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Abstract Magnetic reconnection is a fundamental plasma process which facilitates the conversion of
magnetic energy to particle energies. This local process both contributes to and is affected by a larger system,
being dependent on plasma conditions and transporting energy around the system, such as Earth's
magnetosphere. When studying the reconnection process with in situ spacecraft data, it can be difficult to
determine where spacecraft are in relation to the reconnection structure. In this work, we use k‐means clustering,
an unsupervised machine learning technique, to identify regions in a 2.5‐D PIC simulation of symmetric
magnetic reconnection with conditions comparable to those observed in Earth's magnetotail. This allows energy
flux densities to be attributed to these regions. The ion enthalpy flux density is the most dominant form of energy
flux density in the outflows, agreeing with previous studies. Poynting flux density may be dominant at some
points in the outflows and is only half that of the Poynting flux density in the separatrices. The proportion of
outflowing particle energy flux decreases as guide field increases. We find that k‐means is beneficial for
analyzing data and comparing between simulations and in situ data. This demonstrates an approach which may
be applied to large volumes of data to determine statistically different regions within phenomena in simulations
and could be extended to in situ observations, applicable to future multi‐point missions.

Plain Language Summary Magnetic reconnection is the change in connectivity of magnetic field
lines. The small‐scale physics at the center of reconnection causes conversion of magnetic energy to particle
energies. This is important for the impacts on the large‐scale system in which the reconnection takes place, such
as Earth's magnetosphere. We use machine learning techniques to identify regions of the structure of the
reconnection site. This can be done using only the plasma and field variables, without providing any information
on the location. We can look at how energy is shared between the fields and particles in these regions to
determine the behavior of the energy conversion across the reconnection site. We find ion energy is the largest
output energy, agreeing with previous studies. As the magnetic field perpendicular to the reconnection structure
increases, less energy is converted to the particles. This demonstrates that these machine learning techniques
may be used to identify regions in plasma phenomena and could be applied to large amounts of data to carry out
statistical studies.

1. Introduction
Magnetic reconnection is a universal process which facilitates the repartition of magnetic energy to particle
energies. While it is a local scale process, it impacts a global system and so it is important to understand the
structure of reconnection regions, and how it converts and partitions energy (Zweibel & Yamada, 2016). In the
most basic sense, it has been described as a process where plasma flows across a surface separating regions of
topologically different field lines (Vasyliunas, 1975). We can also consider it to be the local breakdown of flux
conservation which results in a changing connectivity of field lines (Axford, 1984). Both of these definitions
provide us with a simple structure of a reconnection site—inflowing regions of plasma which has not yet
reconnected, outflowing regions of plasma which has been reconnected, and the surfaces separating these regions.
At the center of the reconnection site, diffusion regions form where the particle flows are no longer frozen in to the
magnetic field lines (Umeda et al., 2010; Yamada et al., 1997).

The separating surfaces are known as separatrices, and in a 2‐D projection take the form of lines. In reality, they
are regions of complex plasma dynamics, including particle acceleration, instabilities, and energy conversion
(Lapenta et al., 2015). They exhibit a layered structure with distinct sub‐regions where ion and electron frozen‐in
conditions break down (Zhou et al., 2012), and are typically of the order of ion scales but with smaller structure on
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the order of electron scales (Lindstedt et al., 2009) with structured and dynamic electric fields present even far
from the central X‐line (Retinò et al., 2006). Strong flow shears at the separatrix can lead to counter‐streaming
electron distributions, triggering beam‐type instabilities and electrostatic turbulence, which contributes signifi-
cantly to electron heating during the transition from inflow to outflow (Hesse et al., 2018). The presence of these
various structures causing complex interactions results in significant energy conversion, with electrons reaching
energies of up to 100 keV before entering the electron diffusion region (Lapenta et al., 2016).

Magnetic reconnection efficiently converts energy in an astrophysical plasma, and energy partition around
diffusion regions and separatrices has been studied both in situ and in simulations (Aunai et al., 2011; Pucci
et al., 2018; Tyler et al., 2016). We describe the energy partition in a space plasma using a continuity equation for
energy,

∂
∂t
(Ue + Ui + UEM) + ∇ ⋅ (Qe +Qi + S) = 0, (1)

where e and i subscripts represent electrons and ions respectively, the EM subscript is for electromagnetic energy,
U is the energy density, Q is the particle energy flux density, and S = (E × B)/μ0 is the Poynting flux density
vector, where E and B are the electric and magnetic fields respectively (Birn & Hesse, 2005).

The particle energy flux densities Qs can be broken down further,

Qs = Ks +Hs + qs, (2)

where Ks is the species bulk kinetic energy flux density, Hs is the species enthalpy flux density, and qs is the
species heat flux density. The heat flux density qs is the trace of the third moment of the velocity distribution
function of the species, and accurate values of this quantity may not always be obtained. The other components
are calculated from the bulk velocity vs,

Ks =
1
2
msnsv2s vs, (3)

Hs =
vsTr(Ps)

2
+ vs ⋅Ps, (4)

where Ps is the pressure tensor for the species, ms is the species mass, and ns is the species number density.

