover or replace system information. Examples

include system identification [91, 92], adaptive control [93] and learning control [94]. Many data-based

approaches focus on identifying or updating a system model, which can then be used in a second

step to design a control law using any “classical”, model-based technique. Hence, such methods are

commonly referred to as indirect data-driven methods. In contrast, direct data-driven control methods

aim to control a system directly using measured data, without explicitly identifying a system model

[95]. This is not a new concept in control theory, but can be traced back to the work on proportional-

integral-derivative (PID) controller tuning by Ziegler and Nichols [96] in the 1940s. Further earlier

contributions to direct data-driven control include unfalsified control [97], iterative feedback tuning

[98], virtual reference feedback tuning [99] and model-free adaptive control [100]. For more references,

see e.g. [8, 101]. In addition to their theoretical value, direct data-driven control methods are also

attractive for situations in which system identification can be difficult, expensive or time-consuming,

and the resulting models might not be suitable for control design [7]. Moreover, direct data-driven

analysis and control may be feasible even when unique system identification is not [102]. The topic has

recently attracted significant attention. In particular, with the availability of increasing computational

power and novel machine learning techniques, direct data-driven controllers using neural networks and

reinforcement learning [103, 104, 105] have gained interest.
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Direct data-driven control via Willems et al’s fundamental lemma

A central question in direct data-driven control is how to substitute a system model with data. For

linear time-invariant (LTI) systems, a recent line of research addresses this question via Willems et

al.’s fundamental lemma [106]. In brief, the result states that all possible trajectories an LTI system

can produce can be parameterised by a single, finite-length input-output trajectory - provided the

input sequence sufficiently excites the system dynamics. As such, it naturally lends itself to address

analysis and control problems from a data-driven perspective. This has been harnessed first in the

behavioural framework (see e.g. [107, 108, 109]), in which the fundamental lemma was first established,

in [110, 111, 112]. More recently, data-driven methods based on the fundamental lemma have been

introduced in the state-space setting. For example, in [113], [114] it is used to replace the system model

and initial conditions in the context of predictive control with data. In the seminal paper [95] the

fundamental lemma is used to derive a data-driven representation of closed-loop systems under static

state-feedback, where the controller itself is parameterised using data only. More precisely, consider

an LTI system described by the dynamics

x(k + 1) = Ax(k) +Bu(k), (2.17)

where x ∈ Rn denotes the system state and u ∈ Rm denotes the control input. The matrices A and

B of appropriate dimensions are considered unknown. Suppose measurements of the state response

xd,[k0,k0+T ] to the finite sequence of “exploring” inputs ud,[k0,k0+T−1], k0, T ∈ N, can be collected via

an experiment or simulation, where the subscript d indicates measured data samples, whereas the

subscript [k0, kf ] indicates the time interval over which the data is collected. The data samples can

be arranged to construct the matrices

U− =
[
ud(k0) . . . ud(k0 + T − 1)

]
,

X− =
[
xd(k0) . . . xd(k0 + T − 1)

]
,

X+ =
[
xd(k0 + 1) . . . xd(k0 + T )

]
,

(2.18)

which can be used to represent a state-feedback controller and the corresponding closed-loop system

directly using data, as detailed in the following result.

Theorem 2.2.1 ([95, Theorem 2]). Suppose the rank condition

rank

X−

U−

 = n+m, (2.19)
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holds. Then, the system (2.17) in closed-loop with u(k) = Kx(k) can equivalently be represented as

x(k + 1) = X+Gx(k), (2.20)

with G ∈ RT×n satisfying In
K

 =

X−

U−

G. (2.21)

Using this representation, G becomes the decision variable for control design, i.e. G can be designed

such that system (2.17) in closed loop with

u(k) = U−Gx(k), (2.22)

satisfies certain control objectives. This result allows to formulate and solve control problems such

as stabilisation and LQR in terms of convex programmes involving purely data-dependent linear

matrix inequality (LMI) constraints. The resulting data-driven methods are attractive due to their

comparatively low sample complexity6 and the formulation as convex programmes, for which reliable

and efficient solvers exist [115]. This has triggered renewed interest in the fundamental lemma and

given rise to a large volume of work on related methods for direct data-driven control, including the

data informativity framework [102, 116, 117]. For a recent overview of related work see the survey

[118] and references therein.

Beyond “classical” discrete-time LTI systems

Various extensions of the fundamental lemma and related data-driven techniques have been proposed.

In [119], the conditions of the fundamental lemma are extended to the case in which data stems

from multiple data sets, rather than a single longer data trajectory. In [120], it is shown that the

controllability and persistence of excitation assumptions in the context of the fundamental lemma

can be relaxed. While the data-driven results discussed so far have been developed for discrete-

time systems, the extension to the continuous-time setting is typically straightforward with data

samples of the zero-order hold signal, if the time derivative of the system state can be measured

or estimated [95]. This is further discussed in [121], which also considers the case in which data is

sampled aperiodically. Continuous-time versions of the fundamental lemma have been developed in

[122, 123]. The use of input-output data, rather than input-state data for data-driven control has

been considered in [95, 124, 125, 126]. The data-driven representation of dynamical systems has

6Only data from a single input-state trajectory of length T is required. Note that a necessary condition for (2.19) to
hold is T ≥ n+m. If the input sequence ud,[k0,k0+T−1] is persistently exciting of order n+ 1, the rank condition (2.19)
is guaranteed to hold [95]. Hence, with suitably chosen inputs, T = (m+ 1)n+m is a sufficient trajectory length.
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also been extended to linear parameter-varying systems [127, 128, 129], switched systems [130], time

delay systems [131], event- and self-triggered systems [132, 133], stochastic systems [134], multi-agent

systems [135] and network systems [136, 137]. Extensions for classes of nonlinear systems include

bilinear systems [138, 139], polynomial systems [140] and feedback linearisable systems [141]. General

nonlinear systems can be handled via Taylor’s expansion [142], nonlinearity cancellation [143, 144], or

by approximating the system as linear or one of the classes of nonlinear systems considered above and

by treating the nonlinearities or unmodelled dynamics as disturbances (see e.g. [95, 145, 125, 141]).

Robustness to noise

Challenges arise in direct data-driven control if the system and the data are affected by disturbances

and noise, which is often the case in practice. Consider the LTI dynamics

x(k + 1) = Ax(k) +Bu(k) + d(k), (2.23)

where d ∈ Rn denotes an unknown, additive process disturbance. In addition, it may only be possible

to measure the signal

ζ(k) = x(k) + v(k), (2.24)

i.e. the state measurements ζ ∈ Rn are corrupted by unknown measurement noise v ∈ Rn. In this

case, the data-driven representation of the closed-loop dynamics matrix becomes

A+BK = (Z+ −W )G, (2.25)

with G satisfying (2.21) with X− = Z−, and where the matrices

Z− =
[
ζd(k0) . . . ζd(k0 + T − 1)

]
,

Z+ =
[
ζd(k0 + 1) . . . ζd(k0 + T )

]
,

(2.26)

contain the noisy state measurements, and

W = D− + V+ −AV−, (2.27)

with the matrices

D− =
[
dd(k0) . . . dd(k0 + T − 1)

]
,

V− =
[
vd(k0) . . . vd(k0 + T − 1)

]
,

V+ =
[
vd(k0 + 1) . . . vd(k0 + T )

]
,

(2.28)

42



2.2. Data-driven control

containing the corresponding samples of the unmeasured process and measurement noise.

Several robust approaches have been proposed to account for noise and disturbances in the context

of the direct data-driven framework discussed above. The aim is typically to design controllers guar-

anteeing stability or performance for all W in a specified uncertainty set, which is described via the

quadratic matrix inequality  In

W⊤

⊤ Φ11 Φ12

Φ⊤
12 Φ22

 In

W⊤

 ⪰ 0, (2.29)

with Φ11 = Φ⊤
11 ∈ Rn×n, Φ12 ∈ Rn×T and Φ22 = Φ⊤

11 ≻ 0 ∈ RT×T . This noise model is a general

condition, which does not necessarily assume any statistical properties of the noise and can capture

various conditions as special cases [146, 147]. This approach has first been introduced in [95] in the

context of a signal-to-noise ratio condition of the form (2.29) for robust stabilisation via a perturbed

Lyapunov inequality. In [146] control design methods for robust stabilisation and performance via a

linear fractional transformation and the full block S-procedure are proposed. This has been extended

to incorporate prior model knowledge in [125]. Nonconservative conditions for robust stabilisation

and performance are provided in [148, 149] via matrix versions of the S-lemma and Finsler’s lemma,

respectively, and in [150] via Petersen’s lemma. Conditions based on a general theory for quadratic

matrix inequalities, which encapsulates these three results, are proposed in [147]. Alternative un-

certainty descriptions and conditions under which these can be converted to (2.29) are discussed in

[151]. In [152], it is shown that quadratic instantaneous disturbance bounds, i.e. bounds on the

disturbance at each point in time rather than the matrix W , can be less conservative than (2.29)

for robust stabilisation. Alternative instantaneous bounds are used in [153] in the context of robust

invariance. Most of the discussed works in the context of robust approaches to direct data-driven

control focus on process noise only, i.e. the case in which v = 0 and hence Z− = X−, Z+ = X+ and

W = D−. This removes the dependence on the unknown dynamics matrix7 A in (2.27) and hence

(2.29). However, [95] considers process noise and measurement noise separately, and [150] comments

on how to incorporate measurement noise. The above robust data-driven approaches based on uncer-

tainty descriptions similar to (2.29) have also been extended to certain classes of nonlinear systems in

[138, 149, 154, 140, 150, 145, 141, 155, 143].

In the context of LQR, [156] instead takes a certainty-equivalence approach to designing controllers

with stability and performance guarantees directly from noisy data. It is shown that the effects of noise

can be mitigated by augmenting the cost with a regulariser. Building upon this result, [157, 158, 159]

demonstrate that regularisation can build a bridge between the robust and the certainty-equivalence

approach, as well as between indirect and direct data-driven approaches. Simulation studies highlight

7Note that the appearance of A in this context can be interpreted as a measure of the “direction” of the measurement
noise, which in addition to its magnitude contributes to the loss of information caused [95].
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that blending the different approaches can lead to surprising performance benefits.

A behavioural approach to data-driven control based on noisy input-output data is introduced in

[126]. While [126] relies on an uncertainty description of the form (2.29), a data-based behavioural

uncertainty description utilising a finite-time counterpart of the gap metric is introduced in [160]. In

[161, 162, 163] the authors recognise that if data is corrupted by noise, a rank condition of the form

(2.19) may not be a suitable indicator of whether the data fully captures the behaviour of an LTI

system. Instead, quantitative notions of persistence of excitation are introduced to formulate robust

versions of the fundamental lemma.

Learning performance criteria from data

The aforementioned works address the problem of control design in the context of unknown system

dynamics. In control design for optimal performance, another challenge may arise: determining suit-

able performance criteria. In many practical control problems, optimality criteria are not obvious a

priori and cost functions are a design choice used to “tune” the controller. Inverse optimal control,

first introduced in [164], is concerned with reconstructing all (if there are any) cost functions for

which a given control strategy is optimal. This requires “expert information” in the form of a data

trajectory corresponding to an optimal input or an optimal control law, see e.g. [165, 166]. Inverse

optimal control methods have recently received increased attention, stimulated by their potential to

give insight into human behaviour [167, 166, 168]. The solution of inverse optimal control problems

makes it possible to understand, model and design machines which mimic or influence human or an-

imal decision-making tasks, see e.g. [169, 170, 171]. A recent overview of inverse optimal control is

given in [81].
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In Chapter 4 of this thesis, the focus lies on direct data-driven control in the context of the methods

discussed in this section. The framework originally introduced in [95] is extended to linear time-

varying (LTV) systems, a class of systems arising in a variety of practical engineering problems [172],

in Section 4.1. Methods to design state-feedback controllers with stability or trajectory boundedness

and performance guarantees via purely data-dependent convex optimisation problems are proposed and

discussed. Both the case in which the data is noise-free and the case in which the collected data

is affected by process and measurement noise are considered. In Section 4.2, it is shown how the

data-driven representation introduced in [95] can be applied not only to system dynamics, but also to

quadratic objective functions in the context of optimal control. This makes it possible to formulate

and solve an LQR problem with unknown system dynamics and unknown cost matrices via a convex

optimisation problem purely dependent on finite-length, non-expert data of the state response to a non-

optimal exploring input and a performance variable. In Chapter 5, data-driven methods are introduced

in the context of dynamic games. While in Section 5.1 it is shown how the results of Section 4.2 are

relevant in the context of a class of games with asymmetric information structure, the data-driven

methods discussed in this section are utilised in Section 5.2 to develop data-driven Nash equilibrium-

finding algorithms.
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Chapter 3

Infinite-horizon dynamic games

Infinite-horizon dynamic games provide powerful tools to model dynamic interactions between strate-

gic decision makers, as discussed in Chapter 2. However, determining equilibrium solutions for such

games remains generally challenging, even in the LQ setting [9, 35, 30]. In spite of being of practical

relevance in various economics and engineering applications, the class of infinite-horizon nonzero-sum

LQ discrete-time dynamic games has received limited attention in the literature compared to the

continuous-time case. This chapter focuses on feedback Nash equilibrium solutions for this class of

games. Firstly, the background on infinite-horizon discrete-time dynamic games and their solution

in terms of feedback Nash equilibrium strategies, which is summarised in Section 2.1, is revisited in

Section 3.1 and specialised to the LQ setting. Challenges specific to the discrete-time problem are also

highlighted. In Section 3.2, some intuition regarding the solutions is established by studying games

involving scalar dynamics and scalar inputs via geometric approaches. Shifting the focus back to

games involving general linear dynamics, a notion of approximate feedback Nash equilibrium solution

is introduced and discussed in Section 3.3. Finally, iterative methods to determine feedback Nash

equilibrium solutions are proposed in Section 3.4.

3.1 Extended preliminaries

Consider the infinite-horizon discrete-time dynamic game (2.5), (2.7), i = 1, . . . , N . In this section,

the LQ case of this class of games is considered in more detail. More precisely, let the dynamics (2.5)

be of the form

x(k + 1) = Ax(k) +
N∑
i=1

Biui(k), (3.1)

46



3.1. Extended preliminaries

where A, Bi, for i = 1, . . . , N , are constant matrices of appropriate dimension, and let the cost

functional (2.7) which player i seeks to minimise via the choice of control action ui be of the form

Ji(x(0), u1(·), . . . , uN (·)) =
∞∑
k=0

x(k)⊤Qix(k) +

N∑
j=1

uj(k)
⊤Rijuj(k)

 , (3.2)

where Qi = Q⊤
i ⪰ 0, Rij = R⊤

ij ⪰ 0 and Rii = R⊤
ii ≻ 0, for i = 1, . . . N , j = 1, . . . , N . Recall

the definitions of the Nash equilibrium (Definition 2.1.2), and the definition of admissible strate-

gies in the infinite-horizon context (Definition 2.1.1). In this thesis, the search of strategies for the

players i = 1, . . . , N is focused on static feedback strategies, i.e. strategies of the form ϕi(·) =

ϕi(x(k)). An appealing property of feedback Nash equilibrium solutions is that the set of strategies

{ϕ⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))} constitutes a Nash equilibrium of the game (3.1), (3.2), i = 1, . . . , N , for

all initial conditions x(0) ∈ Rn. Moreover, if at any time instance k̄ > 0 the state x(k̄) of sys-

tem (3.1) deviates from the state x⋆(k̄), induced by the initial condition and the equilibrium strategies

{ϕ⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))} played for k = 0, . . . , k̄−1, then the set of strategies {ϕ⋆

1(x(k)), . . . , ϕ
⋆
N (x(k))}

still constitutes a Nash equilibrium solution of the restricted game for k ≥ k̄, a property known a strong

time consistency [30]. Naturally, the implementation of state-feedback strategies requires that the en-

tire state of the system is accessible to all players at all time instances. In practice, it may hence be of

interest to seek an equilibrium solution in terms of strategies, which are a function of time and depend

on the initial state only, i.e. ϕi(·) = ϕi(k, x(0)). A comprehensive analysis of the conditions charac-

terising such open-loop Nash equilibrium solutions of the discrete-time infinite-horizon LQ dynamic

game (3.1), (3.2), i = 1, . . . , N , is provided in [31].

Remark 3.1.1. A well known feature of deterministic optimal control problems (single player dynamic

games) is that the open-loop and the feedback solution are equivalent in the sense that they result in

the same optimal cost and the same time trajectory of the controlled system, because the trajectories

of the system are completely determined by the initial conditions in the absence of uncertainties [82].

It is important to highlight that this is not the case in the dynamic game setting if N > 1, i.e.

even though open-loop Nash equilibrium solutions of LQ dynamic games sometimes admit a feedback

implementation, they are in general not feedback Nash equilibrium solutions (see e.g. [31]). This is

because the evolution of system (3.1) is not completely determined by the initial conditions and the

action of player i, but it is also influenced by the actions of players j = 1, . . . , N , j ̸= i. Considering the

problem faced by player i, i.e. the minimisation of the cost functional (3.2) subject to the dynamics

(3.1), the solution hence depends on the assumptions regarding the types of strategies played by

the other players j = 1, . . . , N , j ̸= i. If the strategies of players j are fixed (either at open-loop

or feedback information structure), the open-loop solution and the feedback solution of the problem

faced by player i are equivalent. However, the search for an open-loop solution for player i assuming
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players j play open-loop strategies is not equivalent to the search for a feedback solution for player

i assuming players j also play feedback strategies. In other words, a distinction between open-loop

and feedback Nash equilibrium solutions is the set of alternative strategies for all N players to which

a candidate Nash equilibrium solution is compared in (2.8) (see Definition 2.1.2).

Considering feedback strategies, it can be shown via the dynamic programming principle [50] that

Nash equilibria are characterised by the stabilising solutions of a set of coupled difference equations,

as recalled in Chapter 2. In particular, consider linear static state-feedback strategies of the form

ϕi(·) = Kix(k), as common in the LQ setting (see e.g. [30, 55, 57, 56, 62, 59, 31])1, and consider the

following assumption, which is a necessary and sufficient condition for the set of admissible strategies

in the sense of Definition 2.1.1 to be non-empty.

Assumption 3.1.1. The pair
(
A,
[
B1 . . . BN

])
is stabilisable.

In this setting, feedback Nash equilibrium solutions are characterised by the stabilising solutions of a set

of coupled algebraic equations, as detailed in the following result. Similar conditions can also be found

in [9, Section 6.2.3] and [173, Section 6.7.2], without a detailed proof. While the proof is analogous to

the continuous-time counterpart (see e.g. [30, Section 8.3]), it is included here for completeness, since

the discrete-time version is not as readily available in the literature as the continuous-time version.

Theorem 3.1.1. Consider the game (3.1), (3.2), i = 1, . . . , N . The set of strategies

{ϕ⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))} ,

where

ϕ⋆
i (x(k)) = K⋆

i x(k), (3.3)

for i = 1, . . . , N , constitutes a feedback Nash equilibrium solution of the game if and only if

ρ

A+
N∑
j=1

BjK
⋆
j

 < 1, (3.4)

and there exist P ⋆
i = P ⋆

i
⊤ ⪰ 0 ∈ Rn×n satisfying

P ⋆
i = Qi +

N∑
j=1

K⋆
j
⊤RijK

⋆
j +

A+
N∑
j=1

BjK
⋆
j

⊤

P ⋆
i

A+
N∑
j=1

BjK
⋆
j

 , (3.5)

1Note, however, that LQ dynamic games may admit nonlinear feedback Nash equilibrium solutions [53].
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for i = 1, . . . , N , and


R11 +B⊤

1 P
⋆
1B1 . . . B⊤

1 P
⋆
1BN

...
. . .

...

B⊤
NP ⋆

NB1 . . . RNN +B⊤
NP ⋆

NBN



K⋆

1

...

K⋆
N

 = −


B⊤

1 P
⋆
1

...

B⊤
NP ⋆

N

A. (3.6)

The feedback Nash equilibrium is such that the equilibrium cost incurred by player i starting from

initial condition x(0) is J⋆
i = Ji(x(0), ϕ

⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))) = x(0)⊤P ⋆

i x(0).

Proof. Consider first the sufficient implication and let the set of static state-feedback gains{
K̄⋆

1 , . . . , K̄
⋆
N

}
and the set of symmetric positive semi-definite matrices

{
P̄ ⋆
1 , . . . , P̄

⋆
N

}
satisfy (3.4),

(3.5), i = 1, . . . , N , and (3.6). Assuming that the actions of players j, j = 2, . . . , N , are fixed at

uj(k) = K̄⋆
j x(k), consider the minimisation of the cost function (3.2), i = 1, subject to the system

dynamics (3.1) by player 1, namely the minimisation of

J1(x(0), u1(·), K̄⋆
2x(k), . . . , K̄

⋆
Nx(k)) =

∞∑
k=0

x(k)⊤
(
Q1 +

N∑
j=2

K̄⋆
j
⊤
R1jK̄

⋆
j

)
︸ ︷︷ ︸

Q̄1

x(k) + u1(k)
⊤R11u1(k)

 ,

(3.7)

subject to

x(k + 1) =

A+

N∑
j=2

BjK̄
⋆
j


︸ ︷︷ ︸

Ā1

x(k) +B1u1(k). (3.8)

This constitutes an LQR problem for player 1. Note that by assumption, there exists a stabilising

solution POC = P̄ ⋆
1 satisfying the algebraic Riccati equation

POC = Q̄1 + Ā⊤
1 P

OCĀ1 − Ā⊤
1 P

OCB1

(
R11 +B⊤

1 P
OCB1

)−1
B⊤

1 P
OCĀ1, (3.9)

associated with this LQR problem. This can be seen by rearranging the first line of (3.6) and inserting

it into (3.5), i = 1. With the strategies of players j, j = 2, . . . , N , fixed, the optimal strategy for

player 1 is hence

uOC
1 (k) = −

(
R11 +B⊤

1 P
OCB1

)−1
B⊤

1 P
OCĀ1x(k) = K̄⋆

1x(k), (3.10)

and the optimal cost is J1(x(0), K̄
⋆
1x(k), . . . , K̄

⋆
Nx(k)) = x(0)⊤POCx(0) = x(0)⊤P̄ ⋆

1 x(0), see e.g. [52].

Hence,

J1(x(0), K̄
⋆
1x(k), . . . , K̄

⋆
Nx(k)) ≤ J1(x(0), u1(·), K̄⋆

2x(k), . . . , K̄
⋆
Nx(k)), (3.11)

49



3.1. Extended preliminaries

for all admissible
{
u1(·), K̄⋆

2x(k), . . . , K̄
⋆
Nx(k)

}
. Conversely, assume the state-feedback gains{

K̄⋆
1 , . . . , K̄

⋆
N

}
correspond to a feedback Nash equilibrium solution of the game (3.1), (3.2), i =

1, . . . , N . By Definition 2.1.2, (3.11) holds for all admissible
{
u1(·), K̄⋆

2x(k), . . . , K̄
⋆
Nx(k)

}
. Hence,

with the actions of players j, j = 2, . . . , N , fixed at uj(k) = K̄⋆
j x(k), (3.10) with POC the solution

of (3.9) is the unique stabilising optimal control action for player 1 solving the LQR problem (3.8),

(3.7), see e.g. [52]. This implies that there exists P̄ ⋆
1 = POC such that (3.5), i = 1, and the first line

of (3.6) hold. The proof is concluded via analogous arguments for players j, j = 2, . . . , N .

In Theorem 3.1.1 feedback Nash equilibrium solutions of LQ dynamic games are characterised via the

stabilising solutions of a set of coupled algebraic equations, namely (3.5), i = 1, . . . , N , and (3.6), which

may also admit solutions which do not render the closed-loop system stable. Sufficient conditions for

solutions of (3.5), i = 1, . . . , N , (3.6) to be stabilising are provided in the following result. Note that

the conditions are easily verifiable based on the system and cost matrices and more general than those

in [9, Proposition 6.3].

Corollary 3.1.1. Let {K⋆
1 , . . . ,K

⋆
N} and {P ⋆

1 , . . . , P
⋆
N}, where P ⋆

i = P ⋆
i
⊤ ⪰ 0, for i = 1, . . . , N , be a

solution to (3.5), i = 1, . . . , N , and (3.6). If the pair
(
A,
∑N

i=1Qi

)
is detectable2, then {K⋆

1 , . . . ,K
⋆
N}

is such that (3.4) holds and the corresponding strategies (3.3), i = 1, . . . , N , constitute a feedback Nash

equilibrium solution of the game (3.1), (3.2), i = 1, . . . , N .

Proof. The claim is demonstrated by contradiction. Consider the sum over i of (3.5), for i = 1, . . . , N ,

namely

N∑
i=1

P ⋆
i =

N∑
i=1

Qi +
N∑
j=1

K⋆
j
⊤
(

N∑
i=1

Rij

)
K⋆

j +

A+
N∑
j=1

BjK
⋆
j

⊤(
N∑
i=1

P ⋆
i

)A+

N∑
j=1

BjK
⋆
j

 . (3.12)

Assume there exists an eigenvalue λ and corresponding eigenvector v ̸= 0 ∈ Rn of A⋆
cl =(

A+
∑N

j=1BjK
⋆
j

)
, such that |λ| ≥ 1, i.e. ρ (A⋆

cl) ≥ 1. Recall that by the definition of eigenval-

ues and eigenvectors A⋆
clv = λv. Hence, pre- and post-multiplying (3.12) by vH and v, respectively,

gives

vH
(
λHλ− 1

)( N∑
i=1

P ⋆
i

)
v + vH

(
N∑
i=1

Qi

)
v +

N∑
j=1

vHK⋆
j
⊤
(

N∑
i=1

Rij

)
K⋆

j v = 0. (3.13)

Since by assumption λHλ = |λ|2 ≥ 1 and by definition
∑N

i=1 P
⋆
i ⪰ 0,

∑N
i=1 Qi ⪰ 0, and∑N

i=1Rij ≻ 0, (3.13) implies that vH
(
λHλ− 1

) (∑N
i=1 P

⋆
i

)
v = 0, vH

(∑N
i=1Qi

)
v = 0 and∑N

j=1 v
HK⋆

j
⊤
(∑N

i=1Rij

)
K⋆

j v = 0. This in turn implies that either
(
λHλ− 1

)
= 0 or

(∑N
i=1 P

⋆
i

)
v =

0, and that
(∑N

i=1Qi

)
v = 0 and K⋆

j v = 0, for j = 1, . . . , N . The latter gives A⋆
clv = Av = λv, i.e.

λ and v are also an eigenvalue and an eigenvector of A. Note that
(∑N

i=1Qi

)
v = 0 implies that the

2Note that this is always the case if
∑N

i=1 Qi ≻ 0.
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corresponding unstable mode is not observable through
∑N

i=1Qi. This contradicts the hypothesis that

the pair
(
A,
∑N

i=1Qi

)
is detectable.

Remark 3.1.2. The equations (3.5), i = 1, . . . , N , and (3.6) are reminiscent of the classic algebraic

Riccati equation arising in the discrete-time LQR problem (single-player LQ discrete-time dynamic

game), with additional terms accounting for the presence of the other players. Note, however, that

in contrast to the quadratic algebraic Riccati equations arising in the discrete-time LQR problem,

(3.5), i = 1, . . . , N , and (3.6) are not quadratic in the decision variables, even after eliminating one

set of variables (either K⋆
i or P ⋆

i , for i = 1, . . . , N). It is also interesting to put this observation

into perspective with respect to the continuous-time counterpart. Nash equilibrium solutions to an

N -player nonzero-sum LQ differential game are characterised by the stabilising solutions of N coupled

algebraic Riccati equations (see e.g. [30, Chapter 8]), which in contrast to (3.5), i = 1, . . . , N , and (3.6)

are quadratic equations. The solutions of these equations P c
i
⋆, i = 1, . . . , N , are related to the value

functions associated to each player i and, notably, the feedback gain Kc
i
⋆ of player i, i = 1, . . . , N ,

corresponding to the feedback Nash equilibrium strategy ϕ⋆
i (x(t)) = Kc

i
⋆x(t), depends explicitly only

on the matrix P c
i
⋆. The dependency on the matrices P c

j
⋆, j = 1, . . . , N , j ̸= i, associated with the

other players is instead only implicit through the coupling of the N equations. In the discrete-time

case, on the other hand, it is evident from (3.6) that the feedback Nash equilibrium gain K⋆
i explicitly

depends on all P ⋆
j , for j = 1, . . . , N . These differences make the computation of solutions to (3.5),

i = 1, . . . , N , and (3.6), even more challenging compared to the continuous-time setting, and make

the discrete-time case interesting to study.
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3.2 Feedback Nash equilibria in scalar games

The Nash equilibrium is a commonly considered solution concept in dynamic games. It is of natural

interest in non-cooperative settings since the equilibrium is “secure” against a unilateral deviation by

any player, i.e. such a deviation always results in a worse outcome for the deviating player [9]. For

infinite-horizon LQ dynamic games, feedback Nash equilibria, i.e. Nash equilibrium solutions involving

linear static state-feedback strategies, are characterised via the solutions of coupled algebraic matrix

equations. These coupled equations look reminiscent of the algebraic Riccati equations arising in

LQ optimal control. However, in contrast to the Riccati equations, which under mild assumptions

admit a unique solution and for which efficient solution methods exist, the coupled matrix equations

associated with Nash equilibrium solutions of LQ dynamic games are generally difficult to solve, as

noted in [9, 35, 30] and highlighted for the discrete-time case in Section 3.1, and may admit multiple

solutions with different outcomes. While the existence, number and proprieties of feedback Nash

equilibrium solutions for LQ dynamic games have been extensively studied in the continuous-time

setting (i.e. for LQ differential games), for example in [9, 54, 55, 56, 57, 58, 30], the discrete-time

case has received less attention [9, 59]. As highlighted in Section 3.1, additional product terms of the

decision variables arising in the coupled matrix equations in the discrete-time setting lead to additional

challenges and make the problem interesting to consider.

To build intuition regarding feedback Nash equilibrium solutions of discrete-time LQ dynamic games

and their properties, scalar games are studied in this section. More precisely, the focus lies on games

involving dynamics in which the state and inputs are scalar variables, and the cost functional associated

with each player only penalises the player’s own control action. In this case, the coupled algebraic

equations associated with feedback Nash equilibria simplify from a set of matrix equations to a set

of scalar equations. This allows to use geometric arguments to specify conditions in terms of the

system and cost parameters under which a game admits a certain number of feedback Nash equilibrium

solutions. Such information is not only desirable from a computational point of view, but also provides

a better understanding of the different possible feedback Nash equilibrium outcomes of a given game.

Of particular interest in the analysis of scalar games is the two-player case. For this special case,

analytical results can be derived. In addition, the coupled equations associated with feedback Nash

equilibria, and their solutions, can be represented and analysed graphically, which allows to gain further

insights. The analysis presented in this section can be understood as a discrete-time counterpart to

the study of scalar differential games presented in [58] and [30, Chapter 8.4].

The remainder of this section is organised as follows. The considered problem is defined in Section 3.2.1.

A graphical interpretation of the coupled equations associated with feedback Nash equilibrium solu-

tions is introduced in Section 3.2.2 and utilised in Section 3.2.3 to characterise conditions for the

number of feedback Nash equilibria in terms of the system and cost parameters. Additional insights
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for the two-player case are provided in Section 3.2.4. Finally, the results are illustrated via numerical

examples in Section 3.2.5.

3.2.1 Problem formulation

Consider the LQ infinite-horizon discrete-time dynamic game (3.1), (3.2), i = 1, . . . , N , in which

n = 1, mi = 1, for i = 1, . . . , N , and Rij = 0, for j = 1, . . . , N , i = 1, . . . , N , j ̸= i. The latter implies

that the cost functional (3.2) associated with player i only penalises the control effort ui of player i

and not the actions uj of the other players j, j = 1, . . . , N , j ̸= i. This assumption is crucial for the

derivations in the following sections. While it results in some loss of generality, the class of LQ games

in which Rij = 0 is commonly considered in the literature, see e.g. [58, 30, 62, 29, 31]. To emphasise

that scalar quantities are considered, lower case letters are used for the system and cost parameters

throughout this section. Namely, consider the game defined by the dynamics

x(k + 1) = ax(k) +
N∑
i=1

biui(k), (3.14)

where a ∈ R, bi ∈ R \ {0}, i = 1, . . . , N , are constant system parameters3, and the cost functionals

Ji(x(0), u1(·), . . . , uN (·)) =
∞∑
k=0

(
qix(k)

2 + riui(k)
2
)
, (3.15)

with qi ∈ R and ri > 0 ∈ R, for i = 1, . . . , N. Note that in contrast to the other sections of this chapter,

in this section (apart from Subsection 3.2.4) qi is not restricted to be non-negative. This is in line

with the game definition considered for the analysis of scalar dynamic games in the continuous-time

setting in [58] and [30, Chapter 8.4].

Consider the problem of determining feedback Nash equilibrium solutions, i.e. feedback strategies of

the form ϕi(x(k)) = kix(k) for the players’ actions ui, i = 1, . . . , N , which render the zero equilibrium

of the system (3.14) asymptotically stable and are such that (2.8) holds (see Definition 2.1.2). For

LQ games with general linear dynamics (3.1), (3.2), i = 1, . . . , N , it is shown in Theorem 3.1.1

that feedback Nash equilibria are characterised by the stabilising solutions of the coupled algebraic

equations (3.5), i = 1, . . . , N , and (3.6). In contrast to the setting considered in Theorem 3.1.1 (and

commonly considered in single player LQR problems), in this section qi in (3.15) may be negative.

In the following, the result of Theorem 3.1.1 is revisited and revised for the scalar game problem

considered in this section.

3If bi = 0, for any i = 1, . . . , N , then ui does not influence the dynamics (3.14) and player i can be disregarded.
Hence, this case is excluded without loss of generality.
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Corollary 3.2.1. Consider the game (3.14), (3.15), i = 1, . . . , N . The set of strategies

{ϕ⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))} ,

where

ϕ⋆
i (x(k)) = k⋆i x(k) , (3.16)

for i = 1, . . . , N , constitutes a feedback Nash equilibrium solution of the game if and only if

∣∣∣∣∣a+

N∑
i=1

bik
⋆
i

∣∣∣∣∣ < 1, (3.17)

and there exist pi ∈ R, for i = 1, . . . , N , satisfying the set of equations

0 =

a+
N∑
j=1

bjk
⋆
j

2

p⋆i − p⋆i + qi + k⋆i
2ri, (3.18a)

0 =
(
ri + b2i p

⋆
i

)
k⋆i + bip

⋆
i

a+
N∑

j=1,j ̸=i

bjk
⋆
j

 , (3.18b)

such that (
ri + b2i p

⋆
i

)
> 0, (3.19)

for i = 1, . . . , N . The feedback Nash equilibrium is such that the equilibrium cost incurred by player i

starting from initial condition x(0) is J⋆
i = Ji(x(0), ϕ

⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))) = p⋆ix(0)

2.

Proof. The result follows from analogous arguments to the proof of Theorem 3.1.1. More precisely,

let {k̄⋆1, . . . , k̄⋆N} and {p̄⋆1, . . . , p̄⋆N} satisfy (3.17), (3.18) and (3.19), for i = 1, . . . , N . Assuming the

actions of players j, j = 2, . . . , N , are fixed at uj(k) = k̄⋆jx(k), consider the minimisation of the cost

function (3.15), i = 1, subject to the dynamics (3.14) by player 1, namely the minimisation of

J1(x(0), u1(·), k̄⋆2x(k), . . . , k̄⋆Nx(k)) =
∞∑
k=0

(
q1x(k)

2 + r1u1(k)
2
)
, (3.20)

subject to

x(k + 1) =

a+

N∑
j=2

bj k̄
⋆
j


︸ ︷︷ ︸

ā1

x(k) + b1u1(k). (3.21)

This constitutes an LQR problem for player 1. Via the dynamic programming principle [50] and

Pontryagin’s Maximum principle [51] it follows without any assumptions regarding the sign of qi that

the LQR problem (3.21), (3.20) admits a stabilising state-feedback solution uOC
1 (k) = kOCx(k) if and
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only if
∣∣ā1 + b1k

OC
∣∣ < 1 and

0 =
(
ā1 + b1k

OC
)2

pOC − pOC + q1 + kOC2
r1, (3.22a)

0 =
(
r1 + b21p

OC
)
kOC + b1p

OC ā1 , (3.22b)

hold for some pOC , such that
(
r1 + b21p

OC
)
> 0. Note that the latter condition ensures that the minimi-

sation problem is well-posed. The corresponding minimum cost is given by J1(x(0), k
OCx(k), k̄⋆2x(k),

. . . , k̄⋆Nx(k)) = pOCx(0)2. Note that by assumption and by comparing (3.18), i = 1, and (3.22), there

exists a stabilising solution kOC = k̄⋆1 and pOC = p̄⋆1 to (3.22). Hence,

J1(x(0), k̄
⋆
1x(k), . . . , k̄

⋆
Nx(k)) ≤ J1(x(0), u1(·), k̄⋆2x(k), . . . , k̄⋆Nx(k)), (3.23)

for all admissible {u1(·), k̄⋆2x(k), . . . , k̄⋆Nx(k)}. Conversely, assume the stabilising set of state-feedback

gains {k̄⋆1, . . . , k̄⋆N} corresponds to a feedback Nash equilibrium solution of the game (3.14), (3.15),

i = 1, . . . , N . By Definition 2.1.2, (3.23) holds for all admissible
{
u1(·), k̄⋆2x(k), . . . , k̄⋆Nx(k)

}
if the

actions of players j, j = 2, . . . , N , are fixed at uj(k) = k̄⋆jx(k). Hence, there exists pOC satisfying

(3.22) for kOC = k̄⋆1, which by comparing (3.22) and (3.18), i = 1, implies that k̄⋆1 and p̄⋆1 = pOC

satisfy (3.17), (3.18) and (3.19), for i = 1. The proof is concluded via analogous arguments for players

j, j = 2, . . . , N .

In Corollary 3.2.1, feedback Nash equilibrium solutions of the scalar game (3.14), (3.15), i = 1, . . . , N ,

are characterised by the solutions of the coupled algebraic equations (3.18a), (3.18b), i = 1, . . . , N ,

which are such that (3.17) and (3.19) hold4. Even though these conditions constitute a set of coupled

scalar equations, it is still challenging to determine a solution, especially if the game involves a large

amount of players N . Moreover, multiple solutions to (3.17), (3.18) and (3.19), i = 1, . . . , N , and

hence multiple feedback Nash equilibria of the game (3.14), (3.15), i = 1, . . . , N , may exist. The

problem considered in this section is hence to characterise all feedback Nash equilibria of the game

(3.14), (3.15), i = 1, . . . , N , via a geometric approach, and to utilise this to derive conditions under

which the game admits a certain number of feedback Nash equilibria.

3.2.2 Graphical interpretation of the coupled algebraic equations

With the aim of deriving conditions for the existence of no, a unique or multiple feedback Nash

equilibrium solutions of the game (3.14), (3.15), i = 1, . . . , N , consider the following assumptions.

4While in the continuous-time setting the condition ri > 0 is sufficient to ensure the solutions of the equivalent of
(3.18a), (3.18b) correspond to minimising the equivalent of (3.15) for player i, the additional condition (3.19) is needed
in the discrete-time case, for i = 1, . . . , N . This is another interesting difference, which in addition to those highlighted
in Remark 3.1.2 make the discrete-time setting considered herein interesting to study.
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Assumption 3.2.1. Let

σi =
b2i qi
ri

,

for i = 1, . . . , N . The players are ordered such that σ1 ≥ σ2 ≥ . . . ≥ σN .

Assumption 3.2.2. Let σN > −1.

Lemma 3.2.1. Consider the game (3.14), (3.15), i = 1, . . . , N . If Assumptions 3.2.1 and 3.2.2 hold,

then (3.19) holds for any solution of (3.17), (3.18), for i = 1, . . . , N .

Proof. The condition (3.19) holds for a solution p⋆i , k
⋆
i of (3.17), (3.18), if p⋆i > −

ri
b2i
, for i = 1, . . . , N .

Consider first the case a⋆cl := a+
∑N

j=1 bjk
⋆
j ̸= 0. Combining (3.18a) and (3.18b), and solving (3.18a)

for p⋆i gives that p⋆i > −
ri
b2i

is equivalent to

bik
⋆
i

a⋆cl
< 1, (3.24)

for i = 1, . . . , N . Combining again (3.18a) and (3.18b) and solving for k⋆i , (3.24) is in turn equivalent

to

1− ai

γi ±
√

γ2i − 1
< 1,

with ai = a +
∑N

j=1,j ̸=i bjk
⋆
j and γi = 1

2

(
ai +

σi+1
ai

)
, which holds if ai and γi have the same sign.

This in turn holds true if σi > −1. If a⋆cl = 0, (3.18a) and (3.18b) imply p⋆i = qi. Hence, (3.19) holds

if qi > − ri
b2i
, which is again equivalent to σi > −1. By Assumption 3.2.1, Assumption 3.2.2 implies

σi > −1, for i = 1, . . . , N .

Remark 3.2.1. While Assumption 3.2.1 can be introduced without loss of generality, Assumption 3.2.2

only depends on system and cost parameters and can hence be verified prior to the computation

of solutions. The result of Lemma 3.2.1 above highlights the relevance of Assumption 3.2.2. Note

that the following results regarding the characterisation, number and properties of solutions are still

relevant if Assumption 3.2.2 does not hold. However, in this case the results concern any solutions of

(3.17), (3.18), i = 1, . . . , N . Hence, the condition (3.19), or alternatively (3.24), needs to be checked

to ensure such a solution corresponds to a feedback Nash equilibrium.

The following result constitutes a reformulation of Corollary 3.2.1.

Lemma 3.2.2. Consider the game (3.14), (3.15), i = 1, . . . , N . Let Assumptions 3.2.1 and 3.2.2 hold

and consider the function

f̂(ξ) =


−ξ −

√
ξ2 + 1 if ξ < 0,

−ξ +
√

ξ2 + 1 if ξ > 0.

