
Applied Energy 339 (2023) 120928

A
0

s
t
m
s
e
f
t
S
a
i

h
R

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

End-to-end wind turbine wake modelling with deep graph representation
learning
Siyi Li, Mingrui Zhang, Matthew D. Piggott ∗
Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK

A R T I C L E I N F O

Keywords:
Geometric deep learning
Graph neural networks
Computational fluid dynamics
Wind turbine wake modelling
Wind farm power

A B S T R A C T

Wind turbine wake modelling is of crucial importance to accurate resource assessment, to layout optimisation,
and to the operational control of wind farms. This work proposes a surrogate model for the representation of
wind turbine wakes based on a state-of-the-art graph representation learning method termed a graph neural
network. The proposed end-to-end deep learning model operates directly on unstructured meshes and has
been validated against high-fidelity data, demonstrating its ability to rapidly make accurate 3D flow field
predictions for various inlet conditions and turbine yaw angles. The specific graph neural network model
employed here is shown to generalise well to unseen data and is less sensitive to over-smoothing compared
to common graph neural networks. A case study based upon a real world wind farm further demonstrates the
capability of the proposed approach to predict farm scale power generation. Moreover, the proposed graph
neural network framework is flexible and highly generic and as formulated here can be applied to any steady
state computational fluid dynamics simulations on unstructured meshes.
1. Introduction

As one of the cleanest and most sustainable sources of renewable en-
ergy, wind energy has been undergoing rapid and unabated expansion
worldwide. As the capacity of wind turbine farms increases, through the
potentially closer clustering of increasing numbers of larger turbines
to most efficiently exploit the available wind energy resource, it is
inevitable that downstream turbines will at some times be operating
within the full or partial wakes of upstream turbines. This can lead to
reduced power generation as well as increased structural loads. Conse-
quently, wind turbine wake modelling has been widely considered as
one of the most crucial aspects of the optimal design and operational
control of wind farms, see [1] and the references therein.

Wake models across different levels of fidelity have been thoroughly
tudied by researchers over the years. Analytical models including
he Jensen model [2], the Larsen model [3] and the Gaussian wake
odel [4] are commonly implemented in industrial standard software

uch as FLORIS [5], thanks to their very rapid execution speed, how-
ver their accuracy is consequently limited. In comparison, higher
idelity models based on computational fluid dynamics (CFD) simula-
ions, such as Reynolds-Averaged Navier–Stokes (RANS) or Large Eddy
imulation (LES), can provide more accurate flow field predictions but
t significantly higher computational cost and execution time, hamper-
ng their value for rapid resource assessment, and as part of iterative

∗ Corresponding author.
E-mail address: m.d.piggott@imperial.ac.uk (M.D. Piggott).

design optimisation and control tools. For instance, the computing time
required by RANS modelling for the simulation of a wind farm tends
to be in the order of several CPU hours, whereas LES simulations could
take days of distributed computation on hundreds of processors [6].

One possible approach to retain high accuracy in wake predictions
while simultaneously maintaining short computation times is through
the utilisation of deep learning algorithms trained on high-fidelity CFD
data. The work presented here aims to develop a novel data-driven
wake model that is based on machine learning and high-fidelity CFD
simulations. In particular, this work utilises a graph representation
learning method termed a graph neural network (GNN), which is based
on a nascent deep learning research area operating on graph structured
data. By operating directly on unstructured CFD meshes, the GNN
approach eliminates the need for the training data to be interpolated to
a uniform grid, as is commonly performed. It can therefore better pre-
serve flow details through the accommodation of the different spatial
resolutions across the simulation domain that are often beneficial for
the CFD study of multi-scale fluid dynamical processes. A well-trained
GNN on high-fidelity flow field data is thus able to capture the entirety
of the primary characteristics of the wake flow structure, which cannot
be achieved by analytical wake models, while maintaining competitive
evaluation speeds.
vailable online 21 March 2023
306-2619/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

ttps://doi.org/10.1016/j.apenergy.2023.120928
eceived 29 November 2022; Received in revised form 5 February 2023; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 March 2023

https://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
mailto:m.d.piggott@imperial.ac.uk
https://doi.org/10.1016/j.apenergy.2023.120928
https://doi.org/10.1016/j.apenergy.2023.120928
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2023.120928&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Applied Energy 339 (2023) 120928S. Li et al.
The primary novelties and contributions of this work can be sum-
marised as follows:

1. A novel wind turbine wake model based on graph representation
learning was developed and trained on RANS CFD data. The use
of graph neural networks is of particular significance as many
leading high-fidelity CFD solvers seek to increase their efficiency
in the simulation of complex, multi-scale problems through the
use of unstructured meshes, block-structured meshes, or some
other non-regular discretisation of the spatial domain. This is in
contrast to most of the prior works on deep learning methods for
wind turbine wake modelling which have typically operated on
uniform grids.

2. To the best of the authors’ knowledge, this work is also one
of the first attempts to leverage graph neural networks in the
modelling of relatively large-scale, 3D CFD data comprising
of the order of hundreds of thousands of graph vertices. The
nature of this task entails the construction of deep graph neural
networks, which are known to suffer from over-smoothing. To
this end, this work explored the usage of various different graph
neural network models and architectures, and conducted exten-
sive experimentation, before adopting the GraphSAGE (Graph
SAmple and aggreGatE) model which has great scalability with
large data sizes. Moreover, the deep GraphSAGE neural network
was further improved by adding a jumping knowledge layer and
layer-wise as well as initial residual connections.

3. In order to train the deep learning surrogate model, RANS-
based wake data was generated using the generalised actuator
disk (GAD) model coupled with the CFD solver package Open-
FOAM. The GAD model’s ability to simulate turbine wakes and
turbine wake interactions were further validated against wind
tunnel tests performed at the Norwegian University of Science
and Technology (NTNU). Also developed within the proposed
framework was the ability to convert OpenFOAM based meshes
to graph data structures that are compatible as input to GNNs.
The performance of the GNN model in predicting single turbine
wakes was extensively tested at varying levels of inlet veloci-
ties, turbulence intensities as well as turbine yaw angles. The
resulting relative accuracy in predicting flow velocity on data
unseen during training reached a median of 99.71%, with each
prediction capable of being made within 15 ms.

4. The ability of the proposed geometric deep learning approach to
model wind farms was further tested on a real-scale case study
based on Sweden’s Lillgrund offshore wind farm, by superimpos-
ing multiple individually calculated turbine wakes. The results
showed that the proposed model can accurately predict the
generated power in comparison to both full CFD simulations of
the farm as well as direct observation data. In addition, the geo-
metric deep learning surrogate model was able to simulate wind
farms within seconds compared to many CPU hours of parallel
computing which might be needed for a RANS simulation.

The remainder of this article is organised as follows: A brief
overview of closely related research works is given in Section 2. The
numerical CFD model used to simulate wind turbine wakes for training
data generation is introduced in Section 3, along with model validation
studies against experimental data. The proposed graph representation
learning based surrogate for wind turbine wake modelling is detailed
in Section 4. In addition to the preliminaries of graph neural networks,
a series of training experiments on graph neural network architectures
and a case study on the Lillgrund offshore wind farm are also presented.
Conclusions and potential future plans for this work are detailed in
Section 5.

2. Related work

This work is related to various previous works across different disci-
2

plines, such as machine learning, deep learning, general fluid dynamics
as well as the specific application of wind turbine wake modelling. This
section provides a brief overview of these diverse connections.

Machine learning and CFD

With the rapid advancements in computational power and an ex-
plosion of available data from experiments, simulations and historical
records, machine learning has seen an increasing level of success in
many scientific disciplines, including in computational fluid dynamics.
For example, Thuerey et al. [7] explored the use of U-Net convo-
lutional neural network (CNN) architecture to predict velocity and
pressure around airfoils of different shapes based on RANS solutions.
Guo et al. [8] trained CNNs to predict steady laminar flow past a
range of 2D and 3D objects. More recently, geometric deep learning
or deep learning on graphs has seen some limited applications in
CFD. Belbute-Peres et al. [9] embedded a differentiable PDE solver
as an implicit layer in a graph convolutional network framework and
trained an end-to-end deep learning model with improved generalisa-
tion capabilities. Pfaff et al. [10] developed a graph neural network
based architecture for learning time-dependent physical simulations on
meshes. Lino et al. [11] further considered message-passing at multiple
scales of resolution and incorporated rotational equivariance into the
graph neural network model. Suk et al. [12] trained gauge equivariant
mesh convolutional networks to predict wall shear stresses over surface
meshes that represented artery models. The work presented here builds
on this area of research by modelling a large-scale, 3D CFD dataset on
meshes with deep graph neural networks.