The energy flux densityQ or S is the flow of each form of energy through each unit area, including the direction as
it is a vector quantity. We expect a large, inward‐oriented Poynting flux S in the inflows, and a small outward‐
oriented one in the outflows. This change in Poynting flux results in a transfer to the particle energy flux densities
Qi and Qe for ions and electrons respectively (Figure 1b).

Previous spacecraft observations of reconnection energy fluxes have mainly focused on the outflow, in part
because they are a distinctive and largely unambiguous feature of reconnection in situ. It is found that for
symmetric, collisionless reconnection in the Earth's magnetotail, ion enthalpy flux is the dominant output,
although Poynting flux may dominate at certain regions within the ion diffusion region (IDR) (Eastwood
et al., 2013). More recently, the Magnetospheric Multiscale (MMS) mission has given the first direct observations
of the electron diffusion region (EDR), showing crescent‐shaped electron velocity distributions and intense
currents and electric fields (Burch et al., 2016). These crescent‐shaped distributions are also observed in mag-
netotail reconnection, alongside super‐Alfvenic electron jets (Torbert et al., 2018). On average, electrons have
higher energies when local electric fields have high magnitudes in all reconnection environments (Oka
et al., 2022), which relates to significant electron energy flux densities being found in the vicinity of the EDR
which are orthogonal to the ion outflow (Eastwood et al., 2020).

However, to study how the energy partition varies through the reconnection structure, knowledge of the
spacecraft location within said structure is necessary. Visual identification of such a structure can be challenging
and time consuming. For specific events, field reconstruction has been carried out to identify the relative location
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of spacecraft (Denton et al., 2020; Hasegawa et al., 2019; Nakamura et al., 2019). Although these methods are
accurate and produce very detailed descriptions of the surrounding field topology, they are computationally
intensive and the results cannot be generalized to multiple events.

Furthermore, the reconnection process is influenced by the conditions of the surrounding plasma environment.
One example of this is a guide field, which is an out‐of‐plane component of the magnetic field resulting in the field
being non‐zero at the X‐line. This may distort the structure of the diffusion region and tilt the current sheet
(Eastwood et al., 2010). This also causes the electron outflow to tilt toward the separatrices (Wilder et al., 2017),
as observed in Figure 1a. The overall rate of reconnection decreases with guide field in the symmetric case (Hesse

Figure 1. (a) The effect of a guide field BG, into the page, on the structure of a magnetic reconnection site. The magnetic field
lines are shown as solid oriented black lines, the reconnection electric field Erecon is in red and directed into the page, while
the Hall electric fields EHall are shown as green arrows. The Hall magnetic field BHall is shown in blue, with direction in relation
to the plane of the page indicated. The inflow velocity Vin is shown by black arrows. The plane of rotation of the ions is shown
by a black dashed line, and that of the electrons by a black dotted line. (b) The flow direction of energy flux densities and the
quantities responsible for their repartition as expected in a typical case of 2D symmetric, antiparallel magnetic reconnection.
The separatrices are shown by black dashed lines. Electron and ion currents Je and Ji are represented respectively as orange and
light blue dashed arrows. The Poynting flux density vector S is shown by dark blue arrows, and total particle energy flux density
Qi +Qe is shown by purple arrows.
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et al., 2013; Ricci et al., 2004), and the energy partition is affected as the
Poynting flux associated with the guide field is carried from inflow to outflow
with little alteration (Birn & Hesse, 2010).

Recent applications of machine learning techniques have started to facil-
itate identification of regions for statistical studies of phenomena,
including identifying EDRs in MMS data (Lenouvel et al., 2021), classi-
fying the magnetospheric regions in which spacecraft observations are
taken at Earth (Breuillard et al., 2020; Nguyen et al., 2021; Olshevsky
et al., 2021; Toy‐Edens et al., 2024) and at Saturn (Yeakel et al., 2022),
and classifying solar wind (Camporeale et al., 2017). These techniques
have also been applied to smaller‐scale structures, including identifying
regions within sunspots (Romano et al., 2023) and identifying regions of
instabilities in particle‐in‐cell (PIC) simulations which correspond to

physically known properties (Köhne et al., 2023). These applications allow for large volumes of data to be
labeled in relation to physically known regions or classified as statistically significant populations, which
would be repetitive, time consuming, and include biases which cannot be understood if this labeling were
carried out with human input.