(3.25)
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The set of strategies {ϕ⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))} , with ϕ⋆

i (x(k)) given by (3.16), with

k⋆i =
−ξ⋆ − ti

√
ξ⋆2 − σi

bi
, (3.26)

for i = 1, . . . , N , constitutes a feedback Nash equilibrium of the game with a⋆cl = a+
∑N

j=1 bjk
⋆
j ̸= 0, if

and only if there exist ti ∈ {−1, 1}, for i = 1, . . . , N , and ξ⋆ ̸= 0, satisfying

a = f̂(ξ⋆) +Nξ⋆ + t1

√
ξ⋆2 − σ1 + . . .+ tN

√
ξ⋆2 − σN . (3.27)

Proof. By Corollary 3.2.1, feedback Nash equilibrium solutions of the game (3.14), (3.15), i = 1, . . . , N ,

are characterised by the stabilising solutions of (3.18), (3.19), i = 1, . . . , N . The proof lies in showing

that solving (3.27) is equivalent to solving (3.17), (3.18) and (3.19), i = 1, . . . , N . Eliminating p⋆i in

(3.18) (by solving (3.18a) for p⋆i and substituting this into (3.18b)) gives the condition

0 =
bi
2
k⋆i

2 + ξ⋆k⋆i +
σi
2bi

, (3.28)

with ξ⋆ := 1
2

(
1
a⋆cl
− a⋆cl

)
. The equation (3.28) admits the solutions (3.26), ti ∈ {−1, 1}, for i =

1, . . . , N . Hence, a⋆cl can be written as

a⋆cl = −ξ⋆ ±
√
ξ⋆2 + 1 = a+

N∑
j=1

bjk
⋆
j ,

= a−Nξ⋆ − t1

√
ξ⋆2 − σ1 − . . .− tN

√
ξ⋆2 − σN .

(3.29)

By (3.17), the solutions (3.26), ti ∈ {−1, 1} of interest are such that |a⋆cl| < 1. Hence, there is a

one-to-one correspondence between ξ⋆ and a⋆cl given by a⋆cl = f̂(ξ⋆), with f̂(ξ) as defined in (3.25)

and illustrated in Figure 3.1. Substituting this into (3.29) gives (3.27). Thus, any solution to (3.17),

(3.18) and (3.19), i = 1, . . . , N , is such that (3.27) holds. Conversely, let {t1, . . . , tN} and ξ⋆ be a

-20 -15 -10 -5 0 5 10 15 20

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.1: Plot of function f̂(ξ) defined in (3.25).
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solution of (3.27) and note that this is such that (3.28) holds with k⋆i as in (3.26), for i = 1, . . . , N .

Via a⋆cl = f̂(ξ⋆) as defined in (3.25), this implies that (3.17) holds and (3.18b) holds with p⋆i =
qi+k⋆i

2ri
1−a⋆cl

2 ,

i = 1, . . . , N , which is the unique solution of the Lyapunov equation (3.18a) for fixed a⋆cl. By Lemma

3.2.1, Assumption 3.2.2 ensures that (3.19) holds, for i = 1, . . . , N . Hence, (3.27) implies (3.17), (3.18)

and (3.19), i = 1, . . . , N .

Remark 3.2.2. The result of Lemma 3.2.2 relies on the assumption a⋆cl ̸= 0. Note that if a⋆cl = 0, (3.18b)

implies k⋆i = 0, for i = 1, . . . , N , and hence a = 0. The assumption a⋆cl ̸= 0 is thus only restrictive in

the special case in which a = 0. In this case, a set of feedback Nash equilibrium strategies is given

by (3.16), with k⋆i = 0, i = 1, . . . , N . However, this trivial solution cannot be found via Lemma 3.2.2.

All feedback Nash equilibria of the game (3.14), (3.15), i = 1, . . . , N , with a = 0 are hence given by

the solutions satisfying the conditions of Lemma 3.2.2 (if there are any) plus the solution (3.16), with

k⋆i = 0, i = 1, . . . , N .

Lemma 3.2.2 introduces an alternative characterisation of feedback Nash equilibria of the game (3.14),

(3.15), i = 1, . . . , N , via the condition (3.27). Consider the auxiliary functions

fℓ(ξ) = f̂(ξ) +Nξ + τℓ,1
√

ξ2 − σ1 + . . .+ τℓ,N
√
ξ2 − σN , (3.30)

for ℓ = 1, . . . ,L, where L = 2N and τℓ = (τℓ,1, . . . , τℓ,N ) is an N -tuple over the set {−1, 1}. Hence,

the functions fℓ(ξ), ℓ = 1, . . . ,L, in (3.30) capture all possible combinations of the values which ti, for

i = 1, . . . , N , can take in (3.27). By Lemma 3.2.2, feedback Nash equilibrium solutions of the game

(3.14), (3.15), i = 1, . . . , N , are then represented graphically by the intersections of the functions

fℓ(ξ), ℓ = 1, . . . ,L, as defined in (3.30), with the level a.

Remark 3.2.3. If the level a intersects two auxiliary functions fℓ(ξ) and fw(ξ) as defined in (3.30) at

a point (ξ̄, f̄) in which they coincide, i.e. f̄ = fℓ(ξ̄) = fw(ξ̄), for ℓ = 1, . . . ,L, w = 1, . . . ,L, ℓ ̸= w,

then this intersection point generally corresponds to two distinct feedback Nash equilibrium solutions

of the game (3.14), (3.15), i = 1, . . . , N , resulting in the same closed-loop dynamics a⋆cl. However,

there exists only one corresponding set of gains {k⋆1, . . . , k⋆N} for an intersection of level a with fℓ(ξ)

and fw(ξ) in the point (ξ̄, f̄), if ξ̄ = ±√σj , j = 1, . . . , N , and if fℓ(ξ) and fw(ξ) are such that

τℓ,i = τw,i,

for all i = 1, . . . , N , i ̸= j, or for all i ̸= l, i ̸= j if the game is such that any

σl = σj ,

l = 1, . . . , N , l ̸= j. The corresponding set of gains is given by k⋆j = − ξ̄
bj
, k⋆l = − ξ̄

bl
and k⋆i as defined
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in (3.26) with ti = τℓ,i = τw,i, for i ̸= j, i ̸= l. Hence, in this special case the intersection point (ξ̄, f̄)

of the level a with the two functions fℓ(ξ) and fw(ξ) corresponds to one feedback Nash equilibrium

solution rather than two distinct feedback Nash equilibrium solutions. These observations readily

extend to the case in which the line at level a intersects more than two auxiliary functions in a single

point.

Certain properties of the auxiliary functions (3.30), ℓ = 1, . . . ,L, are highlighted in the following

result. To this end, let T = {τ1, . . . , τL} denote the set of all N -tuples τℓ, ℓ = 1, . . . ,L, and consider

the function Tℓ : {1, . . . , N} → {τℓ,1, . . . , τℓ,N}, defined by Tℓ(i) = τℓ,i, for i = 1, . . . , N .

Lemma 3.2.3. Consider the functions (3.30), ℓ = 1, . . . ,L, let Assumption 3.2.1 hold, and consider

the N-tuples τl ∈ T corresponding to the functions fl(ξ), for l = 1, 2, 3,L− 2,L− 1,L, which are such

that

T1(i) = −1, i = 1, . . . , N,

T2(1) = 1, T2(i) = −1, i = 2, . . . , N,

T3(2) = 1, T3(i) = −1, i = 1, . . . , N, i ̸= 2,

TL−2(2) = −1, TL−2(i) = 1, i = 1, . . . , N, i ̸= 2,

TL−1(1) = −1, TL−1(i) = 1, i = 2, . . . , N,

TL(i) = 1, i = 1, . . . , N.

Then it holds that,

i. f1(ξ) ≤ f2(ξ) ≤ f3(ξ) ≤ fℓ(ξ) ≤ fL−2(ξ) ≤ fL−1(ξ) ≤ fL(ξ), for any ℓ = 4, . . . ,L − 3.

ii. lim
ξ→−∞

fℓ(ξ)−

N −
N∑
j=1

τℓ,j

 ξ

 = 0, and

lim
ξ→∞

fℓ(ξ)−

N +
N∑
j=1

τℓ,j

 ξ

 = 0, for ℓ = 1, . . . ,L.

iii. the function fℓ(ξ) is defined over the real numbers for

(a) ξ ̸= 0, for ℓ = 1, . . . ,L, if σ1 ≤ 0.

(b) ξ ≤ −√σ1 and ξ ≥ √σ1, for ℓ = 1, . . . ,L, if σ1 > 0 and σ1 ̸= σ2.

(c) ξ ≤ −√σ1 and ξ ≥ √σ1, for ℓ = 1 and ℓ = L, and for


ξ ̸= 0 if σ3 ≤ 0,

ξ ≤ −√σ3 and ξ ≥ √σ3 if σ3 > 0,

for ℓ = 2, 3,L − 2,L − 1, if σ1 > 0 and σ1 = σ2.

iv. if σ1 > 0 and σ1 = σ2, and there exist σj > 0 such that σj ̸= σi, for i = 1, . . . , N , j = 1, . . . , N ,

j ̸= i, then let σ̄ = maxj(σj). No function fℓ(ξ), ℓ = 1, . . . ,L, is defined over the real numbers

for −
√
σ̄ < ξ <

√
σ̄.
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v. if fℓ(ξ) is defined for ξ ̸= 0, then

lim
ξ→0−

fℓ(ξ) = −1 +
N∑
i=1

τℓ,i
√
−σi = ā−ℓ , and

lim
ξ→0+

fℓ(ξ) = 1 +
N∑
i=1

τℓ,i
√
−σi = ā+ℓ .

vi. if for all ξ ̸= 0

(N − 1) +
|ξ|√
ξ2 + 1

̸=
N∑
i=1

|ξ|√
ξ2 − σi

,

then fL(ξ) is strictly monotone for ξ < 0 and f1(ξ) is strictly monotone for ξ > 0.

Proof. The claims are shown using elementary properties of the function fℓ(ξ), ℓ = 1, . . . ,L, defined

in (3.30). Recall that by Assumption 3.2.1 σ1 ≥ σ2 ≥ . . . ≥ σN .

Item i. follows from the definition of Tℓ, for l = 1, 2, 3,L − 2,L − 1,L, and Assumption 3.2.1.

Item ii. follows from (3.30) by noting that

lim
ξ→∞

(√
ξ2 + c− ξ

)
= 0,∀c ∈ R, |c| <∞.

Item iii. follows by noting that (3.30) is defined over the real numbers if ξ2−σi ≥ 0, for i = 1, . . . , N ,

and utilising Assumption 3.2.1 and the definition of Tℓ, l = 1, 2, 3,L − 2,L − 1,L.

Similarly, item iv. is demonstrated by noting that if σ1 = σ2 the corresponding terms in the functions

(3.30), ℓ = 1, . . . ,L, may cancel out, which effects the interval over which some functions are defined. If

any σj , j = 3, . . . , N , are positive and not repeated, then the corresponding terms do not cancel in any

of the auxiliary functions. Utilising Assumption 3.2.1, the functions in which all terms corresponding

to repeated σi, i = 1, . . . , N , cancel out are defined over the real numbers if ξ2 − σ̄ ≥ 0.

Item v. follows from (3.30) by noting that (3.25) is such that limξ→0− f̂(ξ) = −1, and limξ→0+ f̂(ξ) = 1.

Finally, item vi. is shown by noting that

d

dξ
fℓ(ξ) = (N − 1)± ξ√

ξ2 + 1
+

N∑
i=1

τℓ,i
ξ√

ξ2 − σi
,

and using the definition of Tℓ, ℓ = 1,L.

3.2.3 Conditions for number and properties of solutions

By Lemma 3.2.2, feedback Nash equilibria of the game (3.14), (3.15), i = 1, . . . , N , can be represented

graphically by the intersections of the level a with a set of auxiliary functions (3.30), ℓ = 1, . . . ,L. The

properties of the functions (3.30), ℓ = 1, . . . ,L, allow to characterise the possible number and location

of intersection points, and hence the number and properties of different feedback Nash equilibria the

game admits. Utilising the properties of the functions (3.30), ℓ = 1, . . . ,L, highlighted in Lemma 3.2.3,

sufficient conditions for the game to admit a certain number of feedback Nash equilibrium solutions
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and properties of the resulting closed-loop dynamics are provided in the following result.

Theorem 3.2.1. Consider the game (3.14), (3.15), i = 1, . . . , N , and let Assumptions 3.2.1 and 3.2.2

hold. Then,

i. if the open-loop system is unstable with a fast rate of divergence, i.e. (3.14) is such that |a| ≫ 1,

then there exist 2N − 1 feedback Nash equilibrium solutions.

ii. if σ1 > 0, then there always exists at least one feedback Nash equilibrium solution for any value of

a.

iii. if σ1 > 0 and there exist σj > 0 such that σj ̸= σi, for i = 1, . . . , N , j = 1, . . . , N , j ̸= i, and

σ̄ = maxj(σj), then the system (3.14) in closed loop with any Nash equilibrium solution is such

that |a⋆cl| ≤
∣∣√σ̄ −√σ̄ + 1

∣∣.
iv. if σN ≥ 0 and the system (3.14) is open-loop stable, i.e. |a| < 1, then there exists a unique feedback

Nash equilibrium solution.

v. if σN < 0, but σ1 > 0, σ1 > σ2 and the system (3.14) is open-loop stable with a fast rate of

convergence, i.e. |a| ≪ 1, then there exists a unique feedback Nash equilibrium solution if
N∑
i=2

√
σ1 − σi < (N − 1)

√
σ1 +

√
σ1 + 1 and (N − 1) +

|ξ|√
ξ2 + 1

<

N∑
i=1

|ξ|√
ξ2 − σi

.

vi. if σ1 ≤ 0, and the system (3.14) is open-loop stable with a fast rate of convergence, i.e. |a| ≪ 1,

then there exists a unique feedback Nash equilibrium solution if(
N∑
i=2

√
−σi

)
−
√
−σ1 < 1 and (N − 1) +

|ξ|√
ξ2 + 1

̸=
N∑
i=1

|ξ|√
ξ2 − σi

.

vii. if σ1 = . . . = σN = 0 and |a| = 1 there exists no feedback Nash equilibrium solution.

Proof. By Lemma 3.2.2 the intersection points of the functions (3.30), ℓ = 1, . . . ,L, with the horizontal

line at level a characterise distinct feedback Nash equilibrium solutions of the game (3.14), (3.15),

i = 1, . . . , N . The claims are then shown by utilising the properties of the functions (3.30), ℓ = 1, . . . ,L

in Lemma 3.2.3 to characterise the possible intersection points.

Item i. is a result of item ii. of Lemma 3.2.3. More precisely, for ξ < 0 fL(ξ) tends to 0 whereas fℓ(ξ),

ℓ = 1, . . . ,L − 1, asymptotically approach straight lines with positive slope and hence tend to −∞

as ξ → −∞. Similarly, for ξ > 0 f1(ξ) tends to 0 and fℓ(ξ), ℓ = 2, . . . ,L, asymptotically approach

straight lines with positive slope and hence tend to ∞ as ξ →∞. Thus, for large values of a, the level

a intersects L − 1 = 2N − 1 of the L auxiliary functions once.

To demonstrate item ii., recall item iii.(b),(c) of Lemma 3.2.3 and note that by definition (3.30) fℓ(ξ),

ℓ = 1, . . . ,L, are continuous for ξ ̸= 0, that fL−1(−
√
σ1) = fL(−

√
σ1), and f1(

√
σ1) = f2(

√
σ1). From

item ii. of Lemma 3.2.3, for ℓ = 1, 2,L− 1,L, it follows that for any value of a ̸= 0, the horizontal line

at level a intersects at least once with either of the functions fℓ(ξ), ℓ = 1, 2,L − 1,L. If a = 0 there
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exists at least one feedback Nash equilibrium solution as discussed in Remark 3.2.2.

Item iii. follows from item iv. of Lemma 3.2.3, namely, if the stated conditions hold any intersection

points of the functions (3.30), ℓ = 1, . . . ,L, with the horizontal line at level a are such that ξ⋆ ≤ −
√
σ̄

or ξ⋆ ≥
√
σ̄. By recalling from Lemma 3.2.2 that a⋆cl = f̂(ξ⋆), the bound on the closed-loop dynamics

follows from the definition of f̂(ξ) in (3.25).

To prove item iv., recall items i., ii., iii. and vi. of Lemma 3.2.3. If σN ≥ 0, then by Assumption 3.2.1

all σi, i = 1, . . . , N , are non-negative. Hence, the line at level a intersects only one of the functions

(3.30), ℓ = 1,L, once for max(fL−1(ξ)) < a < min(f2(ξ)). For ξ > 0,

f2(ξ) = (N − 1)ξ +
√
ξ2 + 1 +

√
ξ2 − σ1 −

N∑
i=2

√
ξ2 − σi

=
√

ξ2 + 1 +
√
ξ2 − σ1 +

N∑
i=2

σi

ξ +
√
ξ2 − σi

≥
√

ξ2 + 1 +
√
ξ2 − σ1 +

1

2ξ

N∑
i=2

σi :=
¯
f2(ξ).

If ξ ≥ √σ1, then f2(ξ) ≥
¯
f2(ξ) ≥

√
ξ2 + 1 +

∑N
i=2

σi

ξ+
√

ξ2+σi

≥
√

ξ2 + 1 ≥ 1. Recall that if σ1 > σ2

then f2(ξ) is defined for ξ ≥ √σ1, hence min(f2(ξ)) ≥ 1. If σ1 = σ2, then

f2(ξ) = (N − 1)ξ +
√
ξ2 + 1−

N∑
N=3

√
ξ2 − σi

= ξ +
√
ξ2 + 1 +

N∑
i=3

σi

ξ +
√
ξ2 − σi

≥
√

ξ2 + 1 ≥ 1,

and hence min(f2(ξ)) ≥ 1. Via analogous arguments for fL−1(ξ) for ξ < 0, it follows that for

−1 < a < 1 the line at level a intersects only once with either fL(ξ) for ξ < 0 or f1(ξ) for ξ > 0.

Similarly, if the conditions of item v. hold, then fL(−
√
σ1) < f1(

√
σ1) and fL(ξ) for ξ < 0 and f1(ξ)

for ξ > 0 are strictly decreasing. This follows from the definition of the functions (3.30), and Tℓ,

ℓ = 1,L, as well as item vi. of Lemma 3.2.3. Hence, by items i., ii. and iii.(b) of Lemma 3.2.3 the line

at level a intersects only once with either fL(ξ) for ξ < 0 or f1(ξ) for ξ > 0 for very small values of a.

Likewise, if the conditions of item vi. hold then by items iv. and vi. of Lemma 3.2.3 ā−L−1 < ā+2 and

fL(ξ) for ξ < 0 and f1(ξ) for ξ > 0 are both either strictly decreasing or strictly increasing. Hence,

by items i., ii. and iii.(a) of Lemma 3.2.3 the line at level a intersects only once with either fL(ξ) for

ξ < 0 or f1(ξ) for ξ > 0 for very small values of a.

Finally, item vii. follows from items i., ii. and v. of Lemma 3.2.3, by recalling from the proof of

item iv. that if σi ≥ 0, for i = 1, . . . , N , then fL−1(ξ) ≤ −1 for ξ < 0 and f2(ξ) ≥ 1 for ξ > 0, and by

noting that if σi = 0, for i = 1, . . . , N , then ā−ℓ = −1 and ā+ℓ = 1 for ℓ = 1, . . . ,L. Hence, since the
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functions (3.30), ℓ = 1, . . . ,L, are not defined at ξ = 0, the horizontal lines a = 1 and a = −1 do not

intersect with any of the auxiliary functions.

Remark 3.2.4. It is interesting to compare the results of Theorem 3.2.1 with the continuous-time

counterpart. While analogous results to items i. - iv. and vii. can be derived for scalar LQ differential

games, see [58], note that for this class of continuous-time dynamic games there always exists a unique

feedback Nash equilibrium for games involving open-loop stable systems with fast rate of convergence,

irrespective of the the signs of σi, i = 1, . . . , N , [58, Theorem 3.1]. In the discrete-time setting,

however, this only holds true for special cases if σN < 0, such as under the conditions of items v. and

vi. of Theorem 3.2.1.

3.2.4 The two-player case

Consider the game (3.14), (3.15), i = 1, . . . , N , and let N = 2. This special case, the class of scalar

two-player games, is of particular interest, because additional insights about feedback Nash equilibrium

solutions can be gained. Not only is it possible to derive conditions in terms of the system and cost

parameters characterising the exact number of feedback Nash equilibria the game admits, but it is

also possible to graphically represent the coupled equations characterising feedback Nash equilibria

and their solutions in an alternative way via plane curves, and hence to illustrate further properties of

different solutions. For ease of exposition, the focus of this subsection lies on the commonly considered

case qi ≥ 0, for i = 1, 2. This is in line with the game definitions considered in the other sections

of this chapter and in Chapter 5. While the main results of this subsection, i.e. the minimum and

maximum number of feedback Nash equilibria a scalar two-player game may admit and the analysis

of the coupled equations characterising solutions via plane curves, also apply to the more general

case, the characterisation of conditions becomes significantly more cumbersome if any qi, i = 1, 2, are

negative and is hence omitted for clarity.

Characterisation of number of feedback Nash equilibria

In the following, similar arguments as in the context of Theorem 3.2.1 are specialised to the two-

player case to provide conditions under which the game (3.14), (3.15), i = 1, 2, admits no, a unique,

two or three feedback Nash equilibrium solutions. To this end, recall the auxiliary functions (3.30),

ℓ = 1, . . . , 4, for N = 2, and the properties highlighted in Lemma 3.2.3. Moreover, take into account

the additional properties of functions f2(ξ) and f3(ξ) given in the following result.

Lemma 3.2.4. Consider the functions (3.30), ℓ = 1, . . . , 4, for N = 2, and let Assumption 3.2.1

hold. If σ1 > σ2 ≥ 0, then f2(ξ) has a unique stationary point corresponding to a local maximum

f⋆
2 at ξ⋆f2 < −√σ1 and f3(ξ) has a unique stationary point corresponding to a local minimum f⋆

3 at

ξ⋆f3 >
√
σ1.

63



3.2. Feedback Nash equilibria in scalar games

Proof. If σ1 > σ2 ≥ 0, then by item iii.(b) of Lemma 3.2.3 the functions (3.30), ℓ = 1, . . . , 4, are

defined for ξ ≤ −√σ1 and ξ ≥ √σ1. Moreover,

lim
ξ→−∞

df3
dξ

= 0, lim
ξ→−√

σ1

df3
dξ

=∞,

lim
ξ→∞

df3
dξ

= 2, lim
ξ→√

σ1

df3
dξ

= −∞,

and d2f3
dξ2

> 0 for all ξ, indicating a unique minimum for ξ >
√
σ1. The claim is shown via analogous

arguments for f2(ξ).

Noting that

f1(−
√
σ1) = f2(−

√
σ1) = −

√
σ1 −

√
σ1 + 1−

√
σ1 − σ2 := a−1 , (3.31a)

f3(−
√
σ1) = f4(−

√
σ1) = −

√
σ1 −

√
σ1 + 1 +

√
σ1 − σ2 := a−4 , (3.31b)

f1(
√
σ1) = f2(

√
σ1) =

√
σ1 +

√
σ1 + 1−

√
σ1 − σ2 := a+1 , (3.31c)

f3(
√
σ1) = f4(

√
σ1) =

√
σ1 +

√
σ1 + 1 +

√
σ1 − σ2 := a+4 , (3.31d)

conditions under which the game (3.14), (3.15), i = 1, 2, admits no, a unique, two or three feedback

Nash equilibrium solutions are provided in the following result.

Theorem 3.2.2. Consider the game (3.14), (3.15), i = 1, 2. Let Assumption 3.2.1 hold and consider

the functions (3.30), ℓ = 1, . . . , 4. Then,

i. if σ1 > σ2 ≥ 0

(a) the game has a unique feedback Nash equilibrium solution if f⋆
2 < a < f⋆

3 ,

(b) the game has two feedback Nash equilibrium solutions if a = f⋆
2 or a = f⋆

3 ,

(c) the game has three feedback Nash equilibrium solutions if a < f⋆
2 or a > f⋆

3 ,

ii. if σ1 = σ2 > 0

(a) the game has a unique feedback Nash equilibrium solution if a = a−1 or −1 ≤ a ≤ 1 or a = a+1 ,

(b) the game has three feedback Nash equilibrium solutions if a < a−1 or a−1 < a < −1 or

1 < a < a+1 or a > a+1 ,

iii. if σ1 = σ2 = 0

(a) the game has no feedback Nash equilibrium solution if |a| = 1,

(b) the game has a unique feedback Nash equilibrium solution if −1 < a < 1,

(c) the game has three feedback Nash equilibrium solutions if a < −1 or a > 1.
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3.2. Feedback Nash equilibria in scalar games

Proof. The claim follows from Lemma 3.2.2 and the properties of the functions (3.30), ℓ = 1, . . . , 4.

To show item i., recall items i. ii. and iii.(b) of Lemma 3.2.3, as well as Lemma 3.2.4. To show

items ii. and iii., note that if σ1 = σ2, then f2(ξ) = f3(ξ) and a−1 = a−4 , a
+
1 = a+4 , and recall items i.

ii. and iii.(a),(c) of Lemma 3.2.3. The case a = 0 is discussed in Remark 3.2.2.

Remark 3.2.5. Recall from Remark 3.2.3 that if the line at level a intersects multiple auxiliary functions

at a point in which they coincide, this generally indicates distinct feedback Nash equilibrium solutions

resulting in the same closed-loop dynamics. In the considered two-player context this is particularly

relevant if σ1 = σ2, since in this case f2(ξ) = f3(ξ). However, if σ1 > σ2 ≥ 0 as in item i. of

Theorem 3.2.2, the lines at a = a−1 and a = a+1 intersect both f1(ξ) and f2(ξ) in the points (−√σ1, a−1 )

and (
√
σ1, a

+
1 ), and the lines at a = a−4 and a = a+4 intersect both f3(ξ) and f4(ξ) in the points

(−√σ1, a−4 ) and (
√
σ1, a

+
4 ). If σ1 = σ2 > 0 as in item ii. of Theorem 3.2.2, the lines at a = a−1 and

a = a+1 even intersect all four auxiliary functions in the points (−√σ1, a−1 ) and (
√
σ1, a

+
1 ) (recall that in

this case a−1 = a−4 , a
+
1 = a+4 ). However, all of these described intersection points fall under the special

case discussed in Remark 3.2.3, hence each of the points indicates one feedback Nash equilibrium,

rather than two (if σ1 > σ2 ≥ 0) or four (if σ1 = σ2 > 0) distinct feedback Nash equilibria.

Plane curve interpretation of coupled equations

To gain additional insights regarding the coupled equations (3.18), i = 1, 2, and their solutions, the

fact that N = 2 is utilised to introduce an alternative graphical representation of the conditions as

plane curves. To this end, consider the following reformulation of Corollary 3.2.1.

Lemma 3.2.5. Consider the game (3.14), (3.15), i = 1, 2. The pair of strategies {ϕ⋆
1(x(k)), ϕ

⋆
2(x(k))},

with ϕ⋆
i (x(k)) given by (3.16), for i = 1, 2, with

k⋆1 = − r2b1p
⋆
1a

r1r2 + r2b21p
⋆
1 + r1b22p

⋆
2

, (3.32a)

k⋆2 = − r1b2p
⋆
2a

r1r2 + r2b21p
⋆
1 + r1b22p

⋆
2

, (3.32b)

constitutes a feedback Nash equilibrium of the game if and only if p⋆i ∈ R, for i = 1, 2, satisfy

0 = r22b
4
1p

⋆
1
3 + 2r1r2b

2
1b

2
2p

⋆
1
2p⋆2 + r21b

4
2p

⋆
1p

⋆
2
2

+ (2r1r
2
2b

2
1 − q1r

2
2b

4
1 − r1r

2
2b

2
1a

2)p⋆1
2 − q1r

2
1b

4
2p

⋆
2
2

+ 2(r21r2b
2
2 − r1r2q1b

2
1b

2
2)p

⋆
1p

⋆
2 − 2q1r

2
1r2b

2
2p

⋆
2

+ r1r
2
2(r1 − a2r1 − 2q1b

2
1)p

⋆
1 − q1r

2
1r

2
2 ,

(3.33a)
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0 = r21b
4
2p

⋆
2
3 + 2r1r2b

2
1b

2
2p

⋆
2
2p⋆1 + r22b

4
1p

⋆
2p

⋆
1
2

+ (2r2r
2
1b

2
2 − q2r

2
1b

4
2 − r2r

2
1b

2
2a

2)p⋆2
2 − q2r

2
2b

4
1p

⋆
1
2

+ 2(r22r1b
2
1 − r1r2q2b

2
1b

2
2)p

⋆
2p

⋆
1 − 2q2r

2
2r1b

2
1p

⋆
1

+ r21r2(r2 − a2r2 − 2q2b
2
2)p

⋆
2 − q2r

2
1r

2
2 ,

(3.33b)

such that either

p⋆2 > −
b21r2
b22r1

p⋆1 −
r2(1− |a|)

b22
, (3.34a)

or

p⋆2 < −
b21r2
b22r1

p⋆1 −
r2(1 + |a|)

b22
. (3.34b)

Proof. The claim follows from Corollary 3.2.1 by eliminating k⋆1, k
⋆
2 in (3.18) (by solving (3.18b) for

k⋆i , i = 1, 2 and substituting this into (3.18a)). Hence, any p⋆1, p
⋆
2 satisfying (3.33) and

r1r2 + r2b
2
1p

⋆
1 + r1b

2
2p

⋆
2 ̸= 0 , (3.35)

also satisfy (3.18) with k⋆i = −rjbip⋆i a/(r1r2+ r2b
2
1p

⋆
1+ r1b

2
2p

⋆
2), for i = 1, 2, j = 1, 2, j ̸= i, which gives

(3.32). Utilising (3.32), the condition (3.34) corresponds to (3.17). Finally, note that (3.34) implies

(3.35).

Lemma 3.2.5 shows that feedback Nash equilibrium solutions of the game (3.14), (3.15), i = 1, 2, are

characterised by the stabilising solutions of a pair of cubic equations. In general, there may be up

to nine solutions (including multiplicities) to a pair of cubic equations [174, Chapter 3.11]. However,

taking a closer look at equations (3.33) and their characteristics, it is possible to make more precise

statements about the number and properties of solutions. To this end, note that the equations (3.33)

represent two cubic curves in the (p1, p2) plane, whose characteristics are summarised in the following

result.

Proposition 3.2.1. If p⋆i ̸= qi, for i = 1, 2, then the solutions p⋆1, p⋆2 of (3.33a) and (3.33b) are

represented by the intersections of the curves

p̃1 = −
b22r1
b21r2

p2 −
r1
b21
±

ar1

√
p2r32

(
p2b22 + r2

)
(p2 − q2)

b21r
2
2(p2 − q2)

, (3.36a)

p̃2 = −
b21r2
b22r1

p1 −
r2
b22
±

ar2

√
p1r31

(
p1b21 + r1

)
(p1 − q1)

b22r
2
1(p1 − q1)

, (3.36b)
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in the region of the (p1, p2) plane which is such that

p2 > −
b21r2
b22r1

p1 −
r2(1− |a|)

b22
, (3.37a)

or

p2 < −
b21r2
b22r1

p1 −
r2(1 + |a|)

b22
. (3.37b)

If qi ≥ 0, the plane curves (3.36) are each characterised by three branches: a closed branch on the

interval − rj
b2j
≤ pj ≤ 0 and two open branches on the interval qj < pj. If pj < − rj

b2j
or 0 < pj ≤ qj,

then p̃i in (3.36) is not defined over the real numbers, for i = 1, 2, j = 1, 2, j ̸= i. The open branches

of p̃i, i = 1, 2, converge to a linear asymptote at

pj = qj ,

and a parabolic asymptote described by

lim
pj→∞

(p̃i − p̃asi ) = 0, p̃asi = −
b2jri

b2i rj
pj −

ri
b2i
± ari

b2i r
2
j

√√√√r3j b
2
j

(
pj +

rj
b2j

+ qj

)
, (3.38)

for i = 1, 2, j = 1, 2, j ̸= i.

Proof. Note that (3.36) is obtained by solving (3.33a) for p⋆2 and (3.33b) for p⋆1. This introduces the

condition p⋆i ̸= qi, i = 1, 2. Any p⋆1, p
⋆
2 satisfying both equations (3.36) geometrically correspond to the

intersections of the plane curves. The region of the (p1, p2) plane of interest (3.37) follows from the

stability condition (3.34). The function p̃i in (3.36) is defined over the real numbers if the argument

of the square root is non-negative, i.e. p̂i := pjr
3
j (pjb

2
j + rj)(pj − qj) ≥ 0. If qi ≥ 0, this is the case if


pj ∈ (qj ,+∞) if pj > 0,

pj ∈
[
− rj

b2j
, 0

]
otherwise,

for i = 1, 2, j = 1, 2, j ̸= i. Noting that both p̃i(− rj
b2j
) and p̃i(0) lie on the line

p̄i = −
b2jri

b2i rj
pj −

ri
b2i
, (3.39)

and that

p̃+i = p̄i +
ari
√
p̂i

b2i r
2
j (pj − qj)

≥ p̄i and p̃−i = p̄i −
ari
√
p̂i

b2i r
2
j (pj − qj)

≤ p̄i, (3.40)
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are continuous over

[
− rj

b2j
, 0

]
, this corresponds to the closed-branch. For pj > 0, it is straightforward

to see that limpj→qj p̃i = ±∞, hence there is a linear asymptote at pj = qj . To analyse the behaviour

of p̃i as pj →∞, rewrite (3.36) as

p̃i = p̄i ±
ari
b2i r

2
j

√√√√r3j b
2
j

(
pj +

rj
b2j

+ qj

)
+

qjr3j (rj + b2jqj)

pj − qj
,

for i = 1, 2, j = 1, 2, j ̸= i. Noting that limpj→∞
qjr

3
j (rj+b2jqj)

pj−qj
= 0 gives (3.38).

Remark 3.2.6. By Lemma 3.2.5 and Proposition 3.2.1 feedback Nash equilibrium solutions of the

scalar two-player game (3.14), (3.15), i = 1, 2, are represented geometrically by the intersections of

the curves (3.36) in the stable region of the (p1, p2) plane. It is interesting to put these results into

perspective with respect to the continuous-time counterpart. In contrast to the cubic equations (3.33),

the continuous-time equivalents, the coupled algebraic Riccati equations, are quadratic. Their solutions

are geometrically represented by the intersections of two hyperbolas, and the stability constraint (the

continuous-time equivalent to (3.37)) divides the (p1, p2) plane into a stable and an anti-stable halfplane

[30, Chapter 8.4].

Utilising the results of Lemma 3.2.5 and Proposition 3.2.1, it is possible to deduct the number of

admissible solutions of the pair of coupled equations (3.33), and hence the possible number of feedback

Nash equilibrium solutions of the game (3.14), (3.15), i = 1, 2, as detailed in the following result.

Corollary 3.2.2. Consider the curves (3.36) and let the conditions in Proposition 3.2.1 hold. Then,

the following hold

i. The curves (3.36a) and (3.36b) intersect at least once and at most three times in the region

p1 ≥ q1, p2 ≥ q2.

ii. All of these intersections are such that (3.34a) holds.

Hence, there exist at least one feedback Nash equilibrium and at most three feedback Nash equilibrium

solutions of the game (3.14), (3.15), i = 1, 2.

Proof. Recall that qi ≥ 0 and ri > 0, for i = 1, 2. By Proposition 3.2.1, the open branches of (3.36)

converge asymptotically to (3.38) and pj = qj , for i = 1, 2, j = 1, 2, j ̸= i. Due to the signs of the cost

parameters qi, ri, the straight line p̄i as defined in (3.39) has a negative slope, for i = 1, 2. Note that

p̄1 and p̄2 describe the same line, more precisely the line

r1r2 + r2b
2
1p1 + r1b

2
2p2 = 0, (3.41)

and that the asymptotes (3.38), for i = 1, 2, are tilted parabolas centred around this line. Hence, the
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branches p̃+1 for p2 ≥ q2 and p̃+2 for p1 ≥ q1 as defined in (3.40) cross at least once. To approach the

asymptotes, each plane curve p̃i, i = 1, 2, in (3.36) needs to have at least two inflection points. For the

branches p̃+1 for p2 ≥ q2 and p̃+2 for p1 ≥ q1 to cross more than three times, the curves need to change

direction at least twice more. However, by Bézout’s theorem [174, Chapter 3.11], a cubic curve can only

have up to three real inflection points. Hence, there can at most be three intersections. This proves

item (i). Note that since pj ̸= qj , j = 1, 2, then by Remark 3.2.7 (see below), qj ̸= 0 and the intersection

points (p⋆1, p
⋆
2) in the region p1 ≥ q1, p2 ≥ q2 are such that p⋆j > 0, j = 1, 2. By Lemma 3.2.5 and

Proposition 3.2.1, (p⋆1, p
⋆
2) and the corresponding k⋆i = −rjbip⋆i a/(r1r2 + r2b

2
1p

⋆
1 + r1b

2
2p

⋆
2), for i = 1, 2,

j = 1, 2, j ̸= i, as in (3.32), are such that (3.18) hold, with p⋆i > 0, qi > 0, for i = 1, 2. By Lyapunov

stability arguments, this guarantees that (3.17) holds. Hence (3.34a) holds, which proves item (ii).

By Corollary 3.2.1, (p⋆1, p
⋆
2), (k

⋆
1, k

⋆
2) satisfying (3.17), (3.18), i = 1, 2, correspond to feedback Nash

equilibrium solutions of the game (3.14), (3.15), i = 1, 2. This gives the final claim.

In the following remarks, the condition pi = qi, i = 1, 2, underlying Proposition 3.2.1 and Corol-

lary 3.2.2, as well as insights which can be gained about the properties of different feedback Nash

equilibrium solutions from the proposed graphical representation in Proposition 3.2.1, and the com-

parison to the continuous-time case are discussed.

Remark 3.2.7. The conditions of Proposition 3.2.1 exclude cases in which p⋆i = qi, for i = 1, 2. Note

that there are only two possible cases for the solution of the pair of equations (3.33) to be such that

p⋆i = qi. Namely, if qi = − ri
b2i

or if qi = 0. Since in this section the focus lies on games in which qi ≥ 0,

only the latter is examined. If p⋆i = qi = 0, then solving (3.33) gives three possible solutions for p⋆j ,

i = 1, 2, j = 1, 2, j ̸= i. Namely,

p0j = −
rj
b2j
,

p+j =
−rj + a2rj + b2jqj

2b2j
+

√
(rj + a2rj + b2jqj)

2 − 4r2ja
2

2b2j
,

p−j =
−rj + a2rj + b2jqj

2b2j
−

√
(rj + a2rj + b2jqj)

2 − 4r2ja
2

2b2j
.

Note that the point p⋆i = 0, p⋆j = p0j lies on the line (3.41) and can hence be disregarded. Using

√
(rj + a2rj + b2jqj)

2 − 4r2ja
2 ≥ rj − rja

2 + qjb
2
j ,

and √
(rj + a2rj + b2jqj)

2 − 4r2ja
2 ≥ −rj + rja

2 + qjb
2
j ,

it can be shown that p⋆i = 0, p⋆j = p−j always lies outside the stable region described by (3.34).
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Similarly, apart from the special case in which q1 = 0, q2 = 0 and |a| = 1, the point p⋆i = 0, p⋆j = p+j

always lies within the stable region (3.34). Hence, excluding this special case, if p⋆i = qi = 0, then the

feedback Nash equilibrium solutions of the game (3.14), (3.15), i = 1, 2, correspond to the intersections

of the curves (3.36) and the point p⋆i = 0, p⋆j = p+j , for i = 1, 2, j = 1, 2, j ̸= i. Note that if qj = 0, p̃i in

(3.36) coincides with (3.38), for i = 1, 2, j = 1, 2, j ̸= i. By analogous arguments as used in the proof

of Corollary 3.2.2, the branch p̃+j (as defined in (3.40)) for pi ≥ qi, can intersect the parabola at most

twice. Hence, the conclusion of Corollary 3.2.2, namely that there exist at least one and at most three

feedback Nash equilibria of the game (3.14), (3.15), i = 1, 2, also holds true if p⋆i = qi = 0 (excluding

the case q1 = 0, q2 = 0, |a| = 1). Note that this is in line with the conclusions of Theorem 3.2.2

based on the alternative graphical representation of feedback Nash equilibrium solutions introduced

in Section 3.2.2.

Remark 3.2.8. In addition to giving insights regarding the possible number of feedback Nash equi-

librium solutions the game (3.14), (3.15), i = 1, 2, may admit, the plane curve representation of the

equations whose solutions characterise feedback Nash equilibria introduced in Proposition 3.2.1 pro-

vides an illustration of the Nash equilibrium outcomes associated with different equilibria, i.e. the

cost incurred by each player (J⋆
i = p⋆ix(0)

2, for i = 1, 2) at the different solutions.

Remark 3.2.9. It is interesting to note that the results presented in Theorem 3.2.2 and Corollary 3.2.2

(plus the special case discussed in Remark 3.2.7) show that the discrete-time game (3.14), (3.15),

i = 1, 2, admits between zero and three feedback Nash equilibrium solutions, i.e. the minimum and

maximum number of distinct solutions the discrete-time scalar two-player game may admit are the

same as for its continuous-time counterpart, see e.g. [30, Chapter 8.4]. This holds despite the fact

that the coupled algebraic equations (3.33) are cubic rather than quadratic in the decision variables

and that the plane curves (3.36) and auxiliary functions (3.30), ℓ = 1, . . . , 4, are more involved than

those arising in the continuous-time case.

3.2.5 Examples

To illustrate the results of this section, consider the following numerical examples. The efficacy of

the results of Section 3.2.3 is demonstrated via three four-player games, before the insights specific to

two-player games in Section 3.2.4 are visualised via three two-player examples.

