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Abstract

BackgroundNocturnal disturbances are acommonsymptomexperiencedbyPeople Living
with Dementia (PLWD), and these often present prior to diagnosis. Whilst sleep anomalies
have been frequently reported, most studies have been conducted in lab environments,
which are expensive, invasive and not natural sleeping environments. In this study, we
investigate the use of in-home nocturnal monitoring technologies, which enable passive
data collection, at low cost, in real-world environments, and without requiring a change in
routine.
Methods Clustering analysis of passively collected sleep data in the natural sleep
environment can help identify distinct sub-groups based on sleep patterns. The analysis
uses sleep activity data from; (1) the Minder study, collecting in-home data from PLWD and
(2) a general population dataset (combined n = 100, >9500 person-nights).
ResultsUnsupervised clustering and profiling analysis identifies three distinct clusters. One
cluster is predominantly PLWD relative to the two other groups (72%± 3.22, p = 6.4 × 10−7,
p = 1.2 × 10−2) and has the highestmean age (77.96 ± 0.93,p = 6.8 × 10−4 andp = 6.4 × 10−7).
This cluster is defined by increases in light and wake after sleep onset (p = 1.5 × 10−22,
p = 1.4 × 10−7 and p = 1.7 × 10−22, p = 1.4 × 10−23) and decreases in rapid eye movement
(p = 5.5 × 10−12, p = 5.9 × 10−7) and non-rapid eye movement sleep duration (p = 1.7 × 10−4,
p = 3.8 × 10−11), in comparison to the general population.
Conclusions In line with current clinical knowledge, these results suggest detectable
dementia sleep phenotypes, highlighting the potential for using passive digital technologies
in PLWD, and for detecting architectural sleep changesmore generally. This study indicates
the feasibility of leveraging passive in-home technologies for disease monitoring.

Approximately 1 million people are thought to be living with dementia in
the UK, and over 55 million worldwide, representing the leading cause of
disability in older adults1,2. Dementia is characterised by a progressive
decline in cognitive and functional abilities, affecting numerous faculties,
such as memory, behaviour, and executive functioning3. Presently, treat-
ment is limited. Current treatments focus on symptom management and
addressing already established health conditions that affect people living
with dementia (PLWD), and their effectiveness relies on early intervention.
As such, current clinical guidelines focus on timely detection4. However,
identifying dementia symptoms early can be difficult, due to dementia’s

insidious onset. Additionally, PLWD may accommodate or compensate
for their symptoms earlier on.

Nocturnal disruptions are one of the most commonly experienced
symptoms of dementia. A growing body of evidence indicates that sleep
disorders may act as a predictor of dementia incidence, such as mild cog-
nitive impairment (MCI)5,6, where alterations in sleep quality may generate
and/or accelerate the rate of cognitive decline, both in the presence and
absence of pathology7,8. Indeed, those with poorer sleep have been shown to
have poorer outcomes, including having an increased risk of developing
cerebrovascular pathology and a worse dementia prognosis9,10.
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Plain language summary

People living with dementia commonly sleep
poorly at night, and this often occurs before
they are diagnosed with dementia. We
investigated whether a sleep sensor placed
under a person’s mattress could monitor
sleep activity in peoplewith dementia without
disrupting their normal daily routines and
behaviour. We compared sleep data
collected frombothpeoplewithdementiaand
the general population to identify whether
differences could be detected. We found
identifiable dementia-related sleep patterns,
suggesting sleep sensors could be used both
to monitor disease and more generally in
research. In the future, using these types of
sensors could enable better care for people
livingwith dementia bymonitoring their sleep.
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Whilst evidence indicates sleep disturbances contribute to dementia
progression, the exact reasons for changes in sleep architecture is unclear. It is
plausible that changes originate from Alzheimer’s disease (AD) pathology-
induced neuronal and synaptic damage11. In AD, degeneration occurs in
regionswhere sleep centres reside, such as the basal forebrain, hypothalamus,
thalamus, midbrain, pons, and the brainstem12. A previous study also
reporteda lossof galanin-positiveneurons in theventrolateralpreoptic region
in individuals with AD, where the decrease positively correlated with an
increased sleep fragmentation13. Conversely, reductions in Non-Rapid Eye
Movement (NREM) sleep were associated with tau pathology prior to cog-
nitive decline in early AD patients14. Additionally, over 80% of those with
Rapid Eye Movement (REM) sleep behavioural disorder go on to develop
synucleinopathies15. While the connection remains unclear, there is a bidir-
ectional relationship between sleep and dementia. As such, itmay be possible
to differentiate and detect PLWD using sleep data.