Deep learning based surrogate modelling of wind turbine wakes

Despite the enormous potential for data-driven machine learning
based wake models, there have been relatively few studies on the
surrogate modelling of wind turbine wakes with machine learning
methods. Ti et al. [13] used machine learning methods to predict
turbine wake fields by interpolating actuator disk with rotation (ADM-
R) RANS-based simulation data onto a uniform grid, before splitting
it into 2000 partitions and training a multilayer perceptron (MLP) on
each partition. Li et al. [14] developed a 2D dynamic wake model using
bilateral CNN trained on high-fidelity LES data. Zhang et al. [15] also
successfully trained a convolutional conditional generative adversarial
neural network on LES data that could provide accurate real-time 2D
wake predictions. The work presented here further contributes to the
data-driven wake modelling research area by creating a 3D wake model
with state-of-the-art geometric deep learning methods that is capable of
predicting both velocity and turbulent kinetic energy (TKE) flow fields
while also taking into consideration turbine yaw induced wake steering
effects.

3. Numerical model

This section provides a brief overview of the generalised actuator
disk method as well as model validation with the ‘‘blind test’’ wind
tunnel experiments performed at the Norwegian University of Science
and Technology.

3.1. Generalised actuator disk (GAD) model

The GAD model parameterises the wind turbine rotor as a virtual
permeable disk, where the rotor blades are divided in the radial direc-
tion into various sections. The lift and drag forces exerted on the rotor
blades by the fluid flow are computed with blade element momentum
(BEM) theory on each control volume, summed up and then multiplied
by the number of blades to be incorporated into the Navier–Stokes

momentum equation as an additional source term. The forces acting

Applied Energy 339 (2023) 120928S. Li et al.

w
t
b
e

𝑆

𝑆

i
w
c

Fig. 1. Blade element momentum discretisation of the rotor blades and the forces exerted on a single blade. 𝑅 stands for wind turbine radius and 𝑟 represents distance from a
blade element to the centre of the wind turbine in the span-wise direction. The remaining symbols are defined in the main text.
3

e
e
(

on a blade element with length 𝑑𝑟 in the span-wise direction can be
written as follows:

𝑑𝐹𝐷 = 1
2
𝜌𝑐|𝑈rel|

2𝐶𝐷 𝑑𝑟,

𝑑𝐹𝐿 = 1
2
𝜌𝑐|𝑈rel|

2𝐶𝐿 𝑑𝑟,

𝑑𝐹𝑛 = 𝑑𝐹𝐿 cos 𝜑 + 𝑑𝐹𝐷 sin 𝜑,

𝑑𝐹𝜃 = 𝑑𝐹𝐿 sin 𝜑 − 𝑑𝐹𝐷 cos 𝜑,

(1)

where 𝑑𝐹𝐿, 𝑑𝐹𝐷, 𝑑𝐹𝑛 and 𝑑𝐹𝜃 represent respectively the lift, drag,
normal and tangential forces on a blade element, 𝑈rel denotes the
relative wind velocity, 𝑐 is the chord length which varies in the radial
direction and 𝐶𝐿 and 𝐶𝐷 are the lift and drag coefficients respectively,
and are dependent on the local angle of attack 𝛼 and the Reynolds
number 𝑅𝑒. 𝜑 is the flow inclination angle given by:

𝜑 = tan−1
(

𝑈𝑛
𝜔𝑟 − 𝑈𝜃

)

= 𝛾 + 𝜃𝑝 + 𝛼, (2)

here 𝜔 denotes the turbine angular velocity, 𝑈𝜃 and 𝑈𝑛 are the
angential and normal velocity, 𝛾, 𝜃𝑝 and 𝛼 are the blade twist angle,
lade pitch angle and angle of attack respectively. The momentum
quation source term can be computed as:

𝑖 = 𝑆𝑛 + 𝑆𝜃 ,

𝑛 = 𝑁 𝑑𝐹𝑛 𝑣̂𝑛 =
1
2
𝜌𝑁𝑐|𝑈rel|

2(𝐶𝐿 cos 𝜑 + 𝐶𝐷 sin 𝜑) 𝑑𝑟 𝑣̂𝑛,

𝑆𝜃 = 𝑁 𝑑𝐹𝜃 𝑣̂𝜃 = 1
2
𝜌𝑁𝑐|𝑈rel|

2(𝐶𝐿 sin 𝜑 − 𝐶𝐷 cos 𝜑) 𝑑𝑟 𝑣̂𝜃 ,

(3)

where 𝑁 is the number of turbine blades, 𝑣̂𝑛 and 𝑣̂𝜃 are the unit vector
n the normal and tangential directions respectively. The nacelle effect
as modelled in a similar way here as a blade element, but with a

onstant drag coefficient with 𝐶𝐷,nacelle = 1 and zero lift (𝐶𝐿,nacelle = 0).
An illustration of the GAD discretisation scheme and the forces applied
on a single rotor blade is shown in Fig. 1.

The thrust, torque and power can then be calculated by integrating
the forces over the virtual disk as follows:

𝑇 =
∑

𝑖
𝜌𝑉𝑖𝑆𝑛,𝑖,

𝑄 =
∑

𝑖
𝜌𝑉𝑖𝑟𝑖𝑆𝜃,𝑖,

𝑃 =
∑

𝑖
𝜌𝑉𝑖𝑟𝑖𝜔𝑆𝜃,𝑖,

(4)

where 𝑇 , 𝑄, and 𝑃 represent thrust, torque and power respectively,
𝑖 is the cell index of the list of cells that lie within the discretised
actuator disk region, and 𝑉𝑖 is the cell volume associated with cell
𝑖. The numerical modelling framework was implemented here in the
OpenFOAM CFD package [16] using a modified version of the GAD-CFD
code developed in [17] and coupled with the steady-state SimpleFoam
solver. In-depth theoretical background and implementation details of
3

the GAD model can be found in numerous recent studies [18–20].
.2. Model validation

The GAD model has been extensively validated against various
xperimental studies [17]; for instance, against a series of tidal turbine
xperiments at the French Research Institute for Exploitation of the Sea
IFREMER) by Mycek et al. [21], experimental work of Selig et al. at

the National Renewable Energy Laboratory (NREL) with a full-scale
NREL phase III horizontal axis wind turbine [22], as well as a large-
scale experiment with multiple tidal turbines at the FloWave ocean
energy research facility [23]. This work further validated it against
wind tunnel experiments conducted by the Norwegian University of
Science and Technology (NTNU) [24,25], referred to as NTNU ‘‘blind
test’’ (BT1) and ‘‘blind test 2’’ (BT2).

Both blind test experiments were conducted in a wind tunnel that
was approximately 2.7 m wide, 1.8 m high and 11.15 m long. In BT1,
a single model wind turbine with diameter 𝐷 = 0.894 m was placed at
a distance of 3.66 m from the wind tunnel inlet, whereas in BT2 two
similar wind turbines with the same hub height but slightly different
diameters (𝐷1 = 0.894 m and 𝐷2 = 0.944 m, where the subscripts 1 and
2 correspond to the upstream and downstream turbines respectively)
were mounted along the wind tunnel center line at a separation dis-
tance of 3𝐷1, the upstream turbine was located at 2𝐷1 from the wind
tunnel inlet. Both experiments had the same operating conditions with
a free stream wind speed of 𝑈∞ = 10m s−1 and turbulence intensity of
 = 0.3%, and all wind turbines had three bladed rotors with the same
blade geometry that used the NREL S826 airfoil. The turbine in BT1 had
a design tip speed ratio (TSR) of 6, and wake statistics were measured
at locations 𝑥 = 1, 3, and 5𝐷 downstream of the turbine rotor. BT2
had the upstream turbine operating at TSR1 = 6 and the downstream
turbine at TSR2 = 4, with wake statistics recorded at 𝑥 = 1, 2.5 and 4𝐷
behind the downstream turbine rotor. Schematic representations of the
two experiments are shown in Figs. 2(a) and 2(b).

