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A B S T R A C T

The characteristic length method is a non-local approach to predicting the failure of open and closed-hole
composite features. This method requires the determination of the linear elastic stress field of the composite
laminate at its failure load. Typically, this requires computationally expensive progressive damage and linear
elastic modelling and simulation with finite element analysis (FEA). In this study, we demonstrate the benefit of
machine learning methods to efficiently and accurately predict characteristic lengths of composite laminates
with open holes. We find that the prediction of the load-displacement profile usefully informs ultimate failure
load prediction. We also find that linear elastic stress fields are more accurately predicted using a long-short term
memory neural network rather than a convolutional decoder neural network. We show indirect prediction of
characteristic length, via prediction of failure loads and linear elastic stress fields independently, results in more
flexible, interpretable and accurate results than direct prediction of characteristic length, given sufficient training
data. Our machine learning-assisted characteristic length method shows over five orders of magnitude of time-
saving benefit compared to FEA-based methods.

1. Introduction and literature review

1.1. Characteristic length method

Holes exist in composite structures, for instance for lightening pur-
poses and access purposes. Bolted joints remain commonplace in com-
posite structures, and as a result fastener holes [1]. It is important to
predict hole failure quickly and accurately for sizing and optimisation
operations in the design stage of composite structures. The characteristic
length method is a commonly used approach for failure prediction
during the design stage, that accounts for notch sensitivity and the hole
size effect [2,3]. The overall workflow for the characteristic length
method is depicted in Fig. 1.

The linear elastic stress distribution in the net section plane
(perpendicular to loading) at its failure load is determined for a coupon
specimen with an open hole. The characteristic length is determined as
the distance from the hole boundary at which the stress is equal to a
critical stress (point stress criterion). Alternatively, it is defined by the
distance over which average stress is equal to the critical stress (average
stress criterion) [2]. This critical stress can be the unnotched failure
stress, notched failure stress, or a combination of stresses that interact to

cause failure under a failure criterion. Yamada Sun failure criterion is
commonly used, as hole failure is typically driven by fibre kinking [4,5].
For closed holes, the same operations are done in the bearing plane
(parallel to loading), and a characteristic curve is derived by elliptically
joining characteristic lengths in the bearing and bypass (net section)
planes [6]. This characteristic distance can be used to predict the failure
of in-situ open holes in linear elastic composite structural models.

Linear elastic stress distributions require finite element analyses, or
the use of semi-analytical solutions based on the Lekhnitskii formalism
[7,8], for example. In efforts to reduce the experimental campaign to
derive failure loads, modifications to this characteristic length method
include using progressive damage modelling [5], an analytical method
to determine characteristic distance [9], and curve fitting methods to
predict characteristic distance given varying geometric parameters [10].
Furthermore, alternative methods to characteristic length methods
include those based on cohesive zone modelling [11], inherent flaw
modelling based on linear elastic fracture mechanics [12], and methods
based on finite fracture mechanics [13,14,15].
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1.2. Machine learning for stress analysis and failure loads

In this study, however, we aim to use machine learning to eliminate
the online FE modelling and simulation as required by the characteristic
length method. FE is instead used to train our machine learning models
offline, saving the stress analyst time during the predictive virtual
testing process. Direct prediction of characteristic length has been done
in a previous study for varying geometric parameters [10]. However,
direct prediction results in highly black box predictions, making it
difficult to diagnose whether errors in characteristic length prediction
are due to erroneous stress fields or failure loads. Breaking up a highly
non-linear problem, into multiple problems that are each more linear,
should allow for less black-box modelling and improved prediction
performance. Furthermore, direct prediction requires that a certain
failure criterion is encoded in the training data to determine the char-
acteristic length. Therefore, direct prediction is less flexible to changes
in selected failure criterion.

In this study, we wish to produce a transparent and flexible work-
flow. Therefore, we aim to use machine learning to predict the stress
decay of the linear models in the net section planes in a computationally
efficient manner. Furthermore, we aim to use machine learning to pre-
dict the failure load of notched coupon specimens in a computationally
efficient manner. These machine learning-assisted predictions will
therefore allow fast and easy determination of characteristic lengths.

