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Abstract

How does the organisation of neural information-processing enable humans’ sophisticated 

cognition? Here we decompose functional interactions between brain regions into synergistic 

and redundant components, revealing their distinct information-processing roles. Combining 

functional and structural neuroimaging with meta-analytic results, we demonstrate that redundant 
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interactions are predominantly associated with structurally-coupled, modular sensorimotor 

processing. Synergistic interactions instead support integrative processes and complex cognition 

across higher-order brain networks. The human brain leverages synergistic information to a greater 

extent than non-human primates, with high-synergy association cortices exhibiting the highest 

degree of evolutionary cortical expansion. Synaptic density mapping from Positron Emission 

Tomography and convergent molecular and metabolic evidence demonstrate that synergistic 

interactions are supported by receptor diversity and human-accelerated genes underpinning 

synaptic function. This information-resolved approach provides analytic tools to disentangle 

information integration from coupling, enabling richer, more accurate interpretations of functional 

connectivity, and illuminating how the human neurocognitive architecture navigates the trade-off 

between robustness and integration.

Introduction

In theoretical and cognitive neuroscience, considering the human brain as a distributed 

information-processing system has emerged as a powerful framework to understand the 

neural basis of cognition 1. However, information is not all the same: rather, several 

fundamentally distinct kinds of information can be discerned, each providing specific 

advantages 2–4. Therefore, in order to properly understand any information-processing 

architecture - including the human brain - it is necessary to provide an account of what 

kind of information is being processed.

As an example, consider humans’ two main sources of information about the world: 

the eyes. Each eye provides some information about the periphery of the visual field, 

which the other eye cannot see. This is each eye’s “unique information”. In contrast, the 

information that we still have when we close either eye is known as “redundant” (or 

“shared”) information — because it is information that is provided equally by multiple 

sources (for instance, information about colour is largely redundant between the two 

eyes). Redundancy provides the system with robustness 5: we can still see with one eye 

closed, because the same information is largely available from the other eye. However, 

closing one eye also deprives us of stereoscopic information about depth. This information 

does not come from either eye alone: one needs both eyes working together, in order 

to perceive the third dimension through stereopsis. This is known as “synergistic” (or 

“complementary”) information between two sources: the extra advantage obtained from 

combining and integrating them, reflecting their complementary nature 2,6.

Thus, beyond their own unique information, different sources can also provide redundant 

information (equally available from either source) or synergistic information (only available 

by combining both sources). This is a fundamental distinction because a system will not 

be able to perform cognitively useful computation, just by having several copies of the 

same information: computation and cognition demand that information should eventually be 

combined.

Crucially, synergy and redundancy are fundamental concepts that apply to any specific 

content that is being encoded, be it about an apple or a predator 7: they are fundamentally 

different kinds of information encoding. Thus, every information-processing system, 
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including the human brain, needs to strike a balance between these distinct kinds 

of information and the specific advantages they provide: robustness and integration, 

respectively 3,8–10. Therefore, understanding how the human brain navigates the trade-off 

between these different kinds of information could provide fundamental insights about its 

information-processing architecture.

However, synergistic and redundant information cannot be adequately captured by 

traditional measures of “functional connectivity” (FC) in the human brain, which simply 

quantify the similarity between regional activity 6,11,12; nor by approaches focused on 

capturing the direction of information transfer from one region to another 13,14. Hence, it 

is currently unknown to what extent the human brain differentially relies on synergistic 

versus redundant information for processing, and to what extent the involvement of these 

different kinds of information varies across distinct macroscale neural systems and cognitive 

domains.

Here, we address these fundamental questions in neuroscience by providing an 

“information-resolved” framework to decompose the intrinsic information flow within the 

brain’s BOLD signals 6,9,15,16, in order to quantify synergistic and redundant interactions 

based on the recently developed Integrated Information Decomposition 6. This approach 

regards the brain as a dynamical system, whose temporal evolution is influenced by the 

current state of its constituent parts (brain regions) and their interactions. This means that the 

brain’s current state intrinsically carries information about its own future - information that 

we can decompose into synergistic and redundant contributions. Specifically, we quantify 

redundancy as information about the system’s future that is equally available from the 

current state of each of the parts (brain regions). In contrast, synergy is quantified as 

the additional information arising from the interactions between regions 6. Crucially, this 

mathematical definition indicates that synergy provides a rigorous quantification of how 

brain regions mutually influence each other’s activity over time: that is, the integration of 

information between those regions.

Therefore, our information-resolved approach to functional interactions in the brain 

contributes to reducing the gap between a fundamental concept of interest in neuroscience 

- integration of information - and neuroscientists’ practical ability to quantify it at the 

macroscale. Although appealing for its conceptual simplicity, traditional FC essentially 

reflects the similarity between regions’ temporal fluctuations, and therefore it is further 

removed from the phenomenon of theoretical interest: integration of information. It is 

helpful to compare our approach to dynamic functional connectivity analysis. Dynamic 

functional connectivity goes beyond traditional “static” FC, by demonstrating that static 

FC in fact comprises distinct time-resolved patterns, with distinct roles for cognition 17–20. 

Analogously, Integrated Information Decomposition provides insights over and above those 

offered by traditional FC, because it reveals distinct information-resolved connectivity 

patterns that could not be discerned from traditional FC. More specifically, synergy 

corresponds to information that only becomes available when the activity of different 

regions is considered together (reflecting the value of integration), and redundancy to 

information that is available from multiple brain regions (providing robustness) 6.
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By providing both a richer conceptual framework and widely applicable computational 

tools to disentangle different kinds of interactions, our information-resolved approach 

simultaneously highlights and overcomes some of the fundamental limitations of traditional 

FC analysis. Its richer perspective on neural information dynamics offers the opportunity 

to investigate the information-processing principles that govern how cognitive functions 

arise from the brain’s neural architecture. In this work, we investigate how synergistic and 

redundant information are organised with respect to the human neurocognitive architecture. 

Specifically, we seek to establish whether the extent of their involvement varies consistently 

with the functional roles of well-known macroscale neural systems, and whether studying 

brain function in terms of synergistic and redundant information provides a fertile new 

perspective complementing our current understanding of the functional organisation of the 

brain. Combining multimodal neuroimaging (functional, structural and diffusion MRI, PET) 

with cytoarchitectonics, in vitro autoradiography, and genetic evidence, here we reveal the 

organisation and neurobiological underpinnings of synergy and redundancy. Comparing the 

brains of humans and non-human primates, we further demonstrate the involvement of 

synergy in humans’ sophisticated cognitive abilities and also in the evolution of the human 

brain.

Results

Information decomposition

We developed an information-resolved approach for the analysis of macroscale functional 

interactions in brain dynamics, to investigate how synergistic and redundant information 

are organised in the human brain, their functional significance, and the neurobiology 

that supports them. Shannon’s mutual information quantifies the interdependence between 

two random variables X and Y. Put simply, the mutual information I(X;Y) quantifies the 

information that source variable X provides about target variable Y 21. Partial Information 

Decomposition (PID) extends Shannon’s theory, showing that the information that two 

source variables X and Y give about a third target variable Z, I(X,Y; Z), can be 

decomposed into three conceptually distinct kinds of information: information provided 

by one source but not the other (unique information), or by both sources separately 

(redundant information), or jointly by their combination (synergistic information) 2. 

Integrated Information Decomposition 6 provides a further extension, but in time. Consider 

a system X comprised of two parts evolving jointly over time, Xt = Xt
1, Xt

2  — in our case, 

this corresponds to the timeseries of the BOLD activity of two brain regions. The amount of 

information flowing from the system’s past to its future is known as the time-delayed mutual 

information (TDMI) 6 and given by I(Xt − τ
1 , Xt − τ

2 ; Xt
1, Xt

2) . The fundamental advancement 

offered by Integrated Information Decomposition 6 is to decompose TDMI into redundant, 

unique, and synergistic information shared with respect to both past and present state of both 
variables (Methods). Here, we focus on the temporally persistent redundancy and synergy. 

As interdependencies between the past and present states of both Xt and Yt, synergy and 

redundancy capture phenomena that are not assessed by approaches focused on the transfer 

of information from the past of one to the present of the other; therefore, they are distinct 

from (and complementary to) alternative information-theoretic measures such as transfer 

entropy 13,14.
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Distinct neuroanatomical profiles for synergy and redundancy

Here, we applied Integrated Information Decomposition to resting-state functional MRI 

data from 100 Human Connectome Project subjects, allowing us to quantify how much 

information about the brain’s future trajectory is carried redundantly by distinct brain 

regions, and how much of it is carried by the synergy between regions. Distinguishing 

synergistic and redundant interactions between the BOLD timeseries of each pair of 232 

cortical and subcortical brain regions, we reveal that synergy and redundancy are distributed 

following distinct patterns across the human brain (Fig. 1a,b). In particular, we show that 

the organisation of redundancy between pairs of brain regions is significantly more similar 

to traditional functional connectivity (Pearson correlation) than synergy: pairs of regions 

with more correlated time-courses are more likely to provide redundant information, and 

less likely to provide synergistic information (Fig. 1c and Extended Data Fig. 1). Note that 

synergy and redundancy do not need to be anticorrelated, at a theoretical level, and models 

can be constructed where e.g. both increase, or where one changes while the other remains 

constant 22

We ranked each brain region separately in terms of how synergistic and redundant its 

interactions with other brain regions are; the difference between these ranks (synergy 

minus redundancy) determines the relative relevance of a given region for synergistic 

versus redundant processing, thereby defining a redundancy-to-synergy gradient across brain 

regions (Fig. 1d). The results of our information-resolved analysis reveal that redundant 

interactions are especially prominent in the brain’s somatomotor and salience subnetworks, 

and most visual regions (Fig. 2a), corresponding to primary sensory, primary motor and 

insular cortices, in terms of Von Economo’s cytoarchitectonic classification 23 (Fig. 2b). 

In contrast, regions with higher relative importance for synergy predominate in higher-

order association cortices, and are affiliated with the default mode (DMN), fronto-parietal 

executive control (FPN) and “limbic” (orbitofrontal cortex and temporal poles) subnetworks 
24 (Fig. 2a,b).

The distinct subnetwork affiliations and cytoarchitectonic profiles further suggest that 

redundant and synergistic interactions may be involved with radically different cognitive 

domains. To empirically validate this hypothesis, we performed a term-based meta-analysis 

using NeuroSynth, which is widely used to characterise macroscale brain patterns in terms 

of cognitive relevance 25–28. NeuroSynth enables automated probabilistic mappings between 

broad cognitive domains and neural patterns, by synthesizing thousands of published fMRI 

studies 28. We employed 24 topic terms used by previous studies 26,28, which range from 

lower sensorimotor functions (e.g. eye movement, motion, visual and auditory perception) to 

higher cognitive functions (e.g. attention, working memory, social and numerical cognition). 

The redundancy-to-synergy gradient identified in terms of regional rank differences was then 

related to these 24 terms 25,27.

Supporting the inference from neuroanatomy to cognition, our results reveal that the regional 

gradient from redundancy to synergy corresponds to a gradient from lower sensorimotor 

functions to higher cognitive ones, requiring the integration of complex information. 

Specifically, high-redundancy regions loaded strongly onto auditory, visual and multisensory 
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processing and motion. In contrast, high-synergy regions had the strongest loadings onto 

social cognition, memory and cognitive control (Fig. 1e).

Distinct graph-theoretic profiles for synergy and redundancy

From a theoretical standpoint, sensorimotor and higher-order cognitive functions impose 

distinct and opposite demands on cognitive architectures: sensory processing benefits 

from segregation of the whole network into segregated modules, whereas integration of 

information demands a highly interconnected network organisation 9,29.

The set of all synergistic (respectively, redundant) interactions between pairs of brain 

regions can be viewed as a whole-brain network, whereby each node is a region, and 

each edge represents the synergistic (respectively, redundant) information between two 

regions. This makes it possible to combine the advantages of our information-resolved 

analysis with the powerful mathematics of graph theory 30, to obtain insights into the 

network organisations of synergistic and redundant interactions in the human brain. 

Indeed, combining Integrated Information Decomposition with subsequent graph-theoretical 

analysis of the resulting synergistic and redundant whole-brain networks, reveals how the 

human brain resolves the tension between specialised processing and global integration.

Across individuals, the whole-brain network of synergistic interactions is more highly 

interconnected and globally efficient than the corresponding whole-brain network defined by 

the redundancy between brain regions, owing to the high strength of synergistic connections 

(Fig. 3a). In contrast, redundant interactions delineate a network characterised by a highly 

modular structure, which is virtually absent in the network of synergistic interactions 

across the brain (Fig. 3b). Thus, when viewed through the lens of graph theory, the whole-

brain networks of synergistic and redundant interactions exhibit distinct graph-theoretical 

properties, favouring global and segregated processing, respectively – as demanded by the 

cognitive functions they support.

Complementing this graph-theoretical analysis, we show that redundant interactions tend 

to be stronger within resting-state subnetworks than between them (Fig. 3c), whereas the 

opposite is true for synergistic interactions (Fig. 3d), which are stronger across different 

resting-state subnetworks, especially between DMN/FPN and other subnetworks (Fig. 3e). 

These results indicate that brain regions can rely on redundant information to interact within 

their own segregated subnetwork, while simultaneously supporting integrated processing 

across subnetworks through synergistic interactions.

Distinct structural support for synergy and redundancy

Since only a subset of brain regions are directly connected by white matter tracts 29, we 

reasoned that the more an organism’s survival depends on interactions between regions A 

and B, the more we may expect A and B to be directly physically connected, rather than 

relying on intermediate polysynaptic connections. Thus, direct anatomical connections may 

be understood as revealing where the brain’s need for robust communication is highest. 

Consequently, if redundant interdependencies provide robustness to the system (since they 

correspond to information that is not contingent on any single brain region), they should be 

co-located with underlying direct structural connections. Our results support this hypothesis: 
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across subjects, the number of white matter streamlines (quantified using diffusion-weighted 

imaging) was significantly more correlated with redundant than synergistic interactions 

between regions (Fig. 4a).