GAD simulation results with the realisable 𝑘 − 𝜀 turbulence model
were compared against experimental data from NTNU, shown in
Figs. 2(c) and 2(d). The choice of realisable 𝑘−𝜀 turbulence model was
due to its better fit with experimental data compared to the standard
𝑘 − 𝜀 model, as is also reported in various other studies [26,27]. The
simulations were run with different mesh resolutions to check for mesh
independence of the obtained solutions. An overall good agreement
between GAD simulations and NTNU experimental data was found,
which further demonstrated the ability of the GAD framework to model
individual and multiple turbine interactions.

4. Graph representation learning

Many physical, biological and social systems can be described,
at a certain level of abstraction, as graphs. Graph neural networks
(GNNs) are powerful tools that are utilised to learn graph representa-

tions of complex, non-Euclidean data such as manifolds, gauges and

Applied Energy 339 (2023) 120928S. Li et al.

p

Fig. 2. Schematic representation of the two setups of NTNU blind tests and the comparison of CFD simulation and experimental horizontal wake profiles.
t
p
s
a

Fig. 3. Power curve of the up-scaled ‘‘blind test’’ turbine compared to the manufacturer
ower curve of the Siemens SWT93-2.3 MW wind turbine.
4

meshes [28]. The ability of GNNs to capture the patterns and in-
ricate relationships present in graphs has made them increasingly
opular across a wide variety of fields of research, most notably in
ocial networks where GNNs are used to model user-to-item inter-
ction and predict social relations between users [29], in chemistry

and drug discovery to predict properties of chemical bonds and entire
molecules [30,31], in transportation systems to forecast road traffic and
passenger flow in public rail transit systems [32]. This work investi-
gates the utilisation of GNNs as surrogate models of CFD simulations,
where a finite computational mesh representing the spatial domain
can be naturally defined as a graph. Consequently GNNs have great
compatibility with CFD simulation data and can operate directly on
unstructured meshes. Importantly, this eliminates the need for interpo-
lation onto uniform grids, which is required for most CNN networks.
This section details the graph neural network framework developed
here for wake modelling, including training data generation, converting
CFD data to appropriate graph data structures, the fundamentals of
graph neural network theory and the proposed model architecture as
well as relevant training experiments. The models were implemented
using the open-source deep learning library PyTorch [33] and PyTorch
Geometric [34], which is a geometric deep learning library based on
PyTorch.

In order to be able to compare the geometric deep learning approach

with a real world scenario, this work considered Sweden’s Lillgrund

Applied Energy 339 (2023) 120928S. Li et al.

a
a
a

Fig. 4. 3D representation and 2D mesh of a horizontal slice (at hub height) of the computational domain for CFD simulations. Training data was extracted from the area shaded
in blue.
Fig. 5. Visual illustration of the GraphSAGE sample and aggregation approach in a two-layer case for a target vertex 𝑣. 𝑁1(𝑣) and 𝑁2(𝑣) represent the one-hop and two-hop
neighbourhoods of 𝑣, respectively.
offshore wind farm as a benchmark problem. Training data was gen-
erated based on CFD simulations under various operating conditions
(inlet velocity, turbulence intensity and turbine yaw angle) of a stand-
alone Siemens SWT93-2.3 MW wind turbine, which are deployed in the
Lillgrund farm. CFD simulations were also performed on different rows
of the Lillgrund wind farm to compare against superimposed single
wake fields produced from the deep learning model.

4.1. Data generation

Training data was generated based on simulations of the Siemens
SWT93-2.3 MW wind turbine, which had a turbine rotor with radius
𝑅 = 46.5 m and hub height 𝐻hub = 65 m. The exact blade geometry
and airfoil characteristics have not, to the best of our knowledge, been
disclosed to the public. As a consequence, an up-scaled version of the
‘‘blind test’’ turbine chord profile and airfoil characteristics were used,
in a similar approach to [35]. This choice could be partially justified by
the good agreement between the power curve for the up-scaled ‘‘blind
test’’ turbine and the Siemens SWT93-2.3 MW turbine according to its
manufacturer [36], as shown in Fig. 3.

Training data was generated by varying the inflow velocity 𝑈∞, hub
nd turbulent intensity ∞, hub at hub height as well as turbine yaw
ngle 𝛾, the ABL boundary condition varied for each run with 𝑈∞, hub
nd TKE∞, hub = 3

2
2
∞, hub𝑈

2
∞, hub set as the reference velocity and TKE,

and hub height set as reference height. The simulation domain was
5

set to be sufficiently wide and high in order not to have an impact
on simulation results, based upon sensitivity testing, and long enough
to cover the longest row of the Lillgrund wind farm. For the deep
learning task, training data was extracted from a smaller section of
the simulation domain as shown in Fig. 4. The motivation for this is
that it would be sufficient for the deep learning model to learn directly
from the reference domain that was embedded within a simulation
of a larger domain, and that it is unnecessary for the deep learning
model to be able make predictions on the entire simulation domain, but
rather to concentrate on the area close to and behind the wind turbine
where other turbines will likely be located. The size of the training
data domain was tested to be large enough to capture the entirety of
the wake structure, including in the yawed cases. The computational
mesh for both running CFD simulations and training deep learning
models had several levels of resolution across the domain. As detailed
in Fig. 4, the mesh was densest in areas within and around the wind
turbine actuator disk, and gradually coarsened at distance from these.
A spherical refinement region with diameter 1𝐷 was placed at the
location of the wind turbine so that the same mesh could be used
for simulations with different turbine yaw angles. The CFD simulation
mesh had 0.6 million cells and a narrower area of 0.1 million cells was
clipped from the simulation domain to be used as training data. Data
from a total of 7700 simulations was generated, with the inflow velocity
ranging from 5 m∕s to 10 m∕s at 0.56 m∕s interval, turbulence intensity

◦ ◦
from 5% to 15% at 0.56% interval and yaw angle from −30 to 30 at

Applied Energy 339 (2023) 120928S. Li et al.

c

1
t
s
s
6

4

r
w
v
t
g
r
s
a
t
v
t

i
o
a
t

Fig. 6. The overall workflow for converting CFD simulation data to mesh graph data and the GraphSAGE graph neural network architecture with jumping knowledge and residual
onnections.
𝐱

𝐱

𝐱

w
a
l
⊕
i

g

w

𝐱

w
a

.25◦ interval. The 7700 simulation data took about 4000 CPU hours
o generate on Imperial College London’s CX1 HPC cluster, with each
imulation taking on average approximately 0.5 h for the SimpleFoam
teady-state solver to converge, and was partitioned into sets of size
200/750/750 for training, validation and testing respectively.

.2. Graph neural networks and model architecture

This work utilised graph neural networks for a supervised graph
epresentation learning task, and took as input a graph 𝐺 = (𝑉 ,𝐸),
here 𝑉 ∈ R𝑛×𝑓 represents the 𝑛 vertices with 𝑓 features on each
ertex, and 𝐸 ∈ R2×𝑛𝑒 stands for the 𝑛𝑒 number of edges, represented via
he pairs of vertices that form each of them. The objective is to train the
raph neural network to complete a vertex-level prediction task, which
equires the GNN to learn a representation of each graph vertex based
olely on its own features and those of its neighbours. A forward pass in
GNN trained in this manner is able to return an updated graph with

he same graph connectivity and updated vertex features. The updated
ertex features can then be used to make predictions on vertex level
argets.

