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Abstract 

Guided wave testing (GWT) is a non-destructive testing (NDT) technique for in-service testing 

of pipes allowing the inspection of tens of metres of pipe in either direction from a single 

position. The aims are to identify and locate physical features along the pipe in the axial 

direction, particularly the defect indications, such as cracks or corrosion patches. However, 

the signals output by GWT of pipes are complex to interpret, making the quality of inspection 

highly dependent on the operator’s skills. Due to signal complexities, at present there are no 

automated procedures to help operators in this task. Some of the recently developed 

machine learning (ML) algorithms are expected to possess the modelling capabilities required 

to address this classification task, though they would typically need hundreds if not thousands 

of labelled input data for their training. This amount of experimental data is seldom available 

in the NDT field, particularly with regard to the damage cases. This thesis explores the ML for 

NDT, introducing the data processing pipelines and a comparison of ML approaches. First, it 

is shown that high ML performance on artificial data does not necessarily translate to a similar 

performance on real data, motivating the need for robust ML model validation. The following 

results demonstrate that with scarce experimental data, substantial detection improvements 

can be achieved by pre-training the chosen ML model with synthetic data, before fine-tuning 

it on actual inspection data. In particular, the ML algorithm that is found to perform best for 

this task is a VGG-Net model, which is shown to yield false positive rates in the order of ~1.5 

to 4% at the fixed true positive rate of 99.7%. Furthermore, the thesis explores modern 

generative ML approaches as potential tools to augment the data, showing the capacity to 

generate realistic data ex nihilo.  
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1 Introduction 

This chapter introduces pipeline testing and explains why it is a crucial technology within the 

industry. It introduces the competing technologies and shows the rationale for guided wave 

ultrasonic testing. In the latter portion it both introduces Guided Ultrasonics Limited 

technology used for the production of the data used in this work and presents the practical 

issues that warrant the use of Machine Learning. Finally, the structure of the thesis is 

presented.  

1.1 Pipeline Testing 

Pipelines are a crucial element of the modern industrial landscape. Gas, oil, and water pipes 

are used to transport substances over long distances with relatively little active human 

involvement and downtime. Pipes are also used in industrial plants, keeping substances 

separate, mixing, heating, or cooling based on the technological need. Of course, all those 

advantages count for little if their reliability cannot be assured. In the case of chemical and oil 

& gas pipelines any leaks can lead to an environmental catastrophe. Apart from the obvious 

losses, this can incur fines and clean-up costs imposed by the regulating authorities. As a 

result, it is of utmost importance for the owner or an operator of a pipeline to ensure it is free 

of defects.  

The main way to achieve the defect-free operation of pipelines is the employment of a wide 

range of non-destructive testing/non-destructive evaluation methods. These are broadly 

classified based on the physical phenomena utilised. The main modalities are visual/enhanced 

visual inspection, eddy current testing, radiography, magnetic testing, and ultrasonic testing. 

There are multiple sub-categories in each of the modalities, which can be further explored in 

[1]. This work focuses on the ultrasonic guided wave testing.  

Generally, ultrasonic testing has a range of characteristics that make it specifically suited to 

the testing of pipelines. Primarily, ultrasonic testing is a full-section testing method, which 

means it can detect cracks under surface or on the inner surface of the pipe wall. This is 

especially important in the case of pipelines carrying corrosive or abrasive loads. Secondly, 

and just as importantly, as opposed to the other full-section method, radiographic imaging, 

the inspection does not pose health risks and therefore can be performed while the unit 

under test is normally operating. It does have disadvantages though, the most important of 
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which being the relatively difficult signal interpretation and, in consequence, the long training 

process of the appropriately qualified inspectors. This quite obviously lends itself to 

streamlining using machine learning techniques to either automate parts of the inspection 

process or to work collaboratively with the inspector.  

Guided wave testing is a method, in which an ultrasonic wave is propagated along the 

structure rather than through a cross-section (Figure 1).  

 

Figure 1. Conventional ultrasound (top) vs. Guided wave testing (bottom). The inspected area is shaded in darker grey, and 
the propagation of ultrasound is depicted in red. Reproduced from [2]. 

This has the significant advantage of full volumetric coverage of a large span of the pipeline 

from a single inspection site. Considering the defects can potentially arise at any point in the 

pipeline, this is a characteristic that is crucial for the knowledge of the state of the pipe. The 

only realistic competitor to guided wave technology is the use of pigs – trolleys equipped with 

an array of ultrasonic, electromagnetic, and potentially other probes which are launched into 

the pipe, travel through it gathering data and are extracted from an extraction point. The 

obvious advantage of guided wave testing when compared to pigging is the ability to test the 

pipeline while it is operating. Additionally, for a pipeline to be inspectable using pigs, it needs 

to be designed for inspection with suitable pig insertion and extraction sites placed in the 

pipeline [3]. The main comparative advantage of pigs is their ability to cover much longer 

distances than guided wave tests and the accuracy provided by the ability to conduct localised 

tests. A standard guided wave test can cover up to 100 m either side of the sensor location if 

the pipe is clean (i.e. causes no significant attenuation), straight and does not have many 

features. This is obviously a highly idealised scenario, but in practice the typical inspection 

range is in the 20-30 m range [4].  
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Therefore, there are scenarios in which guided wave inspection is the only acceptable 

technology that can be used for full-volume testing of pipelines, i.e., if they have not been 

designed for pigging. It is crucial to note though, that the main disadvantage of ultrasonic 

testing – the difficulty in the interpretation of the results – is even more pronounced in guided 

wave testing. This is a result of both a lower number of qualified inspectors and of an 

increased complexity of the data. This impacts both the technical task of interpretation and 

the design of inspections, driven by the engineering understanding of the physics.  

1.2 Guided Wave Testing and Machine Learning 

Guided wave testing has characteristics that make it uniquely suitable to the application of 

machine learning. The intended use case is a full volumetric coverage of a pipeline network. 

The total length of oil and gas pipelines in the world exceeds two million kilometres [5]. Clearly 

the amount of testing necessary to fully cover the network is beyond the capacity of human 

operators. As the process involves the inspector reaching the site, placing the transducer ring 

on the pipeline, taking a reading, and analysing the gathered data, much of the process needs 

to be automated, or at the very least streamlined to make the comprehensive testing a 

possibility. Guided Ultrasonics Limited has made strides to automate the hardware side of the 

process, by developing and introducing to the market permanently installed sensors (gPIMS). 

At the moment, however, one-off inspections are probably still the most prevalent application 

making the automation of their analysis a priority. This has led to an increased interest in 

machine learning techniques, which could lower the workload for the operators by 

automatising the signal analysis phase.  

1.3 Guided Ultrasonics Limited 

This work is co-sponsored by Guided Ultrasonics Limited (GUL), who are the leading provider 

of guided wave equipment and training. The company was established in the 1990s as a spin-

out from Imperial College London, where the practical capability for guided wave inspection 

was developed [6]. Guided Ultrasonics equipment uses rings of piezoelectric transducers 

attached to the pipe to introduce the fundamental torsional T(0,1) guided wave mode into 

the pipeline. The transducers are operated in pulse-echo configuration, therefore requiring 

only a single-point access to the pipeline to perform the inspection.  

Aside from being a hardware provider, Guided Ultrasonic delivers training and certification to 

guided wave inspectors. GUL certification follows standard NDT inspector certification routes 
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(L1, L2, L3 inspector) but there also exist additional certifications for particularly challenging 

inspection conditions, such as buried or underwater pipes. Clearly, the work of inspectors is 

highly specialised and very demanding. This leads to a twofold problem – the skill level can 

vary dramatically between inspectors and even for a given inspector be very dependent on 

the inspection case. As a result, there is a strong need for a method capable of standardising 

the results of an inspection as well as providing confidence levels in any defect indication/no 

defect call. Machine learning is explored as the method of choice, as even if it does not reach 

human/superhuman performance in the defect indication detection task, it can be used as an 

additional safeguard against bad calls and as a tool to quantify the complexity of the 

inspection task – based on the consistency of its predictions, as argued by Pyle [7]. 

1.4 Inspection Protocol 

To understand the guided wave inspection technology, the importance of the physics behind 

it and the ultimate usefulness and application points of machine learning techniques, it is 

necessary to appreciate the current state of the art in terms of the technology used and the 

process followed by the inspectors to make calls.  

GUL testing setup consists of a transducer ring (Figure 2) and a wavemaker instrument (Figure 

3). The ring is a solid or inflatable body fitted with two rows of piezoelectric transducers which 

are dry (without the use of medium such as gel) coupled to the surface of the pipe using 

mechanical clamping or pneumatic force. The inspector places the ring on the pipe and 

connects the wavemaker instrument, before running a calibration protocol, which 

compensates for the imbalances in the coupling and sensitivity of transducers. Finally, the 

actual data collection routine is performed. 

 

Figure 2. Guided Ultrasonics Ltd solid transducer ring [8]. 
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Figure 3. Guided Ultrasonics Ltd Wavemaker G4 Mini [8]. 

The transducer rings are comprised of two rows of transducers, which allow for directional 

control of the inspection, making the data easier to interpret thanks to the separation of 

signals arriving from the two directions. This is further explored in Section 2.1.3.3. The 

received data is decomposed into torsional and flexural modes. This is used to distinguish 

between symmetric reflective features such as welds or flanges and nonsymmetric ones, such 

as defects and supports. Higher order flexural modes are used in synthetic focusing of the 

guided wave signal to produce quasi-C-scan unrolled pipe display allowing the inspector to 

distinguish the features more easily, with an example shown in Figure 4.  
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Figure 4. Unrolled pipe display (top) and enveloped symmetric (black) and non-symmetric (red) signals (bottom) [9]. 

After the data is collected, the inspector needs to manually process and analyse it. This is 

done by analysing the output similar to Figure 4. The dark green area denotes the dead zone, 

where the indications are too close to the ring to analyse, this is followed by the near field, 

marked in grey, where the noise occludes the features. The remaining features of the figure 

are the traces: black corresponding to the symmetric signal, and the red corresponding to 

antisymmetric signal. The dashed like is the DAC, marking the drop in the amplitude of the 

signal based on the distance. The image above the traces is the unrolled pipe display, where 

the amplitude of the signal is resolved circumferentially. The amplitude is graphed on a 2D 

display with the amplitude represented by colour. The procedure comprises annotating welds 

(generally easy to find strong symmetric features, for example marked as W1 and W2 in Figure 

4) and ends of inspection range given usually by a flange, a bend or exceedingly low SNR – as 

in the dark grey vertical area marked 4 in Figure 5. These features are used to assess the 
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attenuation of the guided wave signal in the pipeline. This is dependent on the general 

condition of the pipe (corrosion, contents etc.) as well as external conditions: buried sections 

or bitumen coating. The attenuation profile of the pipe is then calculated in terms of a 

distance-amplitude curve (DAC) – e.g. the trace marked 1 in Figure 5. It is a graph of a function 

of the amplitude of the signal from a reference reflector against distance along the pipe. The 

curve can be therefore used to normalise the signal along the pipe. At this stage synthetic 

focusing can be performed resulting in an unrolled pipe display.  

 

Figure 5. Inspection trace of a generally corroded pipe. Weld DAC is marked in black, call level in blue and detection threshold 
in green. [9]. The plot uses logarithmic scale on the y-axis. 

Following this, the inspector performs a frequency sweep, assessing the signatures across the 

inspection frequency spectrum (ordinarily between 15 and 50 kHz) to differentiate between 

frequency dependent and independent features (for example, supports vs. defects). After 

that, the inspector flags all the signals above a set detection threshold (green dashed line 

marked 3 In Figure 5)  and classifies them as either a benign feature or a defect indication. 

This decision is usually based mostly on the unrolled pipe display, but often requires 

inspection at a range of frequencies as well as significant experience. The minimum amplitude 

of the signature that can be detected is governed by the detection threshold which in turn is 
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dependent on the noise floor level (area shaded light grey in Figure 5). The noise floor level is 

the higher of two contributors: 

1) the coherent noise, usually caused by the general condition of the pipe or imbalance 

between the transducers. This introduces unwanted guided wave modes, which fall in 

amplitude according to the DAC and is therefore the detection limiter throughout the 

inspection length (red line marked 5 in Figure 5). Importantly, the coherent noise 

cannot be reduced by averaging and is typically the limiting factor in GWT. 

2) the random noise, which stays constant, is usually caused by electronic noise, and 

governs the range limit of the inspection. The limit is given by the point at which the 

call level (blue line marked 2) is equal to detection threshold (red line marked 6 in 

Figure 5). 

When all the signals have been annotated, the inspection is complete, a document outlining 

the locations and labels of identified signals is generated, and further decisions are scheduled. 

As guided wave testing is a screening tool, a follow-up inspection must be performed using 

conventional ultrasonic or other testing, dependent on the industry standards, is performed 

at the areas of concern flagged by the initial guided wave test, in order to gain more precise 

local information.  

1.5 Motivation for This Project 

Guided Ultrasonics Ltd is interested in the application of machine learning to their guided 

wave data for a range of reasons. The main rationale is that there is a large variability in the 

inspection performance between inspectors. As a result, the perceived quality and reliability 

of guided wave inspection is not based solely on the quality of technology and there is a lack 

of an objective minimum performance level. This could be remedied by the implementation 

of an ML defect indication detector; upon whose predictions the inspectors experience could 

only improve. 

The application area is faced with the problem experienced by much of the research 

concerning the applications of machine learning in NDT– the issue of data scarcity. Most 

modern machine learning models are trained on datasets of millions of samples. That is clearly 

not realistically viable with datasets gathered manually by the inspectors. Imperial College 

NDT group is world leading in numerical simulations of guided waves; therefore, it is 

hypothesised that finite element modelling could be utilised to circumvent the data scarcity 
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problem following the trend of physics-informed machine learning. This creates a set of 

questions interesting from the academic viewpoint, from generating simulations 

representative of the real-world inspection scenario, through processing the raw data into 

formats implicitly informed by the physical knowledge, to designing machine learning 

architectures best suited for bridging the gap between the simulated and real data (so called 

sim2real gap). Thus, this project aims to develop a method to utilise the simulated data in 

synergy with the experimental data in order to develop a machine learning algorithm to 

support the work of GWT inspectors. 

1.6 Thesis Plan 

In the second chapter of this thesis, the theoretical background behind guided wave testing 

of pipelines, the underlying wave physics, and its practical application in the design of testing 

procedures and defect indication detection are introduced. Following this, the finite element 

method – a necessary tool for the generation of large-scale training datasets for machine 

learning is discussed. The historical background and the theory of machine learning are 

introduced, with the underlying mathematical principles and the constituent parts of a neural 

network considered. The chapter concludes with the discussion of the emerging trends and 

challenges in machine learning.  

In the third chapter the guided wave data processing necessary for its use in machine learning 

applications is explored. The characteristics of guided wave data and the characteristics of its 

processing from the point of view of machine learning are discussed, with a special focus given 

to the modal decomposition of the raw data and synthetic focusing methods. The problem of 

equivalent processing of simulated and real-world data is considered in the context of its 

impact on the final ML performance. Finally, the production of finite-element data is 

elucidated and the process for its quick generation while including as many of the 

characteristics of real signals as possible is described.  

In the fourth chapter the design of the machine learning architectures is discussed and the 

specific design choices are confirmed with experiments. The neural network architectures 

used are described, including the rationale behind their choice and the process of their 

adjustment to the specific requirements of GWT. The performance metrics common to ML 

research are introduced and their applicability to this project described. A novel metric 

denoted FPR@1TPR is described and the rationale for its usage explained. The metrics are 
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used to present the performance of the architecture on a simulated dataset. A study is 

conducted to assess the methods of data processing, the architecture design and the 

selection of the training parameters in the context of their impact on the performance 

metrics. Further, the problem of sim2real gap is introduced and methods are described that 

could be used to bridge it and rationalise the choice of transfer learning.  

The fifth chapter builds on the contents of the previous chapter by introducing the resultant 

performance of the ML model on in-service inspection data. In the last part of this chapter, a 

simplified case of detecting any type of pipe feature in guided wave signals is considered 

allowing for the use of larger datasets. The results are framed in the context of ML 

dependence on the number of real and simulated datapoints. Furthermore, the samples 

misclassified by the best-performing ML model are further investigated and explained.  

In the sixth chapter the application of generative learning in guided wave testing are 

discussed. The implementation of Generative Adversarial Network (GAN) for guided wave 

problems is introduced. The results of a guided wave generator trained on simulated dataset 

are presented and the possibility of a more controlled simulation is introduced. The potential 

future uses of generative learning as well as its drawbacks are discussed. Furthermore, the 

problems in the development of machine learning in the guided wave or non-destructive 

testing in the context of the trust and reliability of the ML methods are described.  

In the seventh chapter, a self-contained side project is described, in which ML methods are 

employed to compensate for the artifacts generated by limited view transducer configuration 

in tomographic thickness reconstruction. The chapter introduces the issues, the method of 

generating limited view registrations, the ML architecture selection, training and comparative 

performance against conventional state-of-the art algorithm.  

Finally, in the eighth chapter the conclusions and recommendations for further study are 

outlined.  
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2 Theoretical Background 

This chapter is split into two sections, as the topic of this work has two distinct constituent 

parts, the guided wave testing and the machine learning. In the first section this chapter 

introduces the necessary physical background to understand guided wave testing. It discusses 

wave propagation and interaction with reflectors such as pipe features. Further, it introduces 

the implementation of differential equations describing the wave propagation in Pogo finite 

element modelling package. Finally, it briefly discusses ultrasonic transduction. In the second 

part it introduces machine learning, starting from the historical evolution of the research field 

and the introduction of the main modalities of Machine Learning. Discussion of neural 

networks follows with the necessary mathematical background as well as the discussion of 

why they are the algorithm of choice for much of modern machine learning. Finally, the recent 

developments in machine learning are discussed, as well as explainability and ethical concerns 

with its spread.  

2.1 Ultrasonics 

2.1.1 Mechanical Waves Background 

The first part of this chapter is concerned with understanding ultrasonic waves as a means to 

inspect pipelines. Ultrasonic waves can be generally divided into bulk waves and guided 

waves. Bulk waves travel in the regions away from surfaces and their longitudinal and shear 

components are decoupled. Bulk waves interact with interfaces via reflection and refraction. 

Mode conversion between longitudinal and shear waves can also take place during those 

interactions. Where the interface in a continuous condition upon which the propagation of 

the wave depends (i.e., an ultrasonic wave travelling along the surface) the theoretical 

framework for the analysis of the propagation shifts to the study of a guided wave. In general, 

bulk wave propagation is dependent only on the material properties. Guided wave 

propagation, in contrast, is determined both by the material properties and the geometry of 

the medium (waveguide).  

The guided wave solutions are dependent on the geometry of the propagation medium with 

it impacting the solution to the wave equation. As a result, the initial solutions of the guided 

wave propagation problem were limited to model environments with the solutions named 

after the discoverer: Rayleigh waves, Lamb waves and Stoneley waves.  
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Rayleigh waves [10] exist on a surface of a semi-infinite medium. An example of such are 

earthquake surface waves. Their propagation is defined by a traction-free surface and a decay 

away from the surface. Lamb waves [11] are surface waves that exist in thin plates. They are 

commonly used in material testing of plate and shell-like structures. They are defined by 

traction-free surfaces on both sides. Stoneley waves [12] are surface waves that exist at the 

interface of two media able to support the propagation of waves. They exist on a solid-solid 

or a solid-liquid boundary. In the latter case they are known as Scholte waves. Stoneley waves 

are defined by the matching solution for particle displacement in both media at the interface 

and the decay away from the boundary.  

To understand the specifics of guided wave inspection and their usefulness for non-

destructive testing it is crucial to understand the dispersive behaviour of guided waves. The 

phenomenon of dispersion is based on the concepts of phase and group velocity. Group 

velocity (vg) can be understood as the speed with which the envelope of the signal propagates 

through space. Phase velocity (vp), in contrast, is defined as the speed with which a single 

peak of the wave travels. Mathematically, they are defined as:  

𝑣𝑝 =
𝜔

𝑘
 (1) 

𝑣𝑔 = 
𝜕𝜔

𝜕𝑘
 (2) 

where 𝜔 is the angular frequency of the wave and 𝑘 is the angular wavenumber. The 

consequences of the formulations become clear with the introduction of the concept of the 

wavepacket – a group of superposed waves which together form a localised travelling 

disturbance. A wavepacket is conventionally represented as a product of the carrier wave and 

the envelope, but frequency domain analysis shows it can also be described as a linear 

combination of waveforms varying in frequency around the carrier wave frequency. Thus, 

despite often being described in the terms of carrier (centre) frequency, it is crucial to 

understand that a wavepacket is in fact a multi-frequency wave combination. The 

formulations of phase and group velocities thus lead to three possible scenarios for a 

wavepacket:  

• wavenumber is directly proportional to frequency: if that is the case, phase and group 

velocities are equal, the wavepacket does not exhibit dispersion and the individual 

peaks and troughs do not move in reference to the envelope. 
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• wavenumber is a linear function of frequency: phase and group velocity are not equal, 

but the group velocity is constant regardless of the frequency. The individual peaks 

and troughs move inside the envelope, but the envelope travels undistorted.  

• wavenumber is a nonlinear function of frequency. The group velocity depends on the 

frequency. In the context of wavepacket the constituent waves travel at various 

velocities leading to distortion of the overall envelope. This distortion is known as 

dispersion. The broader the range of frequencies present in the wavepacket 

(bandwidth) the more significant the dispersion. 

 

Figure 6. Dispersed (top) and non-dispersed (bottom) wave on a displacement – propagation distance graph. The original 
shape of the wave is the same as the bottom plot (6-cycle Hann-windowed sinusoid). Reproduced from [13] originally a movie, 
where red dot is used to visualise local displacement. 

Dispersive behaviour has two major consequences in the context of guided wave testing, 

which are demonstrated on the example of waves in Figure 6. In the example the wave is 

originally the same shape as the nondispersive snapshot. After propagation, a dispersive wave 

changes shape while a non-dispersive remains constant. First, with the dispersion the 

longitudinal extent of the wave increases. As the goal of guided wave testing is the localisation 
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of the interaction of the probing wavepacket with the defect, the longer wavepacket lowers 

the resolution of the inspection. Secondly, the maximum amplitude of the wavepacket is 

decreased with dispersion. The amplitude of the signal reflected by the defect is proportional 

to the amplitude of the probing wave, therefore weakening the probing wave may lead to the 

reflected defect indication signal falling below the detection threshold, thus leading to missed 

defect indications.  

In the terms of bulk waves, there is typically only one phase and group velocity for a given 

medium, hence they propagate without dispersion. Guided waves, however, are typically 

dispersive, since their behaviour will vary as the relationship between wavelength and fixed 

geometry will vary through the frequency range. There are an infinite number of solutions for 

a guided wave travelling within a pipe each having a different dispersion relationship. As a 

result, a solution must be selected for which the dispersion is low (group velocity does not 

change strongly with frequency) or, ideally, is completely non-dispersive. This makes the 

calculation of 𝑣𝑔(𝜔) function (dispersion curve) necessary for guided wave inspection design. 

The wave equation for the guided wave needs to be solved to achieve this. 

This section introduces a brief solution to bulk wave propagation and later focuses on the 

solution for Lamb waves. In fact, the standard formulation of the solution of the wave 

equation for thin-walled pipes proposed by Gazis [14] is based on the Lamb waves in plates, 

with the thin-walled cylinder of high radius compared to the wavelength considered a special 

case of a plate.  

2.1.1.1 Wave Propagation 

Propagation of bulk wave is governed by Navier’s equation: 

(𝜆 + 𝜇)∇∇ ∙ 𝒖 + μ∇2𝒖 =  𝜌 (
𝜕2𝒖

𝜕𝑡2
) (3) 

where 𝜆 and 𝜇 are Lame constants reflecting material properties, 𝜌 is the density of the 

material and 𝒖 is the displacement vector. Using Helmholtz decomposition, the equation can 

be split into: 

∇2𝜑 =
1

𝑐𝐿
2

𝜕2𝜑

𝜕𝑡2
 (4) 

and:  
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∇2𝜓 =
1

𝑐𝑇
2

𝜕2𝜓

𝜕𝑡2
 (5) 

𝜑 is the scalar potential while 𝜓 is the vector potential, 𝑐𝑇 and 𝑐𝐿  are the shear and 

longitudinal wave phase velocities, which can be calculated as:  

𝑐𝐿 = √
𝜆 + 2𝜇

𝜌
 (6) 

𝑐𝑇 = √
𝜇

𝜌
(7) 

The equations represent shear and longitudinal waves that can propagate through the 

medium independently in the absence of any inhomogeneities. We can now use this solution 

to derive the formulae for dispersion relations in guided waves. 

 

Figure 7. Geometry of guided wave propagation in a free plate. 

Considering the case of Lamb waves, we are assuming traction-free surfaces as shown in 

Figure 7. We can use the Helmholtz-decomposed Navier equation and follow the derivation 

by the method of potentials [15] to arrive at two equations, known as the Rayleigh-Lamb 

frequency relations. They tie the frequency and wavenumbers of Lamb waves depending on 

whether the specific solution is symmetric or non-symmetric. For symmetric modes: 

tan(𝑞2ℎ)

tan(𝑝2ℎ)
=

4𝑘2𝑝𝑞

(𝑞2 − 𝑘2)2
(8) 

while for non-symmetric: 

tan(𝑞2ℎ)

tan(𝑝2ℎ)
=

(𝑞2 − 𝑘2)2

4𝑘2𝑝𝑞
(9) 
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in the preceding equations p is defined as 𝑝2 =
𝜔2

𝑐𝐿
2 − 𝑘2 and q as 𝑞2 =

𝜔2

𝑐𝑇
2 − 𝑘2, while 2h is 

the thickness of the plate. The equations can be solved at any frequency to calculate the phase 

velocity of the propagating wave. As the equations are hard to solve analytically, specialised 

tools such as the DISPERSE software package [16] can apply computation methods to find the 

roots of the equations. The solutions are plotted to assess which modes exist in the plate at 

a given frequency as well as to compare their dispersiveness for the purpose of non-

destructive evaluation. 

 

Figure 8. Dispersion curves (phase velocity vs. frequency) of first symmetric and non-symmetric Lamb modes in a 1 mm thick 
steel plate. The mode names are annotated in the figure [15]. 

Figure 8 presents dispersion curves for low order symmetric (S) and non-symmetric (A) 

modes. Graphs like this one can be used to determine which modes exist at a given frequency, 

as subsequent modes appear with the increase in frequency (i.e. A1 around 2 MHz, S1 about 

2.5 MHz). The lowest frequency at which a mode exists is known as that mode’s cut-off 

frequency. The existence of the higher order modes makes the signal more difficult to 

interpret, as the energy of the probing wave is spread between the intended and unintended 

modes. The second use of the dispersion curves is the assessment of the dispersiveness of 
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the selected mode at the selected frequency. Group velocity can be found using phase 

velocity as: 

𝑐𝑔 = 𝑐𝑝
2 (𝑐𝑝 − (𝑓2ℎ)

𝑑𝑐𝑝

𝑑(𝑓2ℎ)
)

−1

(10) 

where 𝑓2ℎ is the product of frequency and thickness of the plate. For a given plate, therefore, 

the group velocity is dependent on the derivative of phase velocity with respect to frequency. 

Referring to Figure 8, this is simply a gradient of the dispersion curve. To conclude, to select 

the probing frequency it is best to choose a frequency at which few modes exist, and the 

gradient of the selected mode is as low as possible.  

 

Figure 9. Graphical representation of symmetric (a) and non-symmetric (b) fundamental mode in a plate [16]. 

Figure 9 shows the symmetric and non-symmetric character of the modes in plates. In low 

frequency-thickness regimes non-symmetric modes can be understood as bending the plate, 

while the symmetric as compression-extension.  
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2.1.1.2 Shear Horizontal Waves 

 

Figure 10. Shear wave propagation along axis x1 where the particle displacement is along the axis x3. The wavenumber of the 
propagating wave is k, and the thickness of the plate is 2h. Reproduced from [17]. 

Other than the symmetry an important characteristic of the wave is the main displacement 

direction of the particles. For Lamb waves, the displacement direction is in the propagation 

direction (longitudinal) and out of plane of the plate (shear vertical – SV). The third dimension, 

in the plane of the plate but perpendicular to the propagation direction, is known as shear 

horizontal (SH), as graphically represented in Figure 10.  

SH waves have a range of advantages when it comes to non-destructive testing. Recall the 

general consideration for the mode selection. The ideal inspection conditions would support 

as few modes as possible, and the main probing mode would be nondispersive. Refer to Figure 

11, which presents the SH dispersion curves in a steel plate. The fundamental SH mode, n=0 

in the figure, is completely nondispersive over the full frequency range. Furthermore, the 

second symmetric mode (n=2) exists only above the frequency-thickness product of 4 MHz-

mm, which, when compared to Figure 8 gives a significantly broader frequency range with 

one symmetric mode than Lamb waves. Finally, shear waves are not supported by liquids, 

thus the waves will not transfer from the pipe into the contents or the external medium, 

lowering the energy of the propagating wave and thus limiting the inspection range. This is 

especially important if the testing is performed on submerged plates or filled pipes. 



 
  
   
 

 

37 

 

Figure 11. Dispersion curve for SH mode family in a steel layer. Wave speed in x2 dimension against frequency-thickness 
product. 

2.1.1.3 Guided Waves in Hollow Cylinders 

Until this point, we have dealt only with plates as the structure supporting the propagation 

of guided waves. They can however propagate in other geometries too, most notably rods 

and hollow cylinders (pipes). While guided wave propagation in rods is beyond the scope of 

this work, understanding the shapes of the modes in rods is more intuitive than in cylinders, 

as the latter uses the plate-pipe analogy. Figure 12 demonstrates the torsional mode in rods 

corresponding to shear horizontal mode in plates in the terms of frequency spectrum. In the 

terms of particle displacement, the rod is twisting.  Figure 13 demonstrates the flexural mode, 

effectively bending the rod. Considering the axial symmetry of the problem torsional mode is 

symmetric, while flexural mode is non-symmetric. This characteristic persists in the case of 

pipes and is extensively used in this work.  
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Figure 12. Torsional modes in a solid rod. The lack of deformation of the rod is shown by the straight dashed axis. 

 

Figure 13. Flexural modes in a solid rod. The deformation of the rod is shown by the axis and top and bottom boundaries.   

The waveguide geometry considered in this work corresponds to a pipe, an idealised version 

of which is a hollow cylinder. The wave equation for this geometry has first been solved by 

Gazis in 1959 [14]. The resulting formulae for particle displacement are:  

𝑢𝑟 = 𝑈𝑟(𝑟) cos(𝑛𝜃) cos(𝜔𝑡 + 𝑘𝑧) (11) 

𝑢𝜃 = 𝑈𝜃(𝑟) cos(𝑛𝜃) cos(𝜔𝑡 + 𝑘𝑧) (12) 

𝑢𝑧 = 𝑈𝑧(𝑟) cos(𝑛𝜃) cos(𝜔𝑡 + 𝑘𝑧) (13) 

This formulation uses a cylindrical reference system, presented in Figure 14, in which r is the 

distance from the reference point along the radius of the cylinder, z is the distance along the 

axis of the cylinder and theta is the angle. In the equations above n is the circumferential 

order of the solution, u is the particle displacement while U is the displacement potential 

amplitude composed of Bessel functions or modified Bessel functions. For full derivation, 

refer to Rose’s textbook [17].  
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Figure 14. Hollow cylinder of internal radius a, and external radius b. Reproduced from [17]. 

When analysing the wave propagation in hollow cylinders we can split the modes into three 

mode types: longitudinal, torsional, and flexural. Torsional and flexural modes have been 

introduced for the rod case, while longitudinal corresponds to simple compression-

rarefaction plate case. In this work the modes are annotated using the notation of Silk and 

Bainton [18]. The notation is: 

• Longitudinal modes: L(0, m) 

• Torsional modes: T(0, m) 

• Flexural modes: F(n, m) 

In this notation the first index (n) corresponds to circumferential order – 0 for longitudinal 

and torsional signifies their axial symmetry. The second index (m) is a counter of mode 

number. Figure 15 demonstrates practically the annotation of modes and introduces the 

modes of interest in this work. In guided wave testing of pipelines, the modes reflected by a 

feature belong to the family of that probing mode. Those are defined as the flexural modes 

whose dispersion curves converge to the base mode at infinite frequency. For T(0,1) the 

family of modes includes F(1,2), F(2,2), F(2,3) etc. The number of modes in the family depends 

on the frequency of test, due to the cut-off frequencies of higher circumferential order 

modes. 
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Figure 15. Group velocity against frequency dispersion curves for 3-inch schedule 40 steel pipe. Reproduced from [19]. 

The modes usually used for inspection are either L(0, 2) mode family (highlighted in blue in 

Figure 15) or T(0, 1) mode family (highlighted in red). The families are defined by the modes 

having primarily the displacement in the torsional direction F(1, 2), F(2, 2)… or longitudinal 

direction for F(1, 3), F(2, 3)… For the full consideration of the advantages and disadvantages 

of either of those selections, refer to [19]. In the case of this work, the data used is obtained 

using T(0, 1) as the probing mode and T(0, 1) and F(n, 2) being the reflected modes. In the 

following sections of this work the notions of symmetric or torsional mode refer to T(0, 1), 

non-symmetric or flexural refer to the whole F(n, 2) group of modes. Higher order flexural 

modes refers to F(n, 2) where n>1. 

2.1.2 Wave Propagation Modelling 

The propagation of guided waves in pipelines can be solved analytically only if the geometry 

of the pipe does not diverge from the idealised mathematical model. In reality, the excitation 

of the wave modes is rarely pure, and the pipeline geometry is affected by corrosion and the 

presence of features. Furthermore, the wave propagation itself can be affected by factors 

such as temperature and contents of the pipe. Considering that the goal of modelling the 

waveform propagation in this work is to use it in a machine learning context, it is necessary 

to model wave propagation in geometries as far away from the ideal solution as possible and 

to model a large number of such propagations. The standard method for modelling guided 
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waves in complex geometries is the usage of finite element analysis (FEA), as it allows for the 

simulation of forces and displacements in arbitrary shapes. This work makes extensive use of 

Pogo [20]. Pogo is an explicit time domain FE solver, complete with model building toolkit for 

MATLAB. The capability to programmatically build geometries in MATLAB and export them 

into Pogo mesher is crucial for this project, as it allows for a quick and hands-off parametric 

generation of large amount of training data for the machine learning algorithm. In the terms 

of Pogo operation, this section quickly derives the central difference method used for the 

wave propagation modelling. By imposing dynamic equilibrium, we can write: 

[𝑴]
𝜕2𝒖

𝜕𝑡2
+ [𝑪]

𝜕𝒖

𝜕𝑡
+ [𝑲]𝒖 = [𝑭𝒂] (14) 

In this equation [M] is the mass matrix, [C] is the damping matrix and [K] is the stiffness matrix. 