Having established that synergy and redundancy differ in their association with the 

underlying network of anatomical connections, we sought to obtain more fine-grained 

insights into their respective relationships with structural connectivity. To this end, we 

compared the values of redundancy (respectively, synergy) between regions that do 

(“Direct”) or do not (“Indirect”) have direct anatomical connections between them, as 

indicated by the presence of a white-matter tract between them, based on diffusion 

tractography. As expected from our previous analysis, we found that redundancy is relatively 

stronger in the presence of a direct anatomical connection (Fig. 4b). In contrast, we found 

that synergy is relatively stronger between regions that do not share a direct physical 

connection (Fig. 4c). These results are in line with recent evidence that regions that 

share a direct anatomical connection tend to be more similar in terms of the profile of 

dynamics they exhibit 31, corroborating our expectation of greater redundancy between 

them. Conversely, indirect (polysynaptic) connections offer greater opportunity for different 

information streams to become integrated along the way from region A to B, and become 

influenced by diverse modulatory factors - which should correspond to higher opportunity 

for synergy to occur.

More broadly, beyond the presence or absence of a direct connection between two regions, 

we reasoned that there will be greater scope for synergy between the activity of two brain 

regions if they are exposed to diverse inputs from the rest of the brain. On the other 

hand, similarity of inputs should favour the presence of redundant information. To test 

these hypotheses, we capitalised on a recently developed measure of multi-scale wiring 

distance between pairs of cortical regions, which combines diffusion tractography with 

geodesic distance (spatial proximity) and microstructural similarity 32. This measure of 

wiring distance quantifies the difference between regional profiles of structural connectivity, 

accounting for both long-range white matter pathways and short-range intracortical 

connections 32.

Corroborating our hypotheses, comparing the matrices of synergy and redundancy with 

cortico-cortical wiring distance shows that greater difference between the structural 

connectivity profiles of two regions diminishes the extent to which they hold the same 

information, but increases the potential for synergy between them (Fig. 4d).

Overall, redundant interactions demarcate a modular structural-functional backbone in 

the human brain, ensuring robust sensorimotor input-output channels, whereas synergistic 

interactions are poised to facilitate high-level cognition through globally efficient 

connections across different subnetworks, benefiting from diverse patterns of structural 

connections. Our approach reveals how the brain balances modular and global information 

processing in the service of different aspects of cognitive function.
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Evolutionary potentiation of high-synergy brain regions

The association between synergistic information processing and higher cognitive functions, 

raises the intriguing possibility that the human brain may enable humans’ uniquely 

sophisticated cognitive capacities specifically in virtue of its highly synergistic nature. We 

pursued this hypothesis through three convergent approaches.

First, we show that the human brain is especially successful at leveraging synergistic 

information, compared with the brains of non-human primates. Synergistic interactions 

account for a higher proportion of total information flow in the human brain than in the 

macaque (Macaca mulatta) (Fig. 5a), whereas the two species’ brains are equal in terms of 

proportion of total information accounted for by redundancy (Fig. 5b). Further corroborating 

the key role of synergy, we show that the difference between humans and macaques in terms 

of synergy is significantly greater than the difference in total strength (grand mean of FC 

matrix) of functional connectivity, or in the global efficiency or modularity of FC networks 

(Supplementary Table 6). These results are also robust to the use of alternative analytic 

approaches (Supplementary Tables 7-9).

The patterns of synergy and redundancy in the macaque brain broadly resemble those 

observed in humans (Extended Data Fig. 7 and Supplementary Table 5), demonstrating their 

evolutionary stability – including the expected high redundancy in sensorimotor regions 

(Fig. 5c). However, redundancy is more prevalent than synergy in macaque prefrontal cortex 

(PFC), despite PFC being among the most synergy-dominated cortices in humans (Fig. 

5c). Intriguingly, prefrontal cortex underwent substantial cortical expansion in the course of 

human evolution 33.

These findings suggest that the high synergy observed in human brains may be specifically 

related to evolutionary cortical expansion. To explore this hypothesis, we analysed cortical 

morphometry data from in vivo structural MRI, comparing humans and one of the closest 

evolutionary relatives of Homo sapiens: chimpanzees (Pan troglodytes) 34. Supporting 

our hypothesis, we identified a significant positive correlation between relative cortical 

expansion in humans versus chimpanzees, and the gradient of regional prevalence of synergy 

previously derived from functional MRI (Fig. 5d). These findings suggest that the additional 

cortical tissue may be primarily dedicated to synergy, rather than redundancy.

To provide further support for the evolutionary relevance of synergistic interactions, we 

capitalised on human adult brain microarray datasets across 57 regions of the left cortical 

mantle, made available by the Allen Institute for Brain Science (AIBS) 34. We demonstrate 

that regional predominance of synergy correlates with regional expression of genes that 

are both (i) related to brain development and function, including intelligence and synaptic 

transmission 34; and (ii) selectively accelerated in humans versus non-human primates 34 

(“HAR-Brain genes”; Fig. 5e). Thus, the more prominent a brain region is in terms of 

synergy, the more likely it is to express brain genes that are uniquely human.

Taken together, these findings provide converging evidence that human brain evolution may 

have resulted in the increased prominence of synergistic interactions, in terms of dedicated 
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genes, (Fig. 5e) dedicated cortical real estate (Fig. 5d), and the end result: higher prevalence 

of synergy in human brains than in the brains of non-human primates (Fig. 5a,b).

Convergent synaptic underpinnings of synergy in the brain

These observations raise the question of how such high synergy in the human brain 

could have been attained. To address this question from a neurobiological perspective, 

we explored the association between the redundancy-to-synergy gradient and regional 

expression profiles of 20,674 genes from AIBS microarray data 23,35. Using partial least 

squares (PLS) regression, we show that the first two PLS components explained 30% 

of the variance in the regional synergy-redundancy values: significantly more than could 

be expected by chance (permutation test, p=0.004) even when accounting for spatial 

autocorrelation (pspin=0.027). Both components were significantly enriched for HAR-Brain 

genes, corroborating the hypothesis-driven results presented above (PLS1: p<0.001; PLS2: 

p<0.001; Extended Data Fig. 9). We next sought to identify the role played by overexpressed 

genes related to brain synergy, for each PLS component. Analysis of gene ontology revealed 

that the transcriptional signature of our PLS components were significantly enriched in 

genes involved in learning/memory (consistently with our NeuroSynth meta-analysis), as 

well as synapses, synapse components and synaptic transmission (Fig. 6a-f; all p<10-4 for 

significant enrichment.).

Synapses are the key structures by which neurons exchange information; therefore, they 

constitute a prime candidate for the neurobiological underpinning of synergistic interactions 

in the human brain, as suggested by our genetic analysis. To provide a more direct link 

between synaptic density and regional prevalence of synergy, we used positron emission 

tomography (PET) to estimate regional synaptic density in vivo, based on the binding 

potential of the synapse-specific radioligand [11C]UCB-J, which has high affinity for the 

synaptic vesicle glycoprotein 2A, ubiquitously expressed in all synapses throughout the 

brain 36,37. Therefore, [11C]UCB-J binding potential enables in vivo estimation of synaptic 

density at a regional level 36,37. Across N=15 healthy volunteers, we obtained regional 

values of [11C]UCB-J PET binding potential 37, which we then decomposed into two 

principal components reflecting gradients of synaptic density across cortical regions.

Supporting the notion that regional brain synergy is related to underlying synaptic density, 

we found that an anterior-posterior principal component of regional synaptic density derived 

from [11C]UCB-J PET correlates with the regional gradient from redundancy to synergy, 

with a clear trend to significance persisting even after accounting for spatial autocorrelation 

(Fig. 6d,e). Thus, regional synaptic density predicts regional prevalence of synergy over 

redundancy across the cortex.

Metabolic and molecular underpinnings of synergy

Although genetic and in vivo data indicate the relevance of synapses for brain synergy, 

synapses themselves are not fixed, but rather they develop over the human lifespan. In both 

space and time, synaptic growth has well-established metabolic underpinnings, specifically 

pertaining to aerobic glycolysis (AG). Temporally, meta-analytic results indicate that in the 

course of human development AG peaks during peak synaptic growth; spatially, the regional 
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distribution of AG in the adult brain coincides with regional expression of genes promoting 

synaptic growth – suggesting that even during adulthood, AG may support continuous 

synapse formation 38.

In line with this body of literature and our previous findings, we show that a significant 

correlation exists between the redundancy-to-synergy gradient, and the cortical distribution 

of Glycolytic Index, a measure of AG obtained from PET measurements of cerebral 

metabolic rates for oxygen and glucose 39 (Spearman ρ = 0.40, p < 0.001, pspin = 

0.013; Fig. 7a). Additionally, the same genes promoting synaptic development that were 

previously related to regional AG distribution 38, are also significantly enriched in both PLS 

components of gene expression related to the synergy-redundancy gradient identified here 

(Extended Data Fig. 10). Therefore, genetic and PET evidence converge to indicate that 

the same metabolic process that supports synaptic growth may also underpin synergistic 

interactions in the human brain.

Although a high density of synapses reflects high potential for integrating multiple inputs, 

the actual interactions between neurons rely on multiple distinct neurotransmitters acting on 

a variety of different receptors. Importantly, the distribution of neurotransmitter receptors in 

the human brain is not uniform, but rather it varies both across cortical regions and across 

different layers (supragranular, granular, and infragranular) of the same region 40,41. In 

particular, cortical regions differ systematically in terms of the diversity of neurotransmitter 

receptors they exhibit 40. This provides an opportunity to identify potential neurochemical 

underpinnings of synergy in the human brain: we reasoned that diverse receptor expression 

across receptor types and layers should endow a region with greater flexibility, so that 

its activity will be able to reflect the integration of distinct inputs and neuromodulatory 

influences from a variety of regions and systems.

Supporting the hypothesis of an association between molecular diversity and synergy, we 

demonstrate that the redundancy-to-synergy gradient corresponds to increasing diversity of 

receptor densities across supragranular, granular and infragranular layers for 15 different 

receptor types, obtained from in vitro quantitative receptor autoradiography 40 (Spearman ρ 
= 0.54, p < 0.001). This result suggests that a more diverse receptor profile corresponds to a 

larger range of information that a region can respond to and integrate, as reflected in higher 

predominance of synergy for that region.

Overall, hypothesis-driven and data-driven genetic, metabolic, and molecular evidence 

converge to indicate synapses, synaptic formation, synaptic transmission and the diversity of 

neurotransmitters as key neurobiological underpinnings of synergy in the brain – in line with 

the notion that synergy quantifies information integration, and its role in supporting higher 

cognition.

Validation of results against surrogates

Finally, we validated our results pertaining to the association between the redundancy-to-

synergy gradient and macroscale features of cortical organisation by showing that they 

cannot be recovered if the synergy ranks are obtained from surrogate data. We do this in 

three different ways: (i) randomising the matrix of inter-regional synergistic connections; (ii) 
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replacing the true synergy ranks with a random vector with the same (negative) correlation 

with the redundancy ranks; and (iii) computing both synergy and redundancy after phase-

randomising each timeseries (thereby removing inter-regional correlations from the signal 

(Methods)). The results of these analyses are summarised in Table 1.

Discussion

Our multi-modal, multi-species investigation of information-resolved brain dynamics 

illuminates how the human brain has evolved to address the inherent trade-off between 

robustness and integration. Leveraging Integrated Information Decomposition to decompose 

the intrinsic dynamics of human BOLD signals, we quantified how much information about 

the brain’s dynamics is carried redundantly by the present state of distinct brain regions, 

reflecting their robustness, and how much of it is carried synergistically between regions, 

reflecting their integration.

We provided converging evidence that synergistic interactions play a crucial role 

in the human neurocognitive architecture, and further identified their neurobiological 

underpinnings across scales by combining genetic, molecular, cytoarchitectonic, metabolic, 

structural and neuroanatomical evidence. Our findings reveal that basic sensorimotor 

functions are supported by a modular structure-function backbone of redundant interactions. 

As the brain’s input-output systems, reliable sensorimotor channels are vital for survival, 

warranting the additional robustness provided by redundant interactions and supported by 

direct anatomical connections — as indicated by our structural-functional analysis.

In contrast, meta-analytic and graph-theoretical results indicate that synergistic interactions 

form a globally efficient network throughout the brain, with synergistic interactions bridging 

across different brain modules to support higher cognitive functions. Intriguingly, high-

synergy regions also exhibit high rates of aerobic glycolysis: in addition to providing a fast 

and flexible supply of energy, AG is theorized to provide the substrate for biosynthetic 

processes supporting ongoing synapse formation and turnover 15,42. Indeed, we show 

that the neuroanatomical organization of high-synergy regions coincides with synapse-rich 

association cortices. We also show that high-synergy cortical regions exhibit the most 

diverse profiles of neurotransmitter receptor expression, enabling flexible neuromodulation. 

Thus, network organisation and neurobiology across scales provide converging evidence 

that synergistic interactions are ideally poised to act as a “global workspace” in the human 

brain 43, enabling the integration of complementary information from across the brain in the 

service of higher cognitive functions.

It is noteworthy that synergy, which quantifies the extra information gained by integrating 

multiple sources 6,44, is especially prevalent in regions of the default mode and fronto-

parietal (sub)networks. Functionally, these regions are recruited by complex tasks that rely 

on multimodal information, decoupled from immediate sensorimotor contingencies 25,45,46; 

anatomically, they receive multimodal inputs from across the brain 47. Therefore, it has 

been conjectured that these networks are devoted to the integration of information 25,47. Our 

original findings about regional prevalence of synergy in DMN and FPN provide formal 

information-theoretic evidence to confirm this long-standing hypothesis.
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Taken together, our results delineate a neural architecture whereby direct anatomical 

connections predominantly contribute to ensuring that the same information is available to 

regions within the same specialised module - especially in sensory and motor subnetworks. 

Conversely, indirect polysynaptic connections are better poised to favour the integration of 

information between different modules, converging to association cortices in default and 

fronto-parietal subnetworks that are associated with anatomical and cognitive integration of 

information.

Indeed, high-order association cortices of the DMN and FPN may be able to support human 

higher cognition precisely thanks to their extensive involvement with synergistic processing: 

we discovered that synergistic (as opposed to redundant) interactions are specifically 

enhanced in humans over other primates, with dedicated cortical real estate and dedicated 

genes, including those promoting synaptic transmission and formation. This process resulted 

in a neural architecture that is capable of leveraging synergistic information to a greater 

extent than other primates.

At the same time, the DMN and FPN exhibit distinct patterns of activity in tasks 

and at rest 48–50, and play different roles in controlling brain dynamics 51. Thus, it 

will be crucial for future work to delineate their respective roles within the brain’s 

synergistic core – for instance by examining how the prevalence and regional distributions 

of synergy and redundancy vary during cognitive tasks 52 or pathological conditions, 

where our framework for information-resolved analysis could also find fruitful application. 