This work made extensive use of the GraphSAGE framework due to
ts strong inductive learning capabilities and ability to scale very well
n larger graphs [37,38]. The GraphSAGE neural network with mean
ggregation was used, the vertex-wise update rule of the 𝑘th layer of
he GraphSAGE network with mean aggregation on a vertex embedding
6

m

𝑣 can be written as:

(𝑘)
𝑣 = 𝜎

(

𝐖(𝑘)
[

𝐱(𝑘−1)𝑣 ⊕ 𝐱(𝑘) (𝑣)

])

,

(𝑘)
 (𝑣)

= 1
| (𝑣)|

∑

𝑢∈ (𝑣)
𝐱(𝑘−1)𝑢 ,

(5)

here  (𝑣) is a fixed-sized sampled neighbourhood of vertex 𝑣 used to
ggregate information, and not the full neighbourhood, 𝜎(⋅) is a non-
inear activation function, 𝐖(𝑘) is the weight matrix of 𝑘th layer, and

stands for concatenation. An illustration of the GraphSAGE network
s shown in Fig. 5.

Various other modern GNN architectures, most notably the standard
raph convolutional network (GCN) [39] and graph attention network

(GAT) [40], were also explored in this work as potential alternatives to
GraphSAGE. The GCN update rule can be written as:

𝐱(𝑘)𝑣 = 𝜎

(

∑

𝑢∈ (𝑣)

1
√

| (𝑢)| ⋅ | (𝑣)|
𝐖(𝑘)𝐱(𝑘−1)𝑢

)

, (6)

hereas the update rule for GAT is:

(𝑘)
𝑣 = ⊕𝐻

ℎ=1𝜎

(

∑

𝑢∈ (𝑣)
𝛼(ℎ)𝑢𝑣 𝐖

(ℎ)𝐱(𝑘−1)𝑢

)

, (7)

here 𝐻 is the number of attention heads and 𝛼𝑢𝑣 represents the
ttention coefficient. GAT is a powerful model that uses the attention
echanism to allow for the implicit assignment of different levels

Applied Energy 339 (2023) 120928S. Li et al.
Fig. 7. Supervised training experiments on GNN architectures. 𝐚: Training and validation learning curves for the three GraphSAGE variants. 𝐛: The one-cycle learning rate scheme
— learning rate was set to start at a small value and climbs up to reach a pre-defined maximum value before gradually decreasing. 𝐜: Test MSE loss and relative accuracy of
predictions made by the standard GraphSAGE model at different training sample sizes. Stars represent prediction accuracy of the GraphSAGE+JK+Res model. 𝐝: Training time and
MSE loss on the unseen test set for different graph neural network models. Training time and test MSE loss for GAT were taken from a single run due to the excessive amount of
time needed for training, while for other models training time was averaged over three runs and test MSE loss was reported with error bars. 𝐞: Box-and-whisker plots of relative
absolute error of the final model at predicting 𝑈 and TKE flow fields on the held-out test data set. The whiskers represent 1.5 times the inter-quartile range (IQR). Green line
represents median accuracy on test data.
of importance to a vertex’s neighbours, therefore leading to a size-
able increase in model capacity [40]. It should be noted that while
GraphSAGE performs layer-wise sampling from the neighbourhood of
each vertex, other GNN methods including GCN and GAT, use the full
neighbourhood of vertices.

One limitation of deep graph neural networks is over-smoothing,
which refers to similarity of vertex representations after several it-
erations of message passing. This can occur when more layers are
added to the structure, as shown in Fig. 5, and eventually every
vertex in the graph is able to aggregate information from distant
neighbours therefore generating similar graph embeddings. Indeed,
various modern GNN models including GCN and GAT achieved their
best performance on benchmark problems with models that had only
two layers. In particular, CFD data on meshes could have drastically
different resolutions across the simulation domain, as a consequence
vertices might also need to aggregate information from neighbours of
different distances depending on their local spatial mesh resolution. The
reason being that vertices in an area of lower mesh density might be
closer to each other in graph space but very far apart in mesh space, and
similarly vertices in regions with denser meshes might be far from each
other in graph space, but very close in mesh space. In order to alleviate
over-smoothing, this work adopted jumping knowledge connections
(JK) [41,42] which uses dense skip-connections to enable the adaptive
learning of structure-aware vertex representations, as well as layer-wise
residual connections similar to ResNet [43] and an additional initial
residual connection inspired from GCNII [44].

Together with residual connections, the vertex-wise update rule
of the weighted GraphSAGE network with mean aggregation can be
written as:

𝐱(𝑘)𝑣 = 𝜎

(

𝐖(𝑘)

[

𝐱(𝑘−1)𝑣 ⊕ 1
| (𝑣)|

∑

𝑢∈ (𝑣)
𝐱(𝑘−1)𝑢

])

+ 𝛼𝐱(0)𝑣 + 𝛽𝐱(𝑘−1)𝑣 , (8)

where 𝛼 and 𝛽 are hyper-parameters that signify scales of residual
representations from previous layers, and were set to 0.1 and 0.9
respectively in this work.
7

The overall workflow of the mesh graph data processing and net-
work architecture of GraphSAGE with jumping knowledge and residual
connections (GraphSAGE+JK+Res) is illustrated in Fig. 6. Training data
for the graph network was prepared first by converting the OpenFOAM
based meshes and simulation results into a series of unweighted and
undirected graphs. The computational mesh directly defines the matrix
of edge indices 𝐸 and can be converted to a graph structure by
appending the (𝑥, 𝑦, 𝑧) coordinates of the mesh vertices as well as their
corresponding one-hot encoded boundary types as vertex features in
𝑉 . Additionally the physical parameters that define the flow structure
and that vary among each simulation (i.e. inlet velocity 𝑈∞, turbulence
intensity ∞ and turbine yaw angle 𝛾) are also appended to each vertex
in 𝑉 as global features, so that the network can differentiate among
simulation training data and learn to make predictions based on various
input physical parameters. Target flow fields were associated with each
vertex as output responses.

A single forward pass of the proposed architecture can be described
as follows: the input mesh graph data is first encoded by a multi-
layer perceptron (MLP), which maps the input vertex level features
onto a high-dimensional latent space. The output from the MLP is
then processed through a series of GraphSAGE blocks which consist
of GraphSAGE updates and ReLU activation functions. The utilisation
of initial and layer-wise residual connections means that a fraction of
the output 𝑋(0) from the MLP is added to the outputs of all subsequent
GraphSAGE blocks, and that part of the input 𝑋(𝑖−1) to each GraphSAGE
block is also added to its output 𝑋(𝑖). The output from each GraphSAGE
block is concatenated and sent through a jumping knowledge layer
which adaptively determines the importance of outputs from each
graph convolutional layer, and the final processed output is decoded
by another MLP to make vertex level predictions (𝑈 and TKE). Other
variants of the proposed architecture such as GCN and GAT can be
constructed by replacing the GraphSAGE layer in Fig. 6 with the

corresponding graph convolutional layers.

Applied Energy 339 (2023) 120928

8

S. Li et al.

Fig. 8. Illustration of the effect of number of training samples on predictions by the GraphSAGE model and a comparison between GraphSAGE and GraphSAGE+JK+Res model
predictions. The case parameters used were 𝑈∞ = 10 m/s, 𝐼∞ = 7.1%, 𝛾 = −28◦.

Applied Energy 339 (2023) 120928

9

S. Li et al.

Fig. 9. Comparison between CFD simulation result and corresponding machine learning predictions made by the GraphSAGE+JK+Residual model illustrated in the form of 2D
horizontal and vertical slices. Machine learning predictions were made on simulation parameters that were unseen during training. The top rows show the flow fields (velocity
magnitude 𝑈 and TKE) computed from CFD simulation, the middle rows show the predictions made by the trained GNN model and the bottom rows display the difference between
the CFD and machine learning predictions.