[Fa] is the external force and u is displacement. The central difference method of numeric 

differentiation uses the previous and next values of displacement to calculate the derivatives 

of displacement with respect to time. Respectively: 

𝜕𝒖

𝜕𝑡
(𝜏) =

𝒖(𝜏 + ∆𝑡) − 𝒖(𝜏 − ∆𝑡)

2∆𝑡
(15) 

𝜕2𝒖

𝜕𝑡2
(𝜏) =

𝒖(𝜏 + ∆𝑡) − 2𝒖(𝜏) + 𝒖(𝜏 − ∆𝑡)

∆𝑡2
 (16) 

Pogo solver is explicit, which means 𝒖(𝜏 + ∆𝑡), i.e., the future displacement, calculation can 

be based only on the current and previous values of displacement. Therefore, rearranging the 

equations for 𝒖(𝜏 + ∆𝑡): 

𝒖(𝜏 + ∆𝑡) = (
[𝑴]

∆𝑡2
+

[𝑪]

2∆𝑡
)

−1

[[𝑭𝒂] + (
[𝑪]

2∆𝑡
−

[𝑴]

∆𝑡2
)𝒖(𝜏 − ∆𝑡) + (

[𝑴]

∆𝑡2
− [𝑲])  𝒖(𝜏)] (17) 

The above equation depends on the mass, stiffness, and damping matrices, which depend on 

the material. They can be simplified if the material is assumed to be homogenous and 

isotropic, which is the case for this project. The external force matrix is best understood as 

the excitation; therefore, it is only nonzero when the initial wavepacket is transmitted, and at 

the source location. Finally, the equation depends on the choice of ∆𝑡, known as the time 

step. It is selected to be low enough to ensure simulation stability, with the exact value 

determined as a balance between the accuracy of the simulation and the computational cost. 

As the overall time of the simulation is generally enforced by the goal of the simulation (i.e., 

a wave takes a certain time to propagate over the geometry), lowering the time step directly 
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increases the number of calculations. The largest time step that still allows for accurate 

simulation of wave propagation corresponds to the time it takes for the fastest wave to pass 

through the smallest element in the model: 

𝑡𝑐 =
∆𝑥

𝑐
 (18) 

where 𝑡𝑐 is the largest possible time step that does not cause the instability of the model 

(critical time step), ∆𝑥 is the smallest element length and c is the wave speed of the fastest 

wave modelled. The ratio ∆𝑡/𝑡𝑐 is known as Courant number, it is necessarily lower than 1 to 

ensure stability in the explicit time stepping and is one of the parameters that can be changed 

during the model optimisation.  

The elements used in FEM exist in a variety of shapes, in the case of this project, cubic 

elements are used. As such, only one size of the element, ∆𝑥, needed to be selected. The 

Nyquist criterion states that to express any periodic signal it is necessary to sample at least 

two points in each period. This translates to at least two elements per wavelength of the 

shortest (highest frequency) wave simulated. In practice, more elements are used to model 

the wave behaviour. Marburg reports the minimum of six elements [21], however, best 

practice is to tailor the size of the elements until the FE results converge to a desired error 

margin, which usually results in significantly more elements per wavelength [22]. 

Finally, when designing a finite element simulation, the boundary conditions must be 

considered. As a standard, Pogo uses sound-soft boundary conditions – corresponding to the 

object ending abruptly in a vacuum or other non-sound conductive material. This is rarely the 

case for the boundaries in the longitudinal direction in real-life applications, where the range 

is more commonly limited by the attenuation or the presence of a pipe feature. As the 

simulations used by this project were required to be as close to the real world as possible, the 

goal is to avoid the boundary region reflections, as such signals do not exist in real pipes; the 

simulation should behave as a finite section of an infinite domain. There are two primary 

methods of achieving that goal. One option is to extend the model in the direction of 

propagation and using time windowing to reject the signal reflected off the end of the region. 

This solution allows all the unwanted signal to be rejected but makes the domain significantly 

larger than it needs to be, resulting in an increased computational requirement. The second 

option is the implementation of absorbing boundary conditions. Pogo has built-in functions 
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facilitating the addition of absorbing boundaries using stiffness reduction method (SRM) [23]. 

This method alters the damping and stiffness matrices of the system. The gradual increase in 

damping over the length of the absorbing boundary lowers the amplitude of the wave, so that 

the impulse that reaches the end of the domain is low enough not to alter the results of the 

simulation. The stiffness matrix is reduced as damping is increased, further minimising the 

mismatch in acoustic impedance between the elements. While the original paper suggests an 

absorbing boundary as thin as 1.5 wavelength is sufficient to minimise any reflections to a 

negligible level, the thickness of SRM absorbing boundary is another parameter that can be 

tuned until the convergence to simulation requirements occurs.  

2.1.3 Imaging 

Imaging in the context of guided wave testing is the process of transforming the raw ultrasonic 

signal received either from the measurement equipment or finite element simulations into a 

human-interpretable thickness map of the region of interest. It is widely used in human-

operated inspections, as the imaged signal is significantly easier for humans to interpret. The 

development of imaging for guided wave testing has given it the potential to become a viable 

quantitative NDT method. This project is interested in the imaging techniques, as their usage 

introduces additional knowledge of physical wave behaviour into the data, thus adding 

valuable information a machine learning algorithm can utilise. Furthermore, ML on pictorial 

data is significantly more developed than on waveform-type data, providing further incentive 

in the ability to use the experience developed in ML applications in different fields.   

2.1.3.1 Artificial Focusing Methods 

Three commonly used acquisition methods for ultrasonic imaging, be it in guided wave testing 

or conventional ultrasound are Common Source Method (CSM), Synthetic Aperture Focusing 

Technique (SAFT) [24] and Full Matrix Capture (FMC) [25]. CSM is a special case of Plane Wave 

Imaging [26] using a single plane wave generated by simultaneous excitation of all 

transducers. After the acquisition of data, it is processed (imaged) to reconstruct the physical 

characteristics of the imaged body. The selection of methods used in this section follows [27]. 
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Figure 16.Transmitter-reciever geometries of CSM(a), SAFT(b) and TFM(c) synthetic focusing methods. Reproduced from [27]. 

The algorithms are differentiated by their source-receiver geometries (see Figure 16). CSM 

uses all transducers as a single source for excitation and receives on all elements of the array. 

SAFT fires each transducer in turn and uses the pulse-echo trace. TFM uses every transmitter-

receiver combination. This format of data is known as full matrix capture, and it can be used 

to perform either of the artificial focusing approaches. It is worth noting that while TFM uses 

FMC, the data can be stored as triangular half matrix (as visible in Figure 16c) due to the 

reciprocity principle meaning that the measurement by transducer B given an excitation at A 

is the same as the measurement by transducer A for an excitation at B (neglecting 

noise/errors). Based solely on the transmitter-receiver geometries, there are historically two 

considerations in the choice of the imaging technique. The first is the total number of 

combinations, which corresponds to the amount of data that needs to be stored and the 

number of calculations that need to be performed to form the image. The second is the 

number of transmissions (corresponding to non-empty columns of Figure 16 geometries). The 

more transmissions, the longer the test takes to complete.  

Regardless of the transmit-receive geometry, the imaging process is similar. First let us 

introduce the process in the time domain. The image for any given point i, whose coordinates 

are x and z, is formed by delaying each of the transmitter-receiver traces by the amount of 

time it would take for the wave to travel from the transmitter to the point i and from the 

point i to the receiver. The image intensity at the point i is then the summation of the 

magnitudes of those traces. Mathematically it can be represented as: 

𝐼(𝑥, 𝑧) = ‖∑∑𝑠𝑡𝑥,𝑟𝑥 (
𝑑𝑡𝑥(𝑥, 𝑧)

𝜈1
+

𝑑𝑟𝑥(𝑥, 𝑧)

𝜈2
)

𝑟𝑥𝑡𝑥

‖ (19) 
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𝑑𝑡𝑥(𝑥, 𝑧) =  √(𝑥𝑡𝑥 − 𝑥)2 + 𝑧2 (20) 

𝑑𝑟𝑥(𝑥, 𝑧) =  √(𝑥𝑟𝑥 − 𝑥)2 + 𝑧2 (21) 

𝑑𝑡𝑥 is the distance between the transmitter 𝑡𝑥 and the point of interest, 𝑑𝑟𝑥 is analogous for 

a receiver. 𝜈 is the group velocity of the travelling wave. The subscripts 1 and 2 signify the 

potentially different velocity of the wave travelling to the defect and back if mode conversion 

occurs.  

In all the imaging methods the geometric approach is derived directly from the pipe-plane 

analogy. However, for this assumption to hold it is necessary to account for the ability of a 

wave to travel around the pipe. To account for it, an extra boundary condition is enforced for 

that the solutions on the edges of the plate must match.  

For SAFT the transmitter and receiver position are the same, therefore the indices of two 

summations increment simultaneously. For CSM only a single transmission is used, therefore 

the summation over 𝑡𝑥 is unnecessary. TFM uses the full formula.  

In the case of dispersive waves, the algorithm needs to be extended to compensate for 

dispersion. While it is possible in the time domain, it is more commonly done in the frequency 

domain. The equation expressed in the frequency domain is:  

𝐼(𝑥, 𝑧) =  ‖∑∑∑𝑆𝑡𝑥,𝑟𝑥,𝜔𝑒𝑖𝑘(𝜔)(𝑑𝑡𝑥(𝑥,𝑧)+𝑑𝑟𝑥(𝑥,𝑧))

𝜔𝑟𝑥𝑡𝑥

‖ (22) 

In this case, the signal is dependent on the transmitter, receiver and the frequency, with the 

dispersion relationship expressed in the 𝑘(𝜔) term, corresponding to the wavenumber 

dependency on frequency. The formulation above assumes the same dispersion relationship 

on both the path towards the point and back. In the case of mode conversion, the above 

formula is transformed to: 

𝐼(𝑥, 𝑧) =  ‖∑∑∑𝑆𝑡𝑥,𝑟𝑥,𝜔𝑒𝑖𝑘1(𝜔)𝑑𝑡𝑥(𝑥,𝑧)

𝜔𝑟𝑥𝑡𝑥

𝑒𝑖𝑘2(𝜔)𝑑𝑟𝑥(𝑥,𝑧)‖ (23) 

Both the probing and reflected signals can consist of multiple modes, converting the formula 

to: 

𝐼(𝑥, 𝑧) =  ‖∑∑∑∑∑𝑆𝑡𝑥,𝑟𝑥,𝜔,𝑛𝑒𝑖𝑘m(𝜔)(𝑑𝑡𝑥(𝑥,𝑧))

𝜔𝑟𝑥𝑡𝑥

𝑒𝑖𝑘𝑛(𝜔)𝑑𝑟𝑥(𝑥,𝑧)

𝑛𝑚

‖ (24) 
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where 𝑛 corresponds to the mode the probing signal is converted into and 𝑚 corresponds to 

the mode of the probing signal.  

 As mentioned in the previous section, the dispersion curve can be calculated using numerical 

software such as DISPERSE, which is however impractical in inspection scenario, as the 

dispersion curves are specific to the geometry and the material of the medium. The work of 

Davies [28] uses the unrolled pipe – plate analogy derived in [29] (Figure 17) to calculate the 

dispersion curves for the T(0,1) mode family based on the wavenumber of the torsional mode. 

It is important to note that despite unrolling the pipe, the algorithm considers the edges of 

the plate linked by enforcing a boundary condition on the solution, thus the flexural modes 

are not lost in this approximation. 

 

Figure 17. Schematic of the unrolled pipe-plate analogy. Reproduced from [28]. 

In this reading, the wavenumber can be split into the axial wavenumber (𝑘𝑧) and 

circumferential wavenumber (𝑘𝑐𝑖𝑟𝑐), with the first corresponding to the wave propagation 

along the pipeline and the second to its circumferential travel. As such, the torsional mode 

can be understood to travel on a straight path, the first flexural mode (F(1, 2)) is torsional 

mode travelling on a helical path that has circled the circumference of the pipe once, F(2, 2) 

has circled it twice etc. As such, the wavenumbers are mathematically linked by the 

Pythagorean theorem:  

𝑘𝑛 = √𝑘𝑠
2 − (

𝑛

𝑟𝑐
)
2

 (25) 

Where 𝑘𝑛  is the wavenumber of nth flexural mode, 𝑘𝑠  is the wavenumber of T(0,1) and 𝑟𝑐 is 

the radius of the pipeline. Davies compares the results of this simplified approach to full 

DISPERSE calculation, with the results presented in Figure 18. Numerically, the errors are 
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below 2% for schedule 40 3-inch pipes and above, making this a simplified way to calculate 

the dispersion curves for flexural modes with acceptable accuracy for imaging for most 

applications. This may be less suitable for very thick-walled pipes where the curvature 

becomes significant. 

 

Figure 18. Comparison of dispersion relationships calculated using a pipe-plate analogy (dotted line) and calculated using 
DISPERSE (solid line). Reproduced from [28]. 

2.1.3.2 Artificial Focusing Method Selection 

The full investigation of the imaging methods in the context of guided wave testing has been 

conducted by Davies [30]. This section briefly introduces the considerations when selecting 

the imaging method.  

While the goal of any imaging method is its application in an experimental case, it is common 

to utilise finite element simulations to test the method. The controlled simulation 

environment allows for a fair comparison of methods by ensuring perfect geometries, no 

difference in the external conditions or randomness. The work mentioned above has 

conducted that research for pipe imaging, by first assessing the ability of CSM, SAFT and TFM 

to image a backwall (a fully symmetrical strong feature). The transducer array is located 1 m 

away from the end wall and consists of 24 equally spaced transducers. The wave propagated 

in an 8 inch pipe at the speed of 3260 m/s. 
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Figure 19. Image from a backwall using SAFT(a), TFM(b) and CSM(c), reproduced from [30]. 

Figure 19 shows the difference between the imaging methods in the terms of symmetric 

features. There are clear noise bands present in figures (a) and (b). Those are due to the single 

transducer transmission in both SAFT and TFM. When a single transducer fires, the wave 

propagates both in the axial and circumferential direction equivalent to a point excitation of 

a circular wave in a plate. The circumferential component, travels around the transducer ring 

and is registered by each receiver in turn. This signal is decoded by the algorithm in the form 

of the noise bands clearly present in both SAFT and TFM. CSM does not exhibit the same 

behaviour, because with all transducers firing simultaneously, a plane wave (being the 

superposition of circular waves) is excited instead of a circular one. The plane wave has no 

circumferential component, thus removing this source of noise.  

 

Figure 20. Images from FE data of a 5% reflector at 0.2m and end wall at 0.5m generated using SAFT(a), TFM(b), CSM(c). 
Reproduced from [30]. 

Figure 20 presents a follow-up, the performance of the algorithms on a non-axisymmetric 

reflector – an approximation of a defect indication. In this case, the noise bands present in 

the symmetric case are still visible and they occlude the image of the reflector in the case of 

TFM and SAFT. However, CSM focus on the reflector itself is weaker, as it is the only method 

which transmits a plane wave, which cannot be focused on transmission. Thus, TFM and SAFT 

have a better focusing performance at the cost of added noise. Davies and Cawley conclude 
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that in the light of the investigation, CSM is the best algorithm for guided wave imaging of 

pipelines.  

Following the study presented, CSM is the algorithm used in this work. In practice, due to the 

need for generating large numbers of simulations for the purpose of machine learning 

training, CSM has the added benefit of requiring just one simultaneous excitation of all 

transducers, reducing the required number of simulations – in SAFT or TFM each transducer 

excitation necessitates an individual simulation, multiplying the need for computational 

resources.  

2.1.3.3 Direction Control 

A row of ultrasonic transducers excites a wave that propagates in both positive and negative 

directions along the pipe, see Figure 21. For the task of localisation of features, it is crucial to 

separate the two directions. To that effect two offset rows of transducers are used.  

 

Figure 21. Transmission of guided wave in both directions of the pipeline. The wave propagation directions are shown as red 
arrows, the area inspected is shaded in grey.  

The physical phenomena used are constructive and destructive interference (Figure 22). 

 

Figure 22. Constructive (a) and destructive (b) interference of waves. The top two waves are the constituent waves, the bottom 
is the result of superposition of the waves. Reproduced from [31]. 
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Constructive interference, effectively doubling the amplitude, occurs when the waves are in 

phase, while destructive occurs when the waves are out of phase by half of the period. Full 

constructive and destructive interference may occur only when the interfering waves are 

identical.  

Considering the guided wave testing, the phase separation of the signals from positive and 

negative directions can be achieved by utilising two rows of transducers. The transducers are 

fitted on a single testing ring. The schematic representation of the setup is presented in Figure 

23. In a setup like this, the ring A fires separately from ring B. In each case both the ring A and 

ring B receives the signal. As such, after the test is run, four traces are available: A-A, A-B, B-

A and B-B. A-B and B-A traces should be identical due to reciprocity. We can now consider the 

implementation of the direction control using the signals described. 

 

Figure 23. Pipe with a guided wave testing ring fitted with two rows of transducers (A and B) separated by quarter wavelength. 
Feature F exists at a distance X from row A. 

Let us first consider the propagation distance from each of the rings to the feature, accounting 

for both the forward and backward path. 

𝑑𝐴−𝐴 = 𝑑𝐴𝐹+𝑣𝑒 + 𝑑𝐴𝐹−𝑣𝑒 = 𝑥 + 𝑥 = 2𝑥 (26) 

𝑑𝐵−𝐵 = 𝑑𝐵𝐹+𝑣𝑒 + 𝑑𝐵𝐹−𝑣𝑒 = 𝑥 −
𝜆

4
+ 𝑥 −

𝜆

4
= 2𝑥 −

𝜆

2
 (27) 

𝑑𝐴−𝐵 = 𝑑𝐴𝐹+𝑣𝑒 + 𝑑𝐵𝐹−𝑣𝑒 = 𝑥 + 𝑥 −
𝜆

4
= 2𝑥 −

𝜆

4
 (28) 
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In these formulations 𝜆 refers to the wavelength at the centre frequency. The transducer rings 

are separated by quarter of the wavelength at centre frequency as it causes the A-A distance 

and B-B distance to be separated by half of the wavelength (this approach means that the 

non-centre frequencies are not completely compensated, but for narrow-band signals in 

guided wave pipe imaging this effect is negligible, as other noise sources are significantly 

stronger). This would correspond to half-period phase shift, thus adding those two traces up 

results in the destructive interference, thus muting the direction. The traces can be phase-

shifted using Fourier analysis, so A-B traces can be used to further amplify the correct 

direction and mute the opposite. This is especially important in the experimental context, as 

the signals are not identical and shifted due to the differences in transducer coupling, 

conditions, and other sources of noise. The phase shift is best performed in the frequency 

domain. In the guided wave context, the phase shift should be performed separately for each 

mode, as the propagation speed is different in the way described by the differing 

wavenumbers. The following presents a full mathematical formulation for the direction 

separation of positive and negative directions in frequency domain: 

𝑠+𝑣𝑒 = 𝑠𝐴𝐴 − 𝑠𝐴𝐵𝑒𝑖𝑘0∗
𝜆
4 − (𝑠𝐴𝐵 − 𝑠𝐵𝐵𝑒𝑖𝑘0∗

𝜆
4 ) 𝑒𝑖𝑘𝑛∗

𝜆
4 (29) 

𝑠−𝑣𝑒 = 𝑠𝐴𝐴 − 𝑠𝐴𝐵𝑒−𝑖𝑘0
𝜆
4 − (𝑠𝐴𝐵 − 𝑠𝐵𝐵𝑒−𝑖𝑘0

𝜆
4 ) 𝑒−𝑖𝑘𝑛

𝜆
4 (30) 

where 𝑠𝐴𝐴 is the frequency-domain signal, 𝑘0 is the dispersion relationship (wavenumber vs. 

frequency) of the transmitted mode, 𝑘𝑛 is the dispersion relationship of the received mode. 

The modes can be separated on reception utilising the variation in the signals from different 

transducers (up to N/2 modes for N transducers). These formulae need to be recalculated for 

each of the modes to be direction controlled and for each inspection frequency. The result of 

the calculation is a reinforcement of the mode in the desired direction: positive for 𝑒𝑞. 29 and 

negative for 𝑒𝑞. 30. 

2.1.4 Guided Wave Testing Hardware 

The utilisation of guided waves for pipeline inspections depends on the capability for 

ultrasonic transduction. There are several methods of exciting ultrasonic waves in metal, 

including piezoelectric [32], magnetostrictive [33], and laser-induced ultrasound [34]. This 

section focuses on the piezoelectric transducer systems as utilised by Guided Ultrasonics, as 

it is the technology utilised in this work [32].  
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Alleyne and Cawley have developed a dry coupled system of transducers placed in two rows 

to facilitate direction control. The dry coupling requires placing the transducers tightly on the 

surface of the pipe. For small diameter pipes, solid rings are utilised (Figure 24). These are 

pushed onto the pipe using springs.  

 

Figure 24. Guided Ultrasonics EFC Solid Ring [8]. 

For large diameter pipes the solid rings are unwieldy, therefore inflatable rings are used, with 

the pneumatic force used for coupling (Figure 25). 

 

Figure 25. Guided Ultrasonics Compact Ring [8]. 

In either case, the casing is fitted with a ring of shear-polarised piezoelectric transducers – 

this ensures they act with tangential force on the surface of the pipe. The transducers are 

orientated in the circumferential direction, which ensures they excite the T(0, 1) mode family. 

Were the transducers orientated axially, the L(0, m) mode family would be utilised [4]. The 

number of elements in the ring n is limited by the highest order of the flexural mode (F(n, 2)) 
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intended to be received. Typically, more than n transducers are used to ensure higher energy 

of the initial pulse and improve the force distribution around the pipe. The adjoining 

transducers can be grouped together with their results added up and treated as a single 

transducer in post-processing to limit the number of channels. 

2.2 Machine Learning 

2.2.1 History and development of Machine Learning 

Machine learning is a set of methods for making decisions based on experience related to 

computer science and control theory. Historically speaking, machine learning was first 

introduced in the 1950s and the 1960s. Commonly this advent of machine learning is 

associated with a Cornell University psychologist, Frank Rosenblatt. His research group 

developed machines (perceptrons) that could recognise the letters of the alphabet [35]. The 

concept for those machines is based on the models of human brain and learning developed 

in the early 1950s by Bush and Mosteller [36]. Rosenblatt’s device sparked the first surge in 

the development of machine learning, mostly centred in the cybernetics community, most 

interestingly with the scientists at Leningrad State University proposing a prototype of 

Support Vector Machine (SVM) in 1964 [37]. This first round of the development was halted 

after the 1969 publication of “Perceptrons: An Introduction to Computational Geometry” by 

Minsky and Papert. The authors have proven that perceptron networks are unable of 

representing certain logical functions, such as XOR (logical exclusive or). As digital logic was 

the focus of research at the time, the book has triggered a decrease in funding and research 

activity into learning algorithms. The 1970-1980 period is therefore known as the first winter 

of AI.  

The 1980s brought about the second generation of machine learning research, heralded by 

Kunihiko Fukushima and his proposal of neocognitron [38]. Neocognitron is, in essence, 

multiple stacked perceptrons, something that we would now recognise as a neural network. 

At this point the pieces were falling into place for the modern machine learning approach. 

This was further aided by the invention of backpropagation – a paradigm for efficiently 

calculating derivatives and training neural networks led by Rumelhart in 1986 [39]. Even 

though backpropagation was not immediately accepted as the standard, by the late 1980s 

there was a strong expectation for continued success of ML on the back of the technique and 
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the advances in computational power. Those expectations failed to be realised, leading to the 

loss of interest in the 1990s, known as the second winter of AI.  

In the early 21st century a three-pronged revolution has occurred, which made ML the topic 

it is today. The first prong was the inception of Big Data as a concept. The globalisation and 

digitisation of public and private databases brought about the data revolution – the necessity 

for the development of statistical and operational methods to deal with large datasets. 

Currently, it is considered self-evident that big data is a necessity for machine learning, 

making that development a key enabling technology. The second prong was the parallel 

computing and memory cost revolution. In 2004 Google revealed its MapReduce technology 

[40], designed to split the computational effort of a complex problem between many simple 

processors. This has an obvious application to backpropagation problem. From that point the 

remaining issue was the nature of the small processors between whom the computation 

could be split. The answer turned out to have come from the gaming industry, where Nvidia 

has developed CUDA [41] – a computing platform allowing for the use of graphics processing 

units (GPUs) in general computational tasks. As GPUs are essentially a large number of small 

processing units designed for parallel operation, they have proven ideal for machine learning 

training. The third prong of the revolution was the development of new machine learning 

algorithms. Based on Fukushima’s work, multilayer perceptrons became the standard in 

machine learning research. The research was centred around Geoffrey Hinton, Yann LeCun 

and Yoshua Bengio, whose activity has culminated in the publication of “Deep Learning” in 

Nature in 2015 [42]. This has symbolically started the modern era in machine learning, in 

which the innovations no longer follow a conventional academic process but are a 

combination of research by companies such as Meta, where Yann LeCun is the chief scientist, 

Google, where Geoffrey Hinton worked until 2023, before quitting over AI ethics concerns, 

and Baidu, who have taken on Andrew Ng from MIT. The fast paced and commercial nature 

of the research has led to the modern ML research to be most commonly disseminated at 

conferences such as NeurIPS and ICML as well as in white paper style publications. Since then, 

the major developments in the ML research included technologies such as generative learning 

[43], attention mechanism [44] and its generalisation to a transformer network [45], recently 

joined in GPT (generative pre-trained transformer) architecture [46] and ChatGPT released by 

OpenAI [47]. Independently, the reinforcement learning algorithms [48] have been developed 
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by the likes of DeepMind, most famously using them to build AlphaGo model [49], which has 

managed to beat a professional human Go player. Recently they have published self-training 

architectures, requiring no input apart from rules of the game to be learned, such as AlphaGo 

Zero [50] and its generalisation, AlphaZero [51].  

2.2.2 Supervised and Unsupervised Learning 

There are two main categories of machine learning algorithms, which correspond to the broad 

way in which they are trained. These are supervised and unsupervised learning algorithms. 

The distinction dates back to the beginnings of modern machine learning, with many modern 

applications blurring the line between the two or utilising both approaches to solve segments 

of a larger task. The interested reader is directed to the recent textbook by Berry, Mohamed 

and Yap, which comprehensively elucidates the subject [52]. 

Supervised learning algorithms’ name comes from their training method similar to traditional 

school teaching, where learning is done under supervision. The student answers the question 

and then is provided the correct answer. Based on whether the student’s initial answer is 

correct or not, they would be more or less likely to use the same method when they are 

presented with a similar problem in the future. Before graduating, the student must prove 

they can perform on these preparatory questions, pass an exam and only then they are 

trusted that they would be able to deal with problems in the real world. The process in 

graphically represented in Figure 26. 

 

Figure 26. Supervised Learning Schematic Blue boxes represent the sets of data, dark grey boxes represent the processing 
algorithms. Reproduced from [53]. 

In the machine learning domain, the ‘preparation’ questions are referred to as the training 

dataset, the ‘exam’ is the test dataset. Those two datasets are selected from the same set of 

labelled observations. Crucially, for that dataset to exist, the observations must be labelled. 
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Figure 27. Google image labelling task. The user is asked to select the portions of the image containing the object of interest. 
Such tasks are commonly encountered as a security measure on websites [54]. 

While for some questions it is a simple matter, such as the omnipresent image labelling tasks 

(Figure 27), the highly skilled tasks such as labelling medical images require subject matter 

experts to provide labels, which is a significant challenge in many machine learning projects.  

Supervised learning is used to solve two types of problems – classification and regression. In 

classification problems, the algorithm’s output is an answer to the question of whether the 

input data belongs to a certain class. The common example is inputting a picture of a cat or a 

dog and scoring the algorithm on its accuracy in telling the difference between the animals. 

The regression problems, meanwhile, have the outputs on a continuous scale; they are 

answering a question of what the value of Y is for a given value of X (or multiple Xs). A typical 

example is based on the house price dataset, where an ML algorithm is asked to predict the 

price of a house based on its age, size, number of bedrooms etc [55].  

When a labelled dataset is not available or when the question, we need answered is one we 

do not know an answer to, unsupervised learning is utilised instead. Unsupervised learning is 

based on the natural process of learning when there are no predefined correct and incorrect 

solutions. A real-life scenario would be toddler playing with their toys and putting them 

together based on various characteristics, such as size, colour, material etc. The toddler is not 

told explicitly that a red car goes with a red brick, but they understand those are in some way 

similar.  
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Clearly, unsupervised learning has a different range of use cases, as without knowing the true 

answer it doesn’t know the question it is being asked. For example, going back to the cat vs. 

dog classification, it could instead classify the images based on whether they are outdoors or 

indoors. This leads to the main use cases for unsupervised learning [56]:  

- Clustering – the algorithm puts together the samples that are in some way similar, 

based on the features it has internally extracted.  

- Anomaly Detection – the algorithm learns that all the data it is presented in the 

training process is ‘normal’ and after deployment it is supposed to flag any data that 

would not fall into that category. This is commonly used by banks to detect fraudulent 

credit card transactions (i.e., a transaction for a luxury bag on a card that is normally 

used for groceries would be flagged as anomaly).  

- Association – This is most used in recommender systems and is closely related to 

clustering. The everyday application is online shopping. When the user puts knives, 

pans and chopping boards in your cart, the algorithm could recommend a garlic press 

and a cookbook.  

- Autoencoders – an unsupervised learning algorithm that is designed to compress the 

input data, then decode it and still be able to recognise the original data. Conceptually, 

if an algorithm does that, it removes the unnecessary information in the encoding 

process. This is most useful in signal and image processing areas, as a good 

autoencoder can remove the noise from the image while retaining all the pertinent 

data.  

Importantly, when using unsupervised learning algorithms, there are no objectively ‘correct’ 

or ‘incorrect’ decisions. As a result, much as in the case of human decisions, the external 

performance metrics must be introduced. As an example, a recommender system may be 

rated on how many customers have added additional items to their shopping cart, compared 

to an alternative recommending solution.  

2.2.3 Neural Networks 

This section presents the fundamentals of the neural network design and its constituent parts, 

as such, much of the information is considered self-evident in the machine learning 

community. The interested reader is directed to two online courses taught by Andrew Ng – 

one of the foremost AI researchers: 
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• Machine Learning Specialisation – Stanford University and Deeplearning.ai [57] 

• Deep Learning Specialisation – Deeplearning.ai [58] 

Neural Networks are a type of a machine learning algorithm built of identical basic units 

calculating simple mathematical functions. Those units are connected to each other with 

connections of a weight learnt during the training process. The neurons are arranged in layers, 

with the outputs of neurons of layer number i-1 acting as inputs to neurons of layer number 

i. The decision on how many neurons to use, in what arrangement and which connections 

between neurons to allow is the basic question on a neural network design.  

2.2.3.1 Neuron Operation 

A neuron is a function with any number of input parameters and a single output value, so it 

can be written as 𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛), where f is the neuron function. Typically, the inputs 

are represented as a vector of values of length n. From now on, that is the convention taken 

in this chapter. 

𝒙 =  

[
 
 
 
 
𝑥1

𝑥2

𝑥3

…
𝑥𝑛]

 
 
 
 

(31) 

The neuron performs a simple operation, in which each input is multiplied by a parameter 

called weight (w), whose product is added to another parameter, called bias (b). Both of these 

parameters are learnt in the training process of the neural network. Each input has its own 

weight, signifying the strength of the connection between the input neuron and the operating 

neuron, while bias is common to all inputs across the neuron. Following the convention for 

inputs, weights also take the form of a vector: 

𝒘 = 

[
 
 
 
 
𝑤1

𝑤2

𝑤3

…
𝑤𝑛]

 
 
 
 

(32) 

Therefore, for a single-valued input 𝒙 = 𝑥1, the function is:  

𝑦1 =  𝑓(𝑥1) = 𝑤1 ∗ 𝑥1 + 𝑏 (33) 

 

For a non-one length input, the output is a summation of outputs for each element of input.  

𝑦 = 𝑦1 + 𝑦2 + ⋯+ 𝑦𝑛 = (𝑤1𝑥1 + 𝑏) + (𝑤2𝑥2 + 𝑏) + ⋯+ (𝑤𝑛𝑥𝑛 + 𝑏) (34) 
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Which can be written in a simplified form as a dot product of w and x:  

𝒚 = 𝒘 ∘ 𝒙 + 𝑏 (35) 

2.2.3.2 Activation Functions 

The problem inherent in the simplicity of the mathematics behind the building block of a 

neural network is the fact that it is a linear function. As a result, even a complex neural 

network would in essence boil down to a combination of linear functions, which by definition 

is a linear function. Without introducing nonlinearity at some point in the neural network, the 

outputs would simply be a linear function of inputs, effectively corresponding to a single layer. 

The nonlinearity is introduced using activation functions, mapping the output of the neuron 

operation in a non-linear fashion. 

This section provides an overview of the most used activation functions: linear, sigmoid, tanh, 

ReLU and leaky ReLU.  

Linear activation function is simply a linear mapping of the output of the neuron to the output 

domain. This type of an activation function does not provide nonlinearity; therefore, it cannot 

be the only type of activation function used. If used, it is most commonly used in the output 

layers in regression problems, such as the classical house price prediction.  

Sigmoid activation function (also known as logistic activation function) is mathematically 

described as 𝑓(𝑧) =
1

1+𝑒−𝑧. The shape of the function is visible in Figure 28. 

 

Figure 28. Sigmoid Function Graph. 
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Visibly, the output of sigmoid is between 0 and 1, is monotonic and differentiable. These 

characteristics are important, as the monotonicity ensures the higher output of the neuron 

corresponds to higher output of the activation function, and the function needs to be 

differentiable for the training process to be possible, as it relies on calculating the derivatives 

of the outputs. As the output of the sigmoid function is between 0 and 1 it is commonly used 

as output in the probability prediction tasks, as any probability exists between those values. 

The version of sigmoid generalised to multi-class classification problem is a softmax function. 

While sigmoid can be understood to output the probability of a single class based on the input 

value, softmax outputs the probabilities for a larger number of classes. The main drawback of 

sigmoid activation function is the flattening of the function in the higher negative and positive 

ranges. As the updating of neuron parameters is based on the derivatives of the outputs (i.e., 

the local differentials of the activation function) the training would become very slow if the 

output of the neuron happens to be high. This is known as the vanishing gradient problem.  

