

1

Imperial College London

Machine Learning Applications in Guided Wave Testing

by

Mikolaj Andrzej Mroszczak

A thesis submitted to Imperial College London for the degree of

Doctor of Engineering

Department of Mechanical Engineering

Imperial College London

London SW7 2AZ

May 2024

2

Declaration of Originality

The content of this thesis is my own research work which was completed with the supervision

of Doctor Peter Huthwaite and Doctor Stefano Mariani. Where I have made use of the work

of others, I have made this clear and provided appropriate references.

Mikolaj Mroszczak

15/05/24

3

Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons Attribution-Non-commercial 4.0 International Licence

(CC BY-NC). Under this licence, you may copy and redistribute the material in any medium or

format. You may also create and distribute modified versions of the work. This is on the

condition that: you credit the author and do not use it, or any derivative works, for a

commercial purpose. When reusing or sharing this work, ensure you make the licence terms

clear to others by naming the licence and linking to the licence text. Where a work has been

adapted, you should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included

in this licence or permitted under UK Copyright Law.

4

Abstract

Guided wave testing (GWT) is a non-destructive testing (NDT) technique for in-service testing

of pipes allowing the inspection of tens of metres of pipe in either direction from a single

position. The aims are to identify and locate physical features along the pipe in the axial

direction, particularly the defect indications, such as cracks or corrosion patches. However,

the signals output by GWT of pipes are complex to interpret, making the quality of inspection

highly dependent on the operator’s skills. Due to signal complexities, at present there are no

automated procedures to help operators in this task. Some of the recently developed

machine learning (ML) algorithms are expected to possess the modelling capabilities required

to address this classification task, though they would typically need hundreds if not thousands

of labelled input data for their training. This amount of experimental data is seldom available

in the NDT field, particularly with regard to the damage cases. This thesis explores the ML for

NDT, introducing the data processing pipelines and a comparison of ML approaches. First, it

is shown that high ML performance on artificial data does not necessarily translate to a similar

performance on real data, motivating the need for robust ML model validation. The following

results demonstrate that with scarce experimental data, substantial detection improvements

can be achieved by pre-training the chosen ML model with synthetic data, before fine-tuning

it on actual inspection data. In particular, the ML algorithm that is found to perform best for

this task is a VGG-Net model, which is shown to yield false positive rates in the order of ~1.5

to 4% at the fixed true positive rate of 99.7%. Furthermore, the thesis explores modern

generative ML approaches as potential tools to augment the data, showing the capacity to

generate realistic data ex nihilo.

5

Acknowledgements

I would like to express my thanks to my supervisors, Dr Peter Huthwaite, Dr Stefano Mariani,

and Dr Robin Jones for their heroic struggle to make my work as good as it could be.

Furthermore, I would like to thank all the members of the NDT group, especially Panpan Xu,

Filip Szlaszynski, Andy Zimmerman, and Yiannis Simillides for the fruitful discussions. I also

thank GUL, who have supported this work financially and technically. Special thanks go to Dr

Tom Vogt, Dr Sebastian Heinlein, and Dr Jimmy Fong, who have helped me with some of the

toughest breakthroughs in the project.

This thesis would not come to being without my dearest friend, Dr MG, who motivated me to

pursue a doctoral degree, understood and shared the experience. I have been tirelessly

supported by my friends, SB and MB for much of my time at the college. Finally, I want to

thank my partner, OM, who has supported me, motivated me to write and never failed to

distract me from the research challenges when it was necessary.

Finally, I would like to thank my grandparents Ela and Wladyslaw, for supporting my education

up to this point. My mother Aleksandra, for helping me make difficult decisions, father,

Michal, for sparking my interest in engineering and technology, sister Ania, for her

unconditional support and showing me a very different approach to life, and brother

Stanislaw, who helped me maintain the intellectual curiosity and made my living in London

significantly more interesting.

This work was supported by DTP 2018-2019 training grant EP/R513052/1.

6

Table of Contents

1 INTRODUCTION __ 19

1.1 PIPELINE TESTING ___ 19

1.2 GUIDED WAVE TESTING AND MACHINE LEARNING ______________________________________ 21

1.3 GUIDED ULTRASONICS LIMITED __ 21

1.4 INSPECTION PROTOCOL ___ 22

1.5 MOTIVATION FOR THIS PROJECT ___ 26

1.6 THESIS PLAN ___ 27

2 THEORETICAL BACKGROUND ___ 29

2.1 ULTRASONICS __ 29

2.1.1 MECHANICAL WAVES BACKGROUND ___ 29

2.1.2 WAVE PROPAGATION MODELLING __ 40

2.1.3 IMAGING __ 43

2.1.4 GUIDED WAVE TESTING HARDWARE ___ 51

2.2 MACHINE LEARNING ___ 53

2.2.1 HISTORY AND DEVELOPMENT OF MACHINE LEARNING ___________________________________ 53

2.2.2 SUPERVISED AND UNSUPERVISED LEARNING __ 55

2.2.3 NEURAL NETWORKS __ 57

2.2.4 MODERN TOPICS IN MACHINE LEARNING RESEARCH ____________________________________ 79

3 DATA PROCESSING AND CONSIDERATIONS __ 87

3.1 SIZE OF DATASETS ___ 87

3.2 DATA CHARACTERISTICS ___ 88

3.2.1 REAL DATA __ 88

3.2.2 SIMULATED DATA __ 95

3.2.3 COMMON OUTPUT FORMATS ___ 101

3.3 DATA PROCESSING ___ 101

3.3.1 LOWER-ORDER MODES DATA __ 102

3.3.2 IMAGING ___ 103

7

3.4 DATA ISSUES ___ 105

3.4.1 REAL DATA ___ 105

3.4.2 SIMULATIONS ___ 107

3.5 DATASETS GENERATED ___ 109

3.5.1 REAL DATASET ___ 109

3.5.2 SIMULATED DATASET __ 113

4 MACHINE LEARNING DESIGN __ 115

4.1 METRICS __ 115

4.1.1 BASIC METRICS __ 115

4.1.2 ACCURACY __ 116

4.1.3 PRECISION AND RECALL ___ 117

4.1.4 AREA UNDER PRECISION-RECALL AND RECEIVER OPERATING CURVES ________________________ 118

4.1.5 FALSE POSITIVE RATE AT 100% TRUE POSITIVE RATE ___________________________________ 119

4.1.6 METRICS SELECTION ___ 120

4.2 ARCHITECTURES ___ 121

4.2.1 MULTILAYER PERCEPTRON ___ 121

4.2.2 VGG-NET __ 123

4.2.3 U-NET __ 125

4.3 TRAINING DESIGN __ 127

4.3.1 TRAINING PARAMETERS ___ 127

4.4 TRANSFER LEARNING __ 133

5 MACHINE LEARNING PERFORMANCE __ 135

5.1 PERFORMANCE ON SIMULATIONS ___ 135

5.1.1 IMPACT OF THE AMOUNT OF DATA ___ 135

5.1.2 IMPACT OF THE NUMBER OF MODES __ 137

5.1.3 IMPACT OF ENVELOPED AND RF DATA ___ 138

5.1.4 IMPACT OF IMAGING ___ 140

5.2 PERFORMANCE ON REAL DATASET ___ 141

5.2.1 IMPACT OF TRANSFER LEARNING ___ 141

5.3 PERFORMANCE ON REAL FEATURES __ 143

8

5.3.1 INDUSTRIAL USE CASE __ 144

5.4 ARCHITECTURE COMPARISON __ 144

5.5 INVESTIGATION OF MISCLASSIFIED SAMPLES __ 152

5.6 MACHINE LEARNING INVESTIGATION OUTCOME _______________________________________ 155

6 GENERATIVE LEARNING AND MODERN MACHINE LEARNING TOPICS __________________ 156

6.1 GENERATIVE ADVERSARIAL NETWORKS ___ 157

6.1.1 GAN DESIGN __ 157

6.1.2 GAN RESULTS ___ 160

6.1.3 GAN APPLICATIONS IN GWT ___ 163

6.2 TRUST AND ML RELIABILITY IN NDT CONTEXT __ 164

6.2.1 TRUST AND RELIABILITY ISSUES __ 164

7 MACHINE LEARNING FOR LIMITED VIEW COMPENSATION ___________________________ 167

7.1 INTRODUCTION __ 167

7.2 THEORETICAL BACKGROUND ___ 169

7.2.1 LIMITED VIEW IMAGING ___ 169

7.2.2 MACHINE LEARNING ___ 171

7.3 METHODOLOGY ___ 174

7.3.1 DATA SOURCES AND PROCESSING __ 174

7.3.2 ML ARCHITECTURE AND TRAINING DESIGN __ 177

7.3.3 METRICS ___ 179

7.4 RESULTS AND DISCUSSION __ 179

7.4.1 PERFORMANCE ON THE ARTIFICIAL DATA ___ 179

7.4.2 PERFORMANCE ON THE ARTIFICIAL TEST CASES _______________________________________ 182

7.4.3 PERFORMANCE ON THE REAL TEST CASES ___ 184

7.5 CONCLUSION ___ 188

8 CONCLUSION ___ 191

8.1.1 SUMMARY __ 191

8.1.2 KEY CONTRIBUTIONS ___ 193

9

8.1.3 FUTURE WORK ___ 194

10

List of Figures

Figure 1. Conventional ultrasound (top) vs. Guided wave testing (bottom). The inspected area is shaded in

darker grey, and the propagation of ultrasound is depicted in red. Reproduced from [2]. _________________ 20

Figure 2. Guided Ultrasonics Ltd solid transducer ring [8]. __ 22

Figure 3. Guided Ultrasonics Ltd Wavemaker G4 Mini [8]. __ 23

Figure 4. Unrolled pipe display (top) and enveloped symmetric (black) and non-symmetric (red) signals (bottom)

[9]. __ 24

Figure 5. Inspection trace of a generally corroded pipe. Weld DAC is marked in black, call level in blue and

detection threshold in green. [9]. The plot uses logarithmic scale on the y-axis. _________________________ 25

Figure 6. Dispersed (top) and non-dispersed (bottom) wave on a displacement – propagation distance graph.

The original shape of the wave is the same as the bottom plot (6-cycle Hann-windowed sinusoid). Reproduced

from [13] originally a movie, where red dot is used to visualise local displacement. ______________________ 31

Figure 7. Geometry of guided wave propagation in a free plate. _____________________________________ 33

Figure 8. Dispersion curves (phase velocity vs. frequency) of first symmetric and non-symmetric Lamb modes in

a 1 mm thick steel plate. The mode names are annotated in the figure [15]. ___________________________ 34

Figure 9. Graphical representation of symmetric (a) and non-symmetric (b) fundamental mode in a plate [16].

 ___ 35

Figure 10. Shear wave propagation along axis x1 where the particle displacement is along the axis x3. The

wavenumber of the propagating wave is k, and the thickness of the plate is 2h. Reproduced from [17]. _____ 36

Figure 11. Dispersion curve for SH mode family in a steel layer. Wave speed in x2 dimension against frequency-

thickness product. __ 37

Figure 12. Torsional modes in a solid rod. The lack of deformation of the rod is shown by the straight dashed

axis. ___ 38

Figure 13. Flexural modes in a solid rod. The deformation of the rod is shown by the axis and top and bottom

boundaries. ___ 38

Figure 14. Hollow cylinder of internal radius a, and external radius b. Reproduced from [17]. ______________ 39

Figure 15. Group velocity against frequency dispersion curves for 3-inch schedule 40 steel pipe. Reproduced

from [19]. ___ 40

Figure 16.Transmitter-reciever geometries of CSM(a), SAFT(b) and TFM(c) synthetic focusing methods.

Reproduced from [27]. __ 44

Figure 17. Schematic of the unrolled pipe-plate analogy. Reproduced from [28]. ________________________ 46

Figure 18. Comparison of dispersion relationships calculated using a pipe-plate analogy (dotted line) and

calculated using DISPERSE (solid line). Reproduced from [28]. _______________________________________ 47

Figure 19. Image from a backwall using SAFT(a), TFM(b) and CSM(c), reproduced from [30]. ______________ 48

Figure 20. Images from FE data of a 5% reflector at 0.2m and end wall at 0.5m generated using SAFT(a),

TFM(b), CSM(c). Reproduced from [30]. ___ 48

11

Figure 21. Transmission of guided wave in both directions of the pipeline. The wave propagation directions are

shown as red arrows, the area inspected is shaded in grey. ___ 49

Figure 22. Constructive (a) and destructive (b) interference of waves. The top two waves are the constituent

waves, the bottom is the result of superposition of the waves. Reproduced from [31]. ___________________ 49

Figure 23. Pipe with a guided wave testing ring fitted with two rows of transducers (A and B) separated by

quarter wavelength. Feature F exists at a distance X from row A. ____________________________________ 50

Figure 24. Guided Ultrasonics EFC Solid Ring [8].__ 52

Figure 25. Guided Ultrasonics Compact Ring [8]. __ 52

Figure 26. Supervised Learning Schematic Blue boxes represent the sets of data, dark grey boxes represent the

processing algorithms. Reproduced from [53]. ___ 55

Figure 27. Google image labelling task. The user is asked to select the portions of the image containing the

object of interest. Such tasks are commonly encountered as a security measure on websites [54]. __________ 56

Figure 28. Sigmoid Function Graph. __ 59

Figure 29. Tanh and Sigmoid graphs comparison. ___ 60

Figure 30. ReLU graph. __ 61

Figure 31. Leaky ReLU graph. ___ 62

Figure 32. Fully connected Neural Network graph. The values are shown as circles and the operations are

shown as arrows. This network does not contain bias. The sizes of weight matrices are annotated under the

arrows denoting operations. Reproduced from [59]. ___ 63

Figure 33. Convolution operation depicting the activation map achieved by applying a kernel to an image. [61].

 ___ 65

Figure 34. Convolution and transposed convolution. Convolution is shown on top, transposed convolution at the

bottom. The sizes of the grids correspond to input and output sizes. Reproduced from [62]. _______________ 66

Figure 35. U-net. Output of the first block serves as part of the input to the last, second to block n-1 etc.

Reproduced from [63]. __ 67

Figure 36. Max pooling. Maximum of the color-coded section of the first block is output to the second block

[64]. ___ 67

Figure 37. Fully-connected neural network with one hidden layer. Reproduced from [65]. _________________ 69

Figure 38. Example loss landscape with a local minimum around x = 2.8. ______________________________ 77

Figure 39. Comparison of model update without momentum (left) and with momentum (right) each straight

stretch of the line corresponds to a single update of the model. The concentric lines represent the loss

landscape with the lowest loss at the centre. Reproduced from [69]. _________________________________ 78

Figure 40. Location of the transducer on the surface of the pipe at the angular position of. ______________ 98

Figure 41. Geometry of a simulated weld (red) on a pipe (blue). The height of the cap is marked as h, and the

axial span is marked as d. __ 99

Figure 42. Balanced transducer amplitude multiplication factors (Case 1) and two possible unbalancing factors

which can result from the method used in this work (Cases 2 and 3). Reproduced from [83]. _____________ 103

12

Figure 43. Pipe under bidirectional guided wave test. Two features (in red) are present, a weld separated from

the inspection location (in black) by distance x and a defect separated by the distance y. ________________ 104

Figure 44. Image from the inspection of pipe presented in Figure 43 with no direction control implemented

(left), compared to the image with direction control implemented (right). ____________________________ 104

Figure 45. A Synthetically focused image of a pipe presented on a log scale with reference to the flange signal.

 __ 109

Figure 46. An image of a defect indication drawn from the pipe imaged in Figure 45, located at around 18.5 m

axially. __ 110

Figure 47. The comparison between an image of a simulated defect indication (left) and a real pitting-type

defect indication (right). __ 111

Figure 48. The examples of data contained in the A-scans dataset. A defect indication (left) and a part of

pristine trace (right). RF trace is shown as the dotted line while envelope of the signal is traced in solid line. 112

Figure 49. Examples of the data samples used for training the ML models. (a) Experimental pristine, (b)

simulated pristine, (c) experimental defect indication, (d) simulated defect indication, (e) experimental weld, (f)

simulated weld. ___ 113

Figure 50. Schematic depiction of Receiver Operating Curves. ______________________________________ 118

Figure 51. MLP implementation utilised in this work. The first two rows represent the feature extractor part of

the network, while the third row is the classifier head. __ 122

Figure 52. VGG-Net architecture implemented for this work. Rows 1-3 represent the feature extractor part of

the network, while row 4 is the classifier head. __ 124

Figure 53. U-net architecture utilised in this work. The double lines mark the connections between the layers

with the separate colours and line types used to differentiate between the connections. The architecture is

based on the VGG-Net shown in Figure 52. ___ 126

Figure 54. Loss value for a U-net trained on a simulated dataset over the first 100 epochs of training. _____ 129

Figure 55. Proportion of new research papers in Papers with Code database using the most popular optimisers

[69]. __ 130

Figure 56. Performance in optimising U-Net architecture over the course of 50 training epochs and 10000

simulated training examples using SGD (a) and Adam (b). Both optimisers used the learning rate of 5e-5,

tapering off exponentially with the progress of the training. _______________________________________ 131

Figure 57. Performance in optimising U-Net architecture over the course of 50 training epochs and 10000

simulated training examples using Adam Optimiser with learning rate of 5e-3 (a) 5e-4 (b), 5e-5 (c), and 5e-6 (d).

Each of the graphs is the training history of a single initialisation of a neural network. __________________ 132

Figure 58. Performance in optimising U-Net architecture over the course of 50 training epochs and 10000

simulated training examples using Adam. Optimiser uses the learning rate of 5e-5 (a), or starting at 5e-5 and

tapering off exponentially with the progress of the training (b). ____________________________________ 133

13

Figure 59. AUROC of ML models trained on various sizes of simulated datasets. The size of the dataset increases

with ID. The red line is the median and the box denotes the top and bottom 75th percentile. Each neural

network is initialised 5 times with varying random seed to draw the statistical conclusions. ______________ 136

Figure 60. Comparison of the learning capability of a U-Net trained on 1500 examples using T(0, 1) and F(1, 2)

(a), using just T(0, 1) (b), and using just F(1, 2 (c)). ___ 138

Figure 61. Comparison of the learning capability of a U-Net trained on 1500 examples using both RF and

enveloped data (a), only enveloped data (b), and only RF data (c). __________________________________ 139

Figure 62. Comparison of the performance of U-Net architecture on C-Scan type data (a) and A-scan type data

(b). Both models are trained on 10000 samples and validated on 2000. The AUROC target of 1 is marked with a

red line. ___ 140

Figure 63. Accuracy on testing and validation datasets for a U-net trained and validated on the simulated

dataset (left). Performance of the trained model on the real testing dataset, split into pristine and defective in

the terms of accuracy, area under ROC and area under PRC (right). _________________________________ 141

Figure 64. Accuracy on testing (real) and validation(real) datasets for a U-net trained on the real dataset (left).

Performance of the trained model on the real testing dataset, split into pristine and defective in the terms of

accuracy, area under ROC and area under PRC (right). __ 142

Figure 65. Accuracy on testing and validation datasets for a U-net trained and validated on the simulated

dataset in epochs 1-30 and fine-tuned and validated on the real dataset in epochs 31-60 (left). Performance of

the trained model on the real testing dataset, split into pristine and defective in the terms of accuracy, area

under ROC and area under PRC (right). __ 142

Figure 66. Purely illustrative example of application of thresholding on a fabricated dataset of T(0, 1) and F(1,

2) traces. The locations of three features are indicated with red dashed lines and a tentative threshold is shown

as a black dotted line. Thresholding is performed independently on the enveloped signals shown as black, blue

and green solid lines. A successful detection occurs when any of these signals exceeds the threshold in the

vicinity of a feature. Crossing the threshold away from features is a false positive, not crossing it in the vicinity

is a false negative. ___ 146

Figure 67. AUROC of MLP (a), FPR@1TPR of MLP (b), AUROC of VGG-Net (c), FPR@1TPR of VGG-Net (d), AUROC

of U-Net (e), FPR@1TPR of U-Net (f). On each box, the central mark indicates the median, and the bottom and

top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most

extreme data points not considered outliers, and the outliers are plotted individually using the '+' marker

symbol.__ 148

Figure 68. FPR@1TPR as VGG-Net (a, c, g, e, i) and U-Net (b, d, f, h, j) are evaluated on five different testing

sets. The same testing set is used in each row of plots. Boxplots are as in Figure 67. ____________________ 151

Figure 69. Samples of defect indications that are consistently misclassified as negative samples by VGG-Net

(prevalence rates of 91%(a) and 98%(b)). __ 154

Figure 70. Portion of the original inspection trace containing the defect indications shown in Figure 69 . Defect

indications are marked as +F6 and +F7 on the trace and they are located at a distance of approximately 54 and

14

56 m from the sensor position. The segments of trace fed to the ML algorithms are highlighted in red boxes.

Reproduced from WavePro, courtesy of [9]. __ 155

Figure 71. Diagram of Generative Adversarial Network. ___ 157

Figure 72. Design of the discriminator (left) and the generator (right) networks used in the GAN. _________ 159

Figure 73. The comparison of the data simulated using Pogo FEM package (left) and the data generated using

GAN (right). The first row shows the pristine trace, second contains one defect indication and third contains two

defect indications. All the signals contain a back wall around sample 700. The second defect indication appears

as if it exists behind the back wall, in fact it is generated in the opposite direction. _____________________ 161

Figure 74. The frequency domain comparison of the data simulated using Pogo FEM package (left) and the data

generated using GAN (right). GAN is used directly to simulate a rectified signal. The first row shows the pristine

trace, second contains one defect indication and third contains two defect indications. _________________ 162

Figure 75. Flow chart highlighting the stages in the qualification process where ML has an impact. Reproduced

from [102]. ___ 165

Figure 76. (a) limited view transmission configuration, with a source array above the scatterer and a receiver

array below. (b) positions of measurements in K-space (spatial frequency domain) showing that there are

significant angles which cannot be measured. __ 171

Figure 77. Examples of limited view registrations of artificial thickness maps (a, c, e) and their full view version

(b, d, f). This type of data was used for the training of the ML algorithm. _____________________________ 176

Figure 78. Optimised autoencoder architecture implemented in this work. The left column corresponds to the

encoder path and the right column to the decoder path. __ 179

Figure 79. An example of the results obtained when the autoencoder is trained on the noiseless dataset. (a)

input limited view registration; (b) output of the autoencoder; (c) ground truth full view image. __________ 180

Figure 81. Artificial testing examples. Three thickness maps (a-c, d-f, g-i) are presented. For each, the limited

view registration (input to the autoencoder) is shown at the left, the output of the autoencoder at the centre

and the ground truth full view registration at the right. In subfigure (i), the plot is annotated with a red circle

highlighting a feature missed by the autoencoder. ___ 182

Figure 82. Limited view registrations (a, d, g) compared to the autoencoder output (b, e, h) and full view ground

truth (c, f, i) of artificial geometric thickness maps including horizontal stripes (a-c), vertical stripes (d-f), and a

combination of the two (g-i). __ 184

Figure 83. Experimental corrosion patches 1 to 5. Original limited view registration (a, e, i, m, q), image

processed using the positivity regularisation method (b, f, j, n, r), output of the autoencoder (c, g, k, o, s) and

full view ground truth (d, h, l, p, t). __ 186

Figure 84. Experimental corrosion patches 6 to 10. Original limited view registration (a, e, i, m, q), image

processed using the positivity regularisation method (b, f, j, n, r), output of the autoencoder (c, g, k, o, s) and

full view ground truth (d, h, l, p, t). __ 187

15

16

List of Tables
Table 1. Dataset sizes and compositions. ... 87

Table 2. Confusion matrix for a decision process between a defective and non-defective sample. The columns

correspond to different states of reality and the rows correspond to different predictions. 116

Table 3. ML Training Parameters.. 133

Table 4. Combinations of real (nReal) and simulated (nSims) training dataset sizes used in the transfer learning

impact study. .. 134

Table 5. Performance of the three proposed thresholding approaches. .. 146

Table 6. Statistics on the number of occurrences of the different types of pipe features across all testing sets

used in this study. ... 152

Table 7. Number and percentage of misclassified PFs according to the specific PF type, using the VGG-Net

model trained with 10000 simulated and 1800 experimental samples (i.e., the scenario indicated as ID=16). 153

Table 8. The hyperparameters to be tuned in Karas Tuner [142] and their possible values. 178

Table 9. RMSE and MAXAE for the limited view (LV) registration of experimentally acquired corrosion thickness

maps compared to the positivity regularised (PR) registration and the output of the autoencoder (AE). The

“Diff.” columns report the differences between PR and AE, with the cells in pink background highlighting the

instances where the metric of PR surpassed that of AE. The two instances where the metric of LV surpassed that

of AE are indicated in pink. ... 188

17

List of Acronyms

AE Autoencoder

ANN Artificial Neural Network

AUPRC Area under Precision-Recall Curve

AUROC Area under Receiver Operating Curve

CNN Convolutional Neural Network

CPU Central Processing Unit

CSM Common Source Method

CT Computed Tomography

DL Deep Learning

DNN Deep Neural Network

EMAT Electromagnetic Acoustic Transducer

FE Finite Element

FFT Fast Fourier Transform

FMC Full Matrix Capture

FN False Negative

FP False Positive

FPR False Positive Rate

GAN Generative Adversarial Network

GPU Graphical Processing Unit

GUL Guided Ultrasonics Ltd.

GWT Guided Wave Testing

MAE Mean Absolute Error

MaxAE Maximum Absolute Error

ML Machine Learning

MLP Multi-Layer Perceptron

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

NDE Non-Destructive Evaluation

NDT Non-Destructive Testing

PRC Precision-Recall Curve

18

RF Radio Frequency

RMSE Root Mean Square Error

ROC Receiver Operating Curve

SAFT Synthetic Aperture Focusing Technique

SGD Stochastic Gradient Descent

SH Shear Horizontal

SNR Signal to Noise Ratio

SV Shear Vertical

TFM Total Focusing Method

TN True Negative

TP True Positive

TPR True Positive Rate

UT Ultrasonic Testing

VAE Variational Autoencoder

VISCIT

Virtual Image Space Component Iterative

Technique

19

1 Introduction

This chapter introduces pipeline testing and explains why it is a crucial technology within the

industry. It introduces the competing technologies and shows the rationale for guided wave

ultrasonic testing. In the latter portion it both introduces Guided Ultrasonics Limited

technology used for the production of the data used in this work and presents the practical

issues that warrant the use of Machine Learning. Finally, the structure of the thesis is

presented.

1.1 Pipeline Testing

Pipelines are a crucial element of the modern industrial landscape. Gas, oil, and water pipes

are used to transport substances over long distances with relatively little active human

involvement and downtime. Pipes are also used in industrial plants, keeping substances

separate, mixing, heating, or cooling based on the technological need. Of course, all those

advantages count for little if their reliability cannot be assured. In the case of chemical and oil

& gas pipelines any leaks can lead to an environmental catastrophe. Apart from the obvious

losses, this can incur fines and clean-up costs imposed by the regulating authorities. As a

result, it is of utmost importance for the owner or an operator of a pipeline to ensure it is free

of defects.

The main way to achieve the defect-free operation of pipelines is the employment of a wide

range of non-destructive testing/non-destructive evaluation methods. These are broadly

classified based on the physical phenomena utilised. The main modalities are visual/enhanced

visual inspection, eddy current testing, radiography, magnetic testing, and ultrasonic testing.

There are multiple sub-categories in each of the modalities, which can be further explored in

[1]. This work focuses on the ultrasonic guided wave testing.

Generally, ultrasonic testing has a range of characteristics that make it specifically suited to

the testing of pipelines. Primarily, ultrasonic testing is a full-section testing method, which

means it can detect cracks under surface or on the inner surface of the pipe wall. This is

especially important in the case of pipelines carrying corrosive or abrasive loads. Secondly,

and just as importantly, as opposed to the other full-section method, radiographic imaging,

the inspection does not pose health risks and therefore can be performed while the unit

under test is normally operating. It does have disadvantages though, the most important of

20

which being the relatively difficult signal interpretation and, in consequence, the long training

process of the appropriately qualified inspectors. This quite obviously lends itself to

streamlining using machine learning techniques to either automate parts of the inspection

process or to work collaboratively with the inspector.

Guided wave testing is a method, in which an ultrasonic wave is propagated along the

structure rather than through a cross-section (Figure 1).

Figure 1. Conventional ultrasound (top) vs. Guided wave testing (bottom). The inspected area is shaded in darker grey, and
the propagation of ultrasound is depicted in red. Reproduced from [2].

This has the significant advantage of full volumetric coverage of a large span of the pipeline

from a single inspection site. Considering the defects can potentially arise at any point in the

pipeline, this is a characteristic that is crucial for the knowledge of the state of the pipe. The

only realistic competitor to guided wave technology is the use of pigs – trolleys equipped with

an array of ultrasonic, electromagnetic, and potentially other probes which are launched into

the pipe, travel through it gathering data and are extracted from an extraction point. The

obvious advantage of guided wave testing when compared to pigging is the ability to test the

pipeline while it is operating. Additionally, for a pipeline to be inspectable using pigs, it needs

to be designed for inspection with suitable pig insertion and extraction sites placed in the

pipeline [3]. The main comparative advantage of pigs is their ability to cover much longer

distances than guided wave tests and the accuracy provided by the ability to conduct localised

tests. A standard guided wave test can cover up to 100 m either side of the sensor location if

the pipe is clean (i.e. causes no significant attenuation), straight and does not have many

features. This is obviously a highly idealised scenario, but in practice the typical inspection

range is in the 20-30 m range [4].

21

Therefore, there are scenarios in which guided wave inspection is the only acceptable

technology that can be used for full-volume testing of pipelines, i.e., if they have not been

designed for pigging. It is crucial to note though, that the main disadvantage of ultrasonic

testing – the difficulty in the interpretation of the results – is even more pronounced in guided

wave testing. This is a result of both a lower number of qualified inspectors and of an

increased complexity of the data. This impacts both the technical task of interpretation and

the design of inspections, driven by the engineering understanding of the physics.

1.2 Guided Wave Testing and Machine Learning

Guided wave testing has characteristics that make it uniquely suitable to the application of

machine learning. The intended use case is a full volumetric coverage of a pipeline network.

The total length of oil and gas pipelines in the world exceeds two million kilometres [5]. Clearly

the amount of testing necessary to fully cover the network is beyond the capacity of human

operators. As the process involves the inspector reaching the site, placing the transducer ring

on the pipeline, taking a reading, and analysing the gathered data, much of the process needs

to be automated, or at the very least streamlined to make the comprehensive testing a

possibility. Guided Ultrasonics Limited has made strides to automate the hardware side of the

process, by developing and introducing to the market permanently installed sensors (gPIMS).

At the moment, however, one-off inspections are probably still the most prevalent application

making the automation of their analysis a priority. This has led to an increased interest in

machine learning techniques, which could lower the workload for the operators by

automatising the signal analysis phase.

1.3 Guided Ultrasonics Limited

This work is co-sponsored by Guided Ultrasonics Limited (GUL), who are the leading provider

of guided wave equipment and training. The company was established in the 1990s as a spin-

out from Imperial College London, where the practical capability for guided wave inspection

was developed [6]. Guided Ultrasonics equipment uses rings of piezoelectric transducers

attached to the pipe to introduce the fundamental torsional T(0,1) guided wave mode into

the pipeline. The transducers are operated in pulse-echo configuration, therefore requiring

only a single-point access to the pipeline to perform the inspection.

Aside from being a hardware provider, Guided Ultrasonic delivers training and certification to

guided wave inspectors. GUL certification follows standard NDT inspector certification routes

22

(L1, L2, L3 inspector) but there also exist additional certifications for particularly challenging

inspection conditions, such as buried or underwater pipes. Clearly, the work of inspectors is

highly specialised and very demanding. This leads to a twofold problem – the skill level can

vary dramatically between inspectors and even for a given inspector be very dependent on

the inspection case. As a result, there is a strong need for a method capable of standardising

the results of an inspection as well as providing confidence levels in any defect indication/no

defect call. Machine learning is explored as the method of choice, as even if it does not reach

human/superhuman performance in the defect indication detection task, it can be used as an

additional safeguard against bad calls and as a tool to quantify the complexity of the

inspection task – based on the consistency of its predictions, as argued by Pyle [7].

1.4 Inspection Protocol

To understand the guided wave inspection technology, the importance of the physics behind

it and the ultimate usefulness and application points of machine learning techniques, it is

necessary to appreciate the current state of the art in terms of the technology used and the

process followed by the inspectors to make calls.

GUL testing setup consists of a transducer ring (Figure 2) and a wavemaker instrument (Figure

3). The ring is a solid or inflatable body fitted with two rows of piezoelectric transducers which

are dry (without the use of medium such as gel) coupled to the surface of the pipe using

mechanical clamping or pneumatic force. The inspector places the ring on the pipe and

connects the wavemaker instrument, before running a calibration protocol, which

compensates for the imbalances in the coupling and sensitivity of transducers. Finally, the

actual data collection routine is performed.

Figure 2. Guided Ultrasonics Ltd solid transducer ring [8].

23

Figure 3. Guided Ultrasonics Ltd Wavemaker G4 Mini [8].

The transducer rings are comprised of two rows of transducers, which allow for directional

control of the inspection, making the data easier to interpret thanks to the separation of

signals arriving from the two directions. This is further explored in Section 2.1.3.3. The

received data is decomposed into torsional and flexural modes. This is used to distinguish

between symmetric reflective features such as welds or flanges and nonsymmetric ones, such

as defects and supports. Higher order flexural modes are used in synthetic focusing of the

guided wave signal to produce quasi-C-scan unrolled pipe display allowing the inspector to

distinguish the features more easily, with an example shown in Figure 4.

24

Figure 4. Unrolled pipe display (top) and enveloped symmetric (black) and non-symmetric (red) signals (bottom) [9].

After the data is collected, the inspector needs to manually process and analyse it. This is

done by analysing the output similar to Figure 4. The dark green area denotes the dead zone,

where the indications are too close to the ring to analyse, this is followed by the near field,

marked in grey, where the noise occludes the features. The remaining features of the figure

are the traces: black corresponding to the symmetric signal, and the red corresponding to

antisymmetric signal. The dashed like is the DAC, marking the drop in the amplitude of the

signal based on the distance. The image above the traces is the unrolled pipe display, where

the amplitude of the signal is resolved circumferentially. The amplitude is graphed on a 2D

display with the amplitude represented by colour. The procedure comprises annotating welds

(generally easy to find strong symmetric features, for example marked as W1 and W2 in Figure

4) and ends of inspection range given usually by a flange, a bend or exceedingly low SNR – as

in the dark grey vertical area marked 4 in Figure 5. These features are used to assess the

25

attenuation of the guided wave signal in the pipeline. This is dependent on the general

condition of the pipe (corrosion, contents etc.) as well as external conditions: buried sections

or bitumen coating. The attenuation profile of the pipe is then calculated in terms of a

distance-amplitude curve (DAC) – e.g. the trace marked 1 in Figure 5. It is a graph of a function

of the amplitude of the signal from a reference reflector against distance along the pipe. The

curve can be therefore used to normalise the signal along the pipe. At this stage synthetic

focusing can be performed resulting in an unrolled pipe display.

Figure 5. Inspection trace of a generally corroded pipe. Weld DAC is marked in black, call level in blue and detection threshold
in green. [9]. The plot uses logarithmic scale on the y-axis.

Following this, the inspector performs a frequency sweep, assessing the signatures across the

inspection frequency spectrum (ordinarily between 15 and 50 kHz) to differentiate between

frequency dependent and independent features (for example, supports vs. defects). After

that, the inspector flags all the signals above a set detection threshold (green dashed line

marked 3 In Figure 5) and classifies them as either a benign feature or a defect indication.

This decision is usually based mostly on the unrolled pipe display, but often requires

inspection at a range of frequencies as well as significant experience. The minimum amplitude

of the signature that can be detected is governed by the detection threshold which in turn is

26

dependent on the noise floor level (area shaded light grey in Figure 5). The noise floor level is

the higher of two contributors:

1) the coherent noise, usually caused by the general condition of the pipe or imbalance

between the transducers. This introduces unwanted guided wave modes, which fall in

amplitude according to the DAC and is therefore the detection limiter throughout the

inspection length (red line marked 5 in Figure 5). Importantly, the coherent noise

cannot be reduced by averaging and is typically the limiting factor in GWT.

2) the random noise, which stays constant, is usually caused by electronic noise, and

governs the range limit of the inspection. The limit is given by the point at which the

call level (blue line marked 2) is equal to detection threshold (red line marked 6 in

Figure 5).

When all the signals have been annotated, the inspection is complete, a document outlining

the locations and labels of identified signals is generated, and further decisions are scheduled.

As guided wave testing is a screening tool, a follow-up inspection must be performed using

conventional ultrasonic or other testing, dependent on the industry standards, is performed

at the areas of concern flagged by the initial guided wave test, in order to gain more precise

local information.

1.5 Motivation for This Project

Guided Ultrasonics Ltd is interested in the application of machine learning to their guided

wave data for a range of reasons. The main rationale is that there is a large variability in the

inspection performance between inspectors. As a result, the perceived quality and reliability

of guided wave inspection is not based solely on the quality of technology and there is a lack

of an objective minimum performance level. This could be remedied by the implementation

of an ML defect indication detector; upon whose predictions the inspectors experience could

only improve.

The application area is faced with the problem experienced by much of the research

concerning the applications of machine learning in NDT– the issue of data scarcity. Most

modern machine learning models are trained on datasets of millions of samples. That is clearly

not realistically viable with datasets gathered manually by the inspectors. Imperial College

NDT group is world leading in numerical simulations of guided waves; therefore, it is

hypothesised that finite element modelling could be utilised to circumvent the data scarcity

27

problem following the trend of physics-informed machine learning. This creates a set of

questions interesting from the academic viewpoint, from generating simulations

representative of the real-world inspection scenario, through processing the raw data into

formats implicitly informed by the physical knowledge, to designing machine learning

architectures best suited for bridging the gap between the simulated and real data (so called

sim2real gap). Thus, this project aims to develop a method to utilise the simulated data in

synergy with the experimental data in order to develop a machine learning algorithm to

support the work of GWT inspectors.

1.6 Thesis Plan

In the second chapter of this thesis, the theoretical background behind guided wave testing

of pipelines, the underlying wave physics, and its practical application in the design of testing

procedures and defect indication detection are introduced. Following this, the finite element

method – a necessary tool for the generation of large-scale training datasets for machine

learning is discussed. The historical background and the theory of machine learning are

introduced, with the underlying mathematical principles and the constituent parts of a neural

network considered. The chapter concludes with the discussion of the emerging trends and

challenges in machine learning.

In the third chapter the guided wave data processing necessary for its use in machine learning

applications is explored. The characteristics of guided wave data and the characteristics of its

processing from the point of view of machine learning are discussed, with a special focus given

to the modal decomposition of the raw data and synthetic focusing methods. The problem of

equivalent processing of simulated and real-world data is considered in the context of its

impact on the final ML performance. Finally, the production of finite-element data is

elucidated and the process for its quick generation while including as many of the

characteristics of real signals as possible is described.

In the fourth chapter the design of the machine learning architectures is discussed and the

specific design choices are confirmed with experiments. The neural network architectures

used are described, including the rationale behind their choice and the process of their

adjustment to the specific requirements of GWT. The performance metrics common to ML

research are introduced and their applicability to this project described. A novel metric

denoted FPR@1TPR is described and the rationale for its usage explained. The metrics are

28

used to present the performance of the architecture on a simulated dataset. A study is

conducted to assess the methods of data processing, the architecture design and the

selection of the training parameters in the context of their impact on the performance

metrics. Further, the problem of sim2real gap is introduced and methods are described that

could be used to bridge it and rationalise the choice of transfer learning.