In this work, we use k‐means clustering, an unsupervised machine learning technique, to identify regions in a 2.5‐
D PIC simulation of symmetric magnetic reconnection with conditions comparable to those observed in Earth's
magnetotail. We implement this technique such that direct comparison can be made with results from spacecraft
observations and verify and extend understanding of energy flux densities in the labeled regions. Using three
simulation runs, we investigate the effects of guide field varying between 0, 0.1 and 0.2 of the background field.
Simulation facilitates studying the effects of this level of variation on energy repartition, as it may be difficult to
determine the strength of the guide field to sufficient accuracy due to limitations in finding a suitable coordinate
system for an event (Denton et al., 2024).

In Section 2, we discuss the parameters of the simulations used. Section 3 discusses the methods for clustering,
including limitations in choice of variables for comparison with in situ data. Section 4 shows the results of the
clustering including how robust these classifications are, and Section 5 evaluates the energy flux densities within
the classes of regions to verify the methods compared to previous spacecraft observations. Section 6 discusses
these results and ideas for application to spacecraft data. Section 7 concludes and looks to the benefits of these
methods for future work.

2. Simulation
We use a 2.5‐D PIC simulation using the iPic3D implicit PIC code, starting from a Harris equilibrium,
similar to that described in Goldman et al. (2016). The boundary conditions are periodic in both x and y
with two oppositely directed current sheets with initial perturbations to seed reconnection at
(x, y) = (Lx/4, Ly/4) and (x, y) = (3Lx/4, 3Ly/4) , where Lx,y are the dimensions in the x and y directions
respectively. Following these perturbations, the Harris current sheet ‘tears’ and the reconnecting current
sheet forms.

The input parameters are the Harris‐sheet thickness Δ, the mass ratio mi/me, the electron thermal velocity ve/c,
the electron‐to‐ion temperature ratio Te/Ti, the background to Harris sheet density ratio nb/n0, and the ratio of
guide field to asymptotic reconnecting field BG/B0, as given in Table 1. We use a grid spacing of 1/12.8
di0 = c/ωi0 in both the x and y directions. We analyze simulation runs at a timestep of 24,800 ωcit, where ωci is
the ion cyclotron frequency. There are an average of 225 particles per cell of each species, and each particle has
the same weight such that there are more particles per cell in the center of the Harris sheet and fewer in the
exterior.

The simulation is cropped to contain a region of one reconnection site close to the EDR between 130 and 170 di0
in the x direction and 20 and 40 di0 in the y direction, as shown in Figure 2. Comparison to spacecraft data in the
Earth's magnetotail using GSM coordinates requires xsim = xGSM, ysim = − zGSM, and zsim = yGSM.

Table 1
Initial PIC Simulation Parameters

Input parameters Value

Lx × Ly (units of di0) 200 × 40

Δ/di0 0.5

mi/me 256

ve/c 0.045

Ti/Te 5

nb/n0 0.1

BG/B0 0, 0.1, 0.2
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3. Methods
3.1. k‐Means Clustering

A k‐means algorithm clusters data by separating the samples given into k groups by minimizing the inertia of each
group,

∑
n

i=0
minj ≤ k (

⃒
⃒xi − μj|

2), (5)

where μj are the means of the k clusters, often referred to as the centers of the clusters, and n is the total number of
samples xi. The inertia is a measure of how coherent each cluster is and how well the samples are described by

Figure 2. Overview of the 2.5‐D PIC simulation used for this study. Here, we show the run with a guide field BG = 0.1. The x
and y components of quantities are given by black field/streamlines and the z component is shown in color for (a) the
magnetic field B, (b) the ion bulk velocity vi, and (c) the electron bulk velocity ve. Positive z components point out of the plane
of the page. The central X‐point is located close to (150, 30) di.
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their associated cluster (Lloyd, 1982). To avoid the algorithm converging to a local (rather than global) minimum,
the k‐means++ initialization is used (Arthur & Vassilvitskii, 2006). This selects initial cluster centers using
sampling based on a probability distribution relating to the contribution of the individual points to the overall
inertia. It takes several initialisations of centers to check for convergence to local minima.

k‐means clustering methods have been applied elsewhere in space physics. These include classifying different
types of solar wind (Heidrich‐Meisner &Wimmer‐Schweingruber, 2018; Roberts et al., 2020) and magnetopause
crossings at Earth and Jupiter (Collier et al., 2020). The methods lend themselves to applications involving a
distinct, known number of groups of points, and are often used due to their speed.

3.2. Silhouette Score

The performance of the clustering for a given value of k is evaluated using silhouette score s(xi) for each data
point xi located in a cluster CI (Rousseeuw, 1987),

s(xi) =
b(xi) − a(xi)

max(a(xi), b(xi))
, (6)

where

a(xi) =
1

NCI
− 1

∑

NCI

j=0,j≠i
|xj − xi|, (7)

b(xi) = minCJ≠CI(
1

NCJ

∑

NCJ

j=0,j≠i
|xj − xi|), (8)

where C are clusters containing NC points. a(xi) represents the mean distance between a point and all of the
other points in the cluster, and b(xi) is the smallest mean distance to a point of all the points in any other
cluster. Overall, this gives how similar each point is to its cluster compared to the others. To generalize this
for an entire dataset, we take the mean over all data points s = s(xi) (Kaufman & Rousseeuw, 1990). A score s
of close to one indicates appropriate clustering, s = 0 indicates uncertainty in the clustering, and s = − 1
indicates incorrect clustering.

