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Elastic properties and thermodynamic anomalies of supersolids
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We study a supersolid in the context of a Gross-Pitaevskii theory with a nonlocal effective potential. We
employ a homogenization technique which allows us to calculate the elastic moduli, supersolid fraction, and
other state variables of the system. Our methodology is verified against numerical simulations of elastic defor-
mations. We can also verify that the long-wavelength Goldstone modes that emerge from this technique agree
with Bogoliubov theory. We find a thermodynamic anomaly that the supersolid does not obey the thermodynamic
relation ∂P/∂V |N = −n (∂P/∂N |V ), which we claim is a feature unique to supersolids.
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I. INTRODUCTION

A supersolid is a phase of matter that displays both crys-
talline order and superfluidity in the form of nonclassical
rotational inertia (NCRI). A key requirement is that both the
continuous translational symmetry and the U (1) global gauge
symmetry of the system is spontaneously broken in the ground
state.

There have been several attempts to understand this quan-
tum phase of matter experimentally and to understand its
properties theoretically. While it has not been observed in bulk
4He [1,2], there are hints that such a phase may exist in the
second monolayer of 4He on graphite [3] where NCRI has
been measured in a density regime near layer completion with
an anomalous temperature dependence of the specific heat
capacity. More recent experiments in ultracold dysprosium
and rubidium atoms [4–6] have observed the spontaneous
breaking of continuous translational symmetry together with
long-range phase correlation.

The first considerations of a supersolid phase were made
by Andreev and Lifshitz [7] and Chester [8] who considered
the possibility of a supersolid phase in 4He. They argued that
the superfluid fraction of a supersolid would be reduced from
100% due to the coupling of the phonons of the crystalline
structure to the U (1) phase of the condensate wave function.
This was further developed by Leggett [9].

Later attempts at theoretical work have taken a phe-
nomenological symmetry-based approach starting with the
work of Nozières [10] and Dorsey et al. [11–13]. Son [14]
has described how Galilean invariance puts constraints on the
form of the Lagrangian that describes the low-energy dynam-
ics of supersolids.
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There have also been approaches starting from micro-
scopic Hamiltonians based on Gross-Pitaevskii theory [15]
and Bogoliubov theory [16]. It is natural to ask whether these
approaches give rise to the same predictions for the low-
energy properties of the supersolid system, such as elasticity
and superfluidity.

Moreover, there has been intensive study on the super-
fluid fraction and excitation spectrum of the supersolid phase.
However, there has been comparatively little study on the
elastic properties. In this paper we will build on the homoge-
nization technique of Rica and coworkers [17–19] to obtain an
effective low-energy theory that agrees well with Bogoliubov
theory and numerical calculations. Importantly, the original
formulation of the homogenization technique obtained a value
for the bulk modulus that was not in agreement with the
expected bulk modulus in the superfluid phase. Furthermore,
a triangular supersolid would be expected to possess certain
symmetries in the Cauchy elastic tensor, and these were not
satisfied in the original formulation. Finally, the velocities
of the long-wavelength excitations in the previous work also
did not agree with the results based on Bogoliubov theory
[16], in the sense that the velocities obtained on a particular
supersolid phase using the Bogoliubov technique were not
consistent with those obtained via the original formulation of
homogenization.

With some important corrections that will be derived in
this paper, we will show that the homogenization approach
can be reconciled with other techniques, producing the pre-
dictions for all the elastic and superfluid properties of the
supersolid phase. More specifically, we provide a method with
the Gross-Pitaevskii approximation that calculates the elas-
tic constants and superfluid density (phase stiffness) which
is valid for any particular ground-state solution of a Gross-
Pitaevskii Lagrangian. It should be noted that, in the limit
of zero temperature, where a homogeneous superfluid has
a superfluid fraction of 100%, a supersolid has a reduced
superfluid fraction [9,20]. It is important to clarify that this
is not an enhancement of the “normal fraction” which is
found in superfluids at nonzero temperatures and carries
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entropy. Rather, it is indicative of a separate phase that
spontaneously breaks translational symmetry. In fact, it is a
consequence of the fact that the “phonons” of the crystalline
structure couples to the U (1) phase of the condensate wave
function. [21–25].

The outline of the paper is as follows. In Sec. II, we review
the Gross-Pitaevskii theory for Bose condensates and how a
finite-range interaction can give rise to a supersolid phase. In
Sec. III, we lay the framework for the homogenization theory,
specifying the deformation procedure and rigorously defining
all necessary steps to calculate a long-wavelength theory of
the low-lying excitations. Section IV uses results from Sec. III
to derive elastic constants analytically and finds that they
agree with elastic constants that we obtain numerically. In
Sec. V, we will consider the additional U (1) gauge and derive
the supersolid fraction, as well as a coarse-grained Lagrangian
which is the analytic expansion around the ground state of the
elastic strain and U (1) fields. Section VI uses the effective La-
grangian and considers the additional energetic contributions
of flow across the system, and of work done by the strain on
the surroundings. In doing so, we derive a long-wavelength
effective Lagrangian which describes the Goldstone modes of
the system. Section VII solves for the excitation velocities and
discusses some of the key features of the theory. In Sec. VIII,
we verify the excitation velocities through use of Bogoliubov
fluctuations in a Bloch theorem context, and find excellent
agreement between the two seemingly disparate theories. In
Sec. IX, we will discuss a thermodynamic anomaly in the
compressibility that we believe is unique to a supersolid.

We subsequently make the claim that since we have sat-
isfied the symmetry requirements for an effective theory
imposed by Son [14], have verified our elastic constants nu-
merically, and have verified the velocities of the low-lying
excitations through two independent and seemingly uncon-
nected techniques, then we must have the correct effective
Lagrangian for a supersolid. Furthermore, the technique out-
lined in this paper can now be used and applied directly to
other more complicated and realistic systems.

II. MEAN-FIELD SUPERSOLIDS

In this paper, we study a Bose-Einstein condensate (BEC)
of particles of mass m with a finite-range interaction U (r)
in a Gross-Pitaevskii theory. The condensate wave function
ψ (r, t ) is a complex-valued function that can be writ-
ten in number-phase representation (or Madelung form) as
ψ (r, t ) = √

ρ(r, t )eiφ(r,t ). The Lagrangian of the system is

L = −
∫

�

[
h̄ρ

∂φ

∂t
+ h̄2

2m

(
ρ(∇φ)2 + 1

4ρ
(∇ρ)2

)

+1

2
ρ(r)

∫
�

U (|r − r′|)ρ(r′) dr′
]

dr, (1)

where � is the spatial domain of the system. In the absence
of any current or twisted boundary conditions, the phase φ

is spatially uniform in the ground state and can subsequently
be set to zero. The ground-state density can be found by

FIG. 1. A spatially modulated condensate. Left: real space den-
sity distribution. Right: Fourier transform of density distribution
implying nonzero momenta in the condensate.

variational calculus and is given by

h̄2

4m

(
(∇ρ)2

2ρ2
− ∇2ρ

ρ

)
+

∫
�

U (r − r′)ρ(r′) dr′ = μ, (2)

where μ is the chemical potential to enforce the constraint∫
�

ρ(r) dr = N , the total number of particles in the system
Eq. (2) is a nonlinear equation which we solve numerically
via a Crank-Nicholson scheme. By evolving the Lagrangian in
imaginary time numerically, we obtain the (real) ground-state
wave function as the steady-state solution, using a Runge-
Kutta algorithm for the temporal evolution. The numerics are
performed on a 2D triangular grid in real space with periodic
boundary conditions to respect the hexagonal symmetry of the
spatially modulated condensate that we expect.

A necessary feature (as shown by Heinonen et al. [26])
for the spontaneous development of a density wave in the
condensate is the presence of an interaction potential which
at least has nonzero Fourier components in k4 and upwards
[26]. This rules out the use of the typical contact potential for
supersolid formation.

To illustrate this, consider a toy model of a soft-core re-
pulsive interaction with a finite-range of a in two dimensions:

U (r) = U0�(|r| − a), (3)

where � is the Heaviside step function. For this simple in-
teraction, the system is controlled by a single dimensionless
parameter,

� = πU0ma2

h̄2 na2, (4)

for a system of average number density n.
The phase diagrams for the soft-core system are described

in detail in various works [27–29]. We find that our results
are in agreement, with small � corresponding to a superfluid
phase and that for � > 37 the system spatially orders into the
supersolid phase. This is in agreement with a theoretical sub-
critical limit calculated by During et al. [19]. This supersolid
phase is characterized by a triangular lattice in 2D, illustrated
in Fig. 1.