The fifth chapter builds on the contents of the previous chapter by introducing the resultant

performance of the ML model on in-service inspection data. In the last part of this chapter, a

simplified case of detecting any type of pipe feature in guided wave signals is considered

allowing for the use of larger datasets. The results are framed in the context of ML

dependence on the number of real and simulated datapoints. Furthermore, the samples

misclassified by the best-performing ML model are further investigated and explained.

In the sixth chapter the application of generative learning in guided wave testing are

discussed. The implementation of Generative Adversarial Network (GAN) for guided wave

problems is introduced. The results of a guided wave generator trained on simulated dataset

are presented and the possibility of a more controlled simulation is introduced. The potential

future uses of generative learning as well as its drawbacks are discussed. Furthermore, the

problems in the development of machine learning in the guided wave or non-destructive

testing in the context of the trust and reliability of the ML methods are described.

In the seventh chapter, a self-contained side project is described, in which ML methods are

employed to compensate for the artifacts generated by limited view transducer configuration

in tomographic thickness reconstruction. The chapter introduces the issues, the method of

generating limited view registrations, the ML architecture selection, training and comparative

performance against conventional state-of-the art algorithm.

Finally, in the eighth chapter the conclusions and recommendations for further study are

outlined.

29

2 Theoretical Background

This chapter is split into two sections, as the topic of this work has two distinct constituent

parts, the guided wave testing and the machine learning. In the first section this chapter

introduces the necessary physical background to understand guided wave testing. It discusses

wave propagation and interaction with reflectors such as pipe features. Further, it introduces

the implementation of differential equations describing the wave propagation in Pogo finite

element modelling package. Finally, it briefly discusses ultrasonic transduction. In the second

part it introduces machine learning, starting from the historical evolution of the research field

and the introduction of the main modalities of Machine Learning. Discussion of neural

networks follows with the necessary mathematical background as well as the discussion of

why they are the algorithm of choice for much of modern machine learning. Finally, the recent

developments in machine learning are discussed, as well as explainability and ethical concerns

with its spread.

2.1 Ultrasonics

2.1.1 Mechanical Waves Background

The first part of this chapter is concerned with understanding ultrasonic waves as a means to

inspect pipelines. Ultrasonic waves can be generally divided into bulk waves and guided

waves. Bulk waves travel in the regions away from surfaces and their longitudinal and shear

components are decoupled. Bulk waves interact with interfaces via reflection and refraction.

Mode conversion between longitudinal and shear waves can also take place during those

interactions. Where the interface in a continuous condition upon which the propagation of

the wave depends (i.e., an ultrasonic wave travelling along the surface) the theoretical

framework for the analysis of the propagation shifts to the study of a guided wave. In general,

bulk wave propagation is dependent only on the material properties. Guided wave

propagation, in contrast, is determined both by the material properties and the geometry of

the medium (waveguide).

The guided wave solutions are dependent on the geometry of the propagation medium with

it impacting the solution to the wave equation. As a result, the initial solutions of the guided

wave propagation problem were limited to model environments with the solutions named

after the discoverer: Rayleigh waves, Lamb waves and Stoneley waves.

30

Rayleigh waves [10] exist on a surface of a semi-infinite medium. An example of such are

earthquake surface waves. Their propagation is defined by a traction-free surface and a decay

away from the surface. Lamb waves [11] are surface waves that exist in thin plates. They are

commonly used in material testing of plate and shell-like structures. They are defined by

traction-free surfaces on both sides. Stoneley waves [12] are surface waves that exist at the

interface of two media able to support the propagation of waves. They exist on a solid-solid

or a solid-liquid boundary. In the latter case they are known as Scholte waves. Stoneley waves

are defined by the matching solution for particle displacement in both media at the interface

and the decay away from the boundary.

To understand the specifics of guided wave inspection and their usefulness for non-

destructive testing it is crucial to understand the dispersive behaviour of guided waves. The

phenomenon of dispersion is based on the concepts of phase and group velocity. Group

velocity (vg) can be understood as the speed with which the envelope of the signal propagates

through space. Phase velocity (vp), in contrast, is defined as the speed with which a single

peak of the wave travels. Mathematically, they are defined as:

𝑣𝑝 =
𝜔

𝑘
 (1)

𝑣𝑔 =
𝜕𝜔

𝜕𝑘
 (2)

where 𝜔 is the angular frequency of the wave and 𝑘 is the angular wavenumber. The

consequences of the formulations become clear with the introduction of the concept of the

wavepacket – a group of superposed waves which together form a localised travelling

disturbance. A wavepacket is conventionally represented as a product of the carrier wave and

the envelope, but frequency domain analysis shows it can also be described as a linear

combination of waveforms varying in frequency around the carrier wave frequency. Thus,

despite often being described in the terms of carrier (centre) frequency, it is crucial to

understand that a wavepacket is in fact a multi-frequency wave combination. The

formulations of phase and group velocities thus lead to three possible scenarios for a

wavepacket:

• wavenumber is directly proportional to frequency: if that is the case, phase and group

velocities are equal, the wavepacket does not exhibit dispersion and the individual

peaks and troughs do not move in reference to the envelope.

31

• wavenumber is a linear function of frequency: phase and group velocity are not equal,

but the group velocity is constant regardless of the frequency. The individual peaks

and troughs move inside the envelope, but the envelope travels undistorted.

• wavenumber is a nonlinear function of frequency. The group velocity depends on the

frequency. In the context of wavepacket the constituent waves travel at various

velocities leading to distortion of the overall envelope. This distortion is known as

dispersion. The broader the range of frequencies present in the wavepacket

(bandwidth) the more significant the dispersion.

Figure 6. Dispersed (top) and non-dispersed (bottom) wave on a displacement – propagation distance graph. The original
shape of the wave is the same as the bottom plot (6-cycle Hann-windowed sinusoid). Reproduced from [13] originally a movie,
where red dot is used to visualise local displacement.

Dispersive behaviour has two major consequences in the context of guided wave testing,

which are demonstrated on the example of waves in Figure 6. In the example the wave is

originally the same shape as the nondispersive snapshot. After propagation, a dispersive wave

changes shape while a non-dispersive remains constant. First, with the dispersion the

longitudinal extent of the wave increases. As the goal of guided wave testing is the localisation

32

of the interaction of the probing wavepacket with the defect, the longer wavepacket lowers

the resolution of the inspection. Secondly, the maximum amplitude of the wavepacket is

decreased with dispersion. The amplitude of the signal reflected by the defect is proportional

to the amplitude of the probing wave, therefore weakening the probing wave may lead to the

reflected defect indication signal falling below the detection threshold, thus leading to missed

defect indications.

In the terms of bulk waves, there is typically only one phase and group velocity for a given

medium, hence they propagate without dispersion. Guided waves, however, are typically

dispersive, since their behaviour will vary as the relationship between wavelength and fixed

geometry will vary through the frequency range. There are an infinite number of solutions for

a guided wave travelling within a pipe each having a different dispersion relationship. As a

result, a solution must be selected for which the dispersion is low (group velocity does not

change strongly with frequency) or, ideally, is completely non-dispersive. This makes the

calculation of 𝑣𝑔(𝜔) function (dispersion curve) necessary for guided wave inspection design.

The wave equation for the guided wave needs to be solved to achieve this.

This section introduces a brief solution to bulk wave propagation and later focuses on the

solution for Lamb waves. In fact, the standard formulation of the solution of the wave

equation for thin-walled pipes proposed by Gazis [14] is based on the Lamb waves in plates,

with the thin-walled cylinder of high radius compared to the wavelength considered a special

case of a plate.

2.1.1.1 Wave Propagation

Propagation of bulk wave is governed by Navier’s equation:

(𝜆 + 𝜇)∇∇ ∙ 𝒖 + μ∇2𝒖 = 𝜌 (
𝜕2𝒖

𝜕𝑡2
) (3)

where 𝜆 and 𝜇 are Lame constants reflecting material properties, 𝜌 is the density of the

material and 𝒖 is the displacement vector. Using Helmholtz decomposition, the equation can

be split into:

∇2𝜑 =
1

𝑐𝐿
2

𝜕2𝜑

𝜕𝑡2
 (4)

and:

33

∇2𝜓 =
1

𝑐𝑇
2

𝜕2𝜓

𝜕𝑡2
 (5)

𝜑 is the scalar potential while 𝜓 is the vector potential, 𝑐𝑇 and 𝑐𝐿 are the shear and

longitudinal wave phase velocities, which can be calculated as:

𝑐𝐿 = √
𝜆 + 2𝜇

𝜌
 (6)

𝑐𝑇 = √
𝜇

𝜌
(7)

The equations represent shear and longitudinal waves that can propagate through the

medium independently in the absence of any inhomogeneities. We can now use this solution

to derive the formulae for dispersion relations in guided waves.

Figure 7. Geometry of guided wave propagation in a free plate.

Considering the case of Lamb waves, we are assuming traction-free surfaces as shown in

Figure 7. We can use the Helmholtz-decomposed Navier equation and follow the derivation

by the method of potentials [15] to arrive at two equations, known as the Rayleigh-Lamb

frequency relations. They tie the frequency and wavenumbers of Lamb waves depending on

whether the specific solution is symmetric or non-symmetric. For symmetric modes:

tan(𝑞2ℎ)

tan(𝑝2ℎ)
=

4𝑘2𝑝𝑞

(𝑞2 − 𝑘2)2
(8)

while for non-symmetric:

tan(𝑞2ℎ)

tan(𝑝2ℎ)
=

(𝑞2 − 𝑘2)2

4𝑘2𝑝𝑞
(9)

34

in the preceding equations p is defined as 𝑝2 =
𝜔2

𝑐𝐿
2 − 𝑘2 and q as 𝑞2 =

𝜔2

𝑐𝑇
2 − 𝑘2, while 2h is

the thickness of the plate. The equations can be solved at any frequency to calculate the phase

velocity of the propagating wave. As the equations are hard to solve analytically, specialised

tools such as the DISPERSE software package [16] can apply computation methods to find the

roots of the equations. The solutions are plotted to assess which modes exist in the plate at

a given frequency as well as to compare their dispersiveness for the purpose of non-

destructive evaluation.

Figure 8. Dispersion curves (phase velocity vs. frequency) of first symmetric and non-symmetric Lamb modes in a 1 mm thick
steel plate. The mode names are annotated in the figure [15].

Figure 8 presents dispersion curves for low order symmetric (S) and non-symmetric (A)

modes. Graphs like this one can be used to determine which modes exist at a given frequency,

as subsequent modes appear with the increase in frequency (i.e. A1 around 2 MHz, S1 about

2.5 MHz). The lowest frequency at which a mode exists is known as that mode’s cut-off

frequency. The existence of the higher order modes makes the signal more difficult to

interpret, as the energy of the probing wave is spread between the intended and unintended

modes. The second use of the dispersion curves is the assessment of the dispersiveness of

35

the selected mode at the selected frequency. Group velocity can be found using phase

velocity as:

𝑐𝑔 = 𝑐𝑝
2 (𝑐𝑝 − (𝑓2ℎ)

𝑑𝑐𝑝

𝑑(𝑓2ℎ)
)

−1

(10)

where 𝑓2ℎ is the product of frequency and thickness of the plate. For a given plate, therefore,

the group velocity is dependent on the derivative of phase velocity with respect to frequency.

Referring to Figure 8, this is simply a gradient of the dispersion curve. To conclude, to select

the probing frequency it is best to choose a frequency at which few modes exist, and the

gradient of the selected mode is as low as possible.

Figure 9. Graphical representation of symmetric (a) and non-symmetric (b) fundamental mode in a plate [16].

Figure 9 shows the symmetric and non-symmetric character of the modes in plates. In low

frequency-thickness regimes non-symmetric modes can be understood as bending the plate,

while the symmetric as compression-extension.

36

2.1.1.2 Shear Horizontal Waves

Figure 10. Shear wave propagation along axis x1 where the particle displacement is along the axis x3. The wavenumber of the
propagating wave is k, and the thickness of the plate is 2h. Reproduced from [17].

Other than the symmetry an important characteristic of the wave is the main displacement

direction of the particles. For Lamb waves, the displacement direction is in the propagation

direction (longitudinal) and out of plane of the plate (shear vertical – SV). The third dimension,

in the plane of the plate but perpendicular to the propagation direction, is known as shear

horizontal (SH), as graphically represented in Figure 10.

SH waves have a range of advantages when it comes to non-destructive testing. Recall the

general consideration for the mode selection. The ideal inspection conditions would support

as few modes as possible, and the main probing mode would be nondispersive. Refer to Figure

11, which presents the SH dispersion curves in a steel plate. The fundamental SH mode, n=0

in the figure, is completely nondispersive over the full frequency range. Furthermore, the

second symmetric mode (n=2) exists only above the frequency-thickness product of 4 MHz-

mm, which, when compared to Figure 8 gives a significantly broader frequency range with

one symmetric mode than Lamb waves. Finally, shear waves are not supported by liquids,

thus the waves will not transfer from the pipe into the contents or the external medium,

lowering the energy of the propagating wave and thus limiting the inspection range. This is

especially important if the testing is performed on submerged plates or filled pipes.

37

Figure 11. Dispersion curve for SH mode family in a steel layer. Wave speed in x2 dimension against frequency-thickness
product.

2.1.1.3 Guided Waves in Hollow Cylinders

Until this point, we have dealt only with plates as the structure supporting the propagation

of guided waves. They can however propagate in other geometries too, most notably rods

and hollow cylinders (pipes). While guided wave propagation in rods is beyond the scope of

this work, understanding the shapes of the modes in rods is more intuitive than in cylinders,

as the latter uses the plate-pipe analogy. Figure 12 demonstrates the torsional mode in rods

corresponding to shear horizontal mode in plates in the terms of frequency spectrum. In the

terms of particle displacement, the rod is twisting. Figure 13 demonstrates the flexural mode,

effectively bending the rod. Considering the axial symmetry of the problem torsional mode is

symmetric, while flexural mode is non-symmetric. This characteristic persists in the case of

pipes and is extensively used in this work.

38

Figure 12. Torsional modes in a solid rod. The lack of deformation of the rod is shown by the straight dashed axis.

Figure 13. Flexural modes in a solid rod. The deformation of the rod is shown by the axis and top and bottom boundaries.

The waveguide geometry considered in this work corresponds to a pipe, an idealised version

of which is a hollow cylinder. The wave equation for this geometry has first been solved by

Gazis in 1959 [14]. The resulting formulae for particle displacement are:

𝑢𝑟 = 𝑈𝑟(𝑟) cos(𝑛𝜃) cos(𝜔𝑡 + 𝑘𝑧) (11)

𝑢𝜃 = 𝑈𝜃(𝑟) cos(𝑛𝜃) cos(𝜔𝑡 + 𝑘𝑧) (12)

𝑢𝑧 = 𝑈𝑧(𝑟) cos(𝑛𝜃) cos(𝜔𝑡 + 𝑘𝑧) (13)

This formulation uses a cylindrical reference system, presented in Figure 14, in which r is the

distance from the reference point along the radius of the cylinder, z is the distance along the

axis of the cylinder and theta is the angle. In the equations above n is the circumferential

order of the solution, u is the particle displacement while U is the displacement potential

amplitude composed of Bessel functions or modified Bessel functions. For full derivation,

refer to Rose’s textbook [17].

39

Figure 14. Hollow cylinder of internal radius a, and external radius b. Reproduced from [17].

When analysing the wave propagation in hollow cylinders we can split the modes into three

mode types: longitudinal, torsional, and flexural. Torsional and flexural modes have been

introduced for the rod case, while longitudinal corresponds to simple compression-

rarefaction plate case. In this work the modes are annotated using the notation of Silk and

Bainton [18]. The notation is:

• Longitudinal modes: L(0, m)

• Torsional modes: T(0, m)

• Flexural modes: F(n, m)

In this notation the first index (n) corresponds to circumferential order – 0 for longitudinal

and torsional signifies their axial symmetry. The second index (m) is a counter of mode

number. Figure 15 demonstrates practically the annotation of modes and introduces the

modes of interest in this work. In guided wave testing of pipelines, the modes reflected by a

feature belong to the family of that probing mode. Those are defined as the flexural modes

whose dispersion curves converge to the base mode at infinite frequency. For T(0,1) the

family of modes includes F(1,2), F(2,2), F(2,3) etc. The number of modes in the family depends

on the frequency of test, due to the cut-off frequencies of higher circumferential order

modes.

40

Figure 15. Group velocity against frequency dispersion curves for 3-inch schedule 40 steel pipe. Reproduced from [19].

The modes usually used for inspection are either L(0, 2) mode family (highlighted in blue in

Figure 15) or T(0, 1) mode family (highlighted in red). The families are defined by the modes

having primarily the displacement in the torsional direction F(1, 2), F(2, 2)… or longitudinal

direction for F(1, 3), F(2, 3)… For the full consideration of the advantages and disadvantages

of either of those selections, refer to [19]. In the case of this work, the data used is obtained

using T(0, 1) as the probing mode and T(0, 1) and F(n, 2) being the reflected modes. In the

following sections of this work the notions of symmetric or torsional mode refer to T(0, 1),

non-symmetric or flexural refer to the whole F(n, 2) group of modes. Higher order flexural

modes refers to F(n, 2) where n>1.

2.1.2 Wave Propagation Modelling

The propagation of guided waves in pipelines can be solved analytically only if the geometry

of the pipe does not diverge from the idealised mathematical model. In reality, the excitation

of the wave modes is rarely pure, and the pipeline geometry is affected by corrosion and the

presence of features. Furthermore, the wave propagation itself can be affected by factors

such as temperature and contents of the pipe. Considering that the goal of modelling the

waveform propagation in this work is to use it in a machine learning context, it is necessary

to model wave propagation in geometries as far away from the ideal solution as possible and

to model a large number of such propagations. The standard method for modelling guided

41

waves in complex geometries is the usage of finite element analysis (FEA), as it allows for the

simulation of forces and displacements in arbitrary shapes. This work makes extensive use of

Pogo [20]. Pogo is an explicit time domain FE solver, complete with model building toolkit for

MATLAB. The capability to programmatically build geometries in MATLAB and export them

into Pogo mesher is crucial for this project, as it allows for a quick and hands-off parametric

generation of large amount of training data for the machine learning algorithm. In the terms

of Pogo operation, this section quickly derives the central difference method used for the

wave propagation modelling. By imposing dynamic equilibrium, we can write:

[𝑴]
𝜕2𝒖

𝜕𝑡2
+ [𝑪]

𝜕𝒖

𝜕𝑡
+ [𝑲]𝒖 = [𝑭𝒂] (14)

In this equation [M] is the mass matrix, [C] is the damping matrix and [K] is the stiffness matrix.

[Fa] is the external force and u is displacement. The central difference method of numeric

differentiation uses the previous and next values of displacement to calculate the derivatives

of displacement with respect to time. Respectively:

𝜕𝒖

𝜕𝑡
(𝜏) =

𝒖(𝜏 + ∆𝑡) − 𝒖(𝜏 − ∆𝑡)

2∆𝑡
(15)

𝜕2𝒖

𝜕𝑡2
(𝜏) =

𝒖(𝜏 + ∆𝑡) − 2𝒖(𝜏) + 𝒖(𝜏 − ∆𝑡)

∆𝑡2
 (16)

Pogo solver is explicit, which means 𝒖(𝜏 + ∆𝑡), i.e., the future displacement, calculation can

be based only on the current and previous values of displacement. Therefore, rearranging the

equations for 𝒖(𝜏 + ∆𝑡):

𝒖(𝜏 + ∆𝑡) = (
[𝑴]

∆𝑡2
+

[𝑪]

2∆𝑡
)

−1

[[𝑭𝒂] + (
[𝑪]

2∆𝑡
−

[𝑴]

∆𝑡2
)𝒖(𝜏 − ∆𝑡) + (

[𝑴]

∆𝑡2
− [𝑲]) 𝒖(𝜏)] (17)

The above equation depends on the mass, stiffness, and damping matrices, which depend on

the material. They can be simplified if the material is assumed to be homogenous and

isotropic, which is the case for this project. The external force matrix is best understood as

the excitation; therefore, it is only nonzero when the initial wavepacket is transmitted, and at

the source location. Finally, the equation depends on the choice of ∆𝑡, known as the time

step. It is selected to be low enough to ensure simulation stability, with the exact value

determined as a balance between the accuracy of the simulation and the computational cost.

As the overall time of the simulation is generally enforced by the goal of the simulation (i.e.,

a wave takes a certain time to propagate over the geometry), lowering the time step directly

42

increases the number of calculations. The largest time step that still allows for accurate

simulation of wave propagation corresponds to the time it takes for the fastest wave to pass

through the smallest element in the model:

𝑡𝑐 =
∆𝑥

𝑐
 (18)

where 𝑡𝑐 is the largest possible time step that does not cause the instability of the model

(critical time step), ∆𝑥 is the smallest element length and c is the wave speed of the fastest

wave modelled. The ratio ∆𝑡/𝑡𝑐 is known as Courant number, it is necessarily lower than 1 to

ensure stability in the explicit time stepping and is one of the parameters that can be changed

during the model optimisation.

The elements used in FEM exist in a variety of shapes, in the case of this project, cubic

elements are used. As such, only one size of the element, ∆𝑥, needed to be selected. The

Nyquist criterion states that to express any periodic signal it is necessary to sample at least

two points in each period. This translates to at least two elements per wavelength of the

shortest (highest frequency) wave simulated. In practice, more elements are used to model

the wave behaviour. Marburg reports the minimum of six elements [21], however, best

practice is to tailor the size of the elements until the FE results converge to a desired error

margin, which usually results in significantly more elements per wavelength [22].

Finally, when designing a finite element simulation, the boundary conditions must be

considered. As a standard, Pogo uses sound-soft boundary conditions – corresponding to the

object ending abruptly in a vacuum or other non-sound conductive material. This is rarely the

case for the boundaries in the longitudinal direction in real-life applications, where the range

is more commonly limited by the attenuation or the presence of a pipe feature. As the

simulations used by this project were required to be as close to the real world as possible, the

goal is to avoid the boundary region reflections, as such signals do not exist in real pipes; the

simulation should behave as a finite section of an infinite domain. There are two primary

methods of achieving that goal. One option is to extend the model in the direction of

propagation and using time windowing to reject the signal reflected off the end of the region.

This solution allows all the unwanted signal to be rejected but makes the domain significantly

larger than it needs to be, resulting in an increased computational requirement. The second

option is the implementation of absorbing boundary conditions. Pogo has built-in functions

43

facilitating the addition of absorbing boundaries using stiffness reduction method (SRM) [23].

This method alters the damping and stiffness matrices of the system. The gradual increase in

damping over the length of the absorbing boundary lowers the amplitude of the wave, so that

the impulse that reaches the end of the domain is low enough not to alter the results of the

simulation. The stiffness matrix is reduced as damping is increased, further minimising the

mismatch in acoustic impedance between the elements. While the original paper suggests an

absorbing boundary as thin as 1.5 wavelength is sufficient to minimise any reflections to a

negligible level, the thickness of SRM absorbing boundary is another parameter that can be

tuned until the convergence to simulation requirements occurs.

2.1.3 Imaging

Imaging in the context of guided wave testing is the process of transforming the raw ultrasonic

signal received either from the measurement equipment or finite element simulations into a

human-interpretable thickness map of the region of interest. It is widely used in human-

operated inspections, as the imaged signal is significantly easier for humans to interpret. The

development of imaging for guided wave testing has given it the potential to become a viable

quantitative NDT method. This project is interested in the imaging techniques, as their usage

introduces additional knowledge of physical wave behaviour into the data, thus adding

valuable information a machine learning algorithm can utilise. Furthermore, ML on pictorial

data is significantly more developed than on waveform-type data, providing further incentive

in the ability to use the experience developed in ML applications in different fields.

2.1.3.1 Artificial Focusing Methods

Three commonly used acquisition methods for ultrasonic imaging, be it in guided wave testing

or conventional ultrasound are Common Source Method (CSM), Synthetic Aperture Focusing

Technique (SAFT) [24] and Full Matrix Capture (FMC) [25]. CSM is a special case of Plane Wave

Imaging [26] using a single plane wave generated by simultaneous excitation of all

transducers. After the acquisition of data, it is processed (imaged) to reconstruct the physical

characteristics of the imaged body. The selection of methods used in this section follows [27].

44

Figure 16.Transmitter-reciever geometries of CSM(a), SAFT(b) and TFM(c) synthetic focusing methods. Reproduced from [27].

The algorithms are differentiated by their source-receiver geometries (see Figure 16). CSM

uses all transducers as a single source for excitation and receives on all elements of the array.

SAFT fires each transducer in turn and uses the pulse-echo trace. TFM uses every transmitter-

receiver combination. This format of data is known as full matrix capture, and it can be used

to perform either of the artificial focusing approaches. It is worth noting that while TFM uses

FMC, the data can be stored as triangular half matrix (as visible in Figure 16c) due to the

reciprocity principle meaning that the measurement by transducer B given an excitation at A

is the same as the measurement by transducer A for an excitation at B (neglecting

noise/errors). Based solely on the transmitter-receiver geometries, there are historically two

considerations in the choice of the imaging technique. The first is the total number of

combinations, which corresponds to the amount of data that needs to be stored and the

number of calculations that need to be performed to form the image. The second is the

number of transmissions (corresponding to non-empty columns of Figure 16 geometries). The

more transmissions, the longer the test takes to complete.

Regardless of the transmit-receive geometry, the imaging process is similar. First let us

introduce the process in the time domain. The image for any given point i, whose coordinates

are x and z, is formed by delaying each of the transmitter-receiver traces by the amount of

time it would take for the wave to travel from the transmitter to the point i and from the

point i to the receiver. The image intensity at the point i is then the summation of the

magnitudes of those traces. Mathematically it can be represented as:

𝐼(𝑥, 𝑧) = ‖∑∑𝑠𝑡𝑥,𝑟𝑥 (
𝑑𝑡𝑥(𝑥, 𝑧)

𝜈1
+

𝑑𝑟𝑥(𝑥, 𝑧)

𝜈2
)

𝑟𝑥𝑡𝑥

‖ (19)

45

𝑑𝑡𝑥(𝑥, 𝑧) = √(𝑥𝑡𝑥 − 𝑥)2 + 𝑧2 (20)

𝑑𝑟𝑥(𝑥, 𝑧) = √(𝑥𝑟𝑥 − 𝑥)2 + 𝑧2 (21)

𝑑𝑡𝑥 is the distance between the transmitter 𝑡𝑥 and the point of interest, 𝑑𝑟𝑥 is analogous for

a receiver. 𝜈 is the group velocity of the travelling wave. The subscripts 1 and 2 signify the

potentially different velocity of the wave travelling to the defect and back if mode conversion

occurs.

In all the imaging methods the geometric approach is derived directly from the pipe-plane

analogy. However, for this assumption to hold it is necessary to account for the ability of a

wave to travel around the pipe. To account for it, an extra boundary condition is enforced for

that the solutions on the edges of the plate must match.

For SAFT the transmitter and receiver position are the same, therefore the indices of two

summations increment simultaneously. For CSM only a single transmission is used, therefore

the summation over 𝑡𝑥 is unnecessary. TFM uses the full formula.

In the case of dispersive waves, the algorithm needs to be extended to compensate for

dispersion. While it is possible in the time domain, it is more commonly done in the frequency

domain. The equation expressed in the frequency domain is:

𝐼(𝑥, 𝑧) = ‖∑∑∑𝑆𝑡𝑥,𝑟𝑥,𝜔𝑒𝑖𝑘(𝜔)(𝑑𝑡𝑥(𝑥,𝑧)+𝑑𝑟𝑥(𝑥,𝑧))

𝜔𝑟𝑥𝑡𝑥

‖ (22)

In this case, the signal is dependent on the transmitter, receiver and the frequency, with the

dispersion relationship expressed in the 𝑘(𝜔) term, corresponding to the wavenumber

dependency on frequency. The formulation above assumes the same dispersion relationship

on both the path towards the point and back. In the case of mode conversion, the above

formula is transformed to:

𝐼(𝑥, 𝑧) = ‖∑∑∑𝑆𝑡𝑥,𝑟𝑥,𝜔𝑒𝑖𝑘1(𝜔)𝑑𝑡𝑥(𝑥,𝑧)

𝜔𝑟𝑥𝑡𝑥

𝑒𝑖𝑘2(𝜔)𝑑𝑟𝑥(𝑥,𝑧)‖ (23)

Both the probing and reflected signals can consist of multiple modes, converting the formula

to:

𝐼(𝑥, 𝑧) = ‖∑∑∑∑∑𝑆𝑡𝑥,𝑟𝑥,𝜔,𝑛𝑒𝑖𝑘m(𝜔)(𝑑𝑡𝑥(𝑥,𝑧))

𝜔𝑟𝑥𝑡𝑥

𝑒𝑖𝑘𝑛(𝜔)𝑑𝑟𝑥(𝑥,𝑧)

𝑛𝑚

‖ (24)

46

where 𝑛 corresponds to the mode the probing signal is converted into and 𝑚 corresponds to

the mode of the probing signal.

 As mentioned in the previous section, the dispersion curve can be calculated using numerical

software such as DISPERSE, which is however impractical in inspection scenario, as the

dispersion curves are specific to the geometry and the material of the medium. The work of

Davies [28] uses the unrolled pipe – plate analogy derived in [29] (Figure 17) to calculate the

dispersion curves for the T(0,1) mode family based on the wavenumber of the torsional mode.

It is important to note that despite unrolling the pipe, the algorithm considers the edges of

the plate linked by enforcing a boundary condition on the solution, thus the flexural modes

are not lost in this approximation.

Figure 17. Schematic of the unrolled pipe-plate analogy. Reproduced from [28].

In this reading, the wavenumber can be split into the axial wavenumber (𝑘𝑧) and

circumferential wavenumber (𝑘𝑐𝑖𝑟𝑐), with the first corresponding to the wave propagation

along the pipeline and the second to its circumferential travel. As such, the torsional mode

can be understood to travel on a straight path, the first flexural mode (F(1, 2)) is torsional

mode travelling on a helical path that has circled the circumference of the pipe once, F(2, 2)

has circled it twice etc. As such, the wavenumbers are mathematically linked by the

Pythagorean theorem:

𝑘𝑛 = √𝑘𝑠
2 − (

𝑛

𝑟𝑐
)
2

 (25)

Where 𝑘𝑛 is the wavenumber of nth flexural mode, 𝑘𝑠 is the wavenumber of T(0,1) and 𝑟𝑐 is

the radius of the pipeline. Davies compares the results of this simplified approach to full

DISPERSE calculation, with the results presented in Figure 18. Numerically, the errors are

47

below 2% for schedule 40 3-inch pipes and above, making this a simplified way to calculate

the dispersion curves for flexural modes with acceptable accuracy for imaging for most

applications. This may be less suitable for very thick-walled pipes where the curvature

becomes significant.

Figure 18. Comparison of dispersion relationships calculated using a pipe-plate analogy (dotted line) and calculated using
DISPERSE (solid line). Reproduced from [28].

2.1.3.2 Artificial Focusing Method Selection

The full investigation of the imaging methods in the context of guided wave testing has been

conducted by Davies [30]. This section briefly introduces the considerations when selecting

the imaging method.

While the goal of any imaging method is its application in an experimental case, it is common

to utilise finite element simulations to test the method. The controlled simulation

environment allows for a fair comparison of methods by ensuring perfect geometries, no

difference in the external conditions or randomness. The work mentioned above has

conducted that research for pipe imaging, by first assessing the ability of CSM, SAFT and TFM

to image a backwall (a fully symmetrical strong feature). The transducer array is located 1 m

away from the end wall and consists of 24 equally spaced transducers. The wave propagated

in an 8 inch pipe at the speed of 3260 m/s.

48

Figure 19. Image from a backwall using SAFT(a), TFM(b) and CSM(c), reproduced from [30].

Figure 19 shows the difference between the imaging methods in the terms of symmetric

features. There are clear noise bands present in figures (a) and (b). Those are due to the single

transducer transmission in both SAFT and TFM. When a single transducer fires, the wave

propagates both in the axial and circumferential direction equivalent to a point excitation of

a circular wave in a plate. The circumferential component, travels around the transducer ring

and is registered by each receiver in turn. This signal is decoded by the algorithm in the form

of the noise bands clearly present in both SAFT and TFM. CSM does not exhibit the same

behaviour, because with all transducers firing simultaneously, a plane wave (being the

superposition of circular waves) is excited instead of a circular one. The plane wave has no

circumferential component, thus removing this source of noise.

Figure 20. Images from FE data of a 5% reflector at 0.2m and end wall at 0.5m generated using SAFT(a), TFM(b), CSM(c).
Reproduced from [30].

Figure 20 presents a follow-up, the performance of the algorithms on a non-axisymmetric

reflector – an approximation of a defect indication. In this case, the noise bands present in

the symmetric case are still visible and they occlude the image of the reflector in the case of

TFM and SAFT. However, CSM focus on the reflector itself is weaker, as it is the only method

which transmits a plane wave, which cannot be focused on transmission. Thus, TFM and SAFT

have a better focusing performance at the cost of added noise. Davies and Cawley conclude

49

that in the light of the investigation, CSM is the best algorithm for guided wave imaging of

pipelines.

Following the study presented, CSM is the algorithm used in this work. In practice, due to the

need for generating large numbers of simulations for the purpose of machine learning

training, CSM has the added benefit of requiring just one simultaneous excitation of all

transducers, reducing the required number of simulations – in SAFT or TFM each transducer

excitation necessitates an individual simulation, multiplying the need for computational

resources.

2.1.3.3 Direction Control

A row of ultrasonic transducers excites a wave that propagates in both positive and negative

directions along the pipe, see Figure 21. For the task of localisation of features, it is crucial to

separate the two directions. To that effect two offset rows of transducers are used.

Figure 21. Transmission of guided wave in both directions of the pipeline. The wave propagation directions are shown as red
arrows, the area inspected is shaded in grey.

The physical phenomena used are constructive and destructive interference (Figure 22).

Figure 22. Constructive (a) and destructive (b) interference of waves. The top two waves are the constituent waves, the bottom
is the result of superposition of the waves. Reproduced from [31].

50

Constructive interference, effectively doubling the amplitude, occurs when the waves are in

phase, while destructive occurs when the waves are out of phase by half of the period. Full

constructive and destructive interference may occur only when the interfering waves are

identical.

Considering the guided wave testing, the phase separation of the signals from positive and

negative directions can be achieved by utilising two rows of transducers. The transducers are

fitted on a single testing ring. The schematic representation of the setup is presented in Figure

23. In a setup like this, the ring A fires separately from ring B. In each case both the ring A and

ring B receives the signal. As such, after the test is run, four traces are available: A-A, A-B, B-

A and B-B. A-B and B-A traces should be identical due to reciprocity. We can now consider the

implementation of the direction control using the signals described.

Figure 23. Pipe with a guided wave testing ring fitted with two rows of transducers (A and B) separated by quarter wavelength.
Feature F exists at a distance X from row A.

Let us first consider the propagation distance from each of the rings to the feature, accounting

for both the forward and backward path.

𝑑𝐴−𝐴 = 𝑑𝐴𝐹+𝑣𝑒 + 𝑑𝐴𝐹−𝑣𝑒 = 𝑥 + 𝑥 = 2𝑥 (26)

𝑑𝐵−𝐵 = 𝑑𝐵𝐹+𝑣𝑒 + 𝑑𝐵𝐹−𝑣𝑒 = 𝑥 −
𝜆

4
+ 𝑥 −

𝜆

4
= 2𝑥 −

𝜆

2
 (27)

𝑑𝐴−𝐵 = 𝑑𝐴𝐹+𝑣𝑒 + 𝑑𝐵𝐹−𝑣𝑒 = 𝑥 + 𝑥 −
𝜆

4
= 2𝑥 −

𝜆

4
 (28)

51

In these formulations 𝜆 refers to the wavelength at the centre frequency. The transducer rings

are separated by quarter of the wavelength at centre frequency as it causes the A-A distance

and B-B distance to be separated by half of the wavelength (this approach means that the

non-centre frequencies are not completely compensated, but for narrow-band signals in

guided wave pipe imaging this effect is negligible, as other noise sources are significantly

stronger). This would correspond to half-period phase shift, thus adding those two traces up

results in the destructive interference, thus muting the direction. The traces can be phase-

shifted using Fourier analysis, so A-B traces can be used to further amplify the correct

direction and mute the opposite. This is especially important in the experimental context, as

the signals are not identical and shifted due to the differences in transducer coupling,

conditions, and other sources of noise. The phase shift is best performed in the frequency

domain. In the guided wave context, the phase shift should be performed separately for each

mode, as the propagation speed is different in the way described by the differing

wavenumbers. The following presents a full mathematical formulation for the direction

separation of positive and negative directions in frequency domain:

𝑠+𝑣𝑒 = 𝑠𝐴𝐴 − 𝑠𝐴𝐵𝑒𝑖𝑘0∗
𝜆
4 − (𝑠𝐴𝐵 − 𝑠𝐵𝐵𝑒𝑖𝑘0∗

𝜆
4) 𝑒𝑖𝑘𝑛∗

𝜆
4 (29)

𝑠−𝑣𝑒 = 𝑠𝐴𝐴 − 𝑠𝐴𝐵𝑒−𝑖𝑘0
𝜆
4 − (𝑠𝐴𝐵 − 𝑠𝐵𝐵𝑒−𝑖𝑘0

𝜆
4) 𝑒−𝑖𝑘𝑛

𝜆
4 (30)

where 𝑠𝐴𝐴 is the frequency-domain signal, 𝑘0 is the dispersion relationship (wavenumber vs.

frequency) of the transmitted mode, 𝑘𝑛 is the dispersion relationship of the received mode.

The modes can be separated on reception utilising the variation in the signals from different

transducers (up to N/2 modes for N transducers). These formulae need to be recalculated for

each of the modes to be direction controlled and for each inspection frequency. The result of

the calculation is a reinforcement of the mode in the desired direction: positive for 𝑒𝑞. 29 and

negative for 𝑒𝑞. 30.

2.1.4 Guided Wave Testing Hardware

The utilisation of guided waves for pipeline inspections depends on the capability for

ultrasonic transduction. There are several methods of exciting ultrasonic waves in metal,

including piezoelectric [32], magnetostrictive [33], and laser-induced ultrasound [34]. This

section focuses on the piezoelectric transducer systems as utilised by Guided Ultrasonics, as

it is the technology utilised in this work [32].

52

Alleyne and Cawley have developed a dry coupled system of transducers placed in two rows

to facilitate direction control. The dry coupling requires placing the transducers tightly on the

surface of the pipe. For small diameter pipes, solid rings are utilised (Figure 24). These are

pushed onto the pipe using springs.

Figure 24. Guided Ultrasonics EFC Solid Ring [8].

For large diameter pipes the solid rings are unwieldy, therefore inflatable rings are used, with

the pneumatic force used for coupling (Figure 25).

Figure 25. Guided Ultrasonics Compact Ring [8].

In either case, the casing is fitted with a ring of shear-polarised piezoelectric transducers –

this ensures they act with tangential force on the surface of the pipe. The transducers are

orientated in the circumferential direction, which ensures they excite the T(0, 1) mode family.