Additionally, future work may seek a convergence between the information-resolved and 

time-resolved approaches to brain function 17–20, as possible complementary strategies to 

balance the brain’s competing needs for integration and robustness.

Disentangling synergistic and redundant contributions to the interactions between two 

regions makes it possible to distinguish cases of “integration of information” (synergy) 

versus simply “having the same information” (redundancy). The quantification of synergistic 

information provides a rigorous approach to capture the integration between the activity 

of different brain regions in terms of their mutual influence, going beyond measures of 

traditional functional connectivity (e.g. Pearson correlation) that are unable to account for 

high-order statistical phenomena. Specifically, our results suggest that traditional FC is 

significantly more similar to redundancy than to synergy. These observations suggest that 

care should be taken when interpreting the results of traditional FC analyses in terms of 

“integration”. Such an interpretation may well be appropriate if what is meant is simply 

the similarity between regional time-courses – which is conceptually close to redundancy. 

However, if the intention is to quantify information being brought together and combined, 

then traditional FC may be insufficient, and the more sophisticated machinery of our 

information-resolved approach would be called for in order to provide the full picture in 

terms of synergy. Indeed, recent complementary work has also emphasised that focusing on 

time-locked fluctuations alone will miss out on important aspects of interactions between 

regions 31.

Our information-resolved approach does not just highlight these limitations of traditional 

FC, however: it also provides the means to overcome them. Thus, we believe that the richer 
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understanding of macroscale interactions provided by Integrated Information Decomposition 

will help researchers to interpret their FC results more appropriately; generate more specific 

hypotheses; and choose more appropriate analytic tools, if what they actually wish to 

quantify is integration rather than simple coupling (similarity of time-courses).

Finally, a key strength of our approach for information-resolved analysis of brain dynamics 

is its broad range of possible applications: being grounded in information theory, Integrated 

Information Decomposition can be applied to neural data across scales, from fMRI to 

neuron cultures. Thus, our framework holds the promise of critical new insights into a 

wide array of questions across the breadth of neuroscience, from healthy and pathological 

development to cognition and its disorders. Overall, this work offers the potential to reveal 

the information-processing principles that govern how mental phenomena emerge from 

neurobiology.

Methods

Human Connectome Project: Dataset description

The dataset of human MRI data used in this work came from the Human Connectome 

Project (HCP, http://www.humanconnectome.org/), Release Q3. Per HCP protocol, all 

subjects gave written informed consent to the HCP consortium. These data contained fMRI 

and diffusion weighted imaging (DWI) acquisitions from the widely-used 100 unrelated 

subjects (54 females and 46 males, mean age = 29.1 ± 3.7 years) of the HCP 900 data 

release 54. We did not use statistical methods to pre-determine sample size, but this 100-

subject dataset has been extensively studied, so that our sample size is similar to those 

reported in previous publications 25,27,55,56,; no data-points were excluded. Data collection 

and analysis were not performed blind to the conditions of the experiments. All HCP 

scanning protocols were approved by the local Institutional Review Board at Washington 

University in St. Louis.

HCP: Functional data acquisition

The following sequences were used: Structural MRI: 3D MPRAGE T1-weighted, TR= 2400 

ms, TE = 2.14 ms, TI = 1000 ms, flip angle = 8°, FOV= 224 × 224, voxel size = 0.7 

mm isotropic. Two sessions of 15 min resting-state fMRI: gradient-echo EPI, TR= 720 ms, 

TE= 33.1 ms, flip angle = 52°, FOV= 208 × 180, voxel size = 2 mm isotropic. Here, we 

only used functional data from the first scanning session, in LR direction. HCP-minimally 

preprocessed images were used for all acquisitions 57.

Functional MRI preprocessing and denoising

We used the minimally preprocessed fMRI data from the HCP, which includes bias 

field correction, functional realignment, motion correction, and spatial normalisation to 

Montreal Neurological Institute (MNI-152) standard space with 2mm isotropic resampling 

resolution 57. We also removed the first 10 volumes, to allow magnetisation to reach 

steady state. Additional denoising steps were performed using the CONN toolbox (http://

www.nitrc.org/projects/conn), version 17f 58. To reduce noise due to cardiac and motion 

artifacts, we applied the anatomical CompCor method of denoising the functional data. 
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The anatomical CompCor method (also implemented within the CONN toolbox) involves 

regressing out of the functional data the following confounding effects: the first five 

principal components attributable to each individual’s white matter signal, and the first 

five components attributable to individual cerebrospinal fluid (CSF) signal; six subject-

specific realignment parameters (three translations and three rotations) as well as their first-

order temporal derivatives 59. Linear detrending was also applied, and the subject-specific 

denoised BOLD signal timeseries were band-pass filtered to eliminate both low-frequency 

drift effects and high-frequency noise, thus retaining frequencies between 0.008 and 0.09 

Hz.

HRF deconvolution

Following previous work on the use of information-theoretic measures in the context of 

functional MRI data, we used state-of-the-art techniques 55 to deconvolve the hemodynamic 

response function from our regional BOLD signal timeseries. The only exceptions were 

the computation of traditional functional connectivity (Pearson correlation – see below), 

for which the un-deconvolved BOLD signal timeseries were instead used, in line with 

common practice; and the comparison with macaque fMRI: since no HRF deconvolution 

was performed for macaque data, they were compared with non-deconvolved human data.

HCP: Diffusion weighted data

We used DWI data from the 100 unrelated subjects of the HCP 900 subjects data release 
51. The diffusion weighted (DW) acquisition protocol is covered in detail elsewhere 52. The 

diffusion MRI scan was conducted on a Siemens 3T Skyra scanner using a 2D spin-echo 

single-shot multiband EPI sequence with a multi-band factor of 3 and monopolar gradient 

pulse. The spatial resolution was 1.25 mm isotropic. TR = 5500 ms, TE = 89.50 ms. The b-

values were 1000, 2000, and 3000 s/mm2. The total number of diffusion sampling directions 

was 90, 90, and 90 for each of the shells in addition to 6 b0 images. We used the version 

of the data made available in DSI Studio-compatible format at https://pitt.app.box.com/v/

HCP1065.

DWI reconstruction and fiber tracking

The minimally-preprocessed DWI data 52 were corrected for eddy current and susceptibility 

artifact. DWI data were then reconstructed using q-space diffeomorphic reconstruction 

(QSDR), as implemented in DSI Studio (www.dsi-studio.labsolver.org) 60, following 

previous work 55. QSDR is a model-free method that calculates the orientational distribution 

of the density of diffusing water in a standard space, to conserve the diffusible spins 

and preserve the continuity of fiber geometry for fiber tracking. QSDR first reconstructs 

diffusion-weighted images in native space and computes the quantitative anisotropy (QA) 

in each voxel. These QA values are used to warp the brain to a template QA volume in 

Montreal Neurological Institute (MNI) space using the statistical parametric mapping (SPM) 

nonlinear registration algorithm. A diffusion sampling length ratio of 2.5 was used, and 

the output resolution was 1 mm. A modified FACT algorithm 61 was then used to perform 

deterministic fiber tracking on the reconstructed data, with the same parameters used in 

previous work 55. Angular cutoff of 55°, step size of 1.0 mm, minimum length of 10 mm, 

maximum length of 400mm, spin density function smoothing of 0.0, and a QA threshold 
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determined by DWI signal in the cerebro-spinal fluid. Each of the streamlines generated 

was automatically screened for its termination location. A whole-brain white matter mask 

was created by applying DSI Studio’s default anisotropy threshold (0.6 Otsu’s threshold) to 

the SDF’s anisotropy values. The mask was used to eliminate streamlines with premature 

termination in the white matter region. Deterministic fiber tracking was performed until 

1,000,000 streamlines were reconstructed for each individual.

Macaque data from PRIME-DE Initiative

The non-human primate MRI data were made available as part of the Primate neuroimaging 

Data-Exchange (PRIME-DE) monkey MRI data sharing initiative, a recently introduced 

open resource for non-human primate imaging 62.

Macaque dataset description

We used fMRI data from rhesus macaques (Macaca mulatta) scanned at Newcastle 

University. This samples includes 14 exemplars (12 male, 2 female); Age 

distribution: 3.9-13.14 years; Weight distribution: 7.2-18 kg (full sample description 

available online: http://fcon_1000.projects.nitrc.org/indi/PRIME/files/newcastle.csv and 

http://fcon_1000.projects.nitrc.org/indi/PRIME/newcastle.html).

To ensure comparability with the human data, we excluded a priori any functional MRI 

data acquired from anaesthetized animals. Out of the 14 total animals present in the 

Newcastle sample, 10 had available awake resting-state fMRI data; of these 10, all except 

the first animal had two scanning sessions available: to maximise our statistical power, these 

repeated sessions were included in the analysis. Thus, the total was 19 distinct sessions 

across 10 individual macaques.

Ethics approval—All of the animal procedures performed were approved by the UK 

Home Office and comply with the Animal Scientific Procedures Act (1986) on the care and 

use of animals in research and with the European Directive on the protection of animals 

used in research (2010/63/EU). We support the Animal Research Reporting of In Vivo 

Experiments (ARRIVE) principles on reporting animal research. All persons involved in this 

project were Home Office certified and the work was strictly regulated by the U.K. Home 

Office. Local Animal Welfare Review Body (AWERB) approval was obtained. The 3Rs 

principles compliance and assessment was conducted by National Centre for 3Rs (NC3Rs). 

Animal in Sciences Committee (UK) approval was obtained as part of the Home Office 

Project License approval.

Animal care and housing—All animals were housed and cared for in a group-housed 

colony, and animals performed behavioural training on various tasks for auditory and visual 

neuroscience. No training took place prior to MRI scanning.

Macaque MRI acquisition

Animals were scanned in a vertical Bruker 4.7T primate dedicated scanner, with single 

channel or 4-8 channel parallel imaging coils used. No contrast agent was used. 

Optimization of the magnetic field prior to data acquisition was performed by means of 
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2nd order shim, Bruker and custom scanning sequence optimization. Animals were scanned 

upright, with MRI compatible head-post or non-invasive head immobilisation, and working 

on tasks or at rest (here, only resting-state scans were included). Eye tracking, video and 

audio monitoring were employed during scanning.

Resting-state scanning was performed for 21.6 minutes, with a TR of 2600ms, 17ms 

TE, Effective Echo Spacing of 0.63ms, voxels size 1.22 x 1.22 x 1.24. Phase Encoding 

Direction: Encoded in columns. Structural scans comprised a T1 structural, MDEFT 

sequence with the following parameters: TE: 6ms; TR: 750 ms; Inversion delay: 700ms; 

Number of slices: 22; In-plane field of view: 12.8 x 9.6cm2 on a grid of 256 x 192 voxels; 

Voxel resolution: 0.5 x 0.5 x 2mm; Number of segments: 8.

Macaque functional MRI preprocessing and denoising

The macaque MRI data were preprocessed using the recently developed pipeline for non-

human primate MRI analysis, Pypreclin, which addresses several specificities of monkey 

research. The pipeline is described in detail in the associated publication 63. Briefly, it 

includes the following steps: (i) Slice-timing correction. (ii) Correction for the motion-

induced, time-dependent B0 inhomogeneities. (iii) Reorientation from acquisition position to 

template; here, we used the recently developed National Institute of Mental Health Macaque 

Template (NMT): a high-resolution template of the average macaque brain generated from 

in vivo MRI of 31 rhesus macaques (Macaca mulatta) 64. (iv) Realignment to the middle 

volume using FSL MCFLIRT function. (v) Normalisation and masking using Joe’s Image 

Program (JIP-align) routine (http://www.nmr.mgh.harvard.edu/~jbm/jip/, Joe Mandeville, 

Massachusetts General Hospital, Harvard University, MA, USA), which is specifically 

designed for preclinical studies: the normalization step aligns (affine) and warps (non-linear 

alignment using distortion field) the anatomical data into a generic template space. (vi) 

B1 field correction for low-frequency intensity non-uniformities present in the data. (vii) 

Coregistration of functional and anatomical images, using JIP-align to register the mean 

functional image (moving image) to the anatomical image (fixed image) by applying a rigid 

transformation. The anatomical brain mask was obtained by warping the template brain 

mask using the deformation field previously computed during the normalization step. Then, 

the functional images were aligned with the template space by composing the normalization 

and coregistration spatial transformations.

Denoising—The aCompCor denoising method implemented in the CONN toolbox was 

used to denoise the macaque functional MRI data, to ensure consistency with the human 

data analysis pipeline. White matter and CSF masks were obtained from the corresponding 

probabilistic tissue maps of the high-resolution NMT template (eroded by 1 voxel); their 

first five principal components were regressed out of the functional data, as well as linear 

trends and 6 motion parameters (3 translations and 3 rotations) and their first derivatives.

Following previous work on macaque functional MRI 65, data were bandpass-filtered in 

the range of 0.0025-0.05 Hz. When comparing directly between human and macaque data, 

results were also robust to the use of the same bandpass filter of 0.008-0.09 Hz used for 

human data.
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Brain parcellations

Human brains were parcellated into 232 cortical and subcortical regions of interest (ROIs). 

The 200 cortical ROIs were obtained from the scale-200 version of the recent local-global 

functional parcellation of Schaefer et al. (2018) 66. Since this parcellation only includes 

cortical regions, it was augmented with 32 subcortical ROIs from a recent subcortical 

functional parcellation 67. We refer to this 232-ROI parcellation as the augmented 

“Schaefer-232” parcellation. A recent study indicates that this parcellation results in 

networks whose topology is more generalizable than networks obtained from the same data 

but with alternative node definition schemes 55.

The data pertaining to regional PET-derived synaptic density, HAR gene expression, 

human cortical expansion, Von Economo cytoarchitectonics and cortico-cortical wiring 

distance were each only available according to specific parcellations: the Desikan-

Killiany anatomical atlas 68 with 68 cortical regions (DK-68) for PET data; a 114-ROI 

subparcellation of the Desikan-Killiany atlas for HAR genes and cortical expansion 

(DK-114); and a different subparcellation of the Desikan-Killiany atlas with 308 equally-

sized ROIs of 500 mm2 each (DK-308 69), for the Von Economo cytoarchitectonic classes; 

and the 360-ROI HCP Multi-Modal Parcellation (HCP-MMP) 70 for the cortico-cortical 

wiring distance. Therefore, we show that our results are robust to the use of these alternative 

parcellations.