The bulk of this paper is concerned with an effective long-
wavelength theory for this supersolid phase where the Bose
condensate is spatially modulated. We will use these numerics
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to verify our formalism by calculating the elastic constants
which are dependent on the ground state.

III. HOMOGENIZATION FOR ELASTICITY

The spontaneously broken translational symmetry in a su-
persolid means that the system must possess Goldstone modes
which are the elastic modes. In this section, we will build on
the work of Refs. [17,19] to derive the elastic response of the
system. The goal here is to consider an elastic deformation
on the ground state, e.g., stretching/shearing as described
by some strain tensor, and then to expand the Lagrangian
to second order in said strain tensor and recover the elastic
moduli through the generalized Hooke’s law.

We follow the metholodology of Josserand et al. [17], but
our results have some key differences. Namely, we believe
some key terms were missed which skews the elastic con-
stants to ones that do not agree with simple calculations in
the superfluid limit and lead to physically inconsistent elastic
moduli. More specifically, the Cauchy elastic tensor does not
obey internal symmetries consistent with a triangular lattice,
and possesses negative elastic moduli which suggest an unsta-
ble state. Moreover, we conduct a different treatment of the
system with regard to the canonical ensemble and the degrees
of expansion in the strain tensor.

The analysis will take the following structure: we will first
carefully define the notion of an elastic deformation on the
system and provide the basis for the calculation. We then
expand the Lagrangian to second-order in the elastic strain
tensor. We demand that the deformed system also be a ground
state, and therefore solve the Euler-Lagrange equations for
the new system, which will allow us to determine elastic
constants.

We begin by describing a physical deformation by consid-
ering the displacement, u(r), of points in the material. The
displacement can be written as

r′ = r − u(r), (5)

moving points r (over some domain �) in the undeformed
ground state to points r′ (with some domain �′). This basis
describes the deformed material in the laboratory frame of an
external observer. To clarify, this is considered an active trans-
formation which physically acts on the material and changes
the domain of the system in the laboratory frame. The basis r′
is a Cartesian coordinate system in the laboratory frame of the
external observer, but is a non-Cartesian coordinate system in
the frame of the material.

We then define an inverse passive transformation which
maps the coordinate system r′ to the coordinate system r′′,
which is a non-Cartesian basis in the material frame that has
the same domain as the inital r (domain �). This passive
transformation is defined by the displacement u′(r′), where
we note that this does not change the energy of the system
in any way. It is simply a redefinition of coordinates in order
for us to express the actual change in the energy that occured
during the active transformation defined in Eq. (5).

This passive transformation is given by the form

r′′ = r′ + u′(r′), (6)

FIG. 2. A schematic of the deformation procedure. The leftmost
image depicts an undeformed system with a basis r, which then
undergoes an active transformation given by some strain to become
the middle system. The rightmost image depicts the system after
the passive transformation, such that the final coordinate system r′′

coincides exactly with r, but now there are additional curvatures in
the space.

where the basis r′′ coincides identically with the basis r in the
material frame, i.e., r′′ = r, but now the space has additional
components in its gradients, as well as a Jacobian associated
with its volume element. Note that the passive transformation
u′(r′) is in the deformed laboratory frame given by the coordi-
nates r′ and importantly is a different transformation to u(r).

These extra curvatures are necessary to describe the full
effect of the displacement procedure on the system. We now
relabel the basis r′′ as r, for convenience, where again we
must stress that even though the coordinate systems r and
r′′ coincide, the space is no longer Cartesian and has an as-
sociated Jacobian and curvature. This procedure is illustrated
schematically in Fig. 2.

As of now, the above transformation is completely general,
but to proceed we need to specify a particular class of trans-
formation which allows us to use linear response theory and
elasticity theory. We make the distinction that u(r) is such that
all gradients in space are small constants and that gradients in
time are considered small velocities.

More specifically, we choose the tensor ∂iuk , which is a
dimensionless number, s.t. ∂iuk ∼ δ, where δ � 1. The time
derivative of u, i.e., ∂t uk , is treated as small in the same sense
as the phase perturbation, which we will later cover in Sec. V.
This is referred to as a uniform deformation, in that the strain
tensor is constant and small everywhere, which allows us to
treat it as a perturbative parameter which we will expand up
to harmonic terms.

We now refer to uik ≡ ∂iuk as the strain tensor, and en-
deavour to expand L in powers of uik . To employ linear
elastic theory we have to keep all terms up to O(δ2) in the
Lagrangian. We also need to relate the gradient of the trans-
formation u′ in the primed deformed basis in the laboratory
frame to the gradient of the transformation u in the material
basis. It is relatively easy to show that

∂ ′
i u

′
k = ∂iuk + ∂iul∂l uk ≡ uik + uil ulk (7)

up to O(δ2) in the strain tensor (note that we are using the Ein-
stein summation convention). This allows us now to express
derivatives in the primed (deformed laboratory frame) basis
in terms of derivatives in the unprimed (deformed material
frame) basis to find

∂ ′
i = ∂i + ∂k (uik + uil ulk ). (8)

To simplify the expressions that we will derive in this pa-
per, we introduce notation for a set of key tensors that appear
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regularly:

εik = − 1
2 (uik + uki ), �ik = 1

2 uil ukl ,

ωik = 1
2 uliulk, χik = 1

2 (uliukl + ulkuil ). (9)

Since the deformation actively changes the domain of the
system, there is an associated change of volume. We refer to
the deformations described in Eqs. (5) and (6) to define the
differential volume elements as∫

�′
dr′ =

∫
�

Jr′→r dr, (10)

with the Jacobian

Jr′→r = det

(
∂r′

i

∂rk

)
= 1 + εll + Miklm uikulm, (11)

where Miklm ≡ (δikδlm − δimδkl )/2. A negative εll corresponds
to a reduction in volume. In two dimensions, Miklmuikulm =
uxxuyy − uxyuyx. The quantities εll and Miklmuikulm are some-
times called the first and second strain invariants as they are
independent of the basis in which the strain tensor is written.
We stress now that the coordinate system r describes the
deformed system in the frame of the material: it has the same
domain as the undeformed material but is now a non-Cartesian
space.

To understand how this deformation affects the La-
grangian, we need to understand how the density changes as a
function of the deformation. After the deformation occurs, the
particles in the system will reorganise themselves in such a
way as to minimise the total energy of the new configuration,
leading to a new density described by ρ(r′). The reorgani-
zation of particles due to a deformation can be expressed
as the predeformation density plus a component, ρ̃, which
completely accounts for all changes. The component ρ̃ covers
both local density changes at length scales within a unit cell of
the supersolid and also includes the change in average density
due to total number conservation and a change in volume.

We consider that this new density is written in the r′ basis.
We stress that this is not the density in the material frame,
but rather the density in the laboratory frame of the external
observer. We can then use the passive transformation to write
the density in the r′′ basis, which is the material frame that
now has some curvature. Without loss of generality we can
express this new density at some point r′ as

ρ(r′) = ρ0(r′′) + ρ̃(r′′),
∫

�′
ρ(r′) dr′ =

∫
�

ρ0(r′′) dr′′, (12)

where ρ0 is the predeformation ground-state density profile.
As of now this is simply a mapping to a scalar function that
has been subject to an active transformation.

We stress that from this point we drop the r′′ notation and
refer to the coordinate as r where now the coordinate system
is non-Cartesian and has a Jacobian associated with it.

The general form of ρ̃ is determined by minimizing the
energy of the deformed system, subject to particle conserva-
tion. For linear elastic theory, we only need to consider only
a perturbative strain on the system and expect that, since the
strain is perturbative, the density change ρ̃ must be analytic in
the strain tensor. We truncate the Taylor expansion to O(δ2)

in the strain tensor and use the ansatz

ρ̃(r) = ρ ik
1 (r) εik + ρ iklm

2 (r) uikulm, (13)

which we will justify later. This allows us to expand the new
normalization condition for particle conservation,∫

�

(ρ0 + ρ̃)(1 + εll + Miklm uikulm) dr =
∫

�

ρ0 dr, (14)

and after collecting powers of the strain tensor obtain normal-
ization requirements for the different terms in the expansion∫

�

(
ρ ik

1 + ρ0δ
ik
)

dr = 0,∫
�

[
ρ iklm

2 + ρ0(Miklm − δikδlm)
]

dr = 0. (15)

Due to the changing energy of the system (and indeed the
change in average density), we can expect to see a change
in the chemical potential μ too. In a similar spirit as that
of Eq. (13), we can analytically expand the new chemical
potential in the strain tensor as

μ = μ0 + μik
1 εik + μiklm

2 uikulm, (16)

where the first term is the chemical potential of the unde-
formed system, and the constants μik

1 and μiklm
2 encodes how

the chemical potential changes due to the deformation and are
to be determined by the least-action principle.