Were the transducers orientated axially, the L(0, m) mode family would be utilised [4]. The

number of elements in the ring n is limited by the highest order of the flexural mode (F(n, 2))

53

intended to be received. Typically, more than n transducers are used to ensure higher energy

of the initial pulse and improve the force distribution around the pipe. The adjoining

transducers can be grouped together with their results added up and treated as a single

transducer in post-processing to limit the number of channels.

2.2 Machine Learning

2.2.1 History and development of Machine Learning

Machine learning is a set of methods for making decisions based on experience related to

computer science and control theory. Historically speaking, machine learning was first

introduced in the 1950s and the 1960s. Commonly this advent of machine learning is

associated with a Cornell University psychologist, Frank Rosenblatt. His research group

developed machines (perceptrons) that could recognise the letters of the alphabet [35]. The

concept for those machines is based on the models of human brain and learning developed

in the early 1950s by Bush and Mosteller [36]. Rosenblatt’s device sparked the first surge in

the development of machine learning, mostly centred in the cybernetics community, most

interestingly with the scientists at Leningrad State University proposing a prototype of

Support Vector Machine (SVM) in 1964 [37]. This first round of the development was halted

after the 1969 publication of “Perceptrons: An Introduction to Computational Geometry” by

Minsky and Papert. The authors have proven that perceptron networks are unable of

representing certain logical functions, such as XOR (logical exclusive or). As digital logic was

the focus of research at the time, the book has triggered a decrease in funding and research

activity into learning algorithms. The 1970-1980 period is therefore known as the first winter

of AI.

The 1980s brought about the second generation of machine learning research, heralded by

Kunihiko Fukushima and his proposal of neocognitron [38]. Neocognitron is, in essence,

multiple stacked perceptrons, something that we would now recognise as a neural network.

At this point the pieces were falling into place for the modern machine learning approach.

This was further aided by the invention of backpropagation – a paradigm for efficiently

calculating derivatives and training neural networks led by Rumelhart in 1986 [39]. Even

though backpropagation was not immediately accepted as the standard, by the late 1980s

there was a strong expectation for continued success of ML on the back of the technique and

54

the advances in computational power. Those expectations failed to be realised, leading to the

loss of interest in the 1990s, known as the second winter of AI.

In the early 21st century a three-pronged revolution has occurred, which made ML the topic

it is today. The first prong was the inception of Big Data as a concept. The globalisation and

digitisation of public and private databases brought about the data revolution – the necessity

for the development of statistical and operational methods to deal with large datasets.

Currently, it is considered self-evident that big data is a necessity for machine learning,

making that development a key enabling technology. The second prong was the parallel

computing and memory cost revolution. In 2004 Google revealed its MapReduce technology

[40], designed to split the computational effort of a complex problem between many simple

processors. This has an obvious application to backpropagation problem. From that point the

remaining issue was the nature of the small processors between whom the computation

could be split. The answer turned out to have come from the gaming industry, where Nvidia

has developed CUDA [41] – a computing platform allowing for the use of graphics processing

units (GPUs) in general computational tasks. As GPUs are essentially a large number of small

processing units designed for parallel operation, they have proven ideal for machine learning

training. The third prong of the revolution was the development of new machine learning

algorithms. Based on Fukushima’s work, multilayer perceptrons became the standard in

machine learning research. The research was centred around Geoffrey Hinton, Yann LeCun

and Yoshua Bengio, whose activity has culminated in the publication of “Deep Learning” in

Nature in 2015 [42]. This has symbolically started the modern era in machine learning, in

which the innovations no longer follow a conventional academic process but are a

combination of research by companies such as Meta, where Yann LeCun is the chief scientist,

Google, where Geoffrey Hinton worked until 2023, before quitting over AI ethics concerns,

and Baidu, who have taken on Andrew Ng from MIT. The fast paced and commercial nature

of the research has led to the modern ML research to be most commonly disseminated at

conferences such as NeurIPS and ICML as well as in white paper style publications. Since then,

the major developments in the ML research included technologies such as generative learning

[43], attention mechanism [44] and its generalisation to a transformer network [45], recently

joined in GPT (generative pre-trained transformer) architecture [46] and ChatGPT released by

OpenAI [47]. Independently, the reinforcement learning algorithms [48] have been developed

55

by the likes of DeepMind, most famously using them to build AlphaGo model [49], which has

managed to beat a professional human Go player. Recently they have published self-training

architectures, requiring no input apart from rules of the game to be learned, such as AlphaGo

Zero [50] and its generalisation, AlphaZero [51].

2.2.2 Supervised and Unsupervised Learning

There are two main categories of machine learning algorithms, which correspond to the broad

way in which they are trained. These are supervised and unsupervised learning algorithms.

The distinction dates back to the beginnings of modern machine learning, with many modern

applications blurring the line between the two or utilising both approaches to solve segments

of a larger task. The interested reader is directed to the recent textbook by Berry, Mohamed

and Yap, which comprehensively elucidates the subject [52].

Supervised learning algorithms’ name comes from their training method similar to traditional

school teaching, where learning is done under supervision. The student answers the question

and then is provided the correct answer. Based on whether the student’s initial answer is

correct or not, they would be more or less likely to use the same method when they are

presented with a similar problem in the future. Before graduating, the student must prove

they can perform on these preparatory questions, pass an exam and only then they are

trusted that they would be able to deal with problems in the real world. The process in

graphically represented in Figure 26.

Figure 26. Supervised Learning Schematic Blue boxes represent the sets of data, dark grey boxes represent the processing
algorithms. Reproduced from [53].

In the machine learning domain, the ‘preparation’ questions are referred to as the training

dataset, the ‘exam’ is the test dataset. Those two datasets are selected from the same set of

labelled observations. Crucially, for that dataset to exist, the observations must be labelled.

56

Figure 27. Google image labelling task. The user is asked to select the portions of the image containing the object of interest.
Such tasks are commonly encountered as a security measure on websites [54].

While for some questions it is a simple matter, such as the omnipresent image labelling tasks

(Figure 27), the highly skilled tasks such as labelling medical images require subject matter

experts to provide labels, which is a significant challenge in many machine learning projects.

Supervised learning is used to solve two types of problems – classification and regression. In

classification problems, the algorithm’s output is an answer to the question of whether the

input data belongs to a certain class. The common example is inputting a picture of a cat or a

dog and scoring the algorithm on its accuracy in telling the difference between the animals.

The regression problems, meanwhile, have the outputs on a continuous scale; they are

answering a question of what the value of Y is for a given value of X (or multiple Xs). A typical

example is based on the house price dataset, where an ML algorithm is asked to predict the

price of a house based on its age, size, number of bedrooms etc [55].

When a labelled dataset is not available or when the question, we need answered is one we

do not know an answer to, unsupervised learning is utilised instead. Unsupervised learning is

based on the natural process of learning when there are no predefined correct and incorrect

solutions. A real-life scenario would be toddler playing with their toys and putting them

together based on various characteristics, such as size, colour, material etc. The toddler is not

told explicitly that a red car goes with a red brick, but they understand those are in some way

similar.

57

Clearly, unsupervised learning has a different range of use cases, as without knowing the true

answer it doesn’t know the question it is being asked. For example, going back to the cat vs.

dog classification, it could instead classify the images based on whether they are outdoors or

indoors. This leads to the main use cases for unsupervised learning [56]:

- Clustering – the algorithm puts together the samples that are in some way similar,

based on the features it has internally extracted.

- Anomaly Detection – the algorithm learns that all the data it is presented in the

training process is ‘normal’ and after deployment it is supposed to flag any data that

would not fall into that category. This is commonly used by banks to detect fraudulent

credit card transactions (i.e., a transaction for a luxury bag on a card that is normally

used for groceries would be flagged as anomaly).

- Association – This is most used in recommender systems and is closely related to

clustering. The everyday application is online shopping. When the user puts knives,

pans and chopping boards in your cart, the algorithm could recommend a garlic press

and a cookbook.

- Autoencoders – an unsupervised learning algorithm that is designed to compress the

input data, then decode it and still be able to recognise the original data. Conceptually,

if an algorithm does that, it removes the unnecessary information in the encoding

process. This is most useful in signal and image processing areas, as a good

autoencoder can remove the noise from the image while retaining all the pertinent

data.

Importantly, when using unsupervised learning algorithms, there are no objectively ‘correct’

or ‘incorrect’ decisions. As a result, much as in the case of human decisions, the external

performance metrics must be introduced. As an example, a recommender system may be

rated on how many customers have added additional items to their shopping cart, compared

to an alternative recommending solution.

2.2.3 Neural Networks

This section presents the fundamentals of the neural network design and its constituent parts,

as such, much of the information is considered self-evident in the machine learning

community. The interested reader is directed to two online courses taught by Andrew Ng –

one of the foremost AI researchers:

58

• Machine Learning Specialisation – Stanford University and Deeplearning.ai [57]

• Deep Learning Specialisation – Deeplearning.ai [58]

Neural Networks are a type of a machine learning algorithm built of identical basic units

calculating simple mathematical functions. Those units are connected to each other with

connections of a weight learnt during the training process. The neurons are arranged in layers,

with the outputs of neurons of layer number i-1 acting as inputs to neurons of layer number

i. The decision on how many neurons to use, in what arrangement and which connections

between neurons to allow is the basic question on a neural network design.

2.2.3.1 Neuron Operation

A neuron is a function with any number of input parameters and a single output value, so it

can be written as 𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛), where f is the neuron function. Typically, the inputs

are represented as a vector of values of length n. From now on, that is the convention taken

in this chapter.

𝒙 =

[

𝑥1

𝑥2

𝑥3

…
𝑥𝑛]

(31)

The neuron performs a simple operation, in which each input is multiplied by a parameter

called weight (w), whose product is added to another parameter, called bias (b). Both of these

parameters are learnt in the training process of the neural network. Each input has its own

weight, signifying the strength of the connection between the input neuron and the operating

neuron, while bias is common to all inputs across the neuron. Following the convention for

inputs, weights also take the form of a vector:

𝒘 =

[

𝑤1

𝑤2

𝑤3

…
𝑤𝑛]

(32)

Therefore, for a single-valued input 𝒙 = 𝑥1, the function is:

𝑦1 = 𝑓(𝑥1) = 𝑤1 ∗ 𝑥1 + 𝑏 (33)

For a non-one length input, the output is a summation of outputs for each element of input.

𝑦 = 𝑦1 + 𝑦2 + ⋯+ 𝑦𝑛 = (𝑤1𝑥1 + 𝑏) + (𝑤2𝑥2 + 𝑏) + ⋯+ (𝑤𝑛𝑥𝑛 + 𝑏) (34)

59

Which can be written in a simplified form as a dot product of w and x:

𝒚 = 𝒘 ∘ 𝒙 + 𝑏 (35)

2.2.3.2 Activation Functions

The problem inherent in the simplicity of the mathematics behind the building block of a

neural network is the fact that it is a linear function. As a result, even a complex neural

network would in essence boil down to a combination of linear functions, which by definition

is a linear function. Without introducing nonlinearity at some point in the neural network, the

outputs would simply be a linear function of inputs, effectively corresponding to a single layer.

The nonlinearity is introduced using activation functions, mapping the output of the neuron

operation in a non-linear fashion.

This section provides an overview of the most used activation functions: linear, sigmoid, tanh,

ReLU and leaky ReLU.

Linear activation function is simply a linear mapping of the output of the neuron to the output

domain. This type of an activation function does not provide nonlinearity; therefore, it cannot

be the only type of activation function used. If used, it is most commonly used in the output

layers in regression problems, such as the classical house price prediction.

Sigmoid activation function (also known as logistic activation function) is mathematically

described as 𝑓(𝑧) =
1

1+𝑒−𝑧. The shape of the function is visible in Figure 28.

Figure 28. Sigmoid Function Graph.

60

Visibly, the output of sigmoid is between 0 and 1, is monotonic and differentiable. These

characteristics are important, as the monotonicity ensures the higher output of the neuron

corresponds to higher output of the activation function, and the function needs to be

differentiable for the training process to be possible, as it relies on calculating the derivatives

of the outputs. As the output of the sigmoid function is between 0 and 1 it is commonly used

as output in the probability prediction tasks, as any probability exists between those values.

The version of sigmoid generalised to multi-class classification problem is a softmax function.

While sigmoid can be understood to output the probability of a single class based on the input

value, softmax outputs the probabilities for a larger number of classes. The main drawback of

sigmoid activation function is the flattening of the function in the higher negative and positive

ranges. As the updating of neuron parameters is based on the derivatives of the outputs (i.e.,

the local differentials of the activation function) the training would become very slow if the

output of the neuron happens to be high. This is known as the vanishing gradient problem.

Tanh activation function is very similar to sigmoid. Mathematically it is a hyperbolic tangent

of the input value, 𝑓(𝑧) = tanh(𝑧) =
2

1+𝑒−2𝑥 − 1 tanh and sigmoid are functions which can

be derived from each other. Figure 29 shows the comparison between the tanh and sigmoid

functions.

Figure 29. Tanh and Sigmoid graphs comparison.

61

The main difference in sigmoid and tanh is the output range, as tanh outputs between -1 and

1. This is useful in the generative tasks, in which the output should be symmetrical in the

positive and negative domains, such as direct waveform audio generation. Secondly, the fact

that tanh has the mean of 0 is useful in the training of the hidden layers of the model. In the

past, it has been used as the main activation function for the hidden layers, but it has now

been superseded by ReLU.

ReLU, shorthand for Rectified Linear Unit, is mathematically defined as 𝑓(𝑥) = max (0, 𝑥)

Figure 30. ReLU graph.

Figure 30 represents the graph of RelU function with the 𝑓(𝑥) values at 0 when 𝑥 < 0. When

the argument becomes greater than zero, the value of the function is equal to the argument.

It is a very simple function and is currently the most commonly used activation function for

the hidden layers. For most practitioners it is the base case when building an experimental

neural network. Compared to sigmoid, its characteristics are the significantly lower

computational cost, which was historically important in the research environment, and

remains relevant nowadays in the multi-billion parameter models used in production,

secondly, it does not suffer from the vanishing gradient problem in the positive range, as the

differential is constant. The issue with ReLU is that any negative input maps to 0, which

62

prevents learning from the input data across the full domain (i.e., -1 has the same impact on

the network as -1000). While this can be solved by careful pre-processing, the more common

approach is to use Leaky ReLU, which solves the so-called dying ReLU problem

programmatically.

Leaky ReLU is an activation function very similar to ReLU, but instead of using 0 as the lower

boundary it uses a different linear function of input, conventionally 𝑦(𝑧) = max (𝑎𝑧, 𝑧),

where a is conventionally set to 0.01.

Figure 31. Leaky ReLU graph.

Leaky ReLU shares the characteristics with ReLU, but it can learn from the negative as well as

the positive data. It is slightly more computationally expensive, but still less so than the logistic

functions. As a result, Leaky ReLU is more reliable than the base version, at the cost of speed,

therefore it is commonly used as the hidden layer activation in deep architectures, or when

the input data cannot be guaranteed to be clean and well normalised.

2.2.3.3 Layers

A layer in a neural network is a combination of a mathematical operation and a set of values.

A layer takes the set of values from the previous layer, performs its operation, takes on the

results as its own values and makes them available to the following layers. All the operations

inside the layer are independent of each other, therefore they can be parallelised, enabling

the use of massive parallel computing processors, such as GPUs. Layers can be understood as

the basic building blocks of the neural network, as it is always the inputs to and outputs from

63

layers that the operations are performed on, not the individual neurons. This section

introduces some of the common types of layers, understanding of which is crucial to machine

learning.

2.2.3.3.1 Fully Connected Layer

As discussed, the full neuron, or the unit of a neural network performs an operation that is

mathematically described as 𝑦 = 𝛼(𝑤 ∘ 𝑥 + 𝑏) where 𝛼 is the chosen activation function, w

is the weights vector, x is the input vector and b is the bias. In the most basic type of a neural

network, known as dense or fully connected (FC) neural network the neurons are connected

as shown in Figure 32 with each neuron in layer n-1 providing input to all neurons in layer n.

Figure 32. Fully connected Neural Network graph. The values are shown as circles and the operations are shown as arrows.
This network does not contain bias. The sizes of weight matrices are annotated under the arrows denoting operations.
Reproduced from [59].

The diagram shows why it is more common to talk about neural networks in the units of

layers, rather than neurons. Each neuron must produce the number of outputs corresponding

to the number of neurons in the following layer. Thus, the previously described weights vector

becomes a weights matrix, with the first dimension corresponding to the number of input

neurons and the second to the number of outputs. Similarly, the bias becomes a vector of

biases with the length corresponding to the number of outputs. Weights (and biases) are

64

therefore best understood not as properties of neurons, but of layers due to their relational

characteristic.

2.2.3.3.2 Batch Normalisation Layer

A batch normalisation layer implements its namesake operation. It was first introduced by

and Szegedy in 2015 [60]. During training, the distribution of the inputs to the layer shifts, as

those inputs are the outputs from the previous layer. When the inputs are far from zero-

mean, unit-variance normalised, the training is slower, especially in the case of using

activation functions prone to saturation (sigmoid, tanh, to a lesser degree ReLU). Batch

normalisation normalises the inputs mid-training process and does so with regard to each

mini-batch (the portion of data on which the algorithm is trained in a single step). Batch

normalisation layers have been proven to speed up the training and, in some cases, to prevent

overfitting, which makes them common in many modern deep learning architectures. Batch

normalisation layers are active only during training and deactivated at inference, which is the

source of one of the criticisms of batch normalisation – the difference in the behaviour

between training and testing.

2.2.3.3.3 Dropout Layer

A dropout layer randomly deactivates some of the neurons in each training step. The purpose

of that operation is making sure that the network is not overly reliant on a single neuron, but

rather that the predictive power is regularly spread between the neurons. This approach also

helps prevent overfitting, thus normalising the network. Similarly to batch normalisation,

dropout layers are deactivated at inference.

2.2.3.3.4 Convolutional Layer

A convolutional layer is similar to a fully connected layer, in the fact that it is a layer containing

trainable weights. Neural networks based on this type of a layer are collectively known as

Convolutional Neural Networks (CNNs), even though most of them contain some fully

connected layers.

65

Figure 33. Convolution operation depicting the activation map achieved by applying a kernel to an image. [61].

To understand a convolutional layer, it is first necessary to define its building blocks. First

there is the input data, which can have any number of dimensions and channels. In the most

common case of analysing RGB images, the data (image) is 2-dimensional and contains three

channels – red, blue, and green. The second building block is the kernel, also known as the

filter. The filter is smaller than the input data in the non-channel dimensions and has a depth

equal to the input data – for the RGB image, the kernel would have the shape of (a, b, 3). A

convolutional layer can have any number of kernels, which are equivalent to neuron weights

in a fully-connected layer. A convolutional layer performs a dot product between a kernel and

a portion of the input data, then similarly to a fully connected layer passes it through an

activation function and outputs the result. The kernel is then moved to another position,

usually overlapping with its previous one. The parameter that controls the shift in each

dimension is known as the stride (s). s = (1, 2) would mean that the kernel moves one sample

66

at a time in the first dimension of the input data and by two samples at a time in the second

dimension. Finally, a padding parameter is used to even out the contribution of the data

points, adding margins around the borders of the input. In the example of Figure 33, datapoint

a is considered only once in the output, while datapoint f is considered four times. To equalise

the contributions, padding is used. Moreover, padding allows the size of the output to be

controlled, as it is typically desirable for the output from the convolutional layer to have the

same non-channel dimensions as the input. Despite a kernel having more parameters than a

neuron, the topological limits mean that a convolutional layer has fewer parameters than an

equivalent fully connected network.

2.2.3.3.5 Transposed Convolution Layer

A transposed convolution performs an operation directly opposite to a convolution – it

multiplies a single number by an (n, m) sized kernel, thus up sampling the input. The values

in the kernel are learnt during the training process. Refer to Figure 34 for the visual of a

difference between a convolution and a transposed convolution.

Figure 34. Convolution and transposed convolution. Convolution is shown on top, transposed convolution at the bottom. The
sizes of the grids correspond to input and output sizes. Reproduced from [62].

A transposed convolution is commonly used in generative networks, where a small encoding

is decoded to a larger data. It is also used in a U-net architecture [63], in which the input data

is first compressed to remove the irrelevant information and later decompressed, while

reintroducing the original information (see Figure 35).

67

Figure 35. U-net. Output of the first block serves as part of the input to the last, second to block n-1 etc. Reproduced from
[63].

2.2.3.3.6 Pooling Layer

A pooling layer is a common operation in a convolutional neural network. This layer uses

kernels, similar to a convolutional layer, but instead of a convolution operation, it performs a

pooling operation – most commonly a max pooling or an average pooling.

Figure 36. Max pooling. Maximum of the color-coded section of the first block is output to the second block [64].

Max pooling is very well described visually in Figure 36 – the operation takes an n-by-m

section of the input and replaces it with the maximum of that section. Average pooling, while

less common, follows a similar approach, taking a mean rather than a maximum. The goal of

a pooling layer is to make the intermediate data smaller, in the case of max pooling keeping

only the biggest (therefore with the highest impact) activations. This on one hand lowers the

computational load, allowing for deeper networks and longer training, while on the other

allows for feature extraction in architectures such as the mentioned U-net.

68

2.2.3.4 Forward and Backward propagation

Each neural network training step consists of two stages, forward and backward propagation.

As fully connected neural networks are less conceptually complex due to their one-

dimensionality, all the derivation in this section is performed on an example of a fully

connected network. The same principles apply to convolutional neural networks or other

deep learning architectures. The operations described until now, be it for fully connected

layers or convolutional layers, are performed during the forward propagation through the

neural network. Forward propagation of a fully trained neural network is known as inference

– using the finalised neural network for its intended purpose, to predict an output for a given

set of input values. Importantly for training, rather than just calculating the final value of the

output of the neural network, during forward propagation all the intermediate values are

calculated and stored.

Backward propagation is the other crucial element in the modern machine learning – it is

essentially the automatic calculation of the derivatives of all the trainable parameters (in fully

connected layers, weights and biases) in the network with respect to the given loss function

– a measure of how far the output of the network is from the desired output. Before

backpropagation became widespread, multilayer perceptrons existed, but the update of their

trainable parameters required the manual calculation of the derivatives. This has

understandably hampered the experimentation on the architectures, as any change required

recalculation of derivatives for every trainable parameter. Forward and backpropagation are

linked, as to calculate the partial derivatives for each of the parameters it is necessary to know

their values.

In forward propagation, consider the simple fully connected neural network displayed in

Figure 37. This neural network consists of two layers, as the input layer does not involve any

calculations.

69

Figure 37. Fully-connected neural network with one hidden layer. Reproduced from [65].

Consider now the batch of data that the layer can calculate at a single time. This is known as

the minibatch and is a basic unit of data that forward and backward propagates through the

neural network. Referring to the equation of a neuron in a fully connected layer 𝑦 = 𝑤 ∘ 𝑥 +

𝑏, the minibatch is known as 𝑿, the 2D matrix input of the shape (number of examples,

number of inputs). Further, let’s consider the value of the units in the hidden layer denoted

as 𝑯. This has the shape of (n, h), where n is the invariant number of the examples in the

minibatch, and h is the number of units in the hidden layer. Finally, we consider the output

layer units 𝑶, of the shape (n, q). As both the hidden and output layers are fully connected,

we consider the weights in the hidden and output layers, which are also 2D matrices, denoted

as 𝑾(𝟏) of shape (d, h) and 𝑾(𝟐) of shape (h, q) as well as biases 𝒃(1) of shape (1, h) and 𝒃(𝟐)of

shape (1, q). As is clear from these shapes, the shape of the weights and biases of the layers

is invariant to the size of the minibatch, n. The effect of the training on minibatches is to allow

the trainable parameters of the neural network to update in a stochastic manner. 𝑿 is given

as the input to the neural network, and based on that we calculate the values of neurons in

the hidden layer as:

𝑯 = 𝛼(𝑿𝑾(1) + 𝒃(1)) (36)

𝑶 = 𝛼(𝑯𝑾(2) + 𝒃(𝟐)) (37)

 is the activation function introducing nonlinearity. In the case of a more complex fully

connected neural network, further hidden layers 𝑯(𝟐), 𝑯(𝟑)etc. can be used to improve the

predictive power of the network. During forward propagation all the values of the neurons in

the hidden layers are stored to be used in backward propagation.

70

Backward propagation is effectively a method of automatic differentiation. A neural network

outputs a value that is to be as close to the true value as possible. As a result, a derivative of

the weights with respect to the function of the distance between the output value and the

actual value provides the direction in which the weights have to change for the output to get

closer to the desired value. This function used for calculating the distance is known as the loss

function. In the simplest form it is the difference between the predicted output and the true

value i.e. 𝐿𝑜𝑠𝑠 = |𝑜𝑢𝑡𝑝𝑢𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑡𝑟𝑢𝑒|.

The loss functions are usually further modified by regularisation terms. Regularisation terms

introduce auxiliary objectives to the training process. Commonly they are used to ensure the

weight values are as close to each other as possible. This has the advantage of utilising the

predictive power of all neurons rather than being overly reliant on a limited number of nodes

(effectively limiting the size of the neural network while keeping the computational

complexity). This regularisation function is given by the equation:

𝑠 =
𝜆

2
(||𝑾(1)||

𝐹

2

+ ||𝑾(2)||
𝐹

2
) , (38)

Where 𝜆 is a scalar known as regularisation rate, controlling how impactful the regularisation

term is compared to the loss function.

The sum of the loss function L and the regularisation term s is known as the objective function

𝐽.

Consider the neural network in Figure 37. It has two sets of weights 𝑾(1)and 𝑾(2). For

simplicity let us not consider biases, as the process for the biases is analogous. The goal of the

backpropagation process is therefore to calculate the derivatives of those sets of weights with

regard to the objective function
𝜕𝑾(𝟏)

𝜕𝐽
 and

𝜕𝑾(𝟐)

𝜕𝐽
. To calculate the derivatives, neural networks

use the chain rule,
𝜕𝑍

𝜕𝑋
=

𝜕𝑍

𝜕𝑌

𝜕𝑌

𝜕𝑋
. The first step to calculating the derivatives for all the nodes is

therefore calculating the derivatives of J with regard to L and s.

𝜕𝐽

𝜕𝐿
= 1 (39)

𝜕𝐽

𝜕𝑠
= 1 (40)

Next, the partial derivatives of the objective function with respect to the output layer are

calculated – this results in a vector of derivatives corresponding to outer layer neurons:

71

𝜕𝐽

𝜕𝒐
=

𝜕𝐽

𝜕𝐿

𝜕𝐿

𝜕𝒐
=

𝜕𝐿

𝜕𝒐
 (41)

Next, calculate the partial derivatives of the regularisation term with respect to both sets of

weights, which we can do directly:

𝜕𝑠

𝜕𝑾(1)
= 𝜆𝑾(1) (42)

𝜕𝑠

𝜕𝑾(2)
= 𝜆𝑾(2) (43)

Next, we use the chain rule to calculate the gradients of the output with respect to the second

set of weights – linking the hidden layer with the output layer:

𝜕𝐽

𝜕𝑾(2)
=

𝜕𝐽

𝜕𝒐

𝜕𝒐

𝜕𝑾(2)
+

𝜕𝐽

𝜕𝑠

𝜕𝑠

𝜕𝑾(2)
=

𝜕𝐽

𝜕𝒐
𝒉𝑇 + 𝜆𝑾(2) (44)

This is one of the desired values. Now we can backpropagate further. The gradient of the

objective function with respect to the hidden layer output is:

𝜕𝐽

𝜕𝒉
=

𝜕𝐽

𝜕𝒐

𝜕𝒐

𝜕𝒉
= 𝑾(2)T 𝜕𝐽

𝜕𝒐
(45)

The next intermediate value is known as z, which is the input to the activation function:

ℎ = 𝛼(𝑧) (46)

The derivatives of the common activation functions are precalculated and used directly. As

the activation functions are used elementwise, the derivative needs to be applied the same

way:

𝜕𝐽

𝜕𝒛
=

𝜕𝐽

𝜕𝒉

𝜕𝒉

𝜕𝒛
=

𝜕𝐽

𝜕𝒉
 ⊙ 𝛼′(𝒛) (47)

Where ⊙ denotes element-wise multiplication. Finally, this derivative can be used to

calculate the desired:

𝜕𝐽

𝜕𝑾(1)
=

𝜕𝐽

𝜕𝒛

𝜕𝒛

𝜕𝑾(1)
+

𝜕𝐽

𝜕𝑠

𝜕𝑠

𝜕𝑾(1)
=

𝜕𝐽

𝜕𝒛
𝒙𝑇 + 𝜆𝑾(1) (48)

In this way, through the forward and backward propagation all the intermediate values are

first calculated and later used to calculate the gradients. In this section we have derived the

gradients for the update of the weights for all the units in the neural network. The same

process can be used for calculating the updates to the biases. This process is done

simultaneously for all the examples in the minibatch. As all the intermediate values need to

be stored throughout the forward and backward propagation, the memory requirements for

72

the training are quite high and significantly higher than for inference. To limit those

requirements, the minibatch size can be reduced.

2.2.3.5 Loss functions

The previous section briefly discussed how the trainable parameters can be updated in the

neural network. The objective function itself is comprised of two constituents – the loss

function and the regularisation term. The regularisation term has been discussed in some

depth in the previous section, but generically, this term is used to improve the training

behaviour of the network. The second component, the loss function, is more directly linked

to the specific problem the neural network is designed to solve. This section introduces the

background theory of loss functions, as well as exemplifies some of the more commonly used.

In the backward propagation process, it would be ideal to calculate the derivatives of all the

weights directly based on how distant the predictions are from the desired values. Let us

consider a thought experiment in which two students are asked to solve a quadratic equation.

There exists a well-defined process for solving quadratic equations, calculating the

determinant of the equation and later the solutions. One of the students does not attempt to

answer the equation, but just guesses the answer. The other is able to follow the procedure

correctly until the solution calculation stage, at which point they make a mistake, and their

results are off by a factor of 2. If the marking scheme provides only options of 0 or 1 point,

the feedback given to both students is exactly the same, even though their directions of study

should be quite different. Conversely, if the random-guessing student gets the answer right,

their approach would be validated just as much as the correct way of solving the problem. A

better designed marking scheme would provide the students with the information at which

stage a mistake was made, which information could be used to direct the learning and test all

the abilities required to perform the task. Unlike the quadratic equation example, the

questions asked of neural networks rarely have a well-defined algorithmic solution – in such

cases, conventional programming is a preferred approach. Due to that problem, it is not

possible to check the neural network solution step by step. This puts the onus on the design

of the training examples, as they need to cover the possibilities of mistakes made at each

stage.

A loss function deals with the other side of the problem – it assigns the specific numeric value

to how bad the output of the neural network is. A well-designed loss function results in a

73

larger value when the neural network needs to adjust its output more, and a smaller one

when it is close to correct. The problem that the designer of the ML algorithm needs to face

is what is the best way to quantify that error. For most typical tasks, the loss function selection

is narrow and the specific loss functions are implemented in the machine learning

frameworks, such as TensorFlow. For complex or novel applications, though, they also provide

a way to define a bespoke loss function. As an example, the simplest possible loss function is

the absolute difference between the outputs (�̂�) and the true values (𝑦). This is known as the

Mean Absolute Error loss. Mean absolute loss works well if the output is designed to adjust

the volume of an alarm tone based on the acoustics of the room. A bespoke loss function

based on both the volume and the frequency content could be used, on the other hand, when

adjusting the volume of music. The next part of this section introduces the most commonly

used loss functions and their use cases.

2.2.3.5.1 Mean Squared Error

Mean Squared Error Loss is a minor refinement of the Mean Absolute Error. It is calculated

as:

𝐿 = (𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑)
2

(49)

The advantage of the Mean Squared Error loss function over the Mean Absolute Error is

encapsulated in the difference between the linear and the quadratic function. The quadratic

loss rises in the value faster than the linear. This leads to quicker learning when the output of

the neural network is far from the desired output. It is typically advantageous; therefore,

Mean Squared Error loss has mostly supplanted the Mean Absolute Error loss. Mean Squared

Error is used as a loss function in the applications where the output of the network is

continuous and not bound, as Mean Squared Error can be calculated for any set of two values.

It is therefore the most commonly used loss function for regression tasks.

2.2.3.5.2 Cross Entropy – Binary and Categorical

Cross Entropy is a statistical measure of the dissimilarity between two probability

distributions for a given random variable. In information theory the information of an event,

a measure of how surprising an event is, is calculated as:

ℎ(𝑥) = − log(𝑃(𝑥)) , (50)

74

where ℎ is the information and 𝑃(𝑥)is the probability of the event 𝑥. The concept stemming

from information is the entropy – a measure of the total amount of surprise in a given

distribution. If the probability distribution is very skewed, it contains less surprise, as most

events are likely. If the distribution is balanced, all the events are equally likely, thus making

every single one relatively surprising. The entropy 𝐻(𝑋) is:

𝐻(𝑋) = −∑𝑃(𝑥) log(𝑃(𝑥))

𝑥

(51)

where 𝑋 is a discrete random variable, and the likelihood of event x is distributed according

to the probability distribution 𝑃. Entropy is thus the average level of information across the

possible outcomes. Finally, the crossentropy between two distributions 𝑃 and 𝑄 is the

calculation of the number of bits necessary to represent the event using distribution 𝑄

instead of 𝑃. It is calculated as:

𝐻(𝑃, 𝑄) = −∑𝑃(𝑥) log(𝑄(𝑥))

𝑥

(52)

When used as the loss function, 𝑃 is the approximation of the target probability distribution

(it is 1 for the correct class and 0 for all other classes) while 𝑄 is the prediction of the machine

learning algorithm. For a two-class problem, the formula can be unrolled as:

𝐻(𝑃, 𝑄) = −𝑃(𝑐𝑙𝑎𝑠𝑠0) log(𝑄(𝑐𝑙𝑎𝑠𝑠0) + 𝑃(𝑐𝑙𝑎𝑠𝑠1) 𝑙𝑜𝑔(𝑄(𝑐𝑙𝑎𝑠𝑠1))) (53)

When modelling the continuous probability distributions, it is typical to use the natural

logarithm instead of binary, and this is how crossentropy is implemented in ML frameworks.

This scales the output by a constant value so makes no difference when minimising the loss

function.

Cross entropy is also known as logistic loss (conveniently abbreviated to log loss) and negative

logarithmic loss. The logistic loss formula is derived from a different starting point, simply as

the logarithm of the error for each class, but the final formula aligns exactly. The value derived

is known as the binary crossentropy, given that two probability distributions exist. It can be

generalised to a multi-class problem when it becomes known as the categorical crossentropy.

This version is typically used in combination with the softmax activation function. Cross

entropy is by far the most commonly used loss function for classification tasks.

75

2.2.3.5.3 Focal Cross Entropy (Focal Loss)

Focal loss is a more advanced loss function, introduced here as a method of describing how

loss functions can be used to address some of the pertinent issues in machine learning. While

crossentropy loss performs very well in a wide range of classification scenarios, there are two

significant failure modes. The first one is the function of the stochasticity of the crossentropy

– to approximate the probability distribution, the crossentropy is calculated as a mean across

a minibatch of training examples. If one of the classes is overrepresented in the training

dataset, the loss function incentivises getting the dominant class right at the expense of the

underrepresented class. In the extreme, this can lead to the algorithm reverting to

categorising every example as the member of the dominant class. This issue can be addressed

easily by multiplying the cross entropies on the per-example basis by the weighting factor

dependent on the balance of the classes. Such a modified loss is known as balanced

crossentropy. The second issue with crossentropy is the failure to focus on hard examples

(i.e., the ones with probabilities close to 50/50) rather than on the easy ones. In many

machines learning applications, it is beneficial to focus on the difficult examples. This problem

is addressed by the variation of the crossentropy known as the focal loss [66]. The focal loss

is given as:

𝐿 = −∑(𝑖 − 𝑝𝑖)
𝛾 ln(𝑝𝑖)

𝑛

𝑖=1

(54)

For misclassified examples the value of 𝑝𝑖 is small, making the focal loss behaviour similar to

that of standard crossentropy. When the confidence of the algorithm increases, the weighting

factor 𝛾 pulls the value of the loss function down, ensuring that more attention is paid to the

difficult examples. The value of the weighting factor is normally determined experimentally,

in the original paper the value performing best for the authors is 2 [66]. Coming back to the

issues with the crossentropy, it would seem that focal loss would solve both at the same time,

as quite naturally the examples from the underrepresented class are more difficult to classify,

but practically the most commonly used implementation of the focal loss takes the form of:

𝐿 = −∑𝛼𝐼(𝑖 − 𝑝𝑖)
𝛾 ln(𝑝𝑖)

𝑛

𝑖=1

(55)

where 𝛼𝐼 is introduced as an additional weighting factor used to place more reward on the

correct classification of the underrepresented class.

76

2.2.3.6 Optimisers

Once the loss function and the gradients of all the trainable parameters have been calculated,

the next step is to perform the update of the values of the trainable parameters. The amount

by which the values are updated is based on two constituents – the gradient itself and the

optimiser. The optimiser is a function calculating the update based on the input gradient. The

simplest possible optimiser is known as the gradient descent – it simply updates the

parameters by subtracting the gradient multiplied by a selected constant.

𝑤𝑛𝑒𝑤 = 𝑤 − 𝑎(𝑔𝑟𝑎𝑑𝑤) (56)

As discussed previously, the training of the neural network is done in batches of n examples.

The version of gradient descent adapted to multiple inputs is known as stochastic gradient

descent (SGD) and calculated (for 𝑛 examples in the batch) as:

𝑤𝑛𝑒𝑤 = 𝑤 − 𝑎
∑ 𝑔𝑟𝑎𝑑𝑤

𝑛
𝑖=1

𝑛
(57)

Effectively updating the weights using an average of the gradients across the minibatch. This

simple approach was commonly used in the early days of machine learning, but with the

evolution of the field an understanding has arisen that the loss landscape can be complex. In

such a landscape keeping the update coefficient (learning rate) constant makes it prone to

two issues – too small would be unable to escape the local minima, while too large would risk

overshooting the global minimum. While these issues were known, it is only when complex

problems became the object of research that it became obvious that a constant learning rate

would typically be too small at one point in the training process (when trying to find a rough

solution) and too large when fine-tuning the answers. It became abundantly clear that it is

not simply a problem of selecting the correct value for the learning rate, but that the optimizer

needs redesigning to enable the adjustment of the learning rate over the course of the

training. This section introduces the early improvements on the SGD optimiser to provide the

overview of the adaptation algorithms and Adam optimiser [67]– the choice of most modern

ML algorithms including the ones developed in this work.

2.2.3.6.1 Stochastic Gradient Descent with Momentum

The main issue faced by the stochastic gradient descent is understood easily when considering

the gradient descent on a single example. Consider the one-dimensional loss landscape in

Figure 38, and take a starting point of x=4.5.

77

Figure 38. Example loss landscape with a local minimum around x = 2.8.