Tanh activation function is very similar to sigmoid. Mathematically it is a hyperbolic tangent 

of the input value, 𝑓(𝑧) = tanh(𝑧) =
2

1+𝑒−2𝑥 − 1 tanh and sigmoid are functions which can 

be derived from each other. Figure 29 shows the comparison between the tanh and sigmoid 

functions. 

 

Figure 29. Tanh and Sigmoid graphs comparison. 
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The main difference in sigmoid and tanh is the output range, as tanh outputs between -1 and 

1. This is useful in the generative tasks, in which the output should be symmetrical in the 

positive and negative domains, such as direct waveform audio generation. Secondly, the fact 

that tanh has the mean of 0 is useful in the training of the hidden layers of the model. In the 

past, it has been used as the main activation function for the hidden layers, but it has now 

been superseded by ReLU.  

ReLU, shorthand for Rectified Linear Unit, is mathematically defined as 𝑓(𝑥) = max (0, 𝑥) 

 

Figure 30. ReLU graph. 

Figure 30 represents the graph of RelU function with the 𝑓(𝑥) values at 0 when 𝑥 < 0. When 

the argument becomes greater than zero, the value of the function is equal to the argument. 

It is a very simple function and is currently the most commonly used activation function for 

the hidden layers. For most practitioners it is the base case when building an experimental 

neural network. Compared to sigmoid, its characteristics are the significantly lower 

computational cost, which was historically important in the research environment, and 

remains relevant nowadays in the multi-billion parameter models used in production, 

secondly, it does not suffer from the vanishing gradient problem in the positive range, as the 

differential is constant. The issue with ReLU is that any negative input maps to 0, which 
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prevents learning from the input data across the full domain (i.e., -1 has the same impact on 

the network as -1000). While this can be solved by careful pre-processing, the more common 

approach is to use Leaky ReLU, which solves the so-called dying ReLU problem 

programmatically.  

Leaky ReLU is an activation function very similar to ReLU, but instead of using 0 as the lower 

boundary it uses a different linear function of input, conventionally 𝑦(𝑧) = max (𝑎𝑧, 𝑧), 

where a is conventionally set to 0.01.  

 

Figure 31. Leaky ReLU graph. 

Leaky ReLU shares the characteristics with ReLU, but it can learn from the negative as well as 

the positive data. It is slightly more computationally expensive, but still less so than the logistic 

functions. As a result, Leaky ReLU is more reliable than the base version, at the cost of speed, 

therefore it is commonly used as the hidden layer activation in deep architectures, or when 

the input data cannot be guaranteed to be clean and well normalised.  

2.2.3.3 Layers 

A layer in a neural network is a combination of a mathematical operation and a set of values. 

A layer takes the set of values from the previous layer, performs its operation, takes on the 

results as its own values and makes them available to the following layers. All the operations 

inside the layer are independent of each other, therefore they can be parallelised, enabling 

the use of massive parallel computing processors, such as GPUs. Layers can be understood as 

the basic building blocks of the neural network, as it is always the inputs to and outputs from 
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layers that the operations are performed on, not the individual neurons.  This section 

introduces some of the common types of layers, understanding of which is crucial to machine 

learning. 

2.2.3.3.1 Fully Connected Layer 

As discussed, the full neuron, or the unit of a neural network performs an operation that is 

mathematically described as 𝑦 =  𝛼(𝑤 ∘ 𝑥 + 𝑏) where 𝛼 is the chosen activation function, w 

is the weights vector, x is the input vector and b is the bias. In the most basic type of a neural 

network, known as dense or fully connected (FC) neural network the neurons are connected 

as shown in Figure 32 with each neuron in layer n-1 providing input to all neurons in layer n.  

 

Figure 32. Fully connected Neural Network graph. The values are shown as circles and the operations are shown as arrows. 
This network does not contain bias. The sizes of weight matrices are annotated under the arrows denoting operations. 
Reproduced from [59]. 

The diagram shows why it is more common to talk about neural networks in the units of 

layers, rather than neurons. Each neuron must produce the number of outputs corresponding 

to the number of neurons in the following layer. Thus, the previously described weights vector 

becomes a weights matrix, with the first dimension corresponding to the number of input 

neurons and the second to the number of outputs. Similarly, the bias becomes a vector of 

biases with the length corresponding to the number of outputs. Weights (and biases) are 
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therefore best understood not as properties of neurons, but of layers due to their relational 

characteristic.  

2.2.3.3.2 Batch Normalisation Layer 

A batch normalisation layer implements its namesake operation. It was first introduced by  

and Szegedy in 2015 [60]. During training, the distribution of the inputs to the layer shifts, as 

those inputs are the outputs from the previous layer. When the inputs are far from zero-

mean, unit-variance normalised, the training is slower, especially in the case of using 

activation functions prone to saturation (sigmoid, tanh, to a lesser degree ReLU). Batch 

normalisation normalises the inputs mid-training process and does so with regard to each 

mini-batch (the portion of data on which the algorithm is trained in a single step). Batch 

normalisation layers have been proven to speed up the training and, in some cases, to prevent 

overfitting, which makes them common in many modern deep learning architectures. Batch 

normalisation layers are active only during training and deactivated at inference, which is the 

source of one of the criticisms of batch normalisation – the difference in the behaviour 

between training and testing. 

2.2.3.3.3 Dropout Layer 

A dropout layer randomly deactivates some of the neurons in each training step. The purpose 

of that operation is making sure that the network is not overly reliant on a single neuron, but 

rather that the predictive power is regularly spread between the neurons. This approach also 

helps prevent overfitting, thus normalising the network. Similarly to batch normalisation, 

dropout layers are deactivated at inference.  

2.2.3.3.4 Convolutional Layer  

A convolutional layer is similar to a fully connected layer, in the fact that it is a layer containing 

trainable weights. Neural networks based on this type of a layer are collectively known as 

Convolutional Neural Networks (CNNs), even though most of them contain some fully 

connected layers.  
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Figure 33. Convolution operation depicting the activation map achieved by applying a kernel to an image. [61]. 

To understand a convolutional layer, it is first necessary to define its building blocks. First 

there is the input data, which can have any number of dimensions and channels. In the most 

common case of analysing RGB images, the data (image) is 2-dimensional and contains three 

channels – red, blue, and green. The second building block is the kernel, also known as the 

filter. The filter is smaller than the input data in the non-channel dimensions and has a depth 

equal to the input data – for the RGB image, the kernel would have the shape of (a, b, 3). A 

convolutional layer can have any number of kernels, which are equivalent to neuron weights 

in a fully-connected layer. A convolutional layer performs a dot product between a kernel and 

a portion of the input data, then similarly to a fully connected layer passes it through an 

activation function and outputs the result. The kernel is then moved to another position, 

usually overlapping with its previous one. The parameter that controls the shift in each 

dimension is known as the stride (s). s = (1, 2) would mean that the kernel moves one sample 
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at a time in the first dimension of the input data and by two samples at a time in the second 

dimension. Finally, a padding parameter is used to even out the contribution of the data 

points, adding margins around the borders of the input. In the example of Figure 33, datapoint 

a is considered only once in the output, while datapoint f is considered four times. To equalise 

the contributions, padding is used. Moreover, padding allows the size of the output to be 

controlled, as it is typically desirable for the output from the convolutional layer to have the 

same non-channel dimensions as the input. Despite a kernel having more parameters than a 

neuron, the topological limits mean that a convolutional layer has fewer parameters than an 

equivalent fully connected network. 

2.2.3.3.5 Transposed Convolution Layer 

A transposed convolution performs an operation directly opposite to a convolution – it 

multiplies a single number by an (n, m) sized kernel, thus up sampling the input. The values 

in the kernel are learnt during the training process. Refer to Figure 34 for the visual of a 

difference between a convolution and a transposed convolution. 

 

 

Figure 34. Convolution and transposed convolution. Convolution is shown on top, transposed convolution at the bottom. The 
sizes of the grids correspond to input and output sizes. Reproduced from [62]. 

A transposed convolution is commonly used in generative networks, where a small encoding 

is decoded to a larger data. It is also used in a U-net architecture [63], in which the input data 

is first compressed to remove the irrelevant information and later decompressed, while 

reintroducing the original information (see Figure 35). 
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Figure 35. U-net. Output of the first block serves as part of the input to the last, second to block n-1 etc. Reproduced from 
[63]. 

2.2.3.3.6 Pooling Layer 

A pooling layer is a common operation in a convolutional neural network. This layer uses 

kernels, similar to a convolutional layer, but instead of a convolution operation, it performs a 

pooling operation – most commonly a max pooling or an average pooling.  

 

Figure 36. Max pooling. Maximum of the color-coded section of the first block is output to the second block [64]. 

Max pooling is very well described visually in Figure 36 – the operation takes an n-by-m 

section of the input and replaces it with the maximum of that section. Average pooling, while 

less common, follows a similar approach, taking a mean rather than a maximum. The goal of 

a pooling layer is to make the intermediate data smaller, in the case of max pooling keeping 

only the biggest (therefore with the highest impact) activations. This on one hand lowers the 

computational load, allowing for deeper networks and longer training, while on the other 

allows for feature extraction in architectures such as the mentioned U-net.  
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2.2.3.4 Forward and Backward propagation 

Each neural network training step consists of two stages, forward and backward propagation. 

As fully connected neural networks are less conceptually complex due to their one-

dimensionality, all the derivation in this section is performed on an example of a fully 

connected network. The same principles apply to convolutional neural networks or other 

deep learning architectures. The operations described until now, be it for fully connected 

layers or convolutional layers, are performed during the forward propagation through the 

neural network. Forward propagation of a fully trained neural network is known as inference 

– using the finalised neural network for its intended purpose, to predict an output for a given 

set of input values. Importantly for training, rather than just calculating the final value of the 

output of the neural network, during forward propagation all the intermediate values are 

calculated and stored.  

Backward propagation is the other crucial element in the modern machine learning – it is 

essentially the automatic calculation of the derivatives of all the trainable parameters (in fully 

connected layers, weights and biases) in the network with respect to the given loss function 

– a measure of how far the output of the network is from the desired output. Before 

backpropagation became widespread, multilayer perceptrons existed, but the update of their 

trainable parameters required the manual calculation of the derivatives. This has 

understandably hampered the experimentation on the architectures, as any change required 

recalculation of derivatives for every trainable parameter. Forward and backpropagation are 

linked, as to calculate the partial derivatives for each of the parameters it is necessary to know 

their values.  

In forward propagation, consider the simple fully connected neural network displayed in 

Figure 37. This neural network consists of two layers, as the input layer does not involve any 

calculations.  
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Figure 37. Fully-connected neural network with one hidden layer. Reproduced from [65]. 

Consider now the batch of data that the layer can calculate at a single time. This is known as 

the minibatch and is a basic unit of data that forward and backward propagates through the 

neural network. Referring to the equation of a neuron in a fully connected layer 𝑦 = 𝑤 ∘ 𝑥 +

𝑏, the minibatch is known as 𝑿, the 2D matrix input of the shape (number of examples, 

number of inputs). Further, let’s consider the value of the units in the hidden layer denoted 

as 𝑯. This has the shape of (n, h), where n is the invariant number of the examples in the 

minibatch, and h is the number of units in the hidden layer. Finally, we consider the output 

layer units 𝑶, of the shape (n, q). As both the hidden and output layers are fully connected, 

we consider the weights in the hidden and output layers, which are also 2D matrices, denoted 

as 𝑾(𝟏) of shape (d, h) and 𝑾(𝟐) of shape (h, q) as well as biases  𝒃(1) of shape (1, h) and 𝒃(𝟐)of 

shape (1, q). As is clear from these shapes, the shape of the weights and biases of the layers 

is invariant to the size of the minibatch, n. The effect of the training on minibatches is to allow 

the trainable parameters of the neural network to update in a stochastic manner. 𝑿 is given 

as the input to the neural network, and based on that we calculate the values of neurons in 

the hidden layer as: 

𝑯 = 𝛼(𝑿𝑾(1) + 𝒃(1)) (36) 

𝑶 =  𝛼(𝑯𝑾(2) + 𝒃(𝟐)) (37) 

 is the activation function introducing nonlinearity. In the case of a more complex fully 

connected neural network, further hidden layers 𝑯(𝟐), 𝑯(𝟑)etc. can be used to improve the 

predictive power of the network. During forward propagation all the values of the neurons in 

the hidden layers are stored to be used in backward propagation. 
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Backward propagation is effectively a method of automatic differentiation. A neural network 

outputs a value that is to be as close to the true value as possible. As a result, a derivative of 

the weights with respect to the function of the distance between the output value and the 

actual value provides the direction in which the weights have to change for the output to get 

closer to the desired value. This function used for calculating the distance is known as the loss 

function. In the simplest form it is the difference between the predicted output and the true 

value i.e. 𝐿𝑜𝑠𝑠 =  |𝑜𝑢𝑡𝑝𝑢𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑡𝑟𝑢𝑒|. 

The loss functions are usually further modified by regularisation terms. Regularisation terms 

introduce auxiliary objectives to the training process. Commonly they are used to ensure the 

weight values are as close to each other as possible. This has the advantage of utilising the 

predictive power of all neurons rather than being overly reliant on a limited number of nodes 

(effectively limiting the size of the neural network while keeping the computational 

complexity). This regularisation function is given by the equation: 

𝑠 =
𝜆

2
(||𝑾(1)||

𝐹

2

+ ||𝑾(2)||
𝐹

2
) , (38) 

Where 𝜆 is a scalar known as regularisation rate, controlling how impactful the regularisation 

term is compared to the loss function. 

The sum of the loss function L and the regularisation term s is known as the objective function 

𝐽.  

Consider the neural network in Figure 37. It has two sets of weights 𝑾(1)and 𝑾(2). For 

simplicity let us not consider biases, as the process for the biases is analogous. The goal of the 

backpropagation process is therefore to calculate the derivatives of those sets of weights with 

regard to the objective function 
𝜕𝑾(𝟏)

𝜕𝐽
  and  

𝜕𝑾(𝟐)

𝜕𝐽
. To calculate the derivatives, neural networks 

use the chain rule, 
𝜕𝑍

𝜕𝑋
=

𝜕𝑍

𝜕𝑌

𝜕𝑌

𝜕𝑋
. The first step to calculating the derivatives for all the nodes is 

therefore calculating the derivatives of J with regard to L and s.  

𝜕𝐽

𝜕𝐿
= 1 (39) 

𝜕𝐽

𝜕𝑠
= 1 (40) 

Next, the partial derivatives of the objective function with respect to the output layer are 

calculated – this results in a vector of derivatives corresponding to outer layer neurons: 
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𝜕𝐽

𝜕𝒐
=

𝜕𝐽

𝜕𝐿

𝜕𝐿

𝜕𝒐
=  

𝜕𝐿

𝜕𝒐
 (41) 

Next, calculate the partial derivatives of the regularisation term with respect to both sets of 

weights, which we can do directly: 

𝜕𝑠

𝜕𝑾(1)
=  𝜆𝑾(1) (42) 

𝜕𝑠

𝜕𝑾(2)
=  𝜆𝑾(2) (43) 

Next, we use the chain rule to calculate the gradients of the output with respect to the second 

set of weights – linking the hidden layer with the output layer: 

𝜕𝐽

𝜕𝑾(2)
=

𝜕𝐽

𝜕𝒐

𝜕𝒐

𝜕𝑾(2)
+

𝜕𝐽

𝜕𝑠

𝜕𝑠

𝜕𝑾(2)
= 

𝜕𝐽

𝜕𝒐
𝒉𝑇 + 𝜆𝑾(2) (44) 

This is one of the desired values. Now we can backpropagate further. The gradient of the 

objective function with respect to the hidden layer output is: 

𝜕𝐽

𝜕𝒉
=

𝜕𝐽

𝜕𝒐

𝜕𝒐

𝜕𝒉
= 𝑾(2)T 𝜕𝐽

𝜕𝒐
(45) 

The next intermediate value is known as z, which is the input to the activation function: 

ℎ =  𝛼(𝑧) (46) 

The derivatives of the common activation functions are precalculated and used directly. As 

the activation functions are used elementwise, the derivative needs to be applied the same 

way:  

𝜕𝐽

𝜕𝒛
=

𝜕𝐽

𝜕𝒉

𝜕𝒉

𝜕𝒛
=  

𝜕𝐽

𝜕𝒉
 ⊙ 𝛼′(𝒛) (47) 

Where ⊙ denotes element-wise multiplication. Finally, this derivative can be used to 

calculate the desired: 

𝜕𝐽

𝜕𝑾(1)
=

𝜕𝐽

𝜕𝒛

𝜕𝒛

𝜕𝑾(1)
+

𝜕𝐽

𝜕𝑠

𝜕𝑠

𝜕𝑾(1)
= 

𝜕𝐽

𝜕𝒛
𝒙𝑇 +  𝜆𝑾(1) (48) 

In this way, through the forward and backward propagation all the intermediate values are 

first calculated and later used to calculate the gradients. In this section we have derived the 

gradients for the update of the weights for all the units in the neural network. The same 

process can be used for calculating the updates to the biases. This process is done 

simultaneously for all the examples in the minibatch. As all the intermediate values need to 

be stored throughout the forward and backward propagation, the memory requirements for 
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the training are quite high and significantly higher than for inference. To limit those 

requirements, the minibatch size can be reduced.  

2.2.3.5 Loss functions 

The previous section briefly discussed how the trainable parameters can be updated in the 

neural network. The objective function itself is comprised of two constituents – the loss 

function and the regularisation term. The regularisation term has been discussed in some 

depth in the previous section, but generically, this term is used to improve the training 

behaviour of the network. The second component, the loss function, is more directly linked 

to the specific problem the neural network is designed to solve. This section introduces the 

background theory of loss functions, as well as exemplifies some of the more commonly used.  

In the backward propagation process, it would be ideal to calculate the derivatives of all the 

weights directly based on how distant the predictions are from the desired values. Let us 

consider a thought experiment in which two students are asked to solve a quadratic equation. 

There exists a well-defined process for solving quadratic equations, calculating the 

determinant of the equation and later the solutions. One of the students does not attempt to 

answer the equation, but just guesses the answer. The other is able to follow the procedure 

correctly until the solution calculation stage, at which point they make a mistake, and their 

results are off by a factor of 2. If the marking scheme provides only options of 0 or 1 point, 

the feedback given to both students is exactly the same, even though their directions of study 

should be quite different. Conversely, if the random-guessing student gets the answer right, 

their approach would be validated just as much as the correct way of solving the problem.  A 

better designed marking scheme would provide the students with the information at which 

stage a mistake was made, which information could be used to direct the learning and test all 

the abilities required to perform the task. Unlike the quadratic equation example, the 

questions asked of neural networks rarely have a well-defined algorithmic solution – in such 

cases, conventional programming is a preferred approach. Due to that problem, it is not 

possible to check the neural network solution step by step. This puts the onus on the design 

of the training examples, as they need to cover the possibilities of mistakes made at each 

stage.  

A loss function deals with the other side of the problem – it assigns the specific numeric value 

to how bad the output of the neural network is. A well-designed loss function results in a 
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larger value when the neural network needs to adjust its output more, and a smaller one 

when it is close to correct. The problem that the designer of the ML algorithm needs to face 

is what is the best way to quantify that error. For most typical tasks, the loss function selection 

is narrow and the specific loss functions are implemented in the machine learning 

frameworks, such as TensorFlow. For complex or novel applications, though, they also provide 

a way to define a bespoke loss function. As an example, the simplest possible loss function is 

the absolute difference between the outputs (�̂�) and the true values (𝑦). This is known as the 

Mean Absolute Error loss. Mean absolute loss works well if the output is designed to adjust 

the volume of an alarm tone based on the acoustics of the room. A bespoke loss function 

based on both the volume and the frequency content could be used, on the other hand, when 

adjusting the volume of music. The next part of this section introduces the most commonly 

used loss functions and their use cases.  

2.2.3.5.1 Mean Squared Error 

Mean Squared Error Loss is a minor refinement of the Mean Absolute Error. It is calculated 

as: 

𝐿 = (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑)
2

(49) 

The advantage of the Mean Squared Error loss function over the Mean Absolute Error is 

encapsulated in the difference between the linear and the quadratic function. The quadratic 

loss rises in the value faster than the linear. This leads to quicker learning when the output of 

the neural network is far from the desired output. It is typically advantageous; therefore, 

Mean Squared Error loss has mostly supplanted the Mean Absolute Error loss. Mean Squared 

Error is used as a loss function in the applications where the output of the network is 

continuous and not bound, as Mean Squared Error can be calculated for any set of two values. 

It is therefore the most commonly used loss function for regression tasks. 

2.2.3.5.2 Cross Entropy – Binary and Categorical 

Cross Entropy is a statistical measure of the dissimilarity between two probability 

distributions for a given random variable. In information theory the information of an event, 

a measure of how surprising an event is, is calculated as: 

ℎ(𝑥) =  − log(𝑃(𝑥)) , (50) 
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where ℎ is the information and 𝑃(𝑥)is the probability of the event 𝑥. The concept stemming 

from information is the entropy – a measure of the total amount of surprise in a given 

distribution. If the probability distribution is very skewed, it contains less surprise, as most 

events are likely. If the distribution is balanced, all the events are equally likely, thus making 

every single one relatively surprising. The entropy 𝐻(𝑋) is: 

𝐻(𝑋) =  −∑𝑃(𝑥) log(𝑃(𝑥))

𝑥

(51) 

where 𝑋 is a discrete random variable, and the likelihood of event x is distributed according 

to the probability distribution 𝑃. Entropy is thus the average level of information across the 

possible outcomes. Finally, the crossentropy between two distributions 𝑃 and 𝑄 is the 

calculation of the number of bits necessary to represent the event using distribution 𝑄  

instead of 𝑃. It is calculated as: 

𝐻(𝑃, 𝑄) =  −∑𝑃(𝑥) log(𝑄(𝑥))

𝑥

(52) 

When used as the loss function, 𝑃 is the approximation of the target probability distribution 

(it is 1 for the correct class and 0 for all other classes) while 𝑄 is the prediction of the machine 

learning algorithm. For a two-class problem, the formula can be unrolled as: 

𝐻(𝑃, 𝑄) =  −𝑃(𝑐𝑙𝑎𝑠𝑠0) log(𝑄(𝑐𝑙𝑎𝑠𝑠0) + 𝑃(𝑐𝑙𝑎𝑠𝑠1) 𝑙𝑜𝑔(𝑄(𝑐𝑙𝑎𝑠𝑠1))) (53)  

When modelling the continuous probability distributions, it is typical to use the natural 

logarithm instead of binary, and this is how crossentropy is implemented in ML frameworks. 

This scales the output by a constant value so makes no difference when minimising the loss 

function.  

Cross entropy is also known as logistic loss (conveniently abbreviated to log loss) and negative 

logarithmic loss. The logistic loss formula is derived from a different starting point, simply as 

the logarithm of the error for each class, but the final formula aligns exactly. The value derived 

is known as the binary crossentropy, given that two probability distributions exist. It can be 

generalised to a multi-class problem when it becomes known as the categorical crossentropy. 

This version is typically used in combination with the softmax activation function. Cross 

entropy is by far the most commonly used loss function for classification tasks. 
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2.2.3.5.3 Focal Cross Entropy (Focal Loss) 

Focal loss is a more advanced loss function, introduced here as a method of describing how 

loss functions can be used to address some of the pertinent issues in machine learning. While 

crossentropy loss performs very well in a wide range of classification scenarios, there are two 

significant failure modes. The first one is the function of the stochasticity of the crossentropy 

– to approximate the probability distribution, the crossentropy is calculated as a mean across 

a minibatch of training examples. If one of the classes is overrepresented in the training 

dataset, the loss function incentivises getting the dominant class right at the expense of the 

underrepresented class. In the extreme, this can lead to the algorithm reverting to 

categorising every example as the member of the dominant class. This issue can be addressed 

easily by multiplying the cross entropies on the per-example basis by the weighting factor 

dependent on the balance of the classes. Such a modified loss is known as balanced 

crossentropy. The second issue with crossentropy is the failure to focus on hard examples 

(i.e., the ones with probabilities close to 50/50) rather than on the easy ones. In many 

machines learning applications, it is beneficial to focus on the difficult examples. This problem 

is addressed by the variation of the crossentropy known as the focal loss [66]. The focal loss 

is given as: 

𝐿 =  −∑(𝑖 − 𝑝𝑖)
𝛾 ln(𝑝𝑖)

𝑛

𝑖=1

(54) 

For misclassified examples the value of 𝑝𝑖 is small, making the focal loss behaviour similar to 

that of standard crossentropy. When the confidence of the algorithm increases, the weighting 

factor 𝛾 pulls the value of the loss function down, ensuring that more attention is paid to the 

difficult examples. The value of the weighting factor is normally determined experimentally, 

in the original paper the value performing best for the authors is 2 [66]. Coming back to the 

issues with the crossentropy, it would seem that focal loss would solve both at the same time, 

as quite naturally the examples from the underrepresented class are more difficult to classify, 

but practically the most commonly used implementation of the focal loss takes the form of: 

𝐿 =  −∑𝛼𝐼(𝑖 − 𝑝𝑖)
𝛾 ln(𝑝𝑖)

𝑛

𝑖=1

(55) 

where 𝛼𝐼 is introduced as an additional weighting factor used to place more reward on the 

correct classification of the underrepresented class.  
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2.2.3.6 Optimisers 

Once the loss function and the gradients of all the trainable parameters have been calculated, 

the next step is to perform the update of the values of the trainable parameters. The amount 

by which the values are updated is based on two constituents – the gradient itself and the 

optimiser. The optimiser is a function calculating the update based on the input gradient. The 

simplest possible optimiser is known as the gradient descent – it simply updates the 

parameters by subtracting the gradient multiplied by a selected constant.  

𝑤𝑛𝑒𝑤 = 𝑤 − 𝑎(𝑔𝑟𝑎𝑑𝑤) (56) 

As discussed previously, the training of the neural network is done in batches of n examples. 

The version of gradient descent adapted to multiple inputs is known as stochastic gradient 

descent (SGD) and calculated (for 𝑛 examples in the batch) as: 

𝑤𝑛𝑒𝑤 =  𝑤 − 𝑎
∑ 𝑔𝑟𝑎𝑑𝑤

𝑛
𝑖=1

𝑛
(57) 

Effectively updating the weights using an average of the gradients across the minibatch. This 

simple approach was commonly used in the early days of machine learning, but with the 

evolution of the field an understanding has arisen that the loss landscape can be complex. In 

such a landscape keeping the update coefficient (learning rate) constant makes it prone to 

two issues – too small would be unable to escape the local minima, while too large would risk 

overshooting the global minimum. While these issues were known, it is only when complex 

problems became the object of research that it became obvious that a constant learning rate 

would typically be too small at one point in the training process (when trying to find a rough 

solution) and too large when fine-tuning the answers. It became abundantly clear that it is 

not simply a problem of selecting the correct value for the learning rate, but that the optimizer 

needs redesigning to enable the adjustment of the learning rate over the course of the 

training. This section introduces the early improvements on the SGD optimiser to provide the 

overview of the adaptation algorithms and Adam optimiser [67]– the choice of most modern 

ML algorithms including the ones developed in this work.  

2.2.3.6.1 Stochastic Gradient Descent with Momentum 

The main issue faced by the stochastic gradient descent is understood easily when considering 

the gradient descent on a single example. Consider the one-dimensional loss landscape in 

Figure 38, and take a starting point of x=4.5. 



 
  
   
 

 

77 

 

Figure 38. Example loss landscape with a local minimum around x = 2.8. 

Then the weights are updated so the loss function is lower, which results in the next output 

being at x=2.8 (for example). The gradient of the loss function at that point is zero; this is a 

local minimum. As a result, the update of the gradient descent would be calculated as 0 and 

the training would be stuck. One of the methods of addressing this shortcoming is the 

introduction of momentum, first described in the context of neural network optimisation in 

1999 by Ning Qian [68]. Momentum assumes that the updates of the network tend toward 

the global minimum, and this uses the previous updates as an additional input to the current 

update. The following derivation assumes 𝑉 is the update after applying the momentum, 

while 𝑆 is the update without the momentum: 

𝑉𝑡 =  𝛽𝑉𝑡−1 + (1 − 𝛽)𝑆𝑡 (58) 

𝑉𝑡−1 =  𝛽𝑉𝑡−2 + (1 − 𝛽)𝑆𝑡−1 (59) 

𝑉𝑡−2 =  𝛽𝑉𝑡−3 + (1 − 𝛽)𝑆𝑡−2 (60) 

Which can be combined to calculate Vt as: 

𝑉𝑡 = 𝛽2(1 − 𝛽)𝑆𝑡−2 +  𝛽(1 − 𝛽)𝑆𝑡−1 + (1 − 𝛽)𝑆𝑡 + 𝛽3𝑉𝑡−3 (61) 

𝛽 is the momentum term, describing what is the impact of the current gradient in comparison 

with the previous updates; a value of zero means that 𝑉𝑡 = 𝑆𝑡 and hence there is no 

momentum, and increasing values mean greater momentum. It is less than one, so as is clear 

from the derivation, the impact of the past on the following update deteriorates by the factor 

of 𝛽 with each update.  
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Using stochastic gradient descent with momentum, the update to the weights is calculated 

as: 

𝑉𝑡 =  𝛽𝑉𝑡−1 + (1 − 𝛽)∇𝑤 𝐽(𝑊, 𝑋, 𝑦) (62) 

𝑊𝑛+1  = 𝑊𝑛 − 𝑉𝑡  (63) 

where ∇𝑤 is gradient with regard to weight, and 𝐽 is the objective function. Compared to SGD, 

the momentum term adds the additional calculation to what was a constant update rate, 

making the training process more robust, especially when optimising near so-called ravines – 

regions on the loss landscape, where the gradient in one direction is significantly higher than 

in the other. In such cases, momentum allows the optimiser to preserve the ability to move 

in the correct direction over the update iterations. The difference is shown in Figure 39. 

 

Figure 39. Comparison of model update without momentum (left) and with momentum (right) each straight stretch of the 
line corresponds to a single update of the model. The concentric lines represent the loss landscape with the lowest loss at the 
centre. Reproduced from [69]. 

2.2.3.6.2 Adam Optimiser 

Adam is a modern optimiser first introduced at by Kingma and Ba [70]. It takes advantage of 

the first order moment (gradient) and second order moment (squared gradient). This 

effectively allows the optimiser to calculate an individualised learning rate for each of the 

trainable parameters. Adam has immediately gathered a large following, as proven by nearly 

150,000 citations of the ArXiv preprint of the paper. In 2016 Sebastian Ruder has conducted 

a review of optimization algorithms [71], which has established Adam as the first-choice 

algorithm in machine learning applications. The Adam algorithm update procedure, in the 

words of its creators is:  

1. Compute the gradient and its element-wise square. 

2. Update the exponential moving average of the 1st order moment and the 2nd order 

moment. 

3. Compute an unbiased average of the 1st order moment and 2nd order moment. 
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4. Compute weight update: 1st order moment unbiased average divided by the square 

root of 2nd order moment unbiased average (and scale by learning rate).  

5. Apply update to weights. 

As is clear from the procedure, Adam has more parameters than SGD (just learning rate) or 

SGD with momentum (learning rate and momentum term 𝛽). Adam requires a learning rate, 

a decay term for the first order gradient 𝛽1, decay term for the second order gradient 𝛽2, and 

𝜖, a term used in step 4 of the update to avoid the division by 0. Although the number of 

parameters in Adam optimiser is large, potentially proving problematic at the stage of the 

hyperparameter tuning, the values for the hyperparameters suggested by the original paper 

are remarkably well suited to most machine learning problems. They are, as follows: 

learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08. Of the parameters of the 

optimiser, only the learning rate is commonly adjusted, either to a different constant, or to 

an exponentially decaying value, getting smaller as the training progresses to better optimise 

near the global minimum.  

2.2.4 Modern Topics in Machine Learning Research 

Machine Learning and Artificial Intelligence more broadly are some of the most dynamic areas 

in research. This section aims to introduce the recent impactful developments both in the 

context of the techniques used and the concerns regarding the explainability and fairness of 

ML models. This project has utilised Generative Adversarial Networks, but the majority of this 

section is provided for completeness and to inform future research.  

2.2.4.1 Generative AI 

Generative Artificial Intelligence is a subset of machine learning models that aim to produce 

outputs closely resembling human creations. They do that by learning the patterns and 

distributions in the training dataset and use this knowledge to generate new instances of data 

adhering to the patterns. The concept of Generative AI is very broad and many approaches 

are utilised, depending on the domain-specific requirements, but some of the most 

commonly utilised types of models are Generative Adversarial Networks (GANs) [72], 

Variational Autoencoders (VAEs) [73] and autoregressive models.  

2.2.4.1.1 Generative Adversarial Networks 

GANs, in principle, utilise a framework where two neural networks, the generator and the 

discriminator, are in competition to either deceive the other one or not to get deceived. The 
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generator aims to produce data that closely mimics real examples, while the discriminator is 

presented with a data point that may either be generated by the generator or an actual real 

example and is then tasked with telling one from the other. This eponymous adversarial 

process drives both networks to improve their performance, forcing the generator to create 

ever more realistic data to deceive the improving discriminator. The training process of a GAN 

is characterized by a balance between the generator and discriminator. If one of the networks 

improved significantly faster than the other, the training process would end quickly, without 

much improvement to the generator. Initially, the generator produces random and low-

quality samples that the discriminator can easily distinguish from real data. As training 

progresses, the generator gradually improves its performance and generates more realistic 

samples, making it increasingly difficult for the discriminator to differentiate between real 

and generated data. The training process involves iterative updates of the generator and 

discriminator networks. The generator's loss function is based on the discriminator's 

misclassification of the generated data as real, while the discriminator's loss function is based 

on its ability to correctly classify real and generated data. As the weight updates for the 

networks are separate, an opportunity exists for the designer to fine tune the training process 

so that the balance is retained. 

GANs have been used mostly in the visual domain. They can be used to generate novel life-

like images of faces or scenery. They are also commonly used in neural style transfer [74], 

where the artistic style of one image can be transformed to another and image-to-image 

translation, for example turning a sketch into a realistic graphic. Finally, GANs are used in the 

medical domain, where they are employed to generate novel images that can be used to train 

image recognition algorithms, thus helping to alleviate the data scarcity problem.  