We additionally need to consider how the displacement
field uik changes the interaction potential U . We note that the
interaction is a function of separation between particles, but
importantly is originally written in terms of the separation
�r′ as measured in the real laboratory frame coordinates:
U = U (�r′). For a uniform strain, we find immediately that
the laboratory-frame separation �r′ can be written in terms of
the material-frame separation �r such that

(�r′)2 = (δik + 2εik + 2�ik )(�r)i(�r)k, (17)

which is exactly equivalent to that of Landau and Lifshitz [30].
The tensor in the above equation is sometimes referred to as
the finite strain tensor. A Taylor expansion of the interaction
for small strain gives

U (�r′) = U (�r) + (εik + �ik ) fik (�r) + εikεlmWiklm(�r),

(18)

with

fik (r) ≡ rirk

|r|
∂U (|r|)

∂|r| ,

Wiklm(r) ≡ rirkrl rm

2|r|2
(

∂2U

∂|r2| − 1

|r|
∂U

∂|r|
)

. (19)

To summarize, we have now defined a perturbative defor-
mation which changes the geometry of our system and have
obtained the volume changes and curvature changes due to
said deformation. We have also derived a new density and
chemical potential, both of which we will solve for using
the least-action principle. We now have all the ingredients to
formulate a theory of linear response of the system to elastic
deformations.
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IV. ELASTICITY THEORY

We can now develop a linear elastic theory by expanding
the Lagrangian to second order in the strain tensor and finding
the response, ρ̃, of the density to a small applied strain using
the principle of least action. The full details are given in
Appendix A where we calculated and collected all the first-
and second-order components of uik in the Lagrangian. This
should be of the form:

L(�′) 	 L0(�) + |�|πikuik − |�|
2

Aiklmuikulm, (20)

where the first term is the ground-state Lagrangian, the second
term contains the coupling to the stress tensor πik , and the
third term is related to the Cauchy elastic tensor Biklm, as
carefully discussed in Bavaud et al. [31]. (|�| is the total
volume of the predeformed system.)

Let us consider the term linear in the strain tensor. The
pressure tensor is related to the stress tensor πik by Pik =
−πik . We will be studying a two-dimensional supersolid
whose spatial modulation forms a triangular lattice. The C3

symmetry of the ground state dictates that Pik = Pδik , i.e.,
the pressure is isotropic. Collecting the O(uik ) terms in the
expansion of the Lagrangian [see Eqs. (A12) and (A12)], we
can identify the pressure as

Pik =
∫

�

[
h̄2

4m

(
∂iρ0∂kρ0

ρ0
− ∇2ρ0 δik

)
− 1

2
ρ0( fik ∗ ρ0)

]
dr
|�| ,

(21)

which will be used in subsequent calculations. The above
expression can be directly calculated for any ground-state
density ρ0. In the case of a spatially homogeneous superfluid,
it leads to what we expect: Pik = 1

2μ0nδik . (See Appendix A.)

Let us now turn to the the second-order terms in the ex-
pansion (20). It is important to note that the tensor Aiklm is
not the Cauchy elastic tensor Biklm which provides the tensor
in the Hooke’s law for the stress/strain relationship between
a deformed state stress and the strain that induced the defor-
mation, i.e., πik (�′) = πik (�) − Biklm(�)ulm. It can be shown
[31] that

Biklm = Aiklm + Pikδlm − Pimδkl , (22)

which we will derive independently later in Eq. (44) by con-
sidering work done by the expansion on the surroundings.

For a supersolid with C3 symmetry, we also expect
the elastic tensor to obey the indicial symmetries Biklm =
Bklim = Blkmi = Bmlki so that it only contains two independent
quantities—the bulk modulus K = c44 and the shear modulus
G = c66:

Biklm = Kδikδlm + G(δilδkm + δimδkl ). (23)

It should be noted that Aiklm is not indicially symmetric in the
same way as Biklm. Elastic theory [30] in 2D posits that the
bulk modulus K is given by Bxxyy, and the shear modulus G
is given by Bxyxy (or all equivalent indicially symmetric ele-
ments). For a triangular lattice or a homogeneous system, the
tensor also possesses the symmetry: Bxxxx = Bxxyy + 2Bxyxy.
Note also that we expect the changes to the chemical potential
to have the same symmetry as the pressure, i.e., μik

1 = μ1δik .
We will later make use of these properties to simplify the
expressions for the elastic constants.

We can deduce the elastic tensor by identifying the O(u2
ik )

terms in the expansion of the Lagrangian with Aiklm, and
then using (22) to obtain Biklm. [See Appendix (A24) and
the derivative rules in Appendix C.] We find that Biklm =
|�|−1

∫
�

biklm(r) dr, where

biklm(r) = + h̄2

4m

(
∂iρ0∂lρ0

ρ0
δkm + ∂kρ0∂lρ0

ρ0
δim − ∂iρ0∂kρ0

ρ0
δlm

)
+ 1

2
( fil ∗ ρ0)ρ0δkm − 1

2
( fik ∗ ρ0)ρ0δlm + 1

2
( fim ∗ ρ0)ρ0δkl

+ {[(Uδik + 2 fik )δlm + Wiklm] ∗ ρ0}ρ0 + ρ lm
1

[
h̄2

4m

(
2
∂ikρ0

ρ0
− ∂iρ0∂kρ0

ρ2
0

)
+ ( fik + δikU ) ∗ ρ0 + μik

1

]
, (24)

with (g ∗ ρ)r ≡ ∫
dr′g(r − r′)ρ(r′) for any function g and ρ and where fik and Wiklm are defined in Eq. (19).

We note that this result for the elastic constants depends on the ground-state density ρ0 as well as the shift in the density ρ1

and shift in the chemical potential μ1 as defined in Eqs. (13) and (16). In other words, we need to deduce how the density profile
has changed in response to the applied strain. This is achieved by solving the Euler-Lagrange equations for the variable ρ̃ as
defined in Eq. (12). This involves solving the following equation:

h̄2

4m
∇ ·

(∇ρ̃

ρ0

)
− U ∗ ρ̃ + h̄2

4m

(
(∇ρ0)2

ρ3
0

− ∇2ρ0

ρ2
0

)
ρ̃

= −(
μiklm

2 + μik
1 δlm + μ0Miklm

)
uikulm + εik

[
− μik

1 + h̄2

4m

(
2
∂ikρ0

ρ0
− ∂iρ0∂kρ0

ρ2
0

)

+
∫

�

(
fik (r − r′) + δikU(r − r′)

)
ρ0(r′) dr′

]
, (25)

which is an integrodifferential equation that can be solved
either by using Bloch’s theorem (only applicable in peri-
odic boundary conditions) or solving directly via writing the

linear operator as a matrix and using standard iterative matrix
solvers. More details on solving the equation and finding the
chemical potentials are provided in Appendix (A15).
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FIG. 3. A comparison of the various elastic constants obtained via homogenization to those from numerics (homogenization constants are
shown in solid markers, numerics in crosses). The top figure shows the bulk modulus and shear modulus, the middle figure shows the pressure,
and the bottom figure shows the absolute value of μ1. The agreement between homogenization and numerics is very strong on the whole, but
falls apart in the phase transition region. This is likely due to numerical instabilities close to the phase transition which affect the numerically
obtained constants but not the homogenization constants.

It must be noted that we actually have 8 equations to solve,
as for each pair of indices (i, k) there is a different right-hand
side (RHS) source function, and for each of these we need
to solve the appropriate equation for both ρ ik

1 and μik
1 . This

generates 8 equations for a 2D system and 18 equations for
a 3D system. Once we have the solutions for both ρ ik

1 and
μik

1 , we can calculate the other functions in the expression for
Eq. (24) and obtain the elastic tensor Biklm.