Four-player examples

Consider the game defined by the dynamics (3.14) with N = 4 and

a = ã, b1 = 1, b2 = 1, b3 = 1, b4 = 1, (3.42)
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3.2. Feedback Nash equilibria in scalar games

and the cost functionals (3.15), i = 1, . . . , 4, with

q1 = 1, q2 = 0.5, q3 = 0.25, q4 = 0.25,

r1 = 1, r2 = 1, r3 = 1, r4 = 1, (3.43)

and note that σi = qi, for i = 1, . . . , 4. Firstly, consider ã = 0.7, which is such that the system (3.14)

is open-loop stable. As illustrated in Figure 3.2, there is only a single intersection point between

the yellow horizontal line at a = 0.7 and the function f1(ξ) plotted in red. In line with item iv.

of Theorem 3.2.1, this single intersection point corresponds to a unique feedback Nash equilibrium

solution of the game. The corresponding equilibrium values are reported in Table 3.1. Note that in

line with item iii. of Theorem 3.2.1

|a⋆cl| = 0.2197 ≤ |
√
σ1 −

√
σ1 + 1| = 0.4142.

Secondly, consider ã = 9. As illustrated in Figure 3.3, there are 11 intersection points between

the yellow horizontal line at a = 9 and the functions fℓ(ξ), ℓ = 2, . . . , 16. In line with item i.

of Theorem 3.2.1, these correspond to 24 − 1 = 15 feedback Nash equilibrium solutions, with the

corresponding parameter values listed in Table 3.1. Note that since σ3 = σ4 four pairs of auxiliary

functions coincide, hence, as highlighted in Remark 3.2.3, the four intersection points with these
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Figure 3.2: Plot of the auxiliary functions f1(ξ) (red), f2(ξ) (green), f3(ξ) (blue), fℓ(ξ), ℓ = 4, . . . , 13
(grey), f14(ξ) (cyan), f15(ξ) (dark green) and f16(ξ) (magenta), and the horizontal line at a = 0.7
(yellow). The intersection point of the horizontal line and f1(ξ) is indicated by the yellow cross. The
black dashed lines indicate the linear asymptotes of the auxiliary functions and the grey dotted lines
indicate ξ = ±√σ1 = ±1.
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Figure 3.3: Plot of the auxiliary functions f1(ξ) (red), f2(ξ) (green), f3(ξ) (blue), fℓ(ξ), ℓ = 4, . . . , 13
(grey), f14(ξ) (cyan), f15(ξ) (dark green) and f16(ξ) (magenta), and the horizontal line at a = 9
(yellow). The intersection points of the horizontal line and fℓ(ξ), ℓ = 2, . . . , 16 are indicated by the
yellow crosses. The black dashed lines indicate the linear asymptotes of the auxiliary functions and
the grey dotted lines indicate ξ = ±√σ1 = ±1.

functions correspond to eight feedback Nash equilibria. Note also that as above, the bound |a⋆cl| ≤

|√σ1 −
√
σ1 + 1| = 0.4142 holds for all 15 feedback Nash equilibrium solutions.

Next, consider the game (3.14), (3.15), i = 1, . . . , 4, with a, bi and ri, i = 1, . . . , 4, as in (3.42), (3.43)

and

q1 = −0.02, q2 = −0.1, q3 = −0.15, q4 = −0.95,

and let ã = 0. Note that for this example, the condition

(
N∑
i=2

√
−σi

)
−
√
−σ1 < 1,

of item vi. of Theorem 3.2.1, which guarantees a unique feedback Nash equilibrium if |a| ≪ 1, is not

satisfied. Indeed, there are six intersections between the yellow horizontal line at level a = 0 and the

auxiliary functions, as illustrated in Figure 3.4. In line with Remark 3.2.2, the six intersection points

indicate seven feedback Nash equilibria of the game. The corresponding equilibrium parameters are

listed in Table 3.1. This observation highlights a difference between scalar LQ discrete-time dynamic

games and their continuous-time counterpart, scalar LQ differential games, for which a unique feedback

Nash equilibrium is guaranteed for any values and signs of qi, i = 1, . . . , 4, if the open-loop system is

stable with a fast rate of convergence [58, Theorem 3.1], as discussed in Remark 3.2.4.
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Figure 3.4: Plot of the auxiliary functions f1(ξ) (red), f2(ξ) (green), f3(ξ) (blue), fℓ(ξ), ℓ = 4, . . . , 13
(grey), f14(ξ) (cyan), f15(ξ) (dark green) and f16(ξ) (magenta), and the horizontal line at a = 0
(yellow). The intersection points of the horizontal line and fℓ(ξ), ℓ = 1, . . . , 16 are indicated by the
yellow crosses. The black dashed lines indicate the linear asymptotes of the auxiliary functions.

Table 3.1: Parameters characterising the feedback Nash equilibrium solutions of the scalar four-player
games rounded to four decimal places.

ã σ1 σ2 σ3 σ4 ξ⋆ a⋆cl k⋆1 k⋆2 k⋆3 k⋆4

0.7 1 0.5 0.25 0.25 2.1661 0.2197 −0.2446 −0.1187 −0.0585 −0.0585
9 1 0.5 0.25 0.25 1.2026 0.3615 −1.8706 −2.1753 −2.2963 −2.2963

1.4414 0.3129 −0.4033 −2.6973 −2.7932 −2.7932
1.5120 0.3008 −2.6460 −0.1755 −2.9388 −2.9388
1.5407 0.2961 −2.7128 −2.9096 −2.9981 −0.0834
1.5407 0.2961 −2.7128 −2.9096 −0.0834 −2.9981
2.1315 0.2229 −0.2491 −0.1207 −4.2036 −4.2036
2.1635 0.2199 −0.2450 −4.2081 −4.2684 −0.0586
2.1635 0.2199 −0.2450 −4.2081 −0.0586 −4.2684
2.2269 0.2142 −4.2167 −0.1152 −4.3970 −0.0569
2.2269 0.2142 −4.2167 −0.1152 −0.0569 −4.3970
2.2559 0.2117 −4.2780 −4.3981 −0.0561 −0.0561
4.3563 0.1133 −0.1163 −0.0578 −8.6838 −0.0288
4.3563 0.1133 −0.1163 −0.0578 −0.0288 −8.6838
4.3861 0.1126 −0.1155 −8.7147 −0.0286 −0.0286
4.4449 0.1111 −8.7759 −0.0566 −0.0282 −0.0282

0 −0.02 −0.1 −0.15 −0.95 −0.1790 −0.8369 0.4071 −0.1844 −0.2477 −0.8120
−0.0670 −0.9352 −0.0895 0.3903 −0.3260 −0.9100
−0.0153 −0.9848 −0.1269 −0.3013 0.4029 −0.9595
0.0153 0.9848 0.1269 0.3013 −0.4029 0.9595
0.0670 0.9352 0.0895 −0.3903 0.3260 0.9100
0.1790 0.8369 −0.4071 0.1844 0.2477 0.8120
n/a 0 0 0 0 0
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Two-player examples

Consider the game defined by the dynamics (3.14) with N = 2 and

a = 5, b1 = 2, b2 = 1,

and the the cost functionals (3.15), i = 1, 2, with

q1 = q̃1, q2 =
1

5

r1 = 2, r2 =
1

2
.

Three different cases are considered: q̃1 = 2, q̃1 = 6640112984933283
4503599627370496 ≈ 1.4744, and q̃1 = 1. The

corresponding values of σi, i = 1, 2, are listed in Table 3.2. Firstly, let q̃1 = 2. The corresponding

functions f1(ξ), f2(ξ), f3(ξ) and f4(ξ) as defined in (3.30) are plotted in solid red, green, blue and cyan,

respectively, in Figure 3.5 (a). The linear asymptotes of the functions are depicted with dashed black

lines. The level a = 5 is highlighted by the horizontal yellow line. There is a single intersection point

between this line and f2(ξ), corresponding to a unique Nash equilibrium solution, which is characterised

by the parameters reported in Table 3.2. Next, let q̃1 = 6640112984933283
4503599627370496 . The corresponding auxiliary

functions (3.30), ℓ = 1, . . . , 4, are shown in Figure 3.5 (c). For this specific value of q̃1, the horizontal

line at level a = 5 intersects once with f2(ξ) (green) and intersects f3(ξ) (blue) at its minimum f⋆
3 .

In line with item i.(b) of Theorem 3.2.2, these intersections indicate two feedback Nash equilibrium

solutions, with the corresponding values given in Table 3.2. Finally, let q̃1 = 1. The functions (3.30),

ℓ = 1, . . . , 4, are shown in Figure 3.5 (e). The line at level a = 5 has one intersection point each with

the functions f2(ξ) (green), f3(ξ) (blue) and f4(ξ) (cyan). The three intersection points correspond

to three feedback Nash equilibrium solutions characterised by the parameters listed in Table 3.2.

Since N = 2, it is also possible to represent the coupled equations (3.18), i = 1, 2, whose stabilising

solutions characterise feedback Nash equilibria via cubic curves in the (p1, p2) plane. The plane curves

(3.36a) (red) and (3.36b) (blue) for q̃1 = 1 are shown in Figure 3.6. As stated in Proposition 3.2.1,

the open branches of the curves each converge to a linear asymptote (black dotted) and a parabolic

asymptote (black dashed). The curves (3.36a) and (3.36b) intersect a total of seven times, however,

four intersection points lie outside the stability region (3.37) (highlighted in light green), including two

on the line (3.39) (dashed grey line), which are not highlighted because solutions on the line (3.39)

are excluded by definition in Lemma 3.2.5. In line with Corollary 3.2.2 and the observations from the

auxiliary function representation for this example (see Figure 3.5 (a)), there are three intersections in

the region p1 ≥ q1, p2 ≥ q2, corresponding to three feedback Nash equilibrium solutions characterised

by the parameters given in Table 3.2. For the three considered values of q̃1, q̃1 = 2, q̃1 ≈ 1.4744, and

q̃1 = 1, the intersections of the curves (3.36a) (red) and (3.36b) (blue) in the region p1 ≥ q1, p2 ≥ q2
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(c) q̃1 ≈ 1.4744 (d) q̃1 ≈ 1.4744
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(e) q̃1 = 1 (f) q̃1 = 1

Figure 3.5: Graphical interpretation of the coupled equations (3.18), i = 1, 2, characterising feedback
Nash equilibria and their solutions via auxiliary functions (a), (c), (e) and via cubic plane curves (b),
(d), (f). The auxiliary functions f1(ξ), f2(ξ), f3(ξ), and f14(ξ) are plotted in red, green, blue and
cyan, respectively, and the horizontal line at a = 5 is plotted in yellow. The intersection points are
indicated by the yellow crosses. The black dashed lines indicate the linear asymptotes of the functions
and the grey dotted lines indicate ξ = ±√σ1. The cubic plane curves (3.36a) and (3.36b) are plotted in
red and blue, respectively, their intersections are highlighted by black crosses and the stability region
(3.37) is highlighted in light green.

75



3.2. Feedback Nash equilibria in scalar games

are shown in more detail in Figure 3.5 (b), (d), and (f), respectively. An advantage of the plane curve

representation of the conditions characterising feedback Nash equilibria is that it readily illustrates

the equilibrium outcomes associated with different solutions. For instance, for q̃1 = 1 it is immediately

evident from Figures 3.5 (f) and 3.6 that out of the three feedback Nash equilibrium solutions, (NE1)

leads to the lowest cost for player 1, and the highest cost for player 2, (NE2) results in a medium cost

for both players and (NE3) results in the highest cost for player 1 and the lowest cost for player 2.

Similarly, for q̃1 ≈ 1.4744 it is evident from Figure 3.5 (d) that (NEa) leads to a lower cost for player 1

and a higher cost for player 2, whereas (NEb) leads to a lower cost for player 2 at the expense of a

higher cost for player 1.

Figure 3.6: The cubic plane curves (3.36a) (red) and (3.36b) (blue), for q̃1 = 1, their asymptotes
(dotted black lines, dashed black curves) and the line (3.39) (dash-dotted black). The stability regions
(3.37) are highlighted in light green.

Table 3.2: Parameters characterising the feedback Nash equilibrium solutions of the scalar two-player
games. All values rounded to four decimal places.

q̃1 σ1 σ2 ξ⋆ a⋆cl k⋆1 k⋆2 p⋆1 p⋆2

2 4 0.4 2.7978 0.1733 −2.3771 −0.0724 13.7134 0.2089

1.4744 2.9488 0.4 1.8258 0.2559 −0.6027 −3.5386 2.3552 6.9138 (NEa)
2.6828 0.1803 −2.3720 −0.0756 13.1552 0.2097 (NEb)

1 2 0.4 1.4737 0.3073 −0.9440 −2.8047 3.0724 4.5641 (NE1)
2.1766 0.2187 −0.2610 −4.2592 1.1934 9.7363 (NE2)
2.5783 0.1871 −2.3670 −0.0788 12.6488 0.2105 (NE3)
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3.3 Approximate Nash equilibria

Motivated by the challenges associated with determining Nash equilibrium solutions for infinite-horizon

nonzero-sum dynamic games, even in the LQ case and particularly in the discrete-time setting, as

highlighted in Section 3.1, this section considers a weaker notion of solutions - approximate Nash

equilibrium solutions. A well studied notion of approximate Nash equilibrium, in particular in the

context of static games, is the ϵ-Nash equilibrium, see e.g. [9, Chapter 4]. In [60] the notion of ϵ-Nash

equilibrium is defined in the context of differential games, as recalled in Chapter 2. Related notions

of approximate Nash equilibrium solutions for LQ differential games, which can be characterised in

terms of matrix inequalities, are introduced in [61, 62]. However, the existing literature in this context

focuses on continuous-time dynamic games (i.e. differential games).

In this section, a notion of approximate feedback Nash equilibrium solution for discrete-time, infinite-

horizon, LQ games is introduced, namely the ϵα,β-Nash equilibrium. The proposed solution concept

provides guarantees on the convergence rate of the trajectories of the resulting closed-loop system,

which may be of practical importance. The degree of approximation and the computation of the

approximate equilibria is discussed. For specific parameter choices, the presented solution concept

is the discrete-time counterpart to the concepts presented for continuous-time problems in [61, 62].

However, in addition to focusing on discrete-time systems, the presented formulation includes some

additional generalisations with respect to the notions in [61, 62].

The remainder of this section is structured as follows. The considered problem is defined in Sec-

tion 3.3.1. In Section 3.3.2 the aforementioned notion of approximate feedback Nash equilibrium for

the considered class of games is presented. The characterisation of the approximate Nash equilibria

via matrix inequalities is proposed and the degree of approximation is discussed in Section 3.3.3.

Reformulations of the presented conditions which may aid the computation of solutions are provided

in Section 3.3.4. The efficacy of the results is demonstrated via a simulation example, involving a

macroeconomic policy design problem, in Section 3.3.5.

3.3.1 Problem formulation

Consider the LQ infinite-horizon discrete-time dynamic game (3.1), (3.2), i = 1, . . . , N , and the

problem of determining feedback Nash equilibrium solutions, i.e. feedback strategies of the form

ϕi(x(k)) = Kix(k) for the players’ actions ui, i = 1, . . . , N , such that (2.8) holds (see Definition 2.1.2).

Let Assumption 3.1.1 hold and recall the definition of admissible strategies (Definition 2.1.1), which

is refined below in the context of feedback Nash equilibria for the considered class of games.

Definition 3.3.1. A set of feedback strategies {ϕ1(x(k)), . . . , ϕN (x(k))}, where ϕi(x(k)) = Kix(k),

i = 1, . . . , N , is admissible if the set of control actions {u1, . . . , uN}, with ui = ϕi(x(k)), for i =
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1, . . . , N , renders the zero equilibrium of the system (3.1) asymptotically stable.

In the following definition, the notion of α-admissible strategies, which was introduced for continuous-

time dynamics in [61], is introduced for the discrete-time system (3.1).

Definition 3.3.2. A set of feedback strategies {ϕ1(x(k)), . . . , ϕN (x(k))}, where ϕi(x(k)) = Kix(k),

i = 1, . . . , N , is α-admissible5 if the set of control actions {u1, . . . , uN}, with ui = ϕi(x(k)), for i =

1, . . . , N , renders the zero equilibrium of the system (3.1) asymptotically stable, and the trajectories

of the resulting closed-loop system converge faster than those of the system x(k + 1) = 1
αInx(k), i.e.

ρ(αAcl) < 1, with α ≥ 1 and where Acl = A +
∑N

i=1BiKi is the dynamics matrix of the closed-loop

system.

Focusing on admissible strategies in the sense of Definition 3.3.1, Nash equilibria of the game (3.1),

(3.2), i = 1, . . . , N , are characterised by the stabilising solutions of a set of coupled algebraic equations,

(3.5), i = 1, . . . , N , and (3.6), see Theorem 3.1.1. Solving (3.5), i = 1, . . . , N , and (3.6), and thereby

determining feedback Nash equilibrium solutions of the game (3.1), (3.2), i = 1, . . . , N , is generally

challenging, see e.g. Remark 3.1.2. Hence, the problem considered in this section is to characterise

a notion of approximate feedback Nash equilibrium for the game (3.1), (3.2), i = 1, . . . , N , which is

easier to compute than an exact feedback Nash equilibrium.

3.3.2 A notion of approximate feedback Nash equilibrium

To introduce a notion of approximate Nash equilibrium for LQ infinite-horizon discrete-time nonzero-

sum dynamic games observe that the problem of solving the coupled algebraic equations (3.5), i =

1, . . . , N , and (3.6), whose stabilising solutions characterise feedback Nash equilibrium solutions for the

game (3.1), (3.2), i = 1, . . . , N , can be reformulated as a non-convex semidefinite programme (SDP).

Lemma 3.3.1. Suppose K⋆ = {K⋆
1 , . . . ,K

⋆
N}, P⋆ = {P ⋆

1 , . . . , P
⋆
N} and γ⋆ constitute a solution of the

optimisation problem

min
K,P, γ

γ

s.t. Pi ⪰ Qi +

N∑
j=1

Kj
⊤RijKj +

A+
N∑
j=1

BjKj

⊤

Pi

A+
N∑
j=1

BjKj

 , (3.44a)

for i = 1, . . . , N,
R11 +B⊤

1 P1B1 . . . B⊤
1 P1BN

...
. . .

...

B⊤
NPNB1 . . . RNN +B⊤

NPNBN



K1

...

KN

 = −


B⊤

1 P1

...

B⊤
NPN

A, (3.44b)

5Note that if a set of strategies is α-admissible with α = 1, it is admissible.
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γIn −
N∑
j=1

Pj ⪰ 0, (3.44c)

Then, K⋆, P⋆ constitute a solution of (3.5), i = 1, . . . , N , and (3.6).

Proof. Note that (3.44b) corresponds to (3.6) and that γ subject to (3.44c) and (3.44a) is minimised

if (3.44a) holds with equality, for i = 1, . . . , N . Hence, any K⋆, P⋆ solving (3.44) satisfy (3.5),

i = 1, . . . , N , (3.6).

In Lemma 3.3.1 the coupled algebraic matrix equations (3.5), i = 1, . . . , N , and (3.6) are replaced

with a minimisation problem subject to matrix inequality and equality constraints, which constitutes

a non-convex SDP. While solving (3.44) is still challenging, finding {K1, . . . ,KN} and {P1, . . . , PN}

satisfying the matrix inequalities (3.44a), i = 1, . . . , N , may be significantly easier than solving the

matrix equations (3.5), i = 1, . . . , N , and is hence of practical interest [9]. Motivated by this, a weaker

notion of solution to the game (3.1), (3.2), i = 1, . . . , N , is proposed, which represents a relaxation of

the stricter notion of Nash equilibrium solution.

Definition 3.3.3. A set of β-admissible strategies {ϕ∗
1(x(k)), . . . , ϕ

∗
N (x(k))}, where ϕ∗

i (x(k)) = K∗
i x(k),

i = 1, . . . , N , constitutes an ϵα,β-Nash equilibrium solution of the game (3.1), (3.2), i = 1, . . . , N , if

there exists a constant ϵx0,α,β ≥ 0, parameterised in the initial condition x(0) = x0, and α > 1, β ≥ 1,

such that

Ji (x(0), ϕ
∗
1, . . . , ϕ

∗
N ) ≤ Ji

(
x(0), ϕ∗

1, . . . , ϕ
∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N

)
+ ϵx0,α,β, (3.45)

for all α-admissible
{
ϕ∗
1, . . . , ϕ

∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N

}
, where ϕ̂i(x(k)) = K̂ix(k), for i = 1, . . . , N .

The considered notion of ϵα,β-Nash equilibrium is related to the notions of ϵα-Nash equilibrium intro-

duced in [61, 62] for the continuous-time case. The parameter β introduced herein allows to determine

equilibrium solutions that guarantee a “convergence rate” faster than 1
β of the system (3.1) in closed

loop with the strategies {K∗
1x(k), . . . ,K

∗
Nx(k)}. Thus, the parameter β can be utilised to impose a

certain desired convergence rate on the closed-loop system, which may be of practical interest. In the

special cases in which β = 1 and β = α the notion of ϵα,β-Nash equilibrium in Definition 3.3.3 is the

discrete-time equivalent of the notions in [61] and [62], respectively.

3.3.3 Characterisation via matrix inequalities

In the following, constructive sufficient conditions are provided for determining an ϵα,β-Nash equilib-

rium solution for an N -player nonzero-sum LQ infinite-horizon discrete-time dynamic game.
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Theorem 3.3.1. Consider the game (3.1), (3.2), i = 1, . . . , N , and constant β ≥ 1. Assume the pair(
A,
∑N

i=1Qi

)
is detectable. If there exist matrices K∗

i , P
∗
i = P ∗

i
⊤ ⪰ 0, satisfying the inequality

Υi =
1

β2
P ∗
i −Qi −

N∑
j=1

K∗
j
⊤RijK

∗
j −

A+
N∑
j=1

BjK
∗
j

⊤

P ∗
i

A+
N∑
j=1

BjK
∗
j

 ⪰ 0, (3.46)

for i = 1, . . . , N , and (3.44b) with Ki = K∗
i and Pi = P ∗

i , then the set of strategies

{ϕ∗
1(x(k)), . . . , ϕ

∗
N (x(k))} ,

where

ϕ∗
i (x(k)) = K∗

i x(k), (3.47)

for i = 1, . . . , N , is β-admissible and constitutes an ϵα,β-Nash equilibrium solution of the game, for any

α > 1. The ϵα,β-Nash equilibrium is such that the equilibrium cost incurred by player i starting from

initial condition x(0) is J∗
i = Ji(x(0), ϕ

∗
1(x(k)), . . . , ϕ

∗
N (x(k))) = x(0)⊤W ∗

i x(0), where W
∗
i = P ∗

i −∆Wi

with ∆Wi satisfying the Lyapunov equation

∆Wi −

A+
N∑
j=1

BjK
∗
j

⊤

∆Wi

A+
N∑
j=1

BjK
∗
j

 = Υ̃i, (3.48)

and Υ̃i = Υi + P ∗
i − 1

β2P
∗
i .

Proof. The proof of the claim consists in showing that the set of strategies

{ϕ∗
1(x(k)), . . . , ϕ

∗
N (x(k))} is β-admissible, that it is such that it satisfies (3.45) for all α-admissible{

ϕ∗
1(x(k)), . . . , ϕ

∗
i−1(x(k)), ϕ̂i(x(k)), ϕ

∗
i+1(x(k)), . . . , ϕ

∗
N (x(k))

}
, where ϕ̂i(x(k)) = K̂ix(k), for

i = 1, . . . , N , and that the resulting cost incurred by player i is J∗
i = x(0)⊤W ∗

i x(0), for i = 1, . . . , N .

To show the former, consider the sum over i of the inequalities (3.46), for i = 1, . . . , N , namely

consider

N∑
i=1

Υi =
1

β2

N∑
i=1

P ∗
i −

N∑
i=1

Qi −
N∑
i=1

N∑
j=1

K∗
j
⊤RijK

∗
j −

A+
N∑
j=1

BjK
∗
j

⊤
N∑
i=1

P ∗
i

A+
N∑
j=1

BjK
∗
j

 ⪰ 0.

(3.49)

Letting P̃ = 1
β2

∑N
i=1 P

∗
i and A∗

cl = A+
∑N

j=1BjK
∗
j , (3.49) implies

P̃ − (βA∗
cl)

⊤ P̃ (βA∗
cl) ⪰

N∑
i=1

Qi +
N∑
i=1

N∑
j=1

K∗
j
⊤RijK

∗
j ⪰ 0. (3.50)

Recall that by assumption
(
A,
∑N

i=1Qi

)
is detectable and note that this implies that

(
βA,

∑N
i=1Qi

)
is detectable. Assume there exists an eigenvalue |λ| ≥ 1 of βA∗

cl and let v ∈ Rn be a corresponding
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eigenvector, i.e. βA∗
clv = λv. Pre- and postmulitplying (3.50) by vH and v, respectively, gives

(
1− λHλ

)
vHP̃ v ⪰ vH

(
N∑
i=1

Qi

)
v +

N∑
j=1

vHK∗
j
⊤
(

N∑
i=1

Rij

)
K∗

j v ⪰ 0.

Since λHλ ≥ 1 and since, by definition, P̃ ⪰ 0,
∑N

i=1 Qi ⪰ 0 and
∑N

i=1Rij ≻ 0, this implies

vH
(∑N

i=1Qi

)
v = 0 and

∑N
j=1 v

HK∗
j
⊤
(∑N

i=1Rij

)
K∗

j v = 0. The former gives
∑N

i=1Qiv = 0, and the

latter implies K∗
j v = 0, for j = 1, . . . , N , hence, λv = β

(
A+

∑N
j=1BjK

∗
j

)
v = (βA)v. That is, λ is

an undetectable eigenvalue of (βA). This contradicts the original assumption that
(
βA,

∑N
i=1Qi

)
is

detectable, hence it follows that ρ (βA∗
cl) < 1, which by Definition 3.3.2 implies β-admissibility. To

demonstrate the second claim, note that P ∗
i , K

∗
i satisfying (3.46), for i = 1, . . . , N , and (3.44b) with

Ki = K∗
i and Pi = P ∗

i correspond to a Nash equilibrium solution of the dynamic game defined by

(3.1) and the modified cost functional

J̃i(x(0), u1(·), . . . , uN (·)) =
∞∑
k=0

x(k)⊤
(
Qi + Υ̃i

)
x(k) +

N∑
j=1

uj(k)
⊤Rijuj(k)

 , (3.51)

for i = 1, . . . , N . From (3.51) and Definition 2.1.2 it follows that

Ji(x(0), ϕ
∗
1, . . . , ϕ

∗
N ) ≤ J̃i(x(0), ϕ

∗
1, . . . , ϕ

∗
N ) ≤ J̃i(x(0), ϕ

∗
1, . . . , ϕ

∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N ),

for i = 1, . . . , N , and

J̃i(x(0), ϕ
∗
1, . . . , ϕ

∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N ) = Ji(x(0), ϕ

∗
1, . . . , ϕ

∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N ) +

∞∑
k=0

x̂(k)⊤Υ̃ix̂(k),

for any admissible set of strategies
{
ϕ∗
1, . . . , ϕ

∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N

}
, i = 1, . . . , N , and hence for all

α-admissible
{
ϕ∗
1, . . . , ϕ

∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N

}
, i = 1, . . . , N , where x̂(k) satisfies

x̂(k + 1) =

A+
N∑

j=1,
j ̸=i

BjK
∗
j +BiK̂i

 x̂(k) = Âclx̂(k). (3.52)

Hence,

Ji(x(0), ϕ
∗
1, . . . , ϕ

∗
N ) ≤ Ji(x(0), ϕ

∗
1, . . . , ϕ

∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N ) +

∞∑
k=0

x̂(k)⊤Υ̃ix̂(k). (3.53)

The final term in (3.53) can be rewritten as
∑∞

k=0 x̂(k)
⊤Υ̃ix̂(k) = x̂(0)⊤Pi,ϵx̂(0), where

Pi,ϵ − Â⊤
clPi,ϵÂcl = Υ̃i,
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using the definition of the controllability Gramian. Utilising α-admissibility and recalling that α > 1,

the term x̂(0)⊤Pi,ϵx̂(0), i = 1, . . . , N , can be upper-bounded by a constant for any β ≥ 1 and any

initial condition x̂(0) = x(0). Thus, (3.45) holds for all α-admissible
{
ϕ∗
1, . . . , ϕ

∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N

}
,

for i = 1, . . . , N , with ϵx0,α,β = max
i
{x(0)⊤Pi,ϵx(0)}. Finally, note that the cost incurred by player i if

the players play the ϵα,β-Nash equilibrium strategies {ϕ∗
1(x(k)), . . . , ϕ

∗
N (x(k))} is

J∗
i = Ji(x(0), ϕ

∗
1(x(k)), . . . , ϕ

∗
N (x(k)) =

∞∑
k=0

x(k)⊤

Qi +

N∑
j=1

K∗
j
⊤RijK

∗
j

x(k)

= x(0)⊤

 ∞∑
k=0

A∗
cl
k⊤

Qi +
N∑
j=1

K∗
j
⊤RijK

∗
j

A∗
cl
k

x(0)

= x(0)⊤W ∗
i x(0),

where W ∗
i = P ∗

i − ∆Wi with ∆Wi as defined in (3.48), which follows from the definition of the

controllability Gramian.

Theorem 3.3.1 provides a way to determine equilibrium strategies for LQ dynamic games, which

involves the solution of the coupled inequalities (3.46), i = 1, . . . , N , rather than the equations (3.5),

i = 1, . . . , N , and is hence computationally simpler. However, this comes at the cost of introducing a

degree of approximation, which is influenced by three main factors:

α : The parameter is a design choice and is related to the convergence rate

of the trajectories of system (3.1) in closed loop with the strategies{
ϕ∗
1(x(k)), . . . , ϕ

∗
i−1(x(k)), ϕ̂i(x(k)), ϕ

∗
i+1(x(k)), . . . , ϕ

∗
N (x(k))

}
to which an approximate

Nash equilibrium solution {ϕ∗
1(x(k)), . . . , ϕ

∗
N (x(k))} is compared in (3.45), for i = 1, . . . , N .

The final term on the right-hand side in (3.45) can be rendered arbitrarily small by choosing

α such that the closed-loop system (3.52) converges arbitrarily fast. However, the choice of α

influences and might increase the value of the term Ji

(
x(0), ϕ∗

1, . . . , ϕ
∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N

)
in

(3.45). Hence, the choice of α minimising the right-hand side of (3.45) constitutes a trade-off.

β : In practice, this parameter can be selected to ensure that the trajectories of system (3.1) in closed

loop with an ϵα,β-Nash equilibrium solution {ϕ∗
1(x(k)), . . . , ϕ

∗
N (x(k))} have a desired “conver-

gence rate” faster than 1
β . This directly influences Υ̃i = Υi + P ∗

i − 1
β2P

∗
i . Hence, the larger

β ≥ 1, the larger the additional cost term in (3.51) and hence ϵx0,α,β.

Υi: Similarly, Υi, which quantifies how “far” the inequality (3.46) is from holding with equality,

affects the additional cost term in (3.51) and hence ϵx0,α,β. The “magnitude” of Υi can be

influenced by introducing a constraint of the form (3.44c) for some γ > 0, such that the feasibility

problem to be solved consists in the matrix inequalities (3.44c), (3.46), for i = 1, . . . , N , and
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the equality (3.44b). By using (3.44c) and (3.49) it can be shown that γIn ≥
∑N

i=1Υi ≥ Υi, for

i = 1, . . . , N .

Remark 3.3.1. Note that using the result of Theorem 3.3.1 the degree of approximation ϵx0,α,β in (3.45)

cannot be calculated a priori, since it depends on the solution to (3.46), i = 1, . . . , N , and (3.44b), in

addition to the initial condition x0 and the constants α and β relating to the speed of convergence.

To obtain ϵα,β-Nash equilibria of the game (3.1), (3.2), i = 1, . . . , N , with a bound on ϵx0,α,β, which

can be quantified a priori, a modification of Theorem 3.3.1 inspired by [62, Theorem 2] is introduced.

Proposition 3.3.1. Let the conditions stated in Theorem 3.3.1 hold and consider the initial condition

x(0) = x0. If there exist matrices K∗
i , P

∗
i , for i = 1, . . . , N , satisfying (3.46), for i = 1, . . . , N , and

(3.44b), (3.44c) with γ > 0, Ki = K∗
i and Pi = P ∗

i , then the set of strategies {ϕ∗
1(x(k)), . . . , ϕ

∗
N (x(k))},

with ϕ∗
i (x(k)) as defined in (3.47), for i = 1, . . . , N , constitutes an ϵα,β-Nash equilibrium of the game

(3.1), (3.2), i = 1, . . . , N , with

ϵx0,α,β = max
i

{ ∞∑
k=0

x̂(k)⊤Υ̃ix̂(k)

}
≤ α2

α2 − 1
γ∥x0∥2. (3.54)

Proof. By Theorem 3.3.1, K∗
i , P ∗

i , i = 1, . . . , N , satisfying (3.46), for i = 1, . . . , N , and (3.44b)

characterise an ϵα,β-Nash equilibrium of the game (3.1), (3.2), i = 1, . . . , N . To obtain the bound

on ϵx0,α,β in (3.54), recall that x̂(k) denotes the state of system (3.1) in closed loop with any α-

admissible set of strategies
{
ϕ∗
1, . . . , ϕ

∗
i−1, ϕ̂i, ϕ

∗
i+1, . . . , ϕ

∗
N

}
, for i = 1, . . . , N , namely (3.52). Using

sub-multiplicativity of the matrix norm gives

∞∑
k=0

x̂(k)⊤Υ̃ix̂(k) =

∞∑
k=0

∥∥∥x̂(k)⊤Υ̃ix̂(k)
∥∥∥ ≤ ∞∑

k=0

∥Υ̃i∥∥x̂(k)∥2 = ∥Υ̃i∥
∞∑
k=0

x̂(k)⊤x̂(k). (3.55)

Note that
∞∑
k=0

x̂(k)⊤x̂(k) = x⊤0

( ∞∑
k=0

Âk
cl
⊤
Âk

cl

)
x0 = x⊤0 Xx0,

where X =
∑∞

k=0 Â
k
cl

⊤
Âk

cl satisfies the Lyapunov equation X − Â⊤
clXÂcl = In. By α-admissibility,

ρ(αÂcl) < 1, and hence it can be shown that

In ⪯ X ⪯
(

α2

α2 − 1

)
In, (3.56)

see e.g. [175]. Finally, it follows from (3.46) and Υ̃i = Υi + P ∗
i − 1

β2P
∗
i that Υ̃i ⪯ P ∗

i . Hence, by

(3.44c)

max
i

(
∥Υ̃i∥

)
< γ. (3.57)

Combining (3.55), (3.56) and (3.57) gives (3.54).
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Remark 3.3.2. The result of Proposition 3.3.1 provides conditions characterising ϵα,β-Nash equilib-

rium solutions with the bound (3.54) on the degree of approximation. Depending only on the initial

condition x0 and the parameters α and γ, which are design choices, (3.54) can be evaluated a pri-

ori. In addition to using sub-multiplicativity of the induced matrix norm, the bound is derived using

α-admissibility to upper bound the solution of a Lyapunov equation and the additional constraint

(3.44c), which ensures an upper bound on the solutions of the coupled matrix conditions (3.46), for

i = 1, . . . , N , and (3.44b). The former is inherently conservative if the value of α is close to 1. The

latter can be made less conservative by replacing the constraint (3.44c) with constraints γIn−P ∗
i ⪰ 0,

for i = 1, . . . , N , which ensure that Υ̃i ⪯ γIn, for i = 1, . . . , N . Moreover, for either constraint option

a solution minimising γ can be sought. However, this makes γ a decision variable and hence comes at

the cost of (3.54) no longer being quantifiable a priori.

In the following result sufficient conditions are provided for the existence of an ϵα,β-Nash equilibrium

solution.

Proposition 3.3.2. Consider the game (3.1). (3.2), i = 1, . . . , N , and constant β ≥ 1. Assume the

pair
(
A,
∑N

i=1Qi

)
is detectable. If the pair

(
A,
[
B1 . . . BN

])
is β-stabilisable, i.e. there exist gains

{K1, . . . ,KN} such that ρ(βAcl) < 1, and the cost parameters are such that



N∑
j=1

(Rj1)−Ri1

. . .
N∑
j=1

(RjN )−RiN


⪰



N∑
j=1

(Rj1)−R11

. . .
N∑
j=1

(RjN )−RNN


(3.58)

for i = 1, . . . , N , then there exists an ϵα,β-Nash equilibrium solution of the dynamic game, for any

α > 1.

Proof. By detectability of
(
A,
∑N

i=1Qi

)
and β-stabilisability of

(
A,
[
B1 . . . BN

])
there exist (see

e.g. [52]) unique matrices P̄ = P̄⊤ ⪰ 0 and
{
K̄1, . . . , K̄N

}
satisfying

P̄ − (βĀcl)
⊤P̄ (βĀcl)−

N∑
i=1

Qi −
N∑
j=1

K̄⊤
j

(
N∑
i=1

Rij

)
K̄j = 0,


K̄1

...

K̄N

 = −



∑N

i=1Ri1

. . . ∑N
i=1RiN

+ β2B⊤P̄B


−1

β2B⊤P̄A,
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where B =
[
B1 . . . BN

]
and Ācl = A+

∑N
i=1BiK̄i is β-admissible. Consider instead


K ′

1

...

K ′
N

 = −



R11

. . .

RNN

+ β2B⊤P̄B


−1

β2B⊤P̄A,

and let A′
cl = A +

∑N
i=1BiK

′
i. Noting that

∑N
i=1Qi ⪰ Qi, if (3.58) holds then it follows from the

relation between
{
K̄1, . . . , K̄N

}
and {K ′

1, . . . ,K
′
N} that

P̄ − (βA′
cl)

⊤P̄ (βA′
cl)−Qi −

N∑
j=1

K ′
j
⊤
RijK

′
j ⪰ 0. (3.59)

Letting P̄ = 1
β2P

∗
i , i = 1, . . . , N , and K ′

j = K∗
j , j = 1, . . . , N , (3.44b) holds with Ki = K∗

i and Pi = P ∗
i

and (3.59) implies (3.46), for i = 1, . . . , N . By Theorem 3.3.1, P ∗
i , K

∗
i , i = 1, . . . , N , correspond to an

ϵα,β-Nash equilibrium solution of the game.

Remark 3.3.3. While the condition (3.58) may seem restrictive, it includes the commonly considered

case in which Rij = 0, for i = 1, . . . , N , j = 1, . . . , N , j ̸= i. Recall also that the conditions of

Proposition 3.3.2 are sufficient but not necessary, and ϵα,β-Nash equilibria may exist even if (3.58) is

violated.

3.3.4 Computation of ϵα,β-Nash equilibria

The results of Theorem 3.3.1 and Proposition 3.3.1 present methods to determine approximate Nash

equilibrium solutions by solving feasibility problems involving nonlinear matrix inequality and equality

constraints. In [62] it has been shown that similar problems for the continuous-time case, i.e. infinite-

horizon LQ differential games, can be reformulated as bilinear or rank constrained feasibility problems,

which despite generally being nondeterministic polynomial-time (NP)-hard are frequently encountered

in control theory and have hence been extensively studied (see e.g. [176]). Analogous steps can be

used to reformulate the discrete-time problem considered herein6. To this end consider the following

assumptions.

Assumption 3.3.1. The conditions characterising ϵα,β-Nash equilibria, (3.46), i = 1, . . . , N , and

(3.44b), admit solutions K∗
i , P

∗
i = P ∗

i
⊤, such that P ∗

i ≻ 0, for i = 1, . . . , N .

Assumption 3.3.2. The cost functional (3.2) of player i is such that either Rij ≻ 0 or Rij = 0 for

i = 1, . . . , N , j = 1, . . . , N , i ̸= j.

6Note that the resulting problem is more complex than the equivalent in the continuous-time case, due to the additional
product terms of the decision variables arising in the discrete-time case (see Remark 3.1.2).
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If Assumptions 3.3.1 and 3.3.2 hold, then via the Schur complement and a change of variables (3.46)

can be converted to the LMI 
1
β2P

⋆
i A⊤P ∗

i + Y ∗
i
⊤ K∅

i

⊤

P ∗
i A+ Y ∗

i P ∗
i 0

K∅
i 0 R∅

i

 ⪰ 0, (3.60)

for i = 1, . . . , N , where R∅
i is the block diagonal matrix containing all Ril, for l ∈ ℓ where ℓ = {l | 1 ≤

l ≤ N, and Ril ̸= 0} along the main diagonal and K∅
i is the row wise stacking of the corresponding

K∗
l , such that K∅

i

⊤
R∅

iK
∅
i =

∑
l∈ℓK

∗
l
⊤RilK

∗
l =

∑N
j=1K

∗
j
⊤RijK

∗
j . A single block row of (3.44b) with

Ki = K∗
i and Pi = P ∗

i becomes

RiiK
∗
i +B⊤

i P
∗
i A+B⊤

i Y
∗
i = 0, (3.61)

for i = 1, . . . , N , where

Y ∗
i = P ∗

i

[
B1 . . . BN

]
K∗

1

...

K∗
N

 , (3.62)

for i = 1, . . . , N . The conditions (3.60), (3.61) and (3.62), i = 1, . . . , N present an alternative for-

mulation of the conditions characterising ϵα,β-Nash equilibria in Theorem 3.3.1. Determining K∗
i , P

∗
i

satisfying (3.60), (3.61) and (3.62), i = 1, . . . , N , constitutes a bilinear feasibility problem. While

efficient solvers for this class of problem exist, depending on the problem it may be desirable from

a computational perspective to instead convert the bilinear constraint (3.62) to a rank constraint

and an LMI. Note that via the semi-definite embedding lemma [177] and via analogous steps as

in [176, Propositon 2] it follows that (3.62) holds if and only if there exist Yi = Y⊤
i ∈ R2n×2n,

Zi = Z⊤
i ∈ R2n×2n such that

rank

Yi 0

0 Zi

 ≤ 2n, (3.63)

and 

Yi


[
B1 . . . BN

]
K∗

1

...

K∗
N

 In

Y ∗
i P ∗

i



[
B1 . . . BN

]
K∗

1

...