Then the weights are updated so the loss function is lower, which results in the next output

being at x=2.8 (for example). The gradient of the loss function at that point is zero; this is a

local minimum. As a result, the update of the gradient descent would be calculated as 0 and

the training would be stuck. One of the methods of addressing this shortcoming is the

introduction of momentum, first described in the context of neural network optimisation in

1999 by Ning Qian [68]. Momentum assumes that the updates of the network tend toward

the global minimum, and this uses the previous updates as an additional input to the current

update. The following derivation assumes 𝑉 is the update after applying the momentum,

while 𝑆 is the update without the momentum:

𝑉𝑡 = 𝛽𝑉𝑡−1 + (1 − 𝛽)𝑆𝑡 (58)

𝑉𝑡−1 = 𝛽𝑉𝑡−2 + (1 − 𝛽)𝑆𝑡−1 (59)

𝑉𝑡−2 = 𝛽𝑉𝑡−3 + (1 − 𝛽)𝑆𝑡−2 (60)

Which can be combined to calculate Vt as:

𝑉𝑡 = 𝛽2(1 − 𝛽)𝑆𝑡−2 + 𝛽(1 − 𝛽)𝑆𝑡−1 + (1 − 𝛽)𝑆𝑡 + 𝛽3𝑉𝑡−3 (61)

𝛽 is the momentum term, describing what is the impact of the current gradient in comparison

with the previous updates; a value of zero means that 𝑉𝑡 = 𝑆𝑡 and hence there is no

momentum, and increasing values mean greater momentum. It is less than one, so as is clear

from the derivation, the impact of the past on the following update deteriorates by the factor

of 𝛽 with each update.

78

Using stochastic gradient descent with momentum, the update to the weights is calculated

as:

𝑉𝑡 = 𝛽𝑉𝑡−1 + (1 − 𝛽)∇𝑤 𝐽(𝑊, 𝑋, 𝑦) (62)

𝑊𝑛+1 = 𝑊𝑛 − 𝑉𝑡 (63)

where ∇𝑤 is gradient with regard to weight, and 𝐽 is the objective function. Compared to SGD,

the momentum term adds the additional calculation to what was a constant update rate,

making the training process more robust, especially when optimising near so-called ravines –

regions on the loss landscape, where the gradient in one direction is significantly higher than

in the other. In such cases, momentum allows the optimiser to preserve the ability to move

in the correct direction over the update iterations. The difference is shown in Figure 39.

Figure 39. Comparison of model update without momentum (left) and with momentum (right) each straight stretch of the
line corresponds to a single update of the model. The concentric lines represent the loss landscape with the lowest loss at the
centre. Reproduced from [69].

2.2.3.6.2 Adam Optimiser

Adam is a modern optimiser first introduced at by Kingma and Ba [70]. It takes advantage of

the first order moment (gradient) and second order moment (squared gradient). This

effectively allows the optimiser to calculate an individualised learning rate for each of the

trainable parameters. Adam has immediately gathered a large following, as proven by nearly

150,000 citations of the ArXiv preprint of the paper. In 2016 Sebastian Ruder has conducted

a review of optimization algorithms [71], which has established Adam as the first-choice

algorithm in machine learning applications. The Adam algorithm update procedure, in the

words of its creators is:

1. Compute the gradient and its element-wise square.

2. Update the exponential moving average of the 1st order moment and the 2nd order

moment.

3. Compute an unbiased average of the 1st order moment and 2nd order moment.

79

4. Compute weight update: 1st order moment unbiased average divided by the square

root of 2nd order moment unbiased average (and scale by learning rate).

5. Apply update to weights.

As is clear from the procedure, Adam has more parameters than SGD (just learning rate) or

SGD with momentum (learning rate and momentum term 𝛽). Adam requires a learning rate,

a decay term for the first order gradient 𝛽1, decay term for the second order gradient 𝛽2, and

𝜖, a term used in step 4 of the update to avoid the division by 0. Although the number of

parameters in Adam optimiser is large, potentially proving problematic at the stage of the

hyperparameter tuning, the values for the hyperparameters suggested by the original paper

are remarkably well suited to most machine learning problems. They are, as follows:

learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08. Of the parameters of the

optimiser, only the learning rate is commonly adjusted, either to a different constant, or to

an exponentially decaying value, getting smaller as the training progresses to better optimise

near the global minimum.

2.2.4 Modern Topics in Machine Learning Research

Machine Learning and Artificial Intelligence more broadly are some of the most dynamic areas

in research. This section aims to introduce the recent impactful developments both in the

context of the techniques used and the concerns regarding the explainability and fairness of

ML models. This project has utilised Generative Adversarial Networks, but the majority of this

section is provided for completeness and to inform future research.

2.2.4.1 Generative AI

Generative Artificial Intelligence is a subset of machine learning models that aim to produce

outputs closely resembling human creations. They do that by learning the patterns and

distributions in the training dataset and use this knowledge to generate new instances of data

adhering to the patterns. The concept of Generative AI is very broad and many approaches

are utilised, depending on the domain-specific requirements, but some of the most

commonly utilised types of models are Generative Adversarial Networks (GANs) [72],

Variational Autoencoders (VAEs) [73] and autoregressive models.

2.2.4.1.1 Generative Adversarial Networks

GANs, in principle, utilise a framework where two neural networks, the generator and the

discriminator, are in competition to either deceive the other one or not to get deceived. The

80

generator aims to produce data that closely mimics real examples, while the discriminator is

presented with a data point that may either be generated by the generator or an actual real

example and is then tasked with telling one from the other. This eponymous adversarial

process drives both networks to improve their performance, forcing the generator to create

ever more realistic data to deceive the improving discriminator. The training process of a GAN

is characterized by a balance between the generator and discriminator. If one of the networks

improved significantly faster than the other, the training process would end quickly, without

much improvement to the generator. Initially, the generator produces random and low-

quality samples that the discriminator can easily distinguish from real data. As training

progresses, the generator gradually improves its performance and generates more realistic

samples, making it increasingly difficult for the discriminator to differentiate between real

and generated data. The training process involves iterative updates of the generator and

discriminator networks. The generator's loss function is based on the discriminator's

misclassification of the generated data as real, while the discriminator's loss function is based

on its ability to correctly classify real and generated data. As the weight updates for the

networks are separate, an opportunity exists for the designer to fine tune the training process

so that the balance is retained.

GANs have been used mostly in the visual domain. They can be used to generate novel life-

like images of faces or scenery. They are also commonly used in neural style transfer [74],

where the artistic style of one image can be transformed to another and image-to-image

translation, for example turning a sketch into a realistic graphic. Finally, GANs are used in the

medical domain, where they are employed to generate novel images that can be used to train

image recognition algorithms, thus helping to alleviate the data scarcity problem.

The drawbacks of GANs are mostly centred around their vulnerability to the data distribution

and the selection of the hyperparameters. It is common that either a discriminator or a

generator network outperforms the other by a margin significant enough that a training

process stops. Secondly, GANs have an issue with mode dropping and mode collapse. Mode

dropping, exemplified by a generator of dog images never producing photos of Poodles, leads

to incomplete coverage of the target distribution, while mode collapse – the same generator

producing only Labradors, results in the generator producing limited and repetitive samples.

Addressing these issues is crucial for reliable and diverse data generation.

81

2.2.4.1.2 Variational Autoencoders

Variational Autoencoders (VAEs) are based on two underlying technologies, autoencoders

and variational inference. Autoencoders are neural networks consisting of an encoder and a

decoder. The encoder maps the input data to a low dimensional latent space, which is

essentially a compressed representation of the input. The decoder is the decompressor part

– it uses the latent space representation to produce the original input. As the latent space

contains less information than the input, autoencoders can be used for dimensionality

reduction, data compression, or denoising. The second technology, variational inference is a

method of approximating complex probability distributions by representing them as a set of

continuous variables. In the context of VAEs it is assumed that the underlying probability

distribution belongs to a library of standard distributions that can be described using

continuous parameters. For a Gaussian distribution the parameters would be the mean and

the variance. The architecture of a variational autoencoders is therefore comprised of three

elements, each of which requires designing – the encoder, the decoder, and the latent space.

Both encoder and decoder are typically deep neural networks. Depending on the type of the

input data they can follow any architecture. The limitation is that, as the encoder is meant to

compress the data, the output of the encoder should be lower-dimensional than the input.

The output of the decoder, in turn, is compared to the input to the encoder, therefore it must

have the same dimensionality. Classically, the design of the latent space requires domain

knowledge, as choosing the correct initial distribution can significantly improve the trained

VAE performance.

The variational autoencoder training process involves the optimisation against two parts of

the loss function – the reconstruction loss, typically MSE or crossentropy, measuring the

dissimilarity between the input and the output of the VAE and the regularisation term – KL

Divergence. Kullback-Leibler (KL) divergence is a term that quantifies the dissimilarity

between the inferred latent distribution and the prior distribution.

VAEs have, similarly to GANs, been used for novel data generation, but their main impact lies

in its unique applications. VAEs have shown promise in anomaly detection. In that application,

the network is trained on normal data samples and the latent space representation (mean

and standard deviation) is used to determine whether a new data sample belongs to the

normal data category. Secondly, VAEs are useful for data imputation and denoising tasks,

82

where missing or corrupted data points need to be recovered. By reconstructing the missing

or noisy data from the latent representation, VAEs can effectively impute missing values and

remove noise from the data.

The main drawback of VAEs is the difficulty in the design of the latent space. Traditionally, it

involved a standard Gaussian distribution with two parameters (mean and variance), which is

easy to optimise. If the prior data distribution is far from Gaussian or multimodal, that

approach would fail to provide a good representation. In recent years this approach has been

improved upon by using a multimodal Gaussian as a standard as well as combining VAEs with

other generative approaches to model the distribution.

2.2.4.1.3 Autoregressive Models

Autoregressive models, in opposition to the previously discussed architectures, utilise the

concept of sequential generation i.e., the point generated is dependent on those generated

previously. Autoregressive AI models the probability distribution of the next data point based

on the preceding ones, the so-called conditional probability distribution. The order-

dependence of the output of autoregressive models necessitates the utilisation of specialised

architectures, designed to take advantage of that context, such as a Recurrent Neural

Network (RNN) [75] or a Transformer [76]. RNNs are a class of neural networks designed to

process sequential data by retaining an internal variable which is a representation of the past

of the sequence. The common implementations are long short-term memory (LSTM) units or

gated recurrent units (GRUs). In autoregressive models, the hidden state is updated at each

time step based on the current input data and the previous hidden state. The final hidden

state is used to compute the conditional probability distribution for generating the next data

point. Transformers are a more recent architecture using self-attention mechanisms to weigh

the importance of inputs based on their values and positions in the sequence. In

autoregressive models, contrary to RNNs, transformers can process the entire input sequence

in parallel, allowing them to take advantage of parallel computing facilities such as GPUs and

speeding up the training process. During the training of an autoregressive model, it computes

the conditional probability distribution for each data point based on the context of the

preceding data points. This training process can be computationally demanding, as generating

a single point requires rerunning the model for each point in the sequence. In order to speed

it up, a process called teacher forcing is often used, providing the ground truth values (i.e.,

83

the sequences that exist in the real world). This drastically improves the speed of the training

but may lead to the autoregressive model performing significantly worse when the ground

truth is not available.

The most impactful application of autoregressive models is language modelling. Large

Language Models (LLMs) are autoregressive models trained on large bodies of natural text.

They can then generate realistic and context-specific text. This is nowadays used in AI-

powered chats such as OpenAI ChatGPT or Google Bard. Furthermore, language models are

used in machine translation and autocompletion. The rise of LLMs has been enabled by the

existence of large databases of natural text, therefore the application of the same principle

to other domain areas is dependent upon the existence of similar data databases or successful

transfer learning.

Autoregressive models have an issue with the generation of long sequences of samples due

to the initial algorithm’s inability to parallelise the generation. The speeding up of both the

training and the generation is currently one of the largest technical hurdles before the

models. Furthermore, all generative AI models give raise to a range of ethical and security

concerns. Currently, AI-generated text and images are difficult or impossible to differentiate

from the human-generated ones, highlighting the need for robust fairness and security

regulations.

2.2.4.2 Reinforcement Learning

Reinforcement Learning (RL) is a training paradigm different to conventional supervised and

unsupervised learning. Initially inspired by behaviourist psychology, it takes advantage of

natural human learning based on trial and error and the reward mechanisms. The central

concepts in reinforcement learning are the agent, the environment, and the reward. The

agent is the computational entity that has the ability to select a course of action based on the

policy it has learned. The environment is the set of states that the agent can perceive and

interact with. Finally, the reward is granted to the agent given the environment reaches a

state determined by the designer. The training process involves the optimisation of policy

function to maximise the cumulative reward at the end of training. Fundamentally, the agent

should be encouraged to explore the environment, trying out unknown strategies, but the

exploration direction should be biased towards exploiting the more effective strategies. The

right balance of the reward landscape is known as the exploration-exploitation trade-off.

84

Reinforcement learning algorithms are used in two main areas. The first is games, or problems

that can be posed as games. The reason is that games usually have a very well-defined ruleset

and the interactions the player can perform as well as an inherent reward landscape in the

score. Many games can be automated by allowing the RL algorithm to train semi-

autonomously and allowing it to reach its full potential. The second category is generalised

control problems. For this type of problem, RL is well suited because while the final goal is

known (the setpoint), the path to reach it is unknown even to the designers, especially in

highly dynamic conditions. The same applies to problems such as autonomous driving or

energy grid balancing.

The main concern with reinforcement learning is ethical and safety-based, as the agent is

ultimately rewarded for reaching the desired state, which can potentially lead to its incurring

costs or damage that the designers would deem unacceptable. This can be alleviated by

carefully designing the restrictions and rewards, but the trial-and error nature of RL

algorithms means that the designer can never entirely exclude safety concerns.

2.2.4.3 Transfer Learning

It is common when applying machine learning to real-life problems that the training data is

limited. As a result, methods have been developed to adjust the training so that the algorithm

trained on one set of data can perform well on another. The common term for such methods

is transfer learning. Weiss, Koshgoftaar and Wang, the authors of a recent review of transfer

learning techniques give a real-life example of two people trying to learn piano [77]. One has

no musical experience, while the other is an expert guitar player. It is reasonable that the

musically experienced trainee would learn significantly easier, i.e., require fewer training

examples. The goal of transfer learning is to apply this principle to ML algorithms. In practical

terms, it is based on training the algorithm on abundant out-of-distribution data and following

it with a shift to in-distribution data. The task is easier if the target distribution and the original

training distributions are similar. Object recognition algorithms can be trained on general

photo datasets, such as ImageNet, for example. The problem arises when distributions are

disparate, i.e., trying to apply a cat-detecting algorithm to the detection of defect indications

in guided wave testing.

The common process for the practical implementation of transfer learning can be summarised

as follows:

85

1. Take a previously trained deep learning model.

2. Freeze the trainable parameters, so the knowledge learnt is not lost in the subsequent

training.

3. Add new layers on top of the existing model, which are meant to learn the target

dataset distribution.

4. Train the new model on the target dataset.

5. Unfreeze all of the layers, change the learning rate so it is very small.

6. Train the whole model on the target dataset – this is known as fine tuning.

Note that points 5 and 6 are not always implemented, and fine tuning needs to be applied

very carefully, as it can lead to the model “forgetting” the baseline information gained in pre-

training.

2.2.4.4 Explainability and Fairness

The final modern direction of research in machine learning are the topics on the intersection

of the technical challenge and an ethical concern, explainability and fairness. The

explainability of a machine learning algorithm refers to the user’s ability to determine why

the output of the model is what it is, while the fairness refers to the equity of the outcomes

of the model regardless of the characteristics of an individual or a group.

2.2.4.4.1 Explainability

AI models, especially deep neural architecture suffer from being black boxes. While in theory

it is possible to trace how the input data impacts the activations of neurons step by step, in

practice modern ML architectures have the numbers of parameters making such an approach

impractical. Simultaneously many domains, especially the safety critical ones, like medicine,

require the access to the decision-making process. An explainable machine learning model

builds trust in the users, and it also allows for a more transparent distribution of responsibility.

Finally, the regulations on the usage of automated decision systems often require the ability

to explain the decisions.

The explainability can be introduced into the machine learning model by a range of methods.

First, the model can be designed as explainable. This is usually done by the selection of a

human-readable architecture, such as decision trees. The downside of this approach is the

fact that such architectures are typically less powerful than unexplainable deep learning

architectures. The second approach involves the utilisation of so-called post-hoc

86

explainability methods. Those include the training of surrogate models – models with

explainable architectures trained to mimic the predictions of unexplainable models, and using

techniques such as LIME (Local Interpretable Model-agnostic Explanations) [78] or SHAP

(Shapley Additive exPlanations) [79]. Finally, the third approach is using the AI-human

collaboration, where an AI algorithm makes a recommendation or guides the human

decisionmaker, who has the ability to override and provide feedback to the algorithm.

2.2.4.4.2 Fairness

While the author does not expect AI fairness concerns to have any bearing on the research

presented in this work, it should be considered by every AI practitioner, thus this brief

discussion is included for the benefit of the reader.

Fairness in AI is generally the pursuit of equitable results for the user no matter their personal

characteristics. The lack of fairness in AI has two main reasons. First, the developers of AI hail

mostly from developed countries and affluent backgrounds, second the existing datasets are

mostly gathered in so called WEIRD (Western, Educated, Industrialised, Rich, Democratic)

countries, making any model trained on such datasets naturally inclined to follow cultural

biases of the data source. The dangers of unfair AI range from the ethical, that one should not

strive to amplify inequalities to tangible legal and economic risks, as making decisions biased

against protected characteristics can lead to legal challenges, fines by the regulators or

reputational damage and public backlash.

AI fairness is a complex issue to tackle, as it is less of a technical issue and more of a systemic

problem. However, recently there have been efforts to remove those biases. First, the

developers must pay attention to the datasets they are using and be aware of the potential

bias issues in the resultant models. Secondly, if the datasets available are biased and their

utilisation is necessary, techniques such as resampling and adversarial training [80] can be

utilised to remove some of the bias from the datasets. Furthermore, there exists a significant

research push towards the creation of algorithms aware of bias and designed to reduce it

[81]. Finally, any ML algorithm that has been identified to possibly cause fairness concerns

should be periodically audited and remedial action must be taken if it is discovered to exhibit

bias.

Taken together, AI explainability and fairness are two of the most important pillars upon

which ML community must build their algorithms if they are to be considered transparent and

87

trustworthy. These values must be a part of ML development especially in fields such as NDT,

where the safety concerns and the regulatory overhang demand the confidence in the

algorithms and responsibility for their decisions.

3 Data Processing and Considerations

This chapter introduces the data used throughout the rest of the thesis. This is crucial to

consider, as it is widely accepted that the quality and the processing of the data is a

prerequisite for training a well-performing ML model. The chapter is split into two sections

covering the sources of the data – the experimental data received from Guided Ultrasonics

Ltd., and the simulated data generated using finite element modelling. The machine learning

models under research use two input modalities, the raw A-scans and images processed

similarly to Guided Ultrasonics’ processing method. An A-scan is a recording of the amplitude

of the ultrasonic signal received plotted against the time of reception. This chapter explores

each input-output data pathway. Furthermore, it explores the problems with the data

acquisition and processing procedures which need to be overcome for the further

development of machine learning approaches to guided wave testing. Finally, the resultant

dataset compositions are presented.

3.1 Size of Datasets

This section provides the reference for the size of the datasets, whose characteristics are

introduced later in the chapter and is meant as a reference for understanding the ML

development further in the thesis.

Table 1. Dataset sizes and compositions.

Dataset Name Sample No Comments

Simulated Pristine 6000 N/A

Simulated Defect 6000 N/A

Simulated Weld 6000 N/A

Experimental Image Defect 32 Augmented to 160

Experimental Image Pristine 150 Augmented to 750

Experimental A-Scan Defect 58 Augmented to 406

Experimental A-Scan Feature 634 293 welds, 164 supports, 58 defects, 41
bends, 36 flanges, 28 reverberations, 4
entrances into earth, 10 unknown.

Experimental A-Scan Pristine 1800 N/A

88

Table 1 presents the various datasets generated for the purposes of this project. The data

presented makes clear the difference between the sizes of simulated and real datasets. The

difference is especially pronounced when considering the defect datasets. That difference is

the motivating force behind much of the training and machine learning process design

described in this work. Most of the datasets are independent of each other, but the

experimental A-scan defect dataset is a subset of experimental A-scan feature dataset. The

differentiation between the two is introduced, as they are used in two independent ML

approaches.

3.2 Data Characteristics

This section deals with the input side of the data used in this project. On the side of the real

data, it introduces the format of the raw datasets, the numbers available and the algorithms

used for extracting the useful parts of the file. On the simulated side it introduces the settings

and parameters used for running the simulations. Finally, it deals with the first stage output

– raw numerical data, which can be used as an input in further, specialised data processing.

3.2.1 Real Data

The real data has been provided by Guided Ultrasonics Ltd. Every file is available in two

formats – the first is the standard export from WavePro software, coming as an XLSX

spreadsheet containing some of the metadata and the inspection results, while the second is

a full representation of the inspection file in a JSON file. It contains significantly more

information pertaining to the direct outputs of transducers and the richest metadata

available. Due to the significant difference between the two formats, they are treated

separately.

3.2.1.1 Amount of Data

The most important quality when considering any data source as training data for machine

learning is its abundance. This is especially pertinent in the context of non-destructive testing,

as the defective real data is notoriously scarce. The data gathered consisted of files collected

over 55 inspections performed between the years of 2005 and 2012 on pipe diameters

ranging from 4 to 36 inches. The inspection range is varied between 2 and 60 metres and most

inspections were performed in the two-directional mode, effectively resulting in two data

samples for each inspection file. The inspections were performed by a qualified inspector who

89

also flagged the features of interest and set the DAC curve. The frequencies used varied

between the inspections, but all are in the 14-60 kHz range, with each inspection conducted

at 5 different frequencies.

It is crucial that the data is proven representative of the general inspection problems. To that

end the range of features present in the dataset was investigated, based on the reports

prepared by the inspectors on site. The set was found to contain 292 welds, 164 supports, 58

defects, 41 bends, 36 flanges, 28 reverberations (false echoes) and 4 entrances into earth. It

also contains 10 signal signatures that the inspector was unable to identify.

3.2.1.2 Processed Export

The first format utilised in this work is the processed export format. It is generated by using

the export function in WavePro software. This work uses a ‘superuser’ version of the export,

thanks to the collaboration from GUL. The standard export provides only the metadata and

the graphs generated in the software. Depending on the settings in the software at the time

of export, it is either traces of the envelopes of T(0, 1) and F(1, 2), the synthetically focused

unrolled pipe display or both. Importantly, the standard-user export format does not provide

the numeric data. The export used in this work contains significantly richer data in the format

introduced further.

3.2.1.2.1 Anatomy

The processed export file is an XLSX spreadsheet. It is split into two sections – the metadata

and information in the first rows followed by the numerical data corresponding to the data

registered by the inspections.

The metadata section is split into three subsections. The first is the header containing the

information about the inspection and the file: the type of export, version of the software used

for exporting, and Row Offset – the size of the metadata section, allowing for the relatively

easy access to the numerical data. The second contains the information about the inspection

and the file: file name, notes added by the inspector, coded type of the ring used, location of

the inspection, inspection ID, date and time of the inspection and time of the export. The third

section of the metadata and the one extensively used for the research is the list of features

marked by the inspector, containing the type of feature, location, length, size (in mV

transducer output amplitude) and any comments the inspector has made. Two separate lists

exist, one for the forward direction of the inspection and one for the backward direction.

90

The data section is split into two sections, the forward inspection, and the backward

inspection. Each of the sections contains columns with the following data: Distance, T(0, 1)

amplitude of the RF signal, T(0, 1) amplitude of the envelope, F(1, 2) amplitude of the RF

signal, F(1, 2) amplitude of the envelope. In some of the files there are additional columns

containing the horizontal and vertical polarisations of the F(1, 2) mode. After the data there

are columns containing a set of operator-set curves: Noise level, Call level, Weld DAC, Flange

DAC, and Decay. The latter corresponds to the change in the DAC level between the points.

This information can be used to distinguish between uniform condition pipes and locally

corroded or buried pipes. Following the full set of columns for the forward inspection an

identical set of columns for backward inspection is present.

3.2.1.2.2 Export Routine

As the file is a mixture between metadata used to inform the extraction process and the data

to be extracted, the extraction process is fairly involved. It is therefore split into two

extraction scripts, one which extracts the raw numerical data for forward and backward

directions separately and one which processes the parts of data to be used for ML. This

separation allows for a more flexible approach (i.e., extracting only defect indications, only

welds, all features, changing the length of the data sample etc.). This text aims to describe

the process step by step.

Extraction Routine:

1. Load the spreadsheet, separating it into text and numeric data using built-in MATLAB

functions.

2. Search the text variable for column headers corresponding to relevant data: T(0, 1)

and F(1, 2) envelope and RF, DAC curve and distance column, relating the exported

data to real world. Adjust the column numbers by -1, as the data import is narrower

than text by one column.

3. As the export file is not standardised and sometimes the forward and backward

direction are reversed, ensure the order is correct.

4. As DAC curve exists only for the length of the inspection, reject the data points for

which there is no corresponding value of DAC curve.

5. Extract the remaining data into 8 variables T(0, 1)/F(1, 2), envelope/RF,

forward/backward.

91

6. Normalise the data between -1 and 1.

7. Save the backward and forward data in separate raw numeric files, with the

corresponding distance vector.

Point 6 in the extraction routine is controversial, as it removes the information stored in the

DAC curve, i.e. the normalised relative strength of the signal in the trace. This is done to

produce the data in line with what would be available to the automated system at inspection

time. As the DAC curves are currently set by the operators and the ambition of the system is

to operate independently, any information injected by human is rejected. This makes the

problem more difficult, but ensures better generalisation, as DAC information can be re-

injected at any stage.

Furthermore, this approach departs quite far from what a human inspector is doing – the ML

algorithm is forced to look at sections of the trace in separation from each other, while a

human operator would follow a strict protocol, taking into consideration the context, setting

the DAC curves and using the relative indications of features to classify them. Following such

approach and designing a multi-agent ML pipeline is a promising research direction, which

should be explored as part of future work.

Export routine, based on the extracted file:

1. Load the metadata from the corresponding original file.

2. Find the cell ranges containing lists of features of interest – separately for forward and

backward.

3. Filter the cell ranges for the relevant data: feature type, location, optionally severity

(for defect indications).

4. Filter the cell ranges for the type(s) of features of interest.

5. Do the following for both forward and backward filtered feature lists:

a. Save the name of feature and the file name as a unique identifier.

b. Use the location of the feature to extract part of the data traces containing the

feature.

c. Save the extracted window under the label clearly identifying the feature.

d. Repeat for all remaining features on the list.

e. Save the ID - data trace pairs as a dataset for the ease of traceability.

92

3.2.1.3 Raw Export

The second format of the file export is a raw file containing all the available data about the

exporting process, the inspection, and the data registered by the individual channels. The

downside of this format is that there is no processing performed on the data prior to the

export. As guided wave raw inspection data typically contains significant noise, much research

has been conducted to transform the raw data into useful knowledge. Furthermore, as the

data in this format is not intended for dissemination, the format has not been designed for

the ease of use, adding to the complexity of the extraction process.

3.2.1.3.1 Anatomy

This form of export is a JSON file. As such, it is a hierarchical structure, which contains

metadata at each level as well containers of lower-level data. Due to the richness of data

available in the file, this section focuses on the sections of the file relevant to the export

routine, affording a cursory overview of the rest of the file.

The first level of the file contains the information about the exporting time and procedure as

well as Header and SampleSet containers. The former contains the inspection metadata while

the latter contains the readings of each channel.

The header contains information on the inspection ranging from the time and the location to

the owner of the asset under inspection and inspector notes to calibration results and DACs.

From the perspective of this work, there are two important sections of the header. The first

is the Amplitude Balance array variable, corresponding to the relative sensitivities of each

channel. This value can be used to normalise the channel results to a common baseline.

Additionally, the number of elements in this array can be used to find the number of channels

in the ring used during the inspection. The second important section is the data relating to

the DAC available in the DACSurface container. The DAC is set manually by the inspector, with

the curve fitted to the points selected. As such, it does not necessarily follow any analytical

curve. For the purposes of the export, though, it is approximated by an exponentially decay

dependent on the distance from the position of the transducers and the frequency of the

inspection. The formula used for the DAC approximation is:

𝐷𝐴𝐶 = 𝑎𝑒𝑏𝑥+𝑐𝑓+𝑑𝑓𝑥 (64)

where 𝑎, 𝑏, 𝑐, and 𝑑 are constants set in the file, 𝑓 is the frequency of the inspection in Hz and

𝑥 is the distance from the transducer in meters. Clearly for the curve to be decaying with

93

distance, the 𝑏 + 𝑑𝑓 component needs to be negative. Furthermore, attenuation increases

with the frequency, making 𝑑 negative. Typically, distance is the overwhelmingly most

impactful variable when calculating the decay, therefore it is expected that 𝑏 is negative. Due

to the experimental nature of the exporting process, the sign is sometimes flipped, which

needs to be remedied in processing to recreate the intended DAC.

SampleSet contains all the data registered by the transducers. Structurally it is an n-element

cell array, where n is the number of times any transducer receives and writes data. The cell

can further be split into two functional sections – the calibration traces and the inspection

traces. Only the inspection traces are considered in this work. Each of the traces within

SampleSet is coupled with its own metadata referring to the specific trace. Most importantly,

it includes the size of the dead zone (number of points removed from the beginning of the

trace, corresponding to the area so close to the transducers that the excitation interferes with

the reception), the frequency at which the inspection took place and the codes for the

transmitting and the receiving transducers. The latter information is especially crucial, as the

traces are not recorded in order, thus requiring processing to transform them into standard

FMC format. Apart from the information used in this work the metadata also contains the

information about the excitation type, the balancing values on transmission and reception,

filtering and sampling rate. Finally, it contains Data variable, holding the raw numeric values

for the inspection.

3.2.1.3.2 Export Routine

The main issue when extracting the data from the raw export files is the sheer quantity

present in each of the files. At maximum, a single file contains the inspection data collected

at 8 channels in each of two rows and five frequencies (considering the reciprocity) coming

to a total of 5 ∗ (162 + 16) ∗
1

2
= 680 traces, with the added calibration traces. Secondly, the

format is not standardised, therefore the export routine must be robust to single vs. double

directional inspection, variations in the number of channels and calibration traces or even the

presence or lack of presence of a frequency information sample between inspections at

different frequencies. As opposed to the processed export format, this export is done in a

single step, simply saving forward and backward directions separately.

1. Load the JSON file.

2. Find the number of channels based on the number of amplitude balance values.

94

3. Check if the file corresponds to a two-directional inspection or a one directional

inspection:

To determine this, compare the amplitude balance values number to highest channel number

in the dataset. If the number is equal, the inspection is one sided, if it is half, it is two sided.

That is caused by the channel naming convention, for one sided it is A0:An, for two sided it is

A0:An/2, B0:Bn/2.

4. If the inspection is two-sided, adjust the channel number to the channel number in

one ring.

5. Check the number of unique frequency values in the SampleSet.

6. Calculate the number of data traces recorded for each centre frequency:

The data is recorded for each channel pair, plus the traces corresponding to a single channel

acting both as a transmitter and as a receiver. As such, the number of data traces per

frequency is (𝑛2 + 𝑛)/2 where n is the number of the channels.

7. Most of the files contain samples providing no inspection data but serving simply as

frequency information. Find those samples and save their numbers. Revert to an

alternate script compensating for the different data structure if these samples are not

present. Divide the samples into separate frequencies and do the following for each

frequency.

8. Create a time vector using the metadata.

9. Create a set of indexes within a single frequency test corresponding to the direction

of the inspection under consideration.

If the data is single directional the indexes are simply 1:nTraces. The situation is more complex

for the two-directional inspections, as it is necessary to separate the directions from each

other. This is achieved using the algorithm gradually building the index vector based on the

number of channels.

10. Use the indexes generated to separate the data traces generated on ring A and

received on ring A, generated on ring B and received on ring B and generated on ring

B and received on ring A.

The data export format results in a peculiar ordering scheme. For an exemplary 8-channel,

single direction ring for each channel the order of traces is as follows:

A1 -> A1, A3, A5, A7, A2, A4, A6, A8

95

This is further complicated in the two-directional scenario, but the index generation algorithm

separates these data sources. The general ordering scheme is: first all the odd-numbered

channels, then all the even-numbered channels. Within each category, sort in ascending

order, as the typical FMC-style data uses channels ordered sequentially.

11. Remap the traces to FMC convention.

12. Implement any filtering on the FMC traces, typically a bandpass filter with a passband

between 10 kHz and 100 kHz.

13. Sum the matrices up over the transmitters, thus receiving a CSM-type data, which can

be used in the CSM imaging process described in the previous chapter.

14. Save each of the matrices, A→A, B→B, and B→A separately including the DAC

information, pipe schedule and identifier linking it to the original file. The metadata

saved is necessary for the purposes of the imaging algorithm implementation.

3.2.2 Simulated Data

The real data supplied by GUL constitutes an invaluable trove of information, allowing for the

testing of a machine learning algorithm. Depending on the choice of the data sample length,

the number of pristine examples available to gather from the data is very large; the issue is,

however, the availability of data containing features (only 634 of them in the dataset). The

problem is even more acute if the algorithm is to focus on the specific type of a feature, such

as a defect indication, of which there are 58. While the dataset of 634 features, made more

valuable by their acquisition in a service environment, may seem large in the context of NDT,

it pales in comparison to even most rudimentary datasets used for general-purpose machine

learning. In 2013 Kaggle, a data science community, ran a competition in designing a machine

learning algorithm that would tell cats from dogs [82]. The organisers provided the

participants with a training dataset containing 25000 images, balanced between cats and

dogs, i.e., 12500 of each species. The difference of two orders of magnitude between the

number of features in the experimental dataset and the number of cats, or three orders of

magnitude, if just defect indications are to be considered points to the need of acquiring

significantly more training data. One method is the augmentation of the data by flipping,

shifting, or cropping the training data, but there are limits to the method and the resulting

algorithm must be carefully tested for overfitting. To use the dataset size in the order of

96

magnitude of more common ML approaches it has been decided that finite element

simulations would be used to augment the real dataset.

The further advantage of simulations is their perfect controllability, thus allowing for quickly

generating a simple dataset that can be used to test a proof-of-concept machine learning

algorithm.

3.2.2.1 Simulation Parameters and Process

The object to be simulated is a pipe – a hollow cylinder. This basic geometry is to be modified

by features of interest, selected from the range present in the real data. Once the geometry

exists, a torsional displacement wave is to be generated from a set of elements on the surface

of the pipe at a single axial location and displacements are to be recorded at the same

elements.

The real inspections have the rough range between 10 m (for extremely attenuative

conditions) and 50 m (for a pipe in good conditions). The inspection is also typically performed

in two directions. As is clear from the analysis of the raw export data, the inspection is

performed by firing each channel in turn and recording the resultant echoes.

These conditions can be simulated faithfully, but they result in a simulation of a significant

size, and require multiple simulations to mimic a single inspection, thus limiting the number

of simulations that can be completed in each timeframe using limited computational

resources. As a result, a set of simplifications is implemented:

1. Limiting the size of the simulated pipe: the computational complexity, and therefore

the time of the execution of the simulation, is proportional to the size of the pipeline,

as each element state needs to be calculated at each time step. Furthermore, the time

of the simulation needs to be increased too as it would take longer for the probing

wave to travel to the end of the inspection range and back. In the real inspection, the

distance of propagation is directly linked to the attenuation of the wave and thus the

signal to noise ratio. The simulations do not show the attenuative behaviour and the

noise is injected artificially, thus the inclusion of the distance does not impact the

accuracy of simulations. On the other hand, the simulation of a 5 m long pipe instead

of a 50 m long one allows for around a hundredfold time saving based on the 10-fold

increase in the number of elements and same increase in the number of time steps.

97

2. Simulating a unidirectional inspection instead of bidirectional. Similarly, to the

previous point, it is more computationally efficient to simulate two half-length pipes

than a full-length pipe. As the direction separation is implemented in the real data and

it is known to perform well enough that reverberations are an issue only for the

strongest features, running a unidirectional simulation is a simple way to achieve

around a two-times time saving (assuming doubling the length of the pipe).

3. Using a plane probing wave instead of individual excitation of the channels. In the real-

world inspection every channel is excited separately, allowing for the collection of full

matrix data and potential complex processing. This is enabled by the relatively short

time of a single inspection, defined by the wave travel time. Assuming a rough shear

wave speed of 3200 m/s and a two-way propagation path of 100 m, the single channel

excitation and reception takes about 0.03 seconds. For 16 channels the raw

transmission-reception time would come to 0.48 s. Even accounting for the time

needed for the reverberations to settle, the difference between a single channel and

16 is not a crucial consideration. Conversely, for simulated inspections every channel

firing requires a full run of the simulation, thus limiting the run to a plane wave

shortens the simulation eightfold. The downside is the loss of the potential to perform

full-matrix techniques, such as total focusing method. However, as has been

mentioned in the previous chapter, CSM is a preferred method of synthetic focusing

method in guided wave testing.

Considering all the efficiency savings, the simulated pipe is a 5 m long pipe with a transducer

ring located 1 m away from one of the ends. The end reflections are minimised by utilising

absorbing boundaries with the length of 0.5 m on either side. The pipe wall thickness is 8 mm,

and the pipe external diameter is 8 inches. The material of the pipe is steel, with Young’s

modulus of 210 GPa, shear modulus of 80 GPa and density of 8000 kg/m3. Given those

material properties the probing shear wave speed in the pipe is 3162.3 m/s, while the

maximum wave speed, corresponding to the longitudinal wave, is 6055.3 m/s. To ensure full

coverage of the simulated portion of pipe, the time of the simulated inspection is set to

0.0285 s, corresponding to the propagation distance of 45 m, providing more than 4-fold

margin.

98

These physical considerations are implemented into the FEM solver using 8-noded brick

elements with a single integration point. The dimension of the element (identical in all

directions) is 2.67 mm. The number has been selected so the thickness of the pipe wall is

exactly 3 elements, limiting the noise caused by rounding errors. This element size results in

240 elements around the circumference of the pipe. The total number of elements in a model

is 8089920. The time step of the model is a direct consequence of the selected element size,

as it must be smaller than the time taken for the fastest wave (bulk longitudinal wave) to

propagate across the smallest element in the system. The Courant number selected for the

set of simulations is 0.3, resulting in the time step of 0.132 s.

This model undergoes a force excitation at the distance of 1 m from the end of the model.

The shear circumferential force is excited at 24 nodes (10% of circumference), joined in the

groups of 3 to mimic GUL’s rings. The direction of the excitation is calculated based on the

angular position of the node. The excitation directions are saved using the Pogo dofGroup

functionality, allowing for easy reimplementation of the same direction on reception,

resulting in the direct output of torsional displacement.

Figure 40. Location of the transducer on the surface of the pipe at the angular position of.

Pogo requires the excitation (or reception) directions to be expressed in the cartesian

coordinates. As the intended direction is circumferential, the axial component is always zero.

For an example transducer presented in Figure 40 the horizontal and vertical excitation

directions are calculated as follows:

𝑓(𝑥) = −sin(𝜃)𝐹, 𝑓(𝑦) = cos(𝜃)𝐹 (65)

where 𝑓(𝑥) is the horizontal displacement, 𝑓(𝑦) is the vertical displacement and 𝐹 is the

intended tangential force.

99

The excitation shape is a 5-cycled Hann-windowed wavepacket. Every simulation is run at 5

different frequencies of 17, 21, 25.5, 31 and 35 kHz. These are selected to mimic the

frequency range and excitation type most commonly used in the real-life inspections.

Pristine pipe simulations can be used to enhance the negative dataset, but the more pertinent

issue is the augmentation of the positive dataset. As such, it is necessary to add features into

the simulation. The simulations use two types of features – an axisymmetric, large weld-type

feature and a non-axisymmetric small defect-type feature. A weld-type feature is simulated

using element stretching approach – locally changing the size of the elements to create the

target geometry. The simulated weld has the parameters of location, axial extent, and height

of the cap. Mathematically, it is simulated as a quadratic function with the maximum of the

height of the cap at the axial location and roots at positive and negative half-extent. The

graphical representation of the parameters of the simulated weld is presented in Figure 41.