The drawbacks of GANs are mostly centred around their vulnerability to the data distribution 

and the selection of the hyperparameters. It is common that either a discriminator or a 

generator network outperforms the other by a margin significant enough that a training 

process stops. Secondly, GANs have an issue with mode dropping and mode collapse. Mode 

dropping, exemplified by a generator of dog images never producing photos of Poodles, leads 

to incomplete coverage of the target distribution, while mode collapse – the same generator 

producing only Labradors, results in the generator producing limited and repetitive samples. 

Addressing these issues is crucial for reliable and diverse data generation. 



 
  
   
 

 

81 

2.2.4.1.2 Variational Autoencoders 

Variational Autoencoders (VAEs) are based on two underlying technologies, autoencoders 

and variational inference. Autoencoders are neural networks consisting of an encoder and a 

decoder. The encoder maps the input data to a low dimensional latent space, which is 

essentially a compressed representation of the input. The decoder is the decompressor part 

– it uses the latent space representation to produce the original input. As the latent space 

contains less information than the input, autoencoders can be used for dimensionality 

reduction, data compression, or denoising. The second technology, variational inference is a 

method of approximating complex probability distributions by representing them as a set of 

continuous variables. In the context of VAEs it is assumed that the underlying probability 

distribution belongs to a library of standard distributions that can be described using 

continuous parameters. For a Gaussian distribution the parameters would be the mean and 

the variance. The architecture of a variational autoencoders is therefore comprised of three 

elements, each of which requires designing – the encoder, the decoder, and the latent space. 

Both encoder and decoder are typically deep neural networks. Depending on the type of the 

input data they can follow any architecture. The limitation is that, as the encoder is meant to 

compress the data, the output of the encoder should be lower-dimensional than the input. 

The output of the decoder, in turn, is compared to the input to the encoder, therefore it must 

have the same dimensionality. Classically, the design of the latent space requires domain 

knowledge, as choosing the correct initial distribution can significantly improve the trained 

VAE performance.  

The variational autoencoder training process involves the optimisation against two parts of 

the loss function – the reconstruction loss, typically MSE or crossentropy, measuring the 

dissimilarity between the input and the output of the VAE and the regularisation term – KL 

Divergence. Kullback-Leibler (KL) divergence is a term that quantifies the dissimilarity 

between the inferred latent distribution and the prior distribution.  

VAEs have, similarly to GANs, been used for novel data generation, but their main impact lies 

in its unique applications. VAEs have shown promise in anomaly detection. In that application, 

the network is trained on normal data samples and the latent space representation (mean 

and standard deviation) is used to determine whether a new data sample belongs to the 

normal data category. Secondly, VAEs are useful for data imputation and denoising tasks, 
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where missing or corrupted data points need to be recovered. By reconstructing the missing 

or noisy data from the latent representation, VAEs can effectively impute missing values and 

remove noise from the data.  

The main drawback of VAEs is the difficulty in the design of the latent space. Traditionally, it 

involved a standard Gaussian distribution with two parameters (mean and variance), which is 

easy to optimise. If the prior data distribution is far from Gaussian or multimodal, that 

approach would fail to provide a good representation. In recent years this approach has been 

improved upon by using a multimodal Gaussian as a standard as well as combining VAEs with 

other generative approaches to model the distribution.  

2.2.4.1.3 Autoregressive Models 

Autoregressive models, in opposition to the previously discussed architectures, utilise the 

concept of sequential generation i.e., the point generated is dependent on those generated 

previously. Autoregressive AI models the probability distribution of the next data point based 

on the preceding ones, the so-called conditional probability distribution. The order-

dependence of the output of autoregressive models necessitates the utilisation of specialised 

architectures, designed to take advantage of that context, such as a Recurrent Neural 

Network (RNN) [75] or a Transformer [76]. RNNs are a class of neural networks designed to 

process sequential data by retaining an internal variable which is a representation of the past 

of the sequence. The common implementations are long short-term memory (LSTM) units or 

gated recurrent units (GRUs). In autoregressive models, the hidden state is updated at each 

time step based on the current input data and the previous hidden state. The final hidden 

state is used to compute the conditional probability distribution for generating the next data 

point. Transformers are a more recent architecture using self-attention mechanisms to weigh 

the importance of inputs based on their values and positions in the sequence. In 

autoregressive models, contrary to RNNs, transformers can process the entire input sequence 

in parallel, allowing them to take advantage of parallel computing facilities such as GPUs and 

speeding up the training process. During the training of an autoregressive model, it computes 

the conditional probability distribution for each data point based on the context of the 

preceding data points. This training process can be computationally demanding, as generating 

a single point requires rerunning the model for each point in the sequence. In order to speed 

it up, a process called teacher forcing is often used, providing the ground truth values (i.e., 
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the sequences that exist in the real world). This drastically improves the speed of the training 

but may lead to the autoregressive model performing significantly worse when the ground 

truth is not available. 

The most impactful application of autoregressive models is language modelling. Large 

Language Models (LLMs) are autoregressive models trained on large bodies of natural text. 

They can then generate realistic and context-specific text. This is nowadays used in AI-

powered chats such as OpenAI ChatGPT or Google Bard. Furthermore, language models are 

used in machine translation and autocompletion. The rise of LLMs has been enabled by the 

existence of large databases of natural text, therefore the application of the same principle 

to other domain areas is dependent upon the existence of similar data databases or successful 

transfer learning.  

Autoregressive models have an issue with the generation of long sequences of samples due 

to the initial algorithm’s inability to parallelise the generation. The speeding up of both the 

training and the generation is currently one of the largest technical hurdles before the 

models. Furthermore, all generative AI models give raise to a range of ethical and security 

concerns. Currently, AI-generated text and images are difficult or impossible to differentiate 

from the human-generated ones, highlighting the need for robust fairness and security 

regulations.  

2.2.4.2 Reinforcement Learning 

Reinforcement Learning (RL) is a training paradigm different to conventional supervised and 

unsupervised learning. Initially inspired by behaviourist psychology, it takes advantage of 

natural human learning based on trial and error and the reward mechanisms. The central 

concepts in reinforcement learning are the agent, the environment, and the reward. The 

agent is the computational entity that has the ability to select a course of action based on the 

policy it has learned. The environment is the set of states that the agent can perceive and 

interact with. Finally, the reward is granted to the agent given the environment reaches a 

state determined by the designer. The training process involves the optimisation of policy 

function to maximise the cumulative reward at the end of training. Fundamentally, the agent 

should be encouraged to explore the environment, trying out unknown strategies, but the 

exploration direction should be biased towards exploiting the more effective strategies. The 

right balance of the reward landscape is known as the exploration-exploitation trade-off. 



 
  
   
 

 

84 

Reinforcement learning algorithms are used in two main areas. The first is games, or problems 

that can be posed as games. The reason is that games usually have a very well-defined ruleset 

and the interactions the player can perform as well as an inherent reward landscape in the 

score. Many games can be automated by allowing the RL algorithm to train semi-

autonomously and allowing it to reach its full potential. The second category is generalised 

control problems. For this type of problem, RL is well suited because while the final goal is 

known (the setpoint), the path to reach it is unknown even to the designers, especially in 

highly dynamic conditions. The same applies to problems such as autonomous driving or 

energy grid balancing.  

The main concern with reinforcement learning is ethical and safety-based, as the agent is 

ultimately rewarded for reaching the desired state, which can potentially lead to its incurring 

costs or damage that the designers would deem unacceptable. This can be alleviated by 

carefully designing the restrictions and rewards, but the trial-and error nature of RL 

algorithms means that the designer can never entirely exclude safety concerns.  

2.2.4.3 Transfer Learning 

It is common when applying machine learning to real-life problems that the training data is 

limited. As a result, methods have been developed to adjust the training so that the algorithm 

trained on one set of data can perform well on another. The common term for such methods 

is transfer learning. Weiss, Koshgoftaar and Wang, the authors of a recent review of transfer 

learning techniques give a real-life example of two people trying to learn piano [77]. One has 

no musical experience, while the other is an expert guitar player. It is reasonable that the 

musically experienced trainee would learn significantly easier, i.e., require fewer training 

examples. The goal of transfer learning is to apply this principle to ML algorithms. In practical 

terms, it is based on training the algorithm on abundant out-of-distribution data and following 

it with a shift to in-distribution data. The task is easier if the target distribution and the original 

training distributions are similar. Object recognition algorithms can be trained on general 

photo datasets, such as ImageNet, for example. The problem arises when distributions are 

disparate, i.e., trying to apply a cat-detecting algorithm to the detection of defect indications 

in guided wave testing.  

The common process for the practical implementation of transfer learning can be summarised 

as follows: 
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1. Take a previously trained deep learning model. 

2. Freeze the trainable parameters, so the knowledge learnt is not lost in the subsequent 

training. 

3. Add new layers on top of the existing model, which are meant to learn the target 

dataset distribution. 

4. Train the new model on the target dataset.  

5. Unfreeze all of the layers, change the learning rate so it is very small. 

6. Train the whole model on the target dataset – this is known as fine tuning. 

Note that points 5 and 6 are not always implemented, and fine tuning needs to be applied 

very carefully, as it can lead to the model “forgetting” the baseline information gained in pre-

training.  

2.2.4.4 Explainability and Fairness 

The final modern direction of research in machine learning are the topics on the intersection 

of the technical challenge and an ethical concern, explainability and fairness. The 

explainability of a machine learning algorithm refers to the user’s ability to determine why 

the output of the model is what it is, while the fairness refers to the equity of the outcomes 

of the model regardless of the characteristics of an individual or a group.  

2.2.4.4.1 Explainability  

AI models, especially deep neural architecture suffer from being black boxes. While in theory 

it is possible to trace how the input data impacts the activations of neurons step by step, in 

practice modern ML architectures have the numbers of parameters making such an approach 

impractical. Simultaneously many domains, especially the safety critical ones, like medicine, 

require the access to the decision-making process. An explainable machine learning model 

builds trust in the users, and it also allows for a more transparent distribution of responsibility. 

Finally, the regulations on the usage of automated decision systems often require the ability 

to explain the decisions.  

The explainability can be introduced into the machine learning model by a range of methods. 

First, the model can be designed as explainable. This is usually done by the selection of a 

human-readable architecture, such as decision trees. The downside of this approach is the 

fact that such architectures are typically less powerful than unexplainable deep learning 

architectures. The second approach involves the utilisation of so-called post-hoc 
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explainability methods. Those include the training of surrogate models – models with 

explainable architectures trained to mimic the predictions of unexplainable models, and using 

techniques such as LIME (Local Interpretable Model-agnostic Explanations) [78] or SHAP 

(Shapley Additive exPlanations) [79]. Finally, the third approach is using the AI-human 

collaboration, where an AI algorithm makes a recommendation or guides the human 

decisionmaker, who has the ability to override and provide feedback to the algorithm.  

2.2.4.4.2 Fairness 

While the author does not expect AI fairness concerns to have any bearing on the research 

presented in this work, it should be considered by every AI practitioner, thus this brief 

discussion is included for the benefit of the reader. 

Fairness in AI is generally the pursuit of equitable results for the user no matter their personal 

characteristics. The lack of fairness in AI has two main reasons. First, the developers of AI hail 

mostly from developed countries and affluent backgrounds, second the existing datasets are 

mostly gathered in so called WEIRD (Western, Educated, Industrialised, Rich, Democratic) 

countries, making any model trained on such datasets naturally inclined to follow cultural 

biases of the data source. The dangers of unfair AI range from the ethical, that one should not 

strive to amplify inequalities to tangible legal and economic risks, as making decisions biased 

against protected characteristics can lead to legal challenges, fines by the regulators or 

reputational damage and public backlash.  

AI fairness is a complex issue to tackle, as it is less of a technical issue and more of a systemic 

problem. However, recently there have been efforts to remove those biases. First, the 

developers must pay attention to the datasets they are using and be aware of the potential 

bias issues in the resultant models. Secondly, if the datasets available are biased and their 

utilisation is necessary, techniques such as resampling and adversarial training [80] can be 

utilised to remove some of the bias from the datasets. Furthermore, there exists a significant 

research push towards the creation of algorithms aware of bias and designed to reduce it 

[81]. Finally, any ML algorithm that has been identified to possibly cause fairness concerns 

should be periodically audited and remedial action must be taken if it is discovered to exhibit 

bias.  

Taken together, AI explainability and fairness are two of the most important pillars upon 

which ML community must build their algorithms if they are to be considered transparent and 
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trustworthy. These values must be a part of ML development especially in fields such as NDT, 

where the safety concerns and the regulatory overhang demand the confidence in the 

algorithms and responsibility for their decisions. 

3 Data Processing and Considerations 

This chapter introduces the data used throughout the rest of the thesis. This is crucial to 

consider, as it is widely accepted that the quality and the processing of the data is a 

prerequisite for training a well-performing ML model. The chapter is split into two sections 

covering the sources of the data – the experimental data received from Guided Ultrasonics 

Ltd., and the simulated data generated using finite element modelling. The machine learning 

models under research use two input modalities, the raw A-scans and images processed 

similarly to Guided Ultrasonics’ processing method. An A-scan is a recording of the amplitude 

of the ultrasonic signal received plotted against the time of reception. This chapter explores 

each input-output data pathway. Furthermore, it explores the problems with the data 

acquisition and processing procedures which need to be overcome for the further 

development of machine learning approaches to guided wave testing. Finally, the resultant 

dataset compositions are presented. 

3.1 Size of Datasets 

This section provides the reference for the size of the datasets, whose characteristics are 

introduced later in the chapter and is meant as a reference for understanding the ML 

development further in the thesis.  

Table 1. Dataset sizes and compositions. 

Dataset Name Sample No Comments 

Simulated Pristine 6000 N/A 

Simulated Defect 6000 N/A 

Simulated Weld 6000 N/A 

Experimental Image Defect 32 Augmented to 160 

Experimental Image Pristine 150 Augmented to 750 

Experimental A-Scan Defect 58 Augmented to 406 

Experimental A-Scan Feature 634 293 welds, 164 supports, 58 defects, 41 
bends, 36 flanges, 28 reverberations, 4 
entrances into earth, 10 unknown. 

Experimental A-Scan Pristine 1800 N/A 
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Table 1 presents the various datasets generated for the purposes of this project. The data 

presented makes clear the difference between the sizes of simulated and real datasets. The 

difference is especially pronounced when considering the defect datasets. That difference is 

the motivating force behind much of the training and machine learning process design 

described in this work. Most of the datasets are independent of each other, but the 

experimental A-scan defect dataset is a subset of experimental A-scan feature dataset. The 

differentiation between the two is introduced, as they are used in two independent ML 

approaches.  

 

3.2 Data Characteristics 

This section deals with the input side of the data used in this project. On the side of the real 

data, it introduces the format of the raw datasets, the numbers available and the algorithms 

used for extracting the useful parts of the file. On the simulated side it introduces the settings 

and parameters used for running the simulations. Finally, it deals with the first stage output 

– raw numerical data, which can be used as an input in further, specialised data processing.  

3.2.1 Real Data 

The real data has been provided by Guided Ultrasonics Ltd. Every file is available in two 

formats – the first is the standard export from WavePro software, coming as an XLSX 

spreadsheet containing some of the metadata and the inspection results, while the second is 

a full representation of the inspection file in a JSON file. It contains significantly more 

information pertaining to the direct outputs of transducers and the richest metadata 

available. Due to the significant difference between the two formats, they are treated 

separately. 

3.2.1.1 Amount of Data 

The most important quality when considering any data source as training data for machine 

learning is its abundance. This is especially pertinent in the context of non-destructive testing, 

as the defective real data is notoriously scarce. The data gathered consisted of files collected 

over 55 inspections performed between the years of 2005 and 2012 on pipe diameters 

ranging from 4 to 36 inches. The inspection range is varied between 2 and 60 metres and most 

inspections were performed in the two-directional mode, effectively resulting in two data 

samples for each inspection file. The inspections were performed by a qualified inspector who 



 
  
   
 

 

89 

also flagged the features of interest and set the DAC curve. The frequencies used varied 

between the inspections, but all are in the 14-60 kHz range, with each inspection conducted 

at 5 different frequencies.  

It is crucial that the data is proven representative of the general inspection problems. To that 

end the range of features present in the dataset was investigated, based on the reports 

prepared by the inspectors on site. The set was found to contain 292 welds, 164 supports, 58 

defects, 41 bends, 36 flanges, 28 reverberations (false echoes) and 4 entrances into earth. It 

also contains 10 signal signatures that the inspector was unable to identify.  

3.2.1.2 Processed Export 

The first format utilised in this work is the processed export format. It is generated by using 

the export function in WavePro software. This work uses a ‘superuser’ version of the export, 

thanks to the collaboration from GUL. The standard export provides only the metadata and 

the graphs generated in the software. Depending on the settings in the software at the time 

of export, it is either traces of the envelopes of T(0, 1) and F(1, 2), the synthetically focused 

unrolled pipe display or both. Importantly, the standard-user export format does not provide 

the numeric data. The export used in this work contains significantly richer data in the format 

introduced further.   

3.2.1.2.1 Anatomy 

The processed export file is an XLSX spreadsheet. It is split into two sections – the metadata 

and information in the first rows followed by the numerical data corresponding to the data 

registered by the inspections.  

The metadata section is split into three subsections. The first is the header containing the 

information about the inspection and the file: the type of export, version of the software used 

for exporting, and Row Offset – the size of the metadata section, allowing for the relatively 

easy access to the numerical data. The second contains the information about the inspection 

and the file: file name, notes added by the inspector, coded type of the ring used, location of 

the inspection, inspection ID, date and time of the inspection and time of the export. The third 

section of the metadata and the one extensively used for the research is the list of features 

marked by the inspector, containing the type of feature, location, length, size (in mV 

transducer output amplitude) and any comments the inspector has made. Two separate lists 

exist, one for the forward direction of the inspection and one for the backward direction.  
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The data section is split into two sections, the forward inspection, and the backward 

inspection. Each of the sections contains columns with the following data: Distance, T(0, 1) 

amplitude of the RF signal, T(0, 1) amplitude of the envelope, F(1, 2) amplitude of the RF 

signal, F(1, 2) amplitude of the envelope. In some of the files there are additional columns 

containing the horizontal and vertical polarisations of the F(1, 2) mode. After the data there 

are columns containing a set of operator-set curves: Noise level, Call level, Weld DAC, Flange 

DAC, and Decay. The latter corresponds to the change in the DAC level between the points. 

This information can be used to distinguish between uniform condition pipes and locally 

corroded or buried pipes. Following the full set of columns for the forward inspection an 

identical set of columns for backward inspection is present.  

3.2.1.2.2 Export Routine 

As the file is a mixture between metadata used to inform the extraction process and the data 

to be extracted, the extraction process is fairly involved. It is therefore split into two 

extraction scripts, one which extracts the raw numerical data for forward and backward 

directions separately and one which processes the parts of data to be used for ML. This 

separation allows for a more flexible approach (i.e., extracting only defect indications, only 

welds, all features, changing the length of the data sample etc.). This text aims to describe 

the process step by step.  

Extraction Routine: 

1. Load the spreadsheet, separating it into text and numeric data using built-in MATLAB 

functions. 

2. Search the text variable for column headers corresponding to relevant data: T(0, 1) 

and F(1, 2) envelope and RF, DAC curve and distance column, relating the exported 

data to real world. Adjust the column numbers by -1, as the data import is narrower 

than text by one column. 

3. As the export file is not standardised and sometimes the forward and backward 

direction are reversed, ensure the order is correct. 

4. As DAC curve exists only for the length of the inspection, reject the data points for 

which there is no corresponding value of DAC curve.  

5. Extract the remaining data into 8 variables T(0, 1)/F(1, 2), envelope/RF, 

forward/backward. 
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6. Normalise the data between -1 and 1. 

7. Save the backward and forward data in separate raw numeric files, with the 

corresponding distance vector.  

Point 6 in the extraction routine is controversial, as it removes the information stored in the 

DAC curve, i.e. the normalised relative strength of the signal in the trace. This is done to 

produce the data in line with what would be available to the automated system at inspection 

time. As the DAC curves are currently set by the operators and the ambition of the system is 

to operate independently, any information injected by human is rejected. This makes the 

problem more difficult, but ensures better generalisation, as DAC information can be re-

injected at any stage.  

Furthermore, this approach departs quite far from what a human inspector is doing – the ML 

algorithm is forced to look at sections of the trace in separation from each other, while a 

human operator would follow a strict protocol, taking into consideration the context, setting 

the DAC curves and using the relative indications of features to classify them. Following such 

approach and designing a multi-agent ML pipeline is a promising research direction, which 

should be explored as part of future work.  

Export routine, based on the extracted file: 

1. Load the metadata from the corresponding original file. 

2. Find the cell ranges containing lists of features of interest – separately for forward and 

backward.  

3. Filter the cell ranges for the relevant data: feature type, location, optionally severity 

(for defect indications). 

4. Filter the cell ranges for the type(s) of features of interest. 

5. Do the following for both forward and backward filtered feature lists:  

a. Save the name of feature and the file name as a unique identifier. 

b. Use the location of the feature to extract part of the data traces containing the 

feature. 

c. Save the extracted window under the label clearly identifying the feature. 

d. Repeat for all remaining features on the list.  

e. Save the ID - data trace pairs as a dataset for the ease of traceability. 



 
  
   
 

 

92 

3.2.1.3 Raw Export 

The second format of the file export is a raw file containing all the available data about the 

exporting process, the inspection, and the data registered by the individual channels. The 

downside of this format is that there is no processing performed on the data prior to the 

export. As guided wave raw inspection data typically contains significant noise, much research 

has been conducted to transform the raw data into useful knowledge. Furthermore, as the 

data in this format is not intended for dissemination, the format has not been designed for 

the ease of use, adding to the complexity of the extraction process.  

3.2.1.3.1 Anatomy 

This form of export is a JSON file. As such, it is a hierarchical structure, which contains 

metadata at each level as well containers of lower-level data. Due to the richness of data 

available in the file, this section focuses on the sections of the file relevant to the export 

routine, affording a cursory overview of the rest of the file.  

The first level of the file contains the information about the exporting time and procedure as 

well as Header and SampleSet containers. The former contains the inspection metadata while 

the latter contains the readings of each channel.  

The header contains information on the inspection ranging from the time and the location to 

the owner of the asset under inspection and inspector notes to calibration results and DACs. 

From the perspective of this work, there are two important sections of the header. The first 

is the Amplitude Balance array variable, corresponding to the relative sensitivities of each 

channel. This value can be used to normalise the channel results to a common baseline. 

Additionally, the number of elements in this array can be used to find the number of channels 

in the ring used during the inspection. The second important section is the data relating to 

the DAC available in the DACSurface container. The DAC is set manually by the inspector, with 

the curve fitted to the points selected. As such, it does not necessarily follow any analytical 

curve. For the purposes of the export, though, it is approximated by an exponentially decay 

dependent on the distance from the position of the transducers and the frequency of the 

inspection. The formula used for the DAC approximation is: 

𝐷𝐴𝐶 =  𝑎𝑒𝑏𝑥+𝑐𝑓+𝑑𝑓𝑥 (64) 

where 𝑎, 𝑏, 𝑐, and 𝑑 are constants set in the file, 𝑓 is the frequency of the inspection in Hz and 

𝑥 is the distance from the transducer in meters. Clearly for the curve to be decaying with 
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distance, the 𝑏 + 𝑑𝑓 component needs to be negative. Furthermore, attenuation increases 

with the frequency, making 𝑑 negative. Typically, distance is the overwhelmingly most 

impactful variable when calculating the decay, therefore it is expected that 𝑏 is negative. Due 

to the experimental nature of the exporting process, the sign is sometimes flipped, which 

needs to be remedied in processing to recreate the intended DAC. 

SampleSet contains all the data registered by the transducers. Structurally it is an n-element 

cell array, where n is the number of times any transducer receives and writes data. The cell 

can further be split into two functional sections – the calibration traces and the inspection 

traces. Only the inspection traces are considered in this work. Each of the traces within 

SampleSet is coupled with its own metadata referring to the specific trace. Most importantly, 

it includes the size of the dead zone (number of points removed from the beginning of the 

trace, corresponding to the area so close to the transducers that the excitation interferes with 

the reception), the frequency at which the inspection took place and the codes for the 

transmitting and the receiving transducers. The latter information is especially crucial, as the 

traces are not recorded in order, thus requiring processing to transform them into standard 

FMC format. Apart from the information used in this work the metadata also contains the 

information about the excitation type, the balancing values on transmission and reception, 

filtering and sampling rate. Finally, it contains Data variable, holding the raw numeric values 

for the inspection. 

3.2.1.3.2 Export Routine 

The main issue when extracting the data from the raw export files is the sheer quantity 

present in each of the files. At maximum, a single file contains the inspection data collected 

at 8 channels in each of two rows and five frequencies (considering the reciprocity) coming 

to a total of 5 ∗ (162 + 16) ∗
1

2
= 680 traces, with the added calibration traces. Secondly, the 

format is not standardised, therefore the export routine must be robust to single vs. double 

directional inspection, variations in the number of channels and calibration traces or even the 

presence or lack of presence of a frequency information sample between inspections at 

different frequencies. As opposed to the processed export format, this export is done in a 

single step, simply saving forward and backward directions separately.  

1. Load the JSON file. 

2. Find the number of channels based on the number of amplitude balance values. 
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3. Check if the file corresponds to a two-directional inspection or a one directional 

inspection: 

To determine this, compare the amplitude balance values number to highest channel number 

in the dataset. If the number is equal, the inspection is one sided, if it is half, it is two sided. 

That is caused by the channel naming convention, for one sided it is A0:An, for two sided it is 

A0:An/2, B0:Bn/2.  

4. If the inspection is two-sided, adjust the channel number to the channel number in 

one ring.  

5. Check the number of unique frequency values in the SampleSet.  

6. Calculate the number of data traces recorded for each centre frequency:  

The data is recorded for each channel pair, plus the traces corresponding to a single channel 

acting both as a transmitter and as a receiver. As such, the number of data traces per 

frequency is (𝑛2 + 𝑛)/2 where n is the number of the channels.  

7. Most of the files contain samples providing no inspection data but serving simply as 

frequency information. Find those samples and save their numbers. Revert to an 

alternate script compensating for the different data structure if these samples are not 

present. Divide the samples into separate frequencies and do the following for each 

frequency. 

8. Create a time vector using the metadata.  

9. Create a set of indexes within a single frequency test corresponding to the direction 

of the inspection under consideration.  

If the data is single directional the indexes are simply 1:nTraces. The situation is more complex 

for the two-directional inspections, as it is necessary to separate the directions from each 

other. This is achieved using the algorithm gradually building the index vector based on the 

number of channels.  

10. Use the indexes generated to separate the data traces generated on ring A and 

received on ring A, generated on ring B and received on ring B and generated on ring 

B and received on ring A.  

The data export format results in a peculiar ordering scheme. For an exemplary 8-channel, 

single direction ring for each channel the order of traces is as follows:  

A1 -> A1, A3, A5, A7, A2, A4, A6, A8 
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This is further complicated in the two-directional scenario, but the index generation algorithm 

separates these data sources. The general ordering scheme is: first all the odd-numbered 

channels, then all the even-numbered channels. Within each category, sort in ascending 

order, as the typical FMC-style data uses channels ordered sequentially. 

11. Remap the traces to FMC convention. 

12. Implement any filtering on the FMC traces, typically a bandpass filter with a passband 

between 10 kHz and 100 kHz. 

13. Sum the matrices up over the transmitters, thus receiving a CSM-type data, which can 

be used in the CSM imaging process described in the previous chapter.  

14. Save each of the matrices, A→A, B→B, and B→A separately including the DAC 

information, pipe schedule and identifier linking it to the original file. The metadata 

saved is necessary for the purposes of the imaging algorithm implementation.  

 

3.2.2 Simulated Data 

The real data supplied by GUL constitutes an invaluable trove of information, allowing for the 

testing of a machine learning algorithm. Depending on the choice of the data sample length, 

the number of pristine examples available to gather from the data is very large; the issue is, 

however, the availability of data containing features (only 634 of them in the dataset). The 

problem is even more acute if the algorithm is to focus on the specific type of a feature, such 

as a defect indication, of which there are 58. While the dataset of 634 features, made more 

valuable by their acquisition in a service environment, may seem large in the context of NDT, 

it pales in comparison to even most rudimentary datasets used for general-purpose machine 

learning. In 2013 Kaggle, a data science community, ran a competition in designing a machine 

learning algorithm that would tell cats from dogs [82]. The organisers provided the 

participants with a training dataset containing 25000 images, balanced between cats and 

dogs, i.e., 12500 of each species. The difference of two orders of magnitude between the 

number of features in the experimental dataset and the number of cats, or three orders of 

magnitude, if just defect indications are to be considered points to the need of acquiring 

significantly more training data. One method is the augmentation of the data by flipping, 

shifting, or cropping the training data, but there are limits to the method and the resulting 

algorithm must be carefully tested for overfitting. To use the dataset size in the order of 
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magnitude of more common ML approaches it has been decided that finite element 

simulations would be used to augment the real dataset.  

The further advantage of simulations is their perfect controllability, thus allowing for quickly 

generating a simple dataset that can be used to test a proof-of-concept machine learning 

algorithm. 

3.2.2.1 Simulation Parameters and Process 

The object to be simulated is a pipe – a hollow cylinder. This basic geometry is to be modified 

by features of interest, selected from the range present in the real data. Once the geometry 

exists, a torsional displacement wave is to be generated from a set of elements on the surface 

of the pipe at a single axial location and displacements are to be recorded at the same 

elements.  

The real inspections have the rough range between 10 m (for extremely attenuative 

conditions) and 50 m (for a pipe in good conditions). The inspection is also typically performed 

in two directions. As is clear from the analysis of the raw export data, the inspection is 

performed by firing each channel in turn and recording the resultant echoes.  

These conditions can be simulated faithfully, but they result in a simulation of a significant 

size, and require multiple simulations to mimic a single inspection, thus limiting the number 

of simulations that can be completed in each timeframe using limited computational 

resources. As a result, a set of simplifications is implemented:  

1. Limiting the size of the simulated pipe: the computational complexity, and therefore 

the time of the execution of the simulation, is proportional to the size of the pipeline, 

as each element state needs to be calculated at each time step. Furthermore, the time 

of the simulation needs to be increased too as it would take longer for the probing 

wave to travel to the end of the inspection range and back. In the real inspection, the 

distance of propagation is directly linked to the attenuation of the wave and thus the 

signal to noise ratio. The simulations do not show the attenuative behaviour and the 

noise is injected artificially, thus the inclusion of the distance does not impact the 

accuracy of simulations. On the other hand, the simulation of a 5 m long pipe instead 

of a 50 m long one allows for around a hundredfold time saving based on the 10-fold 

increase in the number of elements and same increase in the number of time steps. 
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2. Simulating a unidirectional inspection instead of bidirectional. Similarly, to the 

previous point, it is more computationally efficient to simulate two half-length pipes 

than a full-length pipe. As the direction separation is implemented in the real data and 

it is known to perform well enough that reverberations are an issue only for the 

strongest features, running a unidirectional simulation is a simple way to achieve 

around a two-times time saving (assuming doubling the length of the pipe).  

3. Using a plane probing wave instead of individual excitation of the channels. In the real-

world inspection every channel is excited separately, allowing for the collection of full 

matrix data and potential complex processing. This is enabled by the relatively short 

time of a single inspection, defined by the wave travel time. Assuming a rough shear 

wave speed of 3200 m/s and a two-way propagation path of 100 m, the single channel 

excitation and reception takes about 0.03 seconds. For 16 channels the raw 

transmission-reception time would come to 0.48 s. Even accounting for the time 

needed for the reverberations to settle, the difference between a single channel and 

16 is not a crucial consideration. Conversely, for simulated inspections every channel 

firing requires a full run of the simulation, thus limiting the run to a plane wave 

shortens the simulation eightfold. The downside is the loss of the potential to perform 

full-matrix techniques, such as total focusing method. However, as has been 

mentioned in the previous chapter, CSM is a preferred method of synthetic focusing 

method in guided wave testing.  

Considering all the efficiency savings, the simulated pipe is a 5 m long pipe with a transducer 

ring located 1 m away from one of the ends. The end reflections are minimised by utilising 

absorbing boundaries with the length of 0.5 m on either side. The pipe wall thickness is 8 mm, 

and the pipe external diameter is 8 inches. The material of the pipe is steel, with Young’s 

modulus of 210 GPa, shear modulus of 80 GPa and density of 8000 kg/m3. Given those 

material properties the probing shear wave speed in the pipe is 3162.3 m/s, while the 

maximum wave speed, corresponding to the longitudinal wave, is 6055.3 m/s. To ensure full 

coverage of the simulated portion of pipe, the time of the simulated inspection is set to 

0.0285 s, corresponding to the propagation distance of 45 m, providing more than 4-fold 

margin.  
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These physical considerations are implemented into the FEM solver using 8-noded brick 

elements with a single integration point. The dimension of the element (identical in all 

directions) is 2.67 mm. The number has been selected so the thickness of the pipe wall is 

exactly 3 elements, limiting the noise caused by rounding errors. This element size results in 

240 elements around the circumference of the pipe. The total number of elements in a model 

is 8089920. The time step of the model is a direct consequence of the selected element size, 

as it must be smaller than the time taken for the fastest wave (bulk longitudinal wave) to 

propagate across the smallest element in the system. The Courant number selected for the 

set of simulations is 0.3, resulting in the time step of 0.132 s. 

This model undergoes a force excitation at the distance of 1 m from the end of the model. 

The shear circumferential force is excited at 24 nodes (10% of circumference), joined in the 

groups of 3 to mimic GUL’s rings. The direction of the excitation is calculated based on the 

angular position of the node. The excitation directions are saved using the Pogo dofGroup 

functionality, allowing for easy reimplementation of the same direction on reception, 

resulting in the direct output of torsional displacement.  

 

Figure 40. Location of the transducer on the surface of the pipe at the angular position of. 

Pogo requires the excitation (or reception) directions to be expressed in the cartesian 

coordinates. As the intended direction is circumferential, the axial component is always zero. 

For an example transducer presented in Figure 40 the horizontal and vertical excitation 

directions are calculated as follows:  

𝑓(𝑥) = −sin(𝜃)𝐹,   𝑓(𝑦) = cos(𝜃)𝐹 (65) 

where 𝑓(𝑥) is the horizontal displacement, 𝑓(𝑦) is the vertical displacement and 𝐹 is the 

intended tangential force.  
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The excitation shape is a 5-cycled Hann-windowed wavepacket. Every simulation is run at 5 

different frequencies of 17, 21, 25.5, 31 and 35 kHz. These are selected to mimic the 

frequency range and excitation type most commonly used in the real-life inspections.  