K∗
N

 In

Y ∗
i P ∗

i



⊤

Zi



⪰ 0, (3.64)
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for i = 1, . . . , N . Determining K∗
i , P ∗

i satisfying (3.60), (3.61), (3.63) and (3.64), i = 1, . . . , N ,

constitutes a rank constraint feasibility problem. This represents another alternative formulation of

the conditions characterising ϵα,β-Nash equilibria in Theorem 3.3.1.

Remark 3.3.4. Recall Lemma 3.3.1 and note that using analogous steps as presented above the non-

linear SDP (3.44), whose stabilising solutions characterise exact feedback Nash equilibria, can be

converted to an optimisation problem involving LMI and linear equality constraints as well as either

bilinear or rank constraints.

3.3.5 Example

To illustrate the results presented in this section, consider the problem of macroeconomic policy design

for a monetary union consisting of two countries and a common central bank [30, Example 8.15]. The

difference in prices between the two countries x satisfies

ẋ = −x− u1 + u2 + 0.5u3, (3.65)

where ui, i = 1, 2, are the national fiscal deficits of the two countries and u3 is the common interest

rate fixed by the central bank. Discretising (3.65) using zero-order hold with time step ∆ = 0.1 results

in a system of the form (3.1) with n = 1, N = 3 and mi = 1, for i = 1, 2, 3. Let each player seek

to minimise a cost functional of the form (3.2), with Q1 = 0.1, R11 = 0.05, Q2 = 0.1, R22 = 0.1,

Q3 = 0.05, R33 = 0.15, and Rij = 0 for i = 1, 2, 3, j = 1, 2, 3, j ̸= i, as illustrated in Figure 3.7. This

can be interpreted as country 1 aiming to stabilise the price difference, country 2 being indifferent

and the central bank aiming to bring the interest rate to its equilibrium value, which is assumed to

be zero. The problem constitutes an LQ dynamic game. For the given system and cost parameters,

there exists a unique linear state-feedback Nash equilibrium, which is characterised by the parameters

K⋆
i , P

⋆
i , i = 1, 2, 3, given in Table 3.3, which satisfy (3.5), i = 1, 2, 3 and (3.6). Using the result of

Theorem 3.3.1, an ϵα,β-Nash equilibrium solution with β = 1.5 is charcterised by K∗
i , P

∗
i , i = 1, 2, 3,

given in Table 3.3, which satisfy (3.46) and (3.44b), as well as (3.44c) with γ = 6. The corresponding

ϵα,β-Nash equilibrium strategies satisfy (3.45) with ϵx0,α,β = 0.9175 for α = 1.05. The time histories

of the state and inputs with x0 = 1 are shown in Figures 3.8 and 3.9, respectively. The system in

closed-loop with the ϵα,β-Nash equilibrium strategies converges faster than the system in closed-loop

with the Nash equilibrium strategies. This results in a larger control effort, particularly for country 1,

in Figure 3.9. The corresponding Nash equilibrium and ϵα,β-Nash equilibrium costs for each player

are given in Table 3.3.
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x(k + 1) = 0.905x(k) +−0.095u1(k)

+0.095u2(k) + 0.048u3(k)

Country 1

J1 =

∞∑

k=0

(
0.1x(k)2 + 0.05u1(k)

2)
Country 2

J2 =

∞∑

k=0

(
0.1x(k)2 + 0.1u2(k)

2)

Central bank

J3 =

∞∑

k=0

(
0.05x(k)2 + 0.15u3(k)

2)

x: price difference

u1: fiscal deficit u2: fiscal deficit

u3: interest rate

Figure 3.7: Illustration of macroeconomic policy design example.

Table 3.3: Parameters characterising the Nash equilibrium and ϵα,β-Nash equilibrium rounded to four
decimal places.

Player K⋆
i P ⋆

i J⋆
i K∗

i P ∗
i J∗

i

i = 1 0.5674 0.3618 0.3618 4.2160 4.6311 1.2820
i = 2 −0.2610 0.3328 0.3328 −0.2448 0.5379 0.1374
i = 3 −0.0409 0.1566 0.1566 −0.0424 0.2795 0.0652
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Figure 3.8: Time histories of the states of the closed-loop system with the Nash equilibrium strategies
and the ϵα,β-Nash equilibrium strategies.
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-0.04

-0.02

0

Figure 3.9: Time histories of the Nash equilibrium strategies and the ϵα,β-Nash equilibrium strategies.
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3.4 Iterative Nash equilibrium finding algorithms

As highlighted in the previous sections of this chapter, solving the coupled algebraic equations char-

acterising feedback Nash equilibrium solutions of infinite-horizon nonzero-sum LQ dynamic games

is generally challenging. In Section 3.3 this has been addressed by considering a weaker notion of

solutions, i.e. approximate Nash equilibria. While these are characterised by conditions which are

generally easier to solve than the conditions characterising exact Nash equilibria, the resulting feasibil-

ity problems are still complex. An alternative approach is to solve the coupled equations numerically.

While the literature on iterative solution methods for LQ dynamic games focuses mainly on the

continuous-time setting [65, 30, 66, 67, 68, 69], methods in the discrete-time setting include [70] for

finite-horizon games and [74, 73, 72] in the context of reinforcement learning. Both in continuous- and

discrete-time, most algorithms are presented either without a proof of convergence, or with conver-

gence guarantees limited to the special case in which there exists a unique feedback Nash equilibrium

or to an approximate Nash equilibrium.

Focusing on infinite-horizon LQ discrete-time dynamic games, four algorithms are proposed in this

section to find a feedback Nash equilibrium solution of a game. The presented iterative schemes

rely on solutions of uncoupled either Lyapunov or Riccati equations to update the strategy of each

player. The first two can be interpreted as policy iteration algorithms and the latter two as value

iteration algorithms. Criteria for local convergence of the algorithms to a Nash equilibrium solution are

discussed. More precisely, conditions are provided under which a set of Nash equilibrium strategies of

the LQ dynamic game, which may admit several of such equilibrium solutions with different outcomes,

constitutes a locally asymptotically stable (LAS) equilibrium of the iterative schemes.

The remainder of this section is organised as follows. In Section 3.4.1 the considered problem is

introduced. Four iterative algorithms to find Nash equilibria are proposed in Section 3.4.2. The

algorithms are discussed in Section 3.4.3. In Section 3.4.4 their performance is demonstrated and

discussed via two illustrative numerical examples.

3.4.1 Problem formulation

Consider the LQ infinite-horizon discrete-time dynamic game (3.1), (3.2), i = 1, . . . , N , and the

problem of determining feedback Nash equilibrium solutions, i.e. admissible7 feedback strategies of

the form ϕi(x(k)) = Kix(k) for the players’ actions ui, i = 1, . . . , N , such that (2.8) holds (see

Definition 2.1.2). In Section 3.1 it is shown that feedback Nash equilibrium solutions for this class of

games are characterised by the stabilising solutions of a set of coupled algebraic equations, namely

(3.5), i = 1, . . . , N , and (3.6), see Theorem 3.1.1. Typically, determining K⋆
i and P ⋆

i , for i = 1, . . . , N ,

which satisfy (3.5), i = 1, . . . , N , and (3.6), and thereby determining feedback Nash equilibrium

7In the sense of Definition 3.3.1.
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solutions of the game (3.1), (3.2), i = 1, . . . , N , is not a straightforward task. Hence, the problem of

finding a feedback Nash equilibrium solution of the game iteratively, by solving matrix equations of

reduced complexity with respect to (3.5), i = 1, . . . , N , and (3.6) at each iteration step, is considered

in this section. This is formalised in the following statement.

Problem 3.4.1. Given an initial guess K
(0)
i , for i = 1, . . . , N , iteratively determine gains K⋆

i , for

i = 1, . . . , N , such that the corresponding set of feedback strategies {ϕ⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))}, with

ϕ⋆
i (x(k)) given by (3.3), for i = 1, . . . , N , constitutes a feedback Nash equilibrium solution of the game

(3.1), (3.2), i = 1, . . . , N .

In the remainder of this section, iterative algorithms addressing Problem 3.4.1 are proposed and

analysed.

3.4.2 Iterative algorithms for Nash equilibria

Considering the game (3.1), (3.2), i = 1, . . . , N , and Problem 3.4.1, four methods are proposed to

determine a solution K⋆
i , P

⋆
i to (3.5), i = 1, . . . , N , and (3.6), starting from an initial guess K

(0)
i ,

by iteratively updating the solution guesses K
(l)
i , P

(l)
i , for i = 1, . . . , N and l ∈ N. The first two

algorithms involve update laws based on the solution of Lyapunov equations, and are hence referred

to as “Lyapunov iterations” inspired by the name for a related method for the continuous-time setting

[66]. The latter two algorithms are based on the solution of Riccati equations and are hence referred

to as “Riccati iterations”. Each type of algorithm is proposed in a synchronous as well as in an

asynchronous fashion, as detailed below and as illustrated in Figure 3.10.

Asynchronous
update

{K(l)
1 , . . . ,K

(l)
N }

{K(l+1)
1 ,K

(l)
2 , . . . ,K

(l)
N }

...

{K(l+1)
1 , . . . ,K

(l+1)
i ,K

(l)
i+1 . . . ,K

(l)
N }

...

{K(l+1)
1 , . . . ,K

(l+1)
N }

Synchronous
update

{K(l)
1 , . . . ,K

(l)
N }

{K(l+1)
1 , . . . ,K

(l+1)
N }

player 1 update

player i update

player N update

all players
update
simultaneously

Figure 3.10: Illustration of the synchronous and asynchronous strategy update types.
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Synchronous updates: The strategy update of player i at iteration (l+1) is defined on the premise

that the actions of all other players remain fixed at feedback strategies with the gains corresponding

to the previous iteration step (l), i.e. uj(k) = K
(l)
j x(k), for j = 1, . . . , N , j ̸= i. Hence, the system

dynamics perceived by player i at iteration (l) are

x(k + 1) = Â
(l)
s,ix(k) +Biui(k),

with Â
(l)
s,i = A+

∑N
j=1,j ̸=iBjK

(l−1)
j , and the cost functional of player i becomes

Ji (x(0), ui(·)) =
∞∑
k=0

(
x(k)⊤Q̂

(l)
s,ix(k) + ui(k)

⊤Riiui(k)
)
,

with Q̂
(l)
s,i = Qi +

∑N
j=1,j ̸=iK

(l−1)
j

⊤
RijK

(l−1)
j .

Asynchronous updates: The strategy update of player i at iteration (l+ 1) takes into account the

updates of players w = 1, . . . , i − 1 at the same iteration. Hence, player i treats the strategies of

players w fixed at uw(k) = K
(l+1)
w x(k), for w = 1, . . . , i − 1 and players j fixed at uj(k) = K

(l)
j x(k),

for j = i+ 1, . . . , N . The system dynamics perceived by player i at iteration (l) are thus

x(k + 1) = Â
(l)
a,ix(k) +Biui(k),

with Â
(l)
a,i = A+

∑i−1
w=1BwK

(l)
w +

∑N
j=i+1BjK

(l−1)
j , and the cost functional of player i becomes

Ji (x(0), ui(·)) =
∞∑
k=0

(
x(k)⊤Q̂

(l)
a,ix(k) + ui(k)

⊤Riiui(k)
)
,

with Q̂
(l)
a,i = Qi +

∑i−1
w=1K

(l)
w

⊤
RiwK

(l)
w +

∑N
j=i+1K

(l−1)
j

⊤
RijK

(l−1)
j .

To streamline the presentation, let Â
(l)
σ,i and Q̂

(l)
σ,i denote the dynamics matrix and state cost weight,

respectively, associated with a generic update rule, where σ = s denotes the synchronous update

and σ = a denotes the asynchronous update. Moreover, to streamline the convergence analysis of

the algorithms presented below, consider a generic equilibrium finding algorithm. More precisely, let

z⋆ ∈ Rp satisfy the set of algebraic equations

0 = L(z⋆), (3.66)

for some L : Rp → Rp and consider an iterative update law for the solution guess z(l), l ∈ N, satisfying
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the implicit relation

0 = F
(
z(l+1), z(l)

)
, (3.67)

with F : Rp × Rp → Rp differentiable and such that 0 = F (z⋆, z⋆). The first order approximation of

(3.67) around the equilibrium z⋆ is given by

0 = Mn

(
z(l+1) − z⋆

)
+Mc

(
z(l) − z⋆

)
, (3.68)

where

Mn =
∂F
(
z(l+1), z(l)

)
∂z(l+1)

∣∣∣∣∣
z⋆,z⋆

, (3.69a)

Mc =
∂F
(
z(l+1), z(l)

)
∂z(l)

∣∣∣∣∣
z⋆,z⋆

. (3.69b)

Letting δz(l) =
(
z(l) − z⋆

)
the dynamics of the iterative update law satisfying (3.67) can be described

by

δz(l+1) = Hδz(l), (3.70)

in a neighbourhood of z⋆, with H = −M−1
n Mc, assuming the matrix Mn is invertible.

Lemma 3.4.1. If H in (3.70) is Schur, i.e. ρ(H) < 1, and z(0) lies in a neighbourhood of z⋆, the

iterative algorithm with update law satisfying (3.67) asymptotically converges to the equilibrium z⋆ of

(3.66).

Proof. The claim follows from Lyapunov’s indirect method.

Remark 3.4.1. Lemma 3.4.1 provides conditions ensuring that a solution z⋆ of the set of algebraic

equations (3.66) is a locally stable fixed point of the nonlinear recurrence relation (3.67). In the

following, Lemma 3.4.1 is employed to analyse whether a feedback Nash equilibrium of the game

(3.1), (3.2), i = 1, . . . , N , which is characterised by the set of feedback gains {K⋆
1 , . . . ,K

⋆
N} satisfying

the algebraic equations (3.5), i = 1, . . . , N , and (3.6), for some {P ⋆
1 , . . . , P

⋆
N}, is attractive for the

iterative update laws proposed below, which are nonlinear recurrence relations, or in other words,

nonlinear discrete-time dynamical systems (see e.g. [178]). This local convergence analysis approach

is chosen because if there are multiple feedback Nash equilibria for a given game, it is inherent that

the convergence properties of any algorithm to a specific equilibrium can only be local. The results of

Section 3.2 highlight that even a simple two-player game involving scalar dynamics may admit multiple

feedback Nash equilibria. Naturally, it is then of interest to characterise the set of initial conditions

for which an iterative method converges to a certain solution. Determining the basin of attraction of

a stable fixed point of a nonlinear dynamical system is generally challenging, and approximations are
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commonly sought numerically. An estimate of the basin of attraction can be found via La Salle’s local

invariant set theorem (see e.g. [179]). The challenge in this context is finding a suitable Lyapunov

function. The common and straightforward choice of a quadratic Lyapunov function based on the

linearisation of the nonlinear system around the fixed point often results in a conservative estimate of

the region of attraction, especially for systems with many states, since the approach yields an ellipsoid

in state space, whereas the basin of attraction may have a very different shape [180]. There exists a

rich literature in this context in particular for continuous-time systems, see e.g. [181, 180, 182] and

references therein. For discrete-time systems, additional challenges in the analysis of the state space

and characterisation of stability regions arise. This is due to trajectories being a sequence of isolated

points rather than curves in state space and the fact that backward trajectories may not be defined

or may not be unique [183]. As a result, a basin of attraction may not be a connected or invariant set

[184]. Approaches to estimate basins of attraction of fixed points of nonlinear discrete-time systems

can be found e.g. in [184, 185, 186, 187, 188].

To use Lemma 3.4.1 to analyse convergence of the algorithms, consider the following result introducing

conditions related to the solution of the set of coupled matrix equations (3.5), i = 1, . . . , N , and (3.6).

Lemma 3.4.2. Let the set of feedback gains {K⋆
1 , . . . ,K

⋆
N}, satisfying (3.4), (3.5), i = 1, . . . , N , and

(3.6) for some {P ⋆
1 , . . . , P

⋆
N}, correspond to any feedback Nash equilibrium solution of the game (3.1),

(3.2), i = 1, . . . , N . Let z⋆ =
[
vec(K⋆

1 )
⊤ . . . vec(K⋆

N )⊤
]⊤

. The vector z⋆ is such that L(z⋆) = 0,

with L(z⋆) =
[
L⊤
1 . . . L⊤

N

]⊤
, and

Li = vec (RiiK
⋆
i )−

(A+
N∑
j=1

BjK
⋆
j )

⊤ ⊗B⊤
i


×

(A+
N∑
j=1

BjK
⋆
j )

⊤ ⊗ (A+
N∑
j=1

BjK
⋆
j )

⊤ − In2

−1

vec

Qi +
N∑
j=1

K⋆
j
⊤RijK

⋆
j

 , (3.71)

for i = 1, . . . , N . Conversely, any {K⋆
1 , . . . ,K

⋆
N} satisfying (3.71), i = 1, . . . , N , and (3.4) is a set of

feedback gains corresponding to a Nash equilibrium solution of the game (3.1), (3.2), i = 1, . . . , N .

Proof. The entries of the mapping L given in (3.71) are derived from the vectorisation of (3.5), as

well as the vectorisation of a single block row of (3.6) and by eliminating vec (P ⋆
i ). Hence, any K⋆

i ,

i = 1, . . . , N , satisfying (3.5), i = 1, . . . , N , and (3.6) satisfies (3.71), i = 1, . . . , N . Since (3.4) holds,

(3.5) has a unique solution P ⋆
i , i = 1, . . . , N , for fixed K⋆

i , i = 1, . . . , N . Moreover, vectorisation is a

linear transformation. Hence, conversely, any K⋆
i , i = 1, . . . , N , such that (3.4) holds and satisfying

(3.71) satisfies (3.5), i = 1, . . . , N , and (3.6) for some P ⋆
i , for i = 1, . . . , N .
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Lyapunov iterations

Consider the following iterative update law, defined with respect to the unified notation for syn-

chronous (σ = s) and asynchronous (σ = a) algorithms introduced above,

0 = Q̂
(l+1)
σ,i +K

(l)
i

⊤
RiiK

(l)
i − P

(l+1)
i +

(
Â

(l+1)
σ,i +BiK

(l)
i

)⊤
P

(l+1)
i

(
Â

(l+1)
σ,i +BiK

(l)
i

)
, (3.72a)

K
(l+1)
i = −

(
Rii +B⊤

i P
(l+1)
i Bi

)−1
B⊤

i P
(l+1)
i Â

(l+1)
σ,i , (3.72b)

for i = 1, . . . , N , l ∈ N. Note that (3.72a) is a Lyapunov equation, whereas (3.72b) assigns a value

to Ki at each step (l + 1). In the following result conditions for local asymptotic convergence of

the update law (3.72), for i = 1, . . . , N , to a solution {K⋆
1 , . . . ,K

⋆
N}, {P ⋆

1 , . . . , P
⋆
N} of (3.4), (3.5),

i = 1, . . . , N , and (3.6) are provided.

Proposition 3.4.1. Consider Problem 3.4.1 and let the set of feedback gains {K⋆
1 , . . . ,K

⋆
N}, satis-

fying (3.4), (3.5), i = 1, . . . , N , and (3.6), for some {P ⋆
1 , . . . , P

⋆
N}, correspond to any feedback Nash

equilibrium solution of the game (3.1), (3.2), i = 1, . . . , N . Consider the iterative update law (3.72),

for i = 1, . . . , N . Let z(l) =

[
vec
(
K

(l)
1

)⊤
. . . vec

(
K

(l)
N

)⊤]⊤
and F (z(l), z(l+1)) =

[
F⊤
1 . . . F⊤

N

]⊤
,

with

Fi = vec
(
RiiK

(l+1)
i

)
−
(
(Â

(l+1)
σ,i +BiK

(l+1)
i )⊤ ⊗B⊤

i

)
×
(
(Â

(l+1)
σ,i +BiK

(l)
i )⊤ ⊗ (Â

(l+1)
σ,i +BiK

(l)
i )⊤ − In2

)−1
vec

(
Q̂

(l+1)
σ,i +K

(l)
i

⊤
RiiK

(l)
i

)
, (3.73)

for i = 1, ..., N . Suppose that

i. the eigenvalues λj, j = 1, . . . , p, p ≤ n of
(
Â

(l+1)
σ,i +BiK

(l)
i

)
are such that λjλq ̸= 1 for all

j = 1, . . . , p, q = 1, . . . , p and i = 1, . . . , N ;

ii. the matrix H = −M−1
n Mc is Schur, where Mn and Mc are constructed as in (3.69) with respect

to F with the components Fi, i = 1, . . . , N , as defined by (3.73).

Then {K⋆
1 , . . . ,K

⋆
N} is a LAS equilibrium of the synchronous (σ = s) or asynchronous (σ = a)

Lyapunov iterations algorithm (3.72), for i = 1, . . . , N .

Proof. Note that the entries of the mapping F given in (3.73), are derived from the vectorisation of

the (matrix) difference equations (3.72), for i = 1, . . . , N , and by eliminating vec
(
P

(l+1)
i

)
. Hence,

any K
(l)
i , K

(l+1)
i , i = 1, . . . , N , satisfying (3.72) satisfy (3.73), for i = 1, . . . , N . Condition i. ensures

that there exists a unique solution P
(l+1)
i to (3.72a) [189]. Hence, since vectorisation is a linear

transformation, any K
(l)
i , K

(l+1)
i , i = 1, . . . , N , satisfying (3.73) satisfy (3.72), for i = 1, . . . , N . Note
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that 0 = F (z(l+1), z(l)) and 0 = F (z⋆, z⋆). With this notation in place, local asymptotic stability

follows directly from Lemma 3.4.1 and Lemma 3.4.2.

Proposition 3.4.1 ensures the existence of a non-empty basin of attraction with respect to the discrete-

time nonlinear system (3.72) for all Nash equilibrium strategies which satisfy the stated conditions.

Note that the conditions of Proposition 3.4.1 cannot in fact be verified a priori since the conditions

of item i. depend on the strategy updates and the conditions of item ii. depend on the knowledge of

the Nash equilibrium solution sought for.

Remark 3.4.2. The synchronous version of the Lyapunov iterations (3.72) can be interpreted as a

discrete-time, N -player equivalent of the algorithm presented in [66]. Note that due to the additional

product terms of the decision variables arising in (3.6) compared to the continuous-time case, different

interpretations of the discrete-time synchronous Lyapunov iterations are possible. In an alternative

version to the one presented herein, the i-th player updates P
(l+1)
i using (3.72a), for i = 1, . . . , N .

However, in place of (3.72b),


R11 +B⊤

1 P
(l+1)
1 B1 . . . B⊤

1 P
(l+1)
1 BN

...
. . .

...

B⊤
NP

(l+1)
N B1 . . . RNN +B⊤

NP
(l+1)
N BN



K

(l+1)
1

...

K
(l+1)
N

 = −


B⊤

1 P
(l+1)
1

...

B⊤
NP

(l+1)
N

A. (3.74)

is used to compute the update of K
(l+1)
i for all i simultaneously. This implies that P

(l+1)
i is first

computed for all i = 1, . . . , N , and then used to compute K
(l+1)
i for i = 1, . . . , N , which is inherently

a centralised approach. This version has been presented in [73, Algorithm 1] for the two-player case.

Note that in contrast to the version presented herein, namely (3.72) with σ = s, the scheme in [73,

Algorithm 1] requires the invertibility of the matrix


R11 +B⊤

1 P
(l+1)
1 B1 . . . B⊤

1 P
(l+1)
1 BN

...
. . .

...

B⊤
NP

(l+1)
N B1 . . . RNN +B⊤

NP
(l+1)
N BN

 .

Another similar algorithm has been presented in [74, Algorithm 1]. While the update law of this

algorithm is equivalent to (3.72) with σ = s, the algorithm in [74] is also implemented in a centralised

fashion, namely, P
(l+1)
i is first computed for all i = 1, . . . , N , and then used to compute K

(l+1)
i for

i = 1, . . . , N . In contrast, in the version presented herein, the i-th player updates P
(l+1)
i and K

(l+1)
i

together by solving (3.72) and the updates of the different players happen sequentially. This choice is

motivated by the fact that it allows a data-driven implementation as discussed in Chapter 5 in which

each player’s strategy is updated in a distributed fashion.
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Riccati iterations

Consider the iterative update law given by the stabilising solution of the set of algebraic equations

0 = Q̂
(l+1)
σ,i +K

(l+1)
i

⊤
RiiK

(l+1)
i − P

(l+1)
i +

(
Â

(l+1)
σ,i +BiK

(l+1)
i

)⊤
P

(l+1)
i

(
Â

(l+1)
σ,i +BiK

(l+1)
i

)
,

(3.75a)

K
(l+1)
i = −

(
Rii +B⊤

i P
(l+1)
i Bi

)−1
B⊤

i P
(l+1)
i Â

(l+1)
σ,i , (3.75b)

for i = 1, . . . , N , l ∈ N. As above two update scenarios are discussed: a synchronous one (σ = s) and

an asynchronous one (σ = a). Note that (3.75a) is a Riccati equation, whereas (3.75b) relates K
(l+1)
i

and P
(l+1)
i .

Remark 3.4.3. The Riccati iterations (3.75) can be interpreted as player i solving an LQR problem

at each iteration step to update the feedback gain Ki, minimising player i’s own cost functional (3.2)

subject to the dynamics (3.1), with the actions of the other players j, j = 1, . . . , N , j ̸= i, fixed at

state-feedback strategies (which do not necessarily correspond to a Nash equilibrium solution of the

game), for i = 1, . . . , N .

In the following result conditions for local asymptotic convergence of the update law (3.75), for

i = 1, . . . , N , to a solution {K⋆
1 , . . . ,K

⋆
N}, {P ⋆

1 , . . . , P
⋆
N} of (3.4), (3.5), i = 1, . . . , N , and (3.6)

are provided.

Proposition 3.4.2. Consider Problem 3.4.1 and let the set of feedback gains {K⋆
1 , . . . ,K

⋆
N}, satis-

fying (3.4), (3.5), i = 1, . . . , N and (3.6), for some {P ⋆
1 , . . . , P

⋆
N}, correspond to any feedback Nash

equilibrium solution of the game (3.1), (3.2), i = 1, . . . , N . Consider the iterative update law (3.75),

for i = 1, . . . , N . Let z(l) =
[
vec(K

(l)
1 )⊤ . . . vec(K

(l)
N )⊤

]⊤
and F (z(l), z(l+1)) =

[
F⊤
1 . . . F⊤

N

]⊤
,

with

Fi = vec
(
RiiK

(l+1)
i

)
−
(
(Â

(l+1)
σ,i +BiK

(l+1)
i )⊤ ⊗B⊤

i

)
×
(
(Â

(l+1)
σ,i +BiK

(l+1)
i )⊤ ⊗ (Â

(l+1)
σ,i +BiK

(l+1)
i )⊤ − In2

)−1

× vec

(
Q̂

(l+1)
σ,i +K

(l+1)
i

⊤
RiiK

(l+1)
i

)
, (3.76)

for i = 1, . . . , N . If the matrix H = −M−1
n Mc is Schur, where Mn and Mc are constructed as in (3.69)

with respect to F with the components Fi, i = 1, . . . , N , as defined by (3.76), then {K⋆
1 , . . . ,K

⋆
N} is

a LAS equilibrium of the synchronous (σ = s) or asynchronous (σ = a) Riccati iterations algorithm

(3.75), for i = 1, . . . , N .

Proof. Note that the entries of the mapping F given in (3.76), are derived from the vectorisation of
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the (matrix) difference equations (3.75), for i = 1, . . . , N , and by eliminating vec(P
(l+1)
i ). Hence, any

K
(l)
i , K

(l+1)
i , i = 1, . . . , N , satisfying (3.75) also satisfy (3.76), for i = 1, . . . , N . By construction, the

strategy updates are such that the zero equilibrium of x(k + 1) =
(
Â

(l+1)
σ,i +BiK

(l+1)
i

)
x(k) is stable.

Thus, for fixed K
(l)
i , K

(l+1)
i , i = 1, . . . , N , there exists a unique solution P

(l+1)
i to (3.75a). Hence,

since vectorisation is a linear transformation, any K
(l)
i , K

(l+1)
i , i = 1, . . . , N , satisfying (3.76) satisfy

(3.75), for i = 1, . . . , N . Note that 0 = F
(
z(l+1), z(l)

)
and 0 = F (z⋆, z⋆). With this notation in place,

local asymptotic stability follows directly from Lemma 3.4.1 and Lemma 3.4.2.

Proposition 3.4.2 ensures the existence of a non-empty basin of attraction with respect to the discrete-

time nonlinear system (3.75) for all Nash equilibrium strategies which satisfy the stated conditions.

As in the case of the Lyapunov iterations in Proposition 3.4.1, the conditions which ensure local

convergence in Proposition 3.4.2 cannot be verified a priori since they depend on the knowledge of

the Nash equilibrium solution sought for. Differently from several iterative schemes in the literature

(e.g. [66, 73, 72, 63]), the iterations (3.75), i = 1, . . . , N , do not require the initial guess K
(0)
i , for

i = 1, . . . , N , to be stabilising to converge to a stabilising solution of (3.5), i = 1, . . . , N , and (3.6).

Note that in the asynchronous case (σ = a) no initial guess K
(0)
1 is needed for player 1.

Remark 3.4.4. The asynchronous version of the Riccati iterations (3.75) is the discrete-time and N -

player equivalent to [68, Algorithm 4.7]. The result therein is provided without any (a priori or a

posteriori) certificate of convergence.

3.4.3 Discussion

The conditions of Propositions 3.4.1 and 3.4.2 ensure that the iterations (3.72) and (3.75), which

involve solving a sequence of uncoupled Lyapunov or Riccati equations, respectively, for each player

at each iteration, are locally asymptotically convergent to a stabilising solution of the coupled matrix

equations (3.5), i = 1, . . . , N , and (3.6), which characterises a feedback Nash equilibrium solution.

However, no comment has so far been made regarding the recursive feasibility of the update laws and

stability properties of the system (3.1) in closed loop with the current strategy guesses of players

i = 1, . . . , N . These properties are particularly relevant if the strategy updates are implemented

online, as is the case in the data-driven versions of the algorithms, which are introduced in Chapter 5.

Recursive feasibility: The Lyapunov updates (3.72) are feasible at iteration (l+1) if there exists a

unique solution P
(l+1)
i to (3.72a). Such a solution exists if (see e.g. [189])

(LI 1) condition i. of Proposition 3.4.1 holds.

The Riccati updates (3.75) are feasible at iteration (l+1) if (3.75) admits a unique stabilising solution

K
(l+1)
i , P

(l+1)
i = P

(l+1)
i

⊤
⪰ 0. Such a solution exists (recall that by definition Rii ≻ 0, Qi ⪰ 0, and

let Q̂
(l+1)
σ,i = C

(l+1)
σ,i

⊤
C

(l+1)
σ,i ) if (see e.g. [52])

98



3.4. Iterative Nash equilibrium finding algorithms

(RI 1) the pair
(
Â

(l+1)
σ,i , Bi

)
is stabilisable for i = 1, . . . , N .

(RI 2) the pair
(
Â

(l+1)
σ,i , C

(l+1)
σ,i

)
is detectable for i = 1, . . . , N .

Note that the condition (RI 2) is always satisfied, for i = 1, . . . , N , if Qi ≻ 0, or if the pair (A,Qi)

is observable and Rij ≻ 0 for all j = 1, . . . , N . These stronger conditions are more easily verified

than (RI 2), as they do not depend on the strategy guesses and can be checked a priori. In the case

of the asynchronous Riccati iterations (3.75), σ = a, condition (RI 1) is always satisfied if the pair

(A,Bi), for i = 1, . . . , N , is stabilisable. Hence, if this is the case and condition (RI 2) holds, then the

asynchronous Riccati iterations are guaranteed to be recursively feasible.

Stability: Consider system (3.1) in closed loop with the players’ current strategy guesses

at iteration (l + 1). In the case of synchronous updates this results in the dynamics

x(k + 1) =
(
A+

∑N
j=1BjK

(l)
j

)
x(k) = A

(l+1)
cl,s x(k). In the case of asynchronous updates this

results in the dynamics x(k + 1) =
(
Â

(l+1)
a,i +BiK

(l+1)
i

)
x(k) = A

(l+1)
cl,a,i x(k) after the update of player

i, for i = 1, . . . , N , since the players update their strategy sequentially, as illustrated in Figure 3.10.

Consider first the Lyapunov iterations (3.72). If there exists P
(l+1)
i = P

(l+1)
i

⊤
≻ 0 satisfying (3.72a),

with σ = s for any i = 1, . . . , N and for all l ∈ N, it follows that the recursive strategy updates

obtained via the synchronous Lyapunov iterations are stabilising, namely ρ
(
A

(l+1)
cl,s

)
< 1, for all l ∈ N.

Similarly, if there exists P
(l+1)
i = P

(l+1)
i

⊤
≻ 0 satisfying (3.72a) with σ = a for all i = 1, . . . , N , and

for all l ∈ N, it follows that the recursive strategy updates obtained via the asynchronous Lyapunov

iterations are stabilising, namely ρ
(
A

(l+1)
cl,a,i

)
< 1, for i = 1, . . . , N , for all l ∈ N.

Consider now the Riccati iterations (3.75). By construction, (3.75) ensures that

ρ
(
Â

(l+1)
σ,i +BiK

(l+1)
i

)
< 1 at iteration (l + 1) for player i. However, in the case of synchronous

updates (σ = s) this does not provide any guarantees for A
(l+1)
cl,s . For the asynchronous updates

(σ = a), on the other hand, this ensures that ρ
(
A

(l+1)
cl,a,i

)
< 1 after the update of player i. Hence,

if (3.75) (with σ = a) is feasible for all i = 1, . . . , N and for all l ∈ N, then the recursive strategy

updates obtained via the asynchronous Riccati iterations are stabilising.

Remark 3.4.5. In practice, it is desirable for the initial guess of the matrices K
(0)
i , for i = 1, . . . , N ,

for the Lyapunov iterations (3.72) to be such that the resulting closed-loop system is asymptotically

stable to search for a positive semi-definite solution to the Lyapunov equation (3.72a). Albeit involving

the solution of more complex algebraic equations at each iteration, the Riccati iterations (3.75) admit

general (non-stabilising) initial guesses of the matrices K
(0)
i , for i = 1, . . . , N .

Remark 3.4.6. In the context of reinforcement learning (see e.g. [52, 190]), the Lyapunov iterations

(both synchronous and asynchronous) can be interpreted as policy iteration algorithms, with (3.72a)

representing the policy evaluation step and (3.72b) the policy update. The (synchronous and asyn-

chronous) Riccati iterations, on the other hand, can be interpreted as value iteration algorithms, since
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the update law involving the solution of a Riccati equation corresponds to minimising the value func-

tion for each player characterised by Pi, i = 1, . . . , N , at each update step as noted in Remark 3.4.3.

The specific nature of this minimisation problem makes it possible to formulate the update law in

terms of the gains Ki, i = 1, . . . , N , characterising the control strategies (policies) analogous to the

policy iteration algorithms.

3.4.4 Examples

The efficacy of the presented algorithms is demonstrated via two illustrative examples. The first

involves a scalar two-player game. In this relatively simple case all feedback Nash equilibria of the

game can be computed analytically and the two-player set-up makes it straightforward to visualise

the regions of convergence of the algorithms graphically. This allows to illustrate and compare the

performance of the different algorithms. The second example demonstrates the performance of the

algorithms for a game involving a slightly larger state-dimension n = 2 and N = 4 players and

facilitates a comparison to alternative algorithms in the literature for the considered class of games.

Scalar two-player example

To illustrate the efficacy of the proposed algorithms, consider the scalar numerical example described

by system (3.1), with N = 2, A = 1.0947, B1 = 0.10254, B2 = 0.045934, and the cost functionals

(3.2), i = 1, 2, with Q1 = 0.11112, Q2 = 0.25806, R11 = 0.40872, R22 = 0.5949, R12 = R21 = 0. For

the given system and cost parameters, there exist three stabilising solutions to (3.5), i = 1, . . . , N ,

and (3.6). The corresponding values of P ⋆
i and K⋆

i , for i = 1, 2, are given in Table 3.4.

The update histories for the four proposed algorithms starting from initial guessK
(0)
1 = −1,K(0)

2 = −2,

are shown in Figure 3.11. All four algorithms converge to NE 3. The Lyapunov iterations converge to

max
i

(∥∥∥K(l+1)
i −K

(l)
i

∥∥∥) ≤ 10−5 within 15 iterations (synchronous) and 10 iterations (asynchronous),

whereas the Riccati iterations take 19 iterations (synchronous) and 11 iterations (asynchronous). Note

that in both cases the asynchronous update converges faster than the synchronous update. Figure 3.12

gives an insight into the regions of attraction of the gains corresponding to the three feedback Nash

equilibrium solutions. It is worth noting that NE 1 is not attractive for any of the algorithms and

that there are significant differences in the regions of attraction for NE 2 and NE 3 between the

four algorithms. Apart from a few exceptions, the Lyapunov iterations (3.72) require a stabilising

initial guess to converge to a stabilising solution of (3.5), i = 1, . . . , N , and (3.6), whereas the Riccati

iterations do not require a stabilising initial guess. In fact, for the considered example and range of

initial conditions the asynchronous Riccati iterations always converge to either NE 3 or NE 2, with the

regions of attraction separated by the line K2 = K⋆
2 (NE 1). For the synchronous Riccati iterations on

the other hand, an interesting behaviour is observed for initial conditions in the regions highlighted
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in yellow, for which the algorithm converges to a limit cycle with K1 corresponding to NE 3 and K2

corresponding to NE 2 and vice versa, as shown in Figure 3.13.

0 5 10 15 20

-2

-1

0

0 5 10 15 20

-3

-2

-1

(l)

(l)

Figure 3.11: Update history of the Lyapunov iterations (3.72) (dark blue lines) and the Riccati iter-
ations (3.75) (black lines). Both the synchronous (solid lines) and the asynchronous (dotted lines)
versions are shown. The Nash equilibrium strategies in Table 3.4 are highlighted in blue (NE 1), green
(NE 2) and red (NE 3). (© 2022 IEEE)

Table 3.4: Parameters corresponding to the three feedback Nash equilibria of the considered game
rounded to four decimal places.

Equilibrium P ⋆
1 P ⋆

2 K⋆
1 K⋆

2

NE 1 2.0066 29.1606 −0.4771 −2.1339
NE 2 0.9197 44.4309 −0.2138 −3.1793
NE 3 7.9681 1.4540 −1.8084 −0.1016
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(a) (b)

(c) (d)

Figure 3.12: Regions of the K1-K2 space starting from which the synchronous Lyapunov iterations
(3.72), σ = s (a), asynchronous Lyapunov iterations (3.72), σ = a (b), synchronous Riccati iterations
(3.75), σ = s (c) and asynchronous Riccati iterations (3.75), σ = a (d) converge to NE 1 (blue), NE
2 (green) and NE 3 (red). The yellow regions highlight initial conditions for which the synchronous
Riccati iterations (3.75), σ = s, converge to a limit cycle. The grey regions highlight initial conditions
that do not converge to any of the three equilibria or a limit cycle.
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0 5 10 15 20

-4

-2

0 5 10 15 20
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Figure 3.13: Update history of the synchronous Riccati iterations (3.75), σ = s, with initial conditions

K
(0)
1 = K

(0)
2 = −4. The Nash equilibrium strategies in Table 3.4 are highlighted in blue (NE 1), green

(NE 2) and red (NE 3).

Four-player example

Consider the numerical example used in [74, 78], namely, consider the game defined by the dynamics

(3.1) with N = 4,

A =

 0.995 0.09983

−0.09983 0.995

 , B1 =

 0.2047

0.08984

 , B2 =

0.2147
0.2895

 , B3 =

0.2097
0.1897

 , B4 =

0.2
0.1


and the cost functionals (3.2), for i = 1, . . . , 4, with

Q11 = Q22 = Q33 = Q44 = I2,

R11 = R22 = R33 = R44 = R12 = R14 = R23 = R31 = 1,

and

R13 = R21 = R24 = R32 = R34 = R41 = R42 = R43 = 0.

Consider the initial guess

K
(0)
1 =

[
−2.2570 1.1761

]
, K

(0)
2 =

[
1.1629 −2.5437

]
,

K
(0)
3 =

[
−0.5465 −0.6844

]
, K

(0)
4 =

[
−1.9842 0.9127

]
,

as in [74]. The four algorithms presented in Section 3.4.2 are compared to [73, Algorithm 1] (extended

to the N-player case). Note that the synchronous Lyapunov iterations (3.72), σ = s, are equivalent to
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[74, Algorithm 1]. All five algorithms converge to

K⋆
1 =

[
−0.6918 0.1601

]
, K⋆

2 =
[
0.0052 −0.6095

]
,

K⋆
3 =

[
−0.3953 −0.1560

]
, K⋆

4 =
[
−0.4239 0.0442

]
,

which satisfy (3.4), (3.5), i = 1, . . . , 4, and (3.6) with

P ⋆
1 =

 5.6345 −2.6678

−2.6678 4.2977

 , P ⋆
2 =

 4.3227 −2.1610

−2.1610 4.2364

 ,

P ⋆
3 =

 4.8907 −1.9054

−1.9054 3.2167

 , P ⋆
4 =

 3.8844 −1.7237

−1.7237 3.0592

 ,

where all values are rounded to four decimal places. The number of iterations taken by the algorithms

until the convergence criterion max
i

(∥∥∥K(l+1)
i −K

(l)
i

∥∥∥) ≤ 10−5 is reached is reported in Table 3.5.

Table 3.5: Number of iterations until convergence for the different Nash equilibrium-finding algorithms.

Algorithm [73, Alg. 1]
(3.72), σ = s

(3.72), σ = a (3.75), σ = s (3.75), σ = a
([74, Alg. 1])

No. of iterations 12 30 11 31 10
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3.5 Conclusion

Motivated by the challenges associated with determining feedback Nash equilibria of infinite-horizon

nonzero-sum LQ discrete-time dynamic games, the corresponding class of scalar games, i.e. games

involving dynamics in which the state and the input of each player are scalar variables, is studied.

A graphical representation of the conditions characterising feedback Nash equilibrium solutions is

proposed. Via geometric arguments, this representation allows to characterise the possible number

and properties of solutions in terms of the system and cost parameters. Additional insights are

provided for the scalar two-player case. The results are illustrated via numerical examples.