Macaque functional data were parcellated according to the whole-cortex 82-ROI “Regional 

Mapping” (RM) atlas of Kotter and Wanke 71, nonlinearly registered to the NMT template 

used for preprocessing.

BOLD timeseries extraction

To construct matrices of functional connectivity, the timecourses of denoised BOLD signals 

were averaged between all voxels belonging to a given atlas-derived ROI, using the CONN 

toolbox. The resulting region-specific timecourses of each subject were then extracted for 

further analysis in MATLAB version 2019a.

Traditional functional connectivity

For each pair of brain regions i and j, their traditional functional connectivity FCij was 

computed as the Pearson correlation between their denoised BOLD signal timeseries.

Structural connectome construction

To construct matrices of structural connectivity, the edge weights aij of the structural 

connectivity matrix A were defined as the number of streamlines connecting end-to-end 

each of the regions in the atlas, normalised to lie between zero and one. Note that 

deterministic tractography produces naturally sparse matrices, so that no thresholding is 

required.

Partial Information Decomposition

Shannon’s Mutual information (MI) quantifies the interdependence between two random 

variables X and Y. It is calculated as
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I(X; Y ) = H(X) − H(X Y ) = H(X) + H(Y ) − H(X, Y ), (1)

where H(X) stands for the Shannon entropy of a variable X. Above, the first equality states 

that the mutual information is equal to the reduction in entropy (i.e. uncertainty) about X 
after Y becomes accessible. Put simply, the mutual information quantifies the information 

that one variable provides about another 21.

Crucially, Williams and Beer 2 observed that the information that two source variables X 
and Y give about a third target variable Z, I(X,Y; Z), should be decomposable in terms of 

different kinds of information: information provided by one source but not the other (unique 

information), or by both sources separately (redundant information), or jointly by their 

combination (synergistic information). Following this intuition, they developed the Partial 

Information Decomposition (PID 2) framework, which leads to the following fundamental 

decomposition:

I(X, Y ; Z) = Red(X, Y ; Z) + Un(X; Z Y ) + Un(Y ; Z X) + Syn(X, Y ; Z) (2)

Above, Un corresponds to the unique information one source has but the other doesn’t, Red 
is the redundancy between both sources, and Syn is their synergy: information that neither X 
nor Y alone can provide, but that can be obtained by considering X and Y together.

The simplest example of a purely synergistic system is one in which X and Y are 

independent fair coins, and Z is determined by the exclusive-OR function Z = XOR(X,Y): 

i.e., Z=0 whenever X and Y have the same value, and Z=1 otherwise. It can be shown that 

X and Y are both statistically independent of Z, which implies that neither of them provide 

– by themselves – information about Z. However, X and Y together fully determine Z: 

hence, the relationship between Z with X and Y is purely synergistic. Although here we 

base our analysis on the PID framework, it is worth remarking that alternative formulations 

of measures related to synergy and redundancy have been developed in other contexts (see 

Timme et al., (2014) 3 for a discussion).

While PID provides a formal framework to decompose information, it does not enforce 

how the corresponding parts ought to be calculated (e.g. what counts as “the same 

information” for the purpose of measuring redundancy). While there is ongoing research on 

the advantages of different decompositions for discrete data, most decompositions converge 

into the same simple form for the case of continuous Gaussian variables 22. Known as 

minimum mutual information PID (MMI-PID), this decomposition quantifies redundancy in 

terms of the minimum mutual information of each individual source with the target; synergy, 

then, becomes identified with the additional information provided by the weaker source once 

the stronger source is known.

Since linear-Gaussian models are adequate descriptors of functional MRI timeseries (and 

more complex, non-linear models do not seem to offer additional explanatory power 72,73) 

here we adopt the MMI-PID decomposition, following previous applications of PID to 

neuroscientific data 74. However, we also demonstrate that our results do not crucially 

rely on the assumption of gaussianity, by showing that they are robust to the use of 
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discretised data (see below). That being said, information decomposition is an active field of 

investigation 75, and further advances may shed new light on improved ways to compute and 

interpret these quantities.

Synergy and redundancy: Integrated Information Decomposition

Let us consider now a stochastic process X comprised of two random variables evolving 

jointly over time, Xt = Xt
1, Xt

2  – in our case, this corresponds to the timeseries of the 

BOLD activity of two brain regions, although in other applications it could be any form of 

multivariate timeseries data. One can first consider the amount of information flowing from 

the system’s past to its future, known as time-delayed mutual information (TDMI) 76 and 

given by I(Xt − τ
1 , Xt − τ

2 ; Xt
1, Xt

2) .

The fundamental advancement offered by Integrated Information Decomposition 6 is to 

decompose TDMI into redundant, unique, and synergistic information shared with respect 

to both past and present state of both variables. In practice, this involves setting up a 

linear system of 15 equations with 16 unknowns relating the standard (Shannon) mutual 

information with the redundant, unique, and synergistic components of TDMI 6. The system 

can be solved by specifying the redundancy between Xt−τ and Xt, which, following the 

discussion in the previous section, we compute using MMI as

Red(Xt − τ; Xt) = minij I(Xt − τ
i ; Xt

j) . (3)

This allows us to solve the linear system of equations and obtain all components of 

the Integrated Information Decomposition of X. Of these, we focus on the temporally 

persistent redundancy and synergy (denoted by I∂
1 2 1 2  and I∂

12 12  in standard PID 

notation 2). It is worth noting that the Integrated Information Decomposition framework 

scrutinizes the interdependencies between the past and present states of both Xt and Yt, and 

therefore captures phenomena that are not assessed by approaches focused on the transfer 

of information from the past of one to the present of the other. Indeed, the metrics of 

redundancy and synergy studied here reveal a view on brain dynamics that is fundamentally 

different – and ultimately complementary – to the one provided by directed information-

theoretic measures such as directed information and transfer entropy 13,14,77,78. The reader is 

referred to the original article for details 6.

For all the analyses in the paper we use the Gaussian solver implemented in the JIDT 

toolbox 79 to compute all information-theoretic quantities for each pair of brain regions, 

based on their HRF-deconvolved BOLD signal timeseries. In addition, we also show that our 

analyses are not critically dependent on the Gaussianity assumption by computing synergy 

and redundancy from discrete (binary) timeseries. We implemented this by estimating 

the corresponding information-theoretic quantities on mean-binarised signals with the well-

known plug-in estimator. Finally, given the recent formulation of Integrated Information 

Decomposition, it is worth keeping in mind that these metrics and their implementations for 

both continuous and discrete signals may be refined in future research, including extensions 

beyond the current pair-wise approach 80,81.
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Gradient of redundancy-to-synergy relative importance

After building networks of synergistic and redundant interactions between each pair of 

regions of interest (ROIs), we determined the role of each ROI in terms of its relative 

engagement in synergistic or redundant interactions. We first calculated the nodal strength 

of each brain region as the sum of all its connections in the group-averaged matrix. Then, 

we ranked all 232 regions based on their nodal strength (with higher-strength regions having 

higher ranks). This procedure was done separately for networks of synergy and redundancy. 

Subtracting each region’s redundancy rank from its synergy rank yielded a gradient from 

negative (i.e. ranking higher in terms of redundancy than synergy) to positive (i.e. having a 

synergy rank higher than the corresponding redundancy rank); note that the sign is arbitrary.

It is important to note that the gradient is based on relative – rather than absolute 

– differences between regional synergy and redundancy. Consequently, a positive rank 

difference does not necessarily mean that the region’s synergy is greater than its redundancy; 

rather, it indicates that the balance between its synergy and redundancy relative to the rest of 

the brain is in favour of synergy – and vice versa for a negative gradient.

The same procedure was also repeated for network edges (instead of nodes), using their 

weights to rank them separately in terms of synergy and redundancy and then calculating 

their difference. This produced a single connectivity matrix where each edge’s weight 

represents its relative importance, being higher for synergy (positive edges) or redundancy 

(negative edges).

NeuroSynth term-based meta-analysis

The regional redundancy-to-synergy gradient identified in terms of nodal rank differences 

was related to specific words using NeuroSynth, an online platform for large-scale, 

automated synthesis of fMRI data [https://neurosynth.org/]. For our analyses we employ 24 

topic terms used by previous studies 23,25, which range from lower sensorimotor functions 

(such as eye movement, motion, visual and auditory perception) to higher cognitive 

functions (e.g. attention, working memory, social and numerical cognition).

A meta-analysis analogous to the one implemented by previous studies 25,27, was conducted 

to identify topic terms associated with the redundancy-to-synergy gradient. Twenty binary 

brain masks were obtained by splitting the values of the redundancy-to-synergy gradient 

into five-percentile increments. These brain masks served as input for the meta-analysis, 

based on the chosen 24 topic terms. For visualisation, terms were ordered according to 

the weighted mean of the resulting Z-statistics. Note that the term “visual semantics” was 

excluded from visualisation, because it failed to reach the significance threshold of Z > 3.1, 

leaving 23 terms (Fig. 1). The analyses were carried out using modified code made freely 

available at [https://www.github.com/gpreti/GSP_StructuralDecouplingIndex].

Von Economo cytoarchitectonic classes

Whitaker and Vertes (2016) 35 assigned each regions in the DK-308 cortical parcellation 

to one of the cytoarchitectural types delineated by von Economo. This atlas subdivided the 

cortex into five types according to the laminar structure of the cortex: the primary motor 
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cortex/precentral gyrus; two types association cortices; secondary and primary sensory 

areas. Two additional subtypes were added 82: limbic cortex (which included the entorhinal, 

retrosplenial, presubicular and cingulate cortices, and thus primarily constitutes allocortex); 

and the insular cortex.

Subsequently, synergy and redundancy were obtained for the DK-308 parcellation as 

described above, as well as the redundancy-to-synergy gradient based on rank differences. 

The regional values of this gradient were then averaged across all ROIs belonging to each 

of the seven cytoarchitectonic classes. For each cytoarchitectonic class, a positive overall 

score indicates that cortical regions belonging to that class have overall higher importance 

for synergy than for redundancy – and vice-versa for negative scores.

Canonical resting-state subnetworks

We used the canonical subdivision of the brain into 7 cortical subnetworks of Yeo 22: 

default mode (DMN), somatomotor (SOM), visual (VIS), salience/ventral attention (SAL), 

dorsal attention (DAN), fronto-parietal executive control (FPN) and limbic (LIM). Schaefer 

et al (2018) 63 assigned each ROI in their cortical parcellation to one of these canonical 

subnetworks. The 32 subcortical regions were all assigned to an 8th subcortical subnetwork 

(SUB).

Quantifying network efficiency and segregation

By considering each brain region as a node in a network, it is possible to obtain two distinct 

whole-brain networks: one whose edges correspond to the synergistic interactions between 

each pair of brain regions, and one whose edges correspond to the redundant interactions. 

The whole-brain networks of synergistic and redundant interactions can then be compared in 

terms of graph-theoretical properties: our analysis focused on properties quantifying the ease 

of communication through the network (efficiency) and its level of segregation.

We quantified the ease of communication in the whole-brain networks of synergistic and 

redundant connections in terms of the network’s global efficiency, a well-known measure of 

the ease of parallel information transfer in the network. More precisely, the global efficiency 

of a network corresponds to the average of the inverse of the shortest path length between 

each pair of nodes 79:

Ge = 1
n∑

i

n ∑j ≠ i
n (dij)−1

n − 1

Following Cruzat et al (2018) 80, segregation of brain networks was quantified by means 

of network modularity. Put simply, the modularity function quantifies the extent to which 

a network can be partitioned such that the number of within-group edges is maximised 

and the density of between-group edges is minimised. We employed an implementation of 

Newman’s spectral modularity algorithm 81 available in the Brain Connectivity Toolbox 

(BCT 79,82).

Luppi et al. Page 21

Nat Neurosci. Author manuscript; available in PMC 2023 July 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Structural-functional similarity

Matrices of synergy and redundancy were thresholded proportionally using the same 

network density as the structural connectivity matrix of the same subject. This procedure 

was selected in order to ensure that the same number of edges would be present in both 

matrices, so that the two matrices can be compared. Then, the upper triangular portion of 

each connectivity matrix (structural and synergy/redundancy) was flattened into a vector, 

and the Spearman correlation coefficient between these two vectors was computed 83. We 

use this correlation as a measure of similarity between synergy or redundancy and structural 

connectivity. The same procedure was also adopted to compare synergy and redundancy 

matrices with the matrices of traditional functional connectivity and cortico-cortical wiring 

distance (described below). Since these matrices are dense (all-to-all) matrices, for such 

analyses the thresholding step was omitted.

Alternative network measures

As an alternative quantification of how well-connected a network is, we also employed 

the measure of global integrative capacity developed by Cruzat and colleagues 84. This 

measure is calculated by taking the un-thresholded connectivity as input, and rescaling it 

to the range of 0 to 1 by dividing it by its largest element (note that both synergy and 

redundancy are guaranteed to be non-negative, and therefore we did not need to take the 

absolute value). Then, the matrix is progressively thresholded with an increasing threshold ρ 
in 1% increments. At each threshold value, the size of the largest connected component of 

the resulting network is evaluated (normalised by the total number of nodes to lie between 0 

and 1). The final measure is the integral of the curve of largest connected component sizes 

over all thresholds:

IGC = ∫
ρ = 0 . 01

0 . 99
GC(Aρ)

where GC(Aρ) indicates the size (number of nodes) of the largest connected component of 

the network whose adjacency matrix A has been thresholded at threshold ρ, and N is the 

total number of nodes in the network. This procedure was applied for both redundancy and 

synergy whole-brain networks of each subject.

As an alternative method to quantify the similarity of synergistic and redundant connections 

to the underlying structural connectome, we computed the Hamming distance between the 

connectivity patterns of each ROI in the functional and anatomical connectivity matrices 
85. The Hamming distance between binary vectors a and b is computed as the number of 

symbol substitutions required to turn one vector into the other (normalised by their length).

The matrices were therefore binarised by setting all supra-threshold entries to unity, and all 

others to zero. In the present application, the Hamming distance measures the proportion 

of connections that need to be changed before the two connectivity patterns become the 

same. This analysis was performed for each ROI in our augmented Schaefer-232 atlas; by 

averaging over all ROI values, we obtained a value of structural-functional connectivity 
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distance. Both correlation and Hamming distance analysis were performed separately for the 

matrices of synergy and redundancy between each pair of brain regions.