Machine learning has been used in combination with high-fidelity
finite element analysis for structural health modelling and fatigue per-
formance prediction [16,17]. Machine learning has previously been
used for linear elastic stress analysis in composite structures [18,19,20].
Typically, image-based neural networks, such as convolutional neural
networks, U-nets and generative adversarial neural networks have been
used to predict stress fields. In previous work, we used an analytical
solution-informed U-net to predict the stress field in the net section
plane of notched composites in a multi-fidelity framework [21].

However, the convolutional filters used in this study led to irregular
stress distribution predictions. We have also used sequential neural
networks to predict through-thickness stress distributions of
volume-averaged stresses for notched composites in a multi-fidelity
framework [22]. However, the accuracy of sequential neural networks
to predict point stresses across the net section plane remains to be
determined. Therefore, in this study, we compare the use of sequential
neural networks and convolutional neural networks to predict the stress
field in the net section plane.

Machine learning has previously been used to predict failure loads of
composites structures [23,24]. Random Forest, XGBoost, Gaussian Pro-
cess Regression and Artificial Neural Networks (ANNs) have been used
to predict the tensile strength of notched composites as a surrogate for
an analytical solution [15]. However, such methods have not been used
following progressive damage modelling to predict tensile strength.
Therefore, in this study, we use these shallow neural networks to
directly predict the failure load derived by progressive damage models.

In another study, a probabilistic neural network trained on experi-
mental results is used to predict the probability of failure. Following this,
a bi-section search method is used to indirectly determine the tensile
strength that results in a high likelihood of failure [25]. A currently
unexplored idea is to predict failure load indirectly by extracting the
maximum of a predicted load-displacement profile. It is hypothesized
that prediction of the load-displacement profile allows contextual in-
formation, such as stiffness and failure strain, that enables better
maximum load prediction.

Machine learning has been used to predict stress-strain and load-
displacement profiles [26,27,28]. Artificial neural networks and
sequential neural networks lend themselves to such use. In this study, we
use artificial neural networks to indirectly predict maximum failure load
via prediction of the load-displacement profile. This will be compared to
the direct prediction of failure load with artificial neural networks.

Fig. 1. Characteristic length method.
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1.3. Aims and objectives

In the context of an open-hole composite laminate, the complete
objectives of this study are to:

• Predict the maximum load directly using various neural networks.
• Predict the maximum load indirectly from the prediction of the load-
displacement profile using an artificial neural network.

• Predict the linear elastic stress distributions in the net section plane,
comparing the use of sequential neural networks and convolutional
neural networks.

• Predict the characteristic length indirectly via the prediction of
failure load and linear elastic stress distributions and compare them
with the direct prediction of characteristic length.

2. Methodology

2.1. Workflow

To train our machine learning models, we generate linear elastic and
progressive damage models for open-hole coupon specimens of varying
hole geometry and laminate stacking sequence. The design of experi-
ment used in this study follows the methodology of previous work [22].
This design of experiment results in a well-distributed sampling of
laminate stacking sequence in both the lamination parameters space and
the ply angle space.

Python scripting is used to generate linear elastic and progressive
damage finite element models in Abaqus [29]. The linear elastic model
has a unit load applied. The progressive damage model is run up to and
beyond ultimate failure. The load-development profile is extracted from
the progressive damage simulations and saved to a CSV file. The stress
field is re-interpolated into a mesh-independent format using Paraview
[30]. This is performed by converting the odb file to a vtu file and using
the ‘CellDatatoPointData’ and ‘PlotOverLine’ functions with a suitable
sampling resolution. The stress field in the net section plane is then
transformed into an image. The average stress field is scaled by the
failure load, as determined by the maximum load of the
load-development plot. Characteristic lengths are determined by the
application of a Yamada Sun failure criterion [5] given by:
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where the stress components σ11 and σ12, are compared to the tensile
strength XT, compressive strength XC, and in-situ shear strength Sis. The
Yamada Sun failure criterion is most commonly used for the charac-
teristic length method [4,5]. These characteristic lengths are also saved
to a CSV file.