3.3. Data Normalization

Although we could classically normalize each variable relative to its distribution, here we seek to compare our
simulation to spacecraft data. We normalize based on physical quantities such that all variables have comparable
magnitudes.

We use the asymptotic reversing field B0 and the current sheet density n0 in the torn current sheet where
reconnection is already occurring, as the Harris current sheet in the simulation has an artificially high density
compared to the reconnecting current sheet. We calculate the Alfvén speed for both ions and electrons from B0
and n0 and use them to normalize quantities, with B′ = B/B0, n′s = ns/ n0, E′ = E/B0VAi0, V′i = Vi/VAi0, and
V′e = Ve/VAe0. For the electric field, the ion Alfvén speed VAi0 is used. The relevant species Alfvén speed is used
to normalize the velocities to ensure the electron velocity components are of the same order as the ion velocity
components.

For this study, we choose not to use any variables requiring higher moments of the velocity distribution function
than the velocity for the clustering. This is due to the limitations of the distribution functions taken in situ by
spacecraft. In regions of low density such as the magnetotail, very few particle counts are obtained, leading to high
uncertainties in the corresponding moments of the distributions which become more problematic the higher the
order of the moment becomes (Gershman et al., 2015).
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4. Clustering Results
4.1. Silhouette Score

By carrying out the k‐means clustering algorithm on the scaled simulation variables B′, E′, n′i , n′e, V′i , and V′e at
each grid point for a range of numbers of clusters, we obtain the silhouette coefficient for each of these numbers
(Figure 3).

The silhouette coefficient increases, reaching a maximum before decreasing rapidly for cluster numbers greater
than 12, meaning that any number of clusters beyond this gives a much poorer clustering result. The coefficients
differ very little between six and 12 clusters. As the number of clusters increases beyond six, we observe the
separatrix‐associated regions splitting into two, followed by splitting of the outflow regions into three regions
each at 12 clusters. Beyond this, the inflows begin to split into smaller regions. Here we focus on the six cluster
case and investigate how the structure identified changes between the simulation runs with differing guide field.
However, the results with 12 clusters are provided in Figure S1 in Supporting Information S1.

4.2. Six Clusters

We begin with guide field BG = 0.1 due to this being most relevant to magnetotail reconnection due to the small
but non‐zero guide field (Figure 4b). We obtain three pairs of clusters ‐ two inflow regions, two outflow regions,
and two regions associated with pairs of separatrices. We define these regions relative to their equivalence in
GSM coordinates to the field orientation in magnetotail reconnection; a northern inflow and separatrix‐associated
region, InN and SepN , a southern inflow and separatrix‐associated region, InS and SepS, and Earthward and
tailward outflows, OutE and OutT . Although there are only separatrix‐associated regions due to the separatrices
being a theoretical division in topology, we will still refer to these as ‘separatrix regions’ due to their spatial
proximity to these expected divisions. The separatrix regions also incorporate other features, such as fast electron
flows within low‐density cavities near the separatrices (Cattell et al., 2005; Eastwood et al., 2018). The k‐means
clustering identifies these points as being close to each other within parameter space and belonging to the same
cluster. Points may be identified as part of the ‘inflow’ regions past the separatrices, where we may expect them to
be identified as ‘outflow’, as observed in Figure 2a. These points are close to each other in parameter space,

Figure 3. The silhouette coefficient s for k‐means clustering results carried out with each of k clusters between 2 and 24 for
the simulation run with BG = 0.1. The higher the value of the coefficient, the better the quality of the clusters. The highlighted
region covers the peak values, between six and 12 clusters. The range of the coefficients for these results is 0.01, indicating that
the clustering results are of similar quality.
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indicating that the topological separation between regions by the separatrices does not cause a clear separation in
the plasma and field parameters. We discuss this further in Section 6.

For the BG = 0 case (Figure 4a), X‐point drift (due to previous plasmoids which have formed in this run of the
simulation) causes some additional structuring of the separatrix regions on the tailward side of the reconnection
site. Excluding these structures, the separatrix regions are overall symmetric and have a different shape to in the
BG = 0.1 case. These regions are spatially much wider around the X‐point, but thin with distance along the
outflows. The outflow regions begin to narrow around x = 133 and 167 di, closer to the X‐point than in the

Figure 4. Results of carrying out k‐means clustering with six clusters on comparable simulation runs with (a) BG = 0,
(b) BG = 0.1, and (c) BG = 0.2. Magnetic field lines are shown in black, with the color showing the regions identified by the k‐
means clustering. These regions are labeled in relation to the equivalent directions in GSM coordinates in the case of
magnetotail reconnection. Each simulation run has k‐means carried out independently with variables scaled in the same manner
and subsequent clusters re‐numbered for comparison between each case. The X‐point may appear to be in a slightly different
location in each due to the time‐varying nature of the reconnection process causing it to drift as a result of plasmoids previously
being produced.
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BG = 0.1 case. This leads to more of the ‘inflow’ region being identified within the area bounded by the
separatrices.