Although sleep anomalies have been reported within the literature,
studies that have investigated sleep and dementia have several limitations.
Most studies have been conducted in lab environments, which are not
natural sleeping environments (i.e., this may disrupt a persons natural
sleeping patterns and lead to inaccurate results), or have ascertained sleep
quality via sleep assessment questionnaires such as the Pittsburgh Sleep
Quality Index8,9. Self-reported data may not be accurate16,17. Additionally,
most studies are conducted over a single night anddonot capture long-term
variations10. Furthermore, using diagnostic tools such as polysomnography
(PSG) to monitor sleep is expensive, time-consuming, labour-intensive,
potentially distressing for those in the later stages of dementia, and
not feasible in the context of large-scale monitoring18–20.

Alternatively, Internet of Things (IoT) technologies can provide con-
tinuous in-homemonitoring, enabling large-scale collection of real-world data,
at relatively low cost. Relative to PSG technologies, this is a non-invasive
approach that allows longer-term in-homemonitoring. IoT technologies work
by connecting devices equipped with sensors (i.e., a bed mat sensor for
the nocturnal data collection of physiological signals related to sleep activities)
to the internet, enabling the collection and sharing of data for monitoring,
analysis, and in some contexts, to inform care management21. Analysis of data

collected with IoT devices such as under-the-mattress bed sensorsmay help to
identify changes in sleep patterns in dementia and in other neurodegenerative
conditionswherenocturnalperturbationsareprevalent.Nocturnaldisruptions,
including sleep disorders, have been widely reported in Parkinson’s disease,
dementia with Lewy bodies, Huntington’s Disease, and Frontotemporal
dementia, amongst others12,22,23.

The use of predictive analytics using IoT-derived sleep data is limited
within neurodegeneration research. There have been promising works in
analysing IoT-derived behavioural data in dementia, as well as for IoT-
derived sleep data in other disease contexts24–29. However, to our knowledge,
there is limited research on the use of passively collected sleep data
to digitally screen for dementia and other neurodegenerative disease
symptoms.

In this context, we aimed to demonstrate how IoT-derived sleep data
could be leveraged to screen for architectural sleep changes. Employing
dementia as a use case, we sought to develop an unsupervised clustering
model that could distinguish between individuals with an established diag-
nosis of dementia or MCI and the general population, based on their long-
itudinal sleep data. A schematic overview of this study is provided in Fig. 1.

Methods
Study design and population
This study was conducted in collaboration with Imperial College London
and Surrey and Borders Partnership NHS Trust. It includes two datasets;
Minder, an ongoing project since 2018 collecting in-home data frompeople
with an established diagnosis of dementia or MCI at the UK Dementia
Research Institute (UKDRI)CareResearch&TechnologyCentre (n = 117),
and a dataset obtained from participants from the general population using
the Withings sleep mat monitoring device (n = 5580)30. In this paper, the
latter is referred to as the General Population dataset.

TheGeneral Population cohort comprises individuals from the general
population who provided informed consent for their data to be shared. To
ensure a representative distribution of the general population and account
for the prevalence rates of dementia and MCI31,32, we employed a boot-
strapping resampling technique. This involved randomly selecting 50

Fig. 1 | Study overview. The study uses an under-the-mattress sleep monitoring
device that passively collects sleep and physiology data (shown in A). The data is
automatically transmitted via WiFi through a secure channel to a Cloud server
where it is anonymised (shown in B). The data undergoes pre-processing, design
optimisation and feature selection prior to cluster analysis, where sleep phenotypes

are identified (shown inC). Finally, profile and statistical analyses are conducted to
identify the demographics associated with each grouping and to determine sig-
nificance between groups (shown in D). MMSE Mini-Mental State Examination,
NREM non-rapid eye movement, REM rapid eye movement.
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unique participants across 5 folds while considering the distribution of ages
within the study group.

The sensor used for this study has been shown in a PSG sleep
laboratory study to accurately estimate cardio-respiratory metrics during
sleep33, where the agreement between the pneumatic sensor and the PSG for
respiratory rate (RR), heart rate (HR), and their variability was quantified
using Bland-Altman analysis. An overview of the sensor used in this study is
provided by Yang and colleagues33. The sensor has been validated for the
detection ofmoderate-severe sleep apnoea syndrome,wake after sleep onset
(WASO), total sleep duration and sleep efficiency, and quantifying sleep/
wake34–36. Initial validation studies have been conducted in smaller popu-
lations for sleep staging using epoch-by-epoch classification37.