Let us check these results for the case of a homogeneous
system, where the modulation vanishes and we can check our
results against the known results for elastic moduli of a super-
fluid. We can see that the elastic tensor is greatly simplified
by the disappearance of the derivative terms ∂iρ0, and the
chemical potential is analytically known: μ = U ∗ ρ0. We can
find the convolutions fik ∗ ρ0 and Wiklm ∗ ρ0, solve Eq. (A15),

and use this to find that

Biklm = μnδikδlm. (26)

Using the definitions of K and G from the Cauchy elastic
tensors (23), we see here that we obtain the expected results
of K = μn and no shear modulus: G = 0.

We will now present the numerical calculation of these
homogenization results for the elastic constants. The results
are shown in Fig. 3 (solid markers). In our numerics, we
see some small asymmetry, e.g., Biklm � Blmik , in the results
for the elastic tensor. The discrepancy with the ideal form of
Eq. (23) decreases as we reduce the discretization and increase
the system size in the numerics. With that in mind, we choose
to define the bulk modulus K as the average of the values of
Bxxyy and Byyxx, the pressure P as the average of Pxx and Pyy,
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and the shear modulus G as the average of Bxyxy, Bxyyx, Byxyx,
and Byxxy. We then use the minimal and maximal values that
the elastic moduli could have taken to generate “error bars”
for the elastic constants. It should be stressed that these error
bars are not measures of some statistical error, but rather a
quantification of how much the elastic constants deviate due
to the crystal symmetry being only approximately triangular
(as opposed to exactly triangular) as a result of discretization
error in our numerics.

We now turn to comparing these numerical results from
homogenization with a direct calculation of the elastic con-
stants by finding how the energy of the ground state of
the Gross-Pitaevskii equation changes when we deform the
simulation cell at fixed particle number (with periodic bound-
ary conditions). We begin with an undeformed ground state
obtained via numerically solving the Gross-Pitaevskii with
some given average density, area and interparticle interaction.
We then apply a small strain to the system by changing
the geometry of the simulation cell by a strain tensor uik ,
while keeping the total number of particles fixed, and solving
the Gross-Pitaevskii equation for the new geometry to find
the deformed ground state. For sufficiently small strain uik ,
we expect that such a procedure will yield a ground state
with a Lagrangian of the form of Eq. (20), where the tensor
uik is now a control parameter in our computational exper-
iment. This strain is small in the same sense as defined in
the expansion of the Lagrangian. More precisely, we consider
uik � 1, and then try to find the harmonic terms in the energy
perturbation.

By numerically extracting the Lagrangian for a system
which has been deformed by some strain uik , we are able to
find the pressure and elastic constants by judicious selection
of strains and subsequent fitting of the coefficients. The full
procedure is described in Appendix D, where we show the
extraction of elastic constants specifically for a 2D case in a
triangular geometry.

Our results are presented in Fig. 3, where we have plotted
the bulk and shear modulus K and G, the pressure P and the
shift in the chemical potential for unit strain: μik

1 = μ1δik .
These elastic constants should ideally be the same as those
obtained via homogenization theory. In reality, they suffer
from numerical errors due to being unable to perform an
arbitrarily small strain, as well as convergence errors in the
new ground state when close to the first-order phase transi-
tion between the homogeneous superfluid and the supersolid.
Scanning across the whole range of the interaction parameter
�, we find that, outside of a small region where the phase
transition occurs, the elastic constants obtained numerically
are in excellent agreement with those obtained analytically,
with a typical discrepancy of ∼0.1%.

We found that an applied numerical strain which was
smaller than ∼5% (by this we mean uik ∼ 0.05) would
generate this excellent agreement, but if the applied strain
was ∼10%, the numerical value would diverge from that of
homogenization. We suspect that this is due to the introduc-
tion of anharmonic elastic moduli which are now no longer
negligible.

In summary, we have developed an elastic theory for a
supersolid using homogeneration theory and calculated its
elastic properties using the solution of the Gross-Pitaevskii

equation. Our homogenization results agree well with results
from the numerical simulation of a strained supersolid.

V. U (1) PHASE AND FRACTIONAL INERTIA

In this section, we consider the application of a phase
perturbation to the mean-field supersolid, and analyze the
coupling of the phase to the strain field. We follow
the metholodology of Josserand et al. [17], but our results have
some key differences that we will point out.

We begin by specifying the nature of the phase perturba-
tion. We consider imposing a small superflow to the system
in the form of a phase gradient. This is applied to the su-
persolid in the deformed state, i.e., the laboratory frame of
the deformed material. The system will respond to this long-
wavelength perturbation by generating phase fluctuations, φ̃,
at small wavelengths within a unit cell of the supersolid. As
with ρ̃ in the previous section, φ̃ is a correcting function to the
respective perturbation applied to the ground state. Namely,
ρ̃ is the function which allows the density to settle into the
energetically optimal configuration for a given strain, and φ̃ is
the function which will allow the phase field to settle into the
energetically optimal configuration for a given applied phase
gradient. We mathematically represent this as

φ(r′) = φ0(r′) + φ̃(r), (27)

where φ(r′) is the total phase in the laboratory frame r′, φ0(r′)
is the applied perturbative phase in the laboratory frame, and
φ̃(r) is the phase-correction provided by the material in the
material frame of reference. We express φ̃ in terms of the
material frame deformed coordinate system r in keeping with
linear response theory, similar to how we expressed ρ̃ in terms
of the material frame coordinate system r.

To apply perturbation theory to the phase field, we specify
that ∂iφ0(r′) is small and constant within the scope of the unit
cell of the supersolid, in a similar way to the strain tensor uik .
This is equivalent to stating that the phase change across the
unit cell is much smaller than 2π , i.e., �φ � 2π . Note also
that we are not considering the generation of vortices.

We note that since the phase is applied in the deformed
frame, the total phase in the material frame can be expanded
to obtain

φ(r′) = φ0(r) − u · ∇φ0(r) + φ̃(r), (28)

where u is the displacement as defined in Eq. (5). This is the
final expression for the phase field in the material frame of
reference. We can now proceed to expand the Lagrangian in
terms of the phase field, using the least action principle to find
φ̃ and the associated energy.

Using the transformation rules for the Lagrangian (Jaco-
bian, derivatives, etc.) and the φ expansion given by Eq. (28),
the phase-dependent part of the Lagrangian (1) can be ex-
panded to O(φ̃2) as

Lφ = −
∫

�

{
h̄ρ0∂tφ0(1 + ∇ · u)

+ h̄2ρ0

2m
[(∇φ0)2 + 2A · ∇φ̃ + (∇φ̃)2]

}
dr, (29)
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where

A = ∇φ0 + (∇φ0 · ∇)u + m
h̄

∂tu. (30)

The vector field A is a kind of convective flow. First of all,
recall that the superfluid velocity is given by v = (h̄/m)∇φ0.
Also, we can define the material derivative of a field as

D

Dt
= ∂t + v · ∇ (31)

to describe the time derivative of a function which is comov-
ing with the superfluid velocity field.

Note here the appearance of the term m/h̄∂t u which
we previously stated as ‘small’ without further elaboration.
Here we define this term to be small on the same order
as ∇φ0, i.e., that the velocity induced by the elastic defor-
mation is comparable to the velocity induced by the phase
change.

We can rewrite A in term of these variables:

A = m
h̄

(v + v · ∇u + ∂tu) = m
h̄

(
v + Du

Dt

)
. (32)

A point of subtlety is that the actual deformation we have
applied is r′ = r − u, and so (h̄/m)A = v − D(−u)/Dt is a
relative velocity between the superflow and the motion of the
lattice deformations. This is exactly the form predicted by Son
[14] from symmetry based arguments. In fact, all terms in Lφ

satisfy the Galilean symmetry requirements imposed by Son.
In this way we can show that we have microscopically satis-
fied the necessary Galilean symmetry requirements imposed
on any supersolid system macroscopically.

Our phase Lagrangian Lφ in Eq. (29) differs from the
analogous form in Josserand et al. [17] by the existence of the
term h̄ρ0∂tφ0∇ · u. This term is in fact necessary to ensure
that Lφ satisfies Galilean symmetry constraints as pointed
out by Son [14]. We also note that this affects the velocity
of the excitations of the system, specifically in reference to
(47) where this term is directly responsible for the n com-
ponent of h̄(n − � + μ1/E ′′)φ̇∇ · u. If one were to calculate
the velocities without this critical term, then one would see
that it differs significantly from those predicted by Bogoliubov
theory (shown in Sec. VIII).