Considering general LQ discrete-time dynamic games, a solution concept, which approximates exact

Nash equilibria, is introduced - the more readily obtained ϵα,β-Nash equilibria, and the degree of

approximation is discussed. The presented notion of approximate Nash equilibrium solution incor-

porates guarantees on the rate of convergence of the trajectories of the resulting closed-loop system

and constitutes a discrete-time counterpart to the notions of approximate solution in [62] with some

generalisations. The results are illustrated via a simulation example involving macroeconomic policy

design.

Four iterative algorithms for finding feedback Nash equilibrium strategies of LQ discrete-time dynamic

games are proposed. The algorithms are based on update laws involving the solution of uncoupled

Lyapunov or Riccati equations. For each type a synchronous (i.e. all players update their strategy

simultaneously) and an asynchronous (i.e. each player’s update takes the previous players’ updates

at the same iteration step into account) version are presented. Local convergence conditions are

provided. The performance of the algorithms is illustrated and compared to alternative algorithms in

the literature via two numerical examples.
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Chapter 4

Direct data-driven control methods

Direct data-driven control methods, which aim to control a system directly using data, without explic-

itly identifying a system model, have recently attracted significant interest, as discussed in Chapter 2.

This chapter builds on the direct data-driven control framework originally introduced in [95]. In Sec-

tion 4.1, it is extended to the class of LTV systems. Motivated by the fact that optimality criteria

are often not known a priori in practical applications, a method to represent not only the system dy-

namics, but also quadratic cost functions in the context of optimal control directly using finite-length,

non-optimal data of the input, state and a performance variable is derived in Section 4.2.

4.1 Data-driven control of linear time-varying systems

Time-varying systems arise in a variety of practical applications, for instance high-speed aircraft

experiencing varying aerodynamic coefficients and electrical circuits or chemical plants subject to

changing behaviour. LTV models also result when linearising nonlinear systems around a trajectory

or time-varying operating point [172]. In this section, a direct data-driven control design method is

introduced for discrete-time LTV systems with unknown dynamics. The demand for data-driven or

model-free control approaches for LTV systems is apparent in the literature, see e.g. [191, 192, 193,

194]. Differently from these works, the control design approach presented herein does not require any

iterative procedures or machine learning techniques. Extending the data-driven framework originally

presented in [95] for LTI systems to the LTV setting, the closed-loop system under state-feedback

and the controller are parameterised directly using an ensemble of input-state date. In contrast to

the related results [127], [130], the presented data-driven methods are applicable to (linear) arbitrarily

time-varying systems and do not rely on any assumptions or prior knowledge of the system structure

or parameter variation. However, it is shown how such knowledge can be exploited for the special

case of periodically time-varying systems. Both noise-free LTV systems and LTV systems affected

by measurement as well as process noise are considered. The noisy data results presented herein are
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inspired by [95, 146], and can be considered as an LTV equivalent. The main difference apart from the

extension to LTV systems - which itself introduces new challenges and requires a different approach

to parametrise unknown systems - is that both measurement and process noise are incorporated in

a single formulation and that the behaviour of the system in closed-loop with feedback on the noisy

state measurements is studied.

The remainder of this section is organised as follows. Section 4.1.1 defines the considered problem. In

Section 4.1.2 noise-free LTV systems are considered and methods to design state-feeback controllers

guaranteeing a decreasing bound on the closed-loop trajectories or solving the time-varying LQR

problem via data-dependent convex optimisation problems are introduced. Section 4.1.3 focuses on

LTV systems affected by process and measurement noise and addresses the problem of designing

controllers with robustness guarantees directly using noisy data. In Section 4.1.4 approaches are

proposed to overcome challenges which may arise for control problems over large time horizons. In

Section 4.1.5, the results are specialised to the class of linear periodically time-varying systems. The

efficacy and relevance of the results is demonstrated via numerical and practically motivated examples

in Section 4.1.6.

4.1.1 Problem formulation

Consider a discrete-time LTV system, described by

x(k + 1) = A(k)x(k) +B(k)u(k) + d(k), (4.1a)

where x ∈ Rn is the state of the system, u ∈ Rm is the control input, d ∈ Rn denotes an unknown

additive system noise and A(k) and B(k) denote the unknown time-varying dynamics and input

matrices of appropriate dimensions, respectively. Suppose that available state measurements ζ ∈ Rn

are corrupted by measurement noise v ∈ Rn, i.e.

ζ(k) = x(k) + v(k). (4.1b)

Our objective is to design controllers of the form

u(k) = K(k)ζ(k), (4.2)

for the unknown LTV system (4.1) based solely on measurements of the (noisy) state and input of the

system, such that certain guarantees hold for the resulting closed-loop system

x(k + 1) =

(
A(k) +B(k)K(k)

)
x(k) +B(k)K(k)v(k) + d(k). (4.3)
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If d(k) = 0 and ζ(k) = x(k), for all k, i.e. in the noise-free case, the dynamics of the unknown LTV

system (4.1) simplify to

x(k + 1) = A(k)x(k) +B(k)u(k), (4.4)

and the closed-loop system under state-feedback with

u(k) = K(k)x(k), (4.5)

is described by

x(k + 1) =

(
A(k) +B(k)K(k)

)
x(k). (4.6)

This section concerns the direct data-driven solution of several classical control problems involving

the unknown systems (4.4) or (4.1). Consider the following standing assumption.

Assumption 4.1.1. It is possible to gather an ensemble of L ∈ N input-state data sequences capturing

the same time-varying behaviour of the unknown LTV system over T +1 time instances, with T ∈ N,

i.e. if data sequence j covers the time interval k = kj , . . . , kj + T , for j = 1, . . . , L, then for all

l = 1, . . . , L,1

{A(kj), . . . , A(kj + T − 1)} = {A(kl), . . . , A(kl + T − 1)},

and

{B(kj), . . . , B(kj + T − 1)} = {B(kl), . . . , B(kl + T − 1)}.

Remark 4.1.1. Assumption 4.1.1 is similar to requirements commonly encountered in ensemble meth-

ods for LTV system identification (see e.g. [195]). It is readily satisfied by systems arising in a variety

of applications, including biomedical systems, nonlinear systems linearised along a trajectory and pe-

riodically time-varying systems, which are addressed in Section 4.1.5. Variations in environmental

conditions that may result in different time-variations affecting each experiment in an ensemble can

be considered as process noise, which is addressed in Section 4.1.3.

The L input-state data sequences can be obtained via a sequence of physical experiments or via sim-

ulations2. Considering the system (4.4), let ud,j,[0,T−1], xd,j,[0,T ], represent input-state data collected

during the jth experiment, for j = 1, . . . , L. While the specific experiment is indicated by the subscript

j, the subscript d highlights that the input-state sequences contain measured data samples. Consider

the matrices

1Throughout this section, each interval capturing the time-variation of interest is referred to as k = 0, . . . , T , i.e.
kj = 0, for j = 1, . . . , L.

2Herein, the act of data collection is referred to as “experiment”, regardless of whether the data is collected via
physical experiments or simulations.
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X(k) =
[
xd,1(k) xd,2(k) . . . xd,L(k)

]
, (4.7a)

for k = 0, . . . , T , and

U(k) =
[
ud,1(k) ud,2(k) . . . ud,L(k)

]
, (4.7b)

for k = 0, . . . , T − 1, which combine the data from all L experiments at each time step. Note that the

data matrices X(k) and U(k) satisfy

X(k + 1) = A(k)X(k) +B(k)U(k) = [A(k) B(k)]

X(k)

U(k)

 , (4.8)

for k = 0, . . . , T − 1. Similarly, considering the system (4.1), let ud,j,[0,T−1], ζd,j,[0,T ], denote input-

output data collected during the jth experiment, for j = 1, . . . , L. The data is arranged to form the

matrices

Z(k) =
[
ζd,1(k) ζd,2(k) . . . ζd,L(k)

]
, (4.9)

for k = 0, . . . , T , representing the ensemble of noisy state measurements, and (4.7b), for k =

0, . . . , T − 1, representing the ensemble of input measurements. Consider also a similar stacking

of the corresponding samples of the state xd, the measurement noise vd and the system noise dd (all

of which are not measured) associated with the ensemble of experiments, represented by the matrices

(4.7a) and

V (k) =
[
vd,1(k) vd,2(k) . . . vd,L(k)

]
, (4.10)

for k = 0, . . . , T , and

D(k) =
[
dd,1(k) dd,2(k) . . . dd,L(k)

]
, (4.11)

for k = 0, . . . , T − 1, respectively. Note that

X(k + 1) = A(k)X(k) +B(k)U(k) +D(k),

Z(k) = X(k) + V (k).
(4.12)

In the following sections, the matrices X(k), U(k) or Z(k), U(k) are utilised to design controllers with

trajectory boundedness, performance and robustness guarantees for the unknown systems (4.4) and

(4.1), respectively, using data only.

4.1.2 The noise-free case

This section focuses on the noise-free unknown LTV system (4.4). Employing measured data, feedback

controllers of the form (4.5) are designed via the solution of convex optimisation problems involving

LMI constraints.
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Data-driven system representation

Consider the closed-loop system under state-feedback (4.6). In the following result a representation

of the system and the control gain, which directly uses the data matrices defined in Section 4.1.1, is

proposed.

Corollary 4.1.1. Suppose the rank condition3

rank

X(k)

U(k)

 = n+m, (4.13)

holds for k = 0, . . . , T − 1. Then, the closed-loop system (4.6) can equivalently be represented as

x(k + 1) = X(k + 1)G(k)x(k), (4.14)

where G(k) ∈ RL×n satisfies  In

K(k)

 =

X(k)

U(k)

G(k), (4.15)

for k = 0, . . . , T − 1.

Proof. Analogous to the proof of [95, Theorem 2], but considering the alternative data matrices

combining data from an ensemble of experiments for the LTV system (4.4), note that if (4.13) holds,

for k = 0, . . . , T − 1, then there exists G(k) satisfying (4.15), for k = 0, . . . , T − 1. Hence,

A(k) +B(k)K(k) =
[
A(k) B(k)

] In

K(k)

 =
[
A(k) B(k)

]X(k)

U(k)

G(k) = X(k + 1)G(k), (4.16)

which gives (4.14).

In Corollary 4.1.1 the sequence of control gains K(k) is parameterised using data through the identity

(4.15). Hence, the matrices G(k), for k = 0, . . . , T − 1, can be seen as decision variables, which can

be used for identification-free design of state-feedback controllers.

Remark 4.1.2. To utilise the data-driven system representation (4.14), (4.15), it is required that (4.13)

holds for all k = 0, . . . , T − 1. Thus, each input-state data sequence j, j = 1, . . . , L, in the ensemble

must start at different initial conditions xd,j(0). If this is infeasible, a common starting point can be

considered as the state at k = −1 and different inputs can be applied for each experiment to obtain

different state data at k = 0.

3The condition (4.13) can always be verified from the measured data. A necessary condition for (4.13) to hold is that
L ≥ n+m.
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Bounded closed-loop trajectories

Consider the problem of controlling the LTV system (4.4) over a finite time horizon, with the aim of

ensuring that the closed-loop trajectories remain close to the equilibrium throughout the considered

horizon. A solution to this problem is provided in the following result.

Theorem 4.1.1. Consider the system (4.4) and suppose an ensemble of input-state data is available

to form the matrices (4.7a), (4.7b), such that the rank condition (4.13) holds, for k = 0, . . . , T − 1.

Any sequences of matrices Y (k), P (k) = P (k)⊤ satisfying

 P (k + 1)− In X(k + 1)Y (k)

Y (k)⊤X(k + 1)⊤ P (k)

 ⪰ 0, (4.17a)

X(k)Y (k) = P (k), (4.17b)

for k = 0, . . . , T − 1, and

ηIn ⪯ P (k) ⪯ ρIn, (4.17c)

for k = 0, . . . , T , where η ≥ 1 and ρ > η are finite constants, are such that the trajectories of the

system (4.6), with

K(k) = U(k)Y (k)P (k)−1, (4.18)

for k = 0, . . . , T − 1, satisfy

∥x(k)∥ ≤
√

ρ

η

(
1− 1

ρ

) k
2

∥x(0)∥ , (4.19)

for k = 0, . . . , T .

Proof. To demonstrate the claim consider the adjoint equation (see, e.g. [196, Section 3.1]) of the

closed-loop system (4.6). Namely, consider

ξ(j) = Acl(j)
⊤ξ(j + 1) , (4.20)

and note that the solution to (4.20) starting from ξ(k) is

ξ(j) = St(k, j)
⊤ξ(k) , (4.21)

for j ≤ k, where

St(k, j) =


Acl(k − 1)Acl(k − 2) . . . Acl(j) , for j < k ,

In , for j = k ,

denotes the state transition matrix corresponding to the closed-loop system (4.6), and where Acl(k) =
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A(k) + B(k)K(k). Let ξ(k) ̸= 0 and suppose it is possible to determine a sequence of matrices P (k)

satisfying the condition (4.17c) and

Acl(k)P (k)Acl(k)
⊤ − P (k + 1) + In ⪯ 0, (4.22)

for k = 0, . . . , T − 1. Consider the quadratic function V̄j := V̄ (j, ξ(j)) := ξ(j)⊤P (j)ξ(j), for j =

0, . . . , T . It follows from (4.20), (4.22) and (4.17c) that

V̄j+1 − V̄j ≥ ∥ξ(j + 1)∥2 ≥ 1

ρ
ξ(j + 1)⊤P (j + 1)ξ(j + 1),

for j = 0, . . . , T − 1, and hence

ξ(j)⊤P (j)ξ(j) ≤
(
1− 1

ρ

)k−j

ξ(k)⊤P (k)ξ(k),

for j = 0, . . . , T , j ≤ k ≤ T . It then follows from (4.17c) that

η∥ξ(j)∥2 ≤ ρ

(
1− 1

ρ

)k−j

∥ξ(k)∥2 ,

which, using (4.21), in turn yields

∥St(k, j)
⊤ξ(k)∥2 ≤ ρ

η

(
1− 1

ρ

)k−j

∥ξ(k)∥2 ,

and

∥St(k, j)
⊤∥2 = ∥St(k, j)∥2 ≤

ρ

η

(
1− 1

ρ

)k−j

, (4.23)

for j = 0, . . . , T , j ≤ k ≤ T . Noting that x(k) = St(k, j)x(j), for k ≥ j, (4.23) implies

∥x(k)∥2 = ∥St(k, j)x(j)∥2 ≤ ∥St(k, j)∥2∥x(j)∥2

≤ ρ

η

(
1− 1

ρ

)k−j

∥x(j)∥2 ,
(4.24)

for j = 0, . . . , T , j ≤ k ≤ T . Letting j = 0, this yields (4.19). Finally, using (4.14), (4.15), defining

Y (k) := G(k)P (k), and via the Schur complement, (4.17a) is equivalent to (4.22), if (4.17b) holds and

the control gain is chosen as in (4.18).
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Optimal control

Consider the system (4.4) and the problem of finding the optimal control sequence

{u⋆(0), u⋆(1), . . . , u⋆(T − 1)} as a function of the state, which minimises the quadratic cost functional

J (x(0), u(·)) = x(T )⊤Qfx(T ) +
T−1∑
k=0

(
x(k)⊤Q(k)x(k) + u(k)⊤R(k)u(k)

)
, (4.25)

over the time horizon T ∈ N, starting from the initial condition x(0) = x0, with Qf = Q⊤
f ⪰ 0,

Q(k) = Q(k)⊤ ⪰ 0 and R(k) = R(k)⊤ ≻ 0, for k = 0, . . . , T − 1. The solution to this finite-horizon

LQR problem is well-known to be given by

u⋆(k) = K⋆(k)x(k), (4.26)

with the time-varying gain matrix K⋆(k) given by

K⋆(k) = −
(
R(k) +B(k)⊤P̄ (k + 1)B(k)

)−1
B(k)⊤P̄ (k + 1)A(k), (4.27)

where the symmetric and positive-definite matrix P̄ (k), with P̄ (T ) = Qf , is the solution of the

difference Riccati equation

P̄ (k) = Q(k) +A(k)⊤P̄ (k + 1)A(k)

−A(k)⊤P̄ (k + 1)B(k)
(
R(k) +B(k)⊤P̄ (k + 1)B(k)

)−1
B(k)⊤P̄ (k + 1)A(k), (4.28)

for k = 0, . . . , T − 1 (see e.g. [197, Section 4.1]).

To derive a solution to the optimal control problem in terms of data only, an equivalent formulation

of the LQR problem is considered - the covariance selection problem (see [198]). Building upon this

formulation it can be shown (see [199, Sections 2.1, 3.1]4) that solving the finite-horizon LQR problem

is equivalent to solving the optimisation problem

min
S,K,O

Tr (QfS(T )) +

T−1∑
k=0

(
Tr (Q(k)S(k)) +Tr (O(k))

)
(4.29a)

s.t. S(0) ⪰ In, (4.29b)

S(k + 1)− In − (A(k) +B(k)K(k))S(k) (A(k) +B(k)K(k))⊤ ⪰ 0, (4.29c)

O(k)−R(k)1/2K(k)S(k)K(k)⊤R(k)1/2 ⪰ 0, (4.29d)

4While [199] concerns LTI systems, all arguments readily extend to the time-varying case.
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for k = 0, . . . , T − 1, with

S := {S(1), . . . , S(T )} , O := {O(0), . . . , O(T − 1)} and K := {K(0), . . . ,K(T − 1)} .

The optimal gain sequence for the feedback law (4.26) is given by the solution K⋆ to (4.29).

In the following result, this formulation of the LQR problem is combined with the data-driven system

representation introduced in Corollary 4.1.1 to formulate the time-varying LQR problem as a data-

dependent SDP.

Theorem 4.1.2. Consider the system (4.4) and suppose an ensemble of input-state data is available

to form the matrices (4.7a), (4.7b), such that the rank condition (4.13) holds, for k = 0, . . . , T−1. The

optimal state-feedback control gain sequence {K⋆(0),K⋆(1), . . . ,K⋆(T − 1)} solving the finite-horizon

LQR problem with u⋆(k) = K⋆(k)x(k) is given by

K⋆(k) = U(k)H⋆(k)S⋆(k)−1, (4.30)

for k = 0, . . . , T − 1, with H⋆(k) and S⋆(k) the solution of

min
S,H,O

Tr (QfS(T )) +
T−1∑
k=0

(
Tr (Q(k)S(k)) +Tr (O(k))

)
(4.31a)

s.t. S(0) ⪰ In, (4.31b) S(k + 1)− In X(k + 1)H(k)

H(k)⊤X(k + 1)⊤ S(k)

 ⪰ 0, (4.31c)

 O(k) R(k)1/2U(k)H(k)

H(k)⊤U(k)⊤R(k)1/2 S(k)

 ⪰ 0, (4.31d)

S(k) = X(k)H(k), (4.31e)

for k = 0, . . . , T − 1, where

S = {S(1), . . . , S(T )} , H = {H(0), . . . ,H(T − 1)} and O = {O(0), . . . , O(T − 1)} .

Proof. The proof lies in demonstrating that the data-based problem (4.31) is equivalent to the model-

based problem (4.29). This follows by introducing (4.14), (4.15) to the constraints, letting H(k) :=

G(k)S(k), and taking the Schur complement of the nonlinear inequality constraints.
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4.1.3 Robustness to noise

In practice, both the measurements and/or the system dynamics may be subject to noise. This section

focuses on designing feedback controllers for the general unknown LTV system (4.1) via the solution

of convex optimisation problems involving LMI constraints.

Data-driven system representation

Towards designing controllers directly using noise corrupted data, an alternative data-driven system

representation of the form (4.14), (4.15) is derived for the closed-loop system (4.3) in the following

result.

Corollary 4.1.2. Suppose the rank condition

rank

Z(k)

U(k)

 = n+m, (4.32)

holds for k = 0, . . . , T − 1. Then, the dynamics matrix of the closed-loop system (4.3) can equivalently

be represented as

A(k) +B(k)K(k) =

(
Z(k + 1)−W (k)

)
G(k), (4.33)

where G(k) satisfies  In

K(k)

 =

Z(k)

U(k)

G(k), (4.34)

for k = 0, . . . , T − 1, with

W (k) = D(k) + V (k + 1)−A(k)V (k). (4.35)

Proof. The result follows via analogous steps to the proof of Corollary 4.1.1 and by recalling that the

ensemble data matrices satisfy (4.12).

As in Corollary 4.1.1, the matrices G(k), for k = 0, . . . , T −1, become the decision variables for control

design. Unlike the noise-free case considered in Section 4.1.2, the data-driven system representation

(4.33), (4.34) in the general case depends on the unknown matrix W (k) as defined in (4.35), which

contains both system5 and noise information. However, if W (k) lies in a specified uncertainty set for

k = 0, . . . , T −1, controllers with trajectory boundedness and performance guarantees can be designed

via data-dependent convex programmes, as detailed below.

5As in the LTI case the appearance of A(k) in (4.35) can be interpreted as a measure of the direction of the measure-
ment noise, which contributes to the loss of information caused [95].
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Bounded closed-loop trajectories

Consider the problem of controlling the LTV system (4.1) over a finite time horizon, with the aim

of ensuring that the trajectories of the resulting closed-loop system (4.3) stay within a decreasing

bound similar to (4.19). To this end, an alternative bound is derived, which is related to the notion

of input-to-state stability (see e.g. [200]).

Lemma 4.1.1. Suppose there exists P (k) = P (k)⊤ satisfying (4.17c), for k = 0, . . . , T , and (4.22)

for some K(k), for k = 0, . . . , T − 1. The state trajectories of the system (4.3) satisfy

∥x(k)∥ ≤
√

ρ

η

(
1− 1

ρ

) k
2

∥x(0)∥+ γ1
(
|v|k−1, k

)
+ γ2

(
|d|k−1, k

)
, (4.36)

for k = 0, . . . , T , with γ1(·, k), γ2(·, k) class K-functions.

Proof. The state response of system (4.3) at time k is given by

x(k) = St(k, 0)x(0) +

k−1∑
j=0

St(k − 1, j)(B(j)K(j)v(j) + d(j)),

where St(k, 0) is the state transition matrix corresponding to (4.6) as defined in Section 4.1.2. From

Theorem 4.1.1 it holds that if there exist P (k) = P (k)⊤, K(k) satisfying (4.17c), for k = 0, . . . , T ,

and (4.22), for k = 0, . . . , T − 1, then ∥St(k, 0)∥ ≤
√

ρ
η

(
1− 1

ρ

) k
2
, for k = 0, . . . , T . Combined with

properties of the operator norm this gives (4.36) with

γ1(|v|k−1, k) = b

k−1∑
j=0

√
ρ

η

(
1− 1

ρ

) k−1−j
2

∥K(j)∥

 |v|k−1,

γ2(|d|k−1, k) =

k−1∑
j=0

√
ρ

η

(
1− 1

ρ

) k−1−j
2

 |d|k−1,

(4.37)

where b denotes the upper bound on the singular values of B(·), i.e. ∥B(j)∥ ≤ b for 0 ≤ j ≤ k− 1.

With the aim of designing controllers such that (4.36) holds, for k = 0, . . . , T , directly using noisy

data, the following result combines the results of Lemma 4.1.1 and Corollary 4.1.2.

Theorem 4.1.3. Consider the system (4.1) and suppose an ensemble of input-output data is available

to form the matrices (4.9), (4.7b), such that the rank condition (4.32) holds, for k = 0, . . . , T − 1.

Suppose W (k) satisfies  In

W (k)⊤

⊤ Qr(k) Sr(k)

Sr(k)
⊤ Rr(k)

 In

W (k)⊤

 ⪰ 0, (4.38)

where Qr(k) ∈ Rn×n, Sr(k) ∈ Rn×L and Rr(k) ≺ 0 ∈ RL×L, for k = 0, . . . , T − 1. Any sequences of
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matrices Y (k), P (k) = P (k)⊤ satisfying


P (k + 1)− In −Qr(k) Sr(k) Z(k + 1)Y (k)

Sr(k)
⊤ −Rr(k) Y (k)

Y (k)⊤Z(k + 1)⊤ Y (k)⊤ P (k)

 ≻ 0, (4.39a)

Z(k)Y (k) = P (k), (4.39b)

for k = 0, . . . , T − 1, and (4.17c), for k = 0, . . . , T , where η ≥ 1 and ρ > η are finite constants, are

such that the trajectories of the system (4.3), with K(k) given by (4.18), for k = 0, . . . , T − 1, satisfy

(4.36), for k = 0, . . . , T .

Proof. By Lemma 4.1.1, (4.36) holds for the trajectories of (4.3) if there exist P (k) = P (k)⊤ satisfying

(4.17c), for k = 0, . . . , T , and (4.22), for k = 0, . . . , T − 1. Using (4.33)-(4.35), and letting Y (k) :=

G(k)P (k), (4.22) is equivalent to

(
Z(k + 1)−W (k)

)
Y (k)P (k)−1Y (k)

(
Z(k + 1)−W (k)

)⊤
− P (k + 1) + In ⪯ 0. (4.40)

Via the concrete version of the full block S-procedure (see [201], [202]), (4.40) is satisfied if (4.38)

holds and P (k), Y (k) satisfy



⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆



⊤ 

−P (k) 0 0 0

0 P (k + 1)− In 0 0

0 0 −Qr(k) Sr(k)

0 0 Sr(k)
⊤ −Rr(k)





(Z(k + 1)G(k))⊤ G(k)⊤

In 0

In 0

0 IL


≻ 0. (4.41)

This quadratic form can be transformed into the LMI (4.39a) by performing the matrix multiplica-

tion, applying the Schur complement and a congruence transformation with diag (In+L, P (k)). The

constraint (4.39b) stems from the upper row block of (4.34). The lower row block of (4.34) is satisfied

if the control gain K(k) is chosen as in (4.18), for k = 0, . . . , T − 1.

Theorem 4.1.3 is the robust equivalent of Theorem 4.1.1. If the measured data is such that W (k)

lies in the uncertainty set (4.38), for k = 0, . . . , T − 1, then controllers designed using the result

of Theorem 4.1.3 are such that the trajectories of the closed-loop system (4.3) satisfy (4.36). Note

that the uncertainty bound (4.38) is required to hold only for the measured data used for the system

representation (4.33)-(4.35). Subsequently, (4.36) is satisfied by the trajectories of (4.3) for arbitrary,

bounded noise inputs d(k), k = 0, . . . , T −1, and v(k), k = 0, . . . , T . Quantifying the trajectory bound

(4.36) requires knowledge of b and the upper bound on the norm of the noise vectors, |v|T−1 and |d|T−1.

Similarly, to verify (4.38), k = 0, . . . , T − 1, knowledge of an upper bound on the unknown matrix
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A(k), for k = 0, . . . , T − 1, and the matrices V (k), for k = 0, . . . , T , and D(k), for k = 0, . . . , T − 1,

i.e. the ensembles of (unmeasured) samples of measurement and process noise corresponding to the

collected input-output data, is required,6 due to the definition of W (k) in (4.35).

Remark 4.1.3. In the absence of measurement noise, i.e. if v(k) = 0, for k = 0, . . . , T , (4.38) becomes

a bound on D(k) (the ensemble of process noise samples corresponding to the measured input-output

data), which is similar to the bound on the noise data introduced in [146] for LTI systems subject to

process noise only.7 In this measurement noise free case, the dependence on the unknown matrix A(k)

disappears and only an upper bound on the process noise affecting the measured data is required to

verify the uncertainty condition (4.38).

Remark 4.1.4. The matrices Qr(k), Sr(k) and Rr(k) in (4.38) are chosen by the user. This makes the

quadratic bound (4.38) a flexible condition, which contains many practical bounds as special cases.

Examples include a bound on the maximum singular value of W (k), for k = 0, . . . , T − 1, as well

as individual sample bounds on wd(k) = A(k)vd(k) − vd(k + 1) − dd(k), or bounds on the sample

covariance across an ensemble of data sequences at each time step (see [146, 147] for details on the

LTI equivalents). The choice Qr(k) = Z(k + 1)Z(k + 1)⊤, Sr(k) = 0 and Rr(k) = −γ(k)IL, for some

γ(k) > 0 ∈ R, gives the signal-to-noise ratio condition

W (k)W (k)⊤ ⪯ 1

γ(k)
Z(k + 1)Z(k + 1)⊤, (4.42)

for k = 0, . . . , T − 1. This condition is similar (apart from being required to hold at each time step)

to the condition presented in [95, Assumption 2] for LTI systems and represents a measure of the loss

of information caused by the noise.

Robust performance

Consider the problem of designing controllers of the form (4.2) for the (unknown) LTV system (4.1),

such that the closed-loop system (4.3) fulfils a disturbance attenuation condition. To this end, consider

the performance output

z(k) = C(k)x(k) +Du(k)u(k) +Dd(k)d(k),

zf = C(T )x(T ),
(4.43)

6While the system dynamics and noise are assumed unknown, for many practical applications it is expected that
reasonable upper bounds on these quantities can be estimated [182, Chapter 8].

7Note that in the LTV case (4.38) is required to hold at each time step, for k = 0, . . . , T − 1.
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for k = 0, . . . , T − 1, where z ∈ Rq, zf ∈ Rq and C(T ), C(k) ∈ Rq×n, Du(k) ∈ Rq×m, Dd(k) ∈ Rq×n

are known matrices. This results in the closed-loop system

x(k + 1) = Acl(k)x(k) + Ecl(k)w̄(k), (4.44a)

z(k) = Ccl(k)x(k) +Dcl(k)w̄(k), (4.44b)

zf = C(T )x(T ), (4.44c)

ζ(k) = x(k) + v(k), (4.44d)

for k = 0, . . . , T − 1, where

Acl(k) := A(k) +B(k)K(k), Ecl(k) :=
[
B(k) In

]
,

Ccl(k) := C(k) +Du(k)K(k), Dcl(k) :=
[
Du(k) Dd(k)

]
,

w̄(k) :=
[
v̄(k)⊤ d(k)⊤

]⊤
, v̄(k) := K(k)v(k).

Regarding w̄(k) ∈ R(m+n) as the disturbance, consider the quadratic robust performance criterion

z⊤f zf +
T−1∑
k=0

w̄(k)
z(k)

⊤ Qp(k) Sp(k)

Sp(k)
⊤ Rp(k)

w̄(k)
z(k)

+ ε
T−1∑
k=0

w̄(k)⊤w̄(k) ≤ 0, (4.45)

for all w̄ ∈ ℓ2, where ε > 0 and Qp(k) ∈ R(m+n)×(m+n), Sp(k) ∈ R(m+n)×q and Rp(k) ⪰ 0 ∈ Rq×q, for

k = 0, . . . , T − 1.

Remark 4.1.5. The quadratic performance criterion (4.45) is the finite-horizon equivalent to the perfor-

mance criterion introduced in [201], [202] and it captures many popular robust performance measures.

For example, the choice Qp(k) = −γ̄2I(m+n), Sp(k) = 0 and Rp(k) = Iq, with γ̄ > 0 ∈ R, for

k = 0, . . . , T − 1, recovers the finite-horizon H∞-control problem for discrete LTV systems (see e.g.

[196]).

Assuming the performance index is invertible, let

 Q̃p(k) S̃p(k)

S̃p(k)
⊤ R̃p(k)

 =

Qp(k) Sp(k)

Sp(k)
⊤ Rp(k)

−1

, (4.46)

and further assume Q̃p(k) ≺ 0. The following result provides a strategy to design controllers ensuring

the trajectories of (4.44) satisfy (4.45). For further results regarding robust performance of LTV

systems see e.g. [196, 203].
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Lemma 4.1.2. Suppose there exists a matrix sequence P(k) = P(k)⊤ ≻ 0 satisfying



⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆



⊤ 

−P(k) 0 0 0

0 P(k + 1) 0 0

0 0 Q̃p(k) −S̃p(k)

0 0 −S̃p(k)
⊤ R̃p(k)





Acl(k)
⊤ Ccl(k)

⊤

In 0

Ecl(k)
⊤ Dcl(k)

⊤

0 Iq


≻ 0, (4.47a)

for k = 0, . . . , T − 1, and

Iq − C(T )P(T )C(T )⊤ ⪰ 0. (4.47b)

The output z(k) of the closed-loop system (4.44) subject to the disturbance input w̄(k) and with initial

condition x(0) = 0 satisfies the quadratic robust performance criterion (4.45).

Proof. The result follows from dissipativity arguments (see e.g. [204] for a definition of dissipativiy

for discrete-time systems). Suppose there exists a non-negative storage function V (x(k)) : Rn → R,

such that

V (x(k + 1))− V (x(k)) ≤ −εw̄(k)⊤w̄(k)−

w̄(k)
z(k)

⊤ Qp(k) Sp(k)

Sp(k)
⊤ Rp(k)

w̄(k)
z(k)

 , (4.48)

for k = 0, . . . , T − 1, with V(0) = 0, and

V(T ) ≥ z⊤f zf . (4.49)

Then, summing (4.48) from k = 0 to k = T − 1 and using (4.49) gives (4.45). With the choice

V (x(k)) = x(k)⊤P(k)−1x(k) and by using the dualisation lemma [201, Lemma 4.9], (4.48) and (4.49)

are satisfied if the conditions (4.47a) and (4.47b) hold.

With the aim of designing controllers, such that (4.45) holds directly using noisy data, consider (4.33)-

(4.35) introduced in Corollary 4.1.2. A complication arises due to the fact that both measurement noise

and process noise are considered. Namely, Ecl(k), through which the disturbance input w̄(k) enters the

system (4.44) depends on the unknown input matrix B(k). Hence, (4.44) cannot be represented using

(4.33)-(4.35) alone. To address this, an additional data-driven representation of B(k) is introduced.

Supposing (4.32) holds, B(k) can be written as

B(k) =
[
A(k) B(k)

] 0

Im

 =

(
Z(k + 1)−W (k)

)
M(k), (4.50)
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with M(k) ∈ RL×m satisfying  0

Im

 =

Z(k)

U(k)

M(k), (4.51)

for k = 0, . . . , T − 1. Using (4.33)-(4.35) and (4.50)-(4.51) the system (4.44) can equivalently be

written as a data-dependent lower linear fractional transformation (LFT), see e.g. [205], namely


x(k + 1)

z(k)

z̃(k)

 =


Z(k + 1)G(k) Ēcl(k) In

Ccl(k) Dcl(k) 0

G(k) M̄(k) 0



x(k)

w̄(k)

w̃(k)

 , (4.52)

where w̃(k) = −W (k)z̃(k), Ēcl(k) = [Z(k + 1)M(k) In] and M̄(k) = [M(k) 0], together with (4.44c),

(4.44d), for k = 0, . . . , T − 1. Using this data-dependent system representation and the result of

Lemma 4.1.2, controllers ensuring the criterion (4.45) holds can be designed directly using noisy data.

Theorem 4.1.4. Consider the system (4.1) and suppose an ensemble of input-output data is available

to form the matrices (4.9), (4.7b), such that the rank condition (4.32) holds, for k = 0, . . . , T − 1.

Suppose W (k), as defined in (4.35), satisfies (4.38), for k = 0, . . . , T − 1. Any sequences of matrices

Y (k), P(k) = P(k)⊤ satisfying



P(k + 1)−Qr(k) ⋆ ⋆ ⋆ ⋆

−S̃p(k)
⊤Ēcl(k)

⊤ −Dcl(k)S̃p(k)− S̃p(k)
⊤Dcl(k)

⊤ + R̃p(k) ⋆ ⋆ ⋆

Sr(k)
⊤ −M̄(k)S̃p(k) −Rr(k) ⋆ ⋆

Ēcl(k)
⊤ Dcl(k)

⊤ M̄(k)⊤ −Q̃p(k)
−1 ⋆

(Z(k + 1)Y (k))⊤ (C(k)P(k) +Du(k)U(k)Y (k))⊤ Y (k)⊤ 0 P(k)


≻ 0,

(4.53a)

Z(k)Y (k) = P(k), (4.53b) 0

Im

 =

Z(k)

U(k)

M(k), (4.53c)

for k = 0, . . . , T − 1, and (4.47b), are such that the trajectories of the system (4.44), with

K(k) = U(k)Y (k)P(k)−1, (4.54)

for k = 0, . . . , T − 1, and with initial condition x(0) = 0, satisfy the quadratic robust performance

criterion (4.45).

Proof. By Lemma 4.1.2, (4.45) is satisfied for trajectories of (4.44) if there exists P(k) = P(k)⊤ ≻ 0

such that (4.47) holds, for k = 0, . . . , T − 1. Consider the data-driven system representation (4.52)

(based on (4.33)-(4.35) and (4.50)-(4.51)) and let Y (k) := G(k)P(k). Via the concrete version of the
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full block S-procedure (see [201], [202]), (4.47a) is satisfied if (4.38) holds and P(k), Y (k) satisfy



⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆



⊤ 

−P(k) 0 0 0 0 0

0 P(k + 1) 0 0 0 0

0 0 Q̃p(k) −S̃p(k) 0 0

0 0 −S̃p(k)
⊤ R̃p(k) 0 0

0 0 0 0 −Qr(k) Sr(k)

0 0 0 0 Sr(k)
⊤ −Rr(k)



×



(Z(k + 1)G(k))⊤ Ccl(k)
⊤ G(k)⊤

In 0 0

Ēcl(k)
⊤ Dcl(k)

⊤ M̄(k)⊤

0 Iq 0

In 0 0

0 0 IL


≻ 0. (4.55)

This quadratic form can be transformed into the LMI (4.53a) by performing the matrix multiplication

and applying the Schur complement twice. The equality constraints (4.53b) and (4.53c) stem from the

upper row block of (4.34) and (4.51), respectively, while the lower row block of (4.34) is automatically

satisfied by K(k) in (4.54).

Theorem 4.1.4 provides a general approach to design controllers guaranteeing robust quadratic per-

formance for unknown LTV systems, affected by both measurement and process noise, directly using

noisy data.

Remark 4.1.6. While (4.50)-(4.51) correspond to uniquely identifying the matrix B(k), since the

sequence M(k) is determined at the same time as the control gain K(k) in (4.54), the result of

Theorem 4.1.4 is still a direct data-driven control approach (as opposed to indirect approaches involving

sequential system identification and control design).

Remark 4.1.7. In the absence of measurement noise, i.e. if v(k) = 0, for k = 0, . . . , T , (4.38) reduces

to a bound on D(k) (as discussed in Remark 4.1.3). In this case, the closed-loop system is described

by (4.44a)-(4.44c) with the disturbance defined as w̄(k) := d(k) and hence Ecl(k) = In and Dcl(k) =

Dd(k). This removes the need to represent B(k) via (4.50)-(4.51). The closed-loop system can be

represented directly using (4.33)-(4.35) via the LFT (4.52) with Ēcl(k) = In and M̄(k) = 0 and the

data-dependent feasibility problem in Theorem 4.1.4 reduces to finding sequences of matrices Y (k)

and P(k) = P(k)⊤ satisfying (4.53a)-(4.53b), for k = 0, . . . , T − 1, and (4.47b). The control law

guaranteeing (4.45) for the system (4.44) is given by (4.5), with K(k) given by (4.54).
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Remark 4.1.8. While the quadratic robust performance criterion (4.45) considered in this section

captures many commonly considered robust performance measures for systems influenced by noise,

such as H∞-control, optimal control in the sense of the results presented in Section 4.1.2 for the

noise-free system (4.4) is not considered in the context of noisy data. Designing optimal controllers

for unknown systems from noisy data is generally challenging and many open problems remain. In the

LTI setting, methods for designing suboptimal LQR controllers or controllers guaranteeing bounded

H2-norm from noisy data are suggested e.g. in [156, 148]. Note that these results focus on systems

and data affected by process noise only, and the incorporation of measurement noise as considered

in this section is not straightforward. Moreover, in the LTI case, the H2-norm is well defined. In

fact, there are three definitions which are well known to coincide: the 2-norm of the transfer function

from the disturbance input to the performance output, the 2-norm of the performance output to unit

impulses in the disturbance input channels, and the mean-square deviation of the performance output

when the disturbance input is a white process with unit covariance (which is the classic stochastic

LQR formulation). However, in the LTV case these definitions do not necessarily coincide, hence,

designing H2-controllers is more involved [206], see e.g. [196, Section 3.5] for H2-control theory for

discrete-time LTV systems. In [207] a finite-horizon performance criterion for LTV systems affected

by noise is introduced, which is related to the generalised H2-norm. Namely, the maximal performance

output deviation in response to nonzero initial conditions and disturbance inputs, which considering

system (4.1) with v(k) = 0 and performance output (4.43) with Dd(k) = 0 , for k = 0, . . . , T − 1, and

Du(T ) = 0, is defined as

JH2 = max
x(0),d(0),...,d(T−1)

|z|T(
∥x(0)∥2 +

∑T−1
k=0 ∥d(k)∥2

) 1
2

. (4.56)

The problem of designing state-feedback controllers of the form (4.5) which minimise (4.56) can be

formulated as an SDP [207]. With the choice

C(k) =

Q(k)1/2

0

 , Du(k) =

 0

R(k)1/2

 ,

for k = 0, . . . , T − 1, and C(T ) = Q
1/2
f , the SDP characterising solutions is equivalent to (4.29),

i.e. the SDP formulation of the finite-horizon LQR problem for noise-free LTV systems. Suboptimal

controllers can be designed directly using noisy data via the data-driven system representation (4.33)-

(4.35) by following a similar certainty-equivalence or soft constraint approach as introduced in [156]

for LTI systems. Alternatively, in line with the results in this section, supposing the matrix containing

unmeasured process noise samples D(k) satisfies (4.38) (with W (k) = D(k)), the constraint (4.29d)

can be replaced with (4.31d) as in the noise-free case, and the constraint (4.29c) can be replaced with
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(4.39) (with Z(k) = X(k), P (k) = S(k) and Y (k) = H(k)). While characterising the suboptimality

gap of the performance of the data-driven solution obtained via the latter approach with respect to the

nominal solution obtained using model knowledge or noise-free data is not straightforward, it depends

on the conservatism of the uncertainty bound (4.38), as well as the conservatism of the full block

S-procedure (see [201], [202]), which ensures (4.39) and (4.38) imply (4.29c).