Eligible study participants for Minder included adults older than 50
years old clinically diagnosed with dementia or MCI as well as current or
previous treatment at a psychiatric unit.

Capacity to consent was assessed in accordance with the GoodClinical
Practice, as detailed in the ResearchGovernance Framework forHealth and
Social Care (Department of Health 2005). Participants lacking the capacity
for informed consent were required to have a partner or caregiver who had
known them for at least 6 months and was able to attend research assess-
ments with them.

Exclusion criteria were as follows: (1) patients receiving treatment for
terminal illness, (2) the presence of severe mental health conditions including
depression, anxiety, psychosis, and agitation, and (3) the presence of active
suicidal thoughts. In total, 117participantswere selected forparticipationusing
the above-mentioned recruitment process. General population participants
were all users with a Withings sleep mat30 who consented to their data being
used as part of the Withings research programme. Demographics of the
MinderandGeneralPopulationparticipants areprovided inTable 1, reporting

both the original dataset demographics and those of the processed versions
used in the study analysis. Male and female assignments were self-declared by
participants. Additional demographic information, including primary diag-
noses and Mini-Mental State Examination (MMSE) scores used to assess
impairment severity forMinderparticipants, is provided inTables2and3.The
MMSE scores and their corresponding impairment severity classifications
follow theguidelines of theNational Institute forHealth andCareExcellence38.

Data collection
The full studyGeneral Population dataset includes over 13million nights of
sleep from June 2020–March 2021 across 5580 participants. The full study
data fromMinder is also collected from an under-the-mattress sleep sensor,
across 117 participants, and is ongoing since 2018, with >14,000 person-
nights of data. Table 2.

Statistics and reproducibility
The Minder and General Population datasets were analysed together
to determine differences between dementia and the general popula-
tion using unsupervised learning. Four 30-day period samples across
120 days of sleep data were selected for analysis from each individual
in order to provide a representative sample of an individuals sleep
patterns over time and reduce short-term variability. 120 days were
selected between 31/10/2022 and 01/03/2023 for Minder, and 31/10/
2020 and 01/03/2021 for General Population participants. We used
the following raw features as input; NREM, REM, light and WASO
duration, and the minimum, maximum and average RR and HR, as
these features have been reported to be affected in PLWD8–10.

Themedian of each feature was calculated for each user ID across four
30-day period samples across the 120-day period. To minimise the impact
ofmissingdata, participantswhohad40%ormoremissing data (12ormore
days) in any 30-day period were excluded from the analysis. From this, 50
participants remained across four 30-day periods in Minder, allowing for
200data samples. Remainingparticipantswithmissing valueswere imputed
with the rolling mean in order to maintain the temporal structure of the
data. Figure 2 presents the median features by cohort over 30-day periods,
cluster distributions and sample sizes. The General Population sample size
was matched via k-fold analysis to allow for equal sample sizes, whereby 50
unique individuals were selected without replacement across 5 folds and
combined with the processed Minder dataset for analysis to ensure robust
and stable clusters (combined 400 data samples). Table 3.

Ethics approval and data anonymisation
The Minder study received ethical approval from the London-Surrey Bor-
ders Research Ethics Committee; TIHM 1.5 REC: 19/LO/0102; IRAS:
257561; ISRCTN7100099139. All participants in this study either provided
their own written informed consent or, if deemed unable to do so, consent
was obtained from their legal representatives or individuals with power of
attorney. For participants lacking capacity, consent was obtained through
their legal representatives after discussions with family members and clin-
icians to ensure that participation was in their best interest. This process,
along with the authority of the legal representatives or power of attorney
holders, were reviewed and approved by the ethics committee.

The data collection approval for data collection from the under-the-bed
mattress sensor in the Minder clinical study was granted by a clinical IRB
panel (IRAS ID: 257561). The anonymised General Population dataset was
provided by Withings (https://www.withings.com) based on a data-sharing
agreement for research with Imperial College London in accordance with the
applicable security standards and regulations. Information governance and
impact assessment approval for storing and processing data from Withings
sleepmat data was obtained via from anNHS Information Governance panel
(Surrey and Borders Partnership NHS Foundation Trust, reference number:
20201009-DRI). Withings is certified in ISO 27001 and Health Data Hosting
(HDS) which comply with the same level of security as health professionals.
For the General Population dataset, consent to obtain user data was pre-
viously obtained by Withings. The data extracted for this study was fully