Let us now solve for the short-distance phase response
φ̃ within a unit cell due to superflow and strain. We follow
a similar procedure to Ref. [17]. By recognizing that the
externally imposed phase twist and strains ∇φ0 and ∂iuk are
defined as long-wavelength relative to the unit cell, we can
treat A as constant within a unit cell. However, a uniform
velocity with nonuniform density does not necessarily obey
local mass conservation in equilibrium. So we need a correc-
tion to the phase field, φ̃, to ensure that our system obeys the
continuity equation in the ground state: ∇ · (ρ∇φ) = 0. The
Euler-Lagrange equation for φ̃ gives

φ̃ = KiAi with ∂iρ + ∇ · (ρ∇Ki) = 0. (33)

This can be solved numerically in much the same way as
Eq. (A16). Physically, this result expresses that the fact the
phase twist (and therefore superflow) is not uniform within
a unit cell because it costs less kinetic energy to introduce
phase shifts in regions of low density compared to regions of

FIG. 4. The superfluid fraction fs ≡ 1 − �/n as a function of �.
We appear to observe a discontinuous transition at � ∼ 38, which
remains even after checking the transition region with a much finer �

discretization. This appears to be numerical verification of Ref. [19],
which predicted a first-order transition close to this value.

high density. Using this solution for φ̃, it can be shown that
the phase-dependent Lagrangian can be written as

Lφ = |�| h̄2

2m
�i jAiA j −

∫
�

[
h̄ρ0∂tφ0(1 + ∇ · u)

+ h̄2ρ0

2m
(∇φ0)2

]
dr, (34)

with

�i j = − 1

|�|
∫

�

ρ0∂iKj dr, (35)

which can be interpreted as a correction to the superfluid
phase stiffness [see Eq. (37)]. Figure 4 shows the evolution of
this quantity as we increase the interaction strength � show-
ing a discontinuous transition at the superfluid-supersolid
transition.

To restate the above, by carefully considering the dynamics
of both an applied/induced phase and a strain deformation
(both of which are long-wavelength relative to the unit cell),
we calculate how the phase-dependent dynamics of our sys-
tem are dependent on the parameters n and �i j given by
the form of Eq. (34). n is simply the density of particles in
the system, and corresponds to the phase-coherent BEC with
components at both k = 0 and k �= 0. We will later show that
�i j is the part of the system that corresponds to the pattern
formation, i.e., it only exists when ψk �=0 �= 0. Consequently,
we refer to �i j as being the “supersolid fraction” of the system.
In this way we have separated out the pattern response of the
system to the coupled phase-strain dynamical field from the
standard superfluid response.

Finally, due to the C3 symmetry, second-rank tensors rep-
resenting bulk properties should be isotropic. We therefore
make the assumption that �i j = �δi j , though in principle this
is not necessary. We also note that the dependency in Eq. (34)
on φ0 and u can be taken out of the integral (due to the same
argument that A is a constant in the unit cell). Combining
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these two simplifications, we find that we can write

Lφ

|�| = − h̄nφ̇0(1 + ∇ · u)

− h̄2

2m

[
n(∇φ0)2 − �

(
∇φ0 + m

h̄

Du
Dt

)2
]
, (36)

where n = ∫
�

ρ0 dr/|�| is the average particle density. We
use this result, along with the elastic expansion (24), to write
out the full Lagrangian after the homogenization process as

Lhom

|�| = L0 − h̄nφ̇0(1 + ∇ · u) − Pikuik − 1
2

Aiklmuikulm

− h̄2

2m
(n − �)(∇φ0)2 + h̄�∇φ0 · Du

Dt

+ 1

2
m�

(
Du
Dt

)2

. (37)

This effective Lagrangian contains all the linear response of
the system due to both strain and phase gradients. We can see
that the phase stiffness is now given by n − � and � is the
inertia associated with the motion of the modulated pattern
of the density. In summary, we have followed Ref. [17] and
reproduced the same results for the superfluid phase stiffness
of the supersolid. Our Lagrangian differs from that reference
in the dynamical term. In the next section, we complete the
development of an effective low-energy theory for the super-
solid by considering the free energy of the system in the grand
canonical ensemble. Then, we can finally proceed to discuss
the macroscopic dynamics of the system.

VI. FREE ENERGY AND GRAND CANONICAL ENSEMBLE

In Secs. III–V, we developed a homogenized theory of
the supersolid in the canonical ensemble at a fixed average
particle density of n. We have integrated out the intra-unit-
cell dynamics of the supersolid and have now obtained an
effective Lagrangian Lhom(φ0, u) which describes the system
under a given phase gradient and displacements u. We have
assumed that all the unit cells responded in the same way, i.e.,
the response has the same periodicity as the supersolid. This
effective Lagrangian obeys all the necessary requirements of
Galilean invariance, rotational invariance and U (1) invariance
as specified by Son [14] and Andreev and Lifshitz [7], so
we would expect the dynamics to be phenomenologically
correct.

In this section, we will consider the inter-cell dynam-
ics and allow for particle flow between unit cells leading
to variations in the density δn across the system at length
scales much larger than the size of the unit cells of the
supersolid.

It is important to note that the additional energy response
due to flow between cells is crucial to obtaining the correct
dynamics of the system. If we were to neglect this energy
response, then we would find that the dynamics of the system
would not match up with a Bogoliubov treatment. A similar
phenomena was observed in Ref. [32], where the authors
found that the bulk modulus computed via a homogeneous
dilation technique was not in agreement with long-wavelength

phonon predictions unless charge redistribution was taken into
account.

We assume that the inter-cell number fluctuation is small,
i.e., that δn/n � 1, and so we can expand the Lagrangian
analytically in δn up to O(δn2). We now consider the
ground-state Lagrangian density E (n) = −L0/|�| which is
a function of the average density n of the undeformed
system. Under a change of the local density, this can be
expanded as

E (n + δn) 	 E (n) + E ′δn + 1
2E

′′(δn)2 (38)

and similarly the local pressure can be expanded as

P(n + δn) 	 P(n) + P′δn. (39)

These are the only terms we need to track in a theory that
is an expansion up to second order in the total power of all
perturbative fields. The coefficients, P′ and E ′′, can be cal-
culated numerically by solving Gross-Pitaevskii equation at
several densities. We can also use E ′ = μ0 and E ′′ = ∂μ/∂n
if we have the density dependence of the chemical potential.
In fact, we have already calculated the pressure derivative in
terms of the chemical potential shift per unit strain, μ1, as
defined in Eq. (16) with μik

1 = μ1δik . To see this, we note that
the pressure, P = −(∂E/∂V )N , and the chemical potential,
μ = (∂E/∂N )V , are related by a Maxwell relation so that

P′ = ∂P

∂n
= V

(
∂P

∂N

)
V

= −V

(
∂μ

∂V

)
N

= −μ1, (40)

since δV/V = ukk is the strain. Similarly, we can use E ′′ =
∂μ/∂n if we have already obtained the density dependence of
the chemical potential.

In general, the above analysis is valid for any tensorial
quantity, but we have elected to use the symmetry properties
of tensors that belong to a triangular lattice (i.e., Pik = Pδik

and μik
1 = μ1δik) to simplify our calculations. The following

analysis also uses this symmetry, but can be generalized to any
tensorial quantity.

Finally, we need to include the work done by the change
in local density on the local environment. Namely, if a part of
the system expands due to an increase in particle number, then
it does work on the surroundings which must compress. The
work done caused by a total volume change of δV is

δW = −PδV = −P(εll + Miklmuikulm)|�|. (41)

To describe the dynamics of these density functions, we need
to add this work done to the Lagrangian to obtain

Ldyn

|�| = Lhom

|�| − P(εll + Miklmuikulm). (42)

Comparing with our form of Eq. (37) for Lhom and the relation
(22) between the Cauchy tensor Biklm and Aiklm, we find that

− Pull − Aiklm

2
uikulm−P(εll + Miklmuikulm)

	 −1

2
Biklmuikulm. (43)

Using this, we arrive at an effective quadratic Lagrangian that
can describe the dynamics of the low-energy excitations of the
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supersolid. This is the principal result of our paper:

Ldyn

|�| = − E − μ0δn − 1

2
E ′′(δn)2 − h̄nφ̇0(1 + ∇ · u) − h̄δnφ̇0 + μ1δn∇ · u

− 1

2
Biklmuikulm − h̄2

2m
(n − �)(∇φ0)2 + h̄�∇φ0 · u̇ + 1

2
m�u̇2. (44)

In this process we note that we have directly identified the
Cauchy elastic tensor in two different ways, first by using
the result from Bavaud [31], and second by directly con-
sidering the work the excitations would need to do on their
environment.