Pristine pipe simulations can be used to enhance the negative dataset, but the more pertinent 

issue is the augmentation of the positive dataset. As such, it is necessary to add features into 

the simulation. The simulations use two types of features – an axisymmetric, large weld-type 

feature and a non-axisymmetric small defect-type feature. A weld-type feature is simulated 

using element stretching approach – locally changing the size of the elements to create the 

target geometry. The simulated weld has the parameters of location, axial extent, and height 

of the cap. Mathematically, it is simulated as a quadratic function with the maximum of the 

height of the cap at the axial location and roots at positive and negative half-extent. The 

graphical representation of the parameters of the simulated weld is presented in Figure 41. 

Both the axial extent and the height of the cap are randomised, the former in the range of 20-

40 mm and the latter in the range of 1.6-4.8 mm. The resulting model is axially symmetric.  

 

Figure 41. Geometry of a simulated weld (red) on a pipe (blue). The height of the cap is marked as h, and the axial span is 
marked as d. 

The defect is simulated as a small through thickness circumferential crack. In the simulation 

it is achieved by disjoining adjacent elements, effectively creating a zero-length crack. While 

this type of a defect is not realistic, the size of the reflection is influenced solely by the change 

in cross-sectional area percentage. With the defect generated as a through-thickness crack 

this variable is easily controlled, as the change in cross sectional area percentage is the same 

as the span of the crack expressed as the percentage of the circumference. During the 
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simulation defects of CSC between 3 and 18% were simulated. Real defects are typically 

corrosion-related; therefore, they have spans in all three dimensions.  In the course of the 

project the simulated defects are simplified to zero-length change in CSC as the detection 

resolution of the wave is limited by the wavelength. For T(0, 1) wave in steel at the frequency 

of 31 kHz, the wavelength is around 10 cm. While the dimensions of the feature impact the 

reflected wave, the effect is to be very small in the context of this project, motivating the 

move to a simpler and easier to control model. 

3.2.2.2 Anatomy 

The output of the simulations is easily controlled and depending on the intended use case 

two versions are used. Generally, the output format is a POGO-HIST file, a structured format 

containing, at the first level, the data about the simulation: time step, length of simulation 

and the data trace. Furthermore, the user can include self-defined metadata which is defined 

in the input file and maintained in all outputs once the model has been run. In this work it is 

used to store information such as the locations and sizes of defects and welds, the length of 

the pipe, the location of the ring, length, and presence of absorbing boundaries as well as any 

information that could be useful at the stage of data processing or analysis. This richness of 

the data contained in POGO-HIST provides full traceability of simulations. Both the simulation 

data and the metadata are used in the output data format regardless of the simulation output 

data. 

The first output form, exporting essentially raw data uses the dofGroup described in the 

previous section to read the tangential displacement of the nodes corresponding to each of 

the transducers individually. This output format corresponds to the unprocessed output of 

piezoelectric transducers used in torsional shear configuration. The output format is 

therefore a matrix of (nTransducers, nSamples) size.  

The second output format implements the basic data processing within Pogo. dofGroups 

functionality can be used to directly calculate the mode amplitudes. This is since mode 

amplitudes are simply transducer readings weighted by the mode shape. For T(0, 1) the mode 

shape is a constant, thus the mode amplitude is simply a summation of all transducer 

readings. For flexural modes, the weights correspond to the mode shape, which is a sinusoid 

with the number of periods around the circumference equal to mode circumferential order 

(F(1, 2) is one, F(2, 2), two etc.). Due to the Nyquist’s criterion, the maximum order of the 
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mode that can be extracted is half of the number of transducers. In practical terms, if higher 

order flexural modes are required, this work uses the spatial Fourier transform method to 

apply mode extraction in post-processing. Considering that, this output format has the shape 

of (nModes, nSamples), where nModes is typically 1 or 2.  

3.2.3 Common Output Formats 

As a final note on data characteristics, to homogenise the processing between the real and 

simulated data, it is necessary to introduce the common data formats. It is possible to draw 

the parallels at this point. The Processed Export GUL format provides the T(0, 1) and F(1, 2), 

which corresponds directly to the simulation output, where dofGroups are used to extract 

the first two modes. Similarly, the Raw JSON export output format is effectively a CSM output 

– a record of the tangential displacement of each transducer. This format is the same as the 

first, unprocessed version of the simulations. 

The two data formats can be separated at this point, as they are used for separate approaches 

– the T(0, 1) and F(1, 2) can be used directly as inputs to the machine learning algorithm. The 

higher order modes, which can be extracted from CSM data can be used for imaging the pipe. 

For each of the approaches, the processing is vastly different, thus much of the subsequent 

work is split between the two. 

3.3 Data Processing 

The raw data extracted from either the simulations or the inspection records requires 

processing. The exact type and amount of processing required is dependent on the source 

and the intended use of the data. Clearly, the processed inspection data requires less input 

than the raw data. Furthermore, the simulated and real data require different processing due 

to the differing desired results; generally speaking, the inspection data is noisy and difficult 

to interpret. As a result, it is standard to filter it, so the features are easier for the inspector 

to identify. Conversely, if a simulation is well set up, there are no sources of noise present. As 

a result, any non-zero signal is certain to come from a feature of interest. A detection task on 

such data is trivial, thus making it an extremely low-value training set for ML. Hence, the goal 

of processing the simulated data is to make it less clean, ideally injecting the noise to the level 

of a processed real data.  
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3.3.1 Lower-Order Modes Data 

The lower order modes data is significantly simpler to process than the full data. That is mostly 

caused by the pre-processing of the inspection export which uses a finely-honed GUL process. 

As such, the main processing methods are matching the amplitudes and injecting the noise 

into the simulations.   

3.3.1.1 Attenuation Compensation 

The primary difference between the real and simulated datasets is the lack of attenuation in 

the simulations. Fortunately, this issue is easily remedied by the application of DACs to the 

real data. As DAC is a curve that tracks the received amplitude of a reference reflector as a 

function of distance, it is enough to pointwise divide the mode amplitudes by DAC to correct 

the signals. 

𝑇(0, 1)𝑛𝑜𝑟𝑚(𝑥) =
𝑇(0,1)(𝑥)

𝐷𝐴𝐶(𝑥)
, 𝐹(1, 2)𝑛𝑜𝑟𝑚(𝑥) =

𝐹(1, 2)(𝑥)

𝐷𝐴𝐶(𝑥)
(66) 

3.3.1.2 Noise Injection 

The second main difference between the real and the simulated data is the noiselessness of 

the simulations. There are many strategies for injecting the noise into the data either at the 

stage of the simulation or in postprocessing. Crucially, it is important for the injected noise to 

have the same characteristics as the noise in the real data, meaning a mixture of coherent 

and incoherent noise. Coherent noise is the noise inherent in the inspection process. Its 

amplitude is connected to the signal amplitude and falls with attenuation. It is typically caused 

by the physical conditions of the pipe, and the lack of balance in the transducers which could, 

for example, cause additional modes to be generated and measured in the signals. 

Importantly, it is impossible to remove it by averaging. Incoherent noise is typically caused by 

the electronic interference. It is generally easy to add, as it can simply be considered a band-

limited white noise. The coherent noise though requires a more involved approach.  

This work uses the procedure described by Mariani, Heinlein and Cawley [83]. The approach 

is based on unbalancing of the transducers. The amplitude of each transducer is scaled by a 

value between 0.5 and 1.5. The same values are used on reception. This approach adds 

coherent noise, mimicking the issue in the inspection record.   
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Figure 42. Balanced transducer amplitude multiplication factors (Case 1) and two possible unbalancing factors which can 
result from the method used in this work (Cases 2 and 3). Reproduced from [83]. 

3.3.2 Imaging 

The data processing for imaging is primarily focused on the experimental data and designed 

to remove the noise from the signal. Compared to lower-order data, synthetically focused 

data is significantly more noise-prone, due to both the higher complexity of processing 

involved, calling for many assumptions (such as constant wave speed used for 

backpropagation, which in fact can change with factors such as temperature) and the fact 

that the experimental data used for imaging is only processed with a bandpass filter. 

Consequently, efforts are made to match the experimental data points’ characteristics to 

those of the processed data. Most importantly, the lower-order data export format is split 

into forward and backward directions. For raw export this processing needs to be 

implemented. 

3.3.2.1 Direction Control 

Direction control is a crucial processing method. While the previous chapter introduced the 

mathematical and physical basis for the direction control, this section provides the practical 

rationale for its utilisation. 
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Figure 43. Pipe under bidirectional guided wave test. Two features (in red) are present, a weld separated from the inspection 
location (in black) by distance x and a defect separated by the distance y. 

Consider a pipe under inspection as depicted in Figure 43. The features present on two sides 

of the transducer ring are separated from the ring by very similar distances. As such, with no 

direction control applied, the image resulting from the inspection is presented on the left in 

Figure 44. With the features located so close to each other, their separation and identification 

is made significantly harder.  

 

Figure 44. Image from the inspection of pipe presented in Figure 43 with no direction control implemented (left), compared 
to the image with direction control implemented (right). 

Thus, the direction control is important to the data processing for the purposes of machine 

learning in two ways. First, it ensures there is no overlapping between two features existing 

in different directions improving the quality on the sample basis. Second, it makes more data 

available for creating negative (no feature) datasets. Assume drawing the negative samples 

from the images presented in Figure 44. The pristine span of the pipe before the features is 

effectively doubled by separating the directions.  
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3.3.2.2 T(0, 1) Weighting 

After the directions of the signal are separated and the image is generated using the CSM 

approach described, an extra step is taken to improve the signal to noise ratio by weighting 

the amplitude of the image by a factor proportional to the T(0, 1) amplitude at the same axial 

distance.  

The rationale behind the processing is:  

1. T(0, 1) signal is less vulnerable to noise, as it is typically the highest amplitude of all 

the modes, and it can be extracted with minimal processing involved by summing up 

the circumferential displacements of all transducers.  

2. T(0, 1) amplitude as a percentage of full reflection at axial location 𝑥 corresponds 

directly to the change in cross-sectional area (pipe wall thickness loss) at that location. 

3. The focused image of the pipe should be the map of the thickness change.  

4. Thus, T(0, 1) amplitude at a location 𝑥 is proportional to the sum of amplitudes of 

pixels in the image at the corresponding location.  

Effectively, to perform this processing, the envelope of T(0, 1) signal is normalised between 0 

and 1 within the inspection range. Assuming the image is a 2-D matrix 𝐼 of [𝑥𝑛, 𝑦𝑛] shape, 

while the T(0, 1) trace is a vector of 𝑥𝑛,  length, the normalisation values are calculated as: 

𝑛𝑜𝑟𝑚(𝑥) =
𝑇(0,1)(𝑥)

∑ 𝐼(𝑥, 𝑦)𝑦𝑛 
𝑦=0

(67) 

The resulting vector has the length of 𝑥𝑛, therefore the normalisation can be applied to the 

image by element-wise multiplying the vector by the image.  

3.4 Data Issues 

The introduction to the data used in this work is not complete without discussing the 

problems and limitations of the datasets, either the ones generated from FE or the 

experimental ones.  

3.4.1 Real Data 

The main limitation of the real dataset is the low amount of the data available. This is not, 

however, the focus of this section, which instead deals with the qualitative limitations of the 

data. These are typically not linked to the quality of the data itself, the noisiness or 

mislabelling, which are a common issue associated with public datasets, but the lack of 

standardisation and the processing methods hidden due to commercial interests.  
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3.4.1.1 Complex and Proprietary Processing 

Unequivocally, the best data available for guided wave inspection are the GUL unrolled pipe 

displays. They are commonly the main tool used by the inspectors to localise and identify the 

feature of interest. While the imaging algorithms in their raw research form are available, the 

implementation leading to the best-in-class results is a result of a long and involved R&D 

process. Such a processing algorithm is obviously commercially valuable and thus it cannot be 

released outside of the company. The consequence is that every researcher working on ML 

for Guided Wave NDT and wishing to use images as the input data (which is the first instinct 

for much of the ML community) is bound to either develop their own imaging routine or use 

the one available to them. This, in turn, necessarily leads to the immense difficulty in 

comparing the quality of ML approaches between researchers, as any difference in the quality 

may be caused by either the pre-processing of the data or by the ML itself. Ideally, this issue 

would be solved by creating processing-as-a-service facility available to ML researchers, which 

would ensure the equal playing field as far as the access to the data is concerned. The second-

best approach would involve creating a testing dataset, available at various levels of 

processing, so that an ML approach developed by an independent researcher can be validated 

against a known test. 

3.4.1.2 Lack of Common Export Format 

The second problem standing in the way of ML for NDT research from the side of industrial 

data is the lack of the common data storage and export format. This essentially necessitates 

the development of the full data pipeline matched to each source. While it has not been a 

huge hinderance in this work, as a singular data source was used, it would undoubtedly impact 

any attempt to create ML approaches based on data fusion or generalised across NDT 

modalities. Furthermore, the lack of the common file exchange format makes the data 

inherently less trustworthy, as it is not necessarily traceable. While some work is done on 

establishing the common exchange format [84], the problem essentially comes down to no 

organisation having strong commercial interest in making their data interoperable with 

anyone else. Conversely, the proprietary nature of the data format locks the customers into 

the hardware-software-training-support sales pipeline. While a similar issue has been 

recognised in the medical data processing and sharing, the medical field has the size and the 

public attention that forces the regulators and industry bodies to act in the interest of the 
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patients, inadvertently making the data better suited for research. Lack of such characteristics 

of the NDT field coupled with the commercial organisation being the end user successfully 

prevents a parallel development.  

3.4.2 Simulations 

Opposite to the real data, the problems with the simulations are typically not related to the 

standardisation, as this can be tightly controlled using finite element software. They are, 

however, typically centred around the quality of the simulations, namely the lack in the ability 

to mimic certain characteristics of the real-world data. Such a category of issues may well be 

solvable in research setting where a limited number of simulations needs to be produced, but 

are difficult to generalise to parametric, large-scale generation, necessary for building ML 

datasets. The simulations were however used extensively in this work to develop proof of 

concept ML algorithms. Low performance of such models would point to their lack of ability 

to generally develop the understanding of GWT data and thus disqualify them from further 

research.  

3.4.2.1 Simulating Complex Features 

Two types of a feature are simulated in this work. The first one roughly corresponds to a 

defect and the second one roughly corresponds to a weld. Those are some of the most 

common features in the real dataset. The selection of welds is motivated by two factors: they 

are the most prevalent feature present in the real dataset and their geometry is simple, with 

the weld being a smooth and symmetrical local increase in the thickness. The defects are 

selected, as their detection is the goal of NDE making their omission in the simulated set a 

rather unreasonable proposition. However, looking at the composition of the real feature set, 

this approach to simulations fails to account for a range of other features. The second most 

common feature category are supports. Those, however, are quite a broad category, primarily 

split into simple supports (pipe resting on the support), welded supports, where a pipe is 

welded to the support structure and clamped supports, where screws, springs or hydraulic 

mechanism is applied to couple the support to the pipe. In each of those categories a wide 

range of geometries and sizes of the supports is available.  

This brief description of the extensive range of the supports available elucidates the issue 

with their simulation. The specific wave interaction with the support is a very complex 

phenomenon, requiring an accurate modelling of the geometry of the support as well as its 
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coupling with the main pipe. As such, every support to be simulated would need to be 

designed and validated by hand, making the generation of a dataset large and diverse enough 

for machine learning purposes an impossibility.  

The second point that needs to be made on supports is the method of identifying this type of 

a feature employed by the inspectors. Supports are typically present in the guided wave 

inspection trace as weak non-axisymmetric features. While not necessarily difficult to spot, 

they are remarkably similar to defect signatures. The supports are distinguished from defects 

by their behaviour at various frequencies – the strength of their reflection typically changes 

with the changing inspection frequency. Secondly, when utilising the image view of the pipe 

allowing for the localisation of the signatures, the supports are usually located at the bottom 

of the pipe. The combination of the two characteristics allows the inspector to identify 

supports with good confidence. In conclusion, the simulation of support geometry and 

coupling is not feasible in the numbers required for machine learning, however, this could be 

alleviated by designing a feature of the simulation that exhibits similar frequency dependency 

and is located at the bottom of the pipe. While this has not proven necessary for this work it 

is a clear direction of development, should the need arise.  

3.4.2.2 Simulating Realistic Noise Sources 

The real world is very complex and there is a variety of noise sources that impact the 

predictive capability of the guided wave inspection. This work uses the coherent noise 

injection method that provides a good approximation of the coherent noise from a relatively 

clean pipe. There are, however, factors interfering with the signal that are significantly more 

difficult to simulate or more localised. The common ones are highly attenuative coatings, the 

environment of the pipe (i.e., it being buried or underwater), the impact of temperature 

variation and general corrosion. The main feature of those noise sources to distinguish them 

from the result of transducer unbalancing is their local character and potentially very high 

amplitude compared to signal. These two issues have been alleviated in this work by first, 

using relatively small defect indications, hence artificially depressing the SNR for defect 

indications, and secondly by using short snapshots of the trace disconnected from the broader 

context of the inspection, thus making every source of noise ‘global’ as far as the ML training 

is concerned. The ability to simulate realistic noise sources, however, would be of immense 
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value to the future development of ML approaches to non-destructive testing, as it would 

enable the joining of local and global (inspection-wide) context. 

3.5 Datasets Generated 

Having introduced the data sources, characteristics, processing, the issues and the solutions, 

the final section of this chapter introduces the processed datasets upon which the ML 

algorithm can be trained. This section also provides the examples of the data from each 

dataset for the easy comparison of the simulated data to real. 

3.5.1 Real Dataset 

There are two real datasets generated, one is the result of extracting the raw export and 

running the imaging routine based on the common source method. The images are then 

manually labelled and segmented to generate the dataset. This dataset is divided only 

between the defect indications (positive class) and pristine (including non-defect features). 

The other dataset is generated from the processed Wavepro exports. This dataset is labelled 

and segmented automatically, with all the features labelled individually and fully traceable.  

3.5.1.1 Imaging 

The dataset containing the synthetically focused images of the defect indications in the 

experimental data has been created by first running the CSM imaging algorithm on the raw 

transducer data and applying the direction control. The result, presented in Figure 45 is an 

image similar to the ones typically analysed by the inspectors.  

 

Figure 45. A Synthetically focused image of a pipe presented on a log scale with reference to the flange signal. 

This image has the size of 8304 by 45 pixels. This is a very large size, which would require an 

extremely long time for both training and inference of the neural network. To rectify the issue, 
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as well as to create as many training samples as possible from the limited dataset available, 

the image is segmented into 128-sample long windows (corresponding roughly to 1 m of two-

way T(0, 1) wave propagation). An example of such a sample containing a defect indication is 

presented in Figure 46. As the raw export file contains the data corresponding to the range of 

probing frequencies, the image generated at the frequencies are joined, making the dataset 

a 4-D array of shape [nImageSamples, 128, 45, nFreqs]. 

 

Figure 46. An image of a defect indication drawn from the pipe imaged in Figure 45, located at around 18.5 m axially. 

The negative (pristine) samples are drawn from the data not containing any feature, which 

makes them quite abundant. The significant limitation of the data is the fact that there are 

only 32 positive samples available. It is important to note that there are more defect 

indications available as A-scans, as the raw exports are more difficult to work with and not all 

can be imaged to sufficient quality using the method described. The dataset has therefore 

been augmented by random shifting of the window, resulting in 160 defect indications in the 

augmented dataset (x5 augmentation). 

To implement transfer learning, it is necessary to supplement the data with simulations. 

Similar processing has been performed on the simulated data to that of the experimental 

data. A comparison between the simulated and the real images is presented in Figure 47. 

Clearly, the simulated defect indication is significantly sharper and the whole image is less 

noisy, despite the efforts to inject the noise into the simulation. 
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Figure 47. The comparison between an image of a simulated defect indication (left) and a real pitting-type defect indication 
(right). 

3.5.1.2 A-Scan 

The second version of the experimental dataset is composed of the time traces coming from 

the real inspections. As discussed earlier in the chapter, the data is drawn directly from the 

Wavepro export. To keep the A-scan and the image datasets comparable, the length of the 

trace is set to 128 samples. Each trace corresponds directly to a single feature or a pristine 

element of the trace. The features are fully traceable by retaining a unique file identifier and 

a unique feature identifier within the file. As the identifiers are separate for different types of 

features, it is immediately obvious upon the inspection of the dataset which features are 

present, or which have been classified correctly and incorrectly.  

As opposed to the images, the processed exports are performed at a single but varying 

frequency, with the inspection frequency information not contained in the format. This is due 

to the data exported at a single frequency being dependent on the setting in the software at 

the moment of export. As such, the dataset is considered probing-frequency-agnostic. Figure 

48 presents the examples of the data contained in the dataset. Each trace in the dataset is 

split between the T(0, 1) mode and F(1, 2) mode. Within each of those, both RF and envelope 

signals are retained. The dataset is thus of the shape [nTraces, 128, 2, 2].  
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Figure 48. The examples of data contained in the A-scans dataset. A defect indication (left) and a part of pristine trace (right). 
RF trace is shown as the dotted line while envelope of the signal is traced in solid line.  

The significant difference in this dataset, compared to the images, is its significantly higher 

quality, both trace-wise – the traces are processed using industry-standard techniques, and 

only windowed using the original algorithm, and dataset-wise – the export files are 

completely usable, thus, even comparing the number of defect indications, the total is 58, 

compared to the imaging positive dataset size of 32. This dataset too undergoes 

augmentation by shifting the window resulting in the dataset size of 406 (x7 augmentation). 

Finally, the supplementation of this dataset uses the data from the same simulations as the 

imaging dataset. In this case they are not fully processed into images, instead T(0, 1) and  

F(1, 2) modes are extracted. Figure 49 shows the comparison between the real and the 

simulated data.  
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Figure 49. Examples of the data samples used for training the ML models. (a) Experimental pristine, (b) simulated pristine, (c) 
experimental defect indication, (d) simulated defect indication, (e) experimental weld, (f) simulated weld. 

3.5.2 Simulated Dataset 

The real datasets are supplemented by the simulations. As the previous sections introduced 

the examples from the simulated datasets as well as the detailed process for generating the 

simulations, this section introduces the datasets generated, their sizes and the types of 

features represented. 
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3.5.2.1 Simulated Data Range 

As mentioned, the features simulated were welds and defects. At first, both types of features 

were simulated in a single model, which was then segmented into the traces or images, as 

required by the machine learning algorithm. However, as the need for larger datasets grew, 

the process was streamlined to simulating a single feature in a simulation. This has the 

advantage of simplifying the description of the feature (size, location, type etc.). Thus, the 

three main datasets used are composed of the various sizes of welds, various size of defects 

and pristine traces. Each of the datasets contains 6000 traces. Depending on the application 

and the algorithm, the size and selection of the dataset used for the training is varied. 

Furthermore, some special-use simulated datasets were generated, for example a dataset 

with zero, one or two defect indications designed for the training of a conditional generative 

adversarial network. Early in the project a data generation pipeline was developed allowing 

for mostly hands-off generation of large number of parametric simulations. When a new 

dataset was needed, only a modification of the model generation script was necessary, 

followed by the time needed for the simulation. In the case of a simulation described in this 

section, the single simulation is completed in around 1 minute, using a single Nvidia GeForce 

RTX2080Ti GPU.   
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4 Machine Learning Design 

This chapter discusses the design decisions made when building the machine learning 

algorithm, from the metrics to the architectures and the training design. It builds heavily on 

the theoretical background, but it also introduces some of the finer points of the selected 

architectures and rationales for the specific design decisions. It introduces the novel approach 

to transfer learning based on the combination of simulated and real multimodal data.  

4.1 Metrics 

This section introduces the metrics used for the evaluation of ML models or indeed any 

decision-making processes. Subsequently, the selection of the specific metrics for the 

evaluation of the models developed in this work are discussed. This decision is critical for the 

success of the resulting ML model. Typically, the metrics used are specific to the class of 

problems rather than to the type of an ML algorithm used, thus in this work their selection is 

strongly motivated by the nature of guided wave inspection – a screening inspection expected 

to take in large amounts of data and intended to identify locations for follow-up inspection in 

a safety-critical environment.  

4.1.1 Basic Metrics 

The bases for all the following metrics are the concepts of true positives (TP), true negatives 

(TN), false positives (FP) and false negatives (FN). For the following explanation, let us define 

the defect indication as a sample drawn from the positive class and a pristine trace as a sample 

from the negative class. The decision-making process under consideration must decide 

between the two classes. As such, we can summarise the problem and possible solutions in 

Table 2. 
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Table 2. Confusion matrix for a decision process between a defective and non-defective sample. The columns correspond to 
different states of reality and the rows correspond to different predictions. 

True Positive (TP): 
Reality: The sample is defective 
Prediction: A defect indication is called 
Outcome: The unit under test is scheduled 
for further testing, prospective maintenance 
or replacement, breakdown averted 

False Positive (FP): 
Reality: The sample is not defective 
Prediction: A defect indication is called 
Outcome: The unit is unnecessarily tested, 
replaced or maintained 
 

False Negative (FN): 
Reality: The sample is defective 
Prediction: A defect indication is not called 
Outcome: The unit suffers breakdown in 
service 

True Negative (TN): 
Reality: The sample is not defective 
Prediction: A defect indication is not called 
Outcome: Normal operation continues 
without interruption 

 

Generally, the predictions can be grouped into true (correct) and false (incorrect). Every 

decision algorithm aims to maximise the true predictions and minimise the false ones. 

However, for most classifiers the output is a value between 0 and 1, with the decision 

threshold selected by the algorithm designer or user. If the output for a given sample is above 

the decision threshold, the sample is classified as positive, when below, it is negative.  As such, 

when the decision threshold is reduced, the algorithm is weighted towards classifying more 

samples as positive (i.e., minimising false negatives while increasing false positives) with the 

reverse effect when increasing the threshold. The confusion matrix (a layout similar to Table 

2, containing the counts of TP, TN, FP, and FN) calculated for every possible threshold is the 

full and unbiased metric of the performance of the algorithm. However, making comparisons 

on the performances of different algorithms based on the full size of this matrix, i.e. 

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑒𝑠)2 ∗ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠), would be rather challenging. 

Therefore, metrics summarising the confusion matrix are preferably used. 

4.1.2 Accuracy 

Accuracy is defined as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(68) 

It is the most basic and naturally understandable metric, and it does a good job for many 

tasks. Consider, however, a scenario in which the algorithm is applied to 100 samples, of 

which 90 are pristine and 10 are defective. The algorithm classifies one defect indication 

correctly and misses the rest of them, while being faultless on the pristine samples. Clearly 
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this is a very poor defect indication detector that misses 90% of the defect indications. In this 

scenario TP = 1, TN = 90, FP = 0, FN = 9, the accuracy is therefore calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1 + 90

1 + 90 + 0 + 9
=

91

100
= 91%, (69) 

giving the incorrect impression that the model performs well. The cause of that behaviour is 

the imbalance between the positive and negative classes, which accuracy is very vulnerable 

to. This work is concerned with such an imbalanced dataset, leading to the need for metrics 

invulnerable to the problem.  

4.1.3 Precision and Recall 

Precision is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(70) 

It is therefore a measure of how likely the positive prediction is to correspond to a positive 

reality. A model that produces no false positives has the precision of 1.  

Recall is defined as:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(71) 

It therefore answers the question of “What proportion of positives are true positives?”.  

Referring to the example presented in the description of accuracy, the metrics would be:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

1 + 0
= 100% (72) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
1

1 + 9
= 10% (73) 

Maximising precision requires the minimisation of false positives, while maximising recall calls 

for minimising false negatives. Clearly the two have conflicting imperatives, thus the two 

metrics must be considered together, as simply classifying every sample as positive results in 

100% recall while classifying a single positive sample correctly (and no negative samples as 

positive) gives 100% precision.  

A metric that combines both precision and recall is the F1 score. It is defined as a harmonic 

mean of the two:  

𝐹1 =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(74) 
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This metric combines precision and recall into a single number. They are, however, not 

necessarily equally important. In NDT and in screening methods in particular, high recall, i.e., 

not missing defect indications, is more important than not calling false positives. Secondly, 

the F1 score varies for the same algorithm depending on the selected classification threshold. 

Due to that issue, a set of metrics invariant to the selection threshold have been developed.  

4.1.4 Area Under Precision-Recall and Receiver Operating Curves 

As discussed, precision and recall values depend on the selected detection threshold. As such, 

it is possible to calculate their values at different thresholds and plot the values on a graph, 

known as the precision-recall curve (PRC). A similar approach can be used for a different set 

of values – true positive rate (TPR) and false positive rate (FPR). True positive rate is 

synonymous to recall and defined as:  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(75) 

False Positive Rate is defined as:  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(76) 

The plot of TPR vs. FPR at various detection thresholds is known as Receiver Operating Curve 

(ROC).  

 

Figure 50. Schematic depiction of Precision-Recall Curves (a) and Receiver Operating Curves (b). 

Figure 50 presents an example of the PRC and ROC. For PRC the perfect classifier is 

represented by the point in the top right corner – with precision and recall both equal to 1. 
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PRC is not necessarily monotonic, as exemplified by the random classifier graph. For ROC the 

true positive rate increases monotonically with false positive rate, and the speed of the 

increase corresponds to the quality of the classifier, with the perfect classifier corresponding 

to the curve which includes point (0, 1), i.e., 0 FPR with 1 TPR. The ROC is very human-

readable, and it provides an immediate overview of the level of performance of the classifier 

and the type of the FPR/TPR trade-offs it tends to make when the decision threshold changes. 

Its downside is the lack of a numerical output, making the comparison between large numbers 

of models difficult. To rectify this issue, area under ROC (AUROC) can be calculated. While this 

metric loses some of the trade-off information, it is nonetheless useful, and it is considered 

the gold standard for model assessment. 

Compared to the ROC, PRC is used in rarer instances, as it is sensitive to the decision of which 

class is to be defined as positive and which as negative. This work utilised both curves for 

some of the experiments, but the results for PRC and ROC closely tracked each other and 

given this redundancy for much of the work ROC is utilised.   

One of the major draws of AUROC is its detection threshold invariance, allowing for the 

comparison of models ‘as such’. However, in the NDT context the goal is the successful 

classification of all the defect indications, with less importance attached to the avoidance of 

false calls, in line with the relative cost of either mistake. Furthermore, false calls can be 

checked with other methods, such as conventional UT, making them a lower priority. In fact, 

in guided wave testing the calls are typically verified with a follow-up inspection. This has 

motivated the development of a bespoke performance measure for the ML models, designed 

for NDT.  

4.1.5 False Positive Rate at 100% True Positive Rate 

As the machine learning algorithms in guided wave testing are meant as a method of assisting 

the inspectors by flagging all the points at which the defect indications may occur, it is a 

requirement for an algorithm that none of the defect indications are missed. The false 

positives are a secondary concern as all the positive indications are assessed by the human 

operator. Thus, the false calls can be filtered out before expensive repairs are allowed to take 

place.  

Given that the non-negotiable characteristic of any ML algorithm utilised in this way would 

produce virtually zero false negatives, and that the number of false negatives vs. false 
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positives can be manipulated by varying the detection threshold, a measure of the quality of 

the algorithm is the false positive rate calculated at the threshold at which none of the 

positives are missed. This metric is termed FPR@100%TPR. 

The advantage of this metric is its immediate industrial usefulness, as it directly gives the 

number of the false positives that need to be investigated, which has a clear equivalent cost 

in the inspector’s labour.  

A caveat of the metric is that the threshold for not missing any defect indications is 

determined by the testing set, thus an overly easy or difficult to classify dataset inevitably 

skews the results. This problem can be addressed by extensive cross-validation using a variety 

of training and testing set combinations. Secondly, the metric threshold necessarily needs to 

be relaxed from 100% in the case of larger datasets, as even under the normal distribution 

conditions the metric-breaking outliers exist, due to the probability density function never 

reaching zero.  

Furthermore, the metric does not allow any flexibility by imposing the hard limit of zero false 

negatives. As a result, a single very difficult-to-classify positive sample may have a significant 

impact on the metric’s value. This problem is most acute if a positive sample is actually a 

negative one being mislabelled. As such, this metric needs to be utilised carefully, ideally by 

looking for patterns across the various testing sets and carefully investigating positive 

misclassified samples. Such an approach has been adopted in this work. Furthermore, in order 

to maintain the statistical meaning of the metric, the actual TPR used is 99.7% rather than 

100% in line with the three-sigma principle.  

4.1.6 Metrics Selection 

Accounting for the considerations presented in this section, the metrics selected for the 

appraisal of the machine learning models are divided into the category used for manual, 

qualitative evaluations of a specific model and another one used for large-scale statistical 

comparisons between models.  

The first category encourages using the richest data possible, as it is examined by hand. The 

ROC curve is chosen, as it is easily readable, and provides the detail of the classification 

performance at the single sample-level granularity.  

The category used for the statistical analysis requires a numerical output. At various stages of 

the research, different metrics are used. AUROC is used in all contexts, providing a useful 
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overview and a comparative metric. At the initial stages AUPRC is used in addition to AUROC 

to check for any discrepancies. Similarly, accuracy is used to provide a quick, intuitive 

overview of the quality of the model. Once the high-performing model is identified, 

FPR@100%TPR is used to provide a metric that has industrial relevance and is sensitive 

enough to show a tangible difference between various very high-performing models.  

4.2 Architectures 

This section deals with perhaps the most complex element of the machine learning model 

design – the selection and development of the architecture. As this work is mostly focused on 

the proof-of-concept and as no architectures have reached industry-standard level in NDT, it 

takes a broad view in utilising the well-established architectures and modifying them to suit 

the problem. The modifications do not involve structured hyperparameter tuning studies or 

large-scale architecture comparisons, as the primary requirement for this type of work is 

major computational resources and the typical outcome is marginally better performance. 

While valuable, such undertakings are better-suited to implementation work in the industrial 

setting than to the academia. The architectures implemented are Multilayer Perceptron 

(MLP) – the first implementation of deep learning, VGG-Net – a representative convolutional 

neural network, and U-Net – a modern convolutional neural network, considered a gold 

standard in many image-based applications. This section does not present the comparison 

between them, but the rationale for their selection and the modifications made to increase 

their suitability for the GWT question.  

4.2.1 Multilayer Perceptron 

Multilayer perceptron [85] is a neural network whose origins can be traced to the beginning 

of the machine learning as a discipline. It is a generalisation of Rosenblatt’s perceptron [35] 

using multiple neuron layers and introducing non-linear activation functions. The 

mathematical operation of the neurons, activation functions and the training process for such 

an architecture is introduced in more detail in the Theoretical Background. 