Table 1 | Cohort demographics

Cohort Dataset Sample
size (n)

Sex (Male,
Female)

Age
range

Minder Original 117 M = 60, F = 57 52–98

Minder Processed 50 M = 29, F = 21 60–98

General
Population

Original 5580 M = 4480,
F = 995

19–98

General
Population

Processed 50 M = 40, F = 10 60–98

Table 2 | Primary diagnosis and MMSE scores in Minder
cohort. Scores given to 2.d.p

Primary diagnosis % of Minder cohort MMSE score

Alzheimer’s 55.0 13.32 ± 5.92

Vascular dementia 15.0 21.83 ± 3.54

Mixed dementia 7.5 7.00 ± 7.55

MCI 10.0 25.75 ± 5.97

Frontotemporal dementia 2.5 29.00 ± 0.00

Other 10.0 27.50 ± 1.73

MCImild cognitive impairment,MMSEMini-Mental State Examination.

Table 3 | MMSE scores and impairment severity

MMSE score Impairment severity

27–30 Normal cognition

21–26 Mild

10–20 Moderate

0–9 Severe

MMSEMini-Mental State Examination.
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anonymised, so re-consent was not required. Withings data collection is in
compliance with the GDPR. Part of theWithings data privacy policy includes
a legitimate interest, which means pursuing the essential mission of the Data
controller (Withings processes non-identifying data to improve research on
the basis of the legitimate interest). This is included in their data privacy
statement (https://www.withings.com/uk/en/legal/privacy-policy). User con-
sent is collected in specific cases, and usersmaywithdraw consent at any time.

Analysis platform
As the data was continuous and processed into more than 3 groups,
ANOVAmodels and Tukey’s post-hoc for multiple comparisons of means
were determined to be the appropriate choice of statistical tests. All data
analyses, alongside modelling, were conducted using Python 3.9, using the
Pandas40, Numpy41, Scikit-Learn42, SciPy43 and Pingouin44 libraries.

Model development
Clustering, an unsupervised learning technique, can be used to organise
data into different groups based on similarities between subjects45. In
the context of this work, employing clustering techniques enables
unsupervised partitioning of the data based on the processed nocturnal
data collected from the under-the-mattress bed sensors. Further ana-
lysis of this modelling was conducted to reveal the defining features and
subject demographics associated with each grouping, thereby allowing
for an understanding of sleep-based differences between PLWDand the
general population.

Followingk-fold validation, the combinedMinder/General Population
data was scaled using the z-score and normalised prior to modelling. As
clustering algorithms can be broadly classified as centroid-based,
distribution-based and hierarchical45, for comparison of different algo-
rithms that best classify the input data, one of each was selected. K-means
was chosen as the centroid-based model, a Gaussian Mixture Model
(GMM) as the distribution-based model, and Agglomerative clustering
model as the hierarchical model. The performance of each algorithm was
comparatively evaluated using intrinsic evaluation metrics such as the

Silhouette Coefficient (SC) score, Calinski Harabasz (CH) and Davis
Bouldin (DB) indices, as these do not require ground truth labels.

The optimal number of clusters was determined using the SC scores,
DB and CH index scores. Following model optimisation, the model was
fitted to the combined input data. A subsequent profiling of the clusters was
carried out. As clustering test re-test analysis may assign cluster labelling to
the same group across folds, the labels were assigned andmapped across the
five folds by calculating the Euclidean distance between the cluster centroids
and the origin. Cluster labels were sorted in ascending order and labelled
accordingly. The clinical profile of General Population participants is not
known, but due to a large dataset, bootstrapping and K-fold sampling, we
assume this will limit the effect of comorbidities on sleep architecture. This
allows us to conduct a proof-of-concept study to determine sleep-based
differences between the two cohorts.

Profile analysis and statistics
The reported profile analysis reflects the average (±SEM) across five folds. A
statistical analysis (ANOVA, Tukeys post-hoc and independent t-tests) for
the features in each cluster were computed to reveal the defining features
and subject demographics underlying each grouping. Cluster descriptions
and corresponding demographics (group (mean percentage Minder, Gen-
eral Population ± SEM), sex (mean percentage female, male ± SEM), age
(mean ± SEM)) were calculated as percentages of their clusters.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Algorithm selection
To determine a clustering algorithm that optimally clusters the combined
Minder/General Population input data, we examined the performance ofK-
Means, GMMandAgglomerative clustering techniques via several intrinsic
evaluation metrics. We selected sleep parameters that are commonly