To summarize, we have a coarse-grained Lagrangian to
describe the low-energy excitations of the supersolid. In the
next section, we will investigate these dynamics.

VII. EFFECTIVE SUPERSOLID LAGRANGIAN

In the previous sections, we have derived an effective La-
grangian (45) by integrating out the short-wavelength modes
in the unit cell and coarse-graining the system such that a
unit cell is now considered a point in the continuous field
theory described by the fields {u, n, φ}. This Lagrangian for-
mally describes a low-energy effective field theory wherein
the coupled Goldstone modes of the system are the low-lying
excitations. We now set out to calculate the normal modes by
integrating out the field δN and solving the resulting set of
coupled equations.

By minimizing the Lagrangian for δn, we find

δn = μ1

E ′′ ∇ · u − h̄
E ′′ φ̇, (45)

which we substitute back into the Lagrangian to straightfor-
wardly obtain

L = − E − h̄nφ̇ + h̄2

2

[
φ̇2

E ′′ − n − �

m
(∇φ)2

]

+ 1

2

[
m�u̇2 −

(
Biklm − μ1

E ′′ μ1δikδlm

)
uikulm

]
− h̄

(
n − � + μ1

E ′′
)
φ̇∇ · u. (46)

This Lagrangian should be able to describe the Goldstone
modes for the system. This effective Lagrangian is of the form
predicted by Ye [33].

By counting the number of spontaneously broken con-
tinuous symmetries, we are able to predict the number of
Goldstone modes that emerge. Since we have broken the U (1)
gauge symmetry, we expect to find one Goldstone mode. We
also have a triangular lattice, which means we have broken
two continuous translational and rotational symmetries, and
so we expect to find two Goldstone modes. Therefore, we
should find three Goldstone modes in total.

One can immediately find the equations of motion for both
φ and u, but it serves as a useful check to ensure we recover
the Lagrangian for a Bogoliubov mode in the superfluid phase.
In a superfluid phase, one can show that Biklm = Uk=0n2δikδlm,
μ1 = −Uk=0n, E ′′ = Uk=0, and � = 0. Consequently, the

resultant Lagrangian is now

L = −E − h̄nφ̇ + h̄2

2

[
φ̇2

Uk=0
− n

m
(∇φ)2

]
, (47)

which corresponds exactly with the superfluid Bogoliubov
mode.

Note that for the following derivation of the supersolid
Goldstone velocities, it is assumed that the ground state is a
supersolid and hence � �= 0. In a superfluid state (� = 0), the
following analysis does not apply, and instead one needs to
refer to Eq. (48).

For the general supersolid case, we derive the equations of
motion directly by assuming the fields φ and u are of a plane
wave form ∼ei(k·r−ωt). The vector equation for the variable u
can be solved to provide both the shear and longitudinal mode.
The Euler-Lagrange equation for the variable u is immediately
found to be

m�ü −
(

K + G − μ1

E ′′ μ1

)
∇(∇ · u) − G∇2u

− h̄
(

n − � + μ1

E ′′
)
∇φ̇ = 0, (48)

where we have used Eq. (23) as we are analyzing a triangular
lattice.

We can now solve this equation by noting that the vector
field u can be split into longitudinal and transverse elements
u = ul + ut . Taking the curl of Eq. (48) isolates the transverse
motion (ut), giving

∇ × (m�üt − G∇2ut ) = 0. (49)

This is a wave equation for ∇ × u from which we obtain the
shear velocity

cshear =
√

G

m�
, (50)

which is exactly equivalent to the shear velocity predicted in
standard solid elasticity.

We examine longitudinal dynamics (ul) by taking the di-
vergence of Eq. (49) we are examining the dynamics of ul .
We find the two coupled equations

h̄

(
ω2

E ′′ − n − �

m
k2

)
� − iω

(
n − � + μ1

E ′′
)
∇ · ul = 0, (51)[

m�ω2 −
(

K − μ1

E ′′ μ1 + 2G
)

k2
]
∇ · ul

+ iωh̄k2
(

n − � + μ1

E ′′
)
� = 0 (52)

in the variables ul and φ. It can be shown easily that if we are
in a superfluid regime the second equation is trivially satisfied,
and the first equation finds the Bogoliubov frequency. These
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FIG. 5. Top: excitation velocities (in units of h̄/
√

nma2) for all available sound modes of a system governed by a Heaviside interaction
of strength � with a phase transition at � ∼ 38, as calculated via homogenization. Note that in the superfluid phase the bulk mode is the
Bogoliubov mode, hence the sudden appearance of two extra modes at the superfluid-supersolid transtion. Bottom: the eigenvector angle θ for
the available longitudinal modes.

equations can be solved for ω as a function of k and leads to
the following dispersion relation

ω2 = A ± D

2m�
k2, (53)

with

A = K + 2G + (nE ′′ + 2μ1)(n − �),

D2 = A2 − 4�(n − �)
[
E ′′(K + 2G) − μ2

1

]
. (54)

We note that, in the case of the homogeneous superfluid
(� = 0), we obtain the superfluid velocity directly from (47)

ω2 = nUk=0

m
k2, (55)

which is exactly equal to the Bogoliubov velocity. In the
opposite limit of � = n, the two modes have frequencies

ω2 = K + 2G

mn
k2 and zero. (56)

The zero mode corresponds to the collapse of the Bogoliubov
mode and the linear dispersing mode has a velocity as ex-
pected for a normal solid with elastic moduli K and G.

It is interesting to note that, although we expect the
Gross-Pitaevskii Lagrangian to struggle with describing a
normal solid, the effective phenomenological Lagrangian that

emerges actually returns to that of a normal solid in the limit
� → n. Moreover, although all of the modes have a factor
of 1/� in their velocities which seems to indicate that the
velocities should blow up as � → 0, the velocities appear to
be well behaved as � becomes small. This suggests that there
is some implicit dependence on � hidden in the values of Biklm

etc., which stops the velocities from blowing up. However, we
should note that as we appear to see a first-order transition, the
value of � never really approaches zero in our numerics, but
only jumps directly to zero at which point these equations are
no longer valid.

We can also now examine the nature of the normal modes
of the system. By writing Eqs. (51) and (52) in terms of a
matrix equation, we can find the eigenvectors of the system
for a given ω. These eigenvectors are the normal modes, and
are some composite of the fields φ and ul . We can then sub-
sequently define an eigenvector angle θ which describes the
relative contribution of the fields φ and ul to the normal mode.
For example, in the superfluid the eigenvector angle is θ = 0
as the normal mode is purely φ, i.e., en ≡ eφ . A supersolid
with normal mode en = (0.5, 0.5) would have θ = π/4, etc.
The normal mode composition is illustrated in Fig. 5.

An interesting point of note is that the slow longitudinal
mode (which is expected to die off in the limit of a solid) is a
composite of both φ and ul , but is mostly φ at all points in the
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phase diagram (i.e., θ is small). More importantly, it appears
there is a critical point at which the slow longitudinal mode is
“saturated,” that is to say that there is a global maximum in the
mixing of the slow longitudinal mode (but note that the mode
is still mostly φ). This feature appears to be absent in the fast
longitudinal mode. However, the fast longitudinal mode also
exhibits interesting behaviour as the mixing angle does not
tend to π/2 or 3π/2 as one may initially expect (as we would
expect the mode to tend to a purely elastic phonon mode in
the limit of a solid), but instead tends to approximately 7π/8.
This is a curious feature of the fast longitudinal mode, and we
are currently investigating the origin of this behavior.

The above holds for any system described by a Gross-
Pitaevskii equation; we can now use these results in the
specific case of a soft-core interaction. We find a ground state
for the system numerically and by applying the procedure de-
tailed above we can determine the velocities of all modes that
exist. Importantly, we note that our Lagrangian is tuned across
the transition, i.e., a single theory describes both the super-
fluid and supersolid regime and continuously varies across a
first-order phase transition. Importantly, symmetry arguments
by Son [14] dictate the functional form of any Lagrangian
belonging to a supersolid and since our Lagrangian is a subset
of those allowed by symmetry, we argue that we completely
capture the phenomenological behavior of the supersolid as
described by a Hartree-Fock approximation.