Both the axial extent and the height of the cap are randomised, the former in the range of 20-

40 mm and the latter in the range of 1.6-4.8 mm. The resulting model is axially symmetric.

Figure 41. Geometry of a simulated weld (red) on a pipe (blue). The height of the cap is marked as h, and the axial span is
marked as d.

The defect is simulated as a small through thickness circumferential crack. In the simulation

it is achieved by disjoining adjacent elements, effectively creating a zero-length crack. While

this type of a defect is not realistic, the size of the reflection is influenced solely by the change

in cross-sectional area percentage. With the defect generated as a through-thickness crack

this variable is easily controlled, as the change in cross sectional area percentage is the same

as the span of the crack expressed as the percentage of the circumference. During the

100

simulation defects of CSC between 3 and 18% were simulated. Real defects are typically

corrosion-related; therefore, they have spans in all three dimensions. In the course of the

project the simulated defects are simplified to zero-length change in CSC as the detection

resolution of the wave is limited by the wavelength. For T(0, 1) wave in steel at the frequency

of 31 kHz, the wavelength is around 10 cm. While the dimensions of the feature impact the

reflected wave, the effect is to be very small in the context of this project, motivating the

move to a simpler and easier to control model.

3.2.2.2 Anatomy

The output of the simulations is easily controlled and depending on the intended use case

two versions are used. Generally, the output format is a POGO-HIST file, a structured format

containing, at the first level, the data about the simulation: time step, length of simulation

and the data trace. Furthermore, the user can include self-defined metadata which is defined

in the input file and maintained in all outputs once the model has been run. In this work it is

used to store information such as the locations and sizes of defects and welds, the length of

the pipe, the location of the ring, length, and presence of absorbing boundaries as well as any

information that could be useful at the stage of data processing or analysis. This richness of

the data contained in POGO-HIST provides full traceability of simulations. Both the simulation

data and the metadata are used in the output data format regardless of the simulation output

data.

The first output form, exporting essentially raw data uses the dofGroup described in the

previous section to read the tangential displacement of the nodes corresponding to each of

the transducers individually. This output format corresponds to the unprocessed output of

piezoelectric transducers used in torsional shear configuration. The output format is

therefore a matrix of (nTransducers, nSamples) size.

The second output format implements the basic data processing within Pogo. dofGroups

functionality can be used to directly calculate the mode amplitudes. This is since mode

amplitudes are simply transducer readings weighted by the mode shape. For T(0, 1) the mode

shape is a constant, thus the mode amplitude is simply a summation of all transducer

readings. For flexural modes, the weights correspond to the mode shape, which is a sinusoid

with the number of periods around the circumference equal to mode circumferential order

(F(1, 2) is one, F(2, 2), two etc.). Due to the Nyquist’s criterion, the maximum order of the

101

mode that can be extracted is half of the number of transducers. In practical terms, if higher

order flexural modes are required, this work uses the spatial Fourier transform method to

apply mode extraction in post-processing. Considering that, this output format has the shape

of (nModes, nSamples), where nModes is typically 1 or 2.

3.2.3 Common Output Formats

As a final note on data characteristics, to homogenise the processing between the real and

simulated data, it is necessary to introduce the common data formats. It is possible to draw

the parallels at this point. The Processed Export GUL format provides the T(0, 1) and F(1, 2),

which corresponds directly to the simulation output, where dofGroups are used to extract

the first two modes. Similarly, the Raw JSON export output format is effectively a CSM output

– a record of the tangential displacement of each transducer. This format is the same as the

first, unprocessed version of the simulations.

The two data formats can be separated at this point, as they are used for separate approaches

– the T(0, 1) and F(1, 2) can be used directly as inputs to the machine learning algorithm. The

higher order modes, which can be extracted from CSM data can be used for imaging the pipe.

For each of the approaches, the processing is vastly different, thus much of the subsequent

work is split between the two.

3.3 Data Processing

The raw data extracted from either the simulations or the inspection records requires

processing. The exact type and amount of processing required is dependent on the source

and the intended use of the data. Clearly, the processed inspection data requires less input

than the raw data. Furthermore, the simulated and real data require different processing due

to the differing desired results; generally speaking, the inspection data is noisy and difficult

to interpret. As a result, it is standard to filter it, so the features are easier for the inspector

to identify. Conversely, if a simulation is well set up, there are no sources of noise present. As

a result, any non-zero signal is certain to come from a feature of interest. A detection task on

such data is trivial, thus making it an extremely low-value training set for ML. Hence, the goal

of processing the simulated data is to make it less clean, ideally injecting the noise to the level

of a processed real data.

102

3.3.1 Lower-Order Modes Data

The lower order modes data is significantly simpler to process than the full data. That is mostly

caused by the pre-processing of the inspection export which uses a finely-honed GUL process.

As such, the main processing methods are matching the amplitudes and injecting the noise

into the simulations.

3.3.1.1 Attenuation Compensation

The primary difference between the real and simulated datasets is the lack of attenuation in

the simulations. Fortunately, this issue is easily remedied by the application of DACs to the

real data. As DAC is a curve that tracks the received amplitude of a reference reflector as a

function of distance, it is enough to pointwise divide the mode amplitudes by DAC to correct

the signals.

𝑇(0, 1)𝑛𝑜𝑟𝑚(𝑥) =
𝑇(0,1)(𝑥)

𝐷𝐴𝐶(𝑥)
, 𝐹(1, 2)𝑛𝑜𝑟𝑚(𝑥) =

𝐹(1, 2)(𝑥)

𝐷𝐴𝐶(𝑥)
(66)

3.3.1.2 Noise Injection

The second main difference between the real and the simulated data is the noiselessness of

the simulations. There are many strategies for injecting the noise into the data either at the

stage of the simulation or in postprocessing. Crucially, it is important for the injected noise to

have the same characteristics as the noise in the real data, meaning a mixture of coherent

and incoherent noise. Coherent noise is the noise inherent in the inspection process. Its

amplitude is connected to the signal amplitude and falls with attenuation. It is typically caused

by the physical conditions of the pipe, and the lack of balance in the transducers which could,

for example, cause additional modes to be generated and measured in the signals.

Importantly, it is impossible to remove it by averaging. Incoherent noise is typically caused by

the electronic interference. It is generally easy to add, as it can simply be considered a band-

limited white noise. The coherent noise though requires a more involved approach.

This work uses the procedure described by Mariani, Heinlein and Cawley [83]. The approach

is based on unbalancing of the transducers. The amplitude of each transducer is scaled by a

value between 0.5 and 1.5. The same values are used on reception. This approach adds

coherent noise, mimicking the issue in the inspection record.

103

Figure 42. Balanced transducer amplitude multiplication factors (Case 1) and two possible unbalancing factors which can
result from the method used in this work (Cases 2 and 3). Reproduced from [83].

3.3.2 Imaging

The data processing for imaging is primarily focused on the experimental data and designed

to remove the noise from the signal. Compared to lower-order data, synthetically focused

data is significantly more noise-prone, due to both the higher complexity of processing

involved, calling for many assumptions (such as constant wave speed used for

backpropagation, which in fact can change with factors such as temperature) and the fact

that the experimental data used for imaging is only processed with a bandpass filter.

Consequently, efforts are made to match the experimental data points’ characteristics to

those of the processed data. Most importantly, the lower-order data export format is split

into forward and backward directions. For raw export this processing needs to be

implemented.

3.3.2.1 Direction Control

Direction control is a crucial processing method. While the previous chapter introduced the

mathematical and physical basis for the direction control, this section provides the practical

rationale for its utilisation.

104

Figure 43. Pipe under bidirectional guided wave test. Two features (in red) are present, a weld separated from the inspection
location (in black) by distance x and a defect separated by the distance y.

Consider a pipe under inspection as depicted in Figure 43. The features present on two sides

of the transducer ring are separated from the ring by very similar distances. As such, with no

direction control applied, the image resulting from the inspection is presented on the left in

Figure 44. With the features located so close to each other, their separation and identification

is made significantly harder.

Figure 44. Image from the inspection of pipe presented in Figure 43 with no direction control implemented (left), compared
to the image with direction control implemented (right).

Thus, the direction control is important to the data processing for the purposes of machine

learning in two ways. First, it ensures there is no overlapping between two features existing

in different directions improving the quality on the sample basis. Second, it makes more data

available for creating negative (no feature) datasets. Assume drawing the negative samples

from the images presented in Figure 44. The pristine span of the pipe before the features is

effectively doubled by separating the directions.

105

3.3.2.2 T(0, 1) Weighting

After the directions of the signal are separated and the image is generated using the CSM

approach described, an extra step is taken to improve the signal to noise ratio by weighting

the amplitude of the image by a factor proportional to the T(0, 1) amplitude at the same axial

distance.

The rationale behind the processing is:

1. T(0, 1) signal is less vulnerable to noise, as it is typically the highest amplitude of all

the modes, and it can be extracted with minimal processing involved by summing up

the circumferential displacements of all transducers.

2. T(0, 1) amplitude as a percentage of full reflection at axial location 𝑥 corresponds

directly to the change in cross-sectional area (pipe wall thickness loss) at that location.

3. The focused image of the pipe should be the map of the thickness change.

4. Thus, T(0, 1) amplitude at a location 𝑥 is proportional to the sum of amplitudes of

pixels in the image at the corresponding location.

Effectively, to perform this processing, the envelope of T(0, 1) signal is normalised between 0

and 1 within the inspection range. Assuming the image is a 2-D matrix 𝐼 of [𝑥𝑛, 𝑦𝑛] shape,

while the T(0, 1) trace is a vector of 𝑥𝑛, length, the normalisation values are calculated as:

𝑛𝑜𝑟𝑚(𝑥) =
𝑇(0,1)(𝑥)

∑ 𝐼(𝑥, 𝑦)𝑦𝑛
𝑦=0

(67)

The resulting vector has the length of 𝑥𝑛, therefore the normalisation can be applied to the

image by element-wise multiplying the vector by the image.

3.4 Data Issues

The introduction to the data used in this work is not complete without discussing the

problems and limitations of the datasets, either the ones generated from FE or the

experimental ones.

3.4.1 Real Data

The main limitation of the real dataset is the low amount of the data available. This is not,

however, the focus of this section, which instead deals with the qualitative limitations of the

data. These are typically not linked to the quality of the data itself, the noisiness or

mislabelling, which are a common issue associated with public datasets, but the lack of

standardisation and the processing methods hidden due to commercial interests.

106

3.4.1.1 Complex and Proprietary Processing

Unequivocally, the best data available for guided wave inspection are the GUL unrolled pipe

displays. They are commonly the main tool used by the inspectors to localise and identify the

feature of interest. While the imaging algorithms in their raw research form are available, the

implementation leading to the best-in-class results is a result of a long and involved R&D

process. Such a processing algorithm is obviously commercially valuable and thus it cannot be

released outside of the company. The consequence is that every researcher working on ML

for Guided Wave NDT and wishing to use images as the input data (which is the first instinct

for much of the ML community) is bound to either develop their own imaging routine or use

the one available to them. This, in turn, necessarily leads to the immense difficulty in

comparing the quality of ML approaches between researchers, as any difference in the quality

may be caused by either the pre-processing of the data or by the ML itself. Ideally, this issue

would be solved by creating processing-as-a-service facility available to ML researchers, which

would ensure the equal playing field as far as the access to the data is concerned. The second-

best approach would involve creating a testing dataset, available at various levels of

processing, so that an ML approach developed by an independent researcher can be validated

against a known test.

3.4.1.2 Lack of Common Export Format

The second problem standing in the way of ML for NDT research from the side of industrial

data is the lack of the common data storage and export format. This essentially necessitates

the development of the full data pipeline matched to each source. While it has not been a

huge hinderance in this work, as a singular data source was used, it would undoubtedly impact

any attempt to create ML approaches based on data fusion or generalised across NDT

modalities. Furthermore, the lack of the common file exchange format makes the data

inherently less trustworthy, as it is not necessarily traceable. While some work is done on

establishing the common exchange format [84], the problem essentially comes down to no

organisation having strong commercial interest in making their data interoperable with

anyone else. Conversely, the proprietary nature of the data format locks the customers into

the hardware-software-training-support sales pipeline. While a similar issue has been

recognised in the medical data processing and sharing, the medical field has the size and the

public attention that forces the regulators and industry bodies to act in the interest of the

107

patients, inadvertently making the data better suited for research. Lack of such characteristics

of the NDT field coupled with the commercial organisation being the end user successfully

prevents a parallel development.

3.4.2 Simulations

Opposite to the real data, the problems with the simulations are typically not related to the

standardisation, as this can be tightly controlled using finite element software. They are,

however, typically centred around the quality of the simulations, namely the lack in the ability

to mimic certain characteristics of the real-world data. Such a category of issues may well be

solvable in research setting where a limited number of simulations needs to be produced, but

are difficult to generalise to parametric, large-scale generation, necessary for building ML

datasets. The simulations were however used extensively in this work to develop proof of

concept ML algorithms. Low performance of such models would point to their lack of ability

to generally develop the understanding of GWT data and thus disqualify them from further

research.

3.4.2.1 Simulating Complex Features

Two types of a feature are simulated in this work. The first one roughly corresponds to a

defect and the second one roughly corresponds to a weld. Those are some of the most

common features in the real dataset. The selection of welds is motivated by two factors: they

are the most prevalent feature present in the real dataset and their geometry is simple, with

the weld being a smooth and symmetrical local increase in the thickness. The defects are

selected, as their detection is the goal of NDE making their omission in the simulated set a

rather unreasonable proposition. However, looking at the composition of the real feature set,

this approach to simulations fails to account for a range of other features. The second most

common feature category are supports. Those, however, are quite a broad category, primarily

split into simple supports (pipe resting on the support), welded supports, where a pipe is

welded to the support structure and clamped supports, where screws, springs or hydraulic

mechanism is applied to couple the support to the pipe. In each of those categories a wide

range of geometries and sizes of the supports is available.

This brief description of the extensive range of the supports available elucidates the issue

with their simulation. The specific wave interaction with the support is a very complex

phenomenon, requiring an accurate modelling of the geometry of the support as well as its

108

coupling with the main pipe. As such, every support to be simulated would need to be

designed and validated by hand, making the generation of a dataset large and diverse enough

for machine learning purposes an impossibility.

The second point that needs to be made on supports is the method of identifying this type of

a feature employed by the inspectors. Supports are typically present in the guided wave

inspection trace as weak non-axisymmetric features. While not necessarily difficult to spot,

they are remarkably similar to defect signatures. The supports are distinguished from defects

by their behaviour at various frequencies – the strength of their reflection typically changes

with the changing inspection frequency. Secondly, when utilising the image view of the pipe

allowing for the localisation of the signatures, the supports are usually located at the bottom

of the pipe. The combination of the two characteristics allows the inspector to identify

supports with good confidence. In conclusion, the simulation of support geometry and

coupling is not feasible in the numbers required for machine learning, however, this could be

alleviated by designing a feature of the simulation that exhibits similar frequency dependency

and is located at the bottom of the pipe. While this has not proven necessary for this work it

is a clear direction of development, should the need arise.

3.4.2.2 Simulating Realistic Noise Sources

The real world is very complex and there is a variety of noise sources that impact the

predictive capability of the guided wave inspection. This work uses the coherent noise

injection method that provides a good approximation of the coherent noise from a relatively

clean pipe. There are, however, factors interfering with the signal that are significantly more

difficult to simulate or more localised. The common ones are highly attenuative coatings, the

environment of the pipe (i.e., it being buried or underwater), the impact of temperature

variation and general corrosion. The main feature of those noise sources to distinguish them

from the result of transducer unbalancing is their local character and potentially very high

amplitude compared to signal. These two issues have been alleviated in this work by first,

using relatively small defect indications, hence artificially depressing the SNR for defect

indications, and secondly by using short snapshots of the trace disconnected from the broader

context of the inspection, thus making every source of noise ‘global’ as far as the ML training

is concerned. The ability to simulate realistic noise sources, however, would be of immense

109

value to the future development of ML approaches to non-destructive testing, as it would

enable the joining of local and global (inspection-wide) context.

3.5 Datasets Generated

Having introduced the data sources, characteristics, processing, the issues and the solutions,

the final section of this chapter introduces the processed datasets upon which the ML

algorithm can be trained. This section also provides the examples of the data from each

dataset for the easy comparison of the simulated data to real.

3.5.1 Real Dataset

There are two real datasets generated, one is the result of extracting the raw export and

running the imaging routine based on the common source method. The images are then

manually labelled and segmented to generate the dataset. This dataset is divided only

between the defect indications (positive class) and pristine (including non-defect features).

The other dataset is generated from the processed Wavepro exports. This dataset is labelled

and segmented automatically, with all the features labelled individually and fully traceable.

3.5.1.1 Imaging

The dataset containing the synthetically focused images of the defect indications in the

experimental data has been created by first running the CSM imaging algorithm on the raw

transducer data and applying the direction control. The result, presented in Figure 45 is an

image similar to the ones typically analysed by the inspectors.

Figure 45. A Synthetically focused image of a pipe presented on a log scale with reference to the flange signal.

This image has the size of 8304 by 45 pixels. This is a very large size, which would require an

extremely long time for both training and inference of the neural network. To rectify the issue,

110

as well as to create as many training samples as possible from the limited dataset available,

the image is segmented into 128-sample long windows (corresponding roughly to 1 m of two-

way T(0, 1) wave propagation). An example of such a sample containing a defect indication is

presented in Figure 46. As the raw export file contains the data corresponding to the range of

probing frequencies, the image generated at the frequencies are joined, making the dataset

a 4-D array of shape [nImageSamples, 128, 45, nFreqs].

Figure 46. An image of a defect indication drawn from the pipe imaged in Figure 45, located at around 18.5 m axially.

The negative (pristine) samples are drawn from the data not containing any feature, which

makes them quite abundant. The significant limitation of the data is the fact that there are

only 32 positive samples available. It is important to note that there are more defect

indications available as A-scans, as the raw exports are more difficult to work with and not all

can be imaged to sufficient quality using the method described. The dataset has therefore

been augmented by random shifting of the window, resulting in 160 defect indications in the

augmented dataset (x5 augmentation).

To implement transfer learning, it is necessary to supplement the data with simulations.

Similar processing has been performed on the simulated data to that of the experimental

data. A comparison between the simulated and the real images is presented in Figure 47.

Clearly, the simulated defect indication is significantly sharper and the whole image is less

noisy, despite the efforts to inject the noise into the simulation.

111

Figure 47. The comparison between an image of a simulated defect indication (left) and a real pitting-type defect indication
(right).

3.5.1.2 A-Scan

The second version of the experimental dataset is composed of the time traces coming from

the real inspections. As discussed earlier in the chapter, the data is drawn directly from the

Wavepro export. To keep the A-scan and the image datasets comparable, the length of the

trace is set to 128 samples. Each trace corresponds directly to a single feature or a pristine

element of the trace. The features are fully traceable by retaining a unique file identifier and

a unique feature identifier within the file. As the identifiers are separate for different types of

features, it is immediately obvious upon the inspection of the dataset which features are

present, or which have been classified correctly and incorrectly.

As opposed to the images, the processed exports are performed at a single but varying

frequency, with the inspection frequency information not contained in the format. This is due

to the data exported at a single frequency being dependent on the setting in the software at

the moment of export. As such, the dataset is considered probing-frequency-agnostic. Figure

48 presents the examples of the data contained in the dataset. Each trace in the dataset is

split between the T(0, 1) mode and F(1, 2) mode. Within each of those, both RF and envelope

signals are retained. The dataset is thus of the shape [nTraces, 128, 2, 2].

112

Figure 48. The examples of data contained in the A-scans dataset. A defect indication (left) and a part of pristine trace (right).
RF trace is shown as the dotted line while envelope of the signal is traced in solid line.

The significant difference in this dataset, compared to the images, is its significantly higher

quality, both trace-wise – the traces are processed using industry-standard techniques, and

only windowed using the original algorithm, and dataset-wise – the export files are

completely usable, thus, even comparing the number of defect indications, the total is 58,

compared to the imaging positive dataset size of 32. This dataset too undergoes

augmentation by shifting the window resulting in the dataset size of 406 (x7 augmentation).

Finally, the supplementation of this dataset uses the data from the same simulations as the

imaging dataset. In this case they are not fully processed into images, instead T(0, 1) and

F(1, 2) modes are extracted. Figure 49 shows the comparison between the real and the

simulated data.

113

Figure 49. Examples of the data samples used for training the ML models. (a) Experimental pristine, (b) simulated pristine, (c)
experimental defect indication, (d) simulated defect indication, (e) experimental weld, (f) simulated weld.

3.5.2 Simulated Dataset

The real datasets are supplemented by the simulations. As the previous sections introduced

the examples from the simulated datasets as well as the detailed process for generating the

simulations, this section introduces the datasets generated, their sizes and the types of

features represented.

114

3.5.2.1 Simulated Data Range

As mentioned, the features simulated were welds and defects. At first, both types of features

were simulated in a single model, which was then segmented into the traces or images, as

required by the machine learning algorithm. However, as the need for larger datasets grew,

the process was streamlined to simulating a single feature in a simulation. This has the

advantage of simplifying the description of the feature (size, location, type etc.). Thus, the

three main datasets used are composed of the various sizes of welds, various size of defects

and pristine traces. Each of the datasets contains 6000 traces. Depending on the application

and the algorithm, the size and selection of the dataset used for the training is varied.

Furthermore, some special-use simulated datasets were generated, for example a dataset

with zero, one or two defect indications designed for the training of a conditional generative

adversarial network. Early in the project a data generation pipeline was developed allowing

for mostly hands-off generation of large number of parametric simulations. When a new

dataset was needed, only a modification of the model generation script was necessary,

followed by the time needed for the simulation. In the case of a simulation described in this

section, the single simulation is completed in around 1 minute, using a single Nvidia GeForce

RTX2080Ti GPU.

115

4 Machine Learning Design

This chapter discusses the design decisions made when building the machine learning

algorithm, from the metrics to the architectures and the training design. It builds heavily on

the theoretical background, but it also introduces some of the finer points of the selected

architectures and rationales for the specific design decisions. It introduces the novel approach

to transfer learning based on the combination of simulated and real multimodal data.

4.1 Metrics

This section introduces the metrics used for the evaluation of ML models or indeed any

decision-making processes. Subsequently, the selection of the specific metrics for the

evaluation of the models developed in this work are discussed. This decision is critical for the

success of the resulting ML model. Typically, the metrics used are specific to the class of

problems rather than to the type of an ML algorithm used, thus in this work their selection is

strongly motivated by the nature of guided wave inspection – a screening inspection expected

to take in large amounts of data and intended to identify locations for follow-up inspection in

a safety-critical environment.

4.1.1 Basic Metrics

The bases for all the following metrics are the concepts of true positives (TP), true negatives

(TN), false positives (FP) and false negatives (FN). For the following explanation, let us define

the defect indication as a sample drawn from the positive class and a pristine trace as a sample

from the negative class. The decision-making process under consideration must decide

between the two classes. As such, we can summarise the problem and possible solutions in

Table 2.

116

Table 2. Confusion matrix for a decision process between a defective and non-defective sample. The columns correspond to
different states of reality and the rows correspond to different predictions.

True Positive (TP):
Reality: The sample is defective
Prediction: A defect indication is called
Outcome: The unit under test is scheduled
for further testing, prospective maintenance
or replacement, breakdown averted

False Positive (FP):
Reality: The sample is not defective
Prediction: A defect indication is called
Outcome: The unit is unnecessarily tested,
replaced or maintained

False Negative (FN):
Reality: The sample is defective
Prediction: A defect indication is not called
Outcome: The unit suffers breakdown in
service

True Negative (TN):
Reality: The sample is not defective
Prediction: A defect indication is not called
Outcome: Normal operation continues
without interruption

Generally, the predictions can be grouped into true (correct) and false (incorrect). Every

decision algorithm aims to maximise the true predictions and minimise the false ones.

However, for most classifiers the output is a value between 0 and 1, with the decision

threshold selected by the algorithm designer or user. If the output for a given sample is above

the decision threshold, the sample is classified as positive, when below, it is negative. As such,

when the decision threshold is reduced, the algorithm is weighted towards classifying more

samples as positive (i.e., minimising false negatives while increasing false positives) with the

reverse effect when increasing the threshold. The confusion matrix (a layout similar to Table

2, containing the counts of TP, TN, FP, and FN) calculated for every possible threshold is the

full and unbiased metric of the performance of the algorithm. However, making comparisons

on the performances of different algorithms based on the full size of this matrix, i.e.

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑒𝑠)2 ∗ (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠), would be rather challenging.

Therefore, metrics summarising the confusion matrix are preferably used.

4.1.2 Accuracy

Accuracy is defined as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(68)

It is the most basic and naturally understandable metric, and it does a good job for many

tasks. Consider, however, a scenario in which the algorithm is applied to 100 samples, of

which 90 are pristine and 10 are defective. The algorithm classifies one defect indication

correctly and misses the rest of them, while being faultless on the pristine samples. Clearly

117

this is a very poor defect indication detector that misses 90% of the defect indications. In this

scenario TP = 1, TN = 90, FP = 0, FN = 9, the accuracy is therefore calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1 + 90

1 + 90 + 0 + 9
=

91

100
= 91%, (69)

giving the incorrect impression that the model performs well. The cause of that behaviour is

the imbalance between the positive and negative classes, which accuracy is very vulnerable

to. This work is concerned with such an imbalanced dataset, leading to the need for metrics

invulnerable to the problem.

4.1.3 Precision and Recall

Precision is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(70)

It is therefore a measure of how likely the positive prediction is to correspond to a positive

reality. A model that produces no false positives has the precision of 1.

Recall is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(71)

It therefore answers the question of “What proportion of positives are true positives?”.

Referring to the example presented in the description of accuracy, the metrics would be:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

1 + 0
= 100% (72)

𝑅𝑒𝑐𝑎𝑙𝑙 =
1

1 + 9
= 10% (73)

Maximising precision requires the minimisation of false positives, while maximising recall calls

for minimising false negatives. Clearly the two have conflicting imperatives, thus the two

metrics must be considered together, as simply classifying every sample as positive results in

100% recall while classifying a single positive sample correctly (and no negative samples as

positive) gives 100% precision.

A metric that combines both precision and recall is the F1 score. It is defined as a harmonic

mean of the two:

𝐹1 =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(74)

118

This metric combines precision and recall into a single number. They are, however, not

necessarily equally important. In NDT and in screening methods in particular, high recall, i.e.,

not missing defect indications, is more important than not calling false positives. Secondly,

the F1 score varies for the same algorithm depending on the selected classification threshold.

Due to that issue, a set of metrics invariant to the selection threshold have been developed.

4.1.4 Area Under Precision-Recall and Receiver Operating Curves

As discussed, precision and recall values depend on the selected detection threshold. As such,

it is possible to calculate their values at different thresholds and plot the values on a graph,

known as the precision-recall curve (PRC). A similar approach can be used for a different set

of values – true positive rate (TPR) and false positive rate (FPR). True positive rate is

synonymous to recall and defined as:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(75)

False Positive Rate is defined as:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(76)

The plot of TPR vs. FPR at various detection thresholds is known as Receiver Operating Curve

(ROC).

Figure 50. Schematic depiction of Precision-Recall Curves (a) and Receiver Operating Curves (b).

Figure 50 presents an example of the PRC and ROC. For PRC the perfect classifier is

represented by the point in the top right corner – with precision and recall both equal to 1.

119

PRC is not necessarily monotonic, as exemplified by the random classifier graph. For ROC the

true positive rate increases monotonically with false positive rate, and the speed of the

increase corresponds to the quality of the classifier, with the perfect classifier corresponding

to the curve which includes point (0, 1), i.e., 0 FPR with 1 TPR. The ROC is very human-

readable, and it provides an immediate overview of the level of performance of the classifier

and the type of the FPR/TPR trade-offs it tends to make when the decision threshold changes.

Its downside is the lack of a numerical output, making the comparison between large numbers

of models difficult. To rectify this issue, area under ROC (AUROC) can be calculated. While this

metric loses some of the trade-off information, it is nonetheless useful, and it is considered

the gold standard for model assessment.

Compared to the ROC, PRC is used in rarer instances, as it is sensitive to the decision of which

class is to be defined as positive and which as negative. This work utilised both curves for

some of the experiments, but the results for PRC and ROC closely tracked each other and

given this redundancy for much of the work ROC is utilised.

One of the major draws of AUROC is its detection threshold invariance, allowing for the

comparison of models ‘as such’. However, in the NDT context the goal is the successful

classification of all the defect indications, with less importance attached to the avoidance of

false calls, in line with the relative cost of either mistake. Furthermore, false calls can be

checked with other methods, such as conventional UT, making them a lower priority. In fact,

in guided wave testing the calls are typically verified with a follow-up inspection. This has

motivated the development of a bespoke performance measure for the ML models, designed

for NDT.

4.1.5 False Positive Rate at 100% True Positive Rate

As the machine learning algorithms in guided wave testing are meant as a method of assisting

the inspectors by flagging all the points at which the defect indications may occur, it is a

requirement for an algorithm that none of the defect indications are missed. The false

positives are a secondary concern as all the positive indications are assessed by the human

operator. Thus, the false calls can be filtered out before expensive repairs are allowed to take

place.

Given that the non-negotiable characteristic of any ML algorithm utilised in this way would

produce virtually zero false negatives, and that the number of false negatives vs. false

120

positives can be manipulated by varying the detection threshold, a measure of the quality of

the algorithm is the false positive rate calculated at the threshold at which none of the

positives are missed. This metric is termed FPR@100%TPR.

The advantage of this metric is its immediate industrial usefulness, as it directly gives the

number of the false positives that need to be investigated, which has a clear equivalent cost

in the inspector’s labour.

A caveat of the metric is that the threshold for not missing any defect indications is

determined by the testing set, thus an overly easy or difficult to classify dataset inevitably

skews the results. This problem can be addressed by extensive cross-validation using a variety

of training and testing set combinations. Secondly, the metric threshold necessarily needs to

be relaxed from 100% in the case of larger datasets, as even under the normal distribution

conditions the metric-breaking outliers exist, due to the probability density function never

reaching zero.

Furthermore, the metric does not allow any flexibility by imposing the hard limit of zero false

negatives. As a result, a single very difficult-to-classify positive sample may have a significant

impact on the metric’s value. This problem is most acute if a positive sample is actually a

negative one being mislabelled. As such, this metric needs to be utilised carefully, ideally by

looking for patterns across the various testing sets and carefully investigating positive

misclassified samples. Such an approach has been adopted in this work. Furthermore, in order

to maintain the statistical meaning of the metric, the actual TPR used is 99.7% rather than

100% in line with the three-sigma principle.

4.1.6 Metrics Selection

Accounting for the considerations presented in this section, the metrics selected for the

appraisal of the machine learning models are divided into the category used for manual,

qualitative evaluations of a specific model and another one used for large-scale statistical

comparisons between models.

The first category encourages using the richest data possible, as it is examined by hand. The

ROC curve is chosen, as it is easily readable, and provides the detail of the classification

performance at the single sample-level granularity.

The category used for the statistical analysis requires a numerical output. At various stages of

the research, different metrics are used. AUROC is used in all contexts, providing a useful

121

overview and a comparative metric. At the initial stages AUPRC is used in addition to AUROC

to check for any discrepancies. Similarly, accuracy is used to provide a quick, intuitive

overview of the quality of the model. Once the high-performing model is identified,

FPR@100%TPR is used to provide a metric that has industrial relevance and is sensitive

enough to show a tangible difference between various very high-performing models.

4.2 Architectures

This section deals with perhaps the most complex element of the machine learning model

design – the selection and development of the architecture. As this work is mostly focused on

the proof-of-concept and as no architectures have reached industry-standard level in NDT, it

takes a broad view in utilising the well-established architectures and modifying them to suit

the problem. The modifications do not involve structured hyperparameter tuning studies or

large-scale architecture comparisons, as the primary requirement for this type of work is

major computational resources and the typical outcome is marginally better performance.

While valuable, such undertakings are better-suited to implementation work in the industrial

setting than to the academia. The architectures implemented are Multilayer Perceptron

(MLP) – the first implementation of deep learning, VGG-Net – a representative convolutional

neural network, and U-Net – a modern convolutional neural network, considered a gold

standard in many image-based applications. This section does not present the comparison

between them, but the rationale for their selection and the modifications made to increase

their suitability for the GWT question.

4.2.1 Multilayer Perceptron

Multilayer perceptron [85] is a neural network whose origins can be traced to the beginning

of the machine learning as a discipline. It is a generalisation of Rosenblatt’s perceptron [35]

using multiple neuron layers and introducing non-linear activation functions. The

mathematical operation of the neurons, activation functions and the training process for such

an architecture is introduced in more detail in the Theoretical Background.

MLP is used in this work as a benchmark scenario, enabling the assessment of whether the

architecture selection has any impact on the performance of the model and thus addressing

the common question of whether the machine learning approach provides any improvement

over the alternative methods.

122

The input data to MLP in this work was limited to the A-scans. The exclusion of artificially-

focused (C-scan) data is motivated by the very high computational requirements of training a

fully-connected network when compared to CNN when they are used on higher-dimensional

image-type data. Still, the A-scan as used in this work is 3-dimensional data, albeit with two

very small dimensions (T(0, 1)/F(1, 2) and envelope/RF). As fully connected layers are not

suited to multidimensional data, the data first needs to be flattened. The flattening process

disjoints the values of various modes for the same point; from the perspective of the model,

the values of T(0, 1) and F(1, 2) referring to a same temporal instant are not connected. This

departs from the human approach to the inspection process and removes the engineering

insight. Consequently, the architecture is predicted not to be best-suited to the problem but

is useful as a baseline case.

Figure 51. MLP implementation utilised in this work. The first two rows represent the feature extractor part of the network,
while the third row is the classifier head.

The implementation of MLP in this work is presented in Figure 51, with the hyperparameters

of the network tuned by sequentially increasing its complexity while assessing the

performance. As the input data is three-dimensional, it is first flattened and then passed into

a series of four dense layers, which are followed by a 40% dropout layer and two additional

dense layers. The activation function is ReLU at all layers except from the output, where it is

sigmoid. Figure 51 presents the subsequent layers of the network, The type of the layer,

activation function, input and output shapes. The input and the output shapes follow the

Tensorflow convention [(None, 128, 2, 2)]. The first dimension, None, is a placeholder

123

denoting an example is a part of the batch. It is not defined at the network architecture

definition stage, as in principle the network can take any batch size, thus it is defined at

runtime. Following, 128 is the length of the sample, 2 is the T(0, 1) and F(1, 2) channel and

the last 2 is RF and envelope channel. The same convention is utilised throughout the rest of

this work. The output of this network is of shape (None, 2), similarly the first dimension is the

batch size while the second are the probabilities for two classes (feature and pristine).

The design decisions pertaining to the architecture are mostly motivated by the data

characteristics. The network is relatively shallow, which is motivated by the few data points

available to train it. Similarly, the high dropout rate of 40% is meant to allow the network to

learn only the most general characteristics of the data. This is especially important, as the

network is meant to learn both on the simulated and the real data. It is understood that while

the general characteristics of the simulations and the real data are similar, the details are

significantly different. The simulated data comprises a vast majority of the training dataset,

thus allowing the model to learn the fine details of the training data would inevitably cause it

to focus on the simulations, contrary to the goal of performance on the real data.

4.2.2 VGG-Net

VGG-Net [86] is a canonical example of a convolutional neural network, whose main building

blocks are convolutional layers and max-pooling layers, followed by a densely-connected

classification head, all of which are introduced in the Theoretical Background. The first CNNs

started appearing in the early 2010s, but the VGG-Net has made the major stride of increasing

the depth of the CNN while solving the computational cost challenge by utilising small

receptive fields (filter sizes). While the computational cost problem has been alleviated by the

improvement in the computational capacity, the deep CNN as a concept is still a primary

approach to a novel location-sensitive classification task, such as the GWT question.

124

Figure 52. VGG-Net architecture implemented for this work. Rows 1-3 represent the feature extractor part of the network,
while row 4 is the classifier head.

The implementation used in this work is presented in Figure 52; the input and output shapes

follow the same format as Figure 51 with the same input and output shapes. The convolution

in this neural network occurs over the dimensions −2 and −1 (i.e. 128 and 2 in the first layer).

The final two dimensions are effectively interchangeable, they could also be concatenated to

lower the dimensionality of the data, making it (128, 4) shape. However, due to their

different physical meaning, they are retained to facilitate experimentally disabling

dimensions. Similarly to MLP, the changes in the architecture are motivated by the nature of

the data, however in this case the major motivator for redesign is the number of the training

data points. The original implementation was designed as an entry to ImageNet large scale

visual recognition challenge (ILSVRC) [87]. The dataset for training in the ILSVRC challenge

contains over 14 million images, over 1000 times more than the dataset used in this work,

allowing for far larger number of filters and layers. Additionally, the challenge calls for the

recognition between 1000 classes, making the problem significantly more complex than the

GWT question.

The original VGG-Net uses a receptive field sized 3x3. This was motivated by the input data,

being square images from the ImageNet dataset. In the case of the implementation in this

work the receptive field is 20x2, with the second dimension limited by the data size. The larger

receptive field demonstrably improved the performance of the ML model, probably due to

125

most features of interest having quite large spatial extent. The second major change from the

original VGG-Net is the introduction of the dropout layer between the convolutional layers

and the classification head. This is motivated by the same factors as the analogous operation

in MLP. Finally, the classifier head is shallower than the original, with two layers as opposed

to three and a significantly reduced number of neurons. This is motivated by the much smaller

training dataset and a visible tendency of the network to overfit when using many parameters

in the classification head.

4.2.3 U-Net

U-Net is a more advanced architecture, which was first introduced in 2015 for biomedical

image segmentation [63], and later used in a variety of contexts including non-destructive

testing [88], [89], [90], the discriminator sections of generative adversarial networks [91],

[92], image denoising [93] or speech enhancement [94]. U-Net and its evolutions are state of

the art in segmentation tasks and thus also well suited to detection. The architecture is based

on a contraction path followed by a symmetric expansion path. Given n layers in the

contraction-expansion region of the architecture, the shapes of layers 1 and n, 2 and n-1… are

identical which allows for the introduction of skip connections between them.

126

Figure 53. U-net architecture utilised in this work. The double lines mark the connections between the layers with the separate
colours and line types used to differentiate between the connections. The architecture is based on the VGG-Net shown in
Figure 52.

The skip connections work by helping to retain the information from the early stages of the

neural network. The input to the neural network in the case of GWT data is the amplitude of

the wave at each location. Clearly, that information is important in the decision whether the

sample indicates a defect, as the amplitude can be considered the only input to thresholding,

which in turn is used to assist the operators in determining where the defect indications are

(recall call level DAC). The neural network transforms the input information and extracts the

features it considers useful. Thus, the skip connections are used to inject the outside

knowledge into the neural network decision-making process by making sure the amplitude

information is not lost in the feature extraction process.

The U-Net was selected as the modern architecture for comparison, as it is simple enough to

modify and to compare directly with the VGG-Net and MLP (opposed to state-of-the-art

127

architectures, such as YOLOv8 [95]), but at the same time it allows for the localised skip

connections (as opposed to architectures such as ResNet). As a result, in the final layer pre-

classification contains localised information about the initial trace amplitude as well as the

features extracted by the deep neural network.

The U-Net is modified for the GWT problem mostly due to the slightly different question

posed. The original U-Net outputs a segmentation map, while in NDT the ideal output is binary

classification. While the segmentation approach could be utilised in GWT, in the interest of

comparing the outputs of different architectures, classification is used.