MLP is used in this work as a benchmark scenario, enabling the assessment of whether the 

architecture selection has any impact on the performance of the model and thus addressing 

the common question of whether the machine learning approach provides any improvement 

over the alternative methods.  
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The input data to MLP in this work was limited to the A-scans. The exclusion of artificially-

focused (C-scan) data is motivated by the very high computational requirements of training a 

fully-connected network when compared to CNN when they are used on higher-dimensional 

image-type data. Still, the A-scan as used in this work is 3-dimensional data, albeit with two 

very small dimensions (T(0, 1)/F(1, 2) and envelope/RF). As fully connected layers are not 

suited to multidimensional data, the data first needs to be flattened. The flattening process 

disjoints the values of various modes for the same point; from the perspective of the model, 

the values of T(0, 1) and F(1, 2) referring to a same temporal instant are not connected. This 

departs from the human approach to the inspection process and removes the engineering 

insight. Consequently, the architecture is predicted not to be best-suited to the problem but 

is useful as a baseline case.  

 

Figure 51. MLP implementation utilised in this work. The first two rows represent the feature extractor part of the network, 
while the third row is the classifier head. 

The implementation of MLP in this work is presented in Figure 51, with the hyperparameters 

of the network tuned by sequentially increasing its complexity while assessing the 

performance. As the input data is three-dimensional, it is first flattened and then passed into 

a series of four dense layers, which are followed by a 40% dropout layer and two additional 

dense layers. The activation function is ReLU at all layers except from the output, where it is 

sigmoid. Figure 51 presents the subsequent layers of the network, The type of the layer, 

activation function, input and output shapes. The input and the output shapes follow the 

Tensorflow convention [(None, 128, 2, 2)]. The first dimension, None, is a placeholder 
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denoting an example is a part of the batch. It is not defined at the network architecture 

definition stage, as in principle the network can take any batch size, thus it is defined at 

runtime. Following, 128 is the length of the sample, 2 is the T(0, 1) and F(1, 2) channel and 

the last 2 is RF and envelope channel. The same convention is utilised throughout the rest of 

this work. The output of this network is of shape (None, 2), similarly the first dimension is the 

batch size while the second are the probabilities for two classes (feature and pristine). 

The design decisions pertaining to the architecture are mostly motivated by the data 

characteristics. The network is relatively shallow, which is motivated by the few data points 

available to train it. Similarly, the high dropout rate of 40% is meant to allow the network to 

learn only the most general characteristics of the data. This is especially important, as the 

network is meant to learn both on the simulated and the real data. It is understood that while 

the general characteristics of the simulations and the real data are similar, the details are 

significantly different. The simulated data comprises a vast majority of the training dataset, 

thus allowing the model to learn the fine details of the training data would inevitably cause it 

to focus on the simulations, contrary to the goal of performance on the real data.  

4.2.2 VGG-Net 

VGG-Net [86] is a canonical example of a convolutional neural network, whose main building 

blocks are convolutional layers and max-pooling layers, followed by a densely-connected 

classification head, all of which are introduced in the Theoretical Background. The first CNNs 

started appearing in the early 2010s, but the VGG-Net has made the major stride of increasing 

the depth of the CNN while solving the computational cost challenge by utilising small 

receptive fields (filter sizes). While the computational cost problem has been alleviated by the 

improvement in the computational capacity, the deep CNN as a concept is still a primary 

approach to a novel location-sensitive classification task, such as the GWT question.  
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Figure 52. VGG-Net architecture implemented for this work. Rows 1-3 represent the feature extractor part of the network, 
while row 4 is the classifier head. 

The implementation used in this work is presented in Figure 52; the input and output shapes 

follow the same format as Figure 51 with the same input and output shapes. The convolution 

in this neural network occurs over the dimensions −2 and −1 (i.e. 128 and 2 in the first layer). 

The final two dimensions are effectively interchangeable, they could also be concatenated to 

lower the dimensionality of the data, making it (128, 4) shape. However, due to their 

different physical meaning, they are retained to facilitate experimentally disabling 

dimensions. Similarly to MLP, the changes in the architecture are motivated by the nature of 

the data, however in this case the major motivator for redesign is the number of the training 

data points. The original implementation was designed as an entry to ImageNet large scale 

visual recognition challenge (ILSVRC) [87]. The dataset for training in the ILSVRC challenge 

contains over 14 million images, over 1000 times more than the dataset used in this work, 

allowing for far larger number of filters and layers. Additionally, the challenge calls for the 

recognition between 1000 classes, making the problem significantly more complex than the 

GWT question.  

The original VGG-Net uses a receptive field sized 3x3. This was motivated by the input data, 

being square images from the ImageNet dataset. In the case of the implementation in this 

work the receptive field is 20x2, with the second dimension limited by the data size. The larger 

receptive field demonstrably improved the performance of the ML model, probably due to 
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most features of interest having quite large spatial extent. The second major change from the 

original VGG-Net is the introduction of the dropout layer between the convolutional layers 

and the classification head. This is motivated by the same factors as the analogous operation 

in MLP. Finally, the classifier head is shallower than the original, with two layers as opposed 

to three and a significantly reduced number of neurons. This is motivated by the much smaller 

training dataset and a visible tendency of the network to overfit when using many parameters 

in the classification head.  

4.2.3 U-Net 

U-Net is a more advanced architecture, which was first introduced in 2015 for biomedical 

image segmentation [63], and later used in a variety of contexts including non-destructive 

testing [88], [89], [90], the discriminator sections of generative adversarial networks [91], 

[92], image denoising [93] or speech enhancement [94]. U-Net and its evolutions are state of 

the art in segmentation tasks and thus also well suited to detection. The architecture is based 

on a contraction path followed by a symmetric expansion path. Given n layers in the 

contraction-expansion region of the architecture, the shapes of layers 1 and n, 2 and n-1… are 

identical which allows for the introduction of skip connections between them.  
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Figure 53. U-net architecture utilised in this work. The double lines mark the connections between the layers with the separate 
colours and line types used to differentiate between the connections. The architecture is based on the VGG-Net shown in 
Figure 52.  

The skip connections work by helping to retain the information from the early stages of the 

neural network. The input to the neural network in the case of GWT data is the amplitude of 

the wave at each location. Clearly, that information is important in the decision whether the 

sample indicates a defect, as the amplitude can be considered the only input to thresholding, 

which in turn is used to assist the operators in determining where the defect indications are 

(recall call level DAC). The neural network transforms the input information and extracts the 

features it considers useful. Thus, the skip connections are used to inject the outside 

knowledge into the neural network decision-making process by making sure the amplitude 

information is not lost in the feature extraction process.  

The U-Net was selected as the modern architecture for comparison, as it is simple enough to 

modify and to compare directly with the VGG-Net and MLP (opposed to state-of-the-art 



 
  
   
 

 

127 

architectures, such as YOLOv8 [95]), but at the same time it allows for the localised skip 

connections (as opposed to architectures such as ResNet). As a result, in the final layer pre-

classification contains localised information about the initial trace amplitude as well as the 

features extracted by the deep neural network.  

The U-Net is modified for the GWT problem mostly due to the slightly different question 

posed. The original U-Net outputs a segmentation map, while in NDT the ideal output is binary 

classification. While the segmentation approach could be utilised in GWT, in the interest of 

comparing the outputs of different architectures, classification is used.  

The U-Net implemented is based directly on the VGG-Net presented architecture in Figure 52. 

The feature extractor part of that architecture is used as the contraction path, followed by 

the symmetrical expansion path. The expansion path, in turn, is followed by the classification 

head identical to the two previously discussed architectures. 

4.3 Training Design 

This section deals with the parameters for training the machine learning models. The first 

sections introduce the parameters common to all the architectures mentioned: the loss 

function, optimiser, and the number of epochs. The second part addresses the biggest 

challenge in the approach faced in this work – the combination of the real and the simulated 

data so that a machine learning model performs better than one trained on just one type of 

data.  

4.3.1 Training Parameters 

4.3.1.1 Number of Epochs 

The number of epochs in machine learning context is defined as the number of runs through 

the training set. This should not be confused with the number or updates (also known as 

training steps). The full training set is split into batches, thus the number of steps per epoch 

can be calculated as 𝑆𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝐸𝑝𝑜𝑐ℎ =
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡 𝑆𝑖𝑧𝑒

𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒
. Selecting the number of epochs for 

which the model is trained is one of the important training design considerations. Generally, 

the upside of increasing the number of epochs is fitting the model better to the training data. 

There are two potential downsides – first, increasing the number of epochs linearly increases 

the duration of training. Second, increasing the number of epochs improves the fit to the 

training set, which, especially in the case of training sets as small as the one used in this work, 
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may lead to overfitting and the decrease in the performance in testing. The overfitting 

problem is solved by splitting the data into training and validation – the latter not being used 

for model parameter updates. After each epoch the model performance on the validation set 

is checked and recorded. Furthermore, the parameters of the model performing best on 

validation are saved and reloaded at the end of training. This approach effectively solves the 

problem of overfitting. Thus, the number of epochs is limited only by the computational 

resources and the willingness to wait for the training to complete. The number of epochs 

necessary for fitting the model should be assessed on the largest dataset available and the 

most complex neural network architecture, as it is the size of the dataset and the network 

that affect the speed of training.  

The largest dataset is the simulated dataset while the most complex neural network is the U-

Net. Thus, these inputs are used in an experiment where the network is trained over 100 

epochs, with the loss values recorded for both training and validation sets. The results of this 

experiment are presented in Figure 54. While the loss value decreases with the training, much 

of the improvement for this problem takes place over the first 10 epochs. Technically, to 

further lower the loss, the training could be continued for longer than 100 epochs. It should 

be noted, though, that the dataset the model is trained on is simulated. The loss function for 

the binary classification is calculated as the difference between the output probability for the 

correct class and the ground truth (0 or 1). As the output of the sigmoid function, the output 

of the neural network is only asymptotic to 1 and the loss will never go to 0. Indeed, the linear 

fall on the logarithmic graph points to the loss function lowering in line with the sigmoid 

function output getting closer to the target. Furthermore, it should be noted that the AUROC 

value for training and validation reaches 1.0 at the similar time as most of the loss decrease 

takes place. Thus, for the applications where it is used as the pre-training dataset, the number 

of epochs is limited to 30, as the performance on this dataset is not the target. It is worth 

noting that validation loss is consistently lower than training loss. While seemingly 

counterintuitive, the cause lies in the different model behaviour in training and in validation. 

To prevent overfitting to the training set, dropout (randomly deactivating neurons) is used. 

Thus, in training the performance of the network is artificially lowered, with the same not 

being the case in validation.  



 
  
   
 

 

129 

 

Figure 54. Training and validation loss values as well as training and validation AUROC values for a U-net trained on 10000 
simulated examples for the first 100 epochs. 

4.3.1.2 Loss Function 

The decision on the loss function depends on the research question asked. In the case of GWT 

question the problem is binary classification. For binary classification problems, by far the 

most used loss function is the previously introduced binary crossentropy. The other loss 

functions under consideration were hinge loss and focal loss.  

Hinge loss is a loss function given by the formula: 

𝐿𝑜𝑠𝑠 = max([1 − 𝑦𝑡𝑟𝑢𝑒𝑦𝑝𝑟𝑒𝑑], 0) (77) 

where 𝑦𝑡𝑟𝑢𝑒 values are expected to be 1 or -1. The main characteristic of hinge loss is the 

punishing of the model’s indecisiveness, specifically by assigning loss to correct predictions 

close to the decision boundary, lowering linearly when approaching the precisely correct 

prediction.  

This behaviour is undesirable in the task, as it clashes with FPR@100%TPR as a metric and 

removes the information on how sure the neural network is of its predictions, which is useful 

in the context of explainability.  

The previously introduced focal loss is designed to deal with highly imbalanced datasets. The 

defect datasets seem well suited to this loss. In the experimental practice the focal loss 

showed no improvement over binary crossentropy, with the added downside of the loss 
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requiring the hyperparameters to be tuned to the specific dataset. Therefore, it is rejected in 

favour of standard binary crossentropy.  

The final selection of binary crossentropy as the loss function is motivated by the performance 

on par with the alternatives and the fact that it is the most used loss function for binary 

classification questions. The second characteristic makes the potential modifications simple 

and the results of this work potentially applicable to a wider variety of problems 

(explainability, confidence calculations etc.). 

4.3.1.3 Optimiser 

The selection of the optimiser is a two-stage process – first to determine the algorithm itself, 

then to establish the parameters. Depending on the optimiser used, various parameters are 

needed, with the learning rate used for every optimiser and more advanced ones using 

additional terms including regularisation and momentum. The parameter with the most 

impact is the learning rate, governing the overall pace of training. Its value can be set to a 

constant or varied throughout the training process using learning rate schedulers. Clearly the 

decisions are manifold and based to a large degree on the experience of the designer. In this 

work the initial settings are chosen based on the best practices and experience and validated 

experimentally against viable competitors.  

The decision on the optimiser algorithm is based on the vast prevalence of Adam optimiser. 

Figure 55 shows that as of the 30th of September 2023 Adam had been used in 13573 of 

research papers included in the “Papers with Code” database [69] compared to 1592 using 

Stochastic Gradient Descent and 466 using Adafactor.  

 

Figure 55. Proportion of new research papers in Papers with Code database using the most popular optimisers [69]. 
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Based on that data, Adam is the natural first choice for the optimiser and it is expected to 

outperform the competition. The second most prevalent optimiser is the stochastic gradient 

descent; thus, the first experimental comparison is the training of the same neural network 

and comparing the training curves for Adam vs. SGD.  

 

Figure 56. Performance in optimising U-Net architecture over the course of 50 training epochs and 10000 simulated training 
examples using SGD (a) and Adam (b). Both optimisers used the learning rate of 5e-5, tapering off exponentially with the 
progress of the training. 

Figure 56 shows that Adam optimiser vastly outperforms SGD, with the final training loss in 

the order of 10-7, compared to SGD’s 10-2. As the loss reduction is the primary function of the 

optimiser, Adam is the clear selection going forward. It is worth noting that validation loss is 

consistently lower than training loss. While seemingly counterintuitive, the cause lies in the 

different model behaviour in training and in validation. To prevent overfitting to the training 

set, dropout (randomly deactivating neurons) is used. Thus, in training the performance of 

the network is artificially lowered, with the same not being the case in validation.  

Adam has three main tuneable parameters: learning rate, 𝛽1 and 𝛽2. In the original paper the 

learning rate is set to 0.01, 𝛽1 to 0.9 and 𝛽2 to 0.999. The latter two parameters are generally 

not modified unless there is a strong application-specific reason why they need to be changed. 

The application in this work is standard in the terms of the optimisation process and thus the 

𝛽 parameters are not modified. Adam is an adaptive algorithm, tuning the learning rate 

internally (see section 2.2.3.6.2 for details), thus the change in the parameter is less impactful 

than in simpler algorithms, but it still warrants optimisation in most cases. The proposed 

learning rates for this application are 5 ∗ 10−6 , 5 ∗ 10−5, 5 ∗ 10−4  and 5 ∗ 10−3. 
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Figure 57. Performance in optimising U-Net architecture over the course of 50 training epochs and 10000 simulated training 
examples using Adam Optimiser with learning rate of 5e-3 (a) 5e-4 (b), 5e-5 (c), and 5e-6 (d). Each of the graphs is the training 
history of a single initialisation of a neural network.  

Figure 57 presents the results of the optimisation of a neural network using a range of learning 

rates. The learning rate of 5 ∗ 10−5 (c) is clearly the best performing one, achieving the loss 

value 3 orders of magnitude lower than the second-best option, 5 ∗ 10−6 (d). The higher 

learning rates notably reach low loss values quicker, but the values are unstable, which points 

to then exiting the loss landscape minima. This is not suitable for the training, as it prevents 

consistent improvement in the performance of the neural network.  

Finally, the learning rate can either be held steady over the training process or decreased 

according to an exponential curve. The rationale for such a design choice is the need for quick 

training at the beginning, when the parameters of the model are far from the global minimum 

and lower when making minor adjustments close to the final values. 
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Figure 58. Performance in optimising U-Net architecture over the course of 50 training epochs and 10000 simulated training 
examples using Adam. Optimiser uses the learning rate of 5e-5 (a), or starting at 5e-5 and tapering off exponentially with the 
progress of the training (b). 

Figure 58 presents the difference between the constant learning rate (a) and adaptive (b). 

The gradual lowering of the learning rate allows the optimiser to smooth out the training and 

avoid suboptimal weight updates (visible with constant learning rate around epoch 30). The 

final loss is, similarly, lower for the adaptive learning rate, making it a clearly superior choice. 

The final parameters of the training are presented in Table 3. 

Table 3. ML Training Parameters. 

Number of epochs on simulation set 30 

Number of epochs on real set 30 

Learning rate 5e-5 initially, exponentially decaying 

Optimizer Adam [67] 

Loss function Binary Cross-entropy 

 

4.4 Transfer Learning 

The transfer learning approach is the major contribution of this work to the body of ML 

research in the context of GWT. The rationale and process for designing transfer learning has 

been introduced previously, thus this section describes the specific implementation used in 

this work.  

The transfer learning of an ML model is split into two parts – the pre-training and the fine 

tuning. The goal of the process is the optimisation of the performance on the target dataset, 

which in the case of GWT consists of in-operation inspection data. The model needs to be pre-
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trained on as large a dataset as possible, thus the simulation dataset is a reasonable 

candidate.  

The approach in this work involves the training of the machine learning model first on the 

simulated data and then fine-tuning on a subset of real inspection data. Traditionally, just the 

classification head of the architecture would be re-trained on the real data, however 

experimental process has shown that omitting the re-training of the classification layers in 

favour of fine-tuning the whole model leads to better performance on the real data. 

This approach is followed in every experiment, with the earliest work comparing the 

performance of the ML algorithm trained purely on simulations or purely on the experimental 

data with the transfer learning approach. At a final stage of the work a quantification of the 

impact of transfer learning is undertaken, with a selection of architectures trained on 16 

different combinations of real and simulated dataset sizes, as detailed in Table 4. Training for 

each combination of dataset sizes is repeated 5 times on different randomly selected training 

sets in the attempt to incorporate the effects of random factors affecting the training 

procedure, such as the random initialisation of all parameters. At each training instance, the 

validation sets (separate for simulated and real datasets) are drawn at random as 20% of their 

respective training sets, and the model that is retained at the end of each training stage (on 

simulated data first, on real data then) is that giving the lowest validation loss.  

Table 4. Combinations of real (nReal) and simulated (nSims) training dataset sizes used in the transfer learning impact study. 

ID nReal nSim ID nReal nSim ID nReal nSim ID nReal nSim 

1 0 0 5 270 0 9 810 0 13 1800 0 

2 0 900 6 270 900 10 810 900 14 1800 900 

3 0 2700 7 270 2700 11 810 2700 15 1800 2700 

4 0 10000 8 270 10000 12 810 10000 16 1800 10000 

 

The implementation of transfer learning in this work is based on merging the two training 

processes together, with the learning rate scheduled to fall exponentially, automatically 

providing the low learning rate for fine tuning. This also allows for the merging of the training 

statistics from the two processes.  
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5 Machine Learning Performance 

This chapter presents the performance of the machine learning algorithms trained and tested 

over the course of the research contributing to this thesis. It starts by investigating the 

performance of machine learning on the simulated dataset. This fully controlled and rich 

environment is used to investigate the impact of design decisions: 

• The dataset size. 

• The use of synthetically focused data. 

• T(0, 1) and F(1, 2) compared to just T(0, 1). 

• Both enveloped and RF data compared to either one individually.  

The second part involves the domain shift to real data and presents the performance of the 

transfer learning approach using either synthetically focused or A-scan type data. Finally, the 

third part introduces the shift from defect indication detection to feature detection. As the 

ML performance on this question shows the promise for industrial usefulness, it is 

investigated further to quantify the impact of the amount of the data on the performance as 

well as to select the best performing machine learning architecture.  

5.1 Performance on Simulations 

Having identified suitable candidate architectures and the learning process, the first step in 

the project is the validation of machine learning as an approach to the problem. The similarity 

of the ultrasonic testing data to known existing ML applications (seismology, speech 

recognition) is a cause for optimism, but validation on guided wave data is needed.  

Furthermore, provided a good performance using the baseline model is proven, simulations 

as the training and testing datasets provide a flexible canvas for testing the variations to the 

ML approach. This section will investigate three such modifications – using just T(0, 1) mode 

instead of both T(0, 1) and F(1, 2), using just the RF or envelope data instead of both, and 

using the data that has gone through the imaging process. While the good results on 

simulations are not necessarily directly transferrable to the real datasets, such experiments 

allow the identification of promising research directions.  

5.1.1 Impact of the Amount of Data 

The first question that can be answered using the simulated dataset is the impact of the size 

of the dataset on the performance of the ML model. It is expected that the performance will 
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increase with the size of the training dataset, but the more interesting question is the specific 

number of datapoints that saturate the performance of the model.  

The point at which the addition of simulated data points no longer improves the performance 

of the model on the testing dataset corresponds to the model extracting all the knowledge 

from the training dataset (i.e., perfectly modelling the underlying distribution) or alternatively 

that it has reached the limit of complexity it can accommodate. The second explanation is 

deemed unlikely in this case, as the models consistently perform at up to 100% accuracy on 

simulations.  As the distributions are specific to the simulation parameters, the value 

observed should not be used as a hard limit for the use in other work. It can however be used 

as a starting point for the development of ML algorithms for other NDT applications. This 

knowledge is important, as the capacity to generate a large, simulated dataset varies widely 

between the NDT modalities and organisations.  

 

Figure 59. AUROC of ML models trained on various sizes of simulated datasets. The size of the dataset increases with ID. The 
red line is the median and the box denotes the top and bottom 75th percentile. Each neural network is initialised 5 times with 
varying random seed to draw the statistical conclusions.  

Figure 59 presents the impact of the number of training examples on the performance on the 

testing dataset. The first characteristic clearly visible in the graph is the fact that all the models 
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trained on 810 examples and above have performed at 1.0 AUROC – corresponding to not 

misclassifying a single test example by the end of the training. This points mostly to the fact 

that the problem of automated GWT classification is simple if applied to simulated data. The 

second conclusion that can be drawn is that although extremely few training examples are 

needed to reach very high performance, there is an appreciable difference between using 270 

and 810 training examples, with the latter needed to confidently reach high performance on 

this problem. Thus, it can be concluded that for this type of problem a training set of 1500 is 

large enough. This is the training set size which is used in the experiments on the simulated 

dataset. 

5.1.2 Impact of the Number of Modes 

Both torsional and flexural modes are used in assessing the GWT data for classifying the signal 

as either corresponding to a feature or not. However, the torsional mode is significantly easier 

to extract, and it is not possible for a feature to have no torsional mode reflection. Thus, there 

is value in checking whether there is a difference in the detection capacity when using both 

the torsional and flexural modes vs. just the torsional.  

This experiment is performed by training the model on a large, simulated dataset (1500 

samples) and assessing the validation performance. As no changes to the architecture are 

proposed and the intended training and testing datasets are extracted from the same 

distribution, there is little need for an additional testing set. Furthermore, using the validation 

allows for an observation of the evolution of the performance in the training process.  
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Figure 60. Comparison of the learning capability of a U-Net trained on 1500 examples using T(0, 1) and F(1, 2) (a), using just 
T(0, 1) (b), and using just F(1, 2 (c)). 

Figure 60 illustrates the difference in the neural network learning capability (as measured by 

AUROC). The performance of the neural network in this chapter uses AUROC instead of the 

previous metric of model loss, as it is more relevant to the real-life performance of the model. 

depending on the modes available in the training data. Just using the torsional mode makes 

the training process less stable, as evidenced by the more jagged appearance of the training 

loss curve. Secondly, the performance on the unseen validation dataset plateaus very rapidly, 

pointing to the network lack of ability to generalise well based on the sparser data. It is 

therefore concluded that using both the axisymmetric and non-axisymmetric modes is 

necessary for maximising the performance of the ML model. 

5.1.3 Impact of Enveloped and RF Data 

The inspector sees just the enveloped data when classifying the results of a test, which is 

mainly due to the more readable nature of this presentation of the data, but the secondary 

rationale is that it is the absolute amplitude of the symmetric and antisymmetric reflection 

that characterise the reflector, not the underlying carrier wave signal characteristics. It is, 

however, true that the raw RF data contains all the information from the envelope and the 
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underlying carrier wave data. As a result, training the model on both forms of data is in effect 

drawing the attention of the neural network to the amplitude, while also providing the 

underlying data.  

The neural network being able to extract features which may be better suited to the 

characterisation of the traces is the motivation for training it solely on the RF data. If the 

amplitude turns out to be the most important feature, the network should be able to extract 

it without intervention. On the other hand, using just the envelope may potentially remove 

much of the irrelevant information from the training data, allowing the model to focus on the 

feature-pristine detection task rather than sifting through the noise. This may be especially 

impactful with the shift to the real dataset, as the impact of noise is magnified as the dataset 

gets smaller.  

 

Figure 61. Comparison of the learning capability of a U-Net trained on 1500 examples using both RF and enveloped data (a), 
only enveloped data (b), and only RF data (c). 

Figure 61 shows the differences in the learning process of an ML model trained on either RF 

and enveloped data, just the envelope and just the RF. From the perspective of both the 

smoothness of the training process and the learning speed, using both types of data motivates 

the decision to use both types of data in the rest of this work.  
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5.1.4 Impact of Imaging 

The final experiment on simulations involves the most complex processing method employed 

in this work – full synthetic focusing using the improved CSM method described in the 

previous chapter. The motivation, similarly, to the previous experiment, comes from the 

human inspection analysis. There, the unrolled pipe display – an image is the main tool the 

inspectors are using for the identification of features.  

The downside of directly using the images is their size – the training time of an ML model is 

proportional to the input data size. Additionally, imaging, like enveloping, is a processing 

method, thus inherently removing some information and striping the ML algorithm of some 

of its ability to extract features. On the other hand, images are generated using richer data 

than the A-scan, thus potentially allowing the algorithm to use otherwise inaccessible data. 

In the case of images, it is crucial to note that the comparison is not entirely fair, as the change 

in the dimensions of the input data necessitates the change to the size of the layers, making 

the neural network application to the imaged data more complex when compared to the A-

scans. Nonetheless, the comparison is important, as significantly better performance on the 

imaged data would indicate that the C-scan data provides more useful information.  

 

Figure 62. Comparison of the performance of U-Net architecture on C-Scan type data (a) and A-scan type data (b). Both 
models are trained on 10000 samples and validated on 2000. The AUROC target of 1 is marked with a red line. 

Figure 62 presents the performance of the two input data formats in the terms of AUROC. 

Images are slower to learn and the performance on the validation set plateaus at a slightly 

lower level than A-scans. These results may be caused by the lower quality of the imaging 

than used in the industry-standard software, but as the development of the imaging 

algorithms is not the goal of this project, the proposal to use synthetically focused ultrasonic 
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data to train the ML models is rejected due to its slightly lower performance compared to A-

scans, as well as the readily available experimental A-scan datasets.  

5.2 Performance on Real Dataset 

Having proven the performance of the ML approach on the simulated data, the logical step is 

to shift to the same question (defect indication detection) on the real data. This section 

presents the results of ML models on the real data, first attempting to solve the question of 

defect indication detection and later shifting to the more general problem of feature 

detection.  

5.2.1 Impact of Transfer Learning 

The first question to be answered is whether the simulated data does improve the 

performance of the ML algorithms when they are applied to the real datasets. To answer it, 

this work proposes an experiment of training the same U-net architecture using three 

approaches: 

• on the simulated dataset (using the Simulated Pristine and Simulated Defect datasets) 

• on the real dataset (using Real Pristine and Real Defect (augmented) datasets) 

• using an introduced transfer learning approach and all the mentioned datasets 

The testing set is to be drawn from the real dataset.  

 

Figure 63. Accuracy on testing and validation datasets for a U-net trained and validated on the simulated dataset (left). 
Performance of the trained model on the real testing dataset, split into pristine and defective in the terms of accuracy, area 
under ROC and area under PRC (right). 

AUPRCAUROCAcc

0.60170.627861.81%def

0.54130.514250.69%prist



 
  
   
 

 

142 

 

Figure 64. Accuracy on testing (real) and validation(real) datasets for a U-net trained on the real dataset (left). Performance 
of the trained model on the real testing dataset, split into pristine and defective in the terms of accuracy, area under ROC and 
area under PRC (right). 

 

Figure 65. Accuracy on testing and validation datasets for a U-net trained and validated on the simulated dataset in epochs 
1-30 and fine-tuned and validated on the real dataset in epochs 31-60 (left). Performance of the trained model on the real 
testing dataset, split into pristine and defective in the terms of accuracy, area under ROC and area under PRC (right). 

Figure 63, Figure 64, and Figure 65 show the results of the experiments. It is important to note 

that the graphs show the accuracy of models, and thus are vulnerable to the class imbalance 

problem in the real data. The accuracy is used in these figures as they are generated using an 

earlier version of the software and solve a defect detection rather than feature detection task, 

thus their values are not directly comparable with the other figures in this section. The graphs 

show the accuracy on the validation and training datasets. It is important to note that those 

datasets vary, as described in the relevant captions. The visualisations do underline, however, 

the different characteristics of the three training processes. Training on the simulated data 

quickly reaches extremely good accuracy and exhibits no difference between the 

performance on the training and validation sets. However, what is clear from the 

performance on the testing dataset is that learning on a purely simulated dataset does not 

translate to performance on the real data, with the accuracies just slightly better than 

random. Training on the real data looks promising in the first 10 epochs, with the accuracy 

AUPRCAUROCAcc

0.59050.565550.69%def

0.82320.883787.50%prist

AUPRCAUROCAcc

0.89910.889679.17%def

0.6570.676968.06%prist
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rising both in the training and validation datasets. From this point on, however, the deficiency 

of a small training dataset makes itself known by strongly overfitting the model. Furthermore, 

the vulnerability of the model to the imbalance in the dataset is clear from the performance 

on the testing dataset – the model classifies most of the pristine traces correctly, but its 

performance on the defect indications is worse even than that of the model trained on the 

simulations. This is concerning, as the defect indication detection rate is more important than 

identification of pristine samples in the context of safety. Finally, in Figure 65 the proposed 

two-stage training shows the initial performance rise in line with the simulations until epoch 

30, at which point the training switches to the real data. When training on the real data, the 

validation performance improves in the first couple of epochs, very quickly plateauing. In 

comparison, the training performance keeps improving over the length of the training. Most 

importantly, the trained model has the defect indication detection accuracy of 79.17%. While 

this result is significantly better than any other training process, giving hope for the transfer 

learning approach, the overall accuracy of around 70% is significantly below the performance 

necessary for any practical use. Even if 80% was to be considered a good enough performance 

in the terms of defect indication detection, the corresponding accuracy on the pristine 

samples is 68%. This indicates a false positive rate of 32%. Considering the same format of 

data as used in this work, a single sample for classification corresponds to a 1 m span of pipe. 

A 32% false positive rate in these conditions would mean that one in every three metres is 

flagged as containing a defect indication. Each of the flags would need to be manually 

reviewed by the inspector, effectively resulting in quite insignificant workload reduction. This 

conclusion leads to the next stage of this work.  

5.3 Performance on Real Features 

The main cause of the low performance of machine learning on a real defective dataset is 

identified as the very small number of datapoints in the positive class of the real training 

dataset. Therefore, it is proposed that a richer dataset including all features is used as the 

positive class in the training process, see Table 1 for reference. It is theorised that good 

performance on this dataset can be used in the industrial context, but also as a proof of 

concept showing the number of positive real samples necessary to successfully train an ML 

model using the transfer learning approach.  
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5.3.1 Industrial Use Case 

While defect indication detection has a use case that needs no explanation, the shift to 

detecting features requires some justification. Testing of pipelines, after all, is not performed 

so the welds and supports are identified. To understand the usefulness of the feature 

detection capability, it is crucial to remember the intended place of ML in GWT – the 

automatically identified positive flags are meant to be passed to the inspector, who makes 

the final call and classification. As many of the features (bends, welds, supports, flanges, 

buried sections etc.) are designed into the pipeline, they can be quickly rejected by the 

inspector making final calls, leaving only the more suspicious signals. Furthermore, providing 

a method to automatically flag the features, including defect indications, is a benchmark for 

the guided wave technology, as the usage of this inspection process provides a known 

probability of detection and probability of false alarm regardless of the inspector skill.  

5.4 Architecture comparison 

With the shift to the training on a larger real dataset allowing the models to perform at high 

enough accuracies that they could be considered candidates for industrial use, it has become 

paramount to compare the various ML architectures. The candidate architectures have been 

introduced earlier in this chapter: 

• MLP being the simplest architecture which could be considered deep learning 

• VGG-Net, a typical example of a convolutional neural network 

• U-Net, a commonly used modern CNN 

To assess the performance of ML approaches they would ideally need to be compared to the 

current state of the art. This proves difficult, as at present there is no standard procedure to 

automate the detection of pipe features (PFs) in guided wave-based inspection of pipes; 

instead, this relies on the experience of trained inspectors that would assess the absolute and 

relative enveloped amplitudes of both T(0, 1) and F(1, 2) modes. In particular, typically PFs 

are characterised either by a high T(0, 1) component (for axisymmetric PFs) or a high F(1, 2) 

to T(0, 1) ratio (for non-axisymmetric PFs). An attempt is made to mimic such a procedure, in 

order to form a baseline performance against which to assess the ML algorithms developed 

in this work. To address this, thresholding on three different enveloped signal amplitudes is 

considered, namely on (Th1) T(0, 1) only, (Th2) the F(1, 2) to T(0, 1) ratio, and (Th3) on the 

following linear combination of T(0, 1) and F(1, 2): 0.7 x T(0, 1) + 0.3 x (F(1, 2)/T(0,1)). The 
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parameters of this linear combination are based on an arbitrary decision. An attempt to 

optimise the formula is made, but the optimised version is extremely close to pure T(0, 1), 

with the parameter over 0.99. As a result it is decided that a suboptimal, but deemed more 

representative example is to be used. Note that such thresholding methods are applied to the 

same ~1-metre-long segments in which the experimental traces are split, as explained in the 

previous section, though in this case only the enveloped, non-normalised, DAC-corrected 

traces are used. 