Network null models for graph-theoretical analysis

We compared the modularity and global efficiency of the networks of synergistic and 

redundant interactions against synthetic null models. The considered null models are based 

on the fact that, within a given individual, both the synergy and the redundancy between 

regions i and j are upper-bounded by the TDMI between i and j and lower-bounded by 0, and 

there is no a priori reason dictating which one should be greater. Therefore, we constructed 

our null models as follows. For each individual we obtained a random network whereby the 

weight of the edge between each pair of regions i and j is randomly sampled from the range 

between 0 and the TDMI between i and j – thereby being in the same theoretical range as 

both synergy and redundancy. We then computed the global efficiency and modularity of this 

synthetic network, and repeated the procedure 100 times, comparing the global efficiency 

and modularity averaged across 100 simulations, with the corresponding measures obtained 

from the empirical networks of synergy and redundancy, for each individual.

Cortico-cortical wiring distance

Paquola and colleagues 32 developed a measure of cortico-cortical wiring distance. 

They used diffusion map embedding, a nonlinear dimensionality reduction approach, to 

combine diffusion tractography with cortico-cortical spatial proximity (geodesic distance) 

and microstructural profile similarity between regions, to obtain a multi-scale measure 

of difference between cortico-cortical wiring profiles, termed wiring distance. For our 

analysis, we used the matrix of wiring distance provided in terms of the multimodal cortical 

parcellation of Glasser and colleagues 70 with 360 cortical regions.

Structural-functional similarity in macaque brains

Individual structural connectomes were not available for the macaques included in this 

study. Anatomical connectivity for the macaque brain was instead obtained from the fully-

weighted, whole-cortex macaque connectome recently developed by Shen and colleagues 
86,87. This connectome was generated by combining information from two different 

axonal tract-tracing studies from the CoCoMac database [http://cocomac.g-node.org/main/

index.php?] with diffusion-based tractography obtained from 9 adult macaques (Macaca 
mulatta and Macaca fascicularis). The resulting connectome provides a matrix of weighted 

and directed anatomical connectivity between each of the 82 cortical ROIs of the RM 

atlas. Since synergy and redundancy are undirected measures of connectivity, the matrix 

of directed anatomical connections was made undirected by averaging the strength of 

connections in the two directions.

As for humans, networks of synergistic and redundant interactions were thresholded 

proportionally using the same density as the anatomical connectivity matrix, to ensure that 

the same number of edges would be present in the two matrices being compared. Then, 

Spearman correlation was used as the measure of structural-functional similarity.
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Human-macaque comparison of synergy and redundancy

Separately for humans and macaques, each subject’s matrices of synergistic and redundant 

interactions were each divided by the corresponding subject’s matrix of TDMI. The 

global mean of the resulting matrices (across rows and columns) therefore represents the 

proportion of total information across the brain that is provided by synergistic (v. redundant) 

interactions. The human data were parcellated for this analysis according to the 83-ROI 

Lausanne parcellation (corresponding to the original Desikan-Killiany atlas, plus subcortical 

regions 88), thereby ensuring a similar number of ROIs in human (83 ROIs) and macaque 

brains (82 ROIs).

Since macaque brains were not HRF-deconvolved, for this analysis we also used synergy 

and redundancy obtained from non-deconvolved human fMRI. As shown above, the use 

of HRF deconvolution had negligible effects on synergy and redundancy calculations, 

arguably thanks to the high temporal resolution of HCP data. To ensure that the observed 

differences in the proportion of synergistic information could not be attributed to differences 

in bandpass-filter, we also repeated this analysis with macaque data filtered in the range 

0.008-0.09Hz (i.e. same range as the HCP human data). These data were also used to 

compare the effect size between humans and macaques in terms of total proportion of 

synergistic information versus total mean functional connectivity (overall mean of the 

FC matrix), or the modularity or global efficiency of functional connectivity networks, 

computed as described above (after removing negative connections by taking the absolute 

value). The procedure for comparing effect sizes is described below in the section on 

Statistical analysis.

Validation with dynamic mean field

Model construction—To determine whether the differences in the proportion of synergy 

between humans and macaques could be driven by the different TR (0.72s for HCP data, 

and 2.6s for macaque data), we simulated human functional MRI data with the same TR as 

the macaque data, using a dynamic neuronal mean-field model derived from the collective 

behavior of empirically validated integrate-and-fire (80% excitatory and 20% inhibitory) 

neurons 87. The model combines macroscale information about neuroanatomy and structural 

connectivity (from DTI) with excitatory and inhibitory neuronal populations interconnected 

by AMPA, NMDA and GABA synapses, providing a neurobiologically plausible account 

of regional neuronal firing rate. We set all model parameters to be the same as those used 

by previous publications 87–89, except for the global coupling parameter G, which we fit 

(see below). Code for the DMF model is freely available at http://www.gitlab.com/concog/

fastdmf 89.

The structural connectivity for the model was obtained by following the procedure of 

Wang et al (2019) 90, which derives a consensus structural connectivity matrix A from the 

individual SC matrices of the 100 HCP subjects included in the present study. Hence, for 

each individual, the structural connectivity was obtained from deterministic tractography (as 

described above) performed with the Lausanne-83 parcellation. Subsequently, for each pair 

of regions i and j, if more than half of subjects had non-zero connection i and j, Aij was set 
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to the average across all subjects with non-zero connections between i and j. Otherwise, Aij 

was set to zero.

A Balloon-Windkessel hemodynamic model was then used to turn simulated regional 

neuronal activity into simulated regional BOLD signal. The Balloon-Windkessel model 

considers the BOLD signal as a static nonlinear function of the normalized total 

deoxyhemoglobin voxel content, normalized venous volume, resting net oxygen extraction 

fraction by the capillary bed, and resting blood volume fraction. The BOLD-signal 

estimation for each brain area is computed from the level of neuronal activity in that 

particular area. Finally, simulated regional BOLD signal was bandpass filtered in the same 

range as the empirical data (0.008-0.09Hz).

Model fitting—The model has only one free parameter G, which scales the global coupling 

strength. To find the value of G that generates the most realistic data, we first generated 100 

simulations with a TR of 0.72s (i.e. the same as the empirical HCP data) for each value of 

G between 0.1 and 2.5, using increments of 0.1. Following previous work 90–92, we selected 

the value of G that minimised the Kolmogorov-Smirnov distance between the empirical 

and simulated functional connectivity dynamics (FCD), which has been shown to provide 

a better fit than simply using the global functional connectivity. The KS distance between 

empirical and simulated FCD was minimised for a value of G=1.6 (Extended Data Fig. 6).

Simulated human fMRI data—To determine whether the observed difference in 

proportion of synergy between human and macaque brains could be explained exclusively 

by the difference in TR, we then generated another set of 100 simulations, using the 

empirically determined best-fitting G parameter of 1.6, but now with a TR of 2.6s, i.e. the 

same as the macaque data. The simulated data were filtered between 0.008-0.09Hz and their 

mean normalised synergy across all pairs of regions (i.e., the proportion of total information 

accounted for by synergy) was compared with the normalised synergy empirically observed 

in macaque brains (Extended Data Fig. 6).

HAR-BRAIN genes

The maps of regional expression of human-accelerated genes for the DK-114 atlas were 

made available by Wei et al (2019) 34, where the reader can find detailed information 

about how these data were generated. Briefly, genes located in a total of 2737 human 

accelerated regions (HARs) of the genome were taken as presented by comparative genome 

analysis representing genomic loci with accelerated divergence in humans 93. Out of 2143 

HAR-associated genes identified from this procedure, 1711 were described in the Allen 

Human Brain Atlas (AHBA) microarray dataset (human.brain-map.org) 94 and were used in 

the analyses by Wei and colleagues, referred to as HAR genes.

HAR genes were subsequently subdivided into HAR-BRAIN and HAR-NonBRAIN genes. 

BRAIN genes were selected as the set of genes commonly expressed in human brain 

tissue using the Genotype-Tissue Expression (GTEx) database (data source: GTEx Analysis 

Release V6p; https://www.gtexportal.org/), which includes 56,238 gene expression profiles 

in 53 body sites collected from 7333 postmortem samples in 449 individuals. From these 

56,238 genes, a total number of 2823 genes were identified as BRAIN genes showing 
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significantly higher expressions in brain sites than non-brain sites (one-sided t-test and an 

FDR corrected q < 0.05 were used). HAR-BRAIN genes were identified as the 405 genes 

that overlapped between the 2823 BRAIN genes and the 1711 HAR genes, whereas the 

remaining HAR genes were labelled as HAR-NonBRAIN genes. Finally, the HAR gene 

expression data were mapped to the 114-region subdivision of the Desikan-Killiany atlas 

[DK-114]. Since only two of the six AHBA donors have data for the right hemisphere, Wei 

et al (2019) only considered HAR gene expression patterns for the left hemisphere.

Cortical expansion

The maps of evolutionary cortical expansion were made available by Wei et al 

(2019) 34, who describe in detail how these data were generated. Briefly, Wei and 

colleagues analysed in-vivo MRI data from 29 adult chimpanzees, as well as 30 adult 

human subjects from the Human Connectome Project. Pial surface reconstructions of 

chimpanzee and human T1-weighted MRI scans (processed with FreeSurefer v5.3.0; 

https://surfer.nmr.mgh.harvard.edu/) were used for both vertex-to-vertex mapping across 

chimpanzee and humans and also for subsequent computation of region-wise expansion for 

cortical morphometry. A regional-level cortical surface area (Si) was computed by summing 

up face areas within each cortical region, for all regions of the DK-114 atlas. Normalized 

cortical area was obtained by dividing the regional area by the area of the whole cortex. 

Cortical expansion between every pair of chimpanzee and human subjects was calculated 

based on both the raw (“unadjusted”) and normalized (“adjusted”) cortical surface area by

Ei, j = Sℎuman, i − Scℎimp, j
Scℎimp, j

with Ei,j denoting the expansion from chimpanzee j to human i. A group-level region-wise 

cortical expansion map was calculated by taking averages over the 870 chimpanzee-to-

human comparisons.

Regional Glycolytic Index data

The maps of average regional Glycolytic Index (GI) for 41 regions (left and right) of the 

Brodmann atlas were made available by Vaishnavi et al (2010) 39 based on PET scans of 

33 healthy adults (scanned at rest and with eyes closed). We mapped 78 of these values 

onto an MNI-space parcellation of the Brodmann atlas, which we used to parcellate our 

fMRI data. The GI is a measure of regional aerobic glycolysis, since it quantifies the extent 

to which empirically measured glucose consumption exceeds or falls short of the glucose 

consumption that would be predicted based on oxygen metabolism. Specifically, GI is 

obtained by linear regression of regional cerebral metabolic rate of glucose (measured using 

[18F]-labeled fluorodeoxyglucose) on regional cerebral metabolic rate of oxygen, measured 

by combining three PET scans administering [150-]labeled H20, CO and O2 40.

Genes related to aerobic glycolysis

Goyal et al., (2014) 38 performed data-driven analysis using AHBA microarray data and 

an independent transcriptomic database (BrainSpan Study [BSS], http://brainspan.org 95), 

to identify genes whose regional distribution was significantly associated with the regional 
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distribution of aerobic glycolysis values (Glycolytic Index) previously obtained by Vaishnavi 

and colleagues 39. They identified and made available a list of 116 genes that consistently 

occurred among the top 1,000 out of 17,205 genes whose expression is associated (after 

correction for multiple comparisons) with the regional distribution of GI in the human brain, 

both in the AHBA dataset and in five matched BSS adult brains.

AIBS data-driven gene expression analysis

Regional gene expression levels for 20,647 human genes were obtained from transcriptomic 

measurements in six post-mortem brains from adult human donors with no history of 

psychiatric or neuropathological disorders (age: 24-57 years), made available by the Allen 

Institute for Brain Science (human.brain-map.org) 94. We used code made freely available 

by Morgan et al (2019) 23 to obtain a 308 x 20,647 regional transcription matrix, matching 

gene expression data to each cortical region of the DK-308 atlas 23,35,82,96. Each tissue 

sample was assigned to a cortical region using the AIBS MRI data for each donor, pooling 

samples between bilaterally homologous regions 23,82.

Partial least squares—To explore the association between the redundancy-to-synergy 

regional gradient and all 20,647 genes measured in the AHBA microarrays, at each of 

308 regions, we used partial least squares (PLS) as a dimensionality reduction technique 
23,82,97. PLS finds components from the predictor variables (308 × 20,647 matrix of 

regional gene expression scores) that have maximum covariance with the response variables 

(308 × 1 matrix of regional redundancy-to-synergy gradient). The PLS components (i.e., 

linear combinations of the weighted gene expression scores) are ranked by covariance 

between predictor and response variables, so that the first few PLS components provide 

a low-dimensional representation of the covariance between the higher dimensional data 

matrices.

Goodness of fit of low-dimensional PLS components was tested non-parametrically by 

repeating the analysis 1000 times after shuffling the regional labels. The error on the PLS 

weights associated with each gene were tested by resampling with replacement of 308 ROIs 

(bootstrapping); the ratio of the weight of each gene to its bootstrap standard error was used 

to Z-score the genes and rank their contributions to each PLS component 23,82.

Gene ontology and enrichment analysis—We used Gorilla for enrichment analysis 

of the first two PLS components 35,98. Gorilla identifies enriched gene ontology (GO) terms 

in ranked gene list, leveraging a large online database of gene annotations corresponding to 

‘biological processes’ and ‘cellular components’ 98. We identified GO terms that were over-

represented among the genes with the strongest positive weightings on each PLS component 

(i.e. those most strongly associated with dominance of synergy over redundancy). For our 

analyses on the online Gorilla platform (http://cbl-gorilla.cs.technion.ac.il) we unchecked 

the “Run Gorilla in fast mode” option and used the “P-value threshold 10-4” setting in order 

to best approximate FDR correction with α = 0.05 35.

We then used the online tool REViGO (http://revigo.irb.hr) to summarize the list of 

significant GO terms and visualize the results of whole-genome enrichment analysis. 

First, REViGO employs measures of semantic similarity between terms 99 to identify 
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representative clusters of genes. Then, REViGO plots significant GO terms in semantic 

space, where semantically similar GO terms are represented clustered near one another and 

labelled in a representative manner.

We note that this analysis does not take into account within-category gene-gene correlations; 

therefore, we also employed a more sophisticated null model that was recently developed 

to estimate gene enrichment relative to an ensemble of null phenotypes (rather than 

an ensemble of random genes) 100, using a freely available toolbox: https://github.com/

benfulcher/GeneCategoryEnrichmentAnalysis/wiki/Ensemble-enrichment.