The U-Net implemented is based directly on the VGG-Net presented architecture in Figure 52.

The feature extractor part of that architecture is used as the contraction path, followed by

the symmetrical expansion path. The expansion path, in turn, is followed by the classification

head identical to the two previously discussed architectures.

4.3 Training Design

This section deals with the parameters for training the machine learning models. The first

sections introduce the parameters common to all the architectures mentioned: the loss

function, optimiser, and the number of epochs. The second part addresses the biggest

challenge in the approach faced in this work – the combination of the real and the simulated

data so that a machine learning model performs better than one trained on just one type of

data.

4.3.1 Training Parameters

4.3.1.1 Number of Epochs

The number of epochs in machine learning context is defined as the number of runs through

the training set. This should not be confused with the number or updates (also known as

training steps). The full training set is split into batches, thus the number of steps per epoch

can be calculated as 𝑆𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝐸𝑝𝑜𝑐ℎ =
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡 𝑆𝑖𝑧𝑒

𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒
. Selecting the number of epochs for

which the model is trained is one of the important training design considerations. Generally,

the upside of increasing the number of epochs is fitting the model better to the training data.

There are two potential downsides – first, increasing the number of epochs linearly increases

the duration of training. Second, increasing the number of epochs improves the fit to the

training set, which, especially in the case of training sets as small as the one used in this work,

128

may lead to overfitting and the decrease in the performance in testing. The overfitting

problem is solved by splitting the data into training and validation – the latter not being used

for model parameter updates. After each epoch the model performance on the validation set

is checked and recorded. Furthermore, the parameters of the model performing best on

validation are saved and reloaded at the end of training. This approach effectively solves the

problem of overfitting. Thus, the number of epochs is limited only by the computational

resources and the willingness to wait for the training to complete. The number of epochs

necessary for fitting the model should be assessed on the largest dataset available and the

most complex neural network architecture, as it is the size of the dataset and the network

that affect the speed of training.

The largest dataset is the simulated dataset while the most complex neural network is the U-

Net. Thus, these inputs are used in an experiment where the network is trained over 100

epochs, with the loss values recorded for both training and validation sets. The results of this

experiment are presented in Figure 54. While the loss value decreases with the training, much

of the improvement for this problem takes place over the first 10 epochs. Technically, to

further lower the loss, the training could be continued for longer than 100 epochs. It should

be noted, though, that the dataset the model is trained on is simulated. The loss function for

the binary classification is calculated as the difference between the output probability for the

correct class and the ground truth (0 or 1). As the output of the sigmoid function, the output

of the neural network is only asymptotic to 1 and the loss will never go to 0. Indeed, the linear

fall on the logarithmic graph points to the loss function lowering in line with the sigmoid

function output getting closer to the target. Furthermore, it should be noted that the AUROC

value for training and validation reaches 1.0 at the similar time as most of the loss decrease

takes place. Thus, for the applications where it is used as the pre-training dataset, the number

of epochs is limited to 30, as the performance on this dataset is not the target. It is worth

noting that validation loss is consistently lower than training loss. While seemingly

counterintuitive, the cause lies in the different model behaviour in training and in validation.

To prevent overfitting to the training set, dropout (randomly deactivating neurons) is used.

Thus, in training the performance of the network is artificially lowered, with the same not

being the case in validation.

129

Figure 54. Training and validation loss values as well as training and validation AUROC values for a U-net trained on 10000
simulated examples for the first 100 epochs.

4.3.1.2 Loss Function

The decision on the loss function depends on the research question asked. In the case of GWT

question the problem is binary classification. For binary classification problems, by far the

most used loss function is the previously introduced binary crossentropy. The other loss

functions under consideration were hinge loss and focal loss.

Hinge loss is a loss function given by the formula:

𝐿𝑜𝑠𝑠 = max([1 − 𝑦𝑡𝑟𝑢𝑒𝑦𝑝𝑟𝑒𝑑], 0) (77)

where 𝑦𝑡𝑟𝑢𝑒 values are expected to be 1 or -1. The main characteristic of hinge loss is the

punishing of the model’s indecisiveness, specifically by assigning loss to correct predictions

close to the decision boundary, lowering linearly when approaching the precisely correct

prediction.

This behaviour is undesirable in the task, as it clashes with FPR@100%TPR as a metric and

removes the information on how sure the neural network is of its predictions, which is useful

in the context of explainability.

The previously introduced focal loss is designed to deal with highly imbalanced datasets. The

defect datasets seem well suited to this loss. In the experimental practice the focal loss

showed no improvement over binary crossentropy, with the added downside of the loss

130

requiring the hyperparameters to be tuned to the specific dataset. Therefore, it is rejected in

favour of standard binary crossentropy.

The final selection of binary crossentropy as the loss function is motivated by the performance

on par with the alternatives and the fact that it is the most used loss function for binary

classification questions. The second characteristic makes the potential modifications simple

and the results of this work potentially applicable to a wider variety of problems

(explainability, confidence calculations etc.).

4.3.1.3 Optimiser

The selection of the optimiser is a two-stage process – first to determine the algorithm itself,

then to establish the parameters. Depending on the optimiser used, various parameters are

needed, with the learning rate used for every optimiser and more advanced ones using

additional terms including regularisation and momentum. The parameter with the most

impact is the learning rate, governing the overall pace of training. Its value can be set to a

constant or varied throughout the training process using learning rate schedulers. Clearly the

decisions are manifold and based to a large degree on the experience of the designer. In this

work the initial settings are chosen based on the best practices and experience and validated

experimentally against viable competitors.

The decision on the optimiser algorithm is based on the vast prevalence of Adam optimiser.

Figure 55 shows that as of the 30th of September 2023 Adam had been used in 13573 of

research papers included in the “Papers with Code” database [69] compared to 1592 using

Stochastic Gradient Descent and 466 using Adafactor.

Figure 55. Proportion of new research papers in Papers with Code database using the most popular optimisers [69].

131

Based on that data, Adam is the natural first choice for the optimiser and it is expected to

outperform the competition. The second most prevalent optimiser is the stochastic gradient

descent; thus, the first experimental comparison is the training of the same neural network

and comparing the training curves for Adam vs. SGD.

Figure 56. Performance in optimising U-Net architecture over the course of 50 training epochs and 10000 simulated training
examples using SGD (a) and Adam (b). Both optimisers used the learning rate of 5e-5, tapering off exponentially with the
progress of the training.

Figure 56 shows that Adam optimiser vastly outperforms SGD, with the final training loss in

the order of 10-7, compared to SGD’s 10-2. As the loss reduction is the primary function of the

optimiser, Adam is the clear selection going forward. It is worth noting that validation loss is

consistently lower than training loss. While seemingly counterintuitive, the cause lies in the

different model behaviour in training and in validation. To prevent overfitting to the training

set, dropout (randomly deactivating neurons) is used. Thus, in training the performance of

the network is artificially lowered, with the same not being the case in validation.

Adam has three main tuneable parameters: learning rate, 𝛽1 and 𝛽2. In the original paper the

learning rate is set to 0.01, 𝛽1 to 0.9 and 𝛽2 to 0.999. The latter two parameters are generally

not modified unless there is a strong application-specific reason why they need to be changed.

The application in this work is standard in the terms of the optimisation process and thus the

𝛽 parameters are not modified. Adam is an adaptive algorithm, tuning the learning rate

internally (see section 2.2.3.6.2 for details), thus the change in the parameter is less impactful

than in simpler algorithms, but it still warrants optimisation in most cases. The proposed

learning rates for this application are 5 ∗ 10−6 , 5 ∗ 10−5, 5 ∗ 10−4 and 5 ∗ 10−3.

132

Figure 57. Performance in optimising U-Net architecture over the course of 50 training epochs and 10000 simulated training
examples using Adam Optimiser with learning rate of 5e-3 (a) 5e-4 (b), 5e-5 (c), and 5e-6 (d). Each of the graphs is the training
history of a single initialisation of a neural network.

Figure 57 presents the results of the optimisation of a neural network using a range of learning

rates. The learning rate of 5 ∗ 10−5 (c) is clearly the best performing one, achieving the loss

value 3 orders of magnitude lower than the second-best option, 5 ∗ 10−6 (d). The higher

learning rates notably reach low loss values quicker, but the values are unstable, which points

to then exiting the loss landscape minima. This is not suitable for the training, as it prevents

consistent improvement in the performance of the neural network.

Finally, the learning rate can either be held steady over the training process or decreased

according to an exponential curve. The rationale for such a design choice is the need for quick

training at the beginning, when the parameters of the model are far from the global minimum

and lower when making minor adjustments close to the final values.

133

Figure 58. Performance in optimising U-Net architecture over the course of 50 training epochs and 10000 simulated training
examples using Adam. Optimiser uses the learning rate of 5e-5 (a), or starting at 5e-5 and tapering off exponentially with the
progress of the training (b).

Figure 58 presents the difference between the constant learning rate (a) and adaptive (b).

The gradual lowering of the learning rate allows the optimiser to smooth out the training and

avoid suboptimal weight updates (visible with constant learning rate around epoch 30). The

final loss is, similarly, lower for the adaptive learning rate, making it a clearly superior choice.

The final parameters of the training are presented in Table 3.

Table 3. ML Training Parameters.

Number of epochs on simulation set 30

Number of epochs on real set 30

Learning rate 5e-5 initially, exponentially decaying

Optimizer Adam [67]

Loss function Binary Cross-entropy

4.4 Transfer Learning

The transfer learning approach is the major contribution of this work to the body of ML

research in the context of GWT. The rationale and process for designing transfer learning has

been introduced previously, thus this section describes the specific implementation used in

this work.

The transfer learning of an ML model is split into two parts – the pre-training and the fine

tuning. The goal of the process is the optimisation of the performance on the target dataset,

which in the case of GWT consists of in-operation inspection data. The model needs to be pre-

134

trained on as large a dataset as possible, thus the simulation dataset is a reasonable

candidate.

The approach in this work involves the training of the machine learning model first on the

simulated data and then fine-tuning on a subset of real inspection data. Traditionally, just the

classification head of the architecture would be re-trained on the real data, however

experimental process has shown that omitting the re-training of the classification layers in

favour of fine-tuning the whole model leads to better performance on the real data.

This approach is followed in every experiment, with the earliest work comparing the

performance of the ML algorithm trained purely on simulations or purely on the experimental

data with the transfer learning approach. At a final stage of the work a quantification of the

impact of transfer learning is undertaken, with a selection of architectures trained on 16

different combinations of real and simulated dataset sizes, as detailed in Table 4. Training for

each combination of dataset sizes is repeated 5 times on different randomly selected training

sets in the attempt to incorporate the effects of random factors affecting the training

procedure, such as the random initialisation of all parameters. At each training instance, the

validation sets (separate for simulated and real datasets) are drawn at random as 20% of their

respective training sets, and the model that is retained at the end of each training stage (on

simulated data first, on real data then) is that giving the lowest validation loss.

Table 4. Combinations of real (nReal) and simulated (nSims) training dataset sizes used in the transfer learning impact study.

ID nReal nSim ID nReal nSim ID nReal nSim ID nReal nSim

1 0 0 5 270 0 9 810 0 13 1800 0

2 0 900 6 270 900 10 810 900 14 1800 900

3 0 2700 7 270 2700 11 810 2700 15 1800 2700

4 0 10000 8 270 10000 12 810 10000 16 1800 10000

The implementation of transfer learning in this work is based on merging the two training

processes together, with the learning rate scheduled to fall exponentially, automatically

providing the low learning rate for fine tuning. This also allows for the merging of the training

statistics from the two processes.

135

5 Machine Learning Performance

This chapter presents the performance of the machine learning algorithms trained and tested

over the course of the research contributing to this thesis. It starts by investigating the

performance of machine learning on the simulated dataset. This fully controlled and rich

environment is used to investigate the impact of design decisions:

• The dataset size.

• The use of synthetically focused data.

• T(0, 1) and F(1, 2) compared to just T(0, 1).

• Both enveloped and RF data compared to either one individually.

The second part involves the domain shift to real data and presents the performance of the

transfer learning approach using either synthetically focused or A-scan type data. Finally, the

third part introduces the shift from defect indication detection to feature detection. As the

ML performance on this question shows the promise for industrial usefulness, it is

investigated further to quantify the impact of the amount of the data on the performance as

well as to select the best performing machine learning architecture.

5.1 Performance on Simulations

Having identified suitable candidate architectures and the learning process, the first step in

the project is the validation of machine learning as an approach to the problem. The similarity

of the ultrasonic testing data to known existing ML applications (seismology, speech

recognition) is a cause for optimism, but validation on guided wave data is needed.

Furthermore, provided a good performance using the baseline model is proven, simulations

as the training and testing datasets provide a flexible canvas for testing the variations to the

ML approach. This section will investigate three such modifications – using just T(0, 1) mode

instead of both T(0, 1) and F(1, 2), using just the RF or envelope data instead of both, and

using the data that has gone through the imaging process. While the good results on

simulations are not necessarily directly transferrable to the real datasets, such experiments

allow the identification of promising research directions.

5.1.1 Impact of the Amount of Data

The first question that can be answered using the simulated dataset is the impact of the size

of the dataset on the performance of the ML model. It is expected that the performance will

136

increase with the size of the training dataset, but the more interesting question is the specific

number of datapoints that saturate the performance of the model.

The point at which the addition of simulated data points no longer improves the performance

of the model on the testing dataset corresponds to the model extracting all the knowledge

from the training dataset (i.e., perfectly modelling the underlying distribution) or alternatively

that it has reached the limit of complexity it can accommodate. The second explanation is

deemed unlikely in this case, as the models consistently perform at up to 100% accuracy on

simulations. As the distributions are specific to the simulation parameters, the value

observed should not be used as a hard limit for the use in other work. It can however be used

as a starting point for the development of ML algorithms for other NDT applications. This

knowledge is important, as the capacity to generate a large, simulated dataset varies widely

between the NDT modalities and organisations.

Figure 59. AUROC of ML models trained on various sizes of simulated datasets. The size of the dataset increases with ID. The
red line is the median and the box denotes the top and bottom 75th percentile. Each neural network is initialised 5 times with
varying random seed to draw the statistical conclusions.

Figure 59 presents the impact of the number of training examples on the performance on the

testing dataset. The first characteristic clearly visible in the graph is the fact that all the models

137

trained on 810 examples and above have performed at 1.0 AUROC – corresponding to not

misclassifying a single test example by the end of the training. This points mostly to the fact

that the problem of automated GWT classification is simple if applied to simulated data. The

second conclusion that can be drawn is that although extremely few training examples are

needed to reach very high performance, there is an appreciable difference between using 270

and 810 training examples, with the latter needed to confidently reach high performance on

this problem. Thus, it can be concluded that for this type of problem a training set of 1500 is

large enough. This is the training set size which is used in the experiments on the simulated

dataset.

5.1.2 Impact of the Number of Modes

Both torsional and flexural modes are used in assessing the GWT data for classifying the signal

as either corresponding to a feature or not. However, the torsional mode is significantly easier

to extract, and it is not possible for a feature to have no torsional mode reflection. Thus, there

is value in checking whether there is a difference in the detection capacity when using both

the torsional and flexural modes vs. just the torsional.

This experiment is performed by training the model on a large, simulated dataset (1500

samples) and assessing the validation performance. As no changes to the architecture are

proposed and the intended training and testing datasets are extracted from the same

distribution, there is little need for an additional testing set. Furthermore, using the validation

allows for an observation of the evolution of the performance in the training process.

138

Figure 60. Comparison of the learning capability of a U-Net trained on 1500 examples using T(0, 1) and F(1, 2) (a), using just
T(0, 1) (b), and using just F(1, 2 (c)).

Figure 60 illustrates the difference in the neural network learning capability (as measured by

AUROC). The performance of the neural network in this chapter uses AUROC instead of the

previous metric of model loss, as it is more relevant to the real-life performance of the model.

depending on the modes available in the training data. Just using the torsional mode makes

the training process less stable, as evidenced by the more jagged appearance of the training

loss curve. Secondly, the performance on the unseen validation dataset plateaus very rapidly,

pointing to the network lack of ability to generalise well based on the sparser data. It is

therefore concluded that using both the axisymmetric and non-axisymmetric modes is

necessary for maximising the performance of the ML model.

5.1.3 Impact of Enveloped and RF Data

The inspector sees just the enveloped data when classifying the results of a test, which is

mainly due to the more readable nature of this presentation of the data, but the secondary

rationale is that it is the absolute amplitude of the symmetric and antisymmetric reflection

that characterise the reflector, not the underlying carrier wave signal characteristics. It is,

however, true that the raw RF data contains all the information from the envelope and the

139

underlying carrier wave data. As a result, training the model on both forms of data is in effect

drawing the attention of the neural network to the amplitude, while also providing the

underlying data.

The neural network being able to extract features which may be better suited to the

characterisation of the traces is the motivation for training it solely on the RF data. If the

amplitude turns out to be the most important feature, the network should be able to extract

it without intervention. On the other hand, using just the envelope may potentially remove

much of the irrelevant information from the training data, allowing the model to focus on the

feature-pristine detection task rather than sifting through the noise. This may be especially

impactful with the shift to the real dataset, as the impact of noise is magnified as the dataset

gets smaller.

Figure 61. Comparison of the learning capability of a U-Net trained on 1500 examples using both RF and enveloped data (a),
only enveloped data (b), and only RF data (c).

Figure 61 shows the differences in the learning process of an ML model trained on either RF

and enveloped data, just the envelope and just the RF. From the perspective of both the

smoothness of the training process and the learning speed, using both types of data motivates

the decision to use both types of data in the rest of this work.

140

5.1.4 Impact of Imaging

The final experiment on simulations involves the most complex processing method employed

in this work – full synthetic focusing using the improved CSM method described in the

previous chapter. The motivation, similarly, to the previous experiment, comes from the

human inspection analysis. There, the unrolled pipe display – an image is the main tool the

inspectors are using for the identification of features.

The downside of directly using the images is their size – the training time of an ML model is

proportional to the input data size. Additionally, imaging, like enveloping, is a processing

method, thus inherently removing some information and striping the ML algorithm of some

of its ability to extract features. On the other hand, images are generated using richer data

than the A-scan, thus potentially allowing the algorithm to use otherwise inaccessible data.

In the case of images, it is crucial to note that the comparison is not entirely fair, as the change

in the dimensions of the input data necessitates the change to the size of the layers, making

the neural network application to the imaged data more complex when compared to the A-

scans. Nonetheless, the comparison is important, as significantly better performance on the

imaged data would indicate that the C-scan data provides more useful information.

Figure 62. Comparison of the performance of U-Net architecture on C-Scan type data (a) and A-scan type data (b). Both
models are trained on 10000 samples and validated on 2000. The AUROC target of 1 is marked with a red line.

Figure 62 presents the performance of the two input data formats in the terms of AUROC.

Images are slower to learn and the performance on the validation set plateaus at a slightly

lower level than A-scans. These results may be caused by the lower quality of the imaging

than used in the industry-standard software, but as the development of the imaging

algorithms is not the goal of this project, the proposal to use synthetically focused ultrasonic

141

data to train the ML models is rejected due to its slightly lower performance compared to A-

scans, as well as the readily available experimental A-scan datasets.

5.2 Performance on Real Dataset

Having proven the performance of the ML approach on the simulated data, the logical step is

to shift to the same question (defect indication detection) on the real data. This section

presents the results of ML models on the real data, first attempting to solve the question of

defect indication detection and later shifting to the more general problem of feature

detection.

5.2.1 Impact of Transfer Learning

The first question to be answered is whether the simulated data does improve the

performance of the ML algorithms when they are applied to the real datasets. To answer it,

this work proposes an experiment of training the same U-net architecture using three

approaches:

• on the simulated dataset (using the Simulated Pristine and Simulated Defect datasets)

• on the real dataset (using Real Pristine and Real Defect (augmented) datasets)

• using an introduced transfer learning approach and all the mentioned datasets

The testing set is to be drawn from the real dataset.

Figure 63. Accuracy on testing and validation datasets for a U-net trained and validated on the simulated dataset (left).
Performance of the trained model on the real testing dataset, split into pristine and defective in the terms of accuracy, area
under ROC and area under PRC (right).

AUPRCAUROCAcc

0.60170.627861.81%def

0.54130.514250.69%prist

142

Figure 64. Accuracy on testing (real) and validation(real) datasets for a U-net trained on the real dataset (left). Performance
of the trained model on the real testing dataset, split into pristine and defective in the terms of accuracy, area under ROC and
area under PRC (right).

Figure 65. Accuracy on testing and validation datasets for a U-net trained and validated on the simulated dataset in epochs
1-30 and fine-tuned and validated on the real dataset in epochs 31-60 (left). Performance of the trained model on the real
testing dataset, split into pristine and defective in the terms of accuracy, area under ROC and area under PRC (right).

Figure 63, Figure 64, and Figure 65 show the results of the experiments. It is important to note

that the graphs show the accuracy of models, and thus are vulnerable to the class imbalance

problem in the real data. The accuracy is used in these figures as they are generated using an

earlier version of the software and solve a defect detection rather than feature detection task,

thus their values are not directly comparable with the other figures in this section. The graphs

show the accuracy on the validation and training datasets. It is important to note that those

datasets vary, as described in the relevant captions. The visualisations do underline, however,

the different characteristics of the three training processes. Training on the simulated data

quickly reaches extremely good accuracy and exhibits no difference between the

performance on the training and validation sets. However, what is clear from the

performance on the testing dataset is that learning on a purely simulated dataset does not

translate to performance on the real data, with the accuracies just slightly better than

random. Training on the real data looks promising in the first 10 epochs, with the accuracy

AUPRCAUROCAcc

0.59050.565550.69%def

0.82320.883787.50%prist

AUPRCAUROCAcc

0.89910.889679.17%def

0.6570.676968.06%prist

143

rising both in the training and validation datasets. From this point on, however, the deficiency

of a small training dataset makes itself known by strongly overfitting the model. Furthermore,

the vulnerability of the model to the imbalance in the dataset is clear from the performance

on the testing dataset – the model classifies most of the pristine traces correctly, but its

performance on the defect indications is worse even than that of the model trained on the

simulations. This is concerning, as the defect indication detection rate is more important than

identification of pristine samples in the context of safety. Finally, in Figure 65 the proposed

two-stage training shows the initial performance rise in line with the simulations until epoch

30, at which point the training switches to the real data. When training on the real data, the

validation performance improves in the first couple of epochs, very quickly plateauing. In

comparison, the training performance keeps improving over the length of the training. Most

importantly, the trained model has the defect indication detection accuracy of 79.17%. While

this result is significantly better than any other training process, giving hope for the transfer

learning approach, the overall accuracy of around 70% is significantly below the performance

necessary for any practical use. Even if 80% was to be considered a good enough performance

in the terms of defect indication detection, the corresponding accuracy on the pristine

samples is 68%. This indicates a false positive rate of 32%. Considering the same format of

data as used in this work, a single sample for classification corresponds to a 1 m span of pipe.

A 32% false positive rate in these conditions would mean that one in every three metres is

flagged as containing a defect indication. Each of the flags would need to be manually

reviewed by the inspector, effectively resulting in quite insignificant workload reduction. This

conclusion leads to the next stage of this work.

5.3 Performance on Real Features

The main cause of the low performance of machine learning on a real defective dataset is

identified as the very small number of datapoints in the positive class of the real training

dataset. Therefore, it is proposed that a richer dataset including all features is used as the

positive class in the training process, see Table 1 for reference. It is theorised that good

performance on this dataset can be used in the industrial context, but also as a proof of

concept showing the number of positive real samples necessary to successfully train an ML

model using the transfer learning approach.

144

5.3.1 Industrial Use Case

While defect indication detection has a use case that needs no explanation, the shift to

detecting features requires some justification. Testing of pipelines, after all, is not performed

so the welds and supports are identified. To understand the usefulness of the feature

detection capability, it is crucial to remember the intended place of ML in GWT – the

automatically identified positive flags are meant to be passed to the inspector, who makes

the final call and classification. As many of the features (bends, welds, supports, flanges,

buried sections etc.) are designed into the pipeline, they can be quickly rejected by the

inspector making final calls, leaving only the more suspicious signals. Furthermore, providing

a method to automatically flag the features, including defect indications, is a benchmark for

the guided wave technology, as the usage of this inspection process provides a known

probability of detection and probability of false alarm regardless of the inspector skill.

5.4 Architecture comparison

With the shift to the training on a larger real dataset allowing the models to perform at high

enough accuracies that they could be considered candidates for industrial use, it has become

paramount to compare the various ML architectures. The candidate architectures have been

introduced earlier in this chapter:

• MLP being the simplest architecture which could be considered deep learning

• VGG-Net, a typical example of a convolutional neural network

• U-Net, a commonly used modern CNN

To assess the performance of ML approaches they would ideally need to be compared to the

current state of the art. This proves difficult, as at present there is no standard procedure to

automate the detection of pipe features (PFs) in guided wave-based inspection of pipes;

instead, this relies on the experience of trained inspectors that would assess the absolute and

relative enveloped amplitudes of both T(0, 1) and F(1, 2) modes. In particular, typically PFs

are characterised either by a high T(0, 1) component (for axisymmetric PFs) or a high F(1, 2)

to T(0, 1) ratio (for non-axisymmetric PFs). An attempt is made to mimic such a procedure, in

order to form a baseline performance against which to assess the ML algorithms developed

in this work. To address this, thresholding on three different enveloped signal amplitudes is

considered, namely on (Th1) T(0, 1) only, (Th2) the F(1, 2) to T(0, 1) ratio, and (Th3) on the

following linear combination of T(0, 1) and F(1, 2): 0.7 x T(0, 1) + 0.3 x (F(1, 2)/T(0,1)). The

145

parameters of this linear combination are based on an arbitrary decision. An attempt to

optimise the formula is made, but the optimised version is extremely close to pure T(0, 1),

with the parameter over 0.99. As a result it is decided that a suboptimal, but deemed more

representative example is to be used. Note that such thresholding methods are applied to the

same ~1-metre-long segments in which the experimental traces are split, as explained in the

previous section, though in this case only the enveloped, non-normalised, DAC-corrected

traces are used.

An example of application of the proposed thresholding approaches is given with the aid of

Figure 66, which shows a fabricated set of T(0, 1) and F(1, 2) traces including three PFs at the

positions indicated by the red dashed vertical lines. The leftmost PF has a high T(0, 1)

component, the middle one has both T(0, 1) and F(1, 2) components at rather high levels,

while the third PF has a weaker T(0, 1) reflection, though with a F(1, 2) component nearly at

the same level as T(0, 1). For example, when the threshold is set to 0.6 (shown with a dotted

black horizontal line in figure), the use of T(0, 1) alone (i.e., of Th1) would not detect the small

rightmost PF, while the use of the F(1, 2) to T(0, 1) ratio (i.e., of Th2) would be insensitive to

the large symmetric leftmost PF. The proposed linear combination of T(0, 1) and F(1, 2) (i.e.,

of Th3) shown in green would instead detect all three PFs at the considered threshold. When

the thresholding approach is practically tested using Python scikit-learn library, the threshold

is set automatically to maximize the classifier’s accuracy.

146

Figure 66. Purely illustrative example of application of thresholding on a fabricated dataset of T(0, 1) and F(1, 2) traces. The
locations of three features are indicated with red dashed lines and a tentative threshold is shown as a black dotted line.
Thresholding is performed independently on the enveloped signals shown as black, blue and green solid lines. A successful
detection occurs when any of these signals exceeds the threshold in the vicinity of a feature. Crossing the threshold away
from features is a false positive, not crossing it in the vicinity is a false negative.

Table 5. Performance of the three proposed thresholding approaches.

 Th1 Th2 Th3

AUROC 0.9936 0.2747 0.9629

FPR@1TPR 0.4131 0.9972 0.4843

The performance offered by the three thresholding approaches and by the three ML

architectures when trained with various sizes of simulated and real data is discussed below.

Table 5 gives AUROC and FPR@1TPR when thresholding is applied to all available 2400

experimental data samples. The best results overall are obtained when using Th1, i.e., when

thresholding on T(0, 1) only. However, despite its relatively high AUROC sized at 0.9912, the

FPR@1TPR at 0.4246 essentially indicates that there exist some PFs giving low T(0, 1)

reflections which can only be flagged by thresholds that would also call an excessively large

number of false positives, i.e., almost one false positive for every two negative samples. The

extremely poor performance of Th2 shows that the sole use of F(1, 2) cannot reliably

discriminate between positive and negative samples. This is expected, since all axisymmetric

PFs such as welds do not produce significant non-axisymmetric reflections. Finally, the

147

attempt to combine the amplitudes of T(0, 1) and F(1, 2) into a single parameter via Th3 did

not yield improvements over the sole use of T(0, 1), as both AUROC and FPR@1TPR for Th3

are slightly worse than those of Th1. These results essentially suggest that the experience of

trained operators on the analysis of signals acquired by GWT of pipes cannot be replaced by

an approach that only makes use of the local amplitudes of T(0, 1) and F(1, 2) time-traces, and

that their shapes should also be considered.

148

Figure 67. AUROC of MLP (a), FPR@1TPR of MLP (b), AUROC of VGG-Net (c), FPR@1TPR of VGG-Net (d), AUROC of U-Net (e),
FPR@1TPR of U-Net (f). On each box, the central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and
the outliers are plotted individually using the '+' marker symbol.

149

Figure 67 gives the performances of the three ML architectures evaluated on the same,

randomly selected testing set of 480 experimental samples and across the 16 combinations

of training and testing set sizes (IDs), as given in Table 4. For each ID, the metrics obtained

from the five separate training instances are summarized in a boxplot where the central mark

indicates the median, while the bottom and top edges indicate the 25th and 75th percentiles,

respectively. Figure 67 (a, b) show that MLP does not possess the required modelling

capabilities to reliably characterise true and negative samples, and despite the expected

general improvement as more simulated and real input data are employed for its training, its

best overall performance remains significantly inferior to that of Th1 in terms of both AUROC

and FPR@1TPR. It is worth emphasizing here that the input to MLP and the other ML

architectures significantly differ to that of thresholding, as in the latter case samples are not

normalised.

Figure 67 (c, d) shows that when VGG-Net is solely trained on simulated data (i.e., IDs 1 to 4),

the performance on experimental data is extremely poor. When, instead, a relatively low

number of 270 real samples are used for fine-tuning (IDs 5 to 8), both AUROC and FPR@1TPR

gradually improve as the amount of simulated data is increased. Then, once a more

substantial number of real samples are available, the benefit of pre-training the model with

simulated data starts to fade. In fact, the performance at IDs 13 to 16, where 1800 real

samples are used, is essentially flat as the number of simulated samples is increased from 0

to 10000. Such performance is significantly superior to that offered by thresholding on T(0, 1)

(i.e., Th1), with AUROC surpassing 99.8% and FPR@1TPR yielding 2.1%. In order to investigate

whether this overall behaviour and quality of performance are specific to the particular

testing set used to produce Figure 67, the same procedure is repeated in five more instances

by randomly selecting five additional testing sets, and the resulting FPR@1TPR are displayed

in the left column of Figure 68. All plots confirm the conclusions drawn above. It is also worth

noting that for each of the six testing sets depicted in Figure 67 (c, d) and in the left column

of Figure 68, when 1800 real samples are used for training (IDs 13 to 16) the use of simulated

data has a negligible effect, whereby when only up to 810 real samples are available, the

performance of the classifier can be improved by the addition of simulated samples. This is

particularly evident in Figure 68 (c). Unsurprisingly, the plots also show that the FPR@1TPR

150

varies as different testing sets are evaluated, and it ranges between ~1.5 and ~4% when 1800

real samples are used for training.

Finally, Figure 67(e, f) shows that the employed U-Net algorithm struggles to yield a consistent

performance, which, on average, unexpectedly deteriorates as the number of real samples

used for the fine-tuning of the model is increased. This is confirmed by the results shown in

the right column of Figure 68, where U-Net is tested on the same five additional testing sets

described above. Only in one instance, i.e., the case of Figure 68(j), the expected behaviour is

obtained, and a similar performance as VGG-Net is achieved. This unpredictable behaviour of

U-Net was extensively investigated as the hyperparameters of the model were sequentially

varied, though the investigation remained inconclusive, and VGG-Net was chosen to carry out

the study described in the next section.

151

Figure 68. FPR@1TPR as VGG-Net (a, c, g, e, i) and U-Net (b, d, f, h, j) are evaluated on five different testing sets. The same
testing set is used in each row of plots. Boxplots are as in Figure 67.

152

5.5 Investigation of Misclassified Samples

It is of practical interest to investigate which PFs are more difficult to identify correctly using

the VGG-Net model trained with the largest sets of real and simulated data considered in this

work (i.e., on the scenario indicated as ID=16). In order to make this study statistically more

relevant, training and testing on VGG-Net at ID=16 was performed for 44 additional randomly

selected testing sets. Again, for each testing set the training was repeated five times. The full

database obtained by adding these additional results to those described in the previous

section consists of 50 different testing sets, each including 125 PFs selected at random among

the available 634, with Table 6 giving statistics on the numerosity of the various types of PFs

included in each testing set. Since each testing set is evaluated by five independently trained

models, this equates to 31250 real positive samples being tested. A study on the composition

of this ensemble of experimental samples shows that each of the 634 PFs appears at least 20

times.

Table 6. Statistics on the number of occurrences of the different types of pipe features across all testing sets used in this study.

Feature Type Mean Standard Deviation Maximum Minimum

Weld 59.08 6.01 69 45

Support 34.28 4.83 48 24

Defect

indication

11.3 3.14 19 6

Bend 8.16 1.98 12 4

Flange 6.84 2.39 13 2

Reverberation 5.8 2.17 11 2

Earth Entrance 0.94 0.91 3 0

Unknown 2.22 1.40 6 0

The rule that is used to determine the threshold against which to mark the false negatives in

each of the 250 sets of results (as obtained from the 50-by-5 VGG-Net training and testing

instances) is to set it to the value giving a FPR of 2% in the specific set. Following this

procedure, a total of 784 positive samples (~2.5% of 31250) are misclassified as negative, with

32 out of the total 634 PFs (~5%) being misclassified at least once. The composition of this set

of 32 PFs is given in Table 7, where PFs are listed in descending order according to the ratio

153

between misclassified cases and their total number. The table shows that false echoes, defect

indications and supports are the PFs that are most liable to be misclassified based on their

signatures on T(0, 1) and F(1, 2) signals. This can be easily explained, as false echoes are often

marked by operators based on the presence of large PF reflections in the time-traces

propagating in the other direction of test, information that is not given to VGG-Net. Similarly,

often supports give very weak signal reflections, and they are marked based on their physical

presence as confirmed by visual inspections. Finally, reflections from very small defect

indications can be barely distinguishable from background noise, which may force an operator

to conservatively flag an indication despite significant uncertainty. On the other side, welds,

bends, flanges and entrances into earth usually give very distinctive and significant

reflections, hence the low probability of VGG-Net missing any of them.

Table 7. Number and percentage of misclassified PFs according to the specific PF type, using the VGG-Net model trained with
10000 simulated and 1800 experimental samples (i.e., the scenario indicated as ID=16).

 Cases misclassified at
least once

Total number of cases
(misclassified and not)

Percentage of
misclassified cases (%)

False Echo 4 28 14.3

Defect indication 7 58 12.1

Support 17 164 10.4

Weld 4 293 1.4

Bend 0 41 0

Flange 0 36 0

Unidentified

anomaly
0 10 0

Entrance into earth 0 4 0

With regards to the 32 PFs that have been misclassified at least once, it is of interest to

investigate those with a high prevalence rate (i.e., the number of times a sample has been

misclassified divided by the number of times it has been tested), since those with low

prevalence can be filtered out via ensemble methods [96]. Attention here is devoted to defect

indications, since they are the PFs of most concern if missed. Of the seven misclassified defect

indications listed in Table 7, only two have prevalence rates exceeding 20%, and their

signatures are shown in Figure 69. Interestingly, they both come from the same inspection,

154

whose WavePro [9] trace is displayed in Figure 70. The inspection of the original trace shows

that the marked position of defect indication (a) (denoted as +F6 by the operator) is slightly

off and most of the major F(1, 2) signature of the defect is absent from the trace presented

to the ML algorithms. Notably, when the windowing segment labelled (a) in Figure 69 is

moved ~0.6m to the left, and when such better-centred version of this defect indication is fed

to all VGG-Net models used in this investigation at the set thresholds corresponding to 2%

FPR, a 100% true positive rate is obtained. More challenging, instead, is to find reasons for

the consistent misclassification of the defect signature shown in Figure 69(b) as well as in the

red box labelled (b) in Figure 70, which is characterised by relatively similar levels of T(0, 1)

and F(1, 2) reflections. This highlights one of the fundamental issues plaguing virtually all ML

algorithms currently used worldwide, i.e., their black-box nature, and therefore suggests

focussing on ML explainability [97] for future research.

Figure 69. Samples of defect indications that are consistently misclassified as negative samples by VGG-Net (prevalence rates
of 91%(a) and 98%(b)).

155

Figure 70. Portion of the original inspection trace containing the defect indications shown in Figure 69 . Defect indications are
marked as +F6 and +F7 on the trace and they are located at a distance of approximately 54 and 56 m from the sensor position.
The segments of trace fed to the ML algorithms are highlighted in red boxes. Reproduced from WavePro, courtesy of [9].

5.6 Machine Learning Investigation Outcome

This chapter has proposed a transfer learning framework that allows augmenting an

experimental dataset collected via GWT of pipes with synthetic data produced via FEM in

order to train a ML algorithm to inspect the signals and to detect reflections from pipe

features. The transfer learning between synthetic and real data is achieved by first pre-

training the chosen ML model on the simulations, and then fine-tuning it via additional

training on the set of experimental signals. In particular, three types of ML models have been

considered for the task, namely MLP, VGG-Net and U-Net, and their performances have been

also compared to those given by classical thresholding approaches. Unexpectedly, VGG-Net

was found to yield more consistent results than U-Net, while they both significantly

outperformed MLP and thresholding. VGG-Net performance was a surprise as it is a relatively

simple architecture. Furthermore, the U-Net residual connections were initially expected to

simplify guided wave trace classification. Restricting the analysis to the VGG-Net results, the

investigation has shown that when scarce amounts of real data are available, significant gains

in the detection performance can be obtained by employing the suggested pre-training

approach. In particular, the performance monotonically improves and eventually plateaus as

the synthetic dataset is increased, at which point further improvements can only be obtained

by enlarging the size of the experimental dataset. However, once a sufficiently large number

of real data are available for training, the benefit of pre-training the model on simulations

156

starts to fade. This was shown to occur for this particular application once 1800 data samples

(roughly equivalent to 1800 m of inspected pipes) are fed to the VGG-Net model, at which

point false positive rates in the order of ~1.5 to 4% at the fixed true positive rate of 99.7% are

achieved. From a practical standpoint, the adoption of this model would greatly reduce the

amount of data that needs to be manually inspected by qualified operators for the

classification of the detected pipe features. Future studies will focus on automatising this

subsequent classification step, although it is expected that additional experimental samples

would be required to better characterise the signatures of those pipe features that are less

frequently found, such as flanges, bends, and, most importantly, defect indications.

A further investigation was carried out to pinpoint specific pipe features that VGG-Net would

consistently miss. They included two of the 58 defect indications available in the experimental

dataset, although it was later found that the position of one of the two had been misreported

by the inspector in the original inspection trace. Once that defect indication position was

corrected, VGG-Net was actually able to detect it. It is more concerning instead that all efforts

devoted to understanding why the other defect indication was left undetected remained

inconclusive. This highlights the importance of being able to explain the decisions made by

any given ML model, therefore suggesting focusing on ML explainability as a further potential

avenue of future research.