Random Forest, XGBoost, Gaussian Process Regression and ANN are
used to predict the maximum of the load-development plot directly. An
ANN is also used to predict the load-development profile, and the
maximum failure load is therefore predicted indirectly. Inputs are nor-
malised for improved performance.

Bidirectional long short-term memory neural networks and con-
volutional U-net inspired neural networks are used to predict the stress
field in the net section plane. The predicted stress field at the predicted
failure load can then be used to determine the predicted characteristic
distance. Outputs are standardised for improved performance.

2.2. Machine learning models

We use TensorFlow [31] and Keras [32] to develop our ML models. A

short explanation of the models used in this study is given below. Grid
searches are used to determine the hyperparameters of models.

Random forest makes ensembled predictions made by multiple de-
cision trees [33]. Decision trees work by hierarchically defining simple
decision rules to predict data. They can have target variables which are
discrete as for classification problems, or continuous as for regression
problems. However, they particularly suffer from issues such as over-
fitting, and therefore ensembling is required. Bootstrap aggregation,
known as bagging, is the ensembling method used. By sampling with
replacement for each decision tree, we can average their predictions to
result in a final, more robust, prediction. We can also visualise decision
trees and therefore they are more interpretable than other machine
learning models.

XGBoost is a popular and successful version of random forest which
uses gradient boosting as the ensembling method [34]. Here, decision
trees are trained sequentially to minimise the error of the previous de-
cision tree.

Gaussian processes are a form of Bayesian machine learning.
Bayesian methods consider a prior distribution, which is updated with
observed samples to result in a posterior distribution of functions. Prior
and posterior (joint distributions) are assumed to follow Gaussian dis-
tributions, defined by mean and covariance vectors [35]. Knowledge of
prior distributions can be encoded by consideration of the learning
kernel used to maximise log marginal likelihood [36]. The general-
isability and tailorability offered by this machine learning method have
resulted in considerable success for problems with low training dataset
size.

Artificial neural networks are the basis for deep neural networks
which are finding success for highly non-linear problems. They consist of
hidden layers that sequentially perform non-linear operations using a
defined activation function on the output of the previous layer and a set
of weight and biases [37]. The prediction error is minimised by back-
propagation to result in a refined set of weights and biases, which can
then be used on unseen data to make predictions [38].

Long-short term memory neural networks (LSTM) belong to the
family of sequential artificial neural networks, which have found success
in time-series forecasting. As opposed to traditional artificial neural
networks, where inputs and outputs are considered independently, such
networks consider input and output sequentially. In previous work, we
used a modified version of LSTM to predict ply-by-ply stress values, see
Fig. 2a [22]. These modifications include reformulation of the LSTM
from a time-basis to a stacking sequence basis, adding bidirectional
layers as consideration of the symmetricity of laminates, and dropout to
reduce overfitting of the model to training data. In this study, we
incorporate the through-thickness stress distributions at varying radial
distances from the hole boundary into additional channels in the LSTM
network.

Convolutional neural networks (CNN) are a form of artificial neural
networks that are more suited to image predictions, whereby spatial
influences are important [39]. As the output in this study (stress com-
ponents for each ply at multiple radial distances) is of significantly
higher dimension than the input (hole geometry and laminate stacking
sequence), we require the network to upsample appropriately. This is
done using (transpose) convolution. The network used in this study
follows a structure similar to that of a U-net decoder [40], see Fig. 2b,
which is a common image processing machine learning network struc-
ture. Such a model was used in a previous study [21].