For our hypothesis-driven analysis, testing for enrichment of HAR-Brain genes, we also 

used non-parametric permutation testing. Specifically, we randomly drew 1000 samples 

of the same number of genes and estimated their PLS weighting, and compared the PLS 

weights of the HAR-Brain genes to this permutation distribution. This provided an estimate 

of the probability of HAR-Brain gene enrichment of each PLS component under the null 

hypothesis 24,36. The same procedure was used to test for significant enrichment of genes 

related to regional aerobic glycolysis.

Robustness of gene enrichment results

Our data-driven analysis of regional gene expression also indicated significant 

enrichment when performed using an alternative approach: ridge-regularised PLS 

regression implemented in the R package plsgenomics (https://CRAN.R-project.org/

package=plsgenomics). As this package requires binary target variables, we therefore turned 

the regional gradient from synergy to redundancy into a binary vector characterizing each 

region in terms of the predominance of synergy or redundancy (as indicated by the sign 

of the gradient), regardless of magnitude. Therefore, this analysis seeks to find regularized 

coefficients to predict each region’s binary status as synergy-rich vs redundancy-rich, based 

on regional gene expression. We obtained regression coefficients for each AHBA gene using 

a ridge (L2) penalty norm determined by 10-fold cross-validation. These coefficients were 

then turned into z-scores and enrichment for HAR-Brain genes and genes related to aerobic 

glycolysis was computed using permutation testing as described above.

The second alternative approach was designed to account for the potential confound of 

spatial autocorrelation. To this end, we obtained a z-score for each AHBA gene, by dividing 

its empirical Spearman correlation with the redundancy-to-synergy cortical map, with the 

standard deviation of the distribution of correlations obtained from 5000 randomly rotated 

cortical maps having preserved spatial autocorrelation 53,101. Enrichment for HAR-Brain 

genes and genes related to aerobic glycolysis was then computed using permutation testing 

as described above, by comparing the weights of the genes of interest with the weights of 

1000 random selections of the same number of genes.

Synaptic density from positron emission tomography

In-vivo estimates of regional synaptic density in the human brain were obtained 

from positron emission tomography (PET) with the radioligand [11C]UCB-J 

((R)-1-((3-(methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyr-rolidin-2-one) 38. 
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This ligand quantifies synaptic density 33 based on its affinity for the presynaptic vesicle 

glycoprotein 2A (SV2A) 102 which is ubiquitously expressed in all brain synapses 103.

PET/MR imaging protocol—The research protocol was approved by an NHS Research 

Ethics Committee (REC: 18/EE/0059) and the Administration of Radioactive Substances 

Advisory Committee (ARSAC), and all participants provided written informed consent in 

accordance with the Declaration of Helsinki.

Participant recruitment and exclusion criteria are described in detail in the original 

publication 38. Briefly, 14 patients with PSP-Richardson’s syndrome and 15 patients 

with CBS were recruited from a tertiary specialist clinic for PSP/CBS at the Cambridge 

University Centre for Parkinson-Plus (Cambridge, UK). Additionally, 15 age-/sex-/

education-matched healthy volunteers were recruited from the UK National Institute for 

Health Research Join Dementia Research register between June 2019 and June 2020. 

Both healthy controls and patient volunteers were pre-screened by telephone; participants 

were excluded based on any of the following: history of cancer within the last 5 years; 

concurrent use of the medication levetiracetam; any severe physical illness or co-morbidity 

that limited ability to fully participate in the study; any contraindications to performing 

MRI. Participants were also excluded based on history of ischaemic or haemorrhagic stroke 

evident on MRI available from the clinic. Here, we only included data from the healthy 

volunteers (N=15, 8 females; age: 68 ± 7 years).

The radioligand [11C]UCB-J was synthesized at the Radiopharmacy Unit, Wolfson Brain 

Imaging Centre, Cambridge University 102. All participants underwent simultaneous 3T 

MRI and [11C]UCB-J PET on a GE SIGNA PET/MR (GE Healthcare, Waukesha, USA). 

Participants were under continuous visual observation from the adjacent control room, and 

there was an open microphone channel in case a participant needed to be in contact with the 

radiographers. The radiographer was present throughout with medical cover on site in case 

of need (such a need did not arise).

Dynamic PET data acquisition was performed for 90 minutes starting immediately after 

[11C]UCB-J injection (median (range) injected activity: 408 (192-523) MBq, injected 

UCB-J mass ≤ 10 μg). Attenuation correction included the use of a multi-subject atlas 

method 104 and improvements to the MRI brain coil component 105. Each emission image 

series was aligned using SPM12 (www.fil.ion.ucl.ac.uk/spm/software/spm12/) then rigidly 

registered to a T1-weighted MRI acquired during PET data acquisition (TR = 3.6 msec, 

TE = 9.2 msec, 192 sagittal slices, in plane resolution 0.55 x 0.55 mm (subsequently 

interpolated to 1.0 x 1.0 mm); slice thickness 1.0 mm). Regional time-activity curves were 

extracted following the application of geometric transfer matrix partial volume correction 
105 to each of the dynamic PET images. To quantify SV2A density (and therefore synaptic 

density), regional [11C]UCB-J non-displaceable binding potential (BPND) was determined 

for a 68-ROI subdivision of the Desikan-Killiany cortical atlas (DK-68), using a basis 

function implementation of the simplified reference tissue model 106, with the reference 

tissue defined in the centrum semiovale 107,108.
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Principal components of synaptic density—Principal Components Analysis (PCA) 

was subsequently employed to derive the principal components that explain most of the 

variance in regional [11C]UCB-J BPND across volunteers. Components were selected if 

their associated eigenvalue was greater than unity; two principal components satisfied this 

criterion, explaining 45% and 16% of the variance, respectively.

Molecular diversity from quantitative autoradiography

Following the recent work of Goulas and colleagues 41, we analysed quantitative data about 

the density of neurotransmitter receptors obtained from in vitro quntitative autoradiography. 

Data were obtained for 15 different types of receptors: glutamate (AMPA, NMDA, kainate), 

GABA (GABAA, GABAA/BZ, GABAB), acetylcholine (muscarinic M1, M2, M3, nicotinic 

a4b2), noradrenaline (a1, a2), serotonin (5-HT1A, 5-HT2), and dopamine (D1). Thus, both 

excitatory and inhibitory receptors were considered, and both ionotropic and metabotropic 

receptors.

The receptor autoradiography data collection and processing are described in detail in 

the original publication 41. Briefly, in vitro autoradiography was performed on four 

postmortem cerebral hemispheres obtained from three human donors with no known history 

of neurological or psychiatric diseases (one female; age 75 ± 3 years) with their previous 

written consent. All procedures were in accordance with the ethical requirements of the 

body donor program of the Department of Anatomy, University of Dusseldorf (Dusseldorf, 

Germany). The causes of death were reported as cardiac arrest, lung edema, and myocardial 

infarction; postmortem delay was 12 ± 5 hours (neurotransmitter binding-site densities are 

stable up to 70-80 hours postmortem). For additional details, see 42. Laminar data were 

collected for 44 visual, somatosensory, auditory and multimodal association regions of 

the human cerebral cortex, and summarised into receptor densities for infra-, supra-, and 

granular layers for each region. The same regions were also used to obtain a redundancy-to-

synergy gradient (albeit without full cortical coverage) as described above; for this, areas 

V2v and V2d were combined together, as were areas 37B, 37L and 37M, and areas 10L and 

10M; data from both hemispheres were combined to obtain one value per region, and the 

corresponding receptor density values were averaged separately for each layer. Following 

previous work 40, area 24 was not included in the present analysis due to its lack of a 

granular layer; thus, a total of 39 areas were considered.

Molecular diversity was then estimated as described by Goulas and colleagues 40. Briefly, a 

vector N was obtained for each area, encoding its normalised receptor profile so that each 

entry denotes the density of a specific receptor, divided by the maximum density value 

observed for this receptor across all areas. Diversity of each area was then quantified as the 

Shannon entropy H of the normalised receptor profile N, computed as

H = − sum(N ∗ log(N))/log(M) .

Here, M denotes the length of the vector N, i.e., 45 elements (15 receptors times three 

layers), and log is the natural logarithm (so that entropy was normalised to lie between 0 and 

1) 40.
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Validation with surrogate data methods

We generated pseudo-gradients of redundancy-to-synergy patterns in three different ways. 

The first way was to generate surrogate pseudo-synergy matrices by randomly rewiring 

the matrix of inter-regional synergy prior to obtaining the (pseudo-)synergy ranks for the 

gradient, while using the original redundancy ranks, to test whether our results could 

be obtained if synergy were randomly distributed across regions. The second approach 

was to obtain a random vector that has the same (negative) correlation with redundancy, 

and then using it to obtain pseudo-synergy ranks to compute the redundancy-to-synergy 

gradient (again with the redundancy ranks being the true ones), to test whether the observed 

anticorrelation would suffice to produce our results. The third approach was to generate 

phase-randomised surrogate timeseries for each subject by taking the Fourier transform of 

each region’s activity, replacing the Fourier phase with a random (antisymmetric) complex 

vector, and taking the inverse Fourier transform. Then, matrices of redundancy and synergy 

were computed from these phase-randomised timeseries for each subject, and used to build a 

redundancy-to-synergy gradient, to test whether our results could arise from signals with the 

same autocorrelation, but no correlation with each other.

Statistical analysis

One-sample non-parametric t-tests with 10,000 permutations were used to determine 

whether the synergy-redundancy scores were significantly different from zero for each of 

the Yeo resting-state subnetworks and for each cytoarchitectonic class of Von Economo; 

FDR correction for multiple comparisons was adopted according to the Benjamini-Hochberg 

procedure 109.

The statistical significance of within-group differences was determined with non-parametric 

permutation t-tests (paired-sample), with 10,000 permutations. Two-sample non-parametric 

t-tests (also with 10,000 permutations) were instead used to test the statistical significance of 

human-macaque comparisons, and of comparisons between different subsets of connections 

in the brain. The use of non-parametric tests alleviated the need to assume normality of 

data distributions (which was not formally tested). All tests were two-sided, with an alpha 

value of 0.05. The effect sizes were estimated using Hedges’s measure of the standardised 

mean difference, g. To statistically assess the difference between effect sizes obtained from 

comparing humans and macaques using different measures, we used a Z-test as described by 

Borenstein et al. (2009) 110.

To ensure robustness to possible outliers, all correlations were quantified using Spearman’s 

rank-based non-parametric correlation coefficient. To further ensure the robustness of 

our results to the potential confounding effect of spatial autocorrelation and contralateral 

symmetry 53,111, we also estimated p-values from a spatial permutation test which generates 

a null distribution of 10,000 randomly rotated brain maps with preserved spatial covariance 

(“spin test”) 53,101. This analysis is only applicable for parcellations with full cortical 

coverage; when data were only available for the left cortical hemisphere, they were mirrored 

to the corresponding regions of the right hemisphere in order to perform the spatial rotations, 

since this test explicitly controls for contralateral symmetry, and then we only considered 

this hemisphere for computing the empirical and permuted correlations 53.
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Extended Data

Extended Data Fig. 1. Synergistic and redundant interactions in the brain.
(a-c) Group average matrices of pairwise functional interactions between brain regions of 

the Schaefer-232 atlas, quantified by (a) redundancy; (b) synergy; (c) traditional functional 

connectivity (Pearson correlation). (d) Mean regional density of redundant interactions, after 

thresholding the group-average redundancy matrix to retain the 5% strongest edges, for 

display purposes. (e) Mean regional density of synergistic interactions, after thresholding 

the group-average synergy matrix to retain the 5% strongest edges, for display purposes. (f) 

Spearman correlation (two-sided CI: [-0.51, -0.28]) between synergy vs. redundancy ranks 

across cortical regions.
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Extended Data Fig. 2. 
Synergy-redundancy identification and NeuroSynth meta-analysis are robust to the use of 

alternative methods. Left: Group-average matrices of redundant and synergistic interactions; 

Middle: Redundancy-to-synergy gradient scores (synergy rank minus redundancy rank) 

displayed on medial and lateral brain surfaces (left hemisphere); Right: Results of the 

NeuroSynth term-based meta-analysis, relating the distribution of redundancy-to-synergy 

gradient across the brain to a gradient of cognitive domains, from lower-level sensorimotor 

processing to higher-level cognitive tasks (note that one term, “visual semantics”, was 
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excluded from visualisation because it failed to reach the threshold of Z > 3.1, leaving 

23 terms). (a) DK-308 parcellation with equally-sized cortical areas (500 mm2), obtained 

as subdivisions of the Desikan-Killiany cortical atlas. (b) Lausanne-129 parcellation, 

comprising the DK-114 cortical ROIs, supplemented with 15 subcortical regions. (c) 

Synergy and redundancy computed without deconvolution of the hemodynamic response 

function (HRF) from the BOLD signal timeseries. (d) Synergy and redundancy computed 

from discretised (binary) BOLD signal timeseries.

Extended Data Fig. 3. Robustness of synergy and redundancy network results (efficiency, 
modularity, and within- vs between-resting state subnetwork comparison) to alternative node 
and edge definitions.
(a-d) Robustness of network results to the use of the 308-ROI cortical parcellation. (e-h) 

Robustness of network results to using synergy and redundancy normalised by TDMI. (i-l) 

Robustness of network results to using synergy and redundancy obtained from discretised 

signals. For all violin plots: each colored circle represents one subject; white circle: median; 

central line: mean; box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile 

range; *** p < 0.001 from paired-sample non-parametric permutation t-test (two-sided); 
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n = 100 unrelated HCP subjects. For all box-plots: white circle, median; box limits, upper 

and lower quartiles; whiskers, 1.5x inter-quartile range; *** p < 0.001 from two-sample 

non-parametric permutation t-test (two-sided). For (c-d) and (k-l), Within-RSN n=7178 

connections; Between-RSN n=46414 connections. For (g) and (h), Within-RSN n=14784 

connections; Between-RSN n=79772 connections.