4.1.4 Overcoming challenges associated with large time horizons

The data-driven system representations introduced in Corollaries 4.1.1 and 4.1.2 rely on data obtained

by exciting the system dynamics via open-loop exploring inputs. Due to the time-varying nature of the

system dynamics (4.4) or (4.1) the data sequences are required (differently from the LTI case) to cover

the entire time horizon of interest. For unstable systems with high divergence rates this may lead to

numerical issues when solving the feasibility or optimisation problems in Theorems 4.1.1, 4.1.2, 4.1.3

and 4.1.4, if the desired control tasks cover large time horizons. If a controller ûK̂(k) = K̂(k)xd(k),

which is not necessarily optimal with regards to the design objective, but prevents the closed-loop

trajectories from diverging rapidly, is known, experiments can be performed on the closed-loop system

by superimposing a sufficiently informative signal ûd(k) to ensure the rank condition (4.13) or (4.32)

is satisfied with respect to the input ud(k) = ûK̂(k) + ûd(k), for k = 0, . . . , T − 1. If such a controller

is not available, or the task is to design such a controller using Theorem 4.1.1 or 4.1.3, an alternative

approach to represent the unknown LTV system using data is needed to prevent numerical issues.

Note that similar numerical issues are also encountered in the LTI case, see [95], for which the finite

data sequence needs to be sufficiently long. A possible solution in the LTI case, which involves

multiple short data sequences in place of a single (longer) data sequence for the data representation

and the notion of “collective persistency of excitation” is provided in [119]. However, since the data

ensembles in the time-varying case are required to capture the time-variation over the entire time

horizon of interest, such a strategy is not viable when considering LTV systems. The issue can

instead be overcome by collecting successive sets of data sequences covering different subintervals of

the considered time horizon. Namely, let the time interval of interest, k = 0, . . . , T , be split into

Ni ∈ N subintervals

Ii = {Ti−1, . . . , Ti} (4.57)

for i = 1, . . . , Ni, with T0 = 0 and TNi = T . Assume an ensemble of L data sequences can be collected

for each subinterval, i = 1, . . . , Ni. To streamline the presentation consider the noise-free LTV system

(4.4) and consider the data matrices

Xi(k) =
[
xd,i,1(k) xd,i,2(k) . . . xd,i,L(k)

]
, (4.58a)
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for k = Ti−1, . . . , Ti, and

Ui(k) =
[
ud,i,1(k) ud,i,2(k) . . . ud,i,L(k)

]
, (4.58b)

for k = Ti−1, . . . , Ti − 1, which are utilised in the following result to provide a system representation

based on data from successive ensembles of experiments.

Corollary 4.1.3. Suppose the rank condition

rank

Xi(k)

Ui(k)

 = n+m, (4.59)

holds for k = Ti−1, . . . , Ti − 1, i = 1, . . . , Ni, T0 = 0, for data gathered during Ni ensembles of

experiments for the system (4.4). Then, the closed-loop system (4.6) can equivalently be represented

as

x(k + 1) = Xi(k)G(k)x(k), (4.60)

where G(k) satisfies  In

K(k)

 =

Xi(k)

Ui(k)

G(k), (4.61)

for k = Ti−1, . . . , Ti − 1, i = 1, . . . , Ni, with T0 = 0.

Proof. Consider the data matrices Xa(k), Ua(k) and Xb(k), Ub(k) obtained from two different ensem-

bles (a and b) of open-loop experiments for the same system (4.4) for k = 0, . . . , T , and satisfying

(4.13) for k = 0, . . . , T − 1. Using the result of Corollary 4.1.1 the closed-loop system dynamics (4.6)

can equivalently be represented in terms of either of the two data matrix sequences, i.e.

x(k + 1) = Xa(k + 1)Ga(k)x(k) = Xb(k + 1)Gb(k)x(k), (4.62)

where Ga(k) ∈ RL×n and Gb(k) ∈ RL×n satisfy

 In

K(k)

 =

Xa(k)

Ua(k)

Ga(k) =

Xb(k)

Ub(k)

Gb(k),

for k = 0, . . . , T − 1. Alternatively, the closed-loop system (4.6) can be represented using data from

ensemble a for k = 0, . . . , Ta − 1, for any Ta < T , and data from ensemble b for the remaining time

instances k = Ta, . . . , T − 1, i.e. as x(k + 1) = Xi(k + 1)G(k), for k = 0, . . . , T − 1, with i = a and

G(k) = Ga(k) for k = 0, . . . , Ta− 1 and i = b and G(k) = Gb(k) for k = Ta, . . . , T − 1. Using the same

argument, the time horizon of interest can be split into multiple subintervals. In this case the rank

condition on the data matrices is only required to hold for the corresponding subinterval, leading to
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(4.59). The choice of intervals Ii as in (4.57) and data matrices (4.58a) and (4.58b), for i = 1, . . . , Ni,

with T0 = 0, yield (4.60) - (4.61) for k = Ti−1, . . . , Ti − 1, i = 1, . . . , Ni, and T0 = 0.

Utilising Corollary 4.1.3 instead of Corollary 4.1.1, the control gain sequence and the closed-loop

dynamics under state-feedback can be represented using data for control design for bounded closed-

loop trajectories or optimal LQR performance via alternative versions of Theorems 4.1.1 and 4.1.2.

Following analogous steps as in Corollaries 4.1.3 and 4.1.2 a similar system representation via successive

ensembles of data from the noisy LTV system (4.1) can be derived, which allows to design controllers

for robust trajectory boundedness and robust performance directly using data via modified versions

of Theorems 4.1.3 and 4.1.4.

If the nature of the considered system allows to start experiments partway through the time-varying

behaviour we would like to capture, i.e. at k = k̄ > 0, open-loop data for the matrices Xi(k) or Zi(k)

and Ui(k) can be collected by performing an ensemble of open-loop experiments for k = Ti−1, . . . , Ti.

However, in many practical situations, this may not be possible. In this case, the successive ensembles

of data can be collected in a receding horizon fashion. Namely, data for the first interval I1, X1(k) or

Z1(k) and U1(k), is collected from a set of L open-loop experiments. This data is then used to derive

a state-feedback control gain sequence K1(k) which ensures that (4.19) holds for k = 0, . . . , T1 − 1

using the result of Theorem 4.1.1 (in the noise-free case), or (4.36), for k = 0, . . . , T1 − 1 using

the result of Theorem 4.1.3 (for systems affected by noise). The data ensemble for the following

subinterval I2 is collected by applying feedback inputs for the time steps covered by the previous

interval, k = 0, . . . , T1 − 2, to ensure that the state-trajectories remain bounded, and open-loop

exploring inputs uexp,2,j(k), j = 1, . . . , L, for k = T1 − 1, . . . , T2 − 1, to excite the dynamics and

gather sufficiently informative data, X2(k) or Z2(k) and U2(k), for the system representation in the

second interval. This data allows to determine a feedback gain sequence ensuring the trajectories

remain bounded for k = 0, . . . , T2 − 1, via modified versions of Theorems 4.1.1 or 4.1.3 based on

the alternative system representation using successive ensembles of data as in Corollary 4.1.3. The

procedure is then repeated for the following subintervals Ii, i = 3, . . . , Ni. Hence, using this approach

the input for each data collection experiment j = 1, . . . , L in each successive ensemble i = 1, . . . , Ni is

chosen as8

ud,i,j(k) =


Ki−1(k)xd,i,j(k) , for k = 0, . . . , Ti−1 − 2 ,

uexp,i,j(k) , for k = Ti−1 − 1, . . . , Ti − 1 ,

(4.63)

with T0 = 0 and TNi = T .

Note that in the limit as T →∞ Theorem 4.1.1 (Theorem 4.1.3) gives a characterisation of stabilising

8The exploring inputs start at k = Ti−1 − 1, one time step before the start of interval Ii, to excite the state response
and hence ensure different “initial conditions” for the data collection interval at k = Ti−1 for each experiment in the
ensemble. The motivation for this is as detailed in Remark 4.1.2.

126



4.1. Data-driven control of linear time-varying systems

(input-to-state stabilising) feedback controllers. For linear arbitrarily time-varying systems, designing

controllers with infinite-horizon guarantees, such as stability, is generally a problem involving infinitely

many decision variables (both in the model-based and in the data-driven setting). Consider the

receding horizon approach described above to collect successive ensembles of data. Rather than

repeatedly solving alternative versions of Theorem 4.1.1 or 4.1.3 for a feedback gain sequence for

k = 0, . . . , Ti − 1 after collecting data for subinterval Ii, i = 1, . . . , Ni, the gain sequence obtained

after the previous ensemble of experiments can be extended to k = Ti−1, . . . , Ti − 1, for i > 1, by

solving (4.17) or (4.39) with X(k) = Xi(k) or Z(k) = Zi(k) for k = Ti−1, . . . , Ti with an additional

constraint ensuring (4.22) is satisfied across the interval boundary. Namely,

 P (Ti−1)− In Xi−1(Ti−1)Y (Ti−1 − 1)

Y (Ti−1 − 1)⊤Xi−1(Ti−1)
⊤ P (Ti−1 − 1)

 ⪰ 0, (4.64)

in the noise-free case, and


P (Ti−1)− In −Qr(Ti−1 − 1) Sr(Ti−1 − 1) Zi−1(Ti−1)Y (Ti−1 − 1)

Sr(Ti−1 − 1)⊤ −Rr(Ti−1 − 1) Y (Ti−1 − 1)

Y (Ti−1 − 1)⊤Zi−1(Ti−1)
⊤ Y (Ti−1 − 1)⊤ P (Ti−1 − 1)

 ≻ 0, (4.65)

in the noisy case. This approach has the advantage of reducing the computational complexity of

the feasibility problem to be solved after each ensemble of experiments, due to the presence of fewer

decision variables with respect to solving the problem for the entire time horizon, k = 0, . . . , Ti − 1,

after collecting data for interval Ii. However, the feasible solution sets are subsets of those of problems

(4.17) and (4.39). Hence, solving the problem sequentially for different subintervals is more restrictive

than solving over the entire time horizon and it might not be possible to find a solution to the problem

even though a solution to (4.17) or (4.39) exists. Nevertheless, in the limit as T → ∞ the described

approach presents a method to design stabilising or input-to-state stabilising state-feedback controllers

for unknown LTV systems, using successively obtained finite-length data sets. Despite requiring offline

experiments, the presented approach, relying on successive ensembles of experiments to capture time-

variations, is a step towards online learning of stabilising controllers for linear arbitrarily time-varying

systems. In the following, methods to design controllers with infinite-horizon guarantees from finite-

length data are presented for the special case of periodically time-varying systems.
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4.1.5 Periodically time-varying systems

Consider the special case in which the LTV system (4.1) is such that the time-variation of the matrices

A(k) and B(k) is ϕ-periodic, for some ϕ ∈ N, i.e.

A(k + ϕ) = A(k), B(k + ϕ) = B(k), (4.66)

for all k ≥ 0. While the system matrices are assumed to be unknown, the periodic nature and period

ϕ of the system may be known a priori.

Data-driven system representation

The periodicity of the time-variation of the unknown system (4.1), (4.66) has two important impli-

cations for its data-driven representation. Firstly, recall from Section 4.1.1 that L data sequences

capturing the time-varying behaviour of the unknown system over the time horizon of interest are

required for the representations introduced in Corollary 4.1.1 and Corollary 4.1.2. If the time-varying

behaviour is repeated periodically, a single sufficiently long data sequence capturing L periods, i.e.

covering the time interval k = 0, . . . , ϕL, can replace L data sequences covering the time interval

k = 0, . . . , ϕ. More precisely, consider the state data xd,1,[0,ϕL] or noisy state data ζd,1,[0,ϕL]. The

matrices X(k) in (4.7a) and Z(k) in (4.9) can be populated by letting

xd,i(k) = xd,1(k + (i− 1)ϕ) and ζd,i(k) = ζd,1(k + (i− 1)ϕ),

for i = 1, . . . , L, respectively9. Secondly, if the control law (4.5) or (4.2) is such that

K(k + ϕ) = K(k),

then the closed-loop system under state-feedback can be represented using the results of Corollary 4.1.1

or Corollary 4.1.2 beyond the time interval k = 0, . . . , T , ϕ ≤ T ≤ ϕL over which the data has been

collected, since Acl(k + ϕ) = Acl(k). Namely, the noise-free closed-loop system (4.6) can equivalently

be represented as

x(k + 1) = X(l + 1)G(l)x(k), (4.67)

and the controller as

u(k) = U(l)G(l)x(k), (4.68)

for all k ≥ 0, with l = k − npϕ, np = max {r ∈ Z | r ≤ k/ϕ}, if X(l), U(l) satisfy (4.13) and G(l)

is such that (4.15) holds (with k = l), for l = 0, . . . , ϕ − 1. Similarly, the dynamics matrix of the

9Similarly, the required data can be obtained via 1 ≤ Ne ≤ L experiments jointly covering L periods.
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closed-loop system (4.3) can equivalently be represented as

A(k) +B(k)K(k) =

(
Z(l + 1) +W (l)

)
G(l), (4.69)

and the controller as

u(k) = U(l)G(l)ζ(k), (4.70)

for all k ≥ 0, with l = k − npϕ, np = max {r ∈ Z | r ≤ k/ϕ}, if Z(l), U(l) satisfy (4.32) and G(l) is

such that (4.34) holds (with k = l), for l = 0, . . . , ϕ− 1.

These observations make it possible to derive infinite-horizon results for this class of system based

on finite-horizon data. In the remainder of this section, the infinite-horizon versions of the control

problems considered in Section 4.1.2 and Section 4.1.3 are considered in the context of periodically

time-varying systems.

Stabilisation

Consider the system (4.4), (4.66) and the problem of designing state-feedback controllers, which sta-

bilise the closed-loop system (4.6). Exploiting periodicity, this problem can be solved directly using

finite input-state data.

Corollary 4.1.4. Consider the linear periodically time-varying system (4.4), (4.66) and suppose input-

state data is available to form the matrices (4.7a), (4.7b), such that the rank condition (4.13) holds, for

k = 0, . . . , ϕ−1. Any sequences of matrices Y (k), P (k) = P (k)⊤ satisfying (4.17), for k = 0, . . . , ϕ−1,

where η ≥ 1 and ρ > η are finite constants, and

P (ϕ) = P (0), (4.71)

are such that the zero equilibrium of the system (4.6), (4.66), with K(k) given by (4.18), for k =

0, . . . , ϕ− 1, and K(k + npϕ) = K(k), for all np ≥ 0, is exponentially stable.

Proof. The zero equilibrium of the closed-loop LTV system (4.6) is exponentially stable if and only

if there exists P (k) = P (k)⊤ satisfying (4.17c) and (4.22) for some K(k) for all k ≥ 0. If the system

dynamics (4.6) are ϕ-periodic the zero equilibrium is exponentially stable if and only if there exists a

ϕ-periodic solution P (k), K(k) to (4.22) [196, Section 3.1]. Hence, K(k), P (k) satisfying the recursive

inequality (4.22) only need to be determined for one period, i.e. for k = 0, . . . , ϕ, with the additional

boundary condition constraint (4.71) in place to ensure that P (k) is periodic. Using (4.14), (4.15) and

following steps similar as in the proof of Theorem 4.1.1, (4.22) is equivalent to (4.17).
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Corollary 4.1.4 is the infinite-horizon equivalent of Theorem 4.1.1 for periodically time-varying systems.

Similarly, (noise) input-to-state stabilising controllers can be designed using noisy data for the system

(4.1), (4.66). This represents the infinite-horizon counterpart to Theorem 4.1.3.

Corollary 4.1.5. Consider the linear periodically time-varying system (4.1), (4.66) and suppose an

ensemble of input-output data is available to form the matrices (4.9), (4.7b), such that the rank

condition (4.32) holds, for k = 0, . . . , ϕ − 1. Suppose W (k) satisfies (4.38), for k = 0, . . . , ϕ − 1.

Any sequences of matrices Y (k), P (k) = P (k)⊤ satisfying (4.39) and (4.17c) for k = 0, . . . , ϕ − 1,

where η ≥ 1 and ρ > η are finite constants, and (4.71), are such that the zero equilibrium of the system

(4.3), (4.66), with K(k) given by (4.18), for k = 0, . . . , ϕ− 1, and K(k+npϕ) = K(k), for all np ≥ 0,

is input-to-state stable, with respect to the disturbance inputs v, d.

Proof. By Theorem 4.1.3 the trajectories of (4.3) withK(k) given by (4.18) satisfy (4.36), for 0, . . . , ϕ−

1, if there exist Y (k), P (k) = P (k)⊤ satisfying (4.39) and (4.17c) for k = 0, . . . , ϕ − 1. If (4.66) and

K(k + npϕ) = K(k), for all np ≥ 0, then (4.36) holds for all k ≥ 0. Since the first term on the right

hand side of (4.36) tends to zero as k →∞, this corresponds to input-to-state stability.

Optimal control

Consider the system (4.4), and the problem of finding a stabilising u⋆(k), for all k ≥ 0, minimising

J (x(0), u(·)) =
∞∑
k=0

(
x(k)⊤Q(k)x(k) + u(k)⊤R(k)u(k)

)
, (4.72)

withQ(k) = Q(k)⊤ ⪰ 0 and R(k) = R(k)⊤ ≻ 0, for all k ≥ 0. If (4.66) holds andQ(k+ϕ) = Q(k)

and R(k + ϕ) = R(k), then the sequence of state-feedback gains K⋆(k), k ≥ 0, corresponding to

the solution u⋆(k) as given by (4.26) is also ϕ-periodic, i.e. K⋆(k + ϕ) = K⋆(k) [196, Section 3.1].

Similarly to the finite-horizon case considered in Section 4.1.2, the described infinite-horizon LQR

problem can be formulated and solved via a convex programme involving LMI constraints [198].

Exploiting periodicity, this problem can be solved directly using finite input-state data.

Corollary 4.1.6. Consider the linear periodically time-varying system (4.4), (4.66) and suppose input-

state data is available to form the matrices (4.7a), (4.7b), such that the rank condition (4.13) holds,

for k = 0, . . . , ϕ−1. Consider the cost function (4.72) with Q(k+ϕ) = Q(k) and R(k+ϕ) = R(k), for

all k ≥ 0. The optimal state-feedback control gain sequence solving the infinite-horizon LQR problem

with u⋆(k) = K⋆(k)x(k) is given by (4.30), for k = 0, . . . , ϕ − 1, and K⋆(k + npϕ) = K⋆(k), for all
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np ≥ 0, with H⋆(k) and S⋆(k) the solution of

min
S,H,O

ϕ−1∑
k=0

(
Tr (Q(k)S(k)) +Tr (O(k))

)
s.t. (4.31b)− (4.31e),

S(ϕ) = S(0),

(4.73)

for k = 0, . . . , ϕ− 1, where

S = {S(1), . . . , S(ϕ)} , H = {H(0), . . . ,H(ϕ− 1)} and O = {O(0), . . . , O(ϕ− 1)} .

Proof. The infinite-horizon LQR problem can be recast as a convex programme (see [198]). Then,

exploiting that the solution is a state-feedback law and introducing (4.14), (4.15) yields (4.31) with

Qf = 0 and T → ∞, where H(k) := G(k)S(k). Recall that K⋆(k) for the considered problem is

ϕ-periodic [196, Section 3.1]. It remains to be shown that this ϕ-periodic solution can be recovered by

solving (4.73) over one period, with the additional constraint S(ϕ) = S(0). Since K⋆(k) is stabilising

by construction, there exists a ϕ-periodic solution S⋆(k + ϕ) = S⋆(k) satisfying (4.31b) and (4.31c)

(this can be shown using analogous arguments as in the proof of Corollary 4.1.4). Thus, the solution of

the slack variable O⋆(k) = R(k)
1
2K⋆(k)S⋆(k)K⋆(k)⊤R(k)

1
2 is also ϕ-periodic. Hence, the constraints

(4.31b) - (4.31e) are satisfied at time k+npϕ, for all np ≥ 0, if they are satisfied at time k. Similarly, the

optimal stage cost I⋆c (k) = Tr (Q(k)S⋆(k)) +Tr (O⋆(k)) , satisfies I⋆c (k+ npϕ) = I⋆c (k), for all np ≥ 0.

Hence, the optimal cost is given by
∑∞

k=0 I
⋆
c (k) = limnp→∞ np

∑ϕ−1
k=0 I

⋆
c (k). Note that

∑ϕ−1
k=0 I

⋆
c (k) is

the optimal cost obtained by solving (4.73). Hence, the periodic solution to the infinite-horizon LQR

problem is given by K⋆(k), for k = 0, . . . , ϕ − 1, solving (4.73), and K⋆(k + npϕ) = K⋆(k), for all

np ≥ 0.

Robust performance

Consider the problem of designing stabilising controllers of the form (4.2), such that the closed-loop

system (4.44a)-(4.44b), (4.44d) satisfies the infinite-horizon performance criterion

∞∑
k=0

w̄(k)
z(k)

⊤ Qp(k) Sp(k)

Sp(k)
⊤ Rp(k)

w̄(k)
z(k)

+ ε

∞∑
k=0

w̄(k)⊤w̄(k) ≤ 0, (4.74)

for all w̄ ∈ ℓ2, with ε > 0, Rp(k) ⪰ 0. As in Section 4.1.3, assume the performance index matrix is

invertible and the inverse is given by (4.46), such that Q̃p(k) ≺ 0, for all k ≥ 0. Suppose the system
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dynamics and the performance index are ϕ-periodic, i.e. (4.66) holds and

C(k + ϕ) = C(k), Qp(k + ϕ) = Qp(k),

Du(k + ϕ) = Du(k), Sp(k + ϕ) = Sp(k),

Dd(k + ϕ) = Dd(k), Rp(k + ϕ) = Rp(k).

Exploiting periodicity, this problem can be solved directly using finite input and noisy state data.

Corollary 4.1.7. Consider the linear periodically time-varying system (4.1), (4.66) and suppose input-

output data is available to form the matrices (4.9), (4.7b), such that the rank condition (4.32) holds,

for k = 0, . . . , ϕ − 1. Suppose the performance index is ϕ-periodic and W (k), as defined in (4.35),

satisfies (4.38), for k = 0, . . . , ϕ − 1. Any sequences of matrices Y (k), P(k) = P(k)⊤ satisfying

(4.53a)-(4.53c), for k = 0, . . . , ϕ− 1, and

P(ϕ) = P(0), (4.75)

are such that the trajectories of the system (4.44a), (4.44b), (4.44d), with K(k) given by (4.54), for

k = 0, . . . , ϕ− 1, and K(k + npϕ) = K(k), for np ≥ 0, and with initial condition x(0) = 0, satisfy the

quadratic robust performance criterion (4.74).

Proof. Analogous to Lemma 4.1.2 it can be shown via dissipativity arguments (see e.g. [204]) and

the dualisation lemma [201, Lemma 4.9] that (4.74) holds, if there exist ϕ-periodic sequences K(k),

P(k) = P(k)⊤ satisfying (4.47a) for all k ≥ 0. Stability is implied by the upper left block of (4.47a)

and the assumption that Q̃p(k) ≺ 0 for all k ≥ 0. The data-driven formulation (4.53), (4.75) follows

via analogous steps to those in the proof of Theorem 4.1.4, exploiting periodicity.

4.1.6 Examples

The efficacy and the practical relevance of the results presented in Sections 4.1.2 - 4.1.5 are demon-

strated via the following examples. Firstly, two numerical simulation examples illustrate the efficacy

of the results for control of noise-free LTV systems over short and long time horizons. Secondly, the

results for periodically time-varying systems, both in the noise-free case and in the case in which the

system is affected by noise, are demonstrated via a practically motivated simulation example involv-

ing a voltage source converter. Finally, the benefits of the results for robust data-driven control of

arbitrarily varying LTV systems for robotics applications are highlighted by considering the problem

of controlling a snake-like robot.
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Illustrative numerical examples

The results for noise-free LTV systems in Section 4.1.2 and the challenges associated with designing

data-driven controllers for linear arbitrarily time-varying systems over large time horizons discussed

in Section 4.1.4 are illustrated via the following two numerical examples.

Finite-horizon LQR: Consider the LTV system (4.4) with

A(k) =

 1 0.0025k

−0.1 cos (0.3k) 1 + 0.053/2 sin (0.5k)
√
k

 ,

B(k) = 0.05

 1

0.1k+2
0.1k+3

 ,

as introduced in [193]. Note that the system is open-loop unstable and consider the problem of finding

a feedback gain sequence K⋆(k) which minimises the cost function (4.25), with

Q(k) = (0.04k + 2) I2, R(k) = 5− 0.02k, Qf = 50I2,

over the time horizon k = 0, . . . , T − 1, with T = 120. The data for the data-driven system repre-

sentation is gathered in L = 3 open-loop simulations with initial conditions sampled from a uniform

distribution on the interval (0, 1) and by applying an input sequence also sampled randomly from

a uniform distribution on (0, 1) over the time interval [0, T − 1]. The data-dependent optimisation

problem (4.31) is solved using CVX [208]. For comparison, the optimal solution is also computed by

solving (4.28) (using model knowledge). The sequence of control gains K⋆(k) computed using the

data-based representation (i.e. the result given in Theorem 4.1.2) coincides with the control sequence

K̄(k), for k = 0, . . . , T − 1, obtained by recursively solving the difference Riccati equation (4.28) with

an average error
∥∥K⋆(k)− K̄(k)

∥∥ of order 10−8. The time histories of the first (top plot) and second

(bottom plot) components of the state of the closed-loop system with {K⋆(0), . . . ,K⋆(T − 1)} and

x0 = [0.4411 0.2711]⊤ are shown in Figure 4.1. The corresponding input sequence (top plot) and the

gain error
∥∥K⋆(k)− K̄(k)

∥∥ (bottom plot) for each time instance are shown in Figure 4.2.
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Figure 4.1: The time histories of the states of the system in closed-loop with the optimal gain sequence
determined from (4.31). (© 2020 IEEE)
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Figure 4.2: The time histories of the optimal input sequence u⋆(k) = K⋆(k)x(k) of the system (top)
and the error between the optimal control gains (bottom) determined from (4.31) (model-free) and
(4.28) (model-based). (© 2020 IEEE)
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Bounded closed-loop trajectories over a larger time horizon: Consider the scalar LTV system

x(k + 1) = (1.3 + 0.08 sin(0.05k) cos(0.1k))x(k) + 0.2 cos(0.2k)u(k), (4.76)

which is open-loop unstable. Consider the problem of determining a control gain sequence ensuring

(4.19) holds, for k = 0, . . . , T , with T = 150. In an attempt to solve the problem via Theorem 4.1.1,

the input-state data for an ensemble of L = 2 experiments covering the entire time horizon, starting

from initial conditions randomly sampled from a uniform distribution on the interval (0, 1), is shown in

Figure 4.3. The state trajectories diverge rapidly resulting in that (4.17) cannot be solved successfully.

Considering instead the receding horizon approach outlined in Section 4.1.4 to collect Ni = 3 successive

data ensembles of L = 2 experiments, with T1 = 50, T2 = 100 and T3 = T = 150, input-state data

collected over the same time horizon is shown in Figure 4.4. The data is arranged to form the matrices

Xi(k), Ui(k), i = 1, 2, 3. Using these matrices for the data-driven system representation based on

successive ensembles of data described in Corollary 4.1.3, instead of the data-driven representation

based on a single data ensemble covering the entire time horizon as in Corollary 4.1.1, in the context

of Theorem 4.1.1, a gain sequence K(k) ensuring that (4.19) holds, for k = 0, . . . , T , and hence solving

the considered control task, is obtained. The corresponding closed-loop response, subject to the initial

condition x0 = 0.4795 (blue) as well as the bound (4.19) (red) are illustrated in Figure 4.5.
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Figure 4.3: Time histories of the input and state of the system (4.76) from an ensemble of two
experiments, (indicated by the solid and dotted lines), for k = 0, . . . , T , starting from initial conditions
randomly sampled from a uniform distribution on the interval (0, 1).
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Figure 4.4: Time histories of the input and state of the system (4.76) for three successive ensembles
(covering intervals up to T1, T2 and T3 indicated in blue, red and green, respectively) of two experiments
(indicated by the solid and dotted lines), starting from initial conditions randomly sampled from a
uniform distribution on the interval (0, 1).
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Figure 4.5: Time history of the state of the closed-loop system (4.76) with K(k) obtained using data
from three successive ensembles.
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Power converter

The efficacy of the results for periodically time-varying systems in Section 4.1.5 is demonstrated via

a practically motivated example. Consider the average equivalent model of a single-phase power

converter as described in [209] and depicted in Figure 4.6, i.e. consider the system

d

dt

vdc
ilg

 =

0 0

0 −R
L

vdc
ilg

+

 −ilg
Cvdc

1
L

 vl +

 1
C 0

0 − 1
L

is
vg

 , (4.77)

where C is the capacitance of the direct current (DC) bus, R and L are the resistance and inductance

associated with a grid filter, the DC bus voltage vdc and the alternating current (AC) grid current ilg

are the system state variables, the converter voltage vl is the control input and the current entering

the DC bus is and the AC grid voltage vg are exogenous signals, which are considered as disturbances.

Let ω denote the grid frequency and consider the parameters given in Table 4.1. Linearising (4.77)

Figure 4.6: Average equivalent model of a single-phase power converter [209].

around the reference trajectory

ṽdc(t) = VDC ,

ĩlg(t) =
√
2/Vg,rms

(
P̃s cos(ωt) + Q̃ sin(ωt)

)
,

ṽg(t) =
√
2Vg,rms cos(ωt),

ṽl(t) = L
d

dt
ĩlg(t) +Rĩlg(t) + ṽg(t),

ĩs(t) = C
d

dt
ṽdc(t) + ĩlg(t)ṽl(t)/ṽdc(t),

and discretising using forward Euler with a time step ∆ = 0.0005s results in an open-loop unstable

linear periodically time-varying system of the form (4.1), (4.66), with period ϕ = 40, with x =

[δvdc, δilg]
⊤, u = δvl and d = diag (∆/C,−∆/L) [δis, δvg]

⊤ + dh, where δ indicates deviations from

Table 4.1: Power converter parameters for the simulation example.

Parameter R L C VDC ω Vg,rms P̃s Q̃

Value 0.06 Ω 0.101 mH 0.89 mF 110 V 50 Hz 50 V 300 W 300 W
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4.1. Data-driven control of linear time-varying systems

the reference trajectory, e.g. δvdc = vdc − ṽdc, and dh contains the higher-order terms of the Taylor

series expansion. Considering the LTV dynamics as unknown, the aim is to design feedback controllers

that maintain the system (4.77) on the reference trajectory, directly using data. Data for the system

representation is gathered via a single open-loop simulation capturing L = 3 periods, i.e. for k =

0, . . . , 120, with initial condition xd(0) randomly generated from a uniform distribution on the interval

(0, 0.1). The exploring inputs ud(k), for k = 0, . . . , 119, are randomly generated from a uniform

distribution on (0, 0.01). The data-dependent optimisation problems are solved using CVX [208].

LQR: Consider the infinite-horizon LQR problem described by the LTV approximation of

the power converter (neglecting the higher-order terms and assuming the exogenous signals fol-

low their reference trajectories, i.e. d = 0) and the cost function (4.72), with Q(k) =

diag
(
0.7 + 0.2 cos(π5k + θ) , 0.3− 0.2 cos(π5k + θ)

)
and R(k) = 0.001, for all k ≥ 0, where θ = −4.1278

rad. Corollary 4.1.6 can be used to determine the optimal gain sequence K⋆(k) directly using data.

For comparison, the solution to the LQR problem is also computed using the LTV model to obtain

the optimal control gain sequence K̄⋆(k). The optimal gain sequence computed directly using data

K⋆(k) coincides with K̄⋆(k) with an average error ∥K⋆(k) − K̄⋆(k)∥ of order 10−8 over one period.

The time histories of the first (black) and second (blue) components of the state of the closed-loop

system with K⋆(k) and initial condition x0 = [1.1236, 0]⊤, which corresponds to a disturbance input
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Figure 4.7: The time histories of the states of the power converter system in closed-loop with the
optimal gain sequence determined from (4.73).
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Figure 4.8: The time histories of the optimal input sequence u⋆(k) = K⋆(k)x(k) for the power converter
system (top) and the error between the optimal control gains (bottom) determined from (4.73) (data-
driven) and (4.28) (model-based) over one period.
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4.1. Data-driven control of linear time-varying systems

δis = 2 A at k = −1, are shown in Figure 4.7 for a simulation horizon of 60 time instances. The

corresponding input sequence for each time instance (top plot) and the gain error ∥K⋆(k) − K̄⋆(k)∥

(bottom plot) over one period, i.e. k = 0, . . . , ϕ− 1, are shown in Figure 4.8.

H∞-control: Consider now the robust performance criterion (4.74) with Qp(k) = −γ̄2I(m+n), γ̄ > 0,

Sp(k) = 0 and Rp(k) = Iq, for all k ≥ 0. Differently from the LQR case, state data for the system

representation is generated by simulating the response of the nonlinear system (4.77), rather than the

LTV approximation. While δis(k) = 0 and δvg(k) = 0 for k = 0, . . . , 120, the higher order terms in the

dynamics are regarded as process noise, i.e. d = dh. In addition, measurement noise v(k) is simulated

by adding a random signal uniformly sampled on the interval (−0.001, 0.001) to the state samples.

Corollary 4.1.7 is used to design a disturbance attenuating controller directly using data. It can be

verified that there exists a sequence of matrices Qr(k), Sr(k) and Rr(k) such that the resulting W (k),

for k = 0, . . . , 39 (one period), satisfies (4.38) and such that (4.53a)-(4.53c), (4.75) are feasible. Via

a line-search, the lowest bound on the H∞ norm for which the problem (4.53a)-(4.53c), (4.75) based

on noisy data is feasible is found to be γ̄ = 7.9. This is the same value that could be achieved by

solving the equivalent model-based problem. To test the data-driven robust controller the response

of the voltage source converter (4.77) to step changes in the mean value of the DC bus current, such

that δis = 1.5 A for 10 ≤ k ≤ 79, is simulated. The time histories of the control input and the

corresponding state response of the closed-loop error system, are compared to the case in which the

control input follows the reference trajectory without any feedback action, i.e. δvl(k) = 0 for all

k, in Figure 4.9. In the latter case, the disturbance input in δis causes vdc to rise (black). When

δvl is regulated using the data-based H∞-controller determined by solving (4.53a)-(4.53c), (4.75), vdc

remains close to its nominal trajectory by releasing power into the AC grid (blue).
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Figure 4.9: Time histories of the state and input response to a step input in the disturbance δis with
and without the robust controller designed directly using noisy data.
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Snake-like robot

The practical relevance of the results in Section 4.1.3 is highlighted via an application example involving

locomotion control of a snake-like robot. An example of a snake-like robot is pictured in Figure 4.10a.

Mimicking the motion of biological snakes (see e.g. [210, 211]), such robots have gained interest for

a wide range of applications, due to their excellent mobility and maneuverability, even in hard-to-

reach, challenging environments. However, obtaining accurate mathematical models describing the

dynamics of snake-like robots is challenging. A qualitative model of their dynamic behaviour for

control design, based on the diagram in Figure 4.10b is presented in [212], [3, Chapter 6]. The system

(a) A photo of the snake-like robot “Kulko” [3].

(b) Simplified model of a snake-like robot (modified from [3]).

Figure 4.10: Snake-like robot.

state is ξ =
[
ϕ⊤ θ px py v⊤ϕ vθ vt vn

]⊤
∈ R2Nl+4, where ϕ =

[
ϕ1 . . . ϕNl−1

]⊤
∈ RNl−1 and

vϕ =
[
vϕ1 . . . vϕNl−1

]T
∈ RNl−1 combine the Nl − 1 relative link displacements and corresponding

velocities, where Nl ∈ N denotes the number of links, θ ∈ R denotes the heading of the robot, which

corresponds to the angle by which the body (t, n)-coordinate frame is rotated with respect to the

global (x, y)-coordinate frame, px ∈ R and py ∈ R are the coordinates of the centre of gravity of

the robot in the global frame, and vθ ∈ R, vt ∈ R and vn ∈ R are the corresponding velocities

representing the rates of change of the heading angle and the centre of gravity position in the body
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4.1. Data-driven control of linear time-varying systems

frame, respectively. The control inputs are the actuator forces ui ∈ R, i = 1, . . . , Nl − 1, at the joints.

Let υ =
[
u1 . . . uNl−1

]⊤
, the dynamics of the snake-like robot are then described by (see [212], [3,

Chapter 6])

ϕ̇ = vϕ, (4.78a)

θ̇ = vθ, (4.78b)

ṗx = vt cos θ − vn sin θ, (4.78c)

ṗy = vt sin θ + vn cos θ, (4.78d)

v̇ϕ = −cn
m

vϕ +
cp
m
vtAD

Tϕ+
1

m
DDTυ, (4.78e)

v̇θ = −λ1vθ +
λ2

Nl − 1
vtē

Tϕ, (4.78f)

v̇t = −
ct
m
vt +

2cp
Nlm

vnē
Tϕ− cp

Nlm
ϕTAD̄vϕ, (4.78g)

v̇n = −cn
m

vn +
2cp
Nlm

vtē
Tϕ , (4.78h)

where cn and ct denote the friction coefficients in the normal and tangential directions, respectively,

cp denotes the propulsion coefficient defined as cp = (cn − ct)/(2l), with m and l denoting the mass

and length of a single link, respectively, and where ē =
[
1 . . . 1

]⊤
∈ RNl−1, A ∈ R(Nl−1)×Nl and

D ∈ R(Nl−1)×Nl denote the matrices

A =


1 1

. . .
. . .

1 1

 , D =


1 −1

. . .
. . .

1 −1

 ,

D̄ = DT (DDT )−1 ∈ RNl×(Nl−1), and λ1, λ2 are rotational parameters. On planar surfaces, the under-

actuated robotic system achieves forward motion via lateral undulation, namely the joint displacements

track the gait pattern

ϕi,loc(t) = α sin(ωt+ (i− 1)β) + γ, (4.79)

where α, β, ω and γ are parameters which can be used to prescribe a desired trajectory for the centre

of gravity of the snake-like robot, see [3] for more details. If the system model is known, controllers

ensuring this locomotion reference (4.79), i = 1, . . . , Nl − 1, is tracked can be designed via a partial

feedback linearisation as shown in [3]. However, the complex friction forces acting between the snake-

like robot and the ground are difficult to model accurately, yet, these friction forces play a crucial role

in achieving undulatory locomotion. More precisely, assume only nominal values c̃n, c̃t and c̃p of the

friction coefficients cn, ct and cp are given and consider the input law

υ = υfl = m(DDT )−1

(
ū+

c̃n
m

vϕ −
c̃p
m
vtAD

Tϕ

)
. (4.80)
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If c̃σ = cσ, for σ ∈ {n, t, p}, then (4.78e) with υ as given in (4.80) reduces to

v̇ϕ = ū,

and ū can be designed to ensure ϕi tracks ϕi,loc, for i = 1, . . . , Nl − 1. In [212, Section V] it is shown

that the choice

ū = ϕ̈loc + kp(ϕloc − ϕ) + kd(ϕ̇loc − vϕ), (4.81)

where ϕloc = [ϕ1,loc, . . . , ϕNl−1,loc]
⊤, with kp > 0 and kd > 0, ensures that limt→∞(ϕloc(t)− ϕ(t)) = 0,

for any initial condition ξ(0). Consider instead the case in which c̃σ ̸= cσ, for σ ∈ {n, t, p}. The terms

including the friction coefficients in (4.78e) no longer cancel out. Focusing on the subsystem described

by the actuated states ϕ and vϕ, namely (4.78a), (4.78e), the dynamics of the “actuated subsystem”

with υ as given in (4.80) are described by

ϕ̇ = vϕ ,

v̇ϕ =
c̃n − cn

m
vϕ +

cp − c̃p
m

vtAD
Tϕ+ ū ,

(4.82)

Linearising (4.82) around the reference trajectories

ϕ(t) = ϕloc(t) =
[
ϕ1,loc(t) . . . ϕNl−1,loc(t)

]⊤
,

vϕ(t) = ϕ̇loc(t),

ū(t) = ϕ̈loc(t),

and discretising via zero-order hold with time step ∆ results in an LTV system of the form (4.1a) with

unknown time-varying matrices A(k) and B(k). In this case, the result of Theorem 4.1.3 provides a

method to design a control law similar to (4.81), using data in place of exact knowledge of the friction

coefficients, which ensures that the joint angle trajectories ϕ(t) stay within a bound of the reference

ϕloc(t). Namely, let

ū(t) = ϕ̈loc(t) + u(t), (4.83)

where u(t) is obtained via zero-order hold from u(k) = K(k)x(k), with

x(k) =
[
ϕ(k∆)− ϕloc(k∆) vϕ(k∆)− ϕ̇loc(k∆)

]⊤
,

and where K(k) is designed using Theorem 4.1.3. In [32] simulation studies are conducted comparing

the performance of a controller of the form (4.83) designed using data to a controller of the form

(4.81) with the gains kp, kd chosen as in [3, Section 6.10]. For an average error of 30% between the

nominal friction coefficients used in (4.80) and the actual friction coefficients it is shown that the
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controller choice of (4.83) for ū outperforms the choice (4.81) without re-tuning the gains. While

strategic tuning methods exist (see e.g. [96]) and can be used to improve the performance of (4.81)

for the case c̃σ ̸= cσ, for σ ∈ {n, t, p}, the proposed data-driven methods can have benefits from a

user point of view by providing a systematic control design approach in the presence of inaccurate

knowledge of the friction coefficients. Instead of repeated trials involved in the tuning process, the

data-driven approach based on Theorem 4.1.3 only requires a predefined number of experiments for

data collection. Another benefit of the resulting time-varying feedback controller in (4.83) compared

to the static feedback law in (4.81) is that it can capture any time-variation in the dynamics. For

example, consider a control task which involves moving the centre of gravity of the snake-like robot

from an initial position on one type of surface to a final position on a different type of surface with

different friction properties. The static gains kp and kd in (4.81) need to be tuned for a each type of

surface and if a single controller is to be used for the control task, then this represents a compromise.