2.3. Finite element modelling

We use Abaqus/2021 to develop our implicit finite element models
and run their simulations [29]. Modelling details are shown in Fig. 3.
Our coupon specimens are modelled according to a successfully vali-
dated methodology [41]. We model the coupon specimen using geom-
etry as defined by ASTM standards for open-hole tensile testing of
composite laminates (ASTM D5766_D5766M-23 [42]). We vary hole
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diameter within a range from 2 mm to 4 mm. We use plies of 0.125 mm
thickness. We limit the upper bound of laminate thickness to 4 mm, use a
width to diameter ratio of 6 and a specimen length of 200 mm, as
defined in the ASTM standard [42].

The elastic properties of the IM7/8552 carbon fibre composite, that
is used for our linear elastic models, are defined in Table 1. In addition,
the in-situ shear strength is obtained from [43] as 100 MPa. Non-linear
geometry effects are turned off for our linear elastic models. For our
progressive damage models, we use a Hashin failure criteria [44] with
damage initiation and evolution parameters as shown in Table 2. It has
been found that to successfully model the size effect of open-hole com-
posite specimens, and reduce overprediction of failure loads, it is
required to model cohesive damage [41]. Therefore, in our progressive
damage models, we use thin cohesive layers with properties as defined
by Table 3.

For our progressive damage coupon specimens, we model each ply
using a layer of continuum shell elements (SC8R) and we model each
cohesive layer with cohesive elements (COH3D). For our linear models,
we use solid elements (C3D8R) with one element per ply in the thickness
direction. We use a mesh size of 0.5 mm, with additional circular par-
titions in the vicinity of the hole boundary to improve predictions in the
region of high stress concentration.

When loading our coupon specimens, we fix one end at all degrees of

freedom, and we fix all degrees of freedom at the loaded end, apart from
one axial degree of freedom whereby a force is applied. We apply a force
rather than a displacement, as the stresses given a unit of applied force to
the linear elastic model are scaled by the failure load derived from the
progressive damage model.

3. Results

3.1. Failure load prediction

We train multiple neural networks to directly predict the ultimate
failure load of the open hole. This includes using Random Forest,
XGBoost, Gaussian Processes and ANN. We also train a neural network
to indirectly predict the ultimate failure load, by first predicting the
load-displacement profile, using an ANN. Comparisons in the test ac-
curacies for these networks, across multiple training dataset sizes, are
given in Fig. 4. A violin plot showing the distribution of failure loads in
the test set is also provided for reference in Fig. 4. A violin plot is similar
to a box plot as it presents the median, interquartile range, maximum
and minimum values. However, a violin plot additionally presents a
probability density plot to show the distribution of values. In Fig. 5, we
demonstrate an example prediction of failure load through direct and
indirect ANN methods, using the maximum training dataset size.

3.2. Linear elastic stress field prediction

We use a LSTM neural network and a CNN to predict the linear elastic
stress field of the open-hole specimens. The stress quantities of partic-
ular interest in the Yamada Sun Failure criterion, used in this work to
determine failure in combination with the average stress criterion, are

Fig. 2. Block diagrams of machine learning models used in study.

Fig. 3. FE modelling details.

Table 1
Material properties of IM7/8552 [41].

(GPa) E22
(GPa)

E33
(GPa)

ν12 ν13 ν23 G12

(GPa)
G13

(GPa)
G23

(GPa)

161 11.4 11.4 0.32 0.32 0.43 5.17 5.17 3.98
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σ11 and σ12. The test accuracies for the neural networks, across multiple
training dataset sizes, are presented in Fig. 6. Violin plots showing the
distribution of stresses in the test set are also provided for reference in
Fig. 6. Example predictions of through-thickness and radial stress dis-
tributions using these neural networks, with the maximum training
dataset size, are shown in Fig. 7.