Significant changes appear in the BG = 0.2 case (Figure 4c). A global feature is a tilt of the reconnection site; anti‐
clockwise for the separatrix regions and clockwise for the outflow regions, corresponding to the opposite charge
of the particle populations which dominate in these clusters, although significantly smaller for the separatrix
regions than outflows. This tilt is comparable to previous studies of the effect of a guide field on the outflows of
reconnection (e.g., Eastwood et al., 2010; Hesse et al., 2002). There are again points labeled as ‘inflow’ bounded
by the separatrices. In this run, this is due to the guide field tilt, not the shape of the outflows. The separatrix
regions are not continuous, with ‘gaps’ present in the spatial structure formed by these points. This happens where
the out‐of‐plane Hall magnetic field component is oppositely directed to the guide field and they partially ‘cancel
out’. The separatrix regions are significantly thinner with higher guide field.

Overall, the six clusters correspond to regions which we can already identify in reconnection sites. These are
comparable between the three simulation runs, and we can identify changes in the structure as a result of the
varying guide field. However, we may expect to observe a region corresponding to the scales at which electron‐
scale physics occurs around the X‐point, forming the electron diffusion region (EDR). This is not identified by the
clustering. We would expect the electron inertial length de to be 16 times smaller than the ion inertial length di
with the mass ratio of 256. This results in de being comparable to the simulation grid size. This may result in the
moments used not capturing the physics occurring at these small scales. We may observe some characteristic
features of this region if we were to use higher order moments or the particle velocity distributions themselves ‐
however, as previously discussed, this is not possible in this study.

4.3. Robust Clustering

To evaluate how robust the k‐means clustering is for all three of the simulation runs, we add random noise
sampled from a normal distribution up to a magnitude of 0.1 in scaled units to all points in the simulation before
carrying out the clustering and calculating the silhouette score for the resulting clusters. This is carried out for 100
iterations on each of the simulation runs, with the resulting distributions of silhouette score shown in Figure 5a.

We first notice that the value of the silhouette score is decreased from that shown in Figure 3a due to the effect of
the added noise on the quality of the clusters. As silhouette score evaluates how close each of the points in a
cluster is adding random noise of similar magnitude to all points will increase the variance of each individual
cluster, reducing the score. Overall for each of the cases the spread in silhouette score is small ‐ the interquartile
range is 0.00461, 0.00582 and 0.00750 for BG = 0, 0.1 and 0.2 respectively. This indicates that the clustering is
only affected by a small amount when the values of the variables provided vary, and the clusters vary very little in
quality.

We can also investigate the contribution of each of the variables to distinguishing between regions using linear
discriminant analysis (LDA). This is a supervised dimensionality reduction technique, as opposed to an unsu-
pervised dimensionality reduction technique such as principal component analysis (PCA). It considers the
classification of points and tells us how important the contribution of each of the variables is to distinguishing
between classes (Hastie et al., 2009). Here we evaluate the contributions for the BG = 0.1 case. For the regions
shown in Figure 4b, we obtain contributions as shown in Figure 5b.

Overall, variables either have a very large contribution, or little contribution at all to a region. The By and Bz

components of the magnetic field make very little contribution to any of the regions. However, Bx is very
important for identifying the inflow regions. The outflow regions are mostly defined by the number densities and
velocities for both particle species, and out‐of‐plane electron velocity vez is dominant over any other variable for
defining the separatrices. These clear contributions of the variables cause a high certainty in the clustering for all
three simulation runs and indicate that the clusters are formed due to large differences in the variables provided.

However, it is important to remember that the k‐means clustering is not physically informed. This is purely a
statistical clustering associating points which are close to each other in parameter space, and there is no relation
between the clusterings of each simulation run to maintain comparable structures. When analyzing properties of
the resulting clusters we must take this into account and draw comparisons between statistically similar regions
which relate to, but are not identical to, the structure we would expect to find in magnetic reconnection. However,
the method may be applied for analysis of other comparable data.
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5. Energy Flux Densities
The identification of inflow, outflow, and separatrix regions by the k‐means clustering provides an opportunity to
study the properties of these regions in more detail. To explore this, we now use the clustering as a tool to explore
the behavior of the energy flux densities within the different regions of these simulations. As the regions are
comparable between the three varying guide field cases, we can look at how the distributions of the energy flux
densities change. As we are comparing between simulation runs, we keep the energy flux densities in unscaled
simulation units.