Fig. 2 | Median features by cohort over 30-day periods, cluster distributions and
sample sizes. Visualisations of a scaled median feature per cohort (Minder (n = 50)
General Population (n = 50)) per 30-day period, b feature distribution per cluster, as
determined by K-Means modelling (k = 3), and c the percentage sample size per

cluster. HR heart rate, Max maximum, Min minimum, NREM non-rapid eye
moment, REM rapid eye movement, RR respiratory rate, WASO Wake after
sleep onset.
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impoverished in PLWD as input features for the model. The features
included; NREM (otherwise known as deep sleep), REM, light sleep and
WASO46, as well as the minimum, maximum and average respiratory rate
RRandHR.Here, themedianof each featurewas calculated for eachuser ID
across four 30 consecutive day periods, from the 120-day sample with less
than 40%missingness. The algorithmswere compared using the SC, and the
CH and DB indices as these do not require true cluster labels. All experi-
ments were run 15 times, each with bootstrap samples of the data to cal-
culate confidence interval estimates of the metrics. This allowed us to

generate reproducible results and measure the change of metrics
between runs.

Based on these metrics, we found that the best-performing model was
K-Means with k = 3, shown in Table 4. For a comparison of k ∈ [2, 25]
across models, see Supplementary Fig. 1 and Supplementary Methods.
Visualisation of the feature distributions per cluster is shown in Supple-
mentary Fig. 2 and in Supplementary Methods.

Unsupervised clustering and profiling analysis showed three
distinct clusters, including one predominantly composed of people
PLWD. This cluster was characterised by increased light and WASO
and reduced REM and NREM sleep duration, as reported in Fig. 2.
These findings suggest distinct dementia-related sleep phenotypes
and support the potential of passive digital technologies for mon-
itoring sleep changes and disease progression in PLWD, and for
broader clinical monitoring.

Clustering description and statistical analyses
The percentage sample size remains relatively evenly split amongst all
clusters; 28.5% has been allocated to cluster 1, 39.1% to cluster 2, and 28.5%
to cluster 3. To determine the defining features of these clusters, a statistical
analysis between features and clusters via Analysis of Variance (ANOVA)

Table 4 | Performance metrics and their mean scores for
evaluationofK-Means,GMMandAgglomerative clustering, at
k = 3 across 15 runs

SC Score CH index DB index

K-Means 0.18 334.06 1.77

GMM 0.12 240.70 1.96

Agglomerative 0.14 227.49 1.95

Higher SC and CH scores indicate better clustering performance, whilst a lower DB score indicates
better performance. Results given to 2.d.p.
CH Calinski-Harabasz, DB Davies Bouldin.

Fig. 3 | Statistical analysis of heart rate, respiratory rate, and sleep phase metrics
across clusters.Analysis of aHR parameters (minimum, average, maximum), b RR
parameters (minimum, average, maximum) and c sleep phase metrics (REM,
NREM, light sleep,WASO) across clusters (cluster 1; n = 49, cluster 2; n = 33, cluster
3; n = 18), generated by K-Means clustering (k = 3). Data was winsorised to account

for outliers and scaled via z-normalisation. Error bars denote the SEMstandard error
of the mean. Statistical significance (independent t-tests) is indicated using hor-
izontal bars. BPM beats per minute, HR heart rate, Max maximum, Min minimum,
NREM non-rapid eye moment, REM rapid eye movement, RR respiratory rate, s
seconds, WASO wake after sleep onset.
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models was conducted (Fig. 3). See Supplementary Data 1 and 2 for the
multiple pairwise comparisons between sleep phase metrics and physiolo-
gical parameters and clusters.

The data is represented in three clusters, each defined by different
medians of the sleep parameters across the 120-day selected period. Cluster
1 is defined by a high HR and RR parameters relative to cluster 3, higher
WASO and light sleep relative to clusters 2 and 3, and lower REM and
NREM mean sleep duration relative to cluster 2. Cluster 2 is similarly
defined by higher minimum and average HR parameters and a higher
minimum RR relative to cluster 3. It is also characterised by higher NREM
andREMmean sleepduration and lowerWASOand light sleep. Cluster 3 is
characterised by lower HR and RR parameters and low REM, NREM, light
sleep and WASO (total sleep duration). The results of a two-way repeated
measures ANOVA between clusters and sleep metric are presented in
Supplementary Table 1.