An example of application of the proposed thresholding approaches is given with the aid of 

Figure 66, which shows a fabricated set of T(0, 1) and F(1, 2) traces including three PFs at the 

positions indicated by the red dashed vertical lines. The leftmost PF has a high T(0, 1) 

component, the middle one has both T(0, 1) and F(1, 2) components at rather high levels, 

while the third PF has a weaker T(0, 1) reflection, though with a F(1, 2) component nearly at 

the same level as T(0, 1). For example, when the threshold is set to 0.6 (shown with a dotted 

black horizontal line in figure), the use of T(0, 1) alone (i.e., of Th1) would not detect the small 

rightmost PF, while the use of the F(1, 2) to T(0, 1) ratio (i.e., of Th2) would be insensitive to 

the large symmetric leftmost PF. The proposed linear combination of T(0, 1) and F(1, 2) (i.e., 

of Th3) shown in green would instead detect all three PFs at the considered threshold. When 

the thresholding approach is practically tested using Python scikit-learn library, the threshold 

is set automatically to maximize the classifier’s accuracy.  
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Figure 66. Purely illustrative example of application of thresholding on a fabricated dataset of T(0, 1) and F(1, 2) traces. The 
locations of three features are indicated with red dashed lines and a tentative threshold is shown as a black dotted line. 
Thresholding is performed independently on the enveloped signals shown as black, blue and green solid lines. A successful 
detection occurs when any of these signals exceeds the threshold in the vicinity of a feature. Crossing the threshold away 
from features is a false positive, not crossing it in the vicinity is a false negative. 

 

Table 5. Performance of the three proposed thresholding approaches. 

 Th1 Th2 Th3 

AUROC 0.9936 0.2747 0.9629 

FPR@1TPR 0.4131 0.9972 0.4843 

The performance offered by the three thresholding approaches and by the three ML 

architectures when trained with various sizes of simulated and real data is discussed below. 

Table 5 gives AUROC and FPR@1TPR when thresholding is applied to all available 2400 

experimental data samples. The best results overall are obtained when using Th1, i.e., when 

thresholding on T(0, 1) only. However, despite its relatively high AUROC sized at 0.9912, the 

FPR@1TPR at 0.4246 essentially indicates that there exist some PFs giving low T(0, 1) 

reflections which can only be flagged by thresholds that would also call an excessively large 

number of false positives, i.e., almost one false positive for every two negative samples. The 

extremely poor performance of Th2 shows that the sole use of F(1, 2) cannot reliably 

discriminate between positive and negative samples. This is expected, since all axisymmetric 

PFs such as welds do not produce significant non-axisymmetric reflections. Finally, the 
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attempt to combine the amplitudes of T(0, 1) and F(1, 2) into a single parameter via Th3 did 

not yield improvements over the sole use of T(0, 1), as both AUROC and FPR@1TPR for Th3 

are slightly worse than those of Th1. These results essentially suggest that the experience of 

trained operators on the analysis of signals acquired by GWT of pipes cannot be replaced by 

an approach that only makes use of the local amplitudes of T(0, 1) and F(1, 2) time-traces, and 

that their shapes should also be considered. 



 
  
   
 

 

148 

 

 

Figure 67. AUROC of MLP (a), FPR@1TPR of MLP (b), AUROC of VGG-Net (c), FPR@1TPR of VGG-Net (d), AUROC of U-Net (e), 
FPR@1TPR of U-Net (f). On each box, the central mark indicates the median, and the bottom and top edges of the box indicate 
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and 
the outliers are plotted individually using the '+' marker symbol. 
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Figure 67 gives the performances of the three ML architectures evaluated on the same, 

randomly selected testing set of 480 experimental samples and across the 16 combinations 

of training and testing set sizes (IDs), as given in Table 4. For each ID, the metrics obtained 

from the five separate training instances are summarized in a boxplot where the central mark 

indicates the median, while the bottom and top edges indicate the 25th and 75th percentiles, 

respectively. Figure 67 (a, b) show that MLP does not possess the required modelling 

capabilities to reliably characterise true and negative samples, and despite the expected 

general improvement as more simulated and real input data are employed for its training, its 

best overall performance remains significantly inferior to that of Th1 in terms of both AUROC 

and FPR@1TPR. It is worth emphasizing here that the input to MLP and the other ML 

architectures significantly differ to that of thresholding, as in the latter case samples are not 

normalised. 

Figure 67 (c, d) shows that when VGG-Net is solely trained on simulated data (i.e., IDs 1 to 4), 

the performance on experimental data is extremely poor. When, instead, a relatively low 

number of 270 real samples are used for fine-tuning (IDs 5 to 8), both AUROC and FPR@1TPR 

gradually improve as the amount of simulated data is increased. Then, once a more 

substantial number of real samples are available, the benefit of pre-training the model with 

simulated data starts to fade. In fact, the performance at IDs 13 to 16, where 1800 real 

samples are used, is essentially flat as the number of simulated samples is increased from 0 

to 10000. Such performance is significantly superior to that offered by thresholding on T(0, 1) 

(i.e., Th1), with AUROC surpassing 99.8% and FPR@1TPR yielding 2.1%. In order to investigate 

whether this overall behaviour and quality of performance are specific to the particular 

testing set used to produce Figure 67, the same procedure is repeated in five more instances 

by randomly selecting five additional testing sets, and the resulting FPR@1TPR are displayed 

in the left column of Figure 68. All plots confirm the conclusions drawn above. It is also worth 

noting that for each of the six testing sets depicted in Figure 67 (c, d) and in the left column 

of Figure 68, when 1800 real samples are used for training (IDs 13 to 16) the use of simulated 

data has a negligible effect, whereby when only up to 810 real samples are available, the 

performance of the classifier can be improved by the addition of simulated samples. This is 

particularly evident in Figure 68 (c). Unsurprisingly, the plots also show that the FPR@1TPR 
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varies as different testing sets are evaluated, and it ranges between ~1.5 and ~4% when 1800 

real samples are used for training. 

Finally, Figure 67(e, f) shows that the employed U-Net algorithm struggles to yield a consistent 

performance, which, on average, unexpectedly deteriorates as the number of real samples 

used for the fine-tuning of the model is increased. This is confirmed by the results shown in 

the right column of Figure 68, where U-Net is tested on the same five additional testing sets 

described above. Only in one instance, i.e., the case of Figure 68(j), the expected behaviour is 

obtained, and a similar performance as VGG-Net is achieved. This unpredictable behaviour of 

U-Net was extensively investigated as the hyperparameters of the model were sequentially 

varied, though the investigation remained inconclusive, and VGG-Net was chosen to carry out 

the study described in the next section. 
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Figure 68. FPR@1TPR as VGG-Net (a, c, g, e, i) and U-Net (b, d, f, h, j) are evaluated on five different testing sets. The same 
testing set is used in each row of plots. Boxplots are as in Figure 67. 
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5.5 Investigation of Misclassified Samples 

It is of practical interest to investigate which PFs are more difficult to identify correctly using 

the VGG-Net model trained with the largest sets of real and simulated data considered in this 

work (i.e., on the scenario indicated as ID=16). In order to make this study statistically more 

relevant, training and testing on VGG-Net at ID=16 was performed for 44 additional randomly 

selected testing sets. Again, for each testing set the training was repeated five times. The full 

database obtained by adding these additional results to those described in the previous 

section consists of 50 different testing sets, each including 125 PFs selected at random among 

the available 634, with Table 6 giving statistics on the numerosity of the various types of PFs 

included in each testing set. Since each testing set is evaluated by five independently trained 

models, this equates to 31250 real positive samples being tested. A study on the composition 

of this ensemble of experimental samples shows that each of the 634 PFs appears at least 20 

times. 

Table 6. Statistics on the number of occurrences of the different types of pipe features across all testing sets used in this study. 

Feature Type Mean Standard Deviation Maximum Minimum 

Weld 59.08 6.01 69 45 

Support 34.28 4.83 48 24 

Defect 

indication 

11.3 3.14 19 6 

Bend 8.16 1.98 12 4 

Flange 6.84 2.39 13 2 

Reverberation 5.8 2.17 11 2 

Earth Entrance 0.94 0.91 3 0 

Unknown 2.22 1.40 6 0 

The rule that is used to determine the threshold against which to mark the false negatives in 

each of the 250 sets of results (as obtained from the 50-by-5 VGG-Net training and testing 

instances) is to set it to the value giving a FPR of 2% in the specific set. Following this 

procedure, a total of 784 positive samples (~2.5% of 31250) are misclassified as negative, with 

32 out of the total 634 PFs (~5%) being misclassified at least once. The composition of this set 

of 32 PFs is given in Table 7, where PFs are listed in descending order according to the ratio 
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between misclassified cases and their total number. The table shows that false echoes, defect 

indications and supports are the PFs that are most liable to be misclassified based on their 

signatures on T(0, 1) and F(1, 2) signals. This can be easily explained, as false echoes are often 

marked by operators based on the presence of large PF reflections in the time-traces 

propagating in the other direction of test, information that is not given to VGG-Net. Similarly, 

often supports give very weak signal reflections, and they are marked based on their physical 

presence as confirmed by visual inspections. Finally, reflections from very small defect 

indications can be barely distinguishable from background noise, which may force an operator 

to conservatively flag an indication despite significant uncertainty. On the other side, welds, 

bends, flanges and entrances into earth usually give very distinctive and significant 

reflections, hence the low probability of VGG-Net missing any of them. 

Table 7. Number and percentage of misclassified PFs according to the specific PF type, using the VGG-Net model trained with 
10000 simulated and 1800 experimental samples (i.e., the scenario indicated as ID=16). 

 Cases misclassified at 
least once 

Total number of cases 
(misclassified and not) 

Percentage of 
misclassified cases (%) 

False Echo 4 28 14.3 

Defect indication 7 58 12.1 

Support 17 164 10.4 

Weld 4 293 1.4 

Bend 0 41 0 

Flange 0 36 0 

Unidentified 

anomaly 
0 10 0 

Entrance into earth 0 4 0 

 

With regards to the 32 PFs that have been misclassified at least once, it is of interest to 

investigate those with a high prevalence rate (i.e., the number of times a sample has been 

misclassified divided by the number of times it has been tested), since those with low 

prevalence can be filtered out via ensemble methods [96]. Attention here is devoted to defect 

indications, since they are the PFs of most concern if missed. Of the seven misclassified defect 

indications listed in Table 7, only two have prevalence rates exceeding 20%, and their 

signatures are shown in Figure 69. Interestingly, they both come from the same inspection, 
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whose WavePro [9] trace is displayed in Figure 70. The inspection of the original trace shows 

that the marked position of defect indication (a) (denoted as +F6 by the operator) is slightly 

off and most of the major F(1, 2) signature of the defect is absent from the trace presented 

to the ML algorithms. Notably, when the windowing segment labelled (a) in  Figure 69 is 

moved ~0.6m to the left, and when such better-centred version of this defect indication is fed 

to all VGG-Net models used in this investigation at the set thresholds corresponding to 2% 

FPR, a 100% true positive rate is obtained. More challenging, instead, is to find reasons for 

the consistent misclassification of the defect signature shown in Figure 69(b) as well as in the 

red box labelled (b) in Figure 70, which is characterised by relatively similar levels of T(0, 1) 

and F(1, 2) reflections. This highlights one of the fundamental issues plaguing virtually all ML 

algorithms currently used worldwide, i.e., their black-box nature, and therefore suggests 

focussing on ML explainability [97] for future research. 

 

 

Figure 69. Samples of defect indications that are consistently misclassified as negative samples by VGG-Net (prevalence rates 
of 91%(a) and 98%(b)). 
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Figure 70. Portion of the original inspection trace containing the defect indications shown in Figure 69 . Defect indications are 
marked as +F6 and +F7 on the trace and they are located at a distance of approximately 54 and 56 m from the sensor position. 
The segments of trace fed to the ML algorithms are highlighted in red boxes. Reproduced from WavePro, courtesy of [9]. 

5.6 Machine Learning Investigation Outcome 

This chapter has proposed a transfer learning framework that allows augmenting an 

experimental dataset collected via GWT of pipes with synthetic data produced via FEM in 

order to train a ML algorithm to inspect the signals and to detect reflections from pipe 

features. The transfer learning between synthetic and real data is achieved by first pre-

training the chosen ML model on the simulations, and then fine-tuning it via additional 

training on the set of experimental signals. In particular, three types of ML models have been 

considered for the task, namely MLP, VGG-Net and U-Net, and their performances have been 

also compared to those given by classical thresholding approaches. Unexpectedly, VGG-Net 

was found to yield more consistent results than U-Net, while they both significantly 

outperformed MLP and thresholding. VGG-Net performance was a surprise as it is a relatively 

simple architecture. Furthermore, the U-Net residual connections were initially expected to 

simplify guided wave trace classification. Restricting the analysis to the VGG-Net results, the 

investigation has shown that when scarce amounts of real data are available, significant gains 

in the detection performance can be obtained by employing the suggested pre-training 

approach. In particular, the performance monotonically improves and eventually plateaus as 

the synthetic dataset is increased, at which point further improvements can only be obtained 

by enlarging the size of the experimental dataset. However, once a sufficiently large number 

of real data are available for training, the benefit of pre-training the model on simulations 
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starts to fade. This was shown to occur for this particular application once 1800 data samples 

(roughly equivalent to 1800 m of inspected pipes) are fed to the VGG-Net model, at which 

point false positive rates in the order of ~1.5 to 4% at the fixed true positive rate of 99.7% are 

achieved. From a practical standpoint, the adoption of this model would greatly reduce the 

amount of data that needs to be manually inspected by qualified operators for the 

classification of the detected pipe features. Future studies will focus on automatising this 

subsequent classification step, although it is expected that additional experimental samples 

would be required to better characterise the signatures of those pipe features that are less 

frequently found, such as flanges, bends, and, most importantly, defect indications. 

A further investigation was carried out to pinpoint specific pipe features that VGG-Net would 

consistently miss. They included two of the 58 defect indications available in the experimental 

dataset, although it was later found that the position of one of the two had been misreported 

by the inspector in the original inspection trace. Once that defect indication position was 

corrected, VGG-Net was actually able to detect it. It is more concerning instead that all efforts 

devoted to understanding why the other defect indication was left undetected remained 

inconclusive. This highlights the importance of being able to explain the decisions made by 

any given ML model, therefore suggesting focusing on ML explainability as a further potential 

avenue of future research. 

6 Generative Learning and Modern Machine Learning Topics 

This chapter expands the application of machine learning in GWT towards emerging and 

exploratory research directions. It refers to the background information on the modern 

methods and issues in machine learning and contextualises them for NDT. The first part of 

the chapter introduces the Generative Adversarial Network implemented in this work. It 

briefly discusses the design considerations and presents the results achieved by the GAN in 

generating ultrasonic traces ex nihilo. Finally, it suggests some potential use cases for 

generative machine learning in NDT. The second part of this chapter focuses primarily on the 

questions of explainability and reliability of ML approaches and how the questions related to 

these areas hinder the more widespread development of ML. It concludes by proposing some 

directions of action that could build the trust in ML, which is critical for its adoption in safety-

critical applications like NDT. 
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6.1 Generative Adversarial Networks 

Generative adversarial networks have been introduced on a conceptual level in the 

theoretical background of this work, and therefore this section will focus on the finer points 

of the design of GANs for guided waves applications and introduce the architecture used in 

this work.  

6.1.1 GAN Design 

A design of a generative adversarial network is more complex and time-consuming than that 

of a typical neural network. That is mainly caused by the fact that the training process is, in 

effect, a competition between two networks, the generator, and the discriminator. The 

operation of a GAN is schematically shown in Figure 71.  

 

Figure 71. Diagram of Generative Adversarial Network. 

From the perspective of a designer, therefore, the task is not as simple as designing a neural 

network that performs as well as possible. In this case it is crucial to design the generator and 

discriminator networks that can reach as high a level of performance as possible, while 

ensuring that neither of them learns too quickly, as a ‘victory’ of either of the networks 

effectively stops the learning process. This consideration can be accommodated for by 

implementing one of two design approaches. One is employed by large AI R&D centres, which 

develop very large and complex generator and discriminator networks. To offset their 

potential for quick learning, multi-stage training processes are implemented, where the 

performance of the generator and discriminator is assessed separately and based on the 

results the training routine is modified to ensure the networks’ synchronic development. The 

main problem with this approach is the huge need for computational power exhibited by 

GANs, which is further exacerbated by the employment of large networks. The second 

approach, used in this work, is typical of early-stage applications and it involves using 
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relatively small and primitive neural networks that can be trained quickly enough to enable 

experimentation with architectures and hyperparameters. 

Figure 72 shows the architectures of the generator and the discriminator. The networks are 

very similar to each other, the discriminator is a standard convolutional neural network while 

the generator is a deconvolutional network. The input to the generator is a 19-sample long 

vector of random noise, used as a seed to generate realistic-looking data. The length of the 

vector is defined by 16+3 samples, with 16 being the arbitrary latent space dimensionality, 

which the GAN maps to the output domain (i.e., realistic examples). The final three positions 

correspond to one-hot encoded classes of sample to be generated (no defect indication, one 

defect indication, two defect indications). The work presented in this section was performed 

only on the simulated data, with a roughly 10 m long stretch of a simulated pipe used to allow 

GAN to model the long-range relationships and multiple features. 
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Figure 72. Design of the discriminator (left) and the generator (right) networks used in the GAN. 

As opposed to the classification neural network design, where objective metrics for the 

performance of the model could be devised, GAN can only be assessed by a human in a 

subjective manner. As the GAN-focused work is a very early-stage proof-of-concept activity, 

the design decisions for the GAN are made in line with the best practices. The optimiser is 

Adam, with the learning rate selected to ensure equal speed of learning between the 

generator and the discriminator. The loss for the discriminator is binary crossentropy, as it is, 

in essence, a classification network designed to differentiate between ‘real’ and generator-

made examples. The loss for the generator is mean absolute error, with the rationale based 

on the continuous nature of the output.  

The work on GAN focuses on simulating defect indications and cut ends of the pipe while 

using only the T(0, 1) mode. This is motivated by the relatively unexplored area of generative 
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ML and this work was primarily a proof-of-concept demonstration. The data used for training 

the GAN is simulated at 21 kHz carrier wave frequency and just the time-domain signal is used 

for training. It is therefore interesting to investigate whether the frequency-domain 

characteristics of the guided wave signal are accurately modelled by the GAN. Thus, the 

experiment is simple enough that it can be easily adapted to other NDT modalities, where 

different data sources and features would need to be generated, but the outputs here are 

complex enough to allow for the assessment of GAN capability for modelling ultrasonic data 

more generally.  

6.1.2 GAN Results 

The GAN design is a multi-stage process, and the final version is a network able to generate 

either a pristine trace, a trace with a single defect indication or one with two defect 

indications. All of the traces additionally contain a backwall signature.  
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Figure 73. The comparison of the data simulated using Pogo FEM package (left) and the data generated using GAN (right). 
The first row shows the pristine trace, second contains one defect indication and third contains two defect indications. All the 
signals contain a back wall around sample 700. The second defect indication appears as if it exists behind the back wall, in 
fact it is generated in the opposite direction. 

Figure 73 shows the comparison of the data generated using Pogo FEM package and the ones 

generated using GAN. Even to an untrained eye it is quite clear which one is which, with the 

FEM time traces being significantly smoother. It is worth noting, however, that the GAN has 

captured the difference in the amplitudes of the back wall and the defect indications, 

indicating some capability for identifying and replicating different features. 
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Figure 74. The frequency domain comparison of the data simulated using Pogo FEM package (left) and the data generated 
using GAN (right). GAN is used directly to simulate a rectified signal. The first row shows the pristine trace, second contains 
one defect indication and third contains two defect indications. 

Figure 74 shows the frequency domain version of Figure 73. In a similar manner to the time-

domain results, the GAN has the capability to generate the pristine frequency spectrum with 

very good accuracy. This is mostly visible when investigating the side lobes around the carrier 

frequency. They are smooth and similar between the generation methods for the pristine 

trace but diverge with the addition of defect indications. Importantly, the network correctly 

models the carrier frequency of 21kHz with much of the energy of the signal contained around 

this point. Less optimistic is the fact that in FEM data the inclusion of defect indications mostly 

leads to the changes in the shape of the main lobe in the frequency domain, while in the case 

of the GAN the main lobe barely changes, with much of the shift in the amplitude of the 
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broadband signal. This leads to a conclusion that GAN has some capability to model the 

underlying frequency spectrum based on the time domain signal, but it needs either a more 

complex architecture, a larger dataset or the inclusion of the frequency-domain similarity in 

a custom loss function.  

In conclusion, GAN is a promising technology, and the generation of guided wave ultrasonic 

signal is not beyond its capability. It is however a very complex form of machine learning with 

careful and systematic research needed to achieve satisfactory results. Once trained, though, 

it has the generation speed of 20000 traces per second when generating in the experimental 

conditions of Google Colaboratory T4 GPU runtime [98]. This corresponds to 200 km of 

pipeline simulated each second. This scale is beyond the capabilities of any available FEA 

modelling software, not to mention the experimental data gathering. Thus, developing the 

ability to use ML methods for generating data would provide an immensely valuable new 

method for realistic data acquisition.  

6.1.3 GAN Applications in GWT 

The main characteristic of GANs is their ability to generate novel realistic samples on demand, 

which can be used for training machine learning classification models. This is especially 

important if the models are to move from the qualitative detection to quantitative 

characterisation of defect indication severity. The added complexity of using ML for 

quantitative inspection in the guided wave context is that the already scarce defective data is 

further reduced when the ‘defect indication’ category is divided into the multiple sizes. A 

conditional GAN can generate a dataset of defect indications sized according to the 

researchers’ choice on demand, thus reducing the problem.  

Furthermore, GAN architectures can be used for neural style transfer. This technique is based 

on the concept of separating the content of the example from its style. It is easy to understand 

it in the context of art. Van Gogh’s “Sunflowers” can be separated into the content – 

sunflowers and the style – characteristic impressionist brushwork of Vincent Van Gogh. In the 

NDT context the content are the features present in the trace, while the style consists of all 

the other factors impacting the trace. Thus, using this approach it is conceivable to build an 

algorithm translating between the real in-service data and FEM-simulated clean signal. This 

would have two potential use cases – the denoising of inspection traces so they are easier for 

the inspectors to analyse and the addition of realistic noise to simulated data. Such traces 
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could in turn be used for training classification neural networks. This follows the concept of 

transfer learning using the pre-training data as close to the target distribution as possible.  

Finally, the ability to generate realistic samples on demand would be useful in the training of 

the inspectors and tracking their progress in the analysis of test results. This would create an 

objective measure of the quality of the inspector’s skills and thus improve the trust in guided 

wave testing as a method. This final use for the GAN-originated data is least technical and 

would require a training and certification regime overhaul, but it could be one of the ways to 

utilise advanced machine learning to improve the quality of GW inspections without raising 

serious safety and reliability concerns.  

6.2 Trust and ML Reliability in NDT Context 

The second section of this chapter deals with the issues of trust and reliability of machine 

learning solutions in the NDT context. Some of the explainability and interpretability methods 

have been introduced previously and the goal of this chapter is not to provide the technical 

information on the implementation of the methods, for which an interested reader is referred 

to [99]. The chapter considers instead the implications of those trends in the context of NDT. 

The chapter will conclude with proposals for approaches that could improve the trust in ML 

solutions when applied to safety-critical NDT.  

6.2.1 Trust and Reliability Issues 

NDT is traditionally a conservative industry, which is due to the safety-critical nature of the 

work performed; failure of NDT to detect a defect indication could result in catastrophic 

failure and loss of life or significant financial impact. As such, trust in the inspection method 

and the inspector is of paramount importance. Currently, methods are qualified for 

inspections by independent assessors or, in the case of large NDT users, internally validated 

for the specific case. The inspectors, in turn, are trained and examined in their ability to use a 

specific NDT modality and certified accordingly. This certification is typically issued by 

institutions and industry associations, such as American Society of Non-destructive Testing 

(ASNT) [100] or British Institute of Non-Destructive Testing (BINDT) [101]. The landscape is 

more complicated when it comes to more recent, less widespread inspection methods, such 

as guided wave testing. In the latter case the training and certification role is fulfilled by 

Guided Ultrasonics Ltd. (amongst others), who is also a hardware provider. Additionally, large 
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NDT users often develop bespoke testing setups and internally certify the inspectors in the 

usage of their specific method.  

Different industry sectors have different standards for NDT techniques appropriate to their 

needs. However, a uniform theme is one of conservatism. This makes the introduction of 

novel methods, such as machine learning, extremely difficult. Thus, achieving trust in ML 

applied to NDT is not strictly a technical issue, but the problem of garnering the confidence 

of industry. Inevitably for business, the main justification for development of ML techniques 

is cost reduction, and any change must be sympathetic to existing approaches to avoid costing 

more. Thus, any attempt to roll out ML for NDT more broadly is dependent on developing ML 

measures that save operating expenses without incurring capital expenses by changing the 

established processes in a drastic way.  

An alternative approach is proposed by, for example, the European Network for Inspection 

and Qualification (ENIQ) [102]. It proposes a novel method for the qualification of ML-based 

approaches to non-destructive testing based on the existing qualification methods. See Figure 

75 for details.  

 

Figure 75. Flow chart highlighting the stages in the qualification process where ML has an impact. Reproduced from [102]. 

Both the report and the qualification method provide a useful approach to building trust in 

the machine learning methods and creating databases of ML models that can be assessed 

against each other. It does not, however, answer the question of building trust to the stage 
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that allows for the transition to qualifying a novel ML-based approach. The report concludes 

that ML software qualified using the method proposed can be used in the same way as any 

other automated inspection software.   
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7 Machine Learning for Limited View Compensation 

This chapter describes a standalone project in the utilisation of a ML-based methodology to 

solve a long-standing problem in NDT – the limited view artefacts in tomographic imaging. 

The chapter introduces the limited view imaging problem. It follows by introducing the 

mathematical basis for the distortion caused by limited view transducer configuration and the 

state-of-the art  compensation algorithms. It follows by exploring the area of ML for image 

denoising to justify the architecture selection. Following, it describes the training and testing 

datasets as well as the ML architecture utilised and the hyperparameter tuning process. 

Finally, it shows the results in the terms of performance on laser-scanned corrosion patches 

as well as some interesting out-of-distribution samples. The performance is compared to 

state-of-the-art positivity regularisation algorithm.  

7.1 Introduction 

Tomographic reconstruction from ultrasonic data is a widely used technique in areas of 

medical diagnostics, such as breast cancer detection, non-destructive testing (NDT), and 

geophysics. Compared to the more common reflection images, these reconstructions provide 

quantitative information about the local material properties of the interrogated medium, 

most commonly the speed of sound. To perform the reconstruction of a sound speed map of 

the volume under inspection, it would be ideal to have access to the data probed from all 

possible angles – the so-called full view configuration. However, in many scenarios it is 

impractical or impossible to achieve this idealised situation, meaning that a reconstruction 

must be produced from a subset of the angles in reconstruction. It could be that data is 

subsampled because of time or cost limitations restricting the number of measurements that 

can be taken, or that there is a physical restriction meaning that only a range of angles is 

measurable. 

This problem typically becomes ill-posed, as multiple sound speed maps can exist that 

correspond to the measured dataset, and addressing this is critical for producing accurate 

reconstructions in such cases. In many algorithms, particularly traditional direct approaches, 

an absence of data is effectively treated as having a measurement of zero, and the 

reconstruction is produced accordingly. However, this introduces strong artefacts into the 

reconstructed image, which can, in turn, obscure features of interest [103].  
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Alternative approaches attempt to compensate for the missing data. One class of approaches 

is to pre-process the data, replacing the unknown angle data with an estimation of what it 

should be. This approach has been investigated in the area of medical X-ray computed 

tomography [104]. However, X-ray behaviour diverges from ultrasound, being approximated 

(sufficiently accurately for almost all CT routines) by a straight ray assumption where the 

attenuation is reconstructed from changes in measured amplitude. Therefore, little work in 

this area (e.g. [105], [106]) is applicable to ultrasonic applications. 

The other conventional approaches to limited view compensation are integrated into the 

image generation algorithms and can broadly be delineated into minimisation and projection 

regularisation approaches. Minimisation involves modifying the unknown data to solve an 

optimisation problem in which the resulting image is a best fit to both the measured data and 

some external restriction, often corresponding to a physical restriction. While this approach 

has been proven effective for some scenarios [107], it has the significant downside of 

requiring multiple iterations running some form of forward model in order to fit the measured 

data, and may also suffer from traditional challenges that often arise with iterative methods, 

including instability and the presence of local minima. The second approach, projection 

regularisation, involves the post-processing of the image. In this, the image is taken, and a 

particular projection is performed, often aligned with some physical limitation. The most 

common example is the restriction of positivity (such approach being termed “positivity 

regularisation”): in CT, for example, negative values are impossible since they would 

correspond to negative x-ray attenuation. Therefore, the projection involves removing any 

negative values, typically by setting these to zero. This process means that the image will be 

moved away from fitting the data, so an iterative process begins where the image is 

alternatively projected onto the data and then onto the physical constraint, ultimately 

converging onto a solution which matches both. This was developed within ultrasonics into 

the VISCIT technique [108], which used a non-zero adaptive threshold and iteratively 

reconstructed the image from high contrast through to low contrast features.  

Machine Learning (ML) can be applied to a broad range of imaging applications, with such 

techniques utilised to eliminate artefacts specific to the imaging modality, from recovering 

the resolution of optical images to speeding up the acquisition of MRI and improving contrast 

in ultrasound imaging [109]. The ML algorithms can be applied either directly to image-
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domain data [110], unrolled images (transformed into 1D vector of pixel values) [111], or 

domain-transformed images [112]. Most success has been found in the application to image-

domain data itself, where there has been a significant amount of interest from the computer 

vision community.  

Within NDT, there are two main areas of quantitative ultrasound tomography application: 

guided wave tomography and early-stage damage detection. In the former, corrosion damage 

causes thickness loss in a pipe wall or plate-like structure, which affects guided wave speed 

due to dispersion and hence provides a mechanism for reconstruction. Early-stage damage, 

i.e. prior to the formation of discrete defects like cracks, will often manifest as subtle localised 

changes in material properties, which can be measured through tomographic ultrasound 

methods. In both cases, physical access is often limited: in guided wave tomography a pipe 

support may surround the pipe preventing measurements in all directions, and the physical 

geometry of a component is likely to prevent the ability to inspect a region with potential 

damage in from all directions.  

This chapter aims to develop machine learning techniques for developing accurate 

reconstructions in limited view ultrasound tomography, and specific focus will be on guided 

wave tomography for corrosion mapping, although the principles should be broadly 

applicable both within NDT and medicine. 

The background theory is described in section 7.2. Section 7.3 presents the experimental 

design and methodology. Section 7.4 discusses the performance of the proposed ML-based 

approach on both artificial thickness maps and experimental corrosion-type images. Finally, 

section 7.5 concludes the work. 

7.2 Theoretical background 

7.2.1 Limited view imaging 

The ultrasound scattering problem will be considered under the Born approximation [113]; 

this is a linearisation of the wave scattering problem which makes inversion practical in the 

case of low contrast, small-scale scatterers. Modifications have been developed to account 

for cases where the approximation is not applicable, such as the Born Iterative Method [114], 

Distorted Born Iterative Method [115] and HARBUT [116]. The underlying principles of the 

Born approximation are still valid in these methods (although the linearisation is typically 
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applied within a single iteration) so the techniques developed under the Born approximation 

are taken to generalise to such scenarios.  

Under the Born approximation, the following is valid: 

𝑢𝑠(𝒓) =  ∫𝑔(𝒓 − 𝒓′)𝑜(𝒓′)𝑢0(𝒓
′)𝑑𝒓′  (77) 

where 𝑢𝑠 is the scattered field, 𝑔 represents the Green’s function in free space, 𝒓 the distance, 

and 𝑢0  is the incident wavefield. 𝑜(𝒙) = 𝑘0 [(
𝑐0

𝑐(𝒙)
) − 1]

2

 is the object function with 𝑐0 being 

the background sound speed, 𝑐 the local sound speed, and 𝑘0 as the background 

wavenumber. 

Considering an array exciting in the far field, the wavefronts intersecting with the scatterer 

can be considered to be planar, as well as the scattered components received at the 

measurement array, and therefore eq. (1) becomes 

𝑢𝑠(𝒓) =  ∫𝑜(𝒓′) exp[𝑖𝑘0(𝒔0 − 𝒔). 𝒓′] 𝑑𝒓′  (78) 

where vectors 𝒔0 and 𝒔 represent the incident and scattered wavefields respectively. Under 

the assumptions made (far field, Born approximation) each measured scattered value is a 

component of the Fourier transform of the object function. This provides a mechanism for 

inversion of the field, by collecting the measured data then performing an inverse two-

dimensional Fourier transform. The exact form of this can vary, with some approaches 

suggesting resampling the measured data to a uniform grid to enable the Fourier transform, 

to non-uniform techniques where additional weightings need to be included [117] [118] 

[119]. This provides a mechanism for evaluating the limited view problem, since missing 

measured components can be directly mapped to missing components in the Fourier 

transformed space.  

Figure 76(a) presents a schematic of a representative limited view configuration, and Figure 

76(b) then illustrates the components which are measurable from this setup. As highlighted 

before, the challenge of limited data imaging is to establish what values are best to use for 

the unknown components to ensure the final image is as accurate as possible. 
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Figure 76. (a) limited view transmission configuration, with a source array above the scatterer and a receiver array below. (b) 
positions of measurements in K-space (spatial frequency domain) showing that there are significant angles which cannot be 
measured. 

7.2.2 Machine learning 

7.2.2.1 Machine learning for image quality improvement 

Image processing can be defined as the operations where an input is an image, and the output 

is either an enhanced version of the image or a collection of information and insights gathered 

from one. Outside of the ML domain, the example of the former is bandpass filtering, while 

the latter is signal-to-noise ratio. Traditional methods remain popular thanks to their 

determinism and integration within processes, but ML is increasingly gaining usage share. The 

rationales for using ML vary between the users but can generally be classified into ease of use 

(i.e. replacing analytic image reconstruction), operational cost (i.e. replacing iterative 

reconstruction) and solving novel problems (i.e. semantic segmentation). This breadth of 

potential applications motivates the quick development of ML for image processing. This 

section intends to briefly introduce the methods used for the improvement in the quality of 

images and explain the rationale behind the selections made in the work.  

This review omits two of the prevalent deep learning-based image processing techniques: ML-

based image reconstruction algorithms  [120] and ML-based semantic extraction algorithms  

[121]. The reconstruction algorithms take in the sensor data, either raw or initially pre-

processed and output a predicted image. Conversely, the semantic extraction algorithms take 

in an image and output the relevant information content. For both categories, there is a lack 

of direct input-output mapping. The work undertaken is concerned with the improvement in 
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the quality of the image, thus the only type of algorithm considered is an image-to-image 

translation.  