Applied Energy 339 (2023) 120928S. Li et al.

t

4

a
a
m
o
s
l
m
l
u
m
t
t

Fig. 10. Comparison of flow field predictions made by CNNs trained on 2D uniform grids of different resolutions and the GraphSAGE+JK+Res model trained on a 2D unstructured
slice. a: Qualitative comparison of predicted flow fields, including a zoomed in view of parts of the near wake region. Predictions of the models were made with the case parameter:
𝑈∞ = 7.8 m/s, 𝐼∞ = 6.6%, 𝛾 = −10◦. b: Quantitative comparison against CFD data of the accuracy of flow field predictions made by CNNs and the GNN across different areas of
he domain as well as the number of trainable parameters contained within each machine learning model.
e
r
t
m
i

s
a
t
r
l
t
F

.3. Supervised training experiments

Training experiments and ablation studies were performed in an
ttempt to improve model performance. Unless otherwise specified,
ll experiments performed in this work were trained to minimise the
ean squared error (MSE) of the predicted flow fields, with the AdamW

ptimiser [45] and the one-cycle [46] learning rate schedule for 160k
teps. With the maximum learning rate set to 10−3 the one-cycle
earning rate schedule yielded very good training convergence with all
odels and ensured that different training runs were comparable; the

earning rate scheme is illustrated in Fig. 7b. A batch size of one was
sed due to limited GPU memory, gradients were accumulated over 16
ini-batches in compensation. 16 bit automatic mixed precision (AMP)

raining was used to speed up training and save GPU memory, valida-
ion error was checked twice per epoch and models were checkpointed
10

s

ach time upon reaching a lower validation error. All experiments were
un on a single NVIDIA GeForce RTX 2080 GPU with 8 GB of memory
hree times with different random seeds, and when comparing different
odels, all models comprised of six GNN layers with 128 hidden units

n each layer, with a total of 220k trainable parameters.
The core results from the experiments are shown in Fig. 7. Fig. 7a

hows an ablation study of the three variants of the GraphSAGE model,
nd demonstrates that jumping knowledge and residual connections led
o improved model performance, as the GraphSAGE model managed to
each lower training and validation loss after adding a JK aggregation
ayer and residual connections. The amount of data required for model
raining was investigated and the relevant findings are reported in
ig. 7c. The amount of training data utilised was varied from 60
amples to 6200 samples, and the performance of the GraphSAGE

Applied Energy 339 (2023) 120928S. Li et al.

s
u
s
p
g
o
m
o
p
G
a

4

f
b
e
f
p
t
o
g
a
f

model was reported after training with samples of different sizes for
a fixed number of 160k steps. It can be observed that the graph neural
network is able to achieve relatively low MSE error and good prediction
accuracy even when trained with a small fraction of the full training
data. The number of training samples has a larger impact on the
prediction of TKE than the velocity flow field. A generally good level
of accuracy could be achieved with 1500 training samples; however,
the performance of the GNN surrogate continued to increase as more
training data are learned by the model. The effect of number of training
samples on model performance is further illustrated in Fig. 8, where
flow field predictions from models trained with different numbers of
training samples were compared for a given unseen test case. No-
ticeably even with a relatively small number of training samples the
standard GraphSAGE model is able to correctly capture the majority
of the primary features of the fluid flow. The near-wake region has
the densest mesh and has the most impact on the model performance
criterion, and machine learning predictions (particularly around the
near-wake area) became more accurate as more training samples were
included. It is also manifest that the utilisation of jumping knowledge
and residual connections led to markedly better predictions around
regions of changing mesh resolution. It should be noted that while this
work kept the mesh in the near wake regions dense in order to preserve
the entirety of the fluid flow structures, it is possible to customise the
mesh used during training, and to further refine or coarsen the mesh
in areas that are of more or less significance. An exploration of fully
exploiting the combined flexibility of both unstructured mesh CFD and
GNNs will be explored in future work.

All GraphSAGE variants proved to scale very well with the large
data sizes used in this work, with the GraphSAGE+JK+Residual model
taking approximately the same time to train as the standard GCN
model, while achieving a much lower test loss. In contrast the GAT
model, despite managing a lower test loss than the standard GCN and
GraphSAGE model, took considerably longer time to train, as shown in
Fig. 7d. The GraphSAGE+JK+Residual model was able to attain better
accuracy than GAT, while taking only 1∕3 of the training time. It is
worth noting that jumping knowledge and residual connection could
also be used with GAT to further improve performance, but the training
time is prohibitive, and the increase in training time could be further
exacerbated when larger data sizes are considered. The scalability
advantages of the GraphSAGE variants are expected to become even
more prominent as the size and scale of training data grow. Fig. 7e
hows the performance of the GraphSAGE+JK+Residual model on the
nseen test dataset. The model was trained more extensively for 320k
teps, and achieved a median relative absolute accuracy of 99.71% in
redicting 𝑈 and 98.17% in predicting TKE. The model was able to
eneralise well to unseen data and the vast majority of the predictions
n the test dataset had relative absolute error of less than 5%. This
odel was considered the final trained model and several examples

f its predictions are shown in Fig. 9. The final model had 220k
arameters and can make predictions in 13.2 ms ± 120 μs on a single
PU (including the time needed to transfer data from the CPU to GPU)
nd 2.93 s ± 207 ms on an Intel Core i9-9900K 8 core CPU.

.4. Model comparison with CNNs

Many popular choices of deep learning based surrogate models
or wind turbine wakes, or CFD simulations in general, are currently
ased on convolutional neural networks and their variants. Additional
xperiments were thus conducted by comparing the prediction results
rom CNNs with our GNN. In this experiment, new training data was
repared by extracting a 2D horizontal slice of the 3D flow field at
he wind turbine hub height. Training data for CNNs was interpolated
nto uniform grids at different resolutions, leading to a 133 by 7 coarse
rid with 931 pixels, a 266 by 14 medium grid with 3724 pixels and
533 by 29 fine grid with 15,457 pixels. The coarse, medium and
11

ine resolutions correspond approximately to the level 0, 1, and 2
Fig. 11. Lillgrund wind farm layout where the 𝑥 − 𝑦 coordinate system were aligned
with the southwestern statistically dominant wind direction.

mesh refinements used in the multi-scale CFD simulations, detailed in
Fig. 4. The graph neural network model GraphSAGE+JK+Res was also
trained on the 2D horizontal slice, which possessed 3764 points. The
CNNs all had a U-Net convolutional auto-encoder architecture with the
same number of convolutional and de-convolutional layers, a detailed
description of the U-Net architecture is given in [47]. As a modern
and sophisticated CNN architecture, U-Net and its variants are very
commonly used in a wide range of tasks related to computer vision,
and also in CFD problems including the prediction of fluid flow with
deep learning [7,48,49].

All CNN and GNN models were trained with a constant learning rate
of 10−3 for a fixed number of 100 epochs. Through experimentation, the
optimal U-Net architecture for learning flow field data on the coarse,
medium and fine grids were determined to have three, four and five
convolutional and de-convolutional layers, respectively. Data on the
fine grid was additionally trained with convolutional kernel sizes of five
for all layers, compared to kernel sizes of three for data on the coarse
and medium grids. Due to the low aspect ratio, all data was resized to
be four times longer in the 𝑦-axis direction prior to training with CNNs.
The same GraphSAGE+JK+Res architecture used earlier in this work
for 3D simulation data was used for training a GNN on 2D slices. All
models managed to converge during training, and were checkpointed
upon reaching the lowest validation loss. An example of the predicted
velocity flow fields for each model are shown in Fig. 10a, while predic-
tion accuracy of the models and their number of trainable parameters
are shown in Fig. 10b. In particular, prediction accuracy of the models
across different regions of the simulation domain was also computed,
where the near wake, mid wake and far wake regions refer to areas with
different mesh resolution, which correspond to downstream location
(𝑥∕𝐷) between [0, 4], [4, 10] and [10, 35] respectively.

Comparisons between CNNs and GNNs are complicated by numer-
ous factors. As predictions made on uniform grids and unstructured
meshes cannot be quantitatively compared directly, predictions by
CNNs on grids of different levels of resolutions and the GNN on un-
structured 2D slices were all up-sampled to a very fine 1066 by 59
uniform grid. CFD simulation results were mapped to the same very
fine grid to compute the accuracy of different models in Fig. 10b. It
can be observed from Fig. 10 that despite CNNs trained on grids of dif-
ferent levels of resolution having similar levels of overall accuracy, the
differences in prediction accuracy in the near and mid wake regions are
more significant. Remarkably, the GNN model was able to consistently
achieve good accuracy across all regions while keeping both the size of
the training data and the number of model parameters at a minimum. It
should be noted that through more extensive tuning of hyperparameters
or optimisation of model architectures, it is possible for both the CNNs
and the GNN to achieve better performance.