Profile analysis
The majority of Minder participants (PLWD) were grouped into cluster 1
(72% ± 3.22 of the cluster, p < 0.001). Cluster 1 was defined by higher HR
and RR parameters, higherWASO and light sleep relative to both clusters 2
and 3 and lower REM and NREM mean sleep duration relative to cluster
2 (p < 0.001). Cluster 1 showed a higher mean age relative to both clusters
2 and 3 (77.96 ± 1.00, p < 0.05). Significantly more females (p < 0.05) were
clustered in cluster 1 relative to clusters 2 and 3.

The majority of General Population participants were classified into
cluster 3 (66% ± 4.82, p < 0.05).Cluster3was characterised by lowerHRand
RR parameters and lower REM, NREM, light sleep and WASO. Cluster
2 showed a lower mean age relative to cluster 1 (71.86 ± 0.74, p < 0.05). No
age difference was found between cluster 2 and 3. Cluster 2 did not report a
difference in the mean percentage split between Minder and General
Population participants, showcasing a relatively even split (General Popu-
lation = 54%, Minder = 46% ± 4.31). Cluster 2 was similarly defined by
higher minimum and average HR parameters and a higher minimum RR
relative to cluster 3. It was also characterised by higher NREM and REM
mean sleep duration and lower WASO and light sleep (p < 0.001 and
p < 0.01) (Table 5, Fig. 4).

An analysis of the mean Mini-Mental State Examination (MMSE)
scores, which is used to determine impairment severity, reported no sig-
nificant difference between clusters (Supplementary Fig. 3, Supplementary
Methods). The results of the ANOVA between MMSE and clusters within
the Minder cohort are provided in Supplementary Table 2. Additional
profiling of the Minder participants per cluster (primary diagnoses
and MMSE scores) is also reported in Supplementary Table 3.

Discussion
This work investigated how the analysis of IoT-derived sleep data could be
used to identify dementia sleep signatures. Leveraging sleep metric and
nocturnal physiology data collected from under-the-mattress bed sensors,
we designed an unsupervised machine learning model to differentiate
between a cohort of PLWD or an established diagnosis of MCI/dementia
and the general population.

We derived themedian value of each of the 10 features across 120 days
of sleep data andperformed a cluster analysis using 3distinct algorithms (K-
means, GMM, and agglomerative). We then determined the optimal algo-
rithm was K-means, and the optimal number of clusters being 3 based on
standard evaluation metrics and profile analyses. The following profile
analysis reported that cluster 1wasmainlyMinder participants (72% ± 3.22,
p < 0.001), defined by higher HR and RR parameters, higher WASO and
light sleep, and lower REM and NREM mean sleep duration. Previous
studies have reported distinct patterns of sleep impairment47,48. This may
represent a sleep phenotype specific to dementia. Our findings are con-
sistent with the literature, where marked decreases in REM and NREM
sleep, and increases in light and WASO sleep duration, have been
described11,49. The changes may be due to cognitive impairments associated
with dementia. For example, Rauch and colleagues reported that in AD
patients, the mean intensity and number of sleep spindles were positively
associated with recall ability and autobiographicalmemory, respectively50,51.

Table 5 | Profile analysis of the combined Minder/General
Population dataset using K-Means clustering (k = 3)

Cluster N. Group Sex Age
(% cluster) (% cluster) Mean ± SEM
±SEM ±SEM

1 General Population = 28% Male = 59% 77.96 ± 0.93

Minder = 72% Female = 41%

±3.22 ±1.46

2 General Population = 54% Male = 81% 73.53 ± 0.74

Minder = 46% Female = 19%

±4.31 ±0.91

3 General Population = 66% Male = 84% 71.86 ± 1.00

Minder = 33% Female = 16%

±4.82 ±3.61

N number, SEM standard error of the mean.

Fig. 4 | Statistical analysis of average cohort, sex, and age distributions across
clusters. Analysis of a mean percentage cohort (Minder, General Population) dis-
tribution across clusters, b mean percentage sex (male, female) distribution across

clusters and cmean age distributions across clusters where cluster 1; n = 49, cluster 2;
n = 33, cluster 3; n = 18. Error bars represent SEM. Statistical significance (inde-
pendent t-tests) is indicated using horizontal bars. SEM Standard error of the mean.

https://doi.org/10.1038/s43856-024-00646-0 Article

Communications Medicine |           (2024) 4:222 6

www.nature.com/commsmed


Additionally, tau aggregates have also been shown to be correlated with a
reduction in NREM sleep11. It is important to note that the passive sleep
sensor has been validated for physiological parameters, sleep/wake, total
sleep duration and WASO34,36, but only initial validation studies in smaller
populations have been conducted for the REM, NREM and light sleep
stagingmeasures37. Caution should therefore be exercisedwhen interpreting
these results. Further studies are required tovalidate the accuracyof the sleep
staging device in larger cohorts. For this reason, we focused on identifying
sleep differences between the Minder and General Population cohorts
rather than quantifying specific value differences.