6 Generative Learning and Modern Machine Learning Topics

This chapter expands the application of machine learning in GWT towards emerging and

exploratory research directions. It refers to the background information on the modern

methods and issues in machine learning and contextualises them for NDT. The first part of

the chapter introduces the Generative Adversarial Network implemented in this work. It

briefly discusses the design considerations and presents the results achieved by the GAN in

generating ultrasonic traces ex nihilo. Finally, it suggests some potential use cases for

generative machine learning in NDT. The second part of this chapter focuses primarily on the

questions of explainability and reliability of ML approaches and how the questions related to

these areas hinder the more widespread development of ML. It concludes by proposing some

directions of action that could build the trust in ML, which is critical for its adoption in safety-

critical applications like NDT.

157

6.1 Generative Adversarial Networks

Generative adversarial networks have been introduced on a conceptual level in the

theoretical background of this work, and therefore this section will focus on the finer points

of the design of GANs for guided waves applications and introduce the architecture used in

this work.

6.1.1 GAN Design

A design of a generative adversarial network is more complex and time-consuming than that

of a typical neural network. That is mainly caused by the fact that the training process is, in

effect, a competition between two networks, the generator, and the discriminator. The

operation of a GAN is schematically shown in Figure 71.

Figure 71. Diagram of Generative Adversarial Network.

From the perspective of a designer, therefore, the task is not as simple as designing a neural

network that performs as well as possible. In this case it is crucial to design the generator and

discriminator networks that can reach as high a level of performance as possible, while

ensuring that neither of them learns too quickly, as a ‘victory’ of either of the networks

effectively stops the learning process. This consideration can be accommodated for by

implementing one of two design approaches. One is employed by large AI R&D centres, which

develop very large and complex generator and discriminator networks. To offset their

potential for quick learning, multi-stage training processes are implemented, where the

performance of the generator and discriminator is assessed separately and based on the

results the training routine is modified to ensure the networks’ synchronic development. The

main problem with this approach is the huge need for computational power exhibited by

GANs, which is further exacerbated by the employment of large networks. The second

approach, used in this work, is typical of early-stage applications and it involves using

158

relatively small and primitive neural networks that can be trained quickly enough to enable

experimentation with architectures and hyperparameters.

Figure 72 shows the architectures of the generator and the discriminator. The networks are

very similar to each other, the discriminator is a standard convolutional neural network while

the generator is a deconvolutional network. The input to the generator is a 19-sample long

vector of random noise, used as a seed to generate realistic-looking data. The length of the

vector is defined by 16+3 samples, with 16 being the arbitrary latent space dimensionality,

which the GAN maps to the output domain (i.e., realistic examples). The final three positions

correspond to one-hot encoded classes of sample to be generated (no defect indication, one

defect indication, two defect indications). The work presented in this section was performed

only on the simulated data, with a roughly 10 m long stretch of a simulated pipe used to allow

GAN to model the long-range relationships and multiple features.

159

Figure 72. Design of the discriminator (left) and the generator (right) networks used in the GAN.

As opposed to the classification neural network design, where objective metrics for the

performance of the model could be devised, GAN can only be assessed by a human in a

subjective manner. As the GAN-focused work is a very early-stage proof-of-concept activity,

the design decisions for the GAN are made in line with the best practices. The optimiser is

Adam, with the learning rate selected to ensure equal speed of learning between the

generator and the discriminator. The loss for the discriminator is binary crossentropy, as it is,

in essence, a classification network designed to differentiate between ‘real’ and generator-

made examples. The loss for the generator is mean absolute error, with the rationale based

on the continuous nature of the output.

The work on GAN focuses on simulating defect indications and cut ends of the pipe while

using only the T(0, 1) mode. This is motivated by the relatively unexplored area of generative

160

ML and this work was primarily a proof-of-concept demonstration. The data used for training

the GAN is simulated at 21 kHz carrier wave frequency and just the time-domain signal is used

for training. It is therefore interesting to investigate whether the frequency-domain

characteristics of the guided wave signal are accurately modelled by the GAN. Thus, the

experiment is simple enough that it can be easily adapted to other NDT modalities, where

different data sources and features would need to be generated, but the outputs here are

complex enough to allow for the assessment of GAN capability for modelling ultrasonic data

more generally.

6.1.2 GAN Results

The GAN design is a multi-stage process, and the final version is a network able to generate

either a pristine trace, a trace with a single defect indication or one with two defect

indications. All of the traces additionally contain a backwall signature.

161

Figure 73. The comparison of the data simulated using Pogo FEM package (left) and the data generated using GAN (right).
The first row shows the pristine trace, second contains one defect indication and third contains two defect indications. All the
signals contain a back wall around sample 700. The second defect indication appears as if it exists behind the back wall, in
fact it is generated in the opposite direction.

Figure 73 shows the comparison of the data generated using Pogo FEM package and the ones

generated using GAN. Even to an untrained eye it is quite clear which one is which, with the

FEM time traces being significantly smoother. It is worth noting, however, that the GAN has

captured the difference in the amplitudes of the back wall and the defect indications,

indicating some capability for identifying and replicating different features.

162

Figure 74. The frequency domain comparison of the data simulated using Pogo FEM package (left) and the data generated
using GAN (right). GAN is used directly to simulate a rectified signal. The first row shows the pristine trace, second contains
one defect indication and third contains two defect indications.

Figure 74 shows the frequency domain version of Figure 73. In a similar manner to the time-

domain results, the GAN has the capability to generate the pristine frequency spectrum with

very good accuracy. This is mostly visible when investigating the side lobes around the carrier

frequency. They are smooth and similar between the generation methods for the pristine

trace but diverge with the addition of defect indications. Importantly, the network correctly

models the carrier frequency of 21kHz with much of the energy of the signal contained around

this point. Less optimistic is the fact that in FEM data the inclusion of defect indications mostly

leads to the changes in the shape of the main lobe in the frequency domain, while in the case

of the GAN the main lobe barely changes, with much of the shift in the amplitude of the

163

broadband signal. This leads to a conclusion that GAN has some capability to model the

underlying frequency spectrum based on the time domain signal, but it needs either a more

complex architecture, a larger dataset or the inclusion of the frequency-domain similarity in

a custom loss function.

In conclusion, GAN is a promising technology, and the generation of guided wave ultrasonic

signal is not beyond its capability. It is however a very complex form of machine learning with

careful and systematic research needed to achieve satisfactory results. Once trained, though,

it has the generation speed of 20000 traces per second when generating in the experimental

conditions of Google Colaboratory T4 GPU runtime [98]. This corresponds to 200 km of

pipeline simulated each second. This scale is beyond the capabilities of any available FEA

modelling software, not to mention the experimental data gathering. Thus, developing the

ability to use ML methods for generating data would provide an immensely valuable new

method for realistic data acquisition.

6.1.3 GAN Applications in GWT

The main characteristic of GANs is their ability to generate novel realistic samples on demand,

which can be used for training machine learning classification models. This is especially

important if the models are to move from the qualitative detection to quantitative

characterisation of defect indication severity. The added complexity of using ML for

quantitative inspection in the guided wave context is that the already scarce defective data is

further reduced when the ‘defect indication’ category is divided into the multiple sizes. A

conditional GAN can generate a dataset of defect indications sized according to the

researchers’ choice on demand, thus reducing the problem.

Furthermore, GAN architectures can be used for neural style transfer. This technique is based

on the concept of separating the content of the example from its style. It is easy to understand

it in the context of art. Van Gogh’s “Sunflowers” can be separated into the content –

sunflowers and the style – characteristic impressionist brushwork of Vincent Van Gogh. In the

NDT context the content are the features present in the trace, while the style consists of all

the other factors impacting the trace. Thus, using this approach it is conceivable to build an

algorithm translating between the real in-service data and FEM-simulated clean signal. This

would have two potential use cases – the denoising of inspection traces so they are easier for

the inspectors to analyse and the addition of realistic noise to simulated data. Such traces

164

could in turn be used for training classification neural networks. This follows the concept of

transfer learning using the pre-training data as close to the target distribution as possible.

Finally, the ability to generate realistic samples on demand would be useful in the training of

the inspectors and tracking their progress in the analysis of test results. This would create an

objective measure of the quality of the inspector’s skills and thus improve the trust in guided

wave testing as a method. This final use for the GAN-originated data is least technical and

would require a training and certification regime overhaul, but it could be one of the ways to

utilise advanced machine learning to improve the quality of GW inspections without raising

serious safety and reliability concerns.

6.2 Trust and ML Reliability in NDT Context

The second section of this chapter deals with the issues of trust and reliability of machine

learning solutions in the NDT context. Some of the explainability and interpretability methods

have been introduced previously and the goal of this chapter is not to provide the technical

information on the implementation of the methods, for which an interested reader is referred

to [99]. The chapter considers instead the implications of those trends in the context of NDT.

The chapter will conclude with proposals for approaches that could improve the trust in ML

solutions when applied to safety-critical NDT.

6.2.1 Trust and Reliability Issues

NDT is traditionally a conservative industry, which is due to the safety-critical nature of the

work performed; failure of NDT to detect a defect indication could result in catastrophic

failure and loss of life or significant financial impact. As such, trust in the inspection method

and the inspector is of paramount importance. Currently, methods are qualified for

inspections by independent assessors or, in the case of large NDT users, internally validated

for the specific case. The inspectors, in turn, are trained and examined in their ability to use a

specific NDT modality and certified accordingly. This certification is typically issued by

institutions and industry associations, such as American Society of Non-destructive Testing

(ASNT) [100] or British Institute of Non-Destructive Testing (BINDT) [101]. The landscape is

more complicated when it comes to more recent, less widespread inspection methods, such

as guided wave testing. In the latter case the training and certification role is fulfilled by

Guided Ultrasonics Ltd. (amongst others), who is also a hardware provider. Additionally, large

165

NDT users often develop bespoke testing setups and internally certify the inspectors in the

usage of their specific method.

Different industry sectors have different standards for NDT techniques appropriate to their

needs. However, a uniform theme is one of conservatism. This makes the introduction of

novel methods, such as machine learning, extremely difficult. Thus, achieving trust in ML

applied to NDT is not strictly a technical issue, but the problem of garnering the confidence

of industry. Inevitably for business, the main justification for development of ML techniques

is cost reduction, and any change must be sympathetic to existing approaches to avoid costing

more. Thus, any attempt to roll out ML for NDT more broadly is dependent on developing ML

measures that save operating expenses without incurring capital expenses by changing the

established processes in a drastic way.

An alternative approach is proposed by, for example, the European Network for Inspection

and Qualification (ENIQ) [102]. It proposes a novel method for the qualification of ML-based

approaches to non-destructive testing based on the existing qualification methods. See Figure

75 for details.

Figure 75. Flow chart highlighting the stages in the qualification process where ML has an impact. Reproduced from [102].

Both the report and the qualification method provide a useful approach to building trust in

the machine learning methods and creating databases of ML models that can be assessed

against each other. It does not, however, answer the question of building trust to the stage

166

that allows for the transition to qualifying a novel ML-based approach. The report concludes

that ML software qualified using the method proposed can be used in the same way as any

other automated inspection software.

167

7 Machine Learning for Limited View Compensation

This chapter describes a standalone project in the utilisation of a ML-based methodology to

solve a long-standing problem in NDT – the limited view artefacts in tomographic imaging.

The chapter introduces the limited view imaging problem. It follows by introducing the

mathematical basis for the distortion caused by limited view transducer configuration and the

state-of-the art compensation algorithms. It follows by exploring the area of ML for image

denoising to justify the architecture selection. Following, it describes the training and testing

datasets as well as the ML architecture utilised and the hyperparameter tuning process.

Finally, it shows the results in the terms of performance on laser-scanned corrosion patches

as well as some interesting out-of-distribution samples. The performance is compared to

state-of-the-art positivity regularisation algorithm.

7.1 Introduction

Tomographic reconstruction from ultrasonic data is a widely used technique in areas of

medical diagnostics, such as breast cancer detection, non-destructive testing (NDT), and

geophysics. Compared to the more common reflection images, these reconstructions provide

quantitative information about the local material properties of the interrogated medium,

most commonly the speed of sound. To perform the reconstruction of a sound speed map of

the volume under inspection, it would be ideal to have access to the data probed from all

possible angles – the so-called full view configuration. However, in many scenarios it is

impractical or impossible to achieve this idealised situation, meaning that a reconstruction

must be produced from a subset of the angles in reconstruction. It could be that data is

subsampled because of time or cost limitations restricting the number of measurements that

can be taken, or that there is a physical restriction meaning that only a range of angles is

measurable.

This problem typically becomes ill-posed, as multiple sound speed maps can exist that

correspond to the measured dataset, and addressing this is critical for producing accurate

reconstructions in such cases. In many algorithms, particularly traditional direct approaches,

an absence of data is effectively treated as having a measurement of zero, and the

reconstruction is produced accordingly. However, this introduces strong artefacts into the

reconstructed image, which can, in turn, obscure features of interest [103].

168

Alternative approaches attempt to compensate for the missing data. One class of approaches

is to pre-process the data, replacing the unknown angle data with an estimation of what it

should be. This approach has been investigated in the area of medical X-ray computed

tomography [104]. However, X-ray behaviour diverges from ultrasound, being approximated

(sufficiently accurately for almost all CT routines) by a straight ray assumption where the

attenuation is reconstructed from changes in measured amplitude. Therefore, little work in

this area (e.g. [105], [106]) is applicable to ultrasonic applications.

The other conventional approaches to limited view compensation are integrated into the

image generation algorithms and can broadly be delineated into minimisation and projection

regularisation approaches. Minimisation involves modifying the unknown data to solve an

optimisation problem in which the resulting image is a best fit to both the measured data and

some external restriction, often corresponding to a physical restriction. While this approach

has been proven effective for some scenarios [107], it has the significant downside of

requiring multiple iterations running some form of forward model in order to fit the measured

data, and may also suffer from traditional challenges that often arise with iterative methods,

including instability and the presence of local minima. The second approach, projection

regularisation, involves the post-processing of the image. In this, the image is taken, and a

particular projection is performed, often aligned with some physical limitation. The most

common example is the restriction of positivity (such approach being termed “positivity

regularisation”): in CT, for example, negative values are impossible since they would

correspond to negative x-ray attenuation. Therefore, the projection involves removing any

negative values, typically by setting these to zero. This process means that the image will be

moved away from fitting the data, so an iterative process begins where the image is

alternatively projected onto the data and then onto the physical constraint, ultimately

converging onto a solution which matches both. This was developed within ultrasonics into

the VISCIT technique [108], which used a non-zero adaptive threshold and iteratively

reconstructed the image from high contrast through to low contrast features.

Machine Learning (ML) can be applied to a broad range of imaging applications, with such

techniques utilised to eliminate artefacts specific to the imaging modality, from recovering

the resolution of optical images to speeding up the acquisition of MRI and improving contrast

in ultrasound imaging [109]. The ML algorithms can be applied either directly to image-

169

domain data [110], unrolled images (transformed into 1D vector of pixel values) [111], or

domain-transformed images [112]. Most success has been found in the application to image-

domain data itself, where there has been a significant amount of interest from the computer

vision community.

Within NDT, there are two main areas of quantitative ultrasound tomography application:

guided wave tomography and early-stage damage detection. In the former, corrosion damage

causes thickness loss in a pipe wall or plate-like structure, which affects guided wave speed

due to dispersion and hence provides a mechanism for reconstruction. Early-stage damage,

i.e. prior to the formation of discrete defects like cracks, will often manifest as subtle localised

changes in material properties, which can be measured through tomographic ultrasound

methods. In both cases, physical access is often limited: in guided wave tomography a pipe

support may surround the pipe preventing measurements in all directions, and the physical

geometry of a component is likely to prevent the ability to inspect a region with potential

damage in from all directions.

This chapter aims to develop machine learning techniques for developing accurate

reconstructions in limited view ultrasound tomography, and specific focus will be on guided

wave tomography for corrosion mapping, although the principles should be broadly

applicable both within NDT and medicine.

The background theory is described in section 7.2. Section 7.3 presents the experimental

design and methodology. Section 7.4 discusses the performance of the proposed ML-based

approach on both artificial thickness maps and experimental corrosion-type images. Finally,

section 7.5 concludes the work.

7.2 Theoretical background

7.2.1 Limited view imaging

The ultrasound scattering problem will be considered under the Born approximation [113];

this is a linearisation of the wave scattering problem which makes inversion practical in the

case of low contrast, small-scale scatterers. Modifications have been developed to account

for cases where the approximation is not applicable, such as the Born Iterative Method [114],

Distorted Born Iterative Method [115] and HARBUT [116]. The underlying principles of the

Born approximation are still valid in these methods (although the linearisation is typically

170

applied within a single iteration) so the techniques developed under the Born approximation

are taken to generalise to such scenarios.

Under the Born approximation, the following is valid:

𝑢𝑠(𝒓) = ∫𝑔(𝒓 − 𝒓′)𝑜(𝒓′)𝑢0(𝒓
′)𝑑𝒓′ (77)

where 𝑢𝑠 is the scattered field, 𝑔 represents the Green’s function in free space, 𝒓 the distance,

and 𝑢0 is the incident wavefield. 𝑜(𝒙) = 𝑘0 [(
𝑐0

𝑐(𝒙)
) − 1]

2

 is the object function with 𝑐0 being

the background sound speed, 𝑐 the local sound speed, and 𝑘0 as the background

wavenumber.

Considering an array exciting in the far field, the wavefronts intersecting with the scatterer

can be considered to be planar, as well as the scattered components received at the

measurement array, and therefore eq. (1) becomes

𝑢𝑠(𝒓) = ∫𝑜(𝒓′) exp[𝑖𝑘0(𝒔0 − 𝒔). 𝒓′] 𝑑𝒓′ (78)

where vectors 𝒔0 and 𝒔 represent the incident and scattered wavefields respectively. Under

the assumptions made (far field, Born approximation) each measured scattered value is a

component of the Fourier transform of the object function. This provides a mechanism for

inversion of the field, by collecting the measured data then performing an inverse two-

dimensional Fourier transform. The exact form of this can vary, with some approaches

suggesting resampling the measured data to a uniform grid to enable the Fourier transform,

to non-uniform techniques where additional weightings need to be included [117] [118]

[119]. This provides a mechanism for evaluating the limited view problem, since missing

measured components can be directly mapped to missing components in the Fourier

transformed space.

Figure 76(a) presents a schematic of a representative limited view configuration, and Figure

76(b) then illustrates the components which are measurable from this setup. As highlighted

before, the challenge of limited data imaging is to establish what values are best to use for

the unknown components to ensure the final image is as accurate as possible.

171

Figure 76. (a) limited view transmission configuration, with a source array above the scatterer and a receiver array below. (b)
positions of measurements in K-space (spatial frequency domain) showing that there are significant angles which cannot be
measured.

7.2.2 Machine learning

7.2.2.1 Machine learning for image quality improvement

Image processing can be defined as the operations where an input is an image, and the output

is either an enhanced version of the image or a collection of information and insights gathered

from one. Outside of the ML domain, the example of the former is bandpass filtering, while

the latter is signal-to-noise ratio. Traditional methods remain popular thanks to their

determinism and integration within processes, but ML is increasingly gaining usage share. The

rationales for using ML vary between the users but can generally be classified into ease of use

(i.e. replacing analytic image reconstruction), operational cost (i.e. replacing iterative

reconstruction) and solving novel problems (i.e. semantic segmentation). This breadth of

potential applications motivates the quick development of ML for image processing. This

section intends to briefly introduce the methods used for the improvement in the quality of

images and explain the rationale behind the selections made in the work.

This review omits two of the prevalent deep learning-based image processing techniques: ML-

based image reconstruction algorithms [120] and ML-based semantic extraction algorithms

[121]. The reconstruction algorithms take in the sensor data, either raw or initially pre-

processed and output a predicted image. Conversely, the semantic extraction algorithms take

in an image and output the relevant information content. For both categories, there is a lack

of direct input-output mapping. The work undertaken is concerned with the improvement in

172

the quality of the image, thus the only type of algorithm considered is an image-to-image

translation.

The most common category of deep learning applied to image-to-image translation is

performed directly in the image domain. This is motivated by a broad availability of well-

tested algorithms from the area of computer vision. Indeed, much of the early progress of

Machine Learning was based on the gradually improving image-based algorithms, such as

LeNet [122], VGG-Net [123], ResNet [124] and in the more modern times U-Net [125],

EfficientNet [126] and YOLO [127]. The availability of well-tested algorithms makes image

domain preferable to sensor or frequency domains.

Limited view imaging requires, in effect, an artefact compensation algorithm. The

complicating factor is the difference in the application area. Conventionally image processing

algorithms are applied to natural images, scraped from the web, while the use case for this

work is corroded metallic samples. Thus, while it is possible to transfer the methods, they

need to be carefully evaluated for suitability. While the authors were unable to find reports

of the application of ML to limited view imaging in the context of NDT, such investigations

have been conducted, although in limited numbers, in medical photoacoustic imaging [128],

[129]. The preferred architecture for the image-to-image denoising tasks is an encoder-

decoder architecture. This has been utilised directly [130], [131] and with modifications

based on the domain requirements such as the usage of a U-Net type architecture [132],

[128], [129]. A U-Net is a combination of an autoencoder and a ResNet, originally used for

image segmentation, but since then proven to be the preferable network for a wide range of

applications, including non-destructive testing [88], [89], [90], the discriminator parts of

generative adversarial networks [91], [92], image denoising [93] or speech enhancement

[94]. It is most notable for this work, as it has been used in a series of attempts to solve the

limited-view problem in photoacoustic imaging [128], [129]. Some of the work attempted the

use of multilayer perceptron on image data [133], which has recently been adapted to the

mainstream encoder-decoder paradigm by the usage of Dense U-Net [129].

Image domain learning is the predominant choice in image quality improvement, but some

alternative approaches have been attempted, most importantly solving the image quality

problems in the sensor domain and using generative learning. The former involves employing

the ML approach before the image reconstruction, based on the premise that the sensor

173

output is the richest data source available, thus an ML algorithm may be able to analyse and

modify it, so the noise is not reconstructed into the image in the first place. This approach can

also be used to speed up the acquisition by hallucinating the signals sensors would provide if

placed in between the existing sensors [134]. Finally, perhaps the most modern image quality

improvement technique is the usage of Generative Adversarial Networks (GANs). This type of

neural network generates completely novel data based on the input. GANs are notorious for

hallucinating impossible data, however, this issue has been solved by the usage of cycle-

consistent GAN (CycleGAN) [135], which ensures the original data can be retrieved from the

generated image. This approach has been successfully applied to medical CT [136]. However,

GANs are difficult to train, suffer from very low explainability and have high data

requirements, making this approach a choice of last resort.

Taking into consideration both the results of [128], [129] and the fact that encoder-decoder

architectures are generally considered the models-of-choice for image-to-image denoising

tasks [25], [26], this work primarily investigates the use of denoising autoencoders.

7.2.2.2 Denoising autoencoder architecture

The work presented in this chapter performs an image-processing task that is essentially

denoising. Based on the review presented in the previous section, the design paradigm best

suited to image quality improvement is an encoder-decoder type of architecture. It is defined

by containing an encoder, which maps the input to a low-dimensional latent space and a

decoder which uses the latent space as an input to construct the output. Therefore, the

encoder can be understood as refining the information present in the original data, filling the

role of a feature engineer. The decoder, in turn, is the decision-making network.

An autoencoder is a generic term for an encoder-decoder, whose output is identical to the

input [137]. A denoising autoencoder is a specific application, where the input is first

corrupted with noise before being passed through the ML architecture. The original

motivation for the denoising autoencoder was based on the theory, that corrupting the input

signal may help the encoder learn to reject the irrelevant information, thus improving its

feature extraction capability. Now, it is used extensively by the signal processing community

to restore the noisy inputs to de-noised outputs.

174

The denoising autoencoder is reliant on a training dataset composed of two matched subsets,

the noisy inputs, and the known noiseless outputs. This requirement naturally makes the

design paradigm well suited to the applications where two conditions are met: the noiseless

data is abundantly available, and the noise sources are deterministic and easy to simulate. An

example of a perfect application is sharpening out-of-focus photographs, given the abundant

availability of in-focus examples and the ease of blurring. If one of the conditions is not met,

either the noise or the noiseless data needs to be artificially generated, which introduces the

need to carefully test the trained model against the intended use case and to be aware of its

limitations.

Finally, an architecture achieving similar goals is a much more modern CycleGAN. The decision

on the utilisation of either of the two architectures is ultimately dependent on the available

dataset. CycleGAN, as an unsupervised learning architecture, does not require the matching

between the noiseless and the noisy set, which is important for some applications, especially

ones where numerically simulating an idealised scenario is possible, but simulating realistic

noise is not. However, as with many a generational architecture CycleGAN requires very large

training sets, and the training set must be drawn from the same distribution as the intended

application. Furthermore, generational architectures are less explainable, making them less

preferable than conventional architectures in safety-critical applications.

7.3 Methodology

7.3.1 Data sources and processing

The ML model developed in this work is trained on artificial data and is tested on both artificial

and experimental samples. Each numerical or real data sample represents thickness maps

obtained via ultrasonic inspection and consists in a pair of single-channel (i.e., grayscale)

images having 128x128 pixels, where each pixel value corresponds to the local thickness

change. The two images forming each pair are obtained using limited and full views, and are

used as input and output (i.e., ground truth) to the model, respectively. All images are

normalised such that their pixel values range between -1 and 1.

A physical limited view configuration is considered. This is far field, with a transmission array

above the object and reception array below, as illustrated in Figure 76(a). The viewing angle

of each array is 145.6 degrees.

175

7.3.1.1 Artificial data

Full view thickness maps are artificially generated as “blobs”, i.e., circular changes in thickness

whose value is maximal centrally and falls off according to a Hann (raised cosine) function,

overlaid on a background consisting of zero-mean uniform noise with values ranging between

-0.2 and 0.2. Examples of such maps are given in Figure 77(b, d, f). The noise is used to

facilitate the ML training, since a uniform background encourages the algorithm to generate

images as close to the background level as possible.

Each full view thickness map is then modified to simulate a limited view inspection scenario.

In this process, the image has a 2D Fourier transform applied to it, and each component is

then assessed to evaluate whether it is measurable using the limited view configuration. Any

unmeasurable components are set to zero, and the result is then inverse Fourier transformed

back. Examples of the resulting limited view images are given in Figure 77(a, c, e).

176

Figure 77. Examples of limited view registrations of artificial thickness maps (a, c, e) and their full view version (b, d, f). This
type of data was used for the training of the ML algorithm.

The ML algorithm is trained on a dataset of 10,000 data samples, each containing five blobs,

whose diameters and maximum amplitudes vary between 2% and 20% of the image

dimension and between -1 and 1, respectively. Such dataset is split in training and validation

sets with a 80/20% ratio. The artificial testing set is composed of 2,000 further images

generated with the same procedure. Note that a preliminary study showed that using

177

different numbers of blobs per image did not affect the performance in any significant

manner, hence the choice of using a constant number of five blobs per image.

7.3.1.2 Experimental testing data

A set of ten experimental data samples is used to test the performance of the novel limited

view compensation algorithm in a realistic inspection scenario. The data is acquired using

laser scanning of in-service corroded samples, thus resulting in high-quality thickness maps of

corroded samples. These are representative of the real cases which a guided wave

tomography routine would need to successfully reconstruct.

Since the available raw images have non-uniform dimensions, they are first zero-padded to

make them squared, and they are then downsized to 128x128 pixels using MATLAB “imresize”

function [138]. This uses bicubic interpolation to calculate the output. Finally, the limited view

projection of the thickness maps is calculated using the same process described previously

for the artificial data.

7.3.2 ML architecture and training design

The ML architecture utilised in this work is a fully convolutional autoencoder. It follows the

typical design of an autoencoder, but instead of using a fully connected latent layer, it is

convolutional, as this design choice demonstrated a better performance when tested. As seen

in Figure 78, the encoder part of the network is composed of three 2D convolutional layers

with stride parameter 2, effectively compressing the input image by a factor of 8 in both

directions. The latent dimension is therefore 16x16. This is followed by a 2D convolution on

the latent dimension that does not further reduce the dimensionality, and then by the

decoder portion of the network, consisting in three transposed convolutional layers that

return the image to the initial size.

Some architecture modifications were tested, including the addition of skip-connections like

a U-Net and the addition of Max Pooling or Dropout layers [139]. However, neither of the

modifications improved the performance of the network.

The compiled architecture was trained on the dataset described in section 7.3.1.1 using Adam

optimiser [140] and Mean Squared Error (MSE) loss. The Adam optimiser was selected as it is

the first-choice optimiser in ML research (over 320 times more common than the second-

placed Adafactor [141]). Adam is a self-tuning optimiser; therefore, the learning rate selection

178

is significantly more lenient than in many older-generation optimisers. MSE is a standard loss

function in image-to-image translation tasks.

Both the architecture and the training process are characterised by a limited number of

tuneable hyperparameters. This has the advantage of enabling a broad range optimisation

exercise. The parameters to be tuned are the initial number of filters, the size of the receptive

field, the learning rate and the number of training epochs. The optimisation of the first three

was performed using the Keras Tuner [142], which implements Hyperband hyperparameter

tuning strategy [143]. Table 8 presents the hyperparameters to be tuned as well as their

possible values. The tuner is set to use a reduction factor of 3 [143] and to select the best-

performing model based on the validation loss when using a progressive number of training

epochs (up to 20).

Table 8. The hyperparameters to be tuned in Karas Tuner [142] and their possible values.

Parameter Possible Values

Initial Filters 16, 32, 48, 64, 80, 96, 112, 128

Receptive Field Size 1, 3, 5, 7, 9, 11

Learning Rate 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7

As a result of hyperparameter tuning, the initial number of filters was set to 80, the receptive

field size to 3 and the learning rate to 1e-4, with the diagram of the resultant neural network

shown in Figure 78. The optimal number of training epochs was then manually determined to

be 100.

179

Figure 78. Optimised autoencoder architecture implemented in this work. The left column corresponds to the encoder path
and the right column to the decoder path.

7.3.3 Metrics

The metrics for the evaluation of similarity of grayscale images are quite varied, but the

application investigated in this work is characterised by one-to-one pixel mapping, thus

justifying the usage of pixel-level similarity metrics. The standard pixel similarity metric is the

MSE, which, as mentioned in the previous section, is used as the loss function during training.

However, at the stage of the assessment of the results, the Root Mean Squared Error (RMSE)

is more useful, as its values are on the same scale as the pixel values of the image.

Furthermore, in the context of visualising changes in the thickness, the highest changes are

the most important to get right, as they correspond to the potential points of failure. As a

result, in addition to RMSE, the per-pixel Maximum Absolute Error (MAXAE) is also used.

7.4 Results and discussion

7.4.1 Performance on the artificial data

The initial assessment of the performance of the proposed algorithm trained on the 10,000

input data samples has been made on the testing set consisting of the 2,000 examples drawn

180

from the same artificial generation process used for the training set. On this dataset, average

values of 0.0223 and 0.2284 were obtained for RMSE and MAXAE, respectively.

As described in Section 7.3.1.1, noise was added to the artificial images used in the training

dataset. This solution was implemented after noticing that the usage of uniform backgrounds

(a grayscale level of zero, i.e., black) was encouraging the algorithm to generate images close

to the background level, since such outputs generally give rather low values for the loss

function, i.e., MSE.

Figure 79 shows an example of the results obtained when training the autoencoder on the

noiseless dataset. The ground truth full view image of Figure 79 (c) features four blobs. These

blobs are still discernible in the limited view registration of Figure 79 (a), though are

significantly out of focus. Figure 79 (b) shows that the trained autoencoder has simply

produced a uniform black image, thus completely ignoring the thickness changes. This still

gives a low MSE since the vast majority of pixels in the ground truth image are equal to zero.

While the global MSE minimum of the correct solution is better than the all-black output, it is

a significantly more complex solution, thus in the absence of input perturbation the neural

network tends to default to all-black local minimum.

Figure 79. An example of the results obtained when the autoencoder is trained on the noiseless dataset. (a) input limited view
registration; (b) output of the autoencoder; (c) ground truth full view image.

Figure 80 shows three representative examples of the results (one example per row of plots,

with the left plot displaying the limited view registration input to the autoencoder, the middle

one the output of the autoencoder and the right one the ground truth). Compared to Figure

79 the difference is the addition of small random noise to the input. All examples show visible

improvements in the sharpness and contrast of the images processed by the autoencoder

when compared to the original limited view registrations. However, Figure 80(i) shows a blob

181

that has not been reconstructed by the autoencoder. That blob roughly coincides with

another blob of similar amplitude, which probably explains the autoencoder’s inability to

reconstruct it. This result serves as a reminder that even though the autoencoder appears to

reconstruct nearly invisible thickness changes, it can still fail in extreme cases.

In summary, the trained autoencoder appears to perform very well in sharpening the

simulated dataset and addressing the impact of the limited view approach. This is an expected

result, as the training was performed on a dataset with the same distribution as the testing

set considered in this section. The next section considers the important scenario of actual

experimental data as well as a set of interesting cases of artificial images drawn from very

different distributions.

182

Figure 80. Artificial testing examples. Three thickness maps (a-c, d-f, g-i) are presented. For each, the limited view registration
(input to the autoencoder) is shown at the left, the output of the autoencoder at the centre and the ground truth full view
registration at the right. In subfigure (i), the plot is annotated with a red circle highlighting a feature missed by the
autoencoder.

7.4.2 Performance on the Artificial Test Cases

The limited view transducer configuration causes some regions of the area of interest to be

unmeasurable in the frequency domain (see Figure 76). These regions are known as null

space. Thus, if a modification is made in the null space of the thickness map, such information

should not be available via the limited view, no matter the processing method.

Clearly, the sensitivity of the configuration to spatial frequency components will vary

depending on the direction; transmitting primarily vertically as in the example of Figure 76(a)

will result in an insensitivity to horizontal variations, and these horizontal variations will be in

the null space. Figure 81 shows three test cases that investigates this. The ground truth

183

samples are horizontal stripes (c), vertical stripes (f) and the combination of the two (i). As

expected, the limited view registration of the horizontal stripes completely misses such

features (a), while that of the vertical stripes does a good job in their reconstruction (d). When

the two stripe directions are combined, the limited view is still highly sensitive to the vertical

ones, and, interestingly, also gives a hint on the presence of the horizontal ones (g). It is

interesting to assess whether the trained autoencoder of Section 7.4 is somehow able to

synthesise the missing data for such images.

The limited views shown in Figure 81(a, d, g) were then given as input to the trained

autoencoder of Section 7.4, and the outputs are shown in (b, e, h), respectively.

Unsurprisingly, the output in (b) is a pure hallucination and has nothing in common with the

ground truth of (c). Notably, the autoencoder outputs in the two other instances are farther

from the ground truth than the limited view registration. This is essentially due to the

autoencoder’s tendency to sharpen the image into the shape of blobs, which in these cases

distort the outputs. These results serve as a reminder that an ML algorithm can only be as

good as the data it has been trained on. Given that no sharp-edged straight geometries were

present in the training set, the resultant algorithm does not perform too well when presented

with such a problem. Two solutions can be implemented to improve the resilience of an ML

algorithm to unseen data. One involves training on a significantly broader random training

set, such as web-scraped images, while the other or systematically analysing the possible

types of inputs and matching the training set. The first option has the disadvantage of losing

the domain-specificity and requiring an increase in the network size, training duration and

computational complexity at inference. The second is extremely work-intensive and reliant

on the designer’s ability to identify all the real-world cases and effectively simulate them. The

second approach, pioneered in the NDT context by the work of Richard Pyle [144], involves

implementing techniques such as ensemble learning to identify whether the input data comes

from a known distribution. Such information can be used to reject the output of the ML

algorithm as untrustworthy.

184

Figure 81. Limited view registrations (a, d, g) compared to the autoencoder output (b, e, h) and full view ground truth (c, f, i)
of artificial geometric thickness maps including horizontal stripes (a-c), vertical stripes (d-f), and a combination of the two (g-
i).

7.4.3 Performance on the real test cases

This section assesses the performance of the autoencoder trained on the artificial dataset

when applied to the set of ten experimentally acquired corrosion patches described in Section

7.3.1.2. In this case, the results are also compared to those obtained using the state-of-the-

art positivity regularisation method, described in Section 7.1, on the limited view images.

Figure 82 and Figure 83 display all the results. A visual inspection of the images reveals that

the autoencoder significantly improves the contrast and focus of all test cases when

compared to either the original limited view registrations or to their positivity regularized

version. The improvement in focus is especially evident in Figure 82(e-h, q-t) and Figure 83(a-

185

p), corresponding to elongated corrosion patches, which are common in linear contact

scenarios (for example, a pipe on a simple support).

Table 9 lists the RMSE and MAXAE metrics for all test cases. Expectedly, the autoencoder

errors are significantly higher than those obtained on the artificial testing dataset reported in

the previous section. However, when compared to the limited view registrations, the

autoencoder performs better in 18 out of 20 test scenarios, lowering the RMSE and the

MAXAE by an average of 35 and 40%, respectively. The two cases where the autoencoder

performed worse than the limited view registration are a 14% drop in the MAXAE of the third

sample (Figure 82 (i-l)), for which, however, the RMSE improves by 42%, and a 5% drop in the

RMSE of the fifth sample ((Figure 82 (q-t)), for which there is a 28% improvement in the

MAXAE. In both cases the visual inspection of the plots shows a significantly enhanced

sharpness of the image output by the autoencoder.

Compared to the positivity regularisation method, the ML algorithm typically performs better

in terms of the MAXAE metric, with an average improvement of 11%. However, it tends to

perform worse on the RMSE, with an average drop of 47%. The latter result is, however,

strongly influenced by the downsides of RMSE as a metric for this type of tasks, since it can

be significantly impacted by not-so-critical background mismatches. As a matter of example,

the visual inspection of the fifth sample (Figure 82 (q-t)), where the autoencoder performs

163% worse than positivity regularisation on RMSE, shows that the ML model provides the

overall best reconstruction of the ground truth image, though is strongly penalised by the

background mismatch in terms of RMSE.

186

Figure 82. Experimental corrosion patches 1 to 5. Original limited view registration (a, e, i, m, q), image processed using the
positivity regularisation method (b, f, j, n, r), output of the autoencoder (c, g, k, o, s) and full view ground truth (d, h, l, p, t).

187

Figure 83. Experimental corrosion patches 6 to 10. Original limited view registration (a, e, i, m, q), image processed using the
positivity regularisation method (b, f, j, n, r), output of the autoencoder (c, g, k, o, s) and full view ground truth (d, h, l, p, t).

188

Table 9. RMSE and MAXAE for the limited view (LV) registration of experimentally acquired corrosion thickness maps
compared to the positivity regularised (PR) registration and the output of the autoencoder (AE). The “Diff.” columns report
the differences between PR and AE, with the cells in pink background highlighting the instances where the metric of PR
surpassed that of AE. The two instances where the metric of LV surpassed that of AE are indicated in pink.

RMSE (proportion of max wall loss) MAXAE (proportion of max wall loss)

LV PR AE Diff. LV PR AE Diff.