When dealing with 3D surrogate modelling specifically, the ability
of GNNs to operate directly on unstructured meshes means that for

multi-scale or multi-resolution problems GNNs are able to work with

Applied Energy 339 (2023) 120928S. Li et al.
Fig. 12. Comparison of predicted power from CFD simulations and GNN predictions with wake superposition against measured data for each row of the Lillgrund wind farm.
Fig. 13. Velocity flow field of Row B of the Lillgrund wind farm. The top row shows the flow fields computed from a CFD simulation, the middle row shows the SOS superimposed
predictions made by the GNN model and the bottom row displays the difference between CFD and machine learning predictions.
large scale training data relatively efficiently, whereas other methods
including CNNs that resort to interpolating data onto uniform grids
would have to deal with the increase in the size of training data due to
interpolation, which can be computationally prohibitively expensive for
large scale problems. GNN’s compatibility with data that is multi-scale
in nature, its ability to more easily adapt to the modelling of 3D flow
fields and accurately predict large and complex datasets with relatively
small model sizes all make GNN a more suitable choice for the type of
surrogate modelling investigated in this work. In particular, training of
CNNs on 2D slices of finer resolution or on 3D uniform grids proved to
be prohibitively expensive computationally for the dataset considered.
12

a

4.5. Model testing on multiple wind turbines

The ability of GNN based wake model to model a real wind farm was
tested by using the trained GNN model to predict individual turbine
wakes, and superimposing the predicted wakes with a standard wake
superposition approach. Specifically, the sum of squares superposition
method was used, which has the following form:

𝑈𝑖 =
⎛

⎜

⎜

⎝

1 −

√

√

√

√

𝑛𝑖
∑

𝑗=1
(1 −

𝑈𝑖𝑗

𝑈∞,𝑗
)2
⎞

⎟

⎟

⎠

𝑈∞, (9)

where 𝑈𝑖 is wind velocity at turbine 𝑖, 𝑈𝑖𝑗 refers to the wind velocity
t wind turbine 𝑖 influenced by the wake of wind turbine 𝑗, 𝑈 is the
∞,𝑗

Applied Energy 339 (2023) 120928S. Li et al.

s
f
w

w

𝑃

w
i
P
C
c
a
a
t
d
a
p
t
t
t
f

Fig. 14. Analysis of predicted normalised power from CFD simulations and the GNN surrogate against observed data. Dots represent absolute error in power predictions of wind
turbines, with wind turbines that are farther downstream represented with larger diameters. a: Box-and-whisker plot of errors of predicted power from GNN compared to CFD
simulations. Green line represents median prediction error in each wind farm row. b: Box-and-whisker plot of errors in predicted power from GNN compared to observed data. c:
Scatter plot of error in predicted power of turbines by GNN compared to CFD simulation, against the root-mean-square error in velocity flow field predictions around and behind
wind turbines (up to 4𝐷). Fitted regression curve contains only a cubic term. Kernel densities are shown in areas shaded in blue, with the blue dashed lines representing medians
of the two distributions.
t
a

C
i
a
a
m
a
h
f
t
b
c
i
o
m
i
o
d
a
t
f
p
t
e
p
R
p
(
w
g
b

inlet velocity experienced by turbine 𝑗 and 𝑛𝑖 is the total number of up-
stream wind turbines. The choice of the optimal superposition method
is dependent on the relative positions of the turbines [50]. Other wake
superposition methods proved unsuitable for this test case, with the
linear and the largest deficit superposition methods underestimating
and overestimating the wind velocity respectively.

The wind farm investigated was the Lillgrund offshore wind farm,
which consisted of 48 Siemens SWT93-2.3 MW wind turbines dis-
tributed in eight rows (A–H). The layout of the wind farm considering
the statistically dominant wind direction is shown in Fig. 11. CFD
imulations were performed on different rows of the Lillgrund wind
arm assuming independence of rows in order to enable fair comparison
ith the GNN surrogate.

The power generated by each turbine in the GNN based wake model
as computed as:

= 1
2
𝜌𝐶𝑝𝐴𝑈

3 (10)

here 𝐴 stands for the area swept by the wind turbine rotor, and 𝐶𝑝
s the power coefficient given by the power curve shown in Fig. 3.
ower generated by wind turbines in different rows of Lillgrund from
FD simulations, the GNN based model and measured data [36] are
ompared in Fig. 12. It can be observed that in general there is good
greement among all three of the CFD computations, GNN predictions
nd the measured data. The overestimation of the power for wind
urbines that are farther downstream in the CFD simulations is in part
ue to the assumption of independence of rows within the wind farm,
similar phenomenon has also been reported in other studies [35]. In
articular, the GNN wake model also managed to accurately capture
he predicted power in rows D and E where there was a gap within the
urbine rows. Nevertheless, superimposing individual turbine wakes led
o a small underestimation in the generated power of turbines located
ar downstream compared to CFD, as can be observed in most rows of
13

t

his test case. The velocity flow field predictions from CFD simulation
nd GNN prediction for row B of Lillgrund is shown in Fig. 13.

A more detailed comparison of the predicted normalised power from
FD simulations and GNN predictions against measured data is shown

n Fig. 14. In Fig. 14a and b power predictions by the GNN surrogate
re compared against CFD and measured data respectively. The average
bsolute error of GNN power predictions compared against CFD and
easured data are 0.034 and 0.036. However, despite being able to

chieve relatively good accuracy in power predictions, GNN predictions
ave a tendency to accumulate errors, as observed in Fig. 14a where
urther downstream turbines tend to have larger errors in power predic-
ion. Moreover, there is also a trend for the power prediction error to
e slightly larger on the 2nd downstream turbine. Both phenomenons
an be attributed to the use of superposition methods when combining
ndividual turbine wakes. The utilisation of wake superposition meth-
ds are not without limitations. For instance, linear wake superposition
ethod can predict the power of the second downstream wind turbine

n all rows more accurately, but there would be even more severe
verestimation of the wake effect further downstream. Using the largest
eficit wake superposition, on the other hand, has the opposite effect
nd would underestimate the wake effect. Future developments related
o this work will include data-driven machine learning based methods
or combining individual wind turbine wakes to further enhance model
erformance. Fig. 14c details the root-mean-square error (RMSE) in
he velocity flow field prediction around and behind wind turbines in
ach row of the Lillgrund farm and its relationship with the error in
redicted power by the GNN surrogate compared to CFD simulation.
egression analysis showed that a cubic relationship is the most ap-
ropriate, which has an 𝑅2 value of 0.69, compared to a linear line
𝑅2 = 0.36) and a quadratic polynomial (𝑅2 = 0.47). This is consistent
ith the prior belief that with the formulation of power computation
iven by Eq. (10), the prediction error in power generation (𝜀𝑝) should
e proportional to the prediction error in the velocity flow field (𝜀𝑈)

o the third power.

Applied Energy 339 (2023) 120928S. Li et al.
5. Conclusion and future work

This work proposed a deep GraphSAGE neural network with jump-
ing knowledge and residual connections (GraphSAGE+JK+Res) that is
flexible and can operate directly on unstructured meshes with varying
resolution. As the first attempt to introduce graph representation learn-
ing into wind turbine wake modelling, the trained GraphSAGE neural
network was capable of accurately learning the complex nonlinear
relationship between the inlet conditions and the resulting flow fields
and achieved high prediction accuracy on data unseen during training
(99.71% accuracy on predicting 𝑈 and 98.17% on TKE). The proposed
model and workflow are highly generic and as currently formulated
can be readily applied to any steady state CFD simulation on arbitrary
meshes. A case study on Sweden’s Lillgrund offshore wind farm was
carried out using both the GAD-RANS-based CFD simulation and the
proposed machine learning surrogate model. The results showed that
the proposed model could accurately predict generated power com-
pared to CFD simulation results as well as real world measured data.
The proposed model with the same architecture and hyperparameters
could be extended to the modelling of other wind farms with different
types of wind turbines with relative ease either through transfer learn-
ing with new training data associated with the wind turbine type used,
or by training on a combined dataset and treating the type of wind
turbine as an additional global graph level feature.