Our results also indicate that Cluster 1, where the main grouping is
Minder, is characterised by a high maximum nocturnal RR and HR.
Studies have suggested potential links between dementia and changes in
respiratory and heart rates during sleep, but the exact relationship is not
fully understood. These changes may be due autonomic nervous system
dysfunction, which is associated with dementia, and may affect noc-
turnal RR and HR regulation52,53. Other plausible explanations include
medications prescribed to PLWD, such as antipsychotic medications
that have been shown to impact the autonomic nervous system54,55. The
relationship is likelymulti-factorial and necessitates further research56,57.
Future research should focus on controlling for comorbidities to further
investigate the underlying causes of HR and RR sleep pattern changes.
Cluster 1 additionally reported the highest mean age of 77.96 ± 0.93.
While age was considered during the interpretation and profiling of the
clusters, it was not included as a direct feature in the clusteringmodel. As
such, it did not influence the clustering outcome directly. However,
differences in age distributions across cohorts may influence profiling
results. Due to limited sample sizes, age ranges were controlled for rather
than using mean ages.

All clusters were shown to be predominately male. This is due to the
imbalance in the original data and cannot be used to draw significance.
However, there were significantly more females in Cluster 1 relative to both
clusters 2 and 3 (p < 0.05). This finding is consistent with previous works.
Alexander and colleagues evaluated clinical sub-types in AD using elec-
tronic healthcare records and unsupervised clustering, reporting a con-
sistent cluster found in three of the four methods employed, composed of
predominantly females58. This was also found by Landi and colleagues, who
employed deep representation learning of electronic healthcare records59.
Indeed, studies have reported that females are at higher risk of developing
dementia60. Females are also reported to have a higher life expectancy
relative to males61. This may partially explain why the cluster that saw the
highest mean age also saw the highest percentage of female participants.
Interestingly, cluster 2 sawa relatively evenMinder/General Population split
(Table 5). It may be that the participants are in this grouping due to
undetected MCI. For example, a 2019 systematic review reported the inci-
dence per 1000 individuals in general population samples to be 22.5, 40.9
and 60.1 for ages 75–79, 80–84 and 85+, respectively62. Furtherworkwould
be needed to determine this.

To our knowledge, this is the first study using IoT-derived nocturnal
data to identify sleep signatures between PLWD and general population
participants. IoT technologies provide an inexpensive, scalable model for
continuous passivemonitoring,making themparticularly advantageous for
use in the field of dementia, as well as in wider healthcare. Complementary
to clinical findings, the results of our clustering suggest detectable dementia
sleep signatures, highlighting the potential for IoT-derived data in dementia
screening and diagnosis and providing a proof-of-concept by which we
might validate the use of such sensors in PLWD.

Understanding the clusters derived from this model could help clin-
icians and researchers tailor interventions and treatments. For example, if
individuals exhibit specific sleep patterns associated with clusters associated
with cognitive impairment, targeted interventions aimedat improving sleep
quality in those clusters can be administered. This may allow for earlier
dementia intervention and/or tailored intervention.

Current treatments include non-pharmacological approaches, such as
sleep hygiene improvements, cognitive rehabilitation and/or occupational

therapy and non-cognitive management for pain, agitation, aggression and
distress. Pharmacological approaches may also be considered where the
appropriate medication is prescribed in accordance with the specific diag-
nosis, stage of disease and personal medical history63. This cluster analysis
has also highlighted key areas that need future investigation, such as
understanding the underlying mechanisms behind the association drawn
between sleep patterns and cognitive impairment and exploring potential
links between dementia severity and sleep disruption.

A limitation in this study was data missingness. To minimise the
impact of missing data, participants were excluded from the analysis if they
had more than 12 days of missing sleep data within any 30-day period.
Reasons for missing data may be due to data integration or sensor issues.
The participantmay also remove the bedmat (i.e., whenchanging sheets) or
decide to disconnect it. Additionally, the Minder sample size used for
analysis was relatively small (n = 50), 200 data samples. However, the
sample represents over 4800 person-nights of data, which offers sufficient
data for analysis.