Figure 5. (a) Box plots showing the median, upper and lower quartiles, extremes and outliers of silhouette score for 100
iterations of clustering with added noise for each of the simulation runs with varying guide field. (b) A heatmap showing the
coefficients (weights) of the variables for the linear discriminants as a result of linear discriminant analysis for their
contributions to distinguishing between each of the classes of region. The larger the magnitude, the higher the contribution of
that variable. The sign indicates whether it is an increase or decrease in the variable which causes a point to be more likely to
be classed in that region.
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5.1. Energy Flux Magnitudes

We first analyze the magnitudes of the energy flux densities to give an overview of the contributions of each
region. The median magnitudes of each of the energy flux densities in each region with associated guide field are
given in Table 2. The overall contribution from these energy flux densities varies with guide field, and the shape
of the distributions may vary, shown in Figure 6. We combine the pairs of regions to show the magnitudes as the
distributions vary very little between the two in each case.

For the outflow regions, the median ion kinetic energy flux density |Ki| decreases with guide field (Figure 6b).
The median ion enthalpy flux density |Hi| (Figure 6e) decreases more than the kinetic energy flux density. In both
cases, the spread of the distribution increases with guide field. For the electrons, the kinetic energy flux density
|Ke| distribution (Figure 6h) narrows and becomes more positively skewed, although the median remains
approximately constant. For the electron enthalpy flux density |He| (Figure 6k), the median decreases and the
distribution becomes more positively skewed. As we would expect due to an increased guide field providing an
enhanced out‐of‐plane magnetic field component, the magnitude of the Poynting flux density vector |S|
(Figure 6n) increases in both outflows.

In the separatrix‐associated regions, we see very little change in the magnitude of the ion kinetic energy flux
density |Ki| (Figure 6c). The magnitude of the ion enthalpy flux density |Hi| (Figure 6f) decreases for the BG = 0.2
case, but there is little change between the 0 and 0.1 cases. The distribution of electron kinetic energy flux density
|Ke| (Figure 6i) narrows with increasing guide field, but the median remains approximately constant. There is also
little change to |He| (Figure 6l), and again the magnitude of the Poynting flux density vector |S| (Figure 6o)
increases, as expected.

When we compare these magnitudes between the two pairs of regions for the outflows and separatrices, we
observe that the magnitude of the ion kinetic energy flux density |Ki| is approximately four times larger in the
outflow than in the separatrices, and that of the ion enthalpy flux density |Hi| is approximately three times larger.
However, the magnitude of the electron kinetic energy flux density |Ke| is almost an order of magnitude smaller in
the outflows than in the separatrices. Electron enthalpy flux density |He| is of the same magnitude in both.
Although we observe an increase in both sets of regions in the Poynting flux, the overall magnitude is twice as
large in the separatrices than in the outflows.

Overall, this suggests that the guide field causes a shift in energy repartition to decrease the outgoing ion and
electron energy. Comparison between the outflows and separatrix‐associated regions shows the overall impor-
tance of the outflows for transport of ion energy and of the separatrices for transport of electron energy. Although
we associate the separatrices with large fields, in the Poynting flux we only see this being twice as large in the
separatrix‐associated regions as we do in the outflows, suggesting the outflows are not insignificant for the flow of
electromagnetic energy.

Through analyzing the medians and distributions of the energy fluxes in each of the clusters, we are able to
identify changes due to the varying guide field. We now investigate where the different energy fluxes would be
transported in a larger system by studying their orientation.

5.2. Energy Flux Orientations

We analyze the components of the energy flux densities to investigate the relative contributions of the separatrices
and outflows. This is used to evaluate the energy output from symmetric reconnection and how this varies due to
guide field. For completeness, the distributions of energy flux densities in the inflows are shown in Figure S2 in
Supporting Information S1. We first look at the effect on the outflows, as given in Figure 7.

The x component of the ion kinetic energy flux density Kix (Figure 7a) decreases in the respective direction to be
carried away from the X‐point (positive for the ‘Earthward’ region OutE, and negative for the ‘tailward’ region
OutT ) as the guide field increases. Kiz also decreases with guide field. For the ion enthalpy flux density
(Figure 7b), the x component Hix also decreases in the respective outward direction, and the distribution becomes
more bimodal. Hiz also decreases and becomes more bimodal. Turning to the electrons, Kex (Figure 7c) retains a
similar median with changing guide field, but the distribution narrows overall as guide field increases. This is
similar for Kez. For the electron enthalpy flux density (Figure 7d), Hex decreases in the outward direction, but Hey

increases in opposite directions for each cluster. Finally, for the components of the Poynting flux density vector
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Figure 6.
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(Figure 7e), Sx increases in the outward direction, and Sz becomes more negative, although this is slightly
counteracted by the positive guide field in this direction.