The most common category of deep learning applied to image-to-image translation is 

performed directly in the image domain. This is motivated by a broad availability of well-

tested algorithms from the area of computer vision. Indeed, much of the early progress of 

Machine Learning was based on the gradually improving image-based algorithms, such as 

LeNet [122], VGG-Net [123], ResNet [124] and in the more modern times U-Net [125], 

EfficientNet [126] and YOLO [127]. The availability of well-tested algorithms makes image 

domain preferable to sensor or frequency domains.  

Limited view imaging requires, in effect, an artefact compensation algorithm. The 

complicating factor is the difference in the application area. Conventionally image processing 

algorithms are applied to natural images, scraped from the web, while the use case for this 

work is corroded metallic samples. Thus, while it is possible to transfer the methods, they 

need to be carefully evaluated for suitability. While the authors were unable to find reports 

of the application of ML to limited view imaging in the context of NDT, such investigations 

have been conducted, although in limited numbers, in medical photoacoustic imaging  [128], 

[129]. The preferred architecture for the image-to-image denoising tasks is an encoder-

decoder architecture. This has been utilised directly [130],  [131] and with modifications 

based on the domain requirements such as the usage of a U-Net type architecture  [132], 

[128], [129]. A U-Net is a combination of an autoencoder and a ResNet, originally used for 

image segmentation, but since then proven to be the preferable network for a wide range of 

applications, including non-destructive testing  [88],  [89],  [90], the discriminator parts of 

generative adversarial networks  [91],  [92], image denoising  [93] or speech enhancement  

[94]. It is most notable for this work, as it has been used in a series of attempts to solve the 

limited-view problem in photoacoustic imaging  [128], [129]. Some of the work attempted the 

use of multilayer perceptron on image data  [133], which has recently been adapted to the 

mainstream encoder-decoder paradigm by the usage of Dense U-Net  [129]. 

Image domain learning is the predominant choice in image quality improvement, but some 

alternative approaches have been attempted, most importantly solving the image quality 

problems in the sensor domain and using generative learning. The former involves employing 

the ML approach before the image reconstruction, based on the premise that the sensor 
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output is the richest data source available, thus an ML algorithm may be able to analyse and 

modify it, so the noise is not reconstructed into the image in the first place. This approach can 

also be used to speed up the acquisition by hallucinating the signals sensors would provide if 

placed in between the existing sensors  [134]. Finally, perhaps the most modern image quality 

improvement technique is the usage of Generative Adversarial Networks (GANs). This type of 

neural network generates completely novel data based on the input. GANs are notorious for 

hallucinating impossible data, however, this issue has been solved by the usage of cycle-

consistent GAN (CycleGAN)  [135], which ensures the original data can be retrieved from the 

generated image. This approach has been successfully applied to medical CT [136]. However, 

GANs are difficult to train, suffer from very low explainability and have high data 

requirements, making this approach a choice of last resort.  

Taking into consideration both the results of [128], [129] and the fact that encoder-decoder 

architectures are generally considered the models-of-choice for image-to-image denoising 

tasks [25], [26], this work primarily investigates the use of denoising autoencoders. 

7.2.2.2 Denoising autoencoder architecture 

The work presented in this chapter performs an image-processing task that is essentially 

denoising. Based on the review presented in the previous section, the design paradigm best 

suited to image quality improvement is an encoder-decoder type of architecture. It is defined 

by containing an encoder, which maps the input to a low-dimensional latent space and a 

decoder which uses the latent space as an input to construct the output. Therefore, the 

encoder can be understood as refining the information present in the original data, filling the 

role of a feature engineer. The decoder, in turn, is the decision-making network. 

An autoencoder is a generic term for an encoder-decoder, whose output is identical to the 

input  [137]. A denoising autoencoder is a specific application, where the input is first 

corrupted with noise before being passed through the ML architecture. The original 

motivation for the denoising autoencoder was based on the theory, that corrupting the input 

signal may help the encoder learn to reject the irrelevant information, thus improving its 

feature extraction capability. Now, it is used extensively by the signal processing community 

to restore the noisy inputs to de-noised outputs.  
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The denoising autoencoder is reliant on a training dataset composed of two matched subsets, 

the noisy inputs, and the known noiseless outputs. This requirement naturally makes the 

design paradigm well suited to the applications where two conditions are met: the noiseless 

data is abundantly available, and the noise sources are deterministic and easy to simulate. An 

example of a perfect application is sharpening out-of-focus photographs, given the abundant 

availability of in-focus examples and the ease of blurring. If one of the conditions is not met, 

either the noise or the noiseless data needs to be artificially generated, which introduces the 

need to carefully test the trained model against the intended use case and to be aware of its 

limitations.  

Finally, an architecture achieving similar goals is a much more modern CycleGAN. The decision 

on the utilisation of either of the two architectures is ultimately dependent on the available 

dataset. CycleGAN, as an unsupervised learning architecture, does not require the matching 

between the noiseless and the noisy set, which is important for some applications, especially 

ones where numerically simulating an idealised scenario is possible, but simulating realistic 

noise is not. However, as with many a generational architecture CycleGAN requires very large 

training sets, and the training set must be drawn from the same distribution as the intended 

application. Furthermore, generational architectures are less explainable, making them less 

preferable than conventional architectures in safety-critical applications. 

7.3 Methodology 

7.3.1 Data sources and processing 

The ML model developed in this work is trained on artificial data and is tested on both artificial 

and experimental samples. Each numerical or real data sample represents thickness maps 

obtained via ultrasonic inspection and consists in a pair of single-channel (i.e., grayscale) 

images having 128x128 pixels, where each pixel value corresponds to the local thickness 

change. The two images forming each pair are obtained using limited and full views, and are 

used as input and output (i.e., ground truth) to the model, respectively. All images are 

normalised such that their pixel values range between -1 and 1. 

A physical limited view configuration is considered. This is far field, with a transmission array 

above the object and reception array below, as illustrated in Figure 76(a). The viewing angle 

of each array is 145.6 degrees. 
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7.3.1.1 Artificial data 

Full view thickness maps are artificially generated as “blobs”, i.e., circular changes in thickness 

whose value is maximal centrally and falls off according to a Hann (raised cosine) function, 

overlaid on a background consisting of zero-mean uniform noise with values ranging between 

-0.2 and 0.2. Examples of such maps are given in Figure 77(b, d, f). The noise is used to 

facilitate the ML training, since a uniform background encourages the algorithm to generate 

images as close to the background level as possible.  

Each full view thickness map is then modified to simulate a limited view inspection scenario. 

In this process, the image has a 2D Fourier transform applied to it, and each component is 

then assessed to evaluate whether it is measurable using the limited view configuration. Any 

unmeasurable components are set to zero, and the result is then inverse Fourier transformed 

back. Examples of the resulting limited view images are given in Figure 77(a, c, e). 
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Figure 77. Examples of limited view registrations of artificial thickness maps (a, c, e) and their full view version (b, d, f). This 
type of data was used for the training of the ML algorithm. 

 

The ML algorithm is trained on a dataset of 10,000 data samples, each containing five blobs, 

whose diameters and maximum amplitudes vary between 2% and 20% of the image 

dimension and between -1 and 1, respectively. Such dataset is split in training and validation 

sets with a 80/20% ratio. The artificial testing set is composed of 2,000 further images 

generated with the same procedure. Note that a preliminary study showed that using 
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different numbers of blobs per image did not affect the performance in any significant 

manner, hence the choice of using a constant number of five blobs per image. 

7.3.1.2 Experimental testing data 

A set of ten experimental data samples is used to test the performance of the novel limited 

view compensation algorithm in a realistic inspection scenario. The data is acquired using 

laser scanning of in-service corroded samples, thus resulting in high-quality thickness maps of 

corroded samples. These are representative of the real cases which a guided wave 

tomography routine would need to successfully reconstruct. 

Since the available raw images have non-uniform dimensions, they are first zero-padded to 

make them squared, and they are then downsized to 128x128 pixels using MATLAB “imresize” 

function [138]. This uses bicubic interpolation to calculate the output. Finally, the limited view 

projection of the thickness maps is calculated using the same process described previously 

for the artificial data. 

7.3.2 ML architecture and training design 

The ML architecture utilised in this work is a fully convolutional autoencoder. It follows the 

typical design of an autoencoder, but instead of using a fully connected latent layer, it is 

convolutional, as this design choice demonstrated a better performance when tested. As seen 

in Figure 78, the encoder part of the network is composed of three 2D convolutional layers 

with stride parameter 2, effectively compressing the input image by a factor of 8 in both 

directions. The latent dimension is therefore 16x16. This is followed by a 2D convolution on 

the latent dimension that does not further reduce the dimensionality, and then by the 

decoder portion of the network, consisting in three transposed convolutional layers that 

return the image to the initial size.  

Some architecture modifications were tested, including the addition of skip-connections like 

a U-Net and the addition of Max Pooling or Dropout layers [139]. However, neither of the 

modifications improved the performance of the network.  

The compiled architecture was trained on the dataset described in section 7.3.1.1 using Adam 

optimiser [140] and Mean Squared Error (MSE) loss. The Adam optimiser was selected as it is 

the first-choice optimiser in ML research (over 320 times more common than the second-

placed Adafactor [141]). Adam is a self-tuning optimiser; therefore, the learning rate selection 
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is significantly more lenient than in many older-generation optimisers. MSE is a standard loss 

function in image-to-image translation tasks.  

Both the architecture and the training process are characterised by a limited number of 

tuneable hyperparameters. This has the advantage of enabling a broad range optimisation 

exercise. The parameters to be tuned are the initial number of filters, the size of the receptive 

field, the learning rate and the number of training epochs. The optimisation of the first three 

was performed using the Keras Tuner [142], which implements Hyperband hyperparameter 

tuning strategy [143]. Table 8 presents the hyperparameters to be tuned as well as their 

possible values. The tuner is set to use a reduction factor of 3 [143] and to select the best-

performing model based on the validation loss when using a progressive number of training 

epochs (up to 20). 

Table 8. The hyperparameters to be tuned in Karas Tuner [142] and their possible values. 

Parameter Possible Values 

Initial Filters 16, 32, 48, 64, 80, 96, 112, 128 

Receptive Field Size 1, 3, 5, 7, 9, 11 

Learning Rate 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7 

 

As a result of hyperparameter tuning, the initial number of filters was set to 80, the receptive 

field size to 3 and the learning rate to 1e-4, with the diagram of the resultant neural network 

shown in Figure 78. The optimal number of training epochs was then manually determined to 

be 100. 
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Figure 78. Optimised autoencoder architecture implemented in this work. The left column corresponds to the encoder path 
and the right column to the decoder path.  

7.3.3 Metrics 

The metrics for the evaluation of similarity of grayscale images are quite varied, but the 

application investigated in this work is characterised by one-to-one pixel mapping, thus 

justifying the usage of pixel-level similarity metrics. The standard pixel similarity metric is the 

MSE, which, as mentioned in the previous section, is used as the loss function during training. 

However, at the stage of the assessment of the results, the Root Mean Squared Error (RMSE) 

is more useful, as its values are on the same scale as the pixel values of the image. 

Furthermore, in the context of visualising changes in the thickness, the highest changes are 

the most important to get right, as they correspond to the potential points of failure. As a 

result, in addition to RMSE, the per-pixel Maximum Absolute Error (MAXAE) is also used.  

7.4 Results and discussion 

7.4.1 Performance on the artificial data 

The initial assessment of the performance of the proposed algorithm trained on the 10,000 

input data samples has been made on the testing set consisting of the 2,000 examples drawn 
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from the same artificial generation process used for the training set. On this dataset, average 

values of 0.0223 and 0.2284 were obtained for RMSE and MAXAE, respectively. 

As described in Section 7.3.1.1, noise was added to the artificial images used in the training 

dataset. This solution was implemented after noticing that the usage of uniform backgrounds 

(a grayscale level of zero, i.e., black) was encouraging the algorithm to generate images close 

to the background level, since such outputs generally give rather low values for the loss 

function, i.e., MSE. 

Figure 79 shows an example of the results obtained when training the autoencoder on the 

noiseless dataset. The ground truth full view image of Figure 79 (c) features four blobs. These 

blobs are still discernible in the limited view registration of Figure 79 (a), though are 

significantly out of focus. Figure 79 (b) shows that the trained autoencoder has simply 

produced a uniform black image, thus completely ignoring the thickness changes. This still 

gives a low MSE since the vast majority of pixels in the ground truth image are equal to zero. 

While the global MSE minimum of the correct solution is better than the all-black output, it is 

a significantly more complex solution, thus in the absence of input perturbation the neural 

network tends to default to all-black local minimum. 

 

Figure 79. An example of the results obtained when the autoencoder is trained on the noiseless dataset. (a) input limited view 
registration; (b) output of the autoencoder; (c) ground truth full view image. 

Figure 80 shows three representative examples of the results (one example per row of plots, 

with the left plot displaying the limited view registration input to the autoencoder, the middle 

one the output of the autoencoder and the right one the ground truth). Compared to Figure 

79 the difference is the addition of small random noise to the input. All examples show visible 

improvements in the sharpness and contrast of the images processed by the autoencoder 

when compared to the original limited view registrations. However, Figure 80(i) shows a blob 
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that has not been reconstructed by the autoencoder. That blob roughly coincides with 

another blob of similar amplitude, which probably explains the autoencoder’s inability to 

reconstruct it. This result serves as a reminder that even though the autoencoder appears to 

reconstruct nearly invisible thickness changes, it can still fail in extreme cases.  

In summary, the trained autoencoder appears to perform very well in sharpening the 

simulated dataset and addressing the impact of the limited view approach. This is an expected 

result, as the training was performed on a dataset with the same distribution as the testing 

set considered in this section. The next section considers the important scenario of actual 

experimental data as well as a set of interesting cases of artificial images drawn from very 

different distributions. 
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Figure 80. Artificial testing examples. Three thickness maps (a-c, d-f, g-i) are presented. For each, the limited view registration 
(input to the autoencoder) is shown at the left, the output of the autoencoder at the centre and the ground truth full view 
registration at the right. In subfigure (i), the plot is annotated with a red circle highlighting a feature missed by the 
autoencoder. 

7.4.2 Performance on the Artificial Test Cases 

The limited view transducer configuration causes some regions of the area of interest to be 

unmeasurable in the frequency domain (see Figure 76). These regions are known as null 

space. Thus, if a modification is made in the null space of the thickness map, such information 

should not be available via the limited view, no matter the processing method. 

Clearly, the sensitivity of the configuration to spatial frequency components will vary 

depending on the direction; transmitting primarily vertically as in the example of Figure 76(a) 

will result in an insensitivity to horizontal variations, and these horizontal variations will be in 

the null space. Figure 81 shows three test cases that investigates this. The ground truth 
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samples are horizontal stripes (c), vertical stripes (f) and the combination of the two (i). As 

expected, the limited view registration of the horizontal stripes completely misses such 

features (a), while that of the vertical stripes does a good job in their reconstruction (d). When 

the two stripe directions are combined, the limited view is still highly sensitive to the vertical 

ones, and, interestingly, also gives a hint on the presence of the horizontal ones (g). It is 

interesting to assess whether the trained autoencoder of Section 7.4 is somehow able to 

synthesise the missing data for such images. 

The limited views shown in Figure 81(a, d, g) were then given as input to the trained 

autoencoder of Section 7.4, and the outputs are shown in (b, e, h), respectively. 

Unsurprisingly, the output in (b) is a pure hallucination and has nothing in common with the 

ground truth of (c). Notably, the autoencoder outputs in the two other instances are farther 

from the ground truth than the limited view registration. This is essentially due to the 

autoencoder’s tendency to sharpen the image into the shape of blobs, which in these cases 

distort the outputs. These results serve as a reminder that an ML algorithm can only be as 

good as the data it has been trained on. Given that no sharp-edged straight geometries were 

present in the training set, the resultant algorithm does not perform too well when presented 

with such a problem. Two solutions can be implemented to improve the resilience of an ML 

algorithm to unseen data. One involves training on a significantly broader random training 

set, such as web-scraped images, while the other or systematically analysing the possible 

types of inputs and matching the training set. The first option has the disadvantage of losing 

the domain-specificity and requiring an increase in the network size, training duration and 

computational complexity at inference. The second is extremely work-intensive and reliant 

on the designer’s ability to identify all the real-world cases and effectively simulate them. The 

second approach, pioneered in the NDT context by the work of Richard Pyle [144], involves 

implementing techniques such as ensemble learning to identify whether the input data comes 

from a known distribution. Such information can be used to reject the output of the ML 

algorithm as untrustworthy.  



 
  
   
 

 

184 

 

Figure 81. Limited view registrations (a, d, g) compared to the autoencoder output (b, e, h) and full view ground truth (c, f, i) 
of artificial geometric thickness maps including horizontal stripes (a-c), vertical stripes (d-f), and a combination of the two (g-
i). 

 

7.4.3 Performance on the real test cases 

This section assesses the performance of the autoencoder trained on the artificial dataset 

when applied to the set of ten experimentally acquired corrosion patches described in Section 

7.3.1.2. In this case, the results are also compared to those obtained using the state-of-the-

art positivity regularisation method, described in Section 7.1, on the limited view images. 

Figure 82 and Figure 83 display all the results. A visual inspection of the images reveals that 

the autoencoder significantly improves the contrast and focus of all test cases when 

compared to either the original limited view registrations or to their positivity regularized 

version. The improvement in focus is especially evident in Figure 82(e-h, q-t) and Figure 83(a-
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p), corresponding to elongated corrosion patches, which are common in linear contact 

scenarios (for example, a pipe on a simple support). 

Table 9 lists the RMSE and MAXAE metrics for all test cases. Expectedly, the autoencoder 

errors are significantly higher than those obtained on the artificial testing dataset reported in 

the previous section. However, when compared to the limited view registrations, the 

autoencoder performs better in 18 out of 20 test scenarios, lowering the RMSE and the 

MAXAE by an average of 35 and 40%, respectively. The two cases where the autoencoder 

performed worse than the limited view registration are a 14% drop in the MAXAE of the third 

sample (Figure 82 (i-l)), for which, however, the RMSE improves by 42%, and a 5% drop in the 

RMSE of the fifth sample ((Figure 82 (q-t)), for which there is a 28% improvement in the 

MAXAE. In both cases the visual inspection of the plots shows a significantly enhanced 

sharpness of the image output by the autoencoder. 

Compared to the positivity regularisation method, the ML algorithm typically performs better 

in terms of the MAXAE metric, with an average improvement of 11%. However, it tends to 

perform worse on the RMSE, with an average drop of 47%. The latter result is, however, 

strongly influenced by the downsides of RMSE as a metric for this type of tasks, since it can 

be significantly impacted by not-so-critical background mismatches. As a matter of example, 

the visual inspection of the fifth sample (Figure 82 (q-t)), where the autoencoder performs 

163% worse than positivity regularisation on RMSE, shows that the ML model provides the 

overall best reconstruction of the ground truth image, though is strongly penalised by the 

background mismatch in terms of RMSE. 
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Figure 82. Experimental corrosion patches 1 to 5. Original limited view registration (a, e, i, m, q), image processed using the 
positivity regularisation method (b, f, j, n, r), output of the autoencoder (c, g, k, o, s) and full view ground truth (d, h, l, p, t). 
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Figure 83. Experimental corrosion patches 6 to 10. Original limited view registration (a, e, i, m, q), image processed using the 
positivity regularisation method (b, f, j, n, r), output of the autoencoder (c, g, k, o, s) and full view ground truth (d, h, l, p, t). 
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Table 9. RMSE and MAXAE for the limited view (LV) registration of experimentally acquired corrosion thickness maps 
compared to the positivity regularised (PR) registration and the output of the autoencoder (AE). The “Diff.” columns report 
the differences between PR and AE, with the cells in pink background highlighting the instances where the metric of PR 
surpassed that of AE. The two instances where the metric of LV surpassed that of AE are indicated in pink. 

 
RMSE (proportion of max wall loss) MAXAE (proportion of max wall loss) 

 
LV PR AE Diff. LV PR AE Diff. 

Figure 82(a-d) 0.20 0.09 0.06 0.03 0.98 0.42 0.28 0.14 

Figure 82(e-h) 0.39 0.20 0.29 -0.08 0.98 0.61 0.49 0.13 

Figure 82(i-l) 0.33 0.20 0.19 0.01 0.76 0.73 0.87 -0.13 

Figure 82(m-p) 0.26 0.10 0.15 -0.05 0.78 0.39 0.35 0.04 

Figure 82(q-t) 0.37 0.15 0.39 -0.24 0.93 0.66 0.67 -0.02 

Figure 83(a-d) 0.29 0.11 0.16 -0.05 0.83 0.50 0.43 0.06 

Figure 83(e-h) 0.37 0.14 0.25 -0.11 0.97 0.73 0.65 0.08 

Figure 83(i-l) 0.37 0.14 0.21 -0.07 0.82 0.55 0.52 0.03 

Figure 83(m-p) 0.32 0.15 0.27 -0.13 0.96 0.61 0.54 0.07 

Figure 83(q-t) 0.37 0.16 0.15 0.01 0.91 0.82 0.58 0.24 

 

It is notable that the corrosion patches considered in this section are more complicated than 

the training dataset used, which is likely to have some impact on the performance. It would 

be ideal to train with real corrosion patches, however, as with many problems, particularly in 

non-destructive testing, data scarcity is a significant challenge. It may be possible, however, 

to synthesise more representative corrosion patches and/or utilise data augmentation 

approaches, which may improve this.  

7.5 Conclusion 

This work proposes a novel approach to a limited view registration compensation algorithm 

for use in the NDT context. This is based on the implementation of a fully convolutional 

autoencoder machine learning architecture. The experimental data scarcity problem was 

circumvented by the usage of a fully artificial training dataset corrupted with a background 

uniform noise. The resultant trained model was tested both on an artificial testing dataset 

drawn from the same distribution as the training set, and, more importantly, on a set of ten 

real thickness maps of corrosion patches. 
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The trained autoencoder was first shown to perform very well in terms of both RMSE and 

MAXAE when tested on the artificial testing dataset. However, the truly important finding is 

the fact that the algorithm generalises well to real corrosion patches. The visual inspection of 

the results on all available experimental samples reveals that the proposed ML model 

improves the contrast and focus of the images when compared to both the original limited 

view registrations and to their processing via a state-of-the-art positivity regularisation 

routine. The inadequacy of the numeric metric is best presented by Figure 82(q-t). This 

example by MaxAE metric is the worst of the examples with positivity regularisation 

significantly outperforming AE. However, upon inspection it is clear that AE was able to 

horizontally localise the corrosion patch significantly better than regularisation. The 

improvements are also generally confirmed when looking at the chosen metrics, with the 

autoencoder’s outputs outperforming the limited view registrations in 18 out of 20 cases, 

with an average error reduction of 35 and 40% in terms of RMSE and MAXAE, respectively. 

When the same metrics are used to compare the results of the autoencoder against those of 

the positivity regulariser, a general superiority of the former in terms of MAXAE is noted, 

though the opposite is true in terms of RMSE. Nevertheless, a further visual inspection of the 

results indicates that this is essentially due to a not-so-critical tendency of the autoencoder 

to achieve a higher background mismatch than the positivity regularisation approach, while 

the more relevant parts of the image including the reductions in thickness rendered by the 

autoencoder are much sharper and more accurate than those given by the regulariser. 

Finally, the algorithm was tested on artificial geometric thickness maps designed to test the 

limitations of the limited view algorithm. These examples were very far from the training data 

distribution. The test shows that this is the only application in which the AE processing yielded 

adverse results, with the original limited view registration closer to the ground truth. This 

result serves as a reminder, that the proposed autoencoder, similarly to most ML applications, 

is very dependent on the quality of the input data. This work proposes two approaches for 

limiting the impact of this issue. The first involves an expert-led process of improving the 

training dataset to successfully simulate every input type a limited view UT could encounter. 

This faces its own set of issues, such as the work intensiveness and the lack of guarantee that 

all scenarios are indeed covered. The second approach involves building on the existing work 

to detect out-of-distribution samples and flag them before passing through the autoencoder.  
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8 Conclusion 

This chapter is comprised of the recap of the project described in the thesis, a summary of 

the main findings and the future work recommended for the development of the project.  

8.1.1 Summary 

This project had a broad remit in exploring the methods in which machine learning can be 

utilised to enhance the guided wave testing of pipelines. The industrial motivation was that 

the guided wave testing is very dependent on the performance of the human inspector, 

introducing the uncertainty into the results of the method. Machine Learning offers potential 

solutions to the issue by offering a second-marking capacity to inspectors. 

Chapter 1 introduced guided wave testing, its industrial use cases, the inspection protocol, 

and the motivation for the project. Additionally, it introduced the industrial partner of this 

project, Guided Ultrasonics Limited, who are the source of the in-service inspection data.  

Chapter 2 provides the theoretical background necessary to fully understand the thesis. As 

the project has two distinct constituent parts, the theoretical background is similarly split into 

sections. At first it introduces the mechanics of wave propagation as the necessary step to 

explain the finite element modelling, being a source of most of the data used in this work. It 

follows with the artificial focusing methods which were trialled as an attempt to inject 

physics-based knowledge into the machine learning paradigm. It also briefly introduces 

guided wave transducers, as the hardware dictates the ultimate capability of the testing 

method. In the second part, machine learning is broadly introduced. While this work used 

relatively simple ML approaches, the section is meant to provide the reader with the 

knowledge necessary to critique the approaches. It provides the historical outline of ML 

development, the common ML paradigms of supervised and unsupervised learning as well as 

introduces the recent advances in generative ML and the social and ethical issues with AI 

fairness. Furthermore, it derives the operations of the deep learning architectures and 

provides the mathematical background for the understanding of the constituent parts of the 

ML model.  

Chapter 3 introduces the datasets used for the purposes of the work. It describes the data 

pipelines for both the simulated and the real data. Importantly, it discusses the different input 

formats dependent on the source of data, decides on the common output format and 
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describes the transformations necessary. Furthermore, it deals with the problems 

encountered when working with the data, both real and simulated, most importantly, the 

inherent differences between the real and the simulated data, stemming from the lack of 

ability to fully simulate the real world. The chapter concludes with the description and 

parameters of the datasets used in the rest of the work.  

Chapter 4 describes the design of the major part of this project – a decision-making ML model 

designed to assist the inspectors. It starts by introducing the metrics used for the assessment 

of ML approaches, from the basic ones, through their derivatives like AUROC and finishing by 

developing a bespoke metric of FPR@1TPR designed specifically for NDT. It goes through the 

descriptions of the architectures used in the work, their specific implementations and 

adjustments made due to the characteristics of the problem or the data.  

Subsequently, Chapter 5 it presents the results of the experiments conducted to select the 

best parameters for the ML training. The final part of this chapter presents the results of a 

major study testing the performance of ML on GWT data. The first experiments were 

conducted on the simulations assessing the impact of the data processing. The testing on the 

in-service data followed, initially assessing the performance in defect indication detection. 

With the results on this problem were unsatisfactory, the question was broadened to feature 

detection, where the performance improved to industry-standard level. This path was 

therefore investigated further, with a full-scale study designed to select the best architecture 

and investigate the impact of increasing the number of training data points on the 

performance of the model. Finally, the samples consistently misclassified by the models are 

investigated to inform the future development of the ML approaches. 

Chapter 6 deals with the modern ML topics, which have been briefly investigated during this 

project. It begins with the presentation of the generative adversarial network designed to 

produce realistic-looking GWT samples. It describes the considerations when building such a 

network and follows with the presentation of the generated results in both time and 

frequency domain. The second part of this chapter touches on the issues outside of the 

technical development of the ML tools, but relevant to the broader issue of widespread 

utilisation of ML methods in the context of NDT. Most importantly it deals with the problems 

of trust and reliability and the various method they can be assured. Finally, a development 

enabling any advanced machine learning research is the broadening of access to good quality 
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training data. This issue has been discussed at length in chapter 3.4 concerning the data issues 

faced in this work, but new and advanced machine learning architectures are more data-

hungry than ever. The costs of monitoring decreasing compared to the costs of failure will 

make the data significantly more abundant. It is a clear interest of the research community to 

make data accessible. However, this is generally acquired by the service providers, hardware 

manufacturers and end users. Those actors have an interest in keeping the data private, 

making it necessary to develop a sharing scheme allowing the owners to open their data to 

NDT machine learning research without revealing trade secrets. Open data facilitates the 

stated aim of NDT: preventing as many in-service failures as possible. Thus, a public data 

regime should be developed by a broad confederation of industry actors to ensure that 

everyone has a stake and participates in the benefits.  

Chapter 7 introduces the standalone work conducted to assess the usefulness of ML in 

tackling other issues in ultrasonic NDT. This work has introduced a content-agnostic, fast, and 

lightweight algorithm compensating for the limited view transducer configuration. The 

architecture is based on a fully convolutional autoencoder. The network was trained on fully 

artificial data and tested on a small, but illustrative dataset of laser-scanned corrosion patches 

to assess its generalisation capacity. It improves the quality of the images when measured as 

maximum absolute error and RMSE. The work compared the performance of the ML 

architecture to that of a conventional non-ML algorithm – positivity regularisation. While the 

ML approach comparatively underperformed on RMSE, the visual inspection of the results 

shows that it leads to a significantly closer-to-truth images.   

8.1.2 Key Contributions 

• An ML algorithm has been developed that assesses the standard guided wave 

inspection A-scan and decides whether the trace contains a feature of interest or not. 

This algorithm performs at the true positive rate (probability of detection) of 99.7% 

with the false positive rate (probability of false alarm) between 1.5 and 4.1%. This is 

presented in Figure 68 Section 5.4. 

• VGG-Net has been proven to reach better performance than U-Net both measured 

using AUROC and FPR@1TPR. Additionally, the training of VGG-Net is quicker and 

more stable than of a U-Net. This points the NDT ML research towards simpler 

architectures. This is presented in Figure 67 and Figure 68 Section 5.4. 
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• Pre-training the ML algorithm using FEM simulated data followed by fine-tuning on 

the real in-service data makes the model perform better than using just the real data. 

This points to the potential gains from developing better finite element models. This 

is presented in Figure 65 Section 5.2.1 and Figure 67 Section 5.4. 

• An ML algorithm for the analysis of GWT traces can be trained on as few as 1000 real 

traces, including 250 examples of the positive class (Figure 68 Section 5.4.). This has 

been proven for feature detection, but the follow-up study showed that defect 

indications are not overrepresented in the misclassified set (Table 7, Figure 69, and 

Figure 70 Section 5.5).  

• The generative adversarial network is able to generate traces containing just the 

backwall signal which appear realistic, but simulating smaller defect indication signals 

was not as successful. This behaviour is clear both in time and frequency domains 

(Figure 73, and Figure 74 Section 6.1.2). It is likely that a significantly larger dataset 

would be needed for a well performing algorithm in that category. Thus, it should be 

concluded that generative learning should be used in more restricted ways, such as 

defect indication injection.  

• ML based limited view compensation algorithm performs better than current state of 

the art on meaningful metrics (Figure 82, Figure 83, and Table 9 Section 7.4.3). This 

can be trained on purely simulated data and generalise well to unseen real data.  

• Machine learning model performance on the simulated data does not necessarily 

translate to the real data, thus any developed models need to be tested on data 

gathered in-service to ensure their suitability (Figure 63, Figure 64, and Figure 65 

Section 5.2). 

• The main issue faced by this work was the difficulty in the data processing. This points 

to the directions of further research in the establishment of a data repository that 

could be used both to develop and to validate automated decision-making methods. 

This is showcased by the complexity of the data processing described in Section 3.2. 

8.1.3 Future Work 

This work has developed a proof-of-concept algorithm for automated defect indication 

detection using guided wave testing. The model in this work was tested using the data 

gathered in operational conditions but manually processed and bespoke designed in research 
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conditions, making it a TRL 5/6 technology; thus, the most important follow-up should be 

raising the TRL to levels 8/9. This type of work is typically undertaken outside of the academic 

setting. In order to raise the TRL the technology needs to be included into a robust pipeline:  

1. Design data format for inspection data. 

2. Collect and process the inspection data into a known and constant format.  

3. Receive the model predictions. Save the prediction in a way the clearly links it to the 

original data.  

4. Design a continuous learning pipeline that allows for model re-training based on field 

inspection results.  

5. Design a robust periodic validation procedure to guard against the model drift 

(changing predictions based on the new training data). 

Overarchingly ensure robust inspector training in the use of the new tool to facilitate 

adoption.  

Secondly, the model itself can be refined and tested to assess the potential gains in the 

performance. Some of the parameters that can be changed and hold some promise for the 

improvement in the performance are:  

• Changing size of the input data or using multiple input data sizes – this would allow 

the capture and classification of larger features. 

• Experimenting with a variety of loss types, especially hinge or focal loss. 

• Running a large-scale grid search over the parameters such as the receptive field size, 

the number of layers, type of pooling.  

• Experimenting with other modern ML architectures such as EfficientNet.  

• Experiment with pre-trained ML architectures, promising candidates would be 

environmental sound classification or keyword recognition networks. 

All the mentioned developments are less suited to academic research and more to the 

commercial environment.  

From the research perspective, the clear next stage is extending the ML capability to defect 

indication, rather than feature, detection. This could be pursued in a couple of ways:  

• Develop a real experimental dataset of 250+ defect indications and apply the lessons 

learnt in this research. 
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• Improve the simulation capacity so the finite element models capture behaviour 

within the real data better, thus reducing the need for the in-service data.  

• Implement a two-stage ML process, first finding the features and then classifying 

between a benign one and a defect indication. This should use engineered features 

and explainable architectures, as it is clearly a safety-critical stage.  

• Design a multi-agent ML pipeline with separate models trained to automate or assist 

in specific inspector tasks (weld identification, DAC setting, frequency sweep etc.) 

The generative learning approaches investigated were too data-hungry to be deployed 

directly as a method for acquiring realistic data. These could, however, be used to enhance 

the simulated data or to transform and inject the defects between samples. Furthermore, the 

modern GPT technology should be explored, especially its ability to generate sound waves, 

for the possibility of fine-tuning it for ultrasonic NDT area.  

The limited view compensation generally performed very well and can be considered state-

of-the art, however, it underperformed on RMSE compared to the conventional approach. 

This can be remedied with relatively little additional work. Additionally, the performance of 

the algorithm can probably be improved by employing a similar transfer learning approach as 

in the main defect indication detection work. This would only necessitate gathering a 

significantly larger dataset (at least a couple hundred examples) of corrosion thickness maps 

and implementing a two-stage training. This work would be suitable to either academic or 

industrial setting. 

Finally, the problem of explainability and trust must be addressed. A full review of the 

explainability methods must be undertaken, with the candidates assessed for the suitability 

in NDT. This work needs to be performed in collaboration with industry bodies, as purely 

academic research does not have the profile to become a standard.  
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