3.3. Characteristic length prediction

We train multiple neural networks to directly predict the charac-
teristic length of the open hole specimens, as determined from the fail-
ure load and linear elastic stress field in combination with the Yamada
Sun Failure Index and the average stress criterion. Random Forest,
XGBoost, Gaussian Processes and ANN are used for these direct pre-
dictions. We also train high-performance networks from the previous
sections to indirectly predict the characteristic length. Therefore, we use
an indirect-ANN method to predict failure load and a LSTM neural
network to predict the linear elastic stress field. We compare the test
accuracies of these direct and indirect methods, across multiple training
dataset sizes, in Fig. 8. A violin plot showing the distribution of char-
acteristic lengths in the test set is also provided for reference in Fig. 8.We
present example predictions of radial stress distribution of failure index
using indirect methods, at the maximum and minimum training dataset
size, in Fig. 9.

Overall, the use of ML to indirectly predict failure load takes up to
115 ms CPU time, as opposed to up to 72 h using progressive damage
FEA. The use of LSTM neural networks to predict linear elastic stress
field takes up to 1 s CPU time, as opposed to 102 s using linear elastic
FEA. Direct prediction of characteristic length takes on average 550 ms
CPU time.

4. Discussions

From Fig. 4, we observe that Gaussian Process Regression offers the
best direct prediction performance for failure loads across training
dataset sizes. Gaussian Process Regression typically performs well for
low dataset regimes, as covariance functions can provide a continuous
interpolation between training samples. With increasing dataset size and
dimensionality, defined covariance functions may struggle to generalise
to data and result in underfitting. Accordingly, we find that direct

Table 2
Damage initiation and evolution properties of IM7/8552 [41].

(MPa) XC (MPa) YT (MPa) YC (MPa) SL (MPa) SC (MPa) Gc
ft (N/mm) Gc

fc (N/mm) Gc
mt (N/mm) Gc

mc (N/mm)

2806 1690 60 185 90 120 112.7 112.7 0.311 0.311

Table 3
Cohesive elastic, damage initiation and evolution properties [41].

(MPa) Ess (MPa) Ett (MPa) tn (MPa) ts (MPa) tt (MPa) η Gc
n (N/mm) Gc

s (N/mm) Gc
t (N/mm)

4560 2068 1592 40 50 50 1.45 0.293 0.631 0.631

Fig. 4. Test accuracies of direct and indirect ML prediction methods for failure load (left) and violin plot of failure loads in test dataset (right).

Fig. 5. Comparison of failure load predictions using direct and indirect ANN.

O.A.I. Azeem and S.T. Pinho Composites Part C: Open Access 15 (2024) 100524 

5 



prediction using XGBoost and indirect prediction using ANN perform as
well as the Gaussian Process Regression at the maximum training dataset
size investigated. These three networks may therefore be used in
ensembling methods to result in improved accuracy, especially after 200
training samples.

From Fig. 4, we also see that indirect prediction using ANN results in
higher errors than direct prediction using ANN for low training dataset
sizes. However, the larger the training dataset size, the greater the
reduction in test error using the indirect method whereas the test error
using the direct method has stagnated. The indirect method requires the
prediction of the entire load-displacement profile as opposed to a sin-
gular load. Due to the additional variance in the larger output feature
size, it may thus be reasoned that more training data is required for the
indirect model to effectively learn before error convergence. From
Fig. 5, we see that the prediction of the load-displacement curve allows
the model to capture the stiffness behaviour of the laminate, and
therefore the maximum load prediction is more accurate than without
this information, when using the same type of neural network.

In Fig. 6, the LSTM neural network method has superior performance
to the CNN over all training dataset sizes, for both stress components
investigated. Furthermore, we observe this superior prediction perfor-
mance for an example laminate in Fig. 7, both in through-thickness and
radial directions. This result indicates that the convolutional kernels
used in CNNs does not provide improvements in the prediction of the
stress field. Conceptually, the stress field in the net section plane is better
predicted as independent parallel radial cross-sections, as opposed to an
image with through thickness and radial influences. For both the CNN
and LSTM, errors have not converged with the maximum training
dataset size and are likely to continue reducing with further training
data.