In contrast to this, the changes in friction coefficients cn, ct and cp along the robot’s trajectory are

repeatable time-variations, which are captured by the ensemble of data collection experiments and are

hence incorporated into the control design via the data-driven approach based on Theorem 4.1.3.
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4.2 Data-driven cost representation

While the previous section focuses on control design in the context of unknown system dynamics,

this section instead considers the problem of designing optimal controllers if the objective functions

are not known a priori. Inverse optimal control [164, 81] addresses this problem by reconstructing

cost functions from expert data. In this section the problem is considered from a different point of

view. Namely, the cost of an LQR problem is reconstructed using a finite, non-optimal, open-loop

data sequence of the system state, the input and a performance variable. Rather than identifying the

cost weights from the data and then solving the classical LQR problem, this section builds upon the

results presented in [95] and it is shown that a similar approach can be employed to represent the

quadratic cost function directly using data. In combination with the results from [95], the presented

results allow to solve LQR problems involving both unknown dynamics and unknown (quadratic) cost

via a purely data-dependent convex optimisation problem.

The remainder of the section is organised as follows. The considered problem is defined in Section 4.2.1.

The data-driven representation of cost functions in the context of LQR problems is introduced in

Section 4.2.2. This representation is used in Section 4.2.3 to formulate and solve the LQR problem

via an SDP with purely data-dependent constraints.

4.2.1 Problem formulation

Consider the LTI system (2.17), namely

x(k + 1) = Ax(k) +Bu(k),

with x ∈ Rn and u ∈ Rm, and the problem of determining a stabilising state-feedback control law

for the linear dynamical system, which minimises an unknown quadratic cost functional. Instead of

requiring knowledge of an expert strategy (as is typically required in inverse optimal control), assume

it is possible to perform open-loop experiments on the system and collect “non-expert” data of the

input u(k), state x(k) and a performance output over the finite time interval k = 0, . . . , T , T ∈ N.

The performance output is defined as

z(k) = Cx(k) +Du(k), (4.84)

where z ∈ Rq and C, D are unknown constant matrices such that D⊤D ≻ 0. Let A =

A−B(D⊤D)−1D⊤C and C = C⊤C − C⊤D(D⊤D)−1D⊤C and consider the following assumption.
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Assumption 4.2.1. The (unknown) matrices A, B, C and D are such that the pair (A,B) is stabil-

isable and the pair (A, C) is observable10.

The considered problem is formalised in the following statement.

Problem 4.2.1. Consider the system (2.17) and the cost functional

J (x(0), u(·)) =
∞∑
k=0

z(k)⊤z(k), (4.85)

with z(k) as defined in (4.84). Suppose the system matrices A, B and cost matrices C, D are unknown,

but that finite data sequences of the state xd,[0,T ], input ud,[0,T−1] and performance output zd,[0,T−1]

are available. Determine the control input u⋆(x), which renders the zero equilibrium of the system

(2.17) with u = u⋆ asymptotically stable and which is such that J(x(0), u∗) ≤ J(x(0), u), for all u.

While the focus lies on the data-driven representation of quadratic cost functions, the available data

is sufficient to also represent the system dynamics directly using data (as in [95]). To consider the

most general case, the system dynamics are hence treated as unknown11.

4.2.2 Cost representation

Rather than using the collected data to identify the unknown matrices, it is proposed to parameterise

the cost function with data – similarly to how the system dynamics are parameterised in [95] – in

order to solve the problem directly using data. Consider the data matrices U−, X− and X+ as defined

in (2.18) with k0 = 0, namely,

U− =
[
ud(0) . . . ud(T − 1)

]
,

X− =
[
xd(0) . . . xd(T − 1)

]
,

X+ =
[
xd(1) . . . xd(T )

]
,

as well as

Z− =
[
zd(0) . . . zd(T − 1)

]
. (4.86)

Corollary 4.2.1. Suppose the rank condition (2.19) holds, i.e.

rank

X−

U−

 = n+m,

then the performance output (4.84) in closed-loop with u(k) = K(k)x(k) can equivalently be represented

10Assumption 4.2.1 ensures that the algebraic Riccati equation associated with the optimal control problem (Prob-
lem 4.2.1) has a unique, stabilising solution, see e.g [52].

11It is worth noting that the results are applicable and relevant even if the system matrices A and B are known.
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as

z(k) = Z−Gx(k), (4.87)

where G satisfies (2.21), namely In
K

 =

X−

U−

G.

Proof. Consider the data matrices U−, X− and Z− and note that

Z− = CX− +DU−.

Since (2.19) holds,

C +DK =
[
C D

]In
K

 = Z−G, (4.88)

with G satisfying (2.21), analogous to Theorem 2.2.1.

4.2.3 Optimal Control

In the following, the data-driven performance output representation introduced in Corollary 4.2.1

is combined with the system representation in Theorem 2.2.1 to formulate and solve LQR prob-

lems in the context of unknown cost criteria and unknown system dynamics via a data-dependent SDP.

Theorem 4.2.1. Consider Problem 4.2.1. Suppose Assumption 4.2.1 holds and that the available

data is such that the condition (2.19) is satisfied for the matrices (2.18). Then, the optimal control

input is given by u⋆ = K⋆x, with K⋆ given by

K⋆ = U−H
⋆ (X−H

⋆)−1 , (4.89)

with H⋆ the solution of

min
γ, S,H,O

γ

s.t. Tr (O) ≤ γ,S − In X+H

H⊤X⊤
+ S

 ⪰ 0,

 O Z−H

H⊤Z⊤
− S

 ⪰ 0,

X−H = S.

(4.90)
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Proof. Given Assumption 4.2.1, the solution of the LQR problem defined by the cost function (4.85),

(4.84) and the dynamics (2.17) is unique and given by a static state feedback law of the form u⋆(k) =

K⋆x(k), with

K⋆ = −
(
D⊤D +B⊤PB

)−1 (
D⊤C +B⊤PA

)
,

and P = P⊤ ≻ 0 satisfying the algebraic Riccati equation

P = (C +DK⋆)⊤ (C +DK⋆) + (A+BK⋆)⊤ P (A+BK⋆) ,

see e.g. [52]. From Lagrange duality [213], the optimal feedback gain K⋆ can equivalently be found

via the optimisation

min
K,S

Tr
(
(C +DK)S (C +DK)⊤

)
s.t. S − In − (A+BK)S (A+BK)⊤ ⪰ 0,

(4.91)

where S = S⊤ ⪰ In is the controllability Gramian [214]. The SDP (4.90) is obtained by introducing

the results of Theorem 2.2.1 and Corollary 4.2.1, i.e. by introducing (A+BK) = X+G and (C+BK) =

Z−G, and by converting the problem into a convex programme via the the change of variable H := GS

and using the Schur complement. Note that the equality constraint S = X−H comes from the upper

row block in (2.21). The data representation of the optimal gain (4.89) is given via the lower row

block in (2.21).

Remark 4.2.1. In the continuous-time case, the closed-loop system can be represented as12 ẋ(t) =

X+Gx(t), and the control law as u(t) = U−Gx(t), with G satisfying (2.21) with

X− =
[
xd(0) . . . xd ((T − 1)∆)

]
,

U− =
[
ud(0) . . . ud ((T − 1)∆)

]
,

X+ =
[
ẋd(0) . . . ẋd ((T − 1)∆)

]
,

where ∆ is the sampling time [95]. Similarly, (4.88) holds with

Z− =
[
zd(0) . . . zd ((T − 1)∆)

]
.

Hence, the optimal control strategy can be determined following analogous steps as in Theorem 4.2.1,

considering the continuous-time equivalent of (4.91). Despite being designed using sampled data, the

resulting controller is optimal for the continuous-time system, not the equivalent sampled-data model.

12Note that this assumes that the derivative of the state is available for measurement, which is not usually the case
and filtering or numerical methods may be required to approximate the derivative.
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Remark 4.2.2. While the focus in this section is on LTI systems, the data-driven cost representation

can be extended to the time-varying case considered in Section 4.1 if an ensemble of performance

output data is available. Namely, consider the matrices (4.7a), (4.7b) and

Z̄(k) =
[
zd,1(k) . . . zd,L(k)

]
,

for k = 0, . . . , T − 1. If the rank condition (4.13) holds, then the closed-loop performance output can

equivalently be represented as

z(k) = Z̄(k)G(k)x(k),

with G(k) satisfying (4.15), for k = 0, . . . , T − 1.
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4.3 Conclusion

A data-driven representation of closed-loop LTV systems under state-feedback is employed to design

feedback controllers ensuring that the resulting closed-loop trajectories satisfy certain boundedness,

performance and robustness criteria via the formulation of convex feasibility or optimisation problems

involving data-dependent LMIs. Both the noise-free case and the case in which the data and the system

are affected by process and measurement noise are considered. Approaches to tackle challenges arising

for large time horizons are proposed and special insights are also provided for the case of periodically

time-varying systems. The results are illustrated and motivated via both numerical examples and

practical examples involving a power converter and locomotion of a snake-like robot.

For LTI systems, an approach to represent unknown cost functionals in the context of LQR problems

directly using finite, open-loop, “non-expert” data is proposed. In combination with the data-based

representation of unknown LTI systems presented in [95], this makes it possible to solve LQR problems

with both unknown dynamics and unknown cost via a purely data-dependent SDP. While this is an

interesting result by itself, it is also relevant to a specific class of LQ dynamic games with asymmet-

ric information structure. This is addressed and illustrated via an example involving human-robot

interaction in Chapter 5.
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Chapter 5

Data-driven methods for dynamic

games

In Chapter 3, infinite-horizon dynamic games and in particular their feedback Nash equilibrium so-

lutions, are studied under the assumption that each player has complete knowledge of the dynamics

of the entire system and the performance criteria of all players. While this constitutes the “classi-

cal” game formulation, dynamic game problems arise in a variety of applications, such as multi-agent

systems [29], cyber-physical systems [77] or human-robot systems [20], in which it is possible or even

likely that each player has access to different and typically partial information regarding the system

dynamics and performance criteria of the other players. In this chapter, this challenge is addressed

by considering games with different incomplete information structures and introducing data-driven

methods from Chapter 2 and Chapter 4 in the context of results of Chapter 3 to overcome incomplete

information. Firstly, in Section 5.1 it is shown that the results of Section 4.2 are relevant to a specific

class of LQ dynamic games with asymmetric information structure, in which one of the players does

not know the performance objectives of the other players, and may not know the system dynamics.

Secondly, in Section 5.2 the focus lies on games with incomplete information in the sense that each

player lacks knowledge of the performance objectives of the other players and the system dynamics.

It is shown that using data in the context of the iterative methods proposed in Section 3.4 the players

can jointly converge to a feedback Nash equilibrium.

5.1 A class of LQ games with partially unknown information

From distributed control [29], human-robot interaction [20] to cyber-security [77], there are various

settings in which each player may have access to different and potentially incomplete information in the

context of dynamic game problems. In this section, a class of deterministic, non-cooperative, nonzero-

sum, infinite-horizon, LQ, discrete-time dynamic games is considered in which all players but one
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5.1. A class of LQ games with partially unknown information

have access to full system and cost information, whereas the remaining player only has knowledge of

their own control objective, but lacks knowledge regarding the objectives of the other players and may

not know the system dynamics. The objective is to determine a feedback Nash equilibrium solution

of the game. While the players with complete information are faced with a classical game problem,

the remaining player lacks the required information to determine a Nash equilibrium. If the “fully

informed” players adhere to strategies corresponding to a feedback Nash equilibrium, the problem

of determining the corresponding equilibrium strategy for the “uninformed” player is reduced to an

optimal control problem, with unknown terms appearing in both the system dynamics and in the cost

function. It is demonstrated that, given appropriate measurements, the player can determine the Nash

equilibrium strategy based solely on collected data utilising the results in Section 4.2, which combine

data-driven results introduced in [95] and recalled in Chapter 2 with a data-driven cost representation.

To demonstrate the relevance of the presented results, a practically motivated example involving

simulations of a human-robot system is considered. In [20] human-robot interactions are modelled as

a two-player LQ game, inspired by evidence that human behaviour in such interactive settings can be

modelled as Nash equilibrium strategies of a game [215]. However, the contact robot cannot know the

performance criteria of the human a priori and may need to react appropriately to different human

operators (with different unknown dynamic behaviours). Hence, the game cannot be solved using

classical methods and it is demonstrated that the presented results provide a strategy to overcome

this difficulty.

The remainder of this section is structured as follows. In Section 5.1.1 the considered problem is spec-

ified, before a data-driven solution approach is proposed in Section 5.1.2. The results are illustrated

via simulations involving human-robot interactions in Section 5.1.3.

5.1.1 Problem formulation

Consider the system (3.1), namely,

x(k + 1) = Ax(k) +

N∑
i=1

Biui(k),

with x ∈ Rn, which is influenced by the control actions of N players. Let each player i be associated

with a performance output

zi(k) = Cix(k) +

N∑
j=1

Dijuj(k), (5.1)
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5.1. A class of LQ games with partially unknown information

where Ci and Dij are constant matrices of appropriate dimension, such that D⊤
iiDii ≻ 0, for i =

1, . . . , N , j = 1, . . . , N . Assume each player i seeks to minimise the cost functional

Ji (x(0), u1(·), . . . , uN (·)) =
∞∑
k=0

zi(k)
⊤zi(k), (5.2)

via the choice of control action ui ∈ Rmi , for i = 1, . . . , N .

Remark 5.1.1. Note that the cost functionals (5.2), for i = 1, . . . , N , are more general than the cost

functionals typically encountered in the dynamic games literature (see e.g. [9]), more precisely, cost

functionals of the form (3.2), i = 1, . . . , N , as considered in Chapter 3. In the special case in which

C⊤
i Dij = 0 and D⊤

ijDil = 0, for i = 1, . . . , N , j = 1, . . . , N , l = 1, . . . , N , l ̸= j, the described

problem corresponds to the game (3.1), (3.2), i = 1, . . . , N , considered in Chapter 3. In addition

to being in line with related literature, this form of cost functionals has been chosen in Chapter 3

to streamline the notation. In this section, the more general case is considered instead. This is

not only motivated by the application example considered in Section 5.1.3, but also more generally

by the fact that discretised game problems, which are expected to be of particular relevance in the

context of determining equilibrium strategies directly using sampled data, are typically of this form.

More precisely, consider a continuous-time LQ dynamic game with the cost functionals being the

continuous-time version of (3.2), i = 1, . . . , N , i.e. there are no cost terms penalising weighted inner

products between the state and a player’s input or between different players’ inputs. If the problem

is discretised using zero-order hold, then the equivalent discrete-time cost is typically of the form

(5.2), for i = 1, . . . , N , i.e. the off-diagonal terms C⊤
i Dij and D⊤

ijDil, for i = 1, . . . , N , j = 1, . . . , N ,

l = 1, . . . , N , l ̸= j, are in general nonzero, see e.g. [216].

With the aim of determining admissible strategies in the sense of Definition 3.3.1 for the control

actions ui, i = 1, . . . , N , which constitute a feedback Nash equilibrium (see Definition 2.1.2) solution

of the game (3.1), (5.2), i = 1, . . . , N , the result of Theorem 3.1.1 is revisited and revised for the more

general cost (5.2), i = 1, . . . , N , in the following result.

Corollary 5.1.1. Consider the game (3.1), (5.2), i = 1, . . . , N . The set of strategies

{ϕ⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))} ,

where ϕ⋆
i (x(k)) = K⋆

i x(k), for i = 1, . . . , N , constitutes a feedback Nash equilibrium solution of the

game if and only if (3.4) holds, i.e.

ρ

A+
N∑
j=1

BjK
⋆
j

 < 1,
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5.1. A class of LQ games with partially unknown information

and there exist P ⋆
i = P ⋆

i
⊤ ⪰ 0 ∈ Rn×n satisfying

P ⋆
i =

Ci +
N∑
j=1

DijK
⋆
j

⊤Ci +
N∑
j=1

DijK
⋆
j

+

A+
N∑
j=1

BjK
⋆
j

⊤

P ⋆
i

A+
N∑
j=1

BjK
⋆
j

 , (5.3)

for i = 1, . . . , N , and


D⊤

11D11 +B⊤
1 P

⋆
1B1 . . . D⊤

11D1N +B⊤
1 P

⋆
1BN

...
. . .

...

D⊤
NNDN1 +B⊤

NP ⋆
NB1 . . . D⊤

NNDNN +B⊤
NP ⋆

NBN



K⋆

1

...

K⋆
N

 = −


D⊤

11C1 +B⊤
1 P

⋆
1A

...

D⊤
NNCN +B⊤

NP ⋆
NA

 . (5.4)

The feedback Nash equilibrium is such that the equilibrium cost incurred by player i starting from

initial condition x(0) is J⋆
i = Ji(x(0), ϕ

⋆
1(x(k)), . . . , ϕ

⋆
N (x(k))) = x(0)⊤P ⋆

i x(0).

Proof. The proof is analogous to that of Theorem 3.1.1, considering the cost functionals (5.2) instead

of (3.2), for i = 1, . . . , N . More precisely, let
{
K̄⋆

1 , . . . , K̄
⋆
N

}
and

{
P̄ ⋆
1 , . . . , P̄

⋆
N

}
satisfy (3.4), (5.3),

i = 1, . . . , N , and (5.4). Assuming that the actions of players j, j = 2, . . . , N , are fixed at uj(k) =

K̄⋆
j x(k), consider the minimisation of the cost function (5.2), i = 1, subject to the system dynamics

(3.1) by player 1, namely the minimisation of

J1(x(0), u1(·), K̄⋆
2x(k), . . . , K̄

⋆
Nx(k)) =

∞∑
k=0


C1 +

N∑
j=2

D1jK̄
⋆
j


︸ ︷︷ ︸

C̄1

x(k) +D11u1(k)


⊤

×


C1 +

N∑
j=2

D1jK̄
⋆
j

x(k) +D11u1(k)


=

∞∑
k=0

[
x(k)⊤u1(k)

⊤
]C̄⊤

1 C̄1 C̄⊤
1 D11

D⊤
11C̄1 D⊤

11D11

x(k)
u(k)

 ,

(5.5)

subject to (3.8), namely,

x(k + 1) =

A+

N∑
j=2

BjK̄
⋆
j


︸ ︷︷ ︸

Ā1

x(k) +B1u1(k).

This constitutes an LQR problem (with weighting of state-input inner product) for player 1. Note that
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5.1. A class of LQ games with partially unknown information

by assumption, there exists a stabilising solution POC = P̄ ⋆
1 satisfying the algebraic Riccati equation

POC = C̄⊤
1 C̄1+Ā⊤

1 P
OCĀ1−

(
C̄⊤
1 D11 + Ā⊤

1 P
OCB1

)(
D⊤

11D11 +B⊤
1 P

OCB1

)−1 (
D⊤

11C̄1 +B⊤
1 P

OCĀ1

)
,

(5.6)

associated with this LQR problem. This follows by rearranging the first line of (5.4) and inserting it

into (5.3), i = 1. With the strategies of players j, j = 2, . . . , N , fixed, the optimal strategy for player 1

is hence

uOC
1 (k) = −

(
D⊤

11D11 +B⊤
1 P

OCB1

)−1 (
D⊤

11C̄1 +B⊤
1 P

OCĀ1

)
x(k) = K̄⋆

1x(k), (5.7)

and the optimal cost is J1(x(0), K̄
⋆
1x(k), . . . , K̄

⋆
Nx(k)) = x(0)⊤POCx(0) = x(0)⊤P̄ ⋆

1 x(0), see e.g. [52].

Hence, (3.11) holds, i.e.

J1(x(0), K̄
⋆
1x(k), . . . , K̄

⋆
Nx(k)) ≤ J1(x(0), u1(·), K̄⋆

2x(k), . . . , K̄
⋆
Nx(k)),

for all admissible
{
u1(·), K̄⋆

2x(k), . . . , K̄
⋆
Nx(k)

}
. Conversely, if the set of gains

{
K̄⋆

1 , . . . , K̄
⋆
N

}
cor-

responds to a feedback Nash equilibrium solution of the game (3.1), (5.2), i = 1, . . . , N , then by

Definition 2.1.2, (3.11) holds for all admissible
{
u1(·), K̄⋆

2x(k), . . . , K̄
⋆
Nx(k)

}
, and with the actions of

players j, j = 2, . . . , N , fixed at uj(k) = K̄⋆
j x(k), (5.7) with POC the solution of (5.6) is the unique

stabilising optimal control action for player 1 solving the LQR problem (3.8), (5.5), see e.g. [52]. This

implies that there exists P̄ ⋆
1 = POC such that (5.3), i = 1, and the first line of (5.4) hold. The proof

is concluded via analogous arguments for players j, j = 2, . . . , N .

In Corollary 5.1.1 feedback Nash equilibrium solutions of the game (3.1), (5.2), i = 1, . . . , N , are

characterised via the stabilising solutions of a set of coupled algebraic equations, namely (5.3), i =

1, . . . , N , and (5.4), which may also admit solutions which do not render the closed-loop system stable.

In Corollary 3.1.1 in Section 3.1, sufficient conditions depending only on the system and cost matrices

are provided for the solutions of the equivalent coupled equations (3.5), i = 1, . . . , N , and (3.6),

corresponding to the game (3.1), (3.2), i = 1, . . . , N , to be stabilising. Due to the additional inner

product terms between the state and the inputs as well as between the inputs of different players in

the more general cost functional (5.2), equivalent conditions for the game (3.1), (5.2), i = 1, . . . , N ,

depend on the solution {K⋆
1 , . . . ,K

⋆
N}. For example, analogous to the conditions provided in [9,

Proposition 6.3] (for the game (3.1), (3.2), i = 1, . . . , N), a solution {K⋆
1 , . . . ,K

⋆
N} and {P ⋆

1 , . . . , P
⋆
N}

to (5.3), i = 1, . . . , N , and (5.4) is such that (3.4) holds and the corresponding feedback strategies

ϕ⋆
i (x(k)) = K⋆

i x(k), i = 1, . . . , N , constitute a feedback Nash equilibrium of the game (3.1), (5.2),

i = 1, . . . , N , if the pair (
Āi, Bi

)
,
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5.1. A class of LQ games with partially unknown information

where Āi = A+
∑N

j=1,j ̸=iBjK
⋆
j , is stabilisable and the pair

((
Āi −Bi

(
D⊤

iiDii

)−1
D⊤

ii C̄i

)
,

(
C̄⊤
i C̄i − C̄⊤

i Dii

(
D⊤

iiDii

)−1
D⊤

ii C̄i

))
,

where C̄i = Ci +
∑N

j=1,j ̸=iDijK
⋆
j , is detectable, for i = 1, . . . , N . In the following result, alternative

sufficient conditions are provided. While these may be less general, they are more easily verified given

a solution {K⋆
1 , . . . ,K

⋆
N} and {P ⋆

1 , . . . , P
⋆
N} to (5.3), i = 1, . . . , N , and (5.4).

Corollary 5.1.2. Let {K⋆
1 , . . . ,K

⋆
N} and {P ⋆

1 , . . . , P
⋆
N}, where P ⋆

i = P ⋆
i
⊤ ⪰ 0, for i = 1, . . . , N , be a

solution to (5.3), i = 1, . . . , N , and (5.4). If

N∑
i=1

P ⋆
i ≻ 0, (5.8a)

and
N∑
i=1

Ci +

N∑
j=1

DijK
⋆
j

⊤Ci +

N∑
j=1

DijK
⋆
j

 ≻ 0, (5.8b)

then {K⋆
1 , . . . ,K

⋆
N} is such that (3.4) holds and the corresponding strategies (3.3), i.e. ϕ⋆

i (x(k)) =

K⋆
i x(k), i = 1, . . . , N , constitute a feedback Nash equilibrium solution of the game (3.1), (5.2), i =

1, . . . , N .

Proof. Consider the sum over i of (5.3), for i = 1, . . . , N , namely

N∑
i=1

P ⋆
i =

N∑
i=1

Ci +
N∑
j=1

DijK
⋆
j

⊤Ci +
N∑
j=1

DijK
⋆
j


+

A+
N∑
j=1

BjK
⋆
j

⊤(
N∑
i=1

P ⋆
i

)A+
N∑
j=1

BjK
⋆
j

 , (5.9)

and the candidate Lyapunov function W (x(k)) = x(k)⊤
(∑N

i=1 P
⋆
i

)
x(k). If the conditions (5.8) hold,

then (5.9) implies that W (x(k + 1))−W (x(k)) < 0, for all x ̸= 0, and hence that (3.4) holds.

To characterise feedback Nash equilibrium solutions of the game (3.1), (5.2), i = 1, . . . , N , in terms of

the coupled matrix equations (5.3), i = 1, . . . , N , and (5.4) – and to obtain their solutions and thereby

the Nash equilibrium strategies – it is required that each player i has full knowledge of the system

dynamics (3.1), the objective function Ji given in (5.2) and the objective functions Jj , j = 1, . . . , N ,

j ̸= i, of all the “opponents”. Consider instead the case in which different information is available to

different players. More precisely, let one player (player N) only have knowledge regarding the own

objective JN , but have no knowledge of the objectives Jj , j = 1, . . . , N − 1, of the remaining players

and may not know the system dynamics (3.1). All other players j, j = 1, . . . , N − 1, instead have
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5.1. A class of LQ games with partially unknown information

Table 5.1: Information available to each player. The parentheses indicate information which may be
available but is not required for the proposed solution as detailed in Section 5.1.2.

Player 1 Player 2

Dynamics: A, B1, B2 (A, B1, B2)
Cost: C1, D11, D12, C2, D21, D22 (C2, D21, D22)

full knowledge of the objectives of all players (including themselves), as well as the system dynamics.

For ease of exposition, the results in this section are presented for the two-player case (i.e. N = 2),

however, they trivially extend to the N -player case, provided only one of the players is faced with

limited information. Under the given information structure, which is summarised in Table 5.1, player 1

is faced with a classical dynamic game (3.1), (5.2), i = 1, 2, and can determine a feedback gain K⋆
1

corresponding to a Nash equilibrium solution by solving (3.4), (5.3), i = 1, 2, and (5.4)1. Player 2, on

the other hand, lacks part of the required information.

Assumption 5.1.1. Let {K⋆
1 ,K

⋆
2} and {P ⋆

1 , P
⋆
2 }, where P ⋆

i = P ⋆
i
⊤ ⪰ 0, for i = 1, 2, be a solution

to (3.4), (5.3), i = 1, 2, and (5.4), such that P ⋆
2 ≻ 0. Assume player 1 adheres to the corresponding

feedback Nash equilibrium strategy, i.e. u1(k) = ϕ⋆
1(x(k)) = K⋆

1x(k), irrespective of the actions of

player 2.

This results in the following problem.

Problem 5.1.1. Consider the game (3.1), (5.2), i = 1, 2, and let Assumption 5.1.1 hold. Given the

underlying information structure as specified in Table 5.1, determine the corresponding feedback Nash

equilibrium strategy ϕ⋆
2(k) = K⋆

2x(k) of player 2 .

5.1.2 Data-driven Nash equilibrium solution

In the following, Problem 5.1.1 is addressed by demonstrating how player 2 can utilise available data

to compensate for lack of cost and system information. To this end, note that under the given

Assumptions, the problem faced by player 2 can be reduced to an LQR problem with unknown terms

appearing in both the system dynamics and the cost function, as detailed in the following result.

Proposition 5.1.1. Consider Problem 5.1.1. The problem of determining the Nash Equilibrium strat-

egy ϕ⋆
2(x(k)) of player 2 constitutes an LQR problem with unknown terms in both the cost functional

and in the dynamics and ϕ⋆
2(x(k)) is the unique solution to this LQR problem.

Proof. With the action of player 1 fixed at u1(k) = K⋆
1x(k), the cost functional (5.2), i = 2, which

1Note that solving the coupled algebraic matrix equations characterising Nash equilibrium solutions of nonzero-sum
multi-player games is generally difficult [35], as also discussed in Chapter 3. However, it is assumed here that an exact
solution can be determined by player 1.
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player 2 aims to minimise via the action u2 becomes

J2 (x(0),K
⋆
1x(k), u2(·)) =

∞∑
k=0

(
C̄2x(k) +D22u2(k)

) (
C̄2x(k) +D22u2(k)

)
, (5.10)

and the dynamics (3.1) are perceived by player 2 as

x(k + 1) = Ā2x(k) +B2u(k), (5.11)

where Ā2 = A+B1K
⋆
1 and C̄2 = C2+D21K

⋆
1 , as defined in Section 5.1.1. This constitutes an LQR prob-

lem (with weighting of state-input inner product). There exists a unique solution POC = POC⊤ ≻ 0

to the algebraic Riccati equation

POC = C̄⊤
2 C̄2+Ā⊤

2 P
OCĀ2−

(
C̄⊤
2 D22 + Ā⊤

2 P
OCB2

)(
D⊤

22D22 +B⊤
2 P

OCB2

)−1 (
D⊤

22C̄2 +B⊤
2 P

OCĀ2

)
,

(5.12)

associated with this LQR problem and the optimal strategy is given by

uOC
2 (k) = −

(
D⊤

22D22 +B⊤
2 P

OCB2

)−1 (
D⊤

22C̄2 +B⊤
2 P

OCĀ2

)
x(k) = KOCx(k), (5.13)

if and only if the pair
(
Ā2 −B2(D

⊤
22D22)

−1D⊤
22C̄2, C̄⊤

2 C̄2 − C̄⊤
2 D22(D

⊤
22D22)

−1D⊤
22C̄2

)
is observable

and the pair (Ā2, B2) is stabilisable (see e.g. [52]). Recall from Assumption 5.1.1 that K⋆
1 is such that

there exist K⋆
2 , P

⋆
2 = P ⋆

2
⊤ ≻ 0 satisfying (3.4), (5.3), for i = 2, and (5.4) with N = 2, and note that

(5.3), i = 2, and the second row of (5.4) give (5.12), (5.13) with POC = P ⋆
2 and KOC = K⋆

2 . Hence, the

conditions for a unique solution are satisfied and ϕ⋆
2(x(k)) = K⋆

2x(k) is the unique optimal strategy.

Since player 2 lacks information regarding the control objective of player 1, K⋆
1 and consequently the

matrices Ā2 and C̄2 are unknown to player 2.

With this reformulation in place, it is proposed to use the results of Section 4.2, in particular The-

orem 4.2.1, which presents a method to solve LQR problems with unknown cost and unknown dy-

namics directly using data, to solve Problem 5.1.1 and hence determine the Nash equilibrium strategy

of player 2 for the considered LQ game with asymmetric information structure. Let the following

assumption hold.

Assumption 5.1.2. Player 2 is able to give “exploring” inputs u2,d,[0,T−1] to excite the dynamics

(3.1) (with the actions of player 1 fixed) and record the state response xd,[0,T ] and performance output

response z2,d,[0,T−1].

Consider the data matrices

U2− =
[
u2,d(0) . . . u2,d(T − 1)

]
, (5.14a)
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Z2− =
[
z2,d(0) . . . z2,d(T − 1)

]
, (5.14b)

as well as X− and X+ as defined in (2.18) with k0 = 0, namely

X− =
[
xd(0) . . . xd(T − 1)

]
,

X+ =
[
xd(1) . . . xd(T )

]
.

In the following result it is shown that the problem of finding the Nash equilibrium strategy of player 2

can be formulated and solved via a purely data-dependent SDP.

Corollary 5.1.3. Consider Problem 5.1.1 and suppose the available data is such that

rank

X−

U2−

 = n+m2.

Then, the feedback gain corresponding to the Nash equilibrium strategy ϕ⋆
2(x(k)) of player 2 is given

by

K∗
2 = U2−H

⋆ (X−H
⋆)−1 , (5.15)

with H⋆ the solution of

min
γ, S,H,O

γ

s.t. Tr (O) ≤ γ,S − In X+H

H⊤X⊤
+ S

 ⪰ 0,

 O Z2−H

H⊤Z⊤
2− S

 ⪰ 0,

X−H = S.

(5.16)

Proof. By Theorem 4.2.1, u2(k) = K⋆
2x(k) with K⋆

2 as given in (5.15) is the solution of the LQR

problem defined by the cost (5.10) and the dynamics (5.11). By Proposition 5.1.1, the unique solution

of this LQR problem solves Problem 5.1.1.

While the unknown terms in the cost functional of player 2 and the dynamics perceived by player 2

in Problem 5.1.1 are due to the unknown action of player 1, the data-driven solution proposed in

Corollary 5.1.3 also allows player 2 to compensate for a potential lack of knowledge of the system

matrices A, B1 and/or B2. Similarly, the result only requires samples of the signal z2 of the form

(5.1), the cost weight matrices C2, D21 and D22 may or may not be known to player 2. This is

highlighted via parentheses in Table 5.1.
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Remark 5.1.2. The reformulation of the problem faced by player 2 in the considered class of games

with asymmetric information structure in Proposition 5.1.1, and hence the data-driven solution in

Corollary 5.1.3 rely on Assumption 5.1.1, which may be difficult to verify or guarantee in practice.

Note that if player 1 adheres to a fixed feedback strategy which does not correspond to a Nash

equilibrium solution, then the presented methods still result in a control law for player 2 that renders

the resulting closed-loop system stable and is optimal with respect to the cost functional of player 2. If

player 1 slightly deviates from the Nash equilibrium strategy, the deviation can be considered as process

noise. Various direct data-driven methods guaranteeing robustness to noise have been developed, see

e.g. [146, 149, 148]. A low-complexity learning framework for LQR controllers from noisy data with

stability and performance error guarantees is presented in [156]. While noise is not considered in this

section, it is expected that the results from [156] can be applied in a straightforward manner, since the

LQR cost function representation proposed in Section 4.2 and utilised Corollary 5.1.3 is not affected

by process noise (if the performance output is of the form as defined as in (4.84)).

Two special cases of the considered class of games are explored in the following two remarks.

Remark 5.1.3. In the special case in which the cost of each player does not explicitly depend on the

other player’s input (i.e. Dij = 0, for i = 1, 2, j = 1, 2 and j ̸= i), C̄2 = C2. If C2, D22 are known to

player 2, then finding the equilibrium strategy for player 2 reduces to an LQR problem with unknown

dynamics matrix Ā2 only, which can be solved by directly applying the result of [95, Theorem 4].

Remark 5.1.4. In the finite-horizon case, feedback Nash equilibrium solutions of LQ discrete-time dy-

namic games are characterised by the solutions of coupled matrix difference equations. The feedback

gains corresponding to Nash equilibrium strategies are hence time-varying. Consequently, following a

similar reformulation as in Proposition 5.1.1, the unknown cost and system matrices in the resulting

LQR problem faced by player 2 are time-varying. This problem can be solved via a data-dependent

SDP by extending the data-driven representation for LTV systems introduced in Section 4.1 to pa-

rameterise the LQR cost as outlined in Remark 4.2.2.

5.1.3 Example

Consider the interaction dynamics for a contact robot, described by

ẋ =

0 1

0 −J−1
c Dc

x+

 0

J−1
c

 (u1 + u2) ,

with x =
[
xe − xt ve

]⊤
, where xe is the end effector position of the robot, xt is the target position,

ve is the end effector speed and u1 and u2 are the force inputs given by the human and the robot,

respectively. The inertia and damping coefficients are chosen as Jc = 6 kg and Dc = −0.2 N/m (as
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in [20]). The dynamics are discretised using zero-order hold with time step ∆ = 0.1 s, which results

in a discrete-time system of the form (3.1) with N = 2. Consider the task of performing three back

and forth arm reaching movements, which involve the human operator guiding the end effector from

an initial position to a target position with the support of the robot over a time period of 30 s (i.e.

for k = 0, . . . , 300). This scenario may be relevant in a rehabilitation setting to train a patient to

perform reaching movements, or in a manufacturing setting to support an operator in lifting heavy

objects. Inspired by evidence that human behaviour in such interaction settings can be described as

Nash equilibrium strategies of a game [215], the human-robot interaction is modelled as a dynamic

game (3.1), (5.2), i = 1, 2. To this end, assume the human user aims to minimise the cost functional

(5.2), i = 1, with performance output given by (5.1), i = 1, with

C1 =


10 0

0
√
0.1

0 0

 , D11 =


0

0

0.1

 , D12 =


0

0

0

 ,

and the contact robot aims to minimise (5.2), i = 2, with performance output

z2(k) =

10(xe − xt)

0.3v̇e

 ,

i.e. a weighted stacking of the distance to the target position and the end effector acceleration

(both signals that are readily available for measurement). Such a control objective encourages

driving the end effector to its target position while penalising sudden movements. Noting that

v̇e ≈ 1
∆ (ve(k + 1)− ve(k)), the performance output of the robot is of the form (5.1) (with C2, D21

and D22 unknown). For the purpose of designing the control input u2 of the robot, the performance

output matrices C1, D11 and D12 and the system matrices A, B1 and B2 are also considered unknown.

To simulate the human’s behaviour, (3.4), (5.3), i = 1, 2, and (5.4) are solved numerically to obtain

a feedback gain K⋆
1 corresponding to a Nash equilibrium solution of the game (3.1), (5.2), i = 1, 2,

and the human input is fixed as u1(k) = K⋆
1x(k), for k = 0, . . . , 300. To obtain the corresponding

Nash equilibrium strategy for u2, the robot initially provides exploring open-loop inputs, which are

sampled randomly from a uniform distribution on the interval (0, 1), for k = 0, . . . , T , with T = 5,

and collects input, state and performance output data. The collected data is then used to populate

the matrices U2−, Z2−, X− and X+ as defined in (5.14), (2.18), and hence to solve (using CVX

[208]) the data-dependent SDP (5.16). For k = T + 1, . . . , 300, the robot adheres to the obtained

strategy u2(k) = K⋆
2x(k), with K⋆

2 given by (5.15), which corresponds to the Nash equilibrium solution

{K⋆
1x(k),K

⋆
2x(k)}. The time histories of the states and inputs are shown in Figure 5.1 and Figure

5.2, respectively. It is worth highlighting that only data for T = 5 time steps is required to determine
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the Nash equilibrium strategy for the robot. The data collection interval is negligible compared to the

time horizon of the reaching task. In fact, the effects of the exploring inputs given by the robot for

k = 0, . . . , 5 on the resulting state trajectories are hardly noticeable.

Figure 5.1: Time histories of the system states. The end of the data collection interval is marked by
the grey vertical line.

Figure 5.2: Time histories of the inputs. The end of the data collection interval is marked by the grey
vertical line.
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5.2 Data-driven Nash equilibrium finding algorithms

Motivated by the fact that in various applications of dynamic games it is probable that different

players have access to different and potentially incomplete information, Section 5.1 considers a class

of LQ discrete-time dynamic games in which one player lacks knowledge regarding the performance

criteria the other players are aiming to optimise, and it is proposed how the “uninformed” player

can use direct data-driven methods from Section 4.2 to compensate for the lack of information and

determine their strategy corresponding to a Nash equilibrium solution of the game. The methods also

allow this player to compensate for lack of information regarding the system dynamics.

In this section, the focus instead lies on games in which not one but all players are faced with

incomplete information. More precisely, assume each player aims to minimise a known objective

function, without knowing the objective functions which the other players in the game are aiming

to optimise, and the players may not know the system dynamics. Algorithms to determine feedback

Nash equilibrium solutions for discrete-time dynamic games with unknown system dynamics have

been proposed in [76, 72, 73, 74]. If the system dynamics are known and data corresponding to an

equilibrium solution is available, but the objective criteria of some or all players are unknown, then

these can be learned or reconstructed using inverse dynamic games methods [81]. In [78] reinforcement

learning algorithms are introduced for discrete-time LQ dynamic games involving multi-agent systems,

in which the players communicate with their neighbours via a directed graph and only have access to

local information. Herein, it is instead demonstrated that the players can jointly converge to a Nash

equilibrium solution by scheduling experiments and taking turns to collect finite data sequences of the

state and their own input only, without knowledge of each other’s objective criteria or of the system

dynamics. This is achieved by utilising data-driven methods in a similar way as in Section 5.1 in the

context of the iterative Nash equilibrium finding methods introduced in Section 3.4.

The remainder of this section is organised as follows. In Section 5.2.1 the considered problem is

introduced. Data-driven algorithms to find Nash equilibria, which are applicable if cost and model

information is missing, are proposed in Section 5.2.2. The algorithms are discussed in Section 5.2.3.

In Section 5.2.4 the performance of the algorithms is demonstrated and discussed via two illustrative

numerical examples, as well as by revisiting the practically motivated example involving human-robot

interaction from Section 5.1.3.

5.2.1 Problem formulation

Consider the LQ infinite-horizon discrete-time dynamic game (3.1), (3.2), i = 1, . . . , N . Namely,

consider the system

x(k + 1) = Ax(k) +
N∑
i=1

Biui(k),
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with x ∈ Rn, and let player i aim to minimise the cost functional

Ji(x(0), u1(·), . . . , uN (·)) =
∞∑
k=0

x(k)⊤Qix(k) +

N∑
j=1

uj(k)
⊤Rijuj(k)

 ,

via the choice of control action ui ∈ Rmi , for i = 1, . . . , N . Note that this corresponds to the cost (5.2)

considered in Section 5.1 in the special case in which C⊤
i Dij = 0 and D⊤

ijDil = 0, for i = 1, . . . , N ,

j = 1, . . . , N , l = 1, . . . , N , l ̸= j, which is considered in this section for ease of exposition. Like

in the previous section, the focus lies on determining admissible2 feedback strategies of the form

ϕi(x(k)) = Kix(k) for the players’ actions ui, i = 1, . . . , N , such that (2.8) holds (see Definition 2.1.2).

As shown in Section 3.1, such feedback Nash equilibrium solutions for the considered class of games

are characterised by the solutions of a set of coupled algebraic equations, namely (3.5), i = 1, . . . , N ,

and (3.6), such that the resulting closed-loop system is asymptotically stable, i.e. (3.4) holds (see

Theorem 3.1.1). However, as discussed in Chapter 3, determining K⋆
i and P ⋆

i , for i = 1, . . . , N ,

which satisfy (3.4), (3.5), i = 1, . . . , N , and (3.6), and thereby determining feedback Nash equilibrium

solutions of the game (3.1), (3.2), i = 1, . . . , N , is generally challenging. In Section 3.4 this is addressed

by proposing iterative methods, which involve the solution of matrix equations of reduced complexity

with respect to (3.5), i = 1, . . . , N , and (3.6) at each iteration step. In the presence of complete

model and cost information, these methods allow to iteratively determine a feedback Nash equilibrium

solution of the game (3.1), (3.2), i = 1, . . . , N . Motivated by scenarios in which it is likely that different

and typically partial information is available to each player in the game, the focus of this section lies

on developing iterative methods for games with incomplete information. More precisely, the case is

considered in which each player i only knows the cost matrices corresponding to the cost Ji (as given

in (3.2)) player i is aiming to minimise, but player i does not know the cost matrices corresponding to

the cost functionals Jj for j = 1, . . . , N , j ̸= i, associated with all the other players, and the players

may not know the system matrices A and Bi, i = 1, . . . , N , as formalised in the following statement.