Extended Data Fig. 4. Robustness of synergy and redundancy structural results to alternative 
node and edge definitions.
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(a-c) Robustness of network results to the use of the 308-ROI cortical parcellation. (d-f) 

Robustness of network results to using synergy and redundancy normalised by TDMI. (g-i) 

Robustness of network results to using synergy and redundancy obtained from discretised 

signals. For all violin plots: each colored circle represents one subject; white circle: median; 

central line: mean; box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range; 

*** p < 0.001 from paired-sample non-parametric permutation t-test (two-sided); n = 100 

unrelated HCP subjects. For all box-plots: white circle: median; box limits, upper and 

lower quartiles; whiskers, 1.5x inter-quartile range; *** p < 0.001 from two-sample non-

parametric permutation t-test (two-sided). For (b-c), SC+, n=6864 direct connections; SC-, 

n=88000 connections. For (e-f) and (h-i), SC+, n=5276 direct connections; SC-, n=48548 

indirect connections.
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Extended Data Fig. 5. Additional validation of synergy and redundancy network results.
(a) Alternative measure of global integration (area under the curve of the size of the largest 

connected component across thresholds). (b) Alternative structural-functional dissimilarity 

(mean Hamming distance). For both (a) and (b): *** p < 0.001 from paired-sample non-

parametric permutation t-test (two-sided), n=100 unrelated HCP subjects. (c) Comparison 

of global efficiency of synergy and redundancy networks of each subject with the average 

global efficiency of 100 synthetic null networks with edges randomly drawn from the 

distribution between 0 and the empirical TDMI. (d) Comparison of modularity of synergy 

and redundancy networks of each subject with the average modularity of 100 synthetic null 

networks with edges randomly drawn from the distribution between 0 and the empirical 

TDMI. For (c) and (d), *** p < 0.001 (FDR-corrected) from two-sample non-parametric 

permutation t-test (two-sided); n = 100 unrelated HCP subjects and n=100 synthetic null 

networks. For all violin plots: each colored circle represents one subject; white circle: 

median; central line: mean; box limits, upper and lower quartiles; whiskers, 1.5x inter-

quartile range.
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Extended Data Fig. 6. Validation analysis for human-macaque comparison of synergy and 
redundancy.
(a-d) Simulation of human fMRI data with same TR as the macaque data shows that human-

macaque differences in synergy cannot be attributed solely to TR differences between 

datasets. (a) The dynamic mean field (DMF) model used to simulate human fMRI data 

combines macroscale information about neuroanatomy and structural connectivity (from 

DTI) with excitatory and inhibitory neuronal populations interconnected by AMPA, NMDA 

and GABA synapses, providing a neurobiologically plausible account of regional neuronal 

firing rate, which is turned into simulated BOLD signal by means of the Balloon-Windkessel 
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hemodynamic model. (b) Using a TR of 0.72s (the same as the empirical HCP data), the 

model is fitted to the empirical HCP data by finding the value of the global coupling 

parameter G that minimises the Kolmogorov-Smirnov distance between the distributions 

of empirical and simulated functional connectivity dynamics (FCD). The KS distance is 

minimised for G=1.6, which is the value of G used for subsequent simulations with TR=2.6s 

(the same TR as the macaque data). (c) The proportion of synergistic information exchange 

across the brain is significantly higher in simulated human data than in empirical macaque 

data with the same TR=2.6s (p<0.001). (d) The proportion of redundant information 

exchange across the brain is also significantly higher in simulated human data than empirical 

macaque data (p=0.036). Statistical significance assessed with two-sample non-parametric 

permutation t-test (two-sided); DMF HCP data: n=100 simulations; macaque data: n=19 

distinct sessions from 10 individual macaques. (e-f) The human-macaque comparison of 

synergy and redundancy proportion is robust to bandpass filtering both human and macaque 

functional MRI data between 0.008-0.09Hz. The proportion of synergistic information 

exchange across the brain is significantly higher in humans (p<0.001) (e) whereas the 

proportion of redundant information exchange across the brain is equivalent in humans and 

macaques (p=0.943) (f). Statistical significance assessed with two-sample non-parametric 

permutation t-test (two-sided). Human data: n=100 unrelated HCP subjects. Macaque data: 

n=19 distinct sessions from 10 individual macaques. (g-h) The proportion of total synergy 

is significantly higher in humans than macaques (p<0.001) (h), even when only considering 

humans whose total FC is in the range of values exhibited by macaques (excluding one 

outlier with extreme value), such that there is no significant difference in total FC between 

the two groups (p=0.196), shown in (g). Statistical significance assessed with two-sample 

non-parametric permutation t-test (two-sided). Human data: n=28 unrelated HCP subjects 

with FC values in the range of the macaque FC values. Macaque data: n=19 distinct sessions 

from 10 individual macaques (one outlier excluded in (g)). For all violin plots: each colored 

circle indicates one data-point; white circle: median; central line: mean; box limits, upper 

and lower quartiles; whiskers, 1.5x inter-quartile range; n.s., p > 0.05; * p < 0.05; *** p < 

0.001.
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Extended Data Fig. 7. Characterisation of synergistic and redundant network profiles in 
macaque brains are similar to humans.
(a) Synergistic interactions between regions of the macaque brain. (b) Redundant 

interactions between regions of the macaque brain. (c) Anatomical connectivity was 

estimated from axonal tracing and diffusion MRI (Shen et al., 2019), and Spearman 

correlation coefficient was used to assess the similarity of redundancy and synergy matrices 

with structural connectivity, after thresholding to ensure equal numbers of connections. (d) 

The network organisation of synergistic interactions exhibits significantly higher global 

efficiency than redundant interactions (p < 0.001). (e) The network organisation of 
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redundant interactions exhibits significantly higher segregation (modularity) than synergistic 

interactions(p < 0.001). (f) Networks of redundant interactions are significantly more 

correlated with underlying anatomical connectivity than synergistic interactions (p < 0.001). 

For all tests: *** p < 0.001 from paired-sample non-parametric permutation t-test (two-

sided); n=19 distinct sessions from 10 individual macaques (Supplementary Table 7). For all 

violin plots: each colored circle indicates one data-point; white circle: median; central line: 

mean; box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range.

Extended Data Fig. 8. Synergy-redundancy gradient correlates with unadjusted cortical 
expansion and gene expression.
(a) Significant Spearman correlation (two-sided CI: [0.145, 0.476]) between regional 

redundancy-to-synergy gradient scores and unadjusted regional cortical expansion from 

chimpanzee (Pan troglodytes) to human (both on DK-114 cortical atlas, both hemispheres; 

n =114 cortical regions). (b) Significant Spearman correlation (two-sided CI: [0.109, 0.567]) 

between regional redundancy-to-synergy gradient scores and unadjusted regional expression 

of brain-related human-accelerated (HAR) genes (both on left hemisphere of DK-114 atlas: 

n=57 left-hemisphere regions). (c) Significant Spearman correlation (two-sided CI: [0.010, 

0.496]) between regional redundancy-to-synergy gradient scores and unadjusted regional 

expression of non-brain-related human-accelerated (HAR) genes (both on left hemisphere of 

DK-114 atlas; n=57 left-hemisphere regions). p_spin indicates the p-value estimated from a 

spatial permutation test comparing the empirical correlation against 10,000 randomly rotated 

brain maps with preserved spatial covariance.
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Extended Data Fig. 9. Characterisation of PLS components of 20,647 genes from the Allen 
Institute for Brain Science, for the 308-ROI subdivision of the Desikan-Killiany cortical 
parcellation.
(a) Spearman correlation (two-sided CI: [0.334, 0.517]; n=308 regions) between the 

redundancy-to-synergy regional pattern, and the first principal component of PLS (PLS1). 

(b) Spearman correlation (two-sided CI: [0.216, 0.417]; n=308 regions) between the 

redundancy-to-synergy regional pattern, and the second principal component of PLS 

(PLS2). For both (a) and (b), color-bars correspond to scatter-plot axes. (c) The variance 

explained by the first 2 PLS components is significantly higher than would be expected 

based on random patterns with preserved spatial autocorrelation, assessed using spin-based 

permutations (Methods). (d-e) Significant enrichment of HAR-Brain genes in PLS1 and 

PLS2. (f) Significant HAR-Brain gene enrichment is also observed using an alternative 

approach: ridge-regularised PLS regression on the binarised cortical pattern of synergy 

vs redundancy prevalence. (g-h) HAR-Brain gene enrichment in PLS1 and PLS2 is also 

observed when controlling for spatial autocorrelation using spin-based permutations. (c-h) 

Statistical significance is assessed via bootstrap resampling of Z-scores; histograms indicate 

the relative frequency (over 1,000 bootstraps) of the mean Z-score of a random sample of 

genes of equal size as the HAR-Brain genes. Red vertical line: empirical mean Z-score of 

HAR-Brain genes.
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Extended Data Fig. 10. Enrichment analysis for genes pertaining to synaptic formation, whose 
regional distribution corresponds to the distribution of aerobic glycolysis in the human brain, as 
reported by Goyal et al. (2014) (“aerobic glycolysis genes”).
(a-b) PLS1 and PLS2 are significantly enriched for aerobic glycolysis genes. (c) Enrichment 

for genes related to aerobic glycolysis is also observed using an alternative approach: 

ridge-regularised PLS regression on the binarised cortical pattern of synergy vs redundancy 

prevalence. (d-e) Significant enrichment for genes related to aerobic glycolysis in PLS1 

and PLS2 is also observed when controlling for spatial autocorrelation using spin-based 

permutations. (a-e) Statistical significance is assessed via bootstrap resampling of Z-scores; 

histograms indicate the relative frequency (over 1,000 bootstraps) of the mean Z-score of 

a random sample of genes of equal size as the aerobic glycolysis genes. Red vertical line: 

empirical mean Z-score of aerobic glycolysis genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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http://human.brain-map.org/static/download
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https://doi.org/10.1038/s41467-019-12764-8
https://afni.nimh.nih.gov/pub/dist/atlases/macaque/nmt
https://afni.nimh.nih.gov/pub/dist/atlases/macaque/nmt
http://github.com/jms290/NMT
https://doi.org/10.1073/pnas.1010459107
https://github.com/AlGoulas/receptor_principles
https://doi.org/10.1371/journal.pbio.3000979


Code availability

Data analysis was carried out in MATLAB version 2019a.

The Java Information Dynamics Toolbox v1.5 is freely available online: (https://github.com/

jlizier/jidt). An updated version with MATLAB/Octave code to compute synergy and 

redundancy from Integrated Information Decomposition of timeseries with the Gaussian 

MMI solver is available as Supplementary Information. The CONN toolbox version 

17f is freely available online (http://www.nitrc.org/projects/conn). DSI Studio is freely 

available online (https://dsi-studio.labsolver.org/). The Brain Connectivity Toolbox code 

used for graph-theoretical analyses is freely available online (https://sites.google.com/

site/bctnet/). The code used for NeuroSynth meta-analysis is freely available online: 

(https://www.github.com/gpreti/GSP_StructuralDecouplingIndex). The HRF deconvolution 

toolbox v2.2 is freely available online: (https://www.nitrc.org/projects/rshrf). The Pypreclin 

pipeline code v1.0.1 is freely available at GitHub (https://github.com/neurospin/pypreclin). 

The code for PLS analysis of gene expression profiles is freely available online: 

https://github.com/SarahMorgan/Morphometric_Similarity_SZ. The R package plsgenomics 
v1.5 is freely available online: https://CRAN.R-project.org/package=plsgenomics. The 

GOrilla platform is available online at http://cbl-gorilla.cs.technion.ac.il. The REVIGO 

platform is available online at http://revigo.irb.hr. The code for the dynamic mean-field 

model is freely available at http://www.gitlab.com/concog/fastdmf. The code for spin-

based permutation testing of cortical correlations is freely available online at https://

github.com/frantisekvasa/rotate_parcellation. The code for gene enrichment relative to an 

ensemble of null phenotypes is freely available online at https://github.com/benfulcher/

GeneCategoryEnrichmentAnalysis/wiki/Ensemble-enrichment.

FreeSurefer v5.3.0 is available at https://surfer.nmr.mgh.harvard.edu/.

SPM12 is available at www.fil.ion.ucl.ac.uk/spm/software/spm12/.
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Fig. 1. Synergistic and redundant networks exhibit distinct anatomical and cognitive profiles.
(a,b) Group-average matrices display the redundant (a) and synergistic (b) interactions 

between each pair of brain regions (note that colorbars do not include entries on the 

diagonal). Brain plots show the cortical distribution of the strongest redundant (blue) and 

synergistic (red) connections (thresholded to retain the top 5% of connections, for display 

purposes only). (c) Subject-specific Pearson correlation values of synergy and redundancy 

matrices with the matrix of traditional functional connectivity (Redundancy: M=0.62, 

SD=0.24; Synergy: M=-0.29, SD=0.16; t(99)=24.06, p<0.001, Hedges’s g=4.39, effect 

size CI: [3.88, 5.11], from paired-sample non-parametric permutation t-test (two-sided); 

n=100 unrelated HCP subjects). Note that the relationships of redundancy and synergy with 

traditional FC are not equal: the absolute value of the correlation is significantly stronger for 

redundancy than for synergy (Redundancy: M=0.62, SD=0.24; Synergy: M=0.29, SD=0.16; 

t(99)=20.35, p<0.001, Hedges’s g=1.65, effect size CI: [1.36, 1.92], from paired-sample 

non-parametric permutation t-test (two-sided); n=100 unrelated HCP subjects). Violin plots: 

each colored circle represents one subject; white circle: median; blue line: mean; box 

limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range; *** p < 0.001. (d) 

Brain surface projections of regional redundancy-to-synergy gradient scores, based on the 

respective ranks. These ranks exhibit an inverse correlation (Spearman’s p = -0.40, p 
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< 0.001; Extended Data Fig. 1). (e) NeuroSynth term-based meta-analysis, relating the 

distribution of redundancy-to-synergy gradient across the brain to a cognitive gradient 

of cognitive domains, from lower-level sensorimotor processing to higher-level cognitive 

tasks. These results are robust to the use of different parcellations (cortical-only, having 

lower or higher number of nodes, and obtained from anatomical rather than functional 

considerations; Extended Data Fig. 2a,b). Likewise, although these results were obtained 

after deconvolving the hemodynamic response function from the BOLD signals to account 

for regional variations (Methods), analogous results are also obtained when this step is 

omitted, or if synergy and redundancy are computed from discretised rather than continuous 

data (Extended Data Fig. 2c,d).
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Fig. 2. Distinct cytoarchitectonic and resting-state network profiles for synergy-dominated and 
redundancy-dominated regions.
(a) Regional redundancy-to-synergy gradient values for each canonical resting-state 

network, based on the definition of Yeo et al. (2011) 22. DMN, default mode network. 