With the ability to make accurate predictions under different inflow
conditions and turbine yaw angles in less than 15 ms, the graph
neural network approach has the potential to be utilised in wind farm
control and optimisation problems including yaw angle based wake
steering. Future work could also include using higher fidelity LES based
dynamic training data and machine learning based modelling of wake
interactions.

CRediT authorship contribution statement

Siyi Li: Conceptualization, Methodology, Software, Formal analy-
sis, Visualisation, Writing – original draft. Mingrui Zhang: Concep-
tualization, Methodology, Writing – review & editing. Matthew D.
Piggott: Conceptualization, Methodology, Project administration, Re-
sources, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

MDP acknowledges funding from the UK Engineering and Physical
Sciences Research Council under project EP/R029423/1. The authors
would like to thank Dr Xiaorong Li for granting access to the GAD-CFD
repository, Professor Per-Åge Krogstad of NTNU for providing access
to an electronic version of the ‘‘blind test’’ dataset, and Che Liu and Dr
Sibo Cheng for insightful discussions.
14
References

[1] Piggott Matthew D, Kramer Stephan C, Funke Simon W, Culley David M,
Angeloudis Athanasios. Optimization of marine renewable energy systems. In:
Comprehensive renewable energy, Vol. 8. 2nd ed.. Elsevier; 2022, p. 176–220.

[2] Katić Ivan, Højstrup Jørgen, Jensen Niels. A simple model for cluster efficiency.
In: European wind energy association conference and exhibition. 1987, p.
407–10.

[3] Larsen GC. Simple wake calculation procedure. Technical report, Roskilde: Risoe
National Lab.; 1988.

[4] Bastankhah Majid, Porté-Agel Fernando. A new analytical model for wind-turbine
wakes. Renew Energy 2014;70:116–23, Special issue on aerodynamics of offshore
wind energy systems and wakes.

[5] Annoni J, Fleming P, Scholbrock A, Roadman J, Dana S, Adcock C, Porte-Agel F,
Raach S, Haizmann F, Schlipf D. Analysis of control-oriented wake modeling tools
using lidar field results. Wind Energy Sci 2018;3(2):819–31.

[6] Gebraad PMO, Teeuwisse FW, van Wingerden JW, Fleming PA, Ruben SD,
Marden JR, Pao LY. Wind plant power optimization through yaw control using
a parametric model for wake effects – a CFD simulation study. Wind Energy
2016;19(1):95–114.

[7] Thuerey Nils, Weißenow Konstantin, Prantl Lukas, Hu Xiangyu. Deep learning
methods for Reynolds-Averaged Navier–Stokes simulations of airfoil flows. AIAA
J 2020;58(1):25–36.

[8] Guo Xiaoxiao, Li Wei, Iorio Francesco. Convolutional neural networks for steady
flow approximation. In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining. KDD ’16, New York, NY,
USA: Association for Computing Machinery; 2016, p. 481–90.

[9] De Avila Belbute-Peres Filipe, Economon Thomas, Kolter Zico. Combining dif-
ferentiable PDE solvers and graph neural networks for fluid flow prediction.
In: Proceedings of the 37th international conference on machine learning.
Proceedings of machine learning research, vol. 119, PMLR; 2020, p. 2402–11.

[10] Pfaff Tobias, Fortunato Meire, Sanchez-Gonzalez Alvaro, Battaglia Peter. Learning
mesh-based simulation with graph networks. In: International conference on
learning representations. 2021.

[11] Valencia Mario Lino, Fotiadis Stathi, Bharath Anil Anthony, Cantwell Chris D.
REMus-GNN: A rotation-equivariant model for simulating continuum dynamics.
In: ICLR 2022 workshop on geometrical and topological representation learning.
2022.

[12] Suk Julian, de Haan Pim, Lippe Phillip, Brune Christoph, Wolterink Jelmer M.
Mesh convolutional neural networks for wall shear stress estimation in 3D
artery models. In: Statistical atlases and computational models of the heart.
multi-disease, multi-view, and multi-center right ventricular segmentation in
cardiac MRI challenge - 12th international workshop, STACOM@MICCAI 2021,
Strasbourg, France, September 27, 2021. Lecture notes in computer science, vol.
13131, Springer; 2021, p. 93–102.

[13] Ti Zilong, Deng Xiao Wei, Yang Hongxing. Wake modeling of wind turbines
using machine learning. Appl Energy 2020;257:114025.

[14] Li Rui, Zhang Jincheng, Zhao Xiaowei. Dynamic wind farm wake modeling based
on a bilateral convolutional neural network and high-fidelity LES data. Energy
2022;258:124845.

[15] Zhang Jincheng, Zhao Xiaowei. Wind farm wake modeling based on deep con-
volutional conditional generative adversarial network. Energy 2022;238:121747.

[16] Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to compu-
tational continuum mechanics using object-oriented techniques. Comput Phys
1998;12(6):620–31.

[17] Edmunds Matt, Williams Alison J, Masters Ian, Banerjee Arindam, VanZwi-
eten James H. A spatially nonlinear generalised actuator disk model for the
simulation of horizontal axis wind and tidal turbines. Energy 2020;194:116803.

[18] Edmunds M, Williams AJ, Masters I, Croft TN. An enhanced disk averaged
CFD model for the simulation of horizontal axis tidal turbines. Renew Energy
2017;101:67–81.

[19] Mirocha JD, Kosovic B, Aitken ML, Lundquist JK. Implementation of a gen-
eralized actuator disk wind turbine model into the weather research and
forecasting model for large-eddy simulation applications. J Renew Sustain Energy
2014;6(1):013104.

[20] Daaou Nedjari H, Guerri O, Saighi M. Full rotor modelling and generalized
actuator disc for wind turbine wake investigation. Energy Rep 2020;6:232–
55, Technologies and Materials for Renewable Energy, Environment and
Sustainability.

[21] Mycek Paul, Gaurier Benoît, Germain Grégory, Pinon Grégory, Rivoalen Elie.
Experimental study of the turbulence intensity effects on marine current turbines
behaviour. Part I: One single turbine. Renew Energy 2014;66:729–46.

[22] Giguere P, Selig M S. Design of a tapered and twisted blade for the NREL
combined experiment rotor. Tech rep 1999, NREL/SR-500-26173, 1999.

[23] Badoe Charles E, Edmunds Matt, Williams Alison J, Nambiar Anup, Sellar Brian,
Kiprakis Aristides, Masters Ian. Robust validation of a generalised actuator disk
CFD model for tidal turbine analysis using the FloWave ocean energy research
facility. Renew Energy 2022;190:232–50.

http://refhub.elsevier.com/S0306-2619(23)00292-1/sb1
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb1
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb1
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb1
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb1
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb2
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb2
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb2
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb2
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb2
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb3
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb3
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb3
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb5
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb5
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb5
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb5
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb5
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb6
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb6
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb6
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb6
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb6
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb6
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb6
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb10
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb10
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb10
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb10
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb10
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb13
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb13
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb13
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb15
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb15
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb15
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb20
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb20
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb20
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb20
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb20
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb20
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb20
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb21
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb21
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb21
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb21
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb21
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb22
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb22
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb22
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb23

Applied Energy 339 (2023) 120928S. Li et al.
[24] Krogstad Per-Åge, Eriksen Pål Egil. ‘‘Blind test’’ calculations of the perfor-
mance and wake development for a model wind turbine. Renew Energy
2013;50:325–33.

[25] Pierella Fabio, Krogstad Per-Åge, Sætran Lars. Blind test 2 calculations for two
in-line model wind turbines where the downstream turbine operates at various
rotational speeds. Renew Energy 2014;70:62–77, Special issue on aerodynamics
of offshore wind energy systems and wakes.