Problem 5.2.1. Consider the game (3.1), (3.2), i = 1, . . . , N . Let the cost matrices Qw and Rwg, for

g = 1, . . . , N , associated with players w, for w = 1, . . . , N , w ̸= i, and the system matrices A, Bj , for

j = 1, . . . , N , be unknown3 to player i, for i = 1, . . . , N . Determine a Nash equilibrium solution of

the game.

Problem 5.2.1 can be considered a more general case of Problem 5.1.1 considered in Section 5.1, in

which not one but all players in the game do not know the cost matrices associated with the other

players and do not know the system dynamics. The problem is addressed by presenting methods

2In the sense of Definition 3.3.1.
3Note that the considered problem is interesting and relevant even if the system matrices are known to some or all of

the players and only the cost matrices of the respective other players are unknown to each player. However, the presented
results also allow to account for unknown system dynamics. To consider the most general case the system dynamics are
hence treated as unknown.
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to iteratively determine gains K⋆
i , for i = 1, . . . , N , corresponding to a feedback Nash equilibrium

solution of the game (3.1), (3.2), i = 1, . . . , N , starting from an initial guess K
(0)
i , for i = 1, ..., N .

The iterative updates constitute a data-driven version of the algorithms presented in Section 3.4 and

involve each player i using data of the state x and the own input ui collected via sequential experiments

to update the strategy choice K
(l)
i at each iteration (l), l ∈ N.

5.2.2 Data-driven algorithms for Nash equilibria

Towards designing data-driven methods to iteratively converge to a Nash equilibrium solution of

an LQ dynamic game despite each player having only limited information regarding the opponents’

performance criteria and system dynamics consider the following assumption.

Assumption 5.2.1. The signals x(k) and ui(k), are available for measurement for player i, i =

1, . . . , N . The players are able and willing to schedule experiments, taking turns to recursively collect

sequences of data. During the turn of player i to collect data with the aim of updating the strategy

guess from K
(l)
i to K

(l+1)
i , the player collects4 the state-response x

d,[k0,k0+T
(l+1)
i ]

to the sequence of

“exploring” inputs u
i,d,[k0,k0+T

(l+1)
i −1]

, assuming all other players, j = 1, . . . , N , j ̸= i, stick to a

constant state-feedback strategy corresponding to their current guess of the Nash equilibrium strategy

(i.e. at iteration (l + 1), uw(k) = K
(l+1)
w x(k), for w = 1, . . . , i − 1 and uj(k) = K

(l)
j x(k), for j =

i+ 1, . . . , N , for k = k0, . . . , k0 + T
(l+1)
j − 1).

At each iteration (l) and for each player i, the data is arranged to form the matrices

Ui− = U
(l)
i− =

[
ui,d(k0) . . . ui,d(k0 + T

(l)
i − 1)

]
, (5.17a)

X− = X
(l)
i− =

[
xd(k0) . . . xd(k0 + T

(l)
i − 1)

]
, (5.17b)

X+ = X
(l)
i+ =

[
xd(k0 + 1) . . . xd(k0 + T

(l)
i )
]
. (5.17c)

For notational convenience, the subscripts and superscripts indicating the dependence on the player

i (for the state matrices) and the iteration (l) (for both the state and input matrices) are omitted,

i.e. the matrices containing the data collected by player i are denoted by Ui−, X− and X+ at each

iteration (l), for i = 1, . . . , N and l ∈ N. Similarly, the starting time instance of each experiment,

for each player i and at each iteration (l), is denoted by k0. The scheduling of data collection and

strategy updates described in Assumption 5.2.1 is illustrated in Figure 5.3 for the case N = 2. Note

that the update scenario described in Assumption 5.2.1, more precisely the current strategy guesses

at which players j, j = 1, . . . , N , j ̸= i, fix their strategies during the update of player i, i = 1, . . . , N ,

corresponds to the asynchronous version of the algorithms presented in Section 3.4. This is chosen

4The subscripts indicate the sequences correspond to data measured by player i at iteration (l+ 1), over the interval

[k0, kf ], with kf = k0 + T
(l+1)
i or kf = k0 + T

(l+1)
i − 1 as appropriate, where T

(l+1)
i is the length of the data collection

experiment. As in previous chapters and sections the subscript d indicates measured data samples.
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u1,d(·) K
(1)
1 x(·) u1,d(·)

K
(0)
2 x(·) u2,d(·) K

(1)
2 x(·)

k0 k0 k0 + T
(1)
2

U2− =
[
u2,d(k0) . . . u2,d(k0 + T

(1)
2 − 1)

]
X− =

[
xd(k0) . . . xd(k0 + T

(1)
2 − 1)

]
X+ =

[
xd(k0 + 1) . . . xd(k0 + T

(1)
2 )
]

Figure 5.3: Illustration of the experiment scheduling with N = 2 players. The yellow blocks indicate
phases in which a player gives exploring inputs to excite the system dynamics and collects data, while
the blue blocks indicate phases in which a player applies a constant feedback action. The instances at
which the players update their strategy guesses are highlighted by the red vertical lines.

since it seems natural in practice for each player to update their strategy immediately after collecting

data, rather than waiting for all players to finish their experiments. However, the synchronous version

could be implemented using data following analogous steps.

With the information structure specified in Problem 5.2.1, player i does not have enough information

to solve the coupled algebraic matrix equations (3.5), i = 1, . . . , N , and (3.6), for a solution such

that (3.4) holds, nor to apply the model-based Nash equilibrium finding algorithms introduced in

Section 3.4. If Assumption 5.2.1 holds, then during the strategy update of player i the strategies of

the other players are fixed at state-feedback strategies. Hence, the dynamics perceived by player i

when updating the strategy guess from iteration (l) to (l + 1) are

x(k + 1) = Â
(l+1)
a,i x(k) +Biui(k), (5.18)

with Â
(l+1)
a,i = A +

∑i−1
w=1BwK

(l+1)
w +

∑N
j=i+1BjK

(l)
j as defined in Section 3.4. That is, the current

guesses of the Nash equilibrium strategies for all other players j, j = 1, . . . , N , j ̸= i, which depend

on their cost function weights Qj , Rjw, w = 1, . . . , N , and are unknown to player i, are encapsulated

in the dynamics matrix Â
(l+1)
a,i . The lack of knowledge is overcome in this section by recovering or

representing the perceived dynamics using data, utilising the indirect and direct data-driven methods

introduced in [95].

Remark 5.2.1. Note that the presented approaches, which represent the dynamics perceived by player

i, i = 1, . . . , N , containing the unknown actions of the other players j, j = 1, . . . , N , j ̸= i, using data

also allow to account for lack of knowledge of the system dynamics. To address the most general case,

A and Bi, for i = 1, . . . , N , are considered unknown, as specified in Problem 5.2.1. Note, however, that

the presented results are equally relevant if the system matrices are known. If faced with the alternative
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problem in which the cost weight matrices of all players are known to each player and only the system

dynamics are unknown, then assuming the inputs of all players are available for measurement, the

data-driven methods from [95] can be combined with the algorithms from Section 3.4 of this thesis to

design alternative centralised data-driven algorithms, which do not require scheduled experiments as

considered herein and are hence more sample efficient. This described approach could be considered

as an alternative to the methods proposed in [72, 73, 74], however, this is not the focus of this section.

Finally, for ease of exposition consider the following assumption throughout this section.

Assumption 5.2.2. The cost functional (3.2), which player i, i = 1, . . . , N , aims to minimise, is such

that Rij = 0, for j = 1, . . . , N , j ̸= i.

However, the data-driven results can be extended to include cost weight terms Rij ̸= 0 in a straight-

forward manner by following analogous steps, at the cost of more cumbersome notation and the

requirement to collect additional data of a performance variable, as detailed in Section 5.1.

As in Section 3.4, two types of update law are presented: the “Lyapunov iterations” involving the

solution of Lyaponov equations and the “Riccati iterations” involving the solution of Riccati equations.

Lyapunov iterations

Consider the iterative update law (3.72) with σ = a, namely

0 = Q̂
(l+1)
a,i +K

(l)
i

⊤
RiiK

(l)
i − P

(l+1)
i +

(
Â

(l+1)
a,i +BiK

(l)
i

)⊤
P

(l+1)
i

(
Â

(l+1)
a,i +BiK

(l)
i

)
, (5.19a)

K
(l+1)
i = −

(
Rii +B⊤

i P
(l+1)
i Bi

)−1
B⊤

i P
(l+1)
i Â

(l+1)
a,i , (5.19b)

for i = 1, . . . , N and l ∈ N. In Algorithm 1 a data-driven implementation of (5.19) is introduced,

which is proposed as a solution to Problem 5.2.1 in the following result.

Proposition 5.2.1. Consider Problem 5.2.1 and let Assumption 5.2.1 and Assumption 5.2.2 hold.

Suppose the collected data for player i is such that the matrices Ui−, X− and X+ as defined in (5.17)

satisfy

rank

X−

Ui−

 = n+mi, (5.20)

for i = 1, . . . , N , at each iteration (l). Then, if the set of feedback gains {K⋆
1 , . . . ,K

⋆
N} obtained via

Algorithm 1 is such that (3.4) holds and the conditions stated in Proposition 3.4.1 hold, Algorithm 1

solves Problem 5.2.1.
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Proof. If Assumptions 5.2.1 and 5.2.2 hold, then Q̂
(l+1)
a,i = Qi and if (5.20) holds then by [95, Theo-

rem 1] the dynamics identified in steps 19-23 of Algorithm 1 are such that (Âi, B̂i) = (Â
(l+1)
a,i , Bi),

for i = 1, . . . , N , at each iteration (l). Hence, the updates in step 24 and step 25 are equivalent to

(5.19). Convergence to a feedback Nash equilibrium follows directly from Proposition 3.4.1.

Remark 5.2.2. Steps 19-23 in Algorithm 1 correspond to identifying the dynamics perceived by player

i, i = 1, . . . , N , at iteration (l + 1) due to the unknown state-feedback actions of the other players j,

j = 1, . . . , N , j ̸= i. While the indirect data-driven method from [95, Theorem 1] is used herein, the

steps could also be replaced with alternative system identification techniques.

Algorithm 1 - Data-driven Lyapunov iterations

1: Initialise: x(0) = x0, l = 0, k = 0, k0 = k, ε = 1

2: Specify: tolerance ε̄, stabilising K
(0)
j , for j = 1, . . . , N , and time horizon Tf

3: while ε > ε̄ do
4: for i = 1 to N do
5: Assume: uw(k) = K

(l+1)
w x(k), for w = 1, . . . , i−1, and uj(k) = K

(l)
j x(k), for j = i+1, . . . , N

6: Data collection:
7: clear X−, X+, Ui−

8: while rank
([

X⊤
− U⊤

i−
]⊤)

< n+mi do

9: give exploring input ui,d(k)
10: measure xd(k)
11: X− =

[
xd(k0) . . . xd(k)

]
12: Ui− =

[
ui,d(k0) . . . ui,d(k)

]
13: k ← k + 1
14: end while
15: measure xd(k)
16: X+ =

[
xd(k0 + 1) . . . xd(k)

]
17: k0 ← k

18: Policy update:
19: if l = 0 then

20: compute
[
Âi B̂i

]
= X+

([
X⊤

− U⊤
i−
]⊤)†

21: else
22: compute Âi =

(
X+ − B̂iUi−

)
X†

−
23: end if

24: P
(l+1)
i = Qi +K

(l)
i

⊤
RiiK

(l)
i +

(
Âi + B̂iK

(l)
i

)⊤
P

(l+1)
i

(
Âi + B̂iK

(l)
i

)
25: K

(l+1)
i = −

(
Rii + B̂⊤

i P
(l+1)
i B̂i

)−1
B̂⊤

i P
(l+1)
i Âi

26: let ui(k) = K
(l+1)
i x(k)

27: end for
28: l← l + 1
29: ε← maxi

(∥∥∥K(l)
i −K

(l−1)
i

∥∥∥)
30: end while

31: K⋆
i = K

(l)
i , for i = 1, . . . , N

32: while k < Tf do
33: let ui(k) = K⋆

i x(k), for i = 1, . . . , N
34: k ← k + 1
35: end while
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Remark 5.2.3. Note that being based on the Lyapunov iterations (3.72), σ = a, from Section 3.4,

Algorithm 1 requires a stabilising set of gains
{
K

(0)
1 , . . . ,K

(0)
N

}
as initial guess. A possible strategy

to compute stabilising K
(0)
i , i = 1, . . . , N , in a data-driven framework consists in selecting arbitrary5

K
(0)
j , for j = 1, . . . , N − 1, and in letting player N , without loss of generality, perform, in advance

and only once as a preliminary initialisation, steps 5 - 25 of Algorithm 1. As a consequence, the

computed K
(0)
N has the property that ρ

(
ÂN + B̂NK

(0)
N

)
< 1, and hence the selection of the initial

control gains is (collectively) stabilising the closed-loop system.

Riccati iterations

Consider the iterative update law (3.75) with σ = a, namely

0 = Q̂
(l+1)
a,i +K

(l+1)
i

⊤
RiiK

(l+1)
i − P

(l+1)
i +

(
Â

(l+1)
a,i +BiK

(l+1)
i

)⊤
P

(l+1)
i

(
Â

(l+1)
a,i +BiK

(l+1)
i

)
,

(5.21a)

K
(l+1)
i = −

(
Rii +B⊤

i P
(l+1)
i Bi

)−1
B⊤

i P
(l+1)
i Â

(l+1)
a,i , (5.21b)

for i = 1, . . . , N and l ∈ N. To formulate a data-driven equivalent to (5.21) recall the following result,

which introduces a method to design optimal controllers (for LTI systems influenced by the action of

a single decision maker, with the aim of minimising a quadratic cost function) directly using data,

without requiring knowledge of the system dynamics.

Lemma 5.2.1. [95, Theorem 4] Consider system (2.17), namely

x(k + 1) = Ax(k) +Bu(k),

with x ∈ Rn and u ∈ Rm, and assume input-state data is available to form the matrices U−, X−, and

X+ as defined in (2.18), such that (2.19) holds, i.e.

rank

X−

U−

 = n+m.

The optimal state-feedback control gain K⋆, such that u(k) = K⋆x(k) minimises the cost function

J(x(0), u(·)) =
∞∑
k=0

(
x(k)⊤Qx(k) + u(k)⊤Ru(k)

)
, (5.22)

with R ≻ 0 and Q ⪰ 0, is given by K⋆ = U−G
⋆, where G⋆ = H⋆S⋆−1, with H⋆ and S⋆ a solution of

5The selected arbitrary strategies still need to be such that the pair (A +
∑N−1

i=1 BiK
(0)
i , BN ) is stabilisable. While

this may be difficult to verify if the system dynamics are unknown, if there exists a feedback Nash equilibrium to the
game (3.1), (3.2), i = 1, . . . , N , then such a set of strategies exists.
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the convex optimisation problem

min
γ, S,H,O

γ

s.t. Tr (QS) +Tr (O) ≤ γ,S − In X+H

H⊤X⊤
+ S

 ⪰ 0, (5.23)

 O R
1
2U−H

H⊤U⊤
−R

1
2 S

 ⪰ 0,

X−H = S.

As a consequence of Lemma 5.2.1, solving the data-driven optimisation problem (5.23) is equivalent

to solving the algebraic Riccati equation

0 = Q+K⋆⊤RK⋆ − P ⋆ + (A+BK⋆)⊤ P ⋆ (A+BK⋆) , (5.24a)

with

K⋆ = −
(
R+B⊤P ⋆B

)−1
B⊤P ⋆A, (5.24b)

associated with the LQR problem defined by the cost (5.22) subject to the dynamics (2.17). By

construction, Lemma 5.2.1 assumes P ⋆ ≻ 0, hence consider the following assumption.

Assumption 5.2.3. The coupled algebraic matrix equations (3.5), i = 1, . . . , N , and (3.6) associated

with the game (3.1), (3.2), i = 1, . . . , N , admit a solution {K⋆
1 , . . . ,K

⋆
N}, {P ⋆

1 , . . . , P
⋆
N} such that

P ⋆
i ≻ 0, for i = 1, . . . , N .

In the following result, Algorithm 2, which utilises Lemma 5.2.1, is proposed as a solution to Prob-

lem 5.2.1.

Proposition 5.2.2. Consider Problem 5.2.1 and let Assumption 5.2.1, Assumption 5.2.2 and As-

sumption 5.2.3 hold. Suppose the collected data for player i is such that the matrices Ui−, X− and X+

as defined in (5.17) satisfy (5.20), for i = 1, . . . , N , at each iteration (l). Then, if the set of feedback

gains {K⋆
1 , . . . ,K

⋆
N} obtained via Algorithm 2 is such that the conditions stated in Proposition 3.4.2

hold, Algorithm 2 solves Problem 5.2.1.

Proof. Note that (5.24) is equal to (5.21) with A = Â
(l+1)
a,i , B = Bi, Q = Q̂

(l+1)
a,i , R = Rii, P

⋆ = P
(l+1)
i

and K⋆ = K
(l+1)
i . If Assumptions 5.2.1, 5.2.2, and 5.2.3 hold, then Q̂

(l+1)
a,i = Qi and if (5.20) holds

then by Lemma 5.2.1, step 9 and step 10 of Algorithm 2 are equivalent to (5.21). Convergence to a

feedback Nash equilibrium follows directly from Proposition 3.4.2.
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Algorithm 2 - Data-driven Riccati Iterations

1: Initialise: x(0) = x0, l = 0, k = 0, k0 = k, ε = 1

2: Specify: tolerance ε̄, K
(0)
j , for j = 2, . . . , N , and time horizon Tf

3: while ε > ε̄ do
4: for i = 1 to N do
5: Assume: uw(k) = K

(l+1)
w x(k), for w = 1, . . . , i−1, and uj(k) = K

(l)
j x(k), for j = i+1, . . . , N

6: Data collection:
7: follow steps 7 - 17 of Algorithm 1

8: Policy update:
9: solve (5.23) with Q = Qi, R = Rii, U− = Ui− for H⋆, S⋆

10: K
(l+1)
i = Ui−H

⋆S⋆−1

11: let ui(k) = K
(l+1)
i x(k)

12: end for
13: l← l + 1
14: ε← maxi

(∥∥∥K(l)
i −K

(l−1)
i

∥∥∥)
15: end while

16: K⋆
i = K

(l)
i , for i = 1, . . . , N

17: follow steps 32 - 35 of Algorithm 1

Remark 5.2.4. Note that the right hand side of step 10 in Algorithm 2 does not explicitly depend on

K
(l)
i or the strategies of the other players as specified in step 5. This dependency is given implicitly

via the data matrices X+, X− and Ui− as defined in (5.17) used to solve (5.23), which are repopulated

for each player i at each iteration (l).

5.2.3 Discussion

Algorithms 1 and 2 constitute data-driven versions of the iterative Nash equilibrium finding methods

introduced in Section 3.4, which make it possible to overcome the limited information available to each

player in Problem 5.2.1. Note that an indirect data-driven method is used in Algorithm 1 and a direct

data-driven method is used in Algorithm 2. The indirect (system identification) method can be readily

applied in combination with any model-based control technique and is computationally cheaper for

noise-free linear systems as considered herein. In the given setting, the indirect data-driven method

further has the advantage that Bi only needs to be identified once for each player i, i = 1, . . . , N , at

the first iteration (see steps 19-23 of Algorithm 1). Thus, the indirect method allows to incorporate

available partial system knowledge in a more straightforward way than the direct data-driven method,

in which the closed-loop dynamics are entirely represented using data. While the indirect method

could be used in combination with both the Lyapunov iterations (3.72) and the Riccati iterations

(3.75), it is chosen in this section only for the former. This choice is motivated by the fact that the

structure of the Riccati iterations (3.75) allows to readily apply the recent direct data-driven results

introduced in [95]. Such methods have potential for systems for which system identification is difficult

or involved [95]. Hence, the presented results may serve as a basis for future work on games involving
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more complicated systems.

Both Algorithm 1 and Algorithm 2 possess an appealing feature which has recently become partic-

ularly desirable in modern applications, especially for problems involving a large number of players.

Namely, if the algorithms converge, a Nash equilibrium solution is obtained based solely on the partial

information available to each player. The presented data-driven algorithms are hence distributed in the

sense that player i only solves the own matrix equations (3.5) and the ith block row of (3.6), by relying

only on measured input-state data, even though these equations belong to a system of coupled matrix

equations, for i = 1, . . . , N . No knowledge of the cost matrices associated with the other players nor

the system matrices is required. Apart from the scheduling of experiments, no information exchange

between the players is required, i.e. player i does not know the strategy guesses of the other players

j, j = 1, . . . , N , j ̸= i, at each iteration, nor does player i measure their inputs uj , for i = 1, . . . , N ,

j = 1, . . . , N , j ̸= i. By capturing the actions of the other players in the dynamics (5.18) and replacing

these with data, player i only updates strategy K
(l)
i at each iteration (l) and does not need to explicitly

estimate the strategies of the other players. Another benefit of this approach is that the computational

complexity of the algorithms for each player i does not depend on the total number of players N in the

game. More precisely, at each iteration step (l) player i collects T
(l)
i +1 samples of the state response

to the own T
(l)
i exploring inputs, where T

(l)
i is such that the rank condition (5.20) holds, which implies

T
(l)
i ≥ n + mi. Hence, if the exploring input signal is chosen well, only n + mi + 1 data points are

required per iteration for player i, for i = 1, . . . , N . The total number of data points a player needs to

collect depends on the number of iterations until convergence to the specified tolerance, which in turn

depends on the system and cost parameters of the specific problem and the chosen initial conditions as

illustrated for the model-based version of the algorithms in Section 3.4.4. In the case of Algorithm 2

the accuracy of the chosen solver for the SDP (5.23) in the update step (step 9) may also effect the

number of iterations until convergence. In Algorithm 1 the update law at each iteration involves the

solution of two linear matrix equations for the system identification step (step 19 or step 23) and

the policy evaluation step (step 24), respectively. The former is of dimension n×T
(l)
i with n(n+mi)

unknowns if l = 0 and n2 unknowns if l > 0. The latter is of dimension n × n with (n2 + n)/2

unknowns. In Algorithm 2, system representation and policy update at each iteration are combined

(see steps 9 and 10) and involve the solution of a convex programme with two LMI constraints of

dimension 2n× 2n and (n+mi)× (n+mi) and a linear equality constraint of dimension n× n with

a total number of T
(l)
i n+ (n2 + n)/2 + (m2

i +mi)/2 decision variables.

Finally, recall that Algorithm 1 is applicable for games for which Assumption 5.2.3 does not hold.

However, Algorithm 2 (which relies on Assumption 5.2.3) allows a non-stabilising initial guess K
(0)
j ,

for j = 2, . . . , N , which may be beneficial in some scenarios, particularly in the context of unknown

system dynamics.
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5.2.4 Examples

The performance of the presented algorithms is demonstrated via two illustrative numerical examples,

before the human-robot interaction example from Section 5.1.3 is revisited. The first numerical ex-

ample involves a scalar four-player game, which illustrates the experiment scheduling and the efficacy

of the algorithms. The second numerical example considers a two-player game involving a slightly

larger state-dimension n = 3 and allows to put the data requirements of the presented algorithms into

perspective. The final example considers the interaction between a human operator and a contact

robot and demonstrates the practical relevance of the presented results.

Scalar four-player example

To illustrate the efficacy of the proposed Algorithms 1 and 2, consider the scalar numerical example

described by system (3.1), with N = 4, and parameters

A = 4.83, B1 = 0.54, B2 = 0.97, B3 = 0.71, B4 = 0.69,

and the cost functionals (3.2), i = 1, . . . , 4, with

Q1 = 0.21, Q2 = 0.006, Q3 = 0.43, Q4 = 0.19,

R11 = 0.97, R22 = 0.25, R33 = 0.78, R44 = 0.86,

and in line with Assumption 5.2.2 R12 = R13 = R14 = R21 = R23 = R24 = R31 = R32 = R34 =

R41 = R42 = R43 = 0. Considering the information structure described in Problem 5.2.1, let the

initial set of gains be K
(0)
j = 0, for j = 1, 2, 3 and K

(0)
4 = −7 and note that (3.1) in closed-loop under

state-feedback with these initial gains is asymptotically stable. Starting from x0 = 0.98, the players

take turns to give exploring inputs, while all other players stick to their current strategy guesses, and

collect data to update their strategies using Algorithms 1 and 2, respectively. The exploring inputs

are sampled uniformly from the interval (−1, 1). The corresponding time histories of the state and

the input of player 1 are shown in Figure 5.4. The dotted grey vertical lines indicate the start of

each new experiment for data collection. Both Algorithms 1 and 2 converge with tolerance ε̄ = 10−5

within 72 time steps, as indicated by the solid grey vertical lines, which corresponds to 9 iterations of

the algorithms. For the remainder of the time horizon (Tf = 100) the players follow their determined

equilibrium strategies, characterised by the state-feedback gains

K⋆
1 = −0.026, K⋆

2 = −0.005, K⋆
3 = −0.087 and K⋆

4 = −6.580,
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Figure 5.4: Time histories of the state and the input of player 1 using Algorithm 1 (dark blue) and
Algorithm 2 (black). The dotted grey lines indicate the start of each new experiment, whereas the
solid grey line indicates the end of the scheduled experiments.

which satisfy (3.4), (3.5), i = 1, . . . , 4, and (3.6) with

P ⋆
1 = 0.220, P ⋆

2 = 0.006, P ⋆
3 = 0.456 and P ⋆

4 = 39.138,

where all values are rounded to three decimal places.

Comparison of data requirements

While there are several data-driven methods for the considered class of LQ discrete-time dynamic

games which consider unknown system dynamics [72, 73, 74] or different local information [78], the

author is not aware of any learning algorithms considering the same underlying information structure as

specified in Problem 5.2.1 and hence allowing a fair comparison. However, to put the data requirements

of the proposed algorithms into perspective, consider the game defined by the system dynamics (3.1)
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with the system matrices from the example in [73, Section V.C], namely

A =


0.9065 0.0816 −0.0005

0.0743 0.9012 −0.0007

0 0 0.1327

 , B1 =


−0.0027

−0.0068

1

 , B2 =


1

0.0062

0

 ,

and the cost functionals (3.2), i = 1, 2, with

Q1 =


1 0 0

0 1 0

0 0 1

 , Q2 =


1 0 0

0 7 0

0 0 1

 , R11 = 1, R22 = 1, R12 = R21 = 0.

Consider the information structure described in Problem 5.2.1 and initial conditions K
(0)
1 =[

0 −0.12 −1
]
, K

(0)
2 =

[
−1 −0.5 0

]
, which render the system (3.1) asymptotically stable, and

x0 =
[
10 −10 −3

]⊤
. The exploring inputs used by both players during their respective data collec-

tion phases are sampled uniformly from the interval (−1, 1). Algorithm 1 converges to the tolerance

ε̄ = 10−5 to the feedback Nash equilibrium characterised by

K⋆
1 =

[
0.0023 0.0199 −0.0666

]
, K⋆

2 =
[
−0.6444 −0.8735 0.0004

]
,

and

P ⋆
1 =


1.1198 0.2434 −0.0001

0.2434 6.8645 −0.0016

−0.0001 −0.0016 1.0088

 , P ⋆
2 =


1.7611 2.3731 −0.0007

2.3731 27.8101 −0.0048

−0.0007 −0.0048 1.0044

 ,

where all values are rounded to four decimal places, and which satisfy (3.4), (3.5), i = 1, 2, and (3.6),

in 4 iterations and Algorithm 2 in only 3 iterations. With the chosen exploring inputs, each player i,

i = 1, 2, requires n +mi + 1 = 5 data samples per iteration. Hence, each player collects 5 × 4 = 20

data samples until Algorithm 1 converges, and respectively 5× 3 = 15 data samples until Algorithm 2

converges. In comparison [73, Algorithm 4], which only considers the system dynamics to be unknown,

requires Nd ≥ n2 +m1n +m2
1 +m1m2 +m2n +m2m1 +m2

2 = 19 data samples, before the learning

phase of the algorithm even begins.

Practical example: human-robot interaction

Consider the discretised interaction dynamics of a contact robot and a human operator described in

Section 5.1.3. The considered task involves two arm reaching movements of the human operator to

guide the robot’s end effector from an initial position to a target position, supported by the robot over

a time period of 20 s (i.e. for k = 0, . . . , 200). Assume the human operator is aiming to minimise a
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quadratic cost functional (3.2), i = 1, with

Q1 =

15 0

0 0.1

 , R11 = 0.5 and R12 = 0,

whereas the robot is aiming to minimise (3.2), i = 2, with

Q2 =

25 0

0 0.1

 , R21 = 0 and R22 = 0.1.

This constitutes a two-player LQ discrete-time dynamic game of the form (3.1), (3.2), i = 1, 2. In

line with the definition of Problem 5.2.1, each of the two players only has knowledge of their own cost

parameters, but not of the cost parameters of the other player, i.e. the human operator only knows Q1,

R11, and the robot only knows Q2, R22. Moreover, the system matrices A, B1 and B2 are considered

unknown for the purpose of control design for both players. In contrast to Section 5.1.3, the human

operator’s control action is not fixed, but both human and robot iteratively update their strategies. To

this end, the players take turns to collect data. While the robot’s data collection experiments last for

n+m2 = 3 steps, i.e. 0.3 s, the human collects data for 5 steps, i.e. 0.5 s. During their data collection

phases, each player gives exploring force inputs sampled randomly from a uniform distribution in

the interval (−1 N, 1 N) to excite the system while the other player sticks to their current strategy.

The time histories of the states and inputs (for both Algorithm 1 and Algorithm 2) are shown in

Figure 5.5 and Figure 5.6, respectively. The chosen initial conditions are the stabilising feedback gains

K
(0)
1 =

[
0 0

]
, K

(0)
2 =

[
−0.97 −3.75

]
, and x0 =

[
−0.3 0

]⊤
. As above, the dotted grey vertical

lines indicate the start of each new experiment for data collection and the solid grey vertical lines

highlight the time instance at which the algorithms have converged with tolerance ε̄ = 10−5. Both

Algorithm 1 and Algorithm 2 converge to

K⋆
1 =

[
−1.03 −0.51

]
, K⋆

2 =
[
−13.18 −12.39

]
,

which satisfy (3.4), (3.5), i = 1, 2, and (3.6) with

P ⋆
1 =

106.96 29.41

29.41 13.80

 , P ⋆
2 =

224.10 88.55

88.55 78.42

 ,

where all values are rounded to two decimal places. For the remainder of the time horizon (Tf = 200,

corresponding to 20 s) the players follow their determined equilibrium strategies, i.e. u1 = K⋆
1x and

u2 = K⋆
2x. Both Algorithms converge to the specified tolerance in approximately 7 s, and despite

the iterative probing and strategy updates the considered reaching task is completed successfully. At
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k = 100 (10 s) the target position changes from xt = 0 to xt = −0.3, initiating a second arm reaching

movement back to the initial condition. The time histories in Figures 5.5 and 5.6 show how the human

and the robot collaborate to achieve this second reaching movement while following their feedback

Nash equilibrium strategies.
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Figure 5.5: Time histories of the states using Algorithm 1 (dark blue) and Algorithm 2 (black). The
dashed blue and black lines indicate the target values. The dotted grey lines indicate the start of each
new experiment, whereas the solid grey line indicates the end of the scheduled experiments.
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Figure 5.6: Time histories of the inputs using Algorithm 1 (dark blue) and Algorithm 2 (black). The
dotted grey lines indicate the start of each new experiment, whereas the solid grey line indicates the
end of the scheduled experiments.
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5.3 Conclusion

Considering a class of LQ discrete-time dynamic games with asymmetric information structure, in

which one player lacks information regarding the opponents’ objectives and may not know the system

dynamics, it is shown that data-driven results introduced in Chapter 4 can be leveraged to overcome

the lack of information and determine a feedback Nash equilibrium solution of the game. The efficacy

of the approach is demonstrated via simulations on a system involving human-robot interaction.

Considering instead the case in which all players lack information regarding the opponents’ objectives

and may not know the system dynamics, data-driven versions of the asynchronous algorithms presented

in Section 3.4 are introduced. The algorithms allow the players to iteratively converge to a feedback

Nash equilibrium of the game despite the incomplete information available to them by scheduling

experiments. The approach is distributed in the sense that the players only require measurements of

the state and their own inputs to update their strategies. The results are demonstrated and discussed

via two illustrative numerical examples and a practical example involving human-robot interaction.
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Conclusion

Considering single-player and multi-player dynamic decision-making problems with complete and in-

complete information, novel game theoretic and data-driven solution methods are proposed in this

thesis. The main contributions are summarised as follows.

In Chapter 3, feedback Nash equilibrium solutions to infinite-horizon LQ discrete-time dynamic games

with complete information are studied. Despite being of relevance in a variety of engineering and

economics applications, this class of games has so far received less attention in the literature than

the well studied continuous-time counterpart. The results presented in Chapter 3 contribute to filling

this gap. First, the conditions characterising feedback Nash equilibria are recalled and the challenges

associated with computing solutions for this class of games are highlighted. Namely, feedback Nash

equilibria are characterised by the stabilising solutions of a set of coupled algebraic matrix equations,

which in contrast to their continuous-time counterpart are not quadratic in the decision variables and

involve additional coupling terms. For games involving scalar dynamics, graphical representations of

the coupled algebraic equations are introduced. These representations not only allow to visualise the

solutions and their properties, but also to derive conditions based on the system and cost parameters

for the number of feedback Nash equilibrium solutions the game admits, as well as certain properties.

Motivated by the challenges associated with computing feedback Nash equilibrium solutions, a notion

of approximate Nash equilibrium is introduced (for games involving general linear, not necessarily

scalar, dynamics), the ϵα,β-Nash equilibrium. The proposed notion of equilibrium allows to incorporate

a guaranteed rate of convergence of the resulting closed-loop system. The degree of approximation and

the computation of equilibria are discussed. The results are illustrated via a macroeconomic policy

design example. Finally, an alternative approach to tackling the challenges associated with computing

feedback Nash equilibria is presented. Four iterative methods to compute a Nash equilibrium solution

of the game are proposed. The algorithms are based on the iterative solution of simpler, uncoupled

matrix equations, namely Lyapunov or Riccati equations, for each player at each update iteration.
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Conditions for local convergence to a Nash equilibrium are provided. The results of Chapter 3 address

the first sub-objective listed in Section 1.1.

In Chapter 4, single-player decision-making problems with incomplete information are considered.

Building on the direct data-driven control framework first introduced in [95] for LTI systems, novel

data-driven methods are presented to overcome unknown system dynamics for the more general class

of LTV systems, as well as to overcome unknown cost parameters in the context of LQR. First,

a direct data-driven representation of state-feedback controllers and the corresponding closed-loop

system is introduced for unknown LTV systems and employed to design controllers with trajectory

boundedness, performance and robustness guarantees via purely data-dependent convex programmes.

Challenges arising for control tasks involving large time horizons are addressed. While the results are

applicable to LTV systems with arbitrary time-variation, it is shown that knowledge about the nature

of the time-variation can be exploited for periodically time-varying systems to design infinite-horizon

controllers based on finite data. The practical relevance of the results is motivated via case-studies

involving control of a power system and locomotion control of a snake-like robot. Second, a direct data-

driven representation of cost functions in the context of LQ optimal control is introduced. In contrast

to inverse optimal control methods, the presented results do not rely on expert data, instead they

utilise finite data sequences of the state and performance output response to non-optimal exploring

inputs. Together with the system representation from [95] the proposed cost representation enables

the solution of LQR problems in which both the system dynamics and the cost matrices are unknown

via purely data-dependent convex programmes. While the results are presented for LTI systems, it is

remarked how they can be extended to the LTV case by utilising similar arguments as in the first part of

Chapter 4. By addressing single-player dynamic decision problems in the context of incomplete system

and cost information, the results of Chapter 4 tackle the second sub-objective listed in Section 1.1.

In Chapter 5, multi-player dynamic decision problems with incomplete information are considered.

By combining game theoretic methods from Chapter 3 and data-driven methods form Chapter 4,

approaches to determine a feedback Nash equilibrium solution of an LQ discrete-time dynamic game,

if one or more players lack knowledge of the performance criteria of other players and may not know

the system dynamics, are introduced. First, it is shown that the cost representation results from

Chapter 4 are relevant for a class of games with asymmetric information structure, in the sense that

one player has incomplete system and cost information while all other players have full information.

Next, the case in which all players have incomplete system and cost information is considered, and it

is shown that similar arguments can be combined with the iterative methods proposed in Chapter 3 to

develop data-driven algorithms, which allow the players to iteratively converge to a Nash equilibrium

via scheduled experiments. Both results are demonstrated via a human-robot interaction example.

This addresses the third sub-objective listed in Section 1.1.
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Altogether, the ideas and applications presented in this thesis not only address interesting open prob-

lems in the fields of dynamic game theory and direct data-driven control, but also highlight the

potential of combining game theoretic and direct data-driven methods to solve multi-player dynamic

decision-making problems in the face of incomplete information.

In the following, interesting directions for future research on these topics are indicated.

Infinite-horizon dynamic games: The dynamic games results in this thesis focus on feedback

Nash equilibrium solutions of the game. It would be interesting to conduct a similar analysis as in

Chapter 3 for other solution concepts, for example feedback Stackelberg equilibrium solutions, which

are a natural choice of solution to the game if there is a leader-follower hierarchy between the players.

Initial preliminary results regarding the study of scalar two-player games via a graphical plane curve

representation, as well as iterative Stackelberg equilibrium finding methods are promising but require

further analysis.

Iterative methods: The iterative methods proposed in Sections 3.4 and 5.2 are provided with

local convergence guarantees. Naturally, if multiple feedback Nash equilibrium solutions exist for the

considered game, and Section 3.2 highlights how this can be the case even in the seemingly simple scalar

two-player setting, then it is inherent that the convergence properties of any algorithm to a specific

equilibrium can only be local. However, it would be interesting to study the “update dynamics” of the

algorithms in more detail with the aim of better understanding the regions of attraction of different

equilibria and hence to devise strategic ways to initialise the algorithms without prior knowledge of

the solutions.

Direct data-driven control methods: The analysis of LTV systems can be seen as a step towards

data-driven methods for nonlinear systems. Several approaches to extend the data-driven framework

from [95] to classes of nonlinear systems have been proposed [138, 139, 140, 141, 142, 143, 144]. Most

works in this contexts focus on stabilisation and only few on optimal control [139]. Even in the

model-based setting, obtaining closed-form solutions to nonlinear optimal control problems can be

challenging or even impossible. An interesting line of work would hence be to combine the data-driven

system representation with the notion of “algebraic P solutions” [217], which allow the systematic

construction of approximate solutions. Since the notion has also been extended to differential games,

this might lay the path to new data-driven solutions for dynamic games.

Games for data-driven methods: The results in Chapter 5 highlight the potential of combining

game theoretic and direct data-driven methods. Namely, it is demonstrated that introducing data-

driven methods in the context of dynamic game problems makes it possible to overcome incomplete

information. An interesting direction for future work includes exploring ways in which game theoretic
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tools can facilitate the solution of problems arising in data-driven control and analysis. Data science

comprises many topics which involve multiple potentially conflicting objectives or the interaction of

different decision makers. Hence, employing game theoretic methods is a promising approach to

tackle challenges in this context. Examples of existing work in this direction include game theoretic

approaches in the context of data collection (e.g. trajectory planning and control of autonomous

robotic systems equipped with sensors to monitor or map an area [218], or design and control of

crowdsensing platforms [219, 220]), distributed processing of “big data” [221], data quality control

[222] and data trading [223]. However, this is an evolving field and many open problems remain [222].
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185

https://plato.stanford.edu/archives/fall2021/entries/game-theory/


Bibliography

[39] H. von Stackelberg, Market Structure and Equilibrium. Springer Berlin Heidelberg, 2011, trans-

lated from German by Damien Bazin, Lynn Urch and Rowland Hill.

[40] A. Haurie, “A historical perspective on cooperative differential games,” in Advances in Dynamic

Games and Applications, E. Altman and O. Pourtallier, Eds. Boston, MA: Birkhäuser Boston,
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with stability and robustness guarantees,” IEEE Transactions on Automatic Control, vol. 66,

no. 4, pp. 1702–1717, 2021.

[115] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[116] H. J. van Waarde, J. Eising, M. K. Camlibel, and H. L. Trentelman, “A tutorial on the informa-

tivity framework for data-driven control,” in IEEE Conference on Decision and Control, 2022,

pp. 1085–1090.

[117] ——, “The informativity approach: To data-driven analysis and control,” IEEE Control Systems

Magazine, vol. 43, no. 6, pp. 32–66, 2023.

[118] I. Markovsky and F. Dörfler, “Behavioral systems theory in data-driven analysis, signal process-

ing, and control,” Annual Reviews in Control, vol. 52, pp. 42–64, 2021.

191



Bibliography

[119] H. J. van Waarde, C. De Persis, M. K. Camlibel, and P. Tesi, “Willems’ fundamental lemma

for state-space systems and its extension to multiple datasets,” IEEE Control Systems Letters,

vol. 4, no. 3, pp. 602–607, 2020.

[120] Y. Yu, S. Talebi, H. J. van Waarde, U. Topcu, M. Mesbahi, and B. Acikmese, “On controlla-

bility and persistency of excitation in data-driven control: Extensions of Willems’ fundamental

lemma,” in IEEE Conference on Decision and Control, 2021, pp. 6485–6490.

[121] J. Berberich, S. Wildhagen, M. Hertneck, and F. Allgöwer, “Data-driven analysis and control
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