VIII. BOGOLIUBOV DISPERSION

An alternative technique to finding excitations of the sys-
tem is to directly apply linearized oscillations in the number
density and the phase. Namely, since ψ = √

ρeiφ , we can
apply the Bogoliubov fluctuations ρ → ρ0 + δρ and φ. We
expect to recover all the Goldstone modes accessible to the
system, and expect the quantitative properties to be the same
as those predicted in the elastic theory. More precisely, due to
the broken U (1) phase and the broken continuous translational
symmetry, we expect to find three Goldstone modes, two of
which are longitudinal and one of which is a shear mode.
Since this is a completely independent technique to recovering
the Goldstone modes, it serves as an important check of our
results.

While both techniques access the speeds of sound, the
elastic technique also provides elastic moduli and fractional
inertia, whereas the bogoliubov technique provides a full band
structure. In this way, the two techniques complement each
other, as they verify common ground but also provide infor-
mation that is inaccesible to the other.

By following a similar procedure to that outlined in
Ref. [16], we are able to obtain eigenvalue equations which
give the excitation frequencies ω of the Bloch waves in the
system. These Bloch waves have a band structure, and the
lowest band structure at the � point corresponds to the Gold-
stone modes of the system whose propagation velocities were
independently derived in Ref. [16]. The band structure is fully
described by the equations

[−ω2 + (T̂ k + Û k )T̂ k](�)k = 0,

[ − ω2 + T̂ k(T̂ k + Û k )](δψ )k = 0, (57)

FIG. 6. Band structure for a supersolid at � = 50. The three
Goldstone modes are highlighted as a fast longitudinal, slow longitu-
dinal, and shear mode, colored in purple, green and red respectively.

with T̂ and Û defined as

T̂ k
G,G′ =

[
1

2
(G + k)2 − μ

]
δG,G′ + UG−G′ρG−G′ ,

Û k
G,G′ = 2

∑
G′′

ψG−G′′Uk+G′′ψG′′−G′ , (58)

with Uq, ψq, and ρq the fourier transforms of the interaction
potential, the superfluid order parameter and the density, re-
spectively. We expect that the band structure obtained from
solving these equations should find all the requisite Goldstone
modes and that they should have the same velocities as pre-
dicted via homogenization.

Upon recovery of the band structure, illustrated in Fig.
6, one finds exactly (D + 1) Goldstone modes as expected.
There is a band crossing at the K point of the fast longitudinal
and shear modes, characteristic of a triangular lattice (note
that this is not actually a crossing but a band touching, as
shown by the M → � band structure).

For any particular given �, both the Bogoliubov and elastic
techniques predict all three speeds of sound (if supersolid,
only one speed if superfluid), and agree on the speeds with
excellent precision. Subsequently, by deriving the excitations
of the system in two independent ways and obtaining the same
results to excellent numerical precision, we can reliably say
we have obtained the correct dynamics.

IX. RESULTS AND DISCUSSION

We can see that we have now verified the technique of
homogenization as a means of recovering the low-lying ex-
citations of the system. This was achieved via means of two
completely independent techniques, the results of which both
agree to excellent accuracy. An advantage of homogenization
over the Bogoliubov technique is that it also provides the
elastic constants of the system, which cannot be obtained
via Bogoliubov. Moreover, it provides the fractional inertia
of the system, which is a quantity that is of great physical
interest. A clear disadvantage however, is that homogenization
does not provide the full spectrum of excitations, only the
long-wavelength limit. We stress that this is not an issue, as
the Bogoliubov technique is completely separate from homog-
enization, and so by utilising both techniques one can recover
the full band structure from Bogoliubov and supplement it
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with additional information in the long-wavelength limit from
homogenization.

The effective Lagrangian that is the end result of homoge-
nization elucidates interesting dynamics. By considering that
the flow excitations of the system can be coupled to the strain
excitations, we can see that the system is capable of strain-
induced flow. Furthermore, by considering the application of
an instantaneous strain to the system, we can see that flow
will be induced and contribute to the elastic response of the
system. Alternatively, if we apply a strain and keep it fixed
for a long time so that the flow dissipates, then there will be
a different elastic response. In this way we can see that the
elastic modulus has a time dependence, and that the system
is capable of dissipating energy via the flow of the system.
This energy dissipation is likely to be via the two longitudinal
modes which are coupled crystal and Bogoliubov phonons.

There is an interesting question of what the compressibil-
ity of the system is. When one considers the elastic strain,
it is natural to define the compressibility of the system as
κ = −1/V (∂V/∂P). Typically in a solid, one would simul-
taneously be able to say κ = 1/n (∂n/∂P), where n is the
number density and μ the chemical potential. However, in
our analysis, we can show that these two definitions do not
agree, and are off by a considerable margin. These two values
are defined as κ = 1/Bxxyy and κ = 1/(nμ1) in our notation,
respectively.

The resolution of this seeming dilemma is to revisit the
definition of the two compressibilities. The compressibility
κ = 1/B where B = −V (∂P/∂V |N ) is the elastic bulk modu-
lus of the system, taken at constant particle number. This is the
compressibility of the system as defined via elastic theory, and
is the one that we will take as the “true compressibility,” and
consequently B as the “true bulk modulus.” Importantly, the
derivative is taken under constant particle number. As such, to
elucidate this a little further, we write

Be = −V
∂P

∂V

∣∣∣∣
N

, (59)

where the subscript e denotes that this is the elastic bulk
modulus. We can then write the compressibility as κe = 1/Be.
We can subsequently define the thermodynamic bulk modulus
(using the typical definition with n but now removing the
factor of V which is kept constant) as

Bt = N
∂P

∂N

∣∣∣∣
V

(60)

and the thermodynamic compressibility accordingly.
The key consideration is that the Be �= Bt due to the fact

that we are keeping different variables constant upon taking
derivatives. If we want to connect these two definitions, then
we need to use the cyclic relations of thermodynamics:

∂x

∂y

∣∣∣∣
z

= −∂x

∂z

∣∣∣∣
y

∂z

∂y

∣∣∣∣
x

. (61)

We can then write

Be = −V
∂P

∂V

∣∣∣∣
N

= V
∂P

∂N

∣∣∣∣
V

∂N

∂V

∣∣∣∣
P

≡ Bt
1

n

∂N

∂V

∣∣∣∣
P

, (62)

from which we can consider the following. In a regular mate-
rial (solid, gas, liquid) we would expect that the derivative of

FIG. 7. Compressibility ratio R for a system governed by a soft-
core interaction of strength �. R is obtained using the relation (63),
where the values are calculated using homogenization. The expected
value of R = 1 is obtained in the superfluid phase, but is starkly
different in the supersolid regime.

the particle number with respect to the volume under constant
pressure is simply the density of the system, and we would
recover the thermodynamic bulk modulus Bt = n (∂P/∂n|V )
from Eq. (62). We can then examine whether this is the case
for our system, i.e., is 1/n (∂N/∂V |P ) = 1?

We can examine this quantity, henceforth denoted as R
and called the “compressibility ratio,” by choosing an initial
volume and particle number V0 and N0 which will generate
a P0, adjusting the volume around V0 with some δV , and
then varying the particle number N0 + δN until the system
reaches P0. We can then numerically calculate R by finite
differencing. If we expect the difference between the two
compressibilities to be due to the fact that 1

n
∂N
∂V |P �= 1, then

we would expect R = κt
κe

, or equivalently

R = Be

Bt
≡ K

nμ1
. (63)

Upon performing the numerical determination of R, we
find that it is within good agreement of the ratio of the
two compressibilities as determined via homogenization,
illustrated in Fig. 7. The percentage error between the homog-
enization and numerical R is typically between 3% and 5%.
We believe this is an artifact of the numerical determination
of R, and that as the algorithm and precision of simulations
for determining R is improved, the agreement will improve
accordingly. While we have shown that the compressibility
ratio obtained via homogenization is in good agreement with
the numerical determination, we do not yet fully understand
the nature of this anomalous result. In our search across the
literature we have not found another example of this phe-
nomenon, and we are currently investigating the origin of this
effect. A possible explanation for the result is considering a
pressure which can be written like P(n, G(n,V )), where G is
the ordering wave vector. One can then subsequently show
that the difference between bulk moduli can be written as

Be = Bt − V
∂P

∂G

∣∣∣∣
n

∂G

∂V

∣∣∣∣
n

, (64)

where it is clear that the last term is the anomalous term.
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This term vanishes in ordinary materials in various ways.
For gases and liquids, there is no ordering vector, so this
term never existed to begin with. A regular solid has well-
defined atomic positions. So, if the density is specified, then
the ordering wave vector is also specified. Upon changing the
volume, there is no additional change in the ordering wave
vector beyond that caused by the change in density. Super-
solids are unique in that the ordering vector G experiences
a commensuration effect. For instance, in a one-dimensional
system, it needs to be an integer multiple of 2π/L with L
being the length of the system. If we stretch the system by
δL much less than the lattice spacing, then the fractional
change in the ordering wave vector is δG/G = −δL/L so that
L∂G/∂L = −G. We believe this is a feature unique to super-
solids, due to their ability to exist at a wide range of densities,
each of which has their own ordering vector, whereas regular
solids only have one density at which they can exist (at some
given pressure) and therefore only have one ordering vector.
This is (to the best of our knowledge) a new phenomena
which could be of great interest to the characterization of
supersolids.