Figure 82(a-d) 0.20 0.09 0.06 0.03 0.98 0.42 0.28 0.14

Figure 82(e-h) 0.39 0.20 0.29 -0.08 0.98 0.61 0.49 0.13

Figure 82(i-l) 0.33 0.20 0.19 0.01 0.76 0.73 0.87 -0.13

Figure 82(m-p) 0.26 0.10 0.15 -0.05 0.78 0.39 0.35 0.04

Figure 82(q-t) 0.37 0.15 0.39 -0.24 0.93 0.66 0.67 -0.02

Figure 83(a-d) 0.29 0.11 0.16 -0.05 0.83 0.50 0.43 0.06

Figure 83(e-h) 0.37 0.14 0.25 -0.11 0.97 0.73 0.65 0.08

Figure 83(i-l) 0.37 0.14 0.21 -0.07 0.82 0.55 0.52 0.03

Figure 83(m-p) 0.32 0.15 0.27 -0.13 0.96 0.61 0.54 0.07

Figure 83(q-t) 0.37 0.16 0.15 0.01 0.91 0.82 0.58 0.24

It is notable that the corrosion patches considered in this section are more complicated than

the training dataset used, which is likely to have some impact on the performance. It would

be ideal to train with real corrosion patches, however, as with many problems, particularly in

non-destructive testing, data scarcity is a significant challenge. It may be possible, however,

to synthesise more representative corrosion patches and/or utilise data augmentation

approaches, which may improve this.

7.5 Conclusion

This work proposes a novel approach to a limited view registration compensation algorithm

for use in the NDT context. This is based on the implementation of a fully convolutional

autoencoder machine learning architecture. The experimental data scarcity problem was

circumvented by the usage of a fully artificial training dataset corrupted with a background

uniform noise. The resultant trained model was tested both on an artificial testing dataset

drawn from the same distribution as the training set, and, more importantly, on a set of ten

real thickness maps of corrosion patches.

189

The trained autoencoder was first shown to perform very well in terms of both RMSE and

MAXAE when tested on the artificial testing dataset. However, the truly important finding is

the fact that the algorithm generalises well to real corrosion patches. The visual inspection of

the results on all available experimental samples reveals that the proposed ML model

improves the contrast and focus of the images when compared to both the original limited

view registrations and to their processing via a state-of-the-art positivity regularisation

routine. The inadequacy of the numeric metric is best presented by Figure 82(q-t). This

example by MaxAE metric is the worst of the examples with positivity regularisation

significantly outperforming AE. However, upon inspection it is clear that AE was able to

horizontally localise the corrosion patch significantly better than regularisation. The

improvements are also generally confirmed when looking at the chosen metrics, with the

autoencoder’s outputs outperforming the limited view registrations in 18 out of 20 cases,

with an average error reduction of 35 and 40% in terms of RMSE and MAXAE, respectively.

When the same metrics are used to compare the results of the autoencoder against those of

the positivity regulariser, a general superiority of the former in terms of MAXAE is noted,

though the opposite is true in terms of RMSE. Nevertheless, a further visual inspection of the

results indicates that this is essentially due to a not-so-critical tendency of the autoencoder

to achieve a higher background mismatch than the positivity regularisation approach, while

the more relevant parts of the image including the reductions in thickness rendered by the

autoencoder are much sharper and more accurate than those given by the regulariser.

Finally, the algorithm was tested on artificial geometric thickness maps designed to test the

limitations of the limited view algorithm. These examples were very far from the training data

distribution. The test shows that this is the only application in which the AE processing yielded

adverse results, with the original limited view registration closer to the ground truth. This

result serves as a reminder, that the proposed autoencoder, similarly to most ML applications,

is very dependent on the quality of the input data. This work proposes two approaches for

limiting the impact of this issue. The first involves an expert-led process of improving the

training dataset to successfully simulate every input type a limited view UT could encounter.

This faces its own set of issues, such as the work intensiveness and the lack of guarantee that

all scenarios are indeed covered. The second approach involves building on the existing work

to detect out-of-distribution samples and flag them before passing through the autoencoder.

190

191

8 Conclusion

This chapter is comprised of the recap of the project described in the thesis, a summary of

the main findings and the future work recommended for the development of the project.

8.1.1 Summary

This project had a broad remit in exploring the methods in which machine learning can be

utilised to enhance the guided wave testing of pipelines. The industrial motivation was that

the guided wave testing is very dependent on the performance of the human inspector,

introducing the uncertainty into the results of the method. Machine Learning offers potential

solutions to the issue by offering a second-marking capacity to inspectors.

Chapter 1 introduced guided wave testing, its industrial use cases, the inspection protocol,

and the motivation for the project. Additionally, it introduced the industrial partner of this

project, Guided Ultrasonics Limited, who are the source of the in-service inspection data.

Chapter 2 provides the theoretical background necessary to fully understand the thesis. As

the project has two distinct constituent parts, the theoretical background is similarly split into

sections. At first it introduces the mechanics of wave propagation as the necessary step to

explain the finite element modelling, being a source of most of the data used in this work. It

follows with the artificial focusing methods which were trialled as an attempt to inject

physics-based knowledge into the machine learning paradigm. It also briefly introduces

guided wave transducers, as the hardware dictates the ultimate capability of the testing

method. In the second part, machine learning is broadly introduced. While this work used

relatively simple ML approaches, the section is meant to provide the reader with the

knowledge necessary to critique the approaches. It provides the historical outline of ML

development, the common ML paradigms of supervised and unsupervised learning as well as

introduces the recent advances in generative ML and the social and ethical issues with AI

fairness. Furthermore, it derives the operations of the deep learning architectures and

provides the mathematical background for the understanding of the constituent parts of the

ML model.

Chapter 3 introduces the datasets used for the purposes of the work. It describes the data

pipelines for both the simulated and the real data. Importantly, it discusses the different input

formats dependent on the source of data, decides on the common output format and

192

describes the transformations necessary. Furthermore, it deals with the problems

encountered when working with the data, both real and simulated, most importantly, the

inherent differences between the real and the simulated data, stemming from the lack of

ability to fully simulate the real world. The chapter concludes with the description and

parameters of the datasets used in the rest of the work.

Chapter 4 describes the design of the major part of this project – a decision-making ML model

designed to assist the inspectors. It starts by introducing the metrics used for the assessment

of ML approaches, from the basic ones, through their derivatives like AUROC and finishing by

developing a bespoke metric of FPR@1TPR designed specifically for NDT. It goes through the

descriptions of the architectures used in the work, their specific implementations and

adjustments made due to the characteristics of the problem or the data.

Subsequently, Chapter 5 it presents the results of the experiments conducted to select the

best parameters for the ML training. The final part of this chapter presents the results of a

major study testing the performance of ML on GWT data. The first experiments were

conducted on the simulations assessing the impact of the data processing. The testing on the

in-service data followed, initially assessing the performance in defect indication detection.

With the results on this problem were unsatisfactory, the question was broadened to feature

detection, where the performance improved to industry-standard level. This path was

therefore investigated further, with a full-scale study designed to select the best architecture

and investigate the impact of increasing the number of training data points on the

performance of the model. Finally, the samples consistently misclassified by the models are

investigated to inform the future development of the ML approaches.

Chapter 6 deals with the modern ML topics, which have been briefly investigated during this

project. It begins with the presentation of the generative adversarial network designed to

produce realistic-looking GWT samples. It describes the considerations when building such a

network and follows with the presentation of the generated results in both time and

frequency domain. The second part of this chapter touches on the issues outside of the

technical development of the ML tools, but relevant to the broader issue of widespread

utilisation of ML methods in the context of NDT. Most importantly it deals with the problems

of trust and reliability and the various method they can be assured. Finally, a development

enabling any advanced machine learning research is the broadening of access to good quality

193

training data. This issue has been discussed at length in chapter 3.4 concerning the data issues

faced in this work, but new and advanced machine learning architectures are more data-

hungry than ever. The costs of monitoring decreasing compared to the costs of failure will

make the data significantly more abundant. It is a clear interest of the research community to

make data accessible. However, this is generally acquired by the service providers, hardware

manufacturers and end users. Those actors have an interest in keeping the data private,

making it necessary to develop a sharing scheme allowing the owners to open their data to

NDT machine learning research without revealing trade secrets. Open data facilitates the

stated aim of NDT: preventing as many in-service failures as possible. Thus, a public data

regime should be developed by a broad confederation of industry actors to ensure that

everyone has a stake and participates in the benefits.

Chapter 7 introduces the standalone work conducted to assess the usefulness of ML in

tackling other issues in ultrasonic NDT. This work has introduced a content-agnostic, fast, and

lightweight algorithm compensating for the limited view transducer configuration. The

architecture is based on a fully convolutional autoencoder. The network was trained on fully

artificial data and tested on a small, but illustrative dataset of laser-scanned corrosion patches

to assess its generalisation capacity. It improves the quality of the images when measured as

maximum absolute error and RMSE. The work compared the performance of the ML

architecture to that of a conventional non-ML algorithm – positivity regularisation. While the

ML approach comparatively underperformed on RMSE, the visual inspection of the results

shows that it leads to a significantly closer-to-truth images.

8.1.2 Key Contributions

• An ML algorithm has been developed that assesses the standard guided wave

inspection A-scan and decides whether the trace contains a feature of interest or not.

This algorithm performs at the true positive rate (probability of detection) of 99.7%

with the false positive rate (probability of false alarm) between 1.5 and 4.1%. This is

presented in Figure 68 Section 5.4.

• VGG-Net has been proven to reach better performance than U-Net both measured

using AUROC and FPR@1TPR. Additionally, the training of VGG-Net is quicker and

more stable than of a U-Net. This points the NDT ML research towards simpler

architectures. This is presented in Figure 67 and Figure 68 Section 5.4.

194

• Pre-training the ML algorithm using FEM simulated data followed by fine-tuning on

the real in-service data makes the model perform better than using just the real data.

This points to the potential gains from developing better finite element models. This

is presented in Figure 65 Section 5.2.1 and Figure 67 Section 5.4.

• An ML algorithm for the analysis of GWT traces can be trained on as few as 1000 real

traces, including 250 examples of the positive class (Figure 68 Section 5.4.). This has

been proven for feature detection, but the follow-up study showed that defect

indications are not overrepresented in the misclassified set (Table 7, Figure 69, and

Figure 70 Section 5.5).

• The generative adversarial network is able to generate traces containing just the

backwall signal which appear realistic, but simulating smaller defect indication signals

was not as successful. This behaviour is clear both in time and frequency domains

(Figure 73, and Figure 74 Section 6.1.2). It is likely that a significantly larger dataset

would be needed for a well performing algorithm in that category. Thus, it should be

concluded that generative learning should be used in more restricted ways, such as

defect indication injection.

• ML based limited view compensation algorithm performs better than current state of

the art on meaningful metrics (Figure 82, Figure 83, and Table 9 Section 7.4.3). This

can be trained on purely simulated data and generalise well to unseen real data.

• Machine learning model performance on the simulated data does not necessarily

translate to the real data, thus any developed models need to be tested on data

gathered in-service to ensure their suitability (Figure 63, Figure 64, and Figure 65

Section 5.2).

• The main issue faced by this work was the difficulty in the data processing. This points

to the directions of further research in the establishment of a data repository that

could be used both to develop and to validate automated decision-making methods.

This is showcased by the complexity of the data processing described in Section 3.2.

8.1.3 Future Work

This work has developed a proof-of-concept algorithm for automated defect indication

detection using guided wave testing. The model in this work was tested using the data

gathered in operational conditions but manually processed and bespoke designed in research

195

conditions, making it a TRL 5/6 technology; thus, the most important follow-up should be

raising the TRL to levels 8/9. This type of work is typically undertaken outside of the academic

setting. In order to raise the TRL the technology needs to be included into a robust pipeline:

1. Design data format for inspection data.

2. Collect and process the inspection data into a known and constant format.

3. Receive the model predictions. Save the prediction in a way the clearly links it to the

original data.

4. Design a continuous learning pipeline that allows for model re-training based on field

inspection results.

5. Design a robust periodic validation procedure to guard against the model drift

(changing predictions based on the new training data).

Overarchingly ensure robust inspector training in the use of the new tool to facilitate

adoption.

Secondly, the model itself can be refined and tested to assess the potential gains in the

performance. Some of the parameters that can be changed and hold some promise for the

improvement in the performance are:

• Changing size of the input data or using multiple input data sizes – this would allow

the capture and classification of larger features.

• Experimenting with a variety of loss types, especially hinge or focal loss.

• Running a large-scale grid search over the parameters such as the receptive field size,

the number of layers, type of pooling.

• Experimenting with other modern ML architectures such as EfficientNet.

• Experiment with pre-trained ML architectures, promising candidates would be

environmental sound classification or keyword recognition networks.

All the mentioned developments are less suited to academic research and more to the

commercial environment.

From the research perspective, the clear next stage is extending the ML capability to defect

indication, rather than feature, detection. This could be pursued in a couple of ways:

• Develop a real experimental dataset of 250+ defect indications and apply the lessons

learnt in this research.

196

• Improve the simulation capacity so the finite element models capture behaviour

within the real data better, thus reducing the need for the in-service data.

• Implement a two-stage ML process, first finding the features and then classifying

between a benign one and a defect indication. This should use engineered features

and explainable architectures, as it is clearly a safety-critical stage.

• Design a multi-agent ML pipeline with separate models trained to automate or assist

in specific inspector tasks (weld identification, DAC setting, frequency sweep etc.)

The generative learning approaches investigated were too data-hungry to be deployed

directly as a method for acquiring realistic data. These could, however, be used to enhance

the simulated data or to transform and inject the defects between samples. Furthermore, the

modern GPT technology should be explored, especially its ability to generate sound waves,

for the possibility of fine-tuning it for ultrasonic NDT area.

The limited view compensation generally performed very well and can be considered state-

of-the art, however, it underperformed on RMSE compared to the conventional approach.

This can be remedied with relatively little additional work. Additionally, the performance of

the algorithm can probably be improved by employing a similar transfer learning approach as

in the main defect indication detection work. This would only necessitate gathering a

significantly larger dataset (at least a couple hundred examples) of corrosion thickness maps

and implementing a two-stage training. This work would be suitable to either academic or

industrial setting.

Finally, the problem of explainability and trust must be addressed. A full review of the

explainability methods must be undertaken, with the candidates assessed for the suitability

in NDT. This work needs to be performed in collaboration with industry bodies, as purely

academic research does not have the profile to become a standard.

197

Bibliography

[1] BINDT, "BINDT," 21 3 2023. [Online]. Available: https://www.bindt.org/What-is-

NDT/NDT-Method-Selector/.

[2] Wikipedia, "Guided Wave Testing," 2023. [Online]. Available:

https://en.wikipedia.org/wiki/Guided_wave_testing. [Accessed 4 10 2023].

[3] W. P. &. S. S. U. David Russell, "Pigging in Pipeline Pre-Comissioning," Pigging Products

and Services Association, 2005.

[4] M. Lowe and P. Cawley, "Long Range Guided Wave Inspection Usage – Current

Commercial Capabilities and Research Directions," Guided Ultrasonics Ltd., 2006.

[5] globaldata.com, "Global Oil and Gas Pipelines Market Outlook, 2021-2025 – Capacity

and Capital Expenditure Outlook with Details of All Operating and Planned Pipelines,"

2022.

[6] D. Alleyne and P. Cawley, "The interaction of Lamb waves with defects," IEEE

Transactionson on Ultrasonics, Ferroelectrics, and Frequency Controlv, vol. 39, no. 3,

pp. 381-397, 1992.

[7] R. Pyle, R. Bevan, R. Hughes, R. Rachev, A. Ali and P. Wilcox, "Deep learning for

ultrasonic crack characterization in NDE," IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, vol. 68, no. 5, pp. 1854-1865, 2020.

[8] Guided Ultrasonics Ltd., "Guided Ultrasonics GUL Products, Screening," 2023. [Online].

Available: https://www.guided-ultrasonics.com/products/#!. [Accessed 8 Aug 2023].

[9] Guided Ultrasonics Ltd., "WavePro4 Software," 2023. [Online]. Available:

https://www.guided-ultrasonics.com/product/wavepro4-software/. [Accessed 18 July

2023].

[10] Rayleigh, "On the free vibrations of an infinite plate of homogeneous isotropic elastic

matter.," Proceedings London Mathematical Society, pp. 225-237, 1888-1889.

[11] H. Lamb, "On waves in an elastic plate," Proceedings Royal Society, pp. 114-128, 1916-

1917.

198

[12] R. Stoneley, "Elastic waves at the surface of separation of two solids," Royal Society

Proceedings London, pp. 416-428, 1924.

[13] Institute of Sound and Vibration Research, "Dispersive waves," 25 July 2023. [Online].

Available: https://resource.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-

further-dispersive.htm.

[14] D. C. Gazis, "Three dimensional investigation of the propagation of waves in hollow

circular cilinders.," Journal of the Acoustical Society of America, pp. 568-578, 1959.

[15] J. D. Achenbach, Wave Propagation in Elastic Solids, New York: North-Holland, 1984.

[16] B. N. Pavlakovic, M. J. Lowe, D. N. Alleyne and P. Cawley, "DISPERSE: A General Purpose

Program for Creating Dispersion Curves.," in Review of Progress in Quantitative

Nondestructive Evaluation, 1999.

[17] J. Rose, in Ultrasonic Waves in Solid Media, Cambridge, Cambridge University Press,

1999, pp. 103-107.

[18] M. G. Silk and K. P. Bainton, "The propagation in metal tubing of ultrasonic wave modes

equivalent to Lamb waves," Ultrasonics, pp. 11-19, 1979.

[19] D. N. Alleyne, T. Vogt and P. Cawley, "The choice of torsional or longitudinal excitation

in guided wave pipe inspection," in Proceedings of 5th Iranian International NDT

Conference, Tehran, 2018.

[20] P. Huthwaite, "Accelerated finite element elastodynamic simulations using the GPU,"

in Journal of Computational Physics, 2014.

[21] S. Marburg, "Discretization requirements: How many elements per wavelength are

necessary?," in Computational Acoustics of Noise Propagation in Fluids-Finite and

Boundary Element Methods , Berlin, Heidelberg, Springer Berlin Heidelberg, 2008, pp.

309-332.

[22] M. B. Drozdz, Efficient finite element modelling of ultrasound waves in elastic media

(Thesis)., London: Imperial College London (University of London), 2008.

[23] J. R. Pettit, A. Walker, P. Cawley and M. J. S. Lowe, "A Stiffness Reduction Method for

efficient absorbtion of waves at boundaries for use in commercial Finite Element

codes," Ultrasonics, pp. 1868-1879, 2014.

199

[24] K. J. Langenberger, M. Berger, T. Kreutter, K. Mayer and V. Schmitz, "Synthetic aperture

focusing technique signal processing," NDT International, pp. 188-189, 1986.

[25] C. Holmes, B. W. Drinkwater and P. D. Wilcox, "Post-processing of the full matrix of

ultrasonic transmit-receive array for non-destructive evaluation," NDT&E

International, pp. 701-711, 2008.

[26] R. K. Rachev, P. D. Wilcox, A. Velichko and K. L. McAughey, "Plane Wave Imaging

Techniques for Immersion Testing of Components With Nonplanar Surfaces," IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 7, pp.

1303-1316, 2020.

[27] J. Davies, F. Simonetti, M. Lowe and P. Cawley, "Review of Synthetically Focused

Guided Wave Imaging Techniques With Application to Defect Sizing," in AIP Conference

Proceedings 820, 2006.

[28] J. Davies and P. Cawley, "The Application of Synthetic Focusing for Imaging Crack-Like

Defects in Pipelines Using Guided Waves," IEEE Transacitions on Ultrasonics

Ferroelectrics and Frequency Control, pp. 759-771, 2009.

[29] A. Velichko and P. D. Wilcox, "Excitation and scattering of guided waves: Relationships

between solutions for plates and pipes," The Journal of the Acoustical Society of

America, vol. 125, no. 6, pp. 3623-3631, 2009.

[30] J. Davies and P. Cawley, "The Application of Synthetically Focused Imaging Techniques

for High Resolution Guided Wave Pipe Inspection," 2007.

[31] H. Geesink and D. Meijer, "Mathematical Structure for Electromagnetic Frequencies

that May Reflect Pilot Waves of Bohm's Implicate Order," Journal of Modern Physics,

pp. 851-897, 2018.

[32] D. N. Alleyne and P. Cawley, "The excitation of Lamb waves in pipes using dry-coupled

piezoelectric transducers," Journal of Nondestructive Evaluation, vol. 15, pp. 11-20,

1996.

[33] H. Kwun and A. Holt, "Feasibility of under-lagging corrosion detection in steel pipe

using the magnetostrictive sensor technique," NDT&E International, vol. 28, no. 4, pp.

211-214, 1995.

200

[34] J. J. Niederhouser, M. Jaeger and M. Frenz, "Comparision of laser-induced and classical

ultasound," San Jose, 2003.

[35] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and

organization in the brain.," Psychological review, vol. 65, no. 6, p. 386, 1958.

[36] R. Bush and F. Mosteller, "A mathematical model for simple learning," Psychological

Review, vol. 58, no. 5, p. 313, 1951.

[37] V. Vapnik and A. Y. Chervonenkis, "A class of algorithms for pattern recognition

learning," Avtomatika i Telemekhanika, vol. 25, no. 6, pp. 937-945, 1964.

[38] K. Fukushima and S. Miyake, "Neocognitron: A new algorithm for pattern recognition

tolerant of deformations and shifts in position," Pattern Recognition, vol. 15, no. 6, pp.

455-469, 1982.

[39] D. Rumelhart, G. Hinton and R. Williams, "Learning representations by back-

propagating errors," nature, vol. 323, no. 6088, pp. 533-536, 1986.

[40] J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters,"

Google Inc., 2004.

[41] P. Vingelmann and F. Fitzek, "CUDA," NVIDIA, 2007.

[42] Y. LeCun, Y. Bengio and G. Hinton, "Deep Learning," nature, vol. 521, no. 7553, pp. 436-

444, 2015.

[43] I. Goodfellow, J. Abadie-Pouget, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville

and Y. Bengio, "Generative Adversarial Nets," 2014.

[44] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel and Y. Bengio,

"Show, Attend and Tell: Neural Image Caption Generation with Visual Attention," 2015.

[45] V. Ashish, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser and I.

Polosukhin, "Attention is all you need," 2017.

[46] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei and I. Sutskver, "Language Models are

Unsupervised Multitask Learners," OpenAI, San Francisco, 2008.

[47] OpenAI, "ChatGPT," 2023. [Online]. Available: https://chat.openai.com. [Accessed 22

Aug 2023].

201

[48] L. P. Kaelbling, M. L. Littman and A. W. Moore, "Reinforcement learning: A survey,"

Journal of artificial intelligence research, vol. 4, pp. 237-285, 1996.

[49] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.

Schrittwieser, I. Antonoglu, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J.

Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach and Kavucuogl, "Mastering

the game of Go with deep neural networks and tree search," nature, vol. 529, pp. 484-

489, 2016.

[50] D. Silver, J. Shrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L.

Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicarp, F. Hui, L. Sifre, G. van den Driessche and

T. Graepel, "Mastering the game of Go without human knowledge," nature, no. 550,

pp. 354-359, 2017.

[51] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,

D. Kumaran, T. Graepel, T. Lillicarp, K. Simonyan and D. Hassabis, "A general

reinforcement learning algorithm that masters chess, shogi, and Go through self-play,"

Science, vol. 362, no. 6419, pp. 1140-1144, 2018.

[52] M. W. Berry, A. Mohamed and B. W. Yap, Supervised and unsupervised learning for

data science, Springer Nature, 2019.

[53] Nvidia, "SuperVize Me: What’s the Difference Between Supervised, Unsupervised,

Semi-Supervised and Reinforcement Learning?," 2018. [Online]. Available:

https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/.

[Accessed 5 10 2023].

[54] Google Inc., "reCaptcha," 2023. [Online]. Available:

https://www.google.com/recaptcha/about/. [Accessed 5 10 2023].

[55] Kaggle, "House Prices - Advanced Regression Techniques," 2024. [Online]. Available:

https://www.kaggle.com/competitions/house-prices-advanced-regression-

techniques. [Accessed 14 July 2024].

[56] IBM, "What is Unsupervised Learning?," 2024. [Online]. Available:

https://www.ibm.com/topics/unsupervised-learning. [Accessed 14 July 2024].

202

[57] Coursera, "Machine Learning Specialization," 2024. [Online]. Available:

https://www.coursera.org/specializations/machine-learning-introduction. [Accessed

13 July 2024].

[58] Coursera, "Deep Learning Specialisation," 2024. [Online]. Available:

https://www.coursera.org/specializations/deep-learning. [Accessed 13 July 2024].

[59] K. Cooper, "What does weight mean in terms of neural network.," 2020. [Online].

Available: https://www.quora.com/What-does-weight-mean-in-terms-of-neural-

networks. [Accessed 5 10 2023].

[60] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by

reducing internal covariate shift.," in International Conference on Machine Learning,

2015.

[61] K. Palczynski, "Application of convolutional neuron network for image processing and

interpretation," Telecommunication and Electronics 23, no. 23, pp. 5-21, 2019.

[62] A. Anwar, "What is transposed convolutional layer?," 2020. [Online]. Available:

https://towardsdatascience.com/what-is-transposed-convolutional-layer-

40e5e6e31c11. [Accessed 5 10 2023].

[63] O. Ronneberger, P. Fischer and T. Brox, "U-Net: Convolutional Networks for Biomedical

Image Segmentation," MICCAI 2015, pp. 234-241, 2015.

[64] Computer Science Wiki, "Maxpool Sample," 2018. [Online]. Available:

https://computersciencewiki.org/index.php/File:MaxpoolSample2.png. [Accessed 5

10 2023].

[65] Dive Into Deep Learning, "Multilayer Perceptrons," 2023. [Online]. Available:

https://d2l.ai/chapter_multilayer-perceptrons/mlp.html. [Accessed 5 10 2023].

[66] T. Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollar, "Focal loss for dense object

detection," 2017.

[67] D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimization," 2015.

[68] N. Qian, “On the Momentum term in gradient descent learning algorithms,” Neural

Networks, pp. 145-151, 1999.

203

[69] Papers with Code, "SGD with Momentum," 2023. [Online]. Available:

https://paperswithcode.com/method/sgd-with-momentum. [Accessed 5 10 2023].

[70] D. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimisation," in ICLR, 2015.

[71] S. Ruder, "Review of gradient descent optimization algorithms," arXiv:1609.04747

[cs.LG] , 2016.

[72] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville and Y. Bengio, "Generative Adversarial Nets," in NeurIPS, 2014.

[73] D. P. Kingma and M. Welling, "An Introduction to Variational Autoencoders,"

Foundations and Trends in Machine Learning, pp. 307-392, 2019.

[74] L. A. Gatys, A. S. Ecker and M. Bethge, "Image Style Transfer Using Convolutional Neural

Networks," in CVPR, 2016.

[75] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation,

pp. 1735-1780, 1997.

[76] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomes, L. Kaiser and I.

Poposukhin, "Attention Is All You Need," in NeurIPS, 2017.

[77] K. Weiss, T. M. Khoshgoftaar and D. Wang, "A survey of transfer learning," Journal of

Bog Data, vol. 3, 2016.

[78] M. T. Ribeiro, S. Singh and C. Guestrin, ""Why should I trust You?" Explaining the

predictions of any classifier.," in Proceedings of the 22nd ACM SIGKKD, 2016.

[79] S. M. Lundberg and S. Lee, "A Unified Approach to interpreting model predictions," in

NeurIPS, 2017.

[80] B. H. Zhang, B. Lemoine and M. Mitchell, "Mitigating Unwanted Biases with Adversarial

Learning," in AIES, New Orleans, 2018.

[81] T. Le Quy, A. Roy, V. Iosifidis, W. Zhang and E. Ntousi, "A survey on datasets for fairness-

aware machine learning," WIREs Data Mining and Knowledge Discovery, 2022.

[82] W. Cukierski, "Dogs vs. Cats. Kaggle.," 2013. [Online]. Available:

https://kaggle.com/competitions/dogs-vs-cats.

204

[83] S. Mariani, S. Heinlein and P. Cawley, "Location Specific Temperature Compensation of

Guided Wave Signals in Structural Health Monitoring," EEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, pp. 146-157, 2020.

[84] ASTM International, "ASTM E2339-21: Standard Practice for Digital Imaging and

Communication in Nondestructive Evaluation (DICONDE)," ASTM International, West

Conshohocken, PA, 2022.

[85] S. Haykin, Neural Networks: a comprehensive foundation., Prentice Hall PTR, 1994.

[86] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale

Image Recognition," 2015.

[87] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.

Khosla, M. Bernstein, A. Berg and L. Fei-Feu, "ImageNet large scale visual recognition

challenge.," 2014.

[88] L. Yang, H. Wang, B. Huo, F. Li and L. Yanhong, "An automatic welding defect location

algorithm based on deep learning," NDT & E International, vol. 120, 2021.

[89] B. C. F. Oliveira, A. A. Seibert, V. K. Borges, A. Albertazzi and R. H. Schmitt, "Employing

a U-net convolutional neural network for segmenting impact damages in optical lock-

in thermography images of CFRP plates," Nondestructive Testing and Evaluation, vol.

36, no. 4, pp. 440-458, 2021.

[90] Q. Luo, B. Gao, W. L. Woo and Y. Yang, "Temporal and spatial deep learning network

for infrared thermal defect detection," NDT & E International, vol. 108, 2019.

[91] C. Wu, Y. Zou and Z. Yang, "U-GAN: Generative Adversarial Networks with U-Net for

Retinal Vessel Segmentation," 2019 14th International Conference on Computer

Science & Education (ICCSE), pp. 642-646, 2019.

[92] E. Schonfeld, B. Schiele and A. Khoreva, "A U-Net Based Discriminator for Generative

Adversarial Networks," Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 8207-8216, 2020.

[93] R. Komatsu and T. Gonsalves, "Comparing U-Net Based Models for Denoising Color

Images," AI, vol. 1, no. 4, pp. 465-486, 2020.

205

[94] R. Giri, U. Isik and A. Krishnaswamy, "Attention Wave-U-Net for Speech Enhancement,"

2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

(WASPAA), pp. 249-253, 2019.

[95] yolov8.org, "Yolov8 Architecture," 2024. [Online]. Available:

https://yolov8.org/yolov8-architecture/. [Accessed 14 July 2024].

[96] T. G. Dietterich, "Ensemble Methods in machine learning.," Berlin, Heidelbeg, 2000.

[97] G. Vilone and L. Longo, "Notions of explainability and evaluation approaches for

explainable artificial intelligence," Information Fusion, vol. 76, pp. 89-106, 2001.

[98] Google Inc., "Welcome to Colab," Google Inc., [Online]. Available:

https://colab.research.google.com/. [Accessed 4 Jan 2023].

[99] R. J. Pyle, R. R. Hughes and P. D. Wilcox, "Interpretable and Explainable Machine

Learning for Ultrasonic Defect Sizing," IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, vol. 70, no. 4, pp. 277-290, 2023.

[100] The American Society for Nondestructive Testing, "ASNT Certification Services LLT,"

2020. [Online]. Available: https://certification.asnt.org. [Accessed 4 Jan 2023].

[101] The British Institute of Non-Destructive Testing, 2013. [Online]. Available:

https://www.bindt.org/Certification/. [Accessed 4 Jan 2023].

[102] European Network for Inspection and Qualification, "ENIQ Report No. 65, Technical

Area 8," 2021.

[103] A. Devaney, "Geophysical diffraction tomography," IEEE Transactions on Geoscience

and Remote Sensing, vol. 1, pp. 3-13, 1984.

[104] A. Andersen, "Algebraic reconstruction in CT from limited views," IEEE Transactions on

Medical Imaging, vol. 8, no. 1, pp. 50-55, 1989.

[105] A. Delaney and Y. Bresler, "Globally convergent edge-preserving regularized

reconstruction: An application to limited-angle tomography"," IEEE Transactions on

Image Processing, vol. 7, no. 2, pp. 204-221, 1998.

[106] R. Lewitt, "Processing of incomplete measurement data in computed tomography,"

Medical Physics, vol. 6, no. 5, pp. 412-417, 1979.

206

[107] A. Andersen, "Algebraic reconstruction in CT from limited views," IEEE Transactions on

Medical Imaging, vol. 8, no. 1, pp. 50-55, 1989.

[108] P. Huthwaite, A. A. Zwiebel and F. Simonetti, "A new regularization technique for

limited-view sound-speed imaging," IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, vol. 60, no. 3, pp. 603-613, 2013.

[109] G. Wang, C. Y. Jong and B. De Man, "Deep learning for tomographic image

reconstruction," Nature Machine Intelligence, no. 2, pp. 737-748, 2020.

[110] Z. Zhou, Y. Wang, J. Yu, Y. Guo, W. Guo and Y. Qi, "High spatial–temporal resolution

reconstruction of plane-wave ultrasound images with a multichannel multiscale

convolutional neural network," IEEE transactions on ultrasonics, ferroelectrics, and

frequency control, vol. 65, no. 11, pp. 1983-1996, 2018.

[111] J. Sun, H. Li and Z. Xu, "Deep ADMM-Net for compressive sensing MRI," in Advances in

Neural Information Processing Systems, 2016.

[112] B. Zhu, J. Liu, S. F. Cauley, B. R. Rosen and M. S. Rosen, "Image reconstruction by

domain-transform manifold learning," Nature, vol. 555, pp. 487-492, 2018.

[113] M. Born and E. Wolf, Principles of Optics 7th ed., Cambridge: Cambridge University

Press, 1999.

[114] Y. M. Wang and W. C. Chew, "An iterative solution of the two-dimensional

electromagnetic inverse scattering problem," International Journal of Imaging Systems

and Technology, vol. 1, no. 1, pp. 100-108, 1989.

[115] W. C. Chew and Y. M. Wang, "Reconstruction of two-dimensional permittivity

distribution using the distorted Born iterative method," IEEE Transactions on Medical

Imaging, vol. 9, no. 2, pp. 218-225, 1990.

[116] P. Huthwaite and F. Simonetti, "High-resolution imaging without iteration: a fast and

robust method for breast ultrasound tomography," The Journal of the Acoustical

Society of America, vol. 130, no. 3, pp. 1721-1734, 2011.

[117] A. J. Devaney, "A Filtered Backpropagation Algorithm for Diffraction Tomography,"

Ultrasonic Imaging, vol. 4, no. 4, 1982.

207

[118] F. Simonetti and L. Huang, "From beamforming to diffraction tomography," Journal of

Applied Physics, vol. 103, no. 10, 2008.

[119] M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging, New York: IEEE

Press, 1999.

[120] G. Wang, C. Y. Jong and B. De Man, "Deep learning for tomographic reconstruction,"

Nature Machine Intelligence, vol. 2, pp. 737-748, 2020.

[121] R. Yang and Y. Yu, "Artificial convolutional neural network in object detection and

semantic segmentation for medical imaging analysis," Frontiers in oncology, vol. 11,

no. 638182, 2021.

[122] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to

document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[123] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale

image recognition," in ICLR, 2015.

[124] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," in

EEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016.

[125] O. Ronneberger, P. Fischer and T. Brox, "U-Net: Convolutional Networks for Biomedical

Image Segmentation," in Medical Image Computing and Computer-Assisted

Intervention – MICCAI 2015, 2015.

[126] M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for convolutional neural

networks," in International conference on machine learning, 2019.

[127] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look once: Unified, real-

time object detection," in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016.

[128] N. Davoudi, X. Dean-Ben and D. Razansky,, "Deep learning optoacoustic tomography

with sparse data," Nature Machine Intelligence, vol. 1, pp. 453-460, 2019.

[129] S. Guan, A. A. Khan, S. Sikdar and P. V. Chitnis, "Limited-View and Sparse Photoacoustic

Tomography for Neuroimaging with Deep Learning," Scientific Reports, vol. 10, p. 8510,

2020.

208

[130] E. Nehme, L. E. Weiss, T. Michaeli and Y. Shechtman, "Deep-STORM: super-resolution

single-molecule microscopy by deep learning," Optica, vol. 5, no. 4, pp. 458-464, 2018.

[131] Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. Zhang, H. Wang and A. Ozcan, "Deep learning

microscopy," Optica, vol. 4, no. 11, pp. 1437-1443, 2017.

[132] K. H. Jin, M. T. McCann, E. Froustey and M. Unser, "Deep convolutional neural network

for inverse problems in imaging," IEEE Trans. Image Process., vol. 26, pp. 4509-4522,

2017.

[133] K. Kwon, D. Kim and H. Park, "A parallel MR imaging method using multilayer

perceptron.," Madical Physics, vol. 44, pp. 6209-6224, 2017.

[134] Y. H. Yoon, S. Khan, J. Huh and J. C. Ye, "Efficient B-mode ultrasound image

reconstruction from sub-sampled RF data using deep learning.," IEEE Transactions on

Tedical Imaging, no. 38, pp. 325-336, 2018.

[135] Z.-Y. Zhu, T. Park, P. Isola and A. A. Efros, "Unpaired image-to-image translation using

cycle-consistent adversarial networks.," in Proceedings of IEEE International

Conference on Computer Vision, 2017.

[136] E. Kang, H. J. Koo, D. H. Yang, J. B. Seo and J. C. Ye, "Cycle-consistend adversarial

denoising network for multiphase coronary CT angiography.," Medical Physics, vol. 46,

pp. 550-562, 2019.

[137] C.-Y. Liou, W.-C. Cheng, J.-W. Liou and D.-R. Liou, "Autoencoder for words,"

Neurocomputing, vol. 139, pp. 84-96, 2014.

[138] Mathworks Inc., "imresize," 22 Jan 2023. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/imresize.html. [Accessed 22 Jan

2023].

[139] G. Aurelien, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,

O'Reilly Media, 2019.

[140] D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimization," San Diego,

2015.

209

[141] Meta AI, "SGD with Momentum," 2023. [Online]. Available:

https://paperswithcode.com/method/sgd-with-momentum. [Accessed 1 November

2023].

[142] Google Inc. , "Keras Tuner," 22 Jan 2023. [Online]. Available:

https://www.tensorflow.org/tutorials/keras/keras_tuner. [Accessed 22 Jan 2023].

[143] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh and A. Talwalkar, "Hyperband: A Novel

Bandit-Based Approach to Hyperparameter Optimization," Journal of Machine

Learning Research, no. 18, pp. 1-52, 2018.

[144] R. J. Pyle, R. R. Hughes and P. D. Wilcox, "Interpretable and Explainable Machine

Learning for Ultrasonic Defect Sizing," IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, vol. 70, no. 4, pp. 277-290, 2023.

[145] A. Galvagni and P. Cawley, "GUIDED WAVE PERMANENTLY INSTALLED PIPELINE

MONITORING SYSTEM, 1430," in AIP Conference Proceedings, 2012.

[146] A. Croxford, J. Moll, P. D. Wilcox and J. E. Michaels, "Efficient temperature

compensation strategies for guided wave structural health monitoring," Ultrosonics,

pp. 517-528, 2010.

[147] A. C. S. Douglass and J. B. Harley, "Dynamic Time Warping Temperature Compensation

for Guided Wave Structural Health Monitoring," EEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, pp. 851-861, 2018.

[148] Y. Gavrilova, "Convolutional Neural Networks for Beginners," 2021. [Online]. Available:

https://serokell.io/blog/introduction-to-convolutional-neural-networks. [Accessed 5

10 2023].

210

List of Publications

(1) M. Mroszczak, R.E. Jones, P. Huthwaite, S. Mariani, “Transfer

Learning in Guided Wave Testing of Pipes” (In review)

(2) M. Mroszczak, P. Huthwaite, S. Mariani, “Improved limited view

ultrasound tomography via machine learning” (In review)