The same quantities for the separatrices are given in Figure 8. Starting with the ions again, the ion kinetic energy
flux density (Figure 8a) has a median in the Kix component directed away from the X‐point for the BG = 0.2 case.
However, this is approximately zero for the BG = 0 and 0.1 cases, with the bulk of the distribution around zero for
all cases. There is an additional tail to the distribution for BG = 0.2 causing this shift in the median. Kiy (Figure 8b)
increases in the direction toward the X‐point with guide field. For the ion enthalpy flux density, Hix has the same
trend in the median as for Kix, although the distributions are more bimodal. Hiy decreases in the direction toward
the X‐point, and Hiz overall decreases ‐ this is opposite in direction to the guide field. For the electron kinetic
energy flux density (Figure 8c), the distributions of Kex and Kez narrow with increasing guide field, but the
medians do not shift. For the electron enthalpy flux density (Figure 8d), Hez becomes less negative, increasing in
the direction of the guide field. The main changes are observed in the Poynting flux density vector (Figure 8e) ‐ Sx
becomes less bimodal as the guide field increases, Sy increases in the direction toward the X‐point, and Sz be-
comes more negative, opposing the guide field imposed.

Comparing the behaviors, Kix can be up the three times as large in the outflow as in the separatrices. Kiz is of
similar magnitude in both, but very slightly larger in the outflows. Kex is an order of magnitude larger in the
separatrices than in the outflows, and Kez is of a similar magnitude in both. Hex is similar between both, but Hey is
slightly larger in the outflow, although the distribution is overall shifted further from zero in the separatrices. For
the Poynting flux density vector, Sx is approximately twice as large in the separatrices as in the outflows. Sy is
similar between both, and Sz is again approximately twice as large in the separatrices.

Overall, this indicates that particle energy flux densities directed away from the X‐point in the outflows decrease
as guide field increases. Out‐of‐plane particle energy flux density decreases as guide field increases. The outward
Poynting flux density component increases with guide field. In the separatrices, the highest guide field case causes
the ion kinetic energy flux density to be overall directed away from the X‐point in the x direction, although this
does not form a trend with the other guide field cases. In comparison, the electron kinetic energy flux density
component distributions narrow with increasing guide field. For both particle populations, there is a change in the
enthalpy flux density in the out of plane z direction as guide field decreases ‐ an increase in the direction of the
guide field for the electrons, and a decrease in the direction of the guide field for the ions. However, in the
reconnection plane, there is little variation. The main change in the Poynting flux density in the separatrices is the
out‐of‐plane component increasing oppositely to the direction of the guide field imposed. Comparing the roles of
the two pairs of regions from this, the outflows are responsible mostly for carrying ion energy away from the X‐
point, whereas the separatrices are responsible for electron energy. This corresponds to what we would expect due
to the small scale of field reversal associated with the separatrices being comparable to the electron scales. The
separatrices also contribute to the transport of large amounts of Poynting flux in the direction of the exhausts and
out‐of‐plane.

6. Discussion
In this work, we use k‐means clustering to identify regions within a 2.5‐D PIC simulation of magnetic recon-
nection. We verify this method by analyzing the energy flux densities within these clusters and find that the
relationships between the energy flux densities are comparable to those as identified in studies using spacecraft
data, with ion enthalpy flux being the overall dominant outflowing energy flux density, but with Poynting flux
density dominant at some points (Eastwood et al., 2013). Many of our observations are consistent with existing
literature, such as significant out‐of‐plane electron kinetic energy flux density close to the X‐point (Eastwood
et al., 2020) and in the separatrices (Lapenta et al., 2015), and the tilt of the outflows due to the guide field

Figure 6. The distributions of the magnitudes of each of the energy flux densities given for each guide field run in each of the clusters as violin plots, combining each pair
of clusters. The median for each is given by a horizontal white bar. The scale for the y axis varies between panels. Panels a–c give the magnitude of the ion kinetic energy
flux density |Ki|, panels d–f the magnitude of the ion enthalpy flux density |Hi|, panels g–i the magnitude of the electron kinetic energy flux density |Ke|, panels j–l the
magnitude of the electron enthalpy flux density |He|, and panels m–o the magnitude of the Poynting flux density vector |S|. Panels a, d, g, j and m give these for the inflow
regions, b, e, h, k and n for the outflow regions, and c, f, i, l and o for the separatrix‐associated regions. These magnitudes are given in unscaled simulation units.
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Figure 7. The distributions of the components of each of the energy flux densities given for each guide field run in each of the outflow clusters OutE and OutT as violin
plots. The median for each is given by a horizontal white bar. Panel a shows the components of the ion kinetic energy flux densityKi, b the ion enthalpy flux densityHi, c
the electron kinetic energy flux density Ke, d the electron enthalpy flux density He, and e the Poynting flux density vector S. Components here are given in simulation
coordinates, with each of the energy flux densities in unscaled simulation units.
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Figure 8. The distributions of the components of each of the energy flux densities given for each guide field run in each of the separatrix‐associated clusters SepN and
SepS as violin plots, presented in a similar manner to Figure 7.
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(Eastwood et al., 2010; Wilder et al., 2017). Poynting flux due to the guide field flows through the reconnection
site largely unchanged (Birn & Hesse, 2010).