Stress distributions in the through-thickness direction are strongly
related to ply angles and therefore vary significantly between plies.
Conversely, stress distributions in the radial direction are continuous
and vary more smoothly. The LSTM is able to accurately capture
through-thickness stress distributions at a given radial distance, making
benefit of bi-directionality to account for long-range effects [22]. When

repeated at various radial distances the predictions made by the LSTM
maintain accuracy, though such predictions are not correlated with each
other resulting in slight discontinuities in the radial direction. CNNs
have the potential to consider correlations in the radial direction, as they
apply a convolutional kernel to patches across the image. However, the
convolutional kernels used in this study (3 × 3 pixels) are of low di-
mensions in comparison to the image (80 × 80 pixels). Therefore,
long-range effects in the radial and through-thickness directions may not
be fully considered by the CNN, and short-range effects may be
disproportionately valued. This may result in a counter-productive ef-
fect from the CNN that results in poor predictions in the
through-thickness direction and highly discrete predictions in the radial
direction.

From Fig. 8, we observe that direct prediction of characteristic length
shows similar errors across ML methods. It is further observed that the
models show insignificant improvements, and in some cases marginal
degradation of performance, with increasing dataset size. This perfor-
mance limitation from direct prediction, across hypertuned model ar-
chitectures, indicates that the input-output mapping contains
insufficient information for the models to further learn from. On the
other hand, test errors using indirect methods show a reduction with
increases in training dataset sizes, eventually outperforming direct
prediction methods. As failure load prediction and linear elastic stress
field prediction showed improved performance with greater training
dataset size, it follows that indirect characteristic length prediction
shows this same behaviour. For larger dataset sizes, this error is likely to
reduce further, and greater outperform direct methods.

We can readily change the failure criterion used to determine the
characteristic length using the indirect method, whereas we would have
to retrain our direct ML model under such a change, therefore making
indirect methods more flexible. Indirect prediction of characteristic
length also allows us to visualise the radial variation of failure indices,
see Fig. 9. This results in more interpretable (and less of a ‘black box’)
prediction than direct predictions of the characteristic length. For
example, from Fig. 9 we observe the improved prediction of failure
index distribution given a greater training dataset size. However, the

Fig. 6. Test accuracies of stress field predictions (left) and violin plot of stress components in test dataset (right).
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error in characteristic length prediction compounds depending on the
intersection of the failure threshold (in this case equal to 1) with the
failure index distribution. When this intersection occurs at a point when
the radial gradient of failure index distribution is high, the error in
characteristic length prediction is lower than when the intersection
occurs where the radial gradient is low. That is to say, the radial gradient
of the predicted failure index distributions at the failure index indicates
the uncertainty in the prediction of characteristic length.

5. Conclusions

In this study, we used direct and indirect machine learning methods
to predict failure load, linear elastic stress distributions and character-
istic lengths as required for the average stress criterion to determine the
failure of open-hole composite features.

Indirect prediction of failure load offers similar performance to the
best-performing direct prediction methods, as more training samples are

Fig. 7. Examples of through-thickness and radial predictions.

Fig. 8. Test error in characteristic length prediction (left) and violin plot of characteristic lengths in test dataset (right).
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generated. The load-displacement related context is shown to usefully
inform maximum load prediction, as compared to without this
information.

Long-short term memory neural networks predict linear elastic stress
distributions in the net section plane better than convolutional neural
networks. This shows that the stress field is better predicted as inde-
pendent through thickness cuts at discrete radial locations, as opposed to
a 2D image with spatial influences.

We show that indirect prediction of characteristic length out-
performs direct prediction accuracy with increasing dataset size. Indi-
rect prediction of characteristic length allows more customisable results
as we can change the failure index criterion easily. Furthermore, indirect
prediction allows more interpretable results as we can visualise the
predicted failure index distribution and determine the expected uncer-
tainty in characteristic length prediction given the radial gradient of
these failure index distributions.

Our machine learning enhanced predictions of characteristic lengths
result in greater than five orders of magnitude improvement in CPU
time, as compared to progressive and linear elastic FEA. Such a machine
learning-enhanced method can therefore be highly useful at the early
design stage of large composite structures.
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