Additionally, we do not have clinical information relating to the
General Population dataset, which may affect an individual’s sleep archi-
tecture. We also assume that with K-fold sampling using a large dataset the
effect of comorbidities and long-term conditions are reduced. Additionally,
no sleep-based exclusionsweremade for the data used in this study. Possible
presence of co-morbid health conditions, such as cardiovascular disease,
sleep apnoea or other sleep-based disorders, may also independently affect
HR and RR sleep patterns64. However, in the Minder cohort, 2 individuals
presented with a sleep disorder, and both were shown to be clustered in the
dementia-dominant cluster. It is also important to note that the main aim
here was to demonstrate a preliminary analysis with passively collected
longitudinal data that PLWD present with differentiating sleep signatures,
relative to a randomly sampled general population cohort. With this in
mind, future analyses with complete clinical information would allow for a
more sophisticated understanding of the relationship between sleep and
dementia.

Furthermore, the participants in theMinder cohort mainly include
individuals with moderate cognitive impairments, which limits the
generalisation of the findings to early diagnosis. This work is a pre-
liminary proof-of-concept to highlight the feasibility and effectiveness
of using passive in-home technologies for sleep and disease monitoring
in dementia. Our future work will aim to apply this analysis to parti-
cipants exclusively in the earlier stages of dementia, and/or in other
neurodegenerative conditions.

Our general population data was recorded during the COVID-19
pandemic. During the height of the COVID-19 pandemic, several inter-
national surveys65–67 and meta-analyses69–71 reported very high rates of
insomnia symptoms (including difficulty initiating or maintaining sleep) in
the global population (15–50%) with rates even higher among those who
had reported having COVID-19 (35–75%)65,68–70. However, it was noted by
Morin and colleagues that participants who had responded to this survey
during the early phase of the pandemic had higher rates than those who
completed it later65. They suggested that these changing rateswere indicative
of a reduction in perceived stress as individuals acclimated to the stressors of
the pandemic. Regardless, the sleep data from the general population being
recorded during the COVID-19 pandemic, the profile analysis of our
clustering algorithm shows there is still a distinct difference between the
general population cohort and PLWD or MCI, with the clusters that are
majority PLWD/MCIhaving higherWASOand light sleep duration, higher
mean HR and RR parameters, and lower REM and NREM sleep by
comparison.

Future work will involve analysing a longer duration of sleep data to
capturemore extended trends and fluctuations. A confirmednon-dementia
group will additionally validate these initial findings where differences
between the general population and PLWD have been observed. Control-
ling for age distributions across cohorts should be considered to validate our
initial profiling result. Additionally, this analysis may be considered beyond
the dementia population, where sleep disturbances are risk factors for other

https://doi.org/10.1038/s43856-024-00646-0 Article

Communications Medicine |           (2024) 4:222 7

www.nature.com/commsmed


conditions, such as psychiatric conditions (depression, anxiety, bipolar
disorder)71, or cardiovascular disease72. Moreover, applying this analysis to
other external cohort data will help further validate the findings reported in
this study and identify cases of false positives. Besides addressing study
limitations and seeking to improve the current model, future work should
consider associations between dementia severity and nocturnal disruption.

IoT devices, whilst offering numerous advantages such as cost-effi-
ciency, scalability and real-timemonitoring, may also pose privacy risks if
not handled correctly, particularly given the lack of standardised regula-
tions in the presently developing IoT industry. Whilst the necessary
information governance practices were employed in this study, these
concerns should be considered for future works to ensure researchers
prioritise robust ethical considerations. This includes safeguarding indi-
viduals’ data privacy through encryption and anonymisation, ensuring
transparent and informed consent processes, and addressing data own-
ership and control.

To summarise, we conducted a clustering analysis of IoT-derived sleep
data in an effort to discern differences in sleep signatures between the
general population and a cohort of individuals clinically diagnosed with
dementia orMCI. Consistent with thewider literature, our results suggested
the presence of distinct sleep architectures in PLWD. Not only do these
results demonstrate the potential for the use of IoT devices in the field of
dementia diagnostics, but they also promote the use of in-homemonitoring
in wider healthcare.

Data availability
Supplementary statistics for the results of a two-way repeated measures
ANOVA between Clusters and sleep phase metrics and physiological sleep
variables are in Supplementary Data 1 and 2, respectively. Source data for
Figs. 3 and 4 is provided in Supplementary Data 3A–C. The source data for
Fig. 4 is in Supplementary Data 4A–C.
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