SOM, somatomotor network. VIS, visual network. SAL, salience/ventral attention network; 

DAN, dorsal attention network. FPN, fronto-parietal executive control network. LIM, 

limbic network. SUB, subcortical network. (b) Regional redundancy-to-synergy gradient 

values for each of seven cytoarchitectonic classes (the five canonical classes identified 

by Von Economo, plus limbic and insular cortices), for 308 cortical ROIs of equal 

size (500 mm2), obtained from subdivisions of the Desikan-Killiany cortical parcellation 
21. For both panels, each colored circle represents one brain region; panel (a), n=232 

regions divided into 8 resting-state networks; panel (b), n=308 regions divided into 7 

cytoarchitectonic classes. Each violin plot shows the distribution of brain regions assigned 

to the subnetwork or cytoarchitectonic class indicated on the x-axis (for each panel, each 

region is assigned exactly once). White circle: median; central line: mean; box limits, upper 

and lower quartiles; whiskers, 1.5x inter-quartile range; * p < 0.05; ** p < 0.01; *** 

p < 0.001 from one-sample non-parametric permutation t-test (two-sided), corrected for 

multiple comparisons using the False Discovery Rate. Full statistical results are shown in 

Supplementary Table 1 (Yeo RSN) and Supplementary Table 2 (Von Economo).
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Fig. 3. Network analysis indicates global and segregated processing for synergy and redundancy, 
respectively.
(a) The whole-brain network organization of synergistic interactions exhibits significantly 

higher global efficiency than the whole-brain network of redundant interactions (Synergy: 

M=2.47, SD=0.08; Redundancy: M=0.07, SD=0.02; t(99)=-285.75, p<0.001, Hedges’s 

g=-43.58, effect size CI: [-50.46, -38.75], from paired-sample non-parametric permutation 

t-test (two-sided); n = 100 unrelated HCP subjects). (b) The whole-brain network of 

redundant interactions exhibits significantly higher segregation (modularity) than the 

network of synergistic interactions (Synergy: M=0.003, SD=0.001; Redundancy: M=0.29, 

SD=0.05; t(99)=52.12, p<0.001, Hedges’s g=7.28, effect size CI: [6.22, 8.85], from paired-

sample non-parametric permutation t-test (two-sided); n = 100 unrelated HCP subjects). For 

the violin plots in both (a) and (b), each colored circle represents one subject; white circle: 

median; central line: mean; box limits, upper and lower quartiles; whiskers, 1.5x inter-

quartile range; *** p < 0.001. (c) Redundant connections are significantly stronger within 

functional resting-state subnetworks than between them (Within-RSN: M=0.087, SD=0.078, 

n=7178 within-RSN connections; Between-RSN: M=0.026, SD=0.027, n=46414 between-

RSN connections; t(53590)=127.45, p<0.001, Hedges’s g=1.61, effect size CI: [1.58, 1.66]; 

from two-sample non-parametric permutation t-test (two-sided)). (d) Synergistic connections 

are significantly stronger between functional resting-state subnetworks than within them 

(Within-RSN: M=2.41, SD=0.09, n=7178 within-RSN connections; Between-RSN: M=2.47, 

SD=0.06, n=46414 between-RSN connections; t(53590)= -75.31, p<0.001, Hedges’s 

g=-0.96, effect size CI: [-0.99, -0.92]; from two-sample non-parametric permutation t-test 

(two-sided)). For the box-plots in both (c) and (d): white circle represents the median; 

box limits, upper and lower quartiles; whiskers, 1.5x inter-quartile range. (e) Matrix 
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of redundancy-to-synergy gradient scores for each connection between brain regions, 

highlighting regions’ affiliation with the resting-state subnetworks of Yeo et al. (2011). 

Red indicates synergy > redundancy. These results are robust to the use of alternative ways 

of defining nodes and edges, and alternative network measures (Extended Data Fig. 3-5 and 

Supplementary Tables 3-4).
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Fig. 4. Redundant interactions are supported by anatomical connections, synergistic interactions 
connect regions with distinct structural wiring profiles.
(a) Whole-brain networks of redundant interactions are significantly more correlated 

(average Spearman’s ρ) with underlying structural connectivity than synergistic interactions 

(Redundancy: M=0.16, SD=0.028; synergy: M=-0.008, SD=0.014; t(99)=48.67, p<0.001, 

Hedges’s g=7.79, effect size CI: [6.98, 8.92] from paired-sample non-parametric 

permutation t-test (two-sided); n=100 unrelated HCP subjects). (b) Redundant connections 

are significantly stronger in the presence of an underlying direct structural connection 

(Direct: M=0.074, SD=0.083, n=5276 direct connections; Indirect: M=0.029, SD=0.034, 

n=48548 indirect connections; t(53822)=73.38, p<0.001, Hedges’s g=1.06, effect size CI: 

[1.02, 1.11]). (c) Synergistic connections are significantly stronger between regions that 

do not share a direct structural connection (Direct: M=2.43, SD=0.10, n=5276 direct 

connections; Indirect: M=2.46, SD=0.18; t(53822)=-10.23, p<0.001, Hedges’s g=-0.15, 

effect size CI: [-0.17, -0.12] from two-sided non-parametric permutation t-test). These 

results are robust to the use of alternative ways of defining nodes and edges, and a 

different measure of structure-function coupling (Hamming distance) (Extended Data Fig. 
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4-5 and Supplementary Table 4). (d) Whole-brain networks of synergistic connections 

are significantly more associated than redundant networks with cortico-cortical wiring 

distance, a measure of dissimilarity between anatomical wiring that combines diffusion 

tractography, spatial proximity and microstructural profile similarity (note that this analysis 

was performed on a different parcellation; see Methods) (Redundancy: M=-0.15, SD=0.04; 

Synergy: M=0.12, SD=0.05; t(99)=-36.82, p<0.001, Hedges’s g= -6.43, effect size CI: 

[-7.30, -5.82] from paired-sample non-parametric permutation t-test (two-sided); n=100 

unrelated HCP subjects). For the violin plots in (a) and (d), each colored circle represents 

one subject; white circle: median; central line: mean; box limits, upper and lower quartiles; 

whiskers, 1.5x inter-quartile range; *** p < 0.001. For the box-plots in (b) and (c): white 

circle represents the median; box limits, upper and lower quartiles; whiskers, 1.5x inter-

quartile range; *** p < 0.001.
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Fig. 5. Human brain evolution favoured high synergy.
(a) The proportion of synergistic interactions across the brain is significantly higher in 

humans (Homo sapiens) than macaques (Macaca mulatta) (Human M=0.937, SD=0.007; 

Macaque M=0.901, SD=0.009; t(117)=19.86, p<0.001, Hedges’s g=4.94, effect size CI: 

[4.12, 6.10], from two-sample non-parametric permutation t-test (two-sided). Human data: 

n=100 unrelated HCP subjects. Macaque data: n=19 distinct sessions from 10 individual 

macaques). (b) The proportion of redundant interactions across the brain is equivalent 

in humans and macaques (Redundancy: Human M=0.012, SD=0.005; Macaque M=0.011, 

SD=0.005; t(117)=0.90, p=0.372, Hedges’s g=0.22, effect size CI: [-0.28, 0.66], from two-

sample non-parametric permutation t-test (two-sided). Human data: n=100 unrelated HCP 

subjects. Macaque data: n=19 distinct sessions from 10 individual macaques). White circle: 

median; central line: mean; box limits, upper and lower quartiles; whiskers, 1.5x inter-

quartile range. ***, p < 0.001; n.s., p > 0.05. Note that the proportion of synergy can differ 

even if the proportion of redundancy remains the same: as mentioned in the Introduction, 

synergy and redundancy are not the only constituent elements of total information flow 

in the system: each source (here, brain region) also brings a unique contribution 2,6. The 

results presented here cannot be solely attributed to either the choice of bandpass filter, or 

the difference in TR between datasets (Extended Data Fig. 6). The proportion of synergistic 

information is significantly higher in humans than macaques even when the comparison 

is restricted only to those humans whose total FC strength is in the range of macaques 

values (Extended Data Fig. 6). (c) Surface projection of regional redundancy-to-synergy 

gradient scores for the macaque brain. Corresponding matrices of synergy and redundancy 

are shown in Extended Data Fig. 7. (d) Significant Spearman correlation (two-sided CI: 
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[0.16, 0.59]) between human regional redundancy-to-synergy gradient scores and regional 

cortical expansion from chimpanzee (Pan troglodytes) to human (n=57 regions of the 

left hemisphere of the DK-114 atlas). This result is not due to spatial autocorrelation, 

as assessed using spin-based permutation testing; pspin = 0.010. (e) Significant Spearman 

correlation (two-sided CI: [0.25, 0.66]) between human regional redundancy-to-synergy 

gradient scores and regional expression of brain-related human-accelerated (HAR-Brain) 

genes (n=57 regions of the left hemisphere of the DK-114 atlas). This result is not due 

to spatial autocorrelation, as assessed using spin-based permutation testing; pspin = 0.002. 

These results are also robust to the use of unadjusted scores (Extended Data Fig. 8).
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Fig. 6. Synaptic underpinnings of synergy in the human brain.
(a) First principal component of PLS (PLS1) relating the redundancy-to-synergy regional 

gradient to n=20,647 genes from the Allen Institute for Brain Science. (b,c) Dimensionality-

reduced gene ontology terms pertaining to biological processes (b) or cellular components 

(c) that are significantly enriched in PLS1, obtained from GOrilla using the “P-value 

threshold 10-4” setting in order to best approximate FDR correction with α = 0.05 
35, and summarized with REVIGO (added red ovals highlight psychologically- or 

neurobiologically-relevant terms). Semantic space axes indicate the relative distance 

between terms in multi-dimensional space, but have no intrinsic meaning. (d) Second 

principal component of PLS (PLS2) relating the redundancy-to-synergy regional gradient 

to n=20,647 genes from the Allen Institute for Brain Science. (e,f) Dimensionality-reduced 

gene ontology terms pertaining to biological processes (e) or cellular components (f) 

that are significantly enriched in PLS2, obtained from GOrilla using the “P-value 

threshold 10-4” setting in order to best approximate FDR correction with α = 0.05 
35, and summarized with REVIGO (added red ovals highlight psychologically- or 

neurobiologically-relevant terms). These results were robust to the use of alternative 

approaches (ridge-regularised PLS regression on the synergy-redundancy cortical pattern; 
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and controlling for spatial autocorrelation using spin-based permutations 53; Extended 

Data Fig. 9). The significant enrichment for synaptic transmission and organisation was 

also preserved when using recently developed advanced null models based on random 

phenotype ensembles (Supplementary Table 10). (g) Spearman correlation between regional 

redundancy-to-synergy gradient scores and the first principal component of in-vivo synaptic 

density from [11C]UCB-J PET (Spearman ρ = 0.22, p = 0.077; two-sided CI: [-0.019, 

0.436]; pspin = 0.053; n=68 cortical regions). Color-bars correspond to scatter-plot axes. 

(h) Spearman correlation between regional redundancy-to-synergy gradient scores and the 

second (anterior-posterior) principal component of in-vivo synaptic density from [11C]UCB-

J PET (Spearman ρ = 0.28, p = 0.018; two-sided CI [0.044, 0.486]; pspin = 0.059; n=68 

cortical regions). Color-bars correspond to scatter-plot axes.
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Fig. 7. Metabolic and molecular underpinnings of synergy in the human brain.
(a) Significant Spearman correlation (two-sided CI: [0.195, 0.572]) between regional 

redundancy-to-synergy gradient scores, and the mean regional estimate of aerobic glycolysis 

based on PET measurements of cerebral metabolic rates for oxygen and glucose (Glycolytic 

Index); n=78 cortical regions. (b) Significant Spearman correlation (two-sided CI: [0.270, 

0.731]) between cortical redundancy-to-synergy gradient scores, and the diversity (entropy) 

of neurotransmitter receptor expression from in vitro quantitative autoradiography across 

n=39 regions of human visual, somatosensory, auditory and multimodal association cortices. 

Color-bars correspond to scatter-plot axes.
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Table 1
Comparison of macroscale associations for the redundancy-to-synergy gradient, its 
randomly-generated counterparts from surrogates, and traditional FC (node strength).

Original gradient Surrogate gradient 
(randomised 
synergy)

Surrogate 
gradient (random 
anticorrelated)

Surrogate gradient 
(phase-randomised)

Traditional FC

Expansion Spearman ρ = 
0.40, p-spin = 
0.010

Spearman ρ = 0.07, p-
spin = 0.331

Spearman ρ = -0.18, p-
spin = 0.109

Spearman ρ = 0.09, p-
spin = 0.277

Spearman ρ = -0.18, 
p-spin = 0.132

HAR-Brain Spearman ρ = 
0.48, p-spin = 
0.002

Spearman ρ = 0.18, p-
spin = 0.130

Spearman ρ = 0.22, p-
spin = 0.066

Spearman ρ = 0.01, p-
spin = 0.492

Spearman ρ = -0.38, 
p-spin = 0.007

PET 
Synaptic 
density PC1

Spearman ρ = 
0.22, p-spin = 
0.053

Spearman ρ = 0.08, p-
spin = 0.228

Spearman ρ = 0.02, p-
spin = 0.505

Spearman ρ = 0.17, p-
spin = 0.114

Spearman ρ = -0.17, 
p-spin = 0.118

PET 
Synaptic 
density PC2

Spearman ρ = 
0.28, p-spin = 
0.059

Spearman ρ = 0.32, p-
spin = 0.020

Spearman ρ = 0.24, p-
spin = 0.037

Spearman ρ = 0.21, p-
spin = 0.129

Spearman ρ = -0.13, 
p-spin = 0.179

Glycolytic 
Index

Spearman ρ = 
0.40, p-spin = 
0.013

Spearman ρ = 0.14, p-
spin = 0.283

Spearman ρ = 0.14, p-
spin = 0.216

Spearman ρ = 0.26, p-
spin = 0.028

Spearman ρ = -0.11, 
p-spin = 0.320

Receptor 
diversity

Spearman ρ = 
0.54, p < 0.001

Spearman ρ = 0.19, p 
= 0.246

Spearman ρ = 0.54, p < 
0.001

Spearman ρ = -0.16, p 
= 0.328

Spearman ρ = -0.52, 
p = 0.001

Correlation coefficients are derived from Spearman’s rank-based correlation; p_spin indicates the p-value estimated from a spatial permutation 
test comparing the empirical correlation against 10,000 randomly rotated brain maps with preserved spatial covariance; no correction for multiple 
comparisons applied.
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