Through our analysis of the clusters, we are also able to identify interesting differences to what we may expect.
Although by definition the separatrices are the boundaries between the inflow and outflow regions of a recon-
nection site, the k‐means identifies points statistically similar to the typical inflow region within the regions
bounded by the separatrices that would traditionally be considered outflows. As further investigation shows that
the probabilities of these points belonging to these regions are very high, we can infer that the separatrices do not
fully prevent the two plasma populations merging. However, this could be investigated further by carrying out the
same clustering techniques at different time steps of the simulation to see how the structure evolves and whether
this is due to the reconnection not having reached a steady state.

As the outward Poynting flux density increases with guide field and the direction of the outward particle energy
flux densities changes to reduce the component in the direction of the outflows, the guide field may change how
the reconnection process affects other processes in a system such as a magnetosphere. The increase in y com-
ponents of particle energy flux densities in simulation coordinates would correspond to an increase in z com-
ponents in GSM, leading to acceleration of particles along field lines toward the poles. As z components of
particle energy flux densities in the simulation decrease with guide field, this reduces the out‐of‐plane energy
transport by particles, which would be across the tail in the y direction in GSM.

The main benefit of a machine learning approach to identifying regions is that we can classify many datapoints in
a short amount of time using these methods. This facilitates statistical studies of phenomena, such as magnetic
reconnection, where we have large quantities of spacecraft data obtained (Baker et al., 2016), much beyond those
a human can easily survey themselves. With classification by human input, we also face the issue of biases which
cannot be easily quantified. Although machine learning techniques are not unbiased, it is possible to quantify and
understand the biases and the impacts that they may have on the results obtained.

We have shown that the k‐means clustering can identify regions analogous to those we may already identify by
eye in magnetic reconnection. Through further analysis, we show that these clusters have distinct differences in
the plasma and field variables used to describe them and that each of the points in the clusters are identified with
high probability. We study how properties of the clusters change and compare clusters between simulation runs.
The clustering is also robust to noise being added to the variables, making it suitable for application to spacecraft
data as well as simulation data.

The benefits of k‐means clustering include it being simple to implement, efficient, and capable of handling data
with many dimensions. It can take any number of variables n, suitably scaled, and determine k statistically
different clusters based on distance in the n‐dimensional parameter space. Although here we show a specific
application to PIC simulations of magnetic reconnection, this is a simple and widely used machine learning
method which could be applied to many simulations or to data from various spacecraft. As we do not provide any
spatial variables, only those related to the plasma or field, the only necessary criterion is that there are enough data
points to form a significant population for the k‐means.

7. Conclusions
In this work, we carried out k‐means clustering on a 2.5‐D PIC simulation of symmetric magnetic reconnection
with varying guide field. We identify three pairs of regions ‐ inflows, outflows, and separatrices. These clusters
are analogous to the regions identified in previous studies of reconnection. The clusters are identified with high
certainty and each may be defined by different combinations of field and plasma parameters. We find that the
overall behavior of the energy flux densities within these regions agrees with previous studies. Ion enthalpy flux is
overall dominant in the outflows, with Poynting flux also being significant at some points. We observe significant
out‐of‐plane electron kinetic energy flux close to the X‐point and in the separatrices, and the Poynting flux due to
the guide field flows through the reconnection site largely unchanged. The guide field increases the outward
Poynting flux density, and the direction of outward particle energy flux densities change to reduce the component
in the direction of the outflows, impacting further phenomena as a result of the energy flow around a system such
as Earth's magnetosphere.

As k‐means clustering is both simple to implement, efficient, and capable of handling data with high dimen-
sionality, the method of analysis presented here is not limited to only reconnection or to solely simulations.
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Although it could be argued that comparison is possible through human observation, biases introduced by
clustering algorithms can be well understood whereas those introduced by human input present greater difficulty.
The simplicity of the implementation would allow for comparison of applications in different cases, including
direct comparison between simulation and spacecraft data. This also facilitates identification of regions in
multiple simulations, or in the case of spacecraft data, multiple events, leading to statistical studies of phenomena.
This issue will only grow as we look toward further multi‐spacecraft missions such as Helioswarm (Klein
et al., 2023), planned to launch in 2029, and Plasma Observatory (Retinò et al., 2022), currently under consid-
eration by ESA. Although k‐means is a simple method, the ability to classify large volumes of data will only
become more important as we head toward further multi‐point missions and increases the possible science output
of such missions. Here, we apply the technique to only three simulation runs for magnetic reconnection, but k‐
means may be applied to any amount of simulation or spacecraft data with any number of variables given as input
to identify statistically different regions.

Data Availability Statement
Simulation data used to obtain figures and tables is available in the Zenodo data repository Waters et al. (2024),
https://doi.org/10.5281/zenodo.12570878.
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