[26] Shih Tsan-Hsing, Liou William W, Shabbir Aamir, Yang Zhigang, Zhu Jiang. A
new k-𝜀 eddy viscosity model for high Reynolds number turbulent flows. Comput
& Fluids 1995;24(3):227–38.

[27] O’Doherty T, Mason-Jones Allan, O’doherty DM, Byrne CB, Owen I, Wang YX.
Experimental and computational analysis of a model horizontal axis tidal turbine.
In: Proceedings of the 8th European wave and tidal energy conference, Uppsala,
Sweden. 2009, p. 7–10.

[28] Bronstein Michael M, Bruna Joan, LeCun Yann, Szlam Arthur, Van-
dergheynst Pierre. Geometric deep learning: Going beyond euclidean data. IEEE
Signal Process Mag 2017;34(4):18–42.

[29] Fan Wenqi, Ma Yao, Li Qing, He Yuan, Zhao Eric, Tang Jiliang, Yin Dawei. Graph
neural networks for social recommendation. In: The world wide web conference.
WWW ’19, New York, NY, USA: Association for Computing Machinery; 2019, p.
417–26.

[30] Wang Yuyang, Wang Jianren, Cao Zhonglin, Barati Farimani Amir. Molecular
contrastive learning of representations via graph neural networks. Nat Mach
Intell 2022;4:1–9.

[31] Chen Chi, Ye Weike, Zuo Yunxing, Zheng Chen, Ong Shyue Ping. Graph networks
as a universal machine learning framework for molecules and crystals. Chem
Mater 2019;31(9):3564–72.

[32] Jiang Weiwei, Luo Jiayun. Graph neural network for traffic forecasting: A survey.
Expert Syst Appl 2022;207:117921.

[33] Paszke Adam, Gross Sam, Chintala Soumith, Chanan Gregory, Yang Edward,
DeVito Zachary, Lin Zeming, Desmaison Alban, Antiga Luca, Lerer Adam.
Automatic differentiation in PyTorch. In: NIPS 2017 workshop on autodiff. 2017.

[34] Fey Matthias, Lenssen Jan E. Fast graph representation learning with PyTorch
Geometric. In: ICLR 2019 workshop on representation learning on graphs and
manifolds. 2019.

[35] Deskos Georgios, Piggott Matthew D. Mesh-adaptive simulations of
horizontal-axis turbine arrays using the actuator line method. Wind Energy
2018;21(12):1266–81.

[36] Dahlberg J-Å. Assessment of the Lillgrund wind farm: power performance, wake
effects. Tech. rep., LG Pilot Rep., Vat- tenfall Vindkraft AB; 2009.

[37] Hamilton Will, Ying Zhitao, Leskovec Jure. Inductive representation learning on
large graphs. In: Advances in neural information processing systems, Vol. 30.
Curran Associates, Inc.; 2017.

[38] Hamilton William L. Graph representation learning. Synth Lect Artif Intell Mach
Learn 2020;14(3):1–159.
15
[39] Kipf Thomas N, Welling Max. Semi-supervised classification with graph convo-
lutional networks. In: 5th international conference on learning representations,
ICLR 2017, Toulon, France, April 24-26, 2017, conference track proceedings.
2017.

[40] Veličković Petar, Cucurull Guillem, Casanova Arantxa, Romero Adriana,
Liò Pietro, Bengio Yoshua. Graph attention networks. In: International conference
on learning representations. 2018.

[41] Xu Keyulu, Li Chengtao, Tian Yonglong, Sonobe Tomohiro, Kawarabayashi Ken-
ichi, Jegelka Stefanie. Representation learning on graphs with jumping knowl-
edge networks. In: Proceedings of the 35th international conference on machine
learning, ICML 2018, StockholmsmäSsan, Stockholm, Sweden, July 10-15, 2018.
Proceedings of machine learning research, vol. 80, PMLR; 2018, p. 5449–58.

[42] Chi Huixuan, Wang Yuying, Hao Qinfen, Xia Hong. Residual network and
embedding usage: New tricks of node classification with graph convolutional
networks. J Phys Conf Ser 2022;2171(1):012011.

[43] He Kaiming, Zhang Xiangyu, Ren Shaoqing, Sun Jian. Deep residual learning
for image recognition. In: 2016 IEEE conference on computer vision and pattern
recognition. CVPR, 2016, p. 770–8.

[44] Chen Ming, Wei Zhewei, Huang Zengfeng, Ding Bolin, Li Yaliang. Simple and
deep graph convolutional networks. In: Proceedings of the 37th international
conference on machine learning. Proceedings of machine learning research, vol.
119, PMLR; 2020, p. 1725–35.

[45] Loshchilov Ilya, Hutter Frank. Decoupled weight decay regularization. In:
International conference on learning representations. 2019.

[46] Smith Leslie N, Topin Nicholay. Super-convergence: very fast training of neural
networks using large learning rates. In: Artificial intelligence and machine learn-
ing for multi-domain operations applications, Vol. 11006. SPIE, International
Society for Optics and Photonics; 2019, 1100612.

[47] Ronneberger Olaf, Fischer Philipp, Brox Thomas. U-net: Convolutional networks
for biomedical image segmentation. In: Navab Nassir, Hornegger Joachim,
Wells William M, Frangi Alejandro F, editors. Medical image computing and
computer-assisted intervention – MICCAI 2015. Cham: Springer International
Publishing; 2015, p. 234–41.

[48] Hou Yuqing, Li Hui, Chen Hong, Wei Wei, Wang Jiayue, Huang Yicang. A novel
deep U-net-LSTM framework for time-sequenced hydrodynamics prediction of the
SUBOFF AFF-8. Eng Appl Comput Fluid Mech 2022;16(1):630–45.

[49] Jiang Zhihao, Tahmasebi Pejman, Mao Zhiqiang. Deep residual U-net convolution
neural networks with autoregressive strategy for fluid flow predictions in
large-scale geosystems. Adv Water Resour 2021;150:103878.

[50] Vogel Christopher, Willden Richard. Investigation of wind turbine wake superpo-
sition models using Reynolds-averaged Navier-Stokes simulations. Wind Energy
2020;23:593–607.

http://refhub.elsevier.com/S0306-2619(23)00292-1/sb24
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb24
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb24
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb24
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb24
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb25
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb25
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb25
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb25
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb25
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb25
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb25
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb26
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb26
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb26
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb26
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb26
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb27
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb27
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb27
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb27
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb27
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb27
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb27
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb28
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb28
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb28
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb28
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb28
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb29
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb29
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb29
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb29
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb29
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb29
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb29
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb30
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb30
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb30
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb30
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb30
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb31
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb31
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb31
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb31
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb31
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb32
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb32
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb32
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb33
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb33
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb33
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb33
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb33
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb34
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb34
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb34
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb34
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb34
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb35
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb35
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb35
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb35
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb35
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb36
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb36
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb36
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb37
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb37
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb37
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb37
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb37
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb38
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb38
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb38
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb39
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb39
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb39
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb39
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb39
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb39
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb39
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb40
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb40
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb40
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb40
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb40
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb41
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb41
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb41
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb41
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb41
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb41
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb41
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb41
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb41
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb42
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb42
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb42
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb42
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb42
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb43
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb43
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb43
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb43
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb43
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb44
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb44
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb44
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb44
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb44
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb44
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb44
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb45
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb45
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb45
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb46
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb46
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb46
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb46
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb46
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb46
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb46
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb47
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb47
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb47
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb47
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb47
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb47
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb47
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb47
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb47
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb48
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb48
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb48
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb48
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb48
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb49
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb49
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb49
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb49
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb49
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb50
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb50
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb50
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb50
http://refhub.elsevier.com/S0306-2619(23)00292-1/sb50

	End-to-end wind turbine wake modelling with deep graph representation learning
	Introduction
	Related Work
	Machine learning and CFD
	Deep learning based surrogate modelling of wind turbine wakes

	Numerical Model
	Generalised actuator disk (GAD) model
	Model validation

	Graph Representation Learning
	Data generation
	Graph neural networks and model architecture
	Supervised training experiments
	Model comparison with CNNs
	Model testing on multiple wind turbines

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