Some currently open questions are as follows. Is this ef-
fect unique to the supersolid phase, or is it a more general

phenomena? What kind of thermal transport is occurring in
the phonon modes of a supersolid? Does the notion of the
Landau criterion for superfluidity still hold in the supersolid
phase, and if so, how does it change now that we have a band
structure? These questions may potentially have avenues to
solution via the techniques developed in this paper.

The successful development of homogenization techniques
for the study of supersolids is a significant step forward in
the study of these systems. We have shown that the homoge-
nization technique is able to accurately capture the behaviour
of the supersolid phase through comparison with well es-
tablished Bogoliubov techniques. We were able to obtain
previously unknown elastic properties of these materials as
well as an effective Lagrangian which can be used to study
the dynamics of the system. In contrast with typical phases of
matter which have R = 1, we found that the compressibility
ratio of the supersolid phase is R > 1. This is a new phenom-
ena which we predict will arise in supersolids, and of which
the origin is currently unknown.
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APPENDIX A: EXPANSION CALCULATION

We start by expanding the noninteracting part of L using the tools developed. We can express without expansion

(∇′ρ(r′))2 = [(∂i + (uik + uilulk )∂k )(ρ0(r) + ρ̃(r))]2, (A1)

where we subsequently drop the coordinates as it is clear everything is in the unprimed basis r. We can re-express the prefactor

1

ρ(r′)
= 1

ρ0 + ρ̃
= 1

ρ0
− ρ̃

ρ2
0

+ ρ̃2

ρ3
0

+ O(ρ̃3) (A2)

to make it more algebraically pliable. This allows us to write∫
�′

h̄2

2m

(∇′ρ(r′))2

4ρ(r′)
dr′ =

∫
�

{ h̄2

8m

(
1

ρ0
− ρ̃

ρ2
0

+ ρ̃2

ρ3
0

)
(1 + εll + Miklmuikulm)[(∇ρ0)2 + 2(∇ρ0 · ∇ρ̃ ) − 2εik∂iρ0∂kρ0

+ 2χik∂iρ0∂kρ0 − 4εik∂iρ0∂k ρ̃ + (∇ρ̃ )2 + 2�ik∂iρ0∂kρ0]} dr, (A3)

which we can manipulate further. By isolating first- and second-order (in terms of the strain tensor) parts of the noninteracting
Lagrangian, and using the relation (obtained via integration by parts)∫

�

∇ρ̃ · ∇ρ0

ρ0
dr =

∫
�

ρ̃
(∇ρ0)2

ρ2
0

− ρ̃
∇2ρ0

ρ0
dr, (A4)

we are able to find the first-order component

h̄2

4m

[(
(∇ρ0)2

2ρ2
0

− ∇2ρ0

ρ0

)
ρ̃ + εik

(
(∇ρ0)2

2ρ0
δik − ∂iρ0∂kρ0

ρ0

)]
(A5)

and the second-order component

h̄2

4m

[
(�ik + χik )

∂iρ0∂kρ0

ρ0

]
+ h̄2

4m

1

2

[
−4εik

∂iρ0∂k ρ̃

ρ0
+ (∇ρ̃ )2

ρ0
+ 2

∇ρ̃ · ∇ρ0

ρ0
εll − 2εik

∂iρ0∂kρ0

ρ0
εll + (∇ρ0)2

ρ0
Miklmuikulm

−2
∇ρ̃∇ρ0

ρ2
0

ρ̃ + 2εik
∂iρ0∂kρ0

ρ2
0

ρ̃ − (∇ρ0)2

ρ2
0

ρ̃εll + (∇ρ0)2

ρ3
0

ρ̃2

]
, (A6)

respectively. We now turn to considering the interaction section of the Lagrangian.
By first noting that the interaction potential is centrosymmetric (and indeed we expect most effective potentials to be

isotropic), we can write the interaction as a function of radial distance. We can express the change in the metric length of
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distance by simply applying the deformation definition to |�r′|2 and obtain the result

(�r′)2 = (δik + 2εik + 2�ik )(�r)i(�r)k, (A7)

which is exactly equivalent to that of Landau and Lifshitz [30]. The tensor in the above equation is sometimes referred to as the
finite strain tensor. Recalling the derivation of Eq. (19) we define the functions

U (�r′) = U (�r) + (εik + �ik ) fik (�r) + εikεlmWiklm(�r), (A8)

with

fik (r) ≡ rirk

|r|
∂U (|r|)

∂|r| , Wiklm(r) ≡ rirkrl rm

2|r|2
(

∂2U

∂|r2| − 1

|r|
∂U

∂|r|
)

. (A9)

This can be used to express the interaction component of L by combining it with both the density mapping and the Jacobian to
obtain

U = 1

2

∫
�

(ρ0 + ρ̃)r1
[U (r12) + (εik + �ik ) fik (r12) + εikεlmWiklm(r12)] × (ρ0 + ρ̃ )r2

(1 + 2εll + εllεkk + 2Miklmuikulm)

× dr1 dr2, (A10)

where r12 = r1 − r2. We note that, since the convolution is integrated, there is a term arising from (Jr′→r )2. Once again, this
can be expanded and combined with the noninteracting component of L, and we can fully express the first and second order
components of the expansion. We make use of the Gross-Pitaevskii ground-state equation (2), as well as the normalization
condition (14) to simplify our expressions, and we can show that

L1 =
∫

�

[
ρ0εll (U ∗ ρ0 − μ0) + 1

2
εik ( fik ∗ ρ0)ρ0 + h̄2

4m
εik

(
(∇ρ0)2

2ρ0
δik − ∂iρ0∂kρ0

ρ0

)]
dr. (A11)

We can now make a direct connection between the linear component of the expansion and the pressure tensor Pik . Recalling that
the first-order component of the expansion is the stress tensor, and that the stress tensor is the negative of the pressure, we can
write

Pik = 1

|�|
∫

�

[
(μ0 − U ∗ ρ0)δik − 1

2
fik ∗ ρ0 − h̄2

4m

(
(∇ρ0)2

2ρ2
0

δik − ∂iρ0∂kρ0

ρ2
0

)]
ρ0 dr

= 1

|�|
∫

�

[
h̄2

4m

(
∂iρ0∂kρ0

ρ0
− ∇2ρ0 δik

)
− 1

2
ρ0( fik ∗ ρ0)

]
dr. (A12)

The second line consists of the ground-state density profile only This is our first key result which is obtaining the pressure of any
ground-state system given a specified interaction. We can trivially calculate the expected pressure for a homogeneous superfluid
by noting that ρ0 ≡ n and that μ0 = Uk=0n where Uk=0 = ∫

�
U (r)dr. The pressure simply reduces to − 1

2 n2
∫
�

fik (r) dr.
Integrating by parts gives the integral over fik as −Uk=0δik . So, we find that Pik = 1

2μ0nδik , which is the expected result. We
can now move on to the more difficult task of solving for the second-order components.

It is important to note that since we have allowed ρ̃ to have both first and second-order components in uik , then even single
powers of ρ̃ must be taken into consideration for the O(u2) components. The above analysis only collected the components of ρ̃

which were of O(u), but does not remove the singular powers of ρ̃ from the Lagrangian. It is necessary to calculate the functional
form of ρ̃ as there will be terms like

∫
�

ρ̃2 dr that will contribute to the perturbative Lagrangian, and as such we therefore need
to solve the equations of motion for ρ̃. It is not good enough to simply know the normalization condition as we did for the O(u)
component.

The first step in solving for ρ̃ is to collect all the terms in which it appears, regardless of first or second-order splitting. We
take all the terms that contain ρ̃ and call them Lρ̃ , finding

−Lρ̃ = 1

2

h̄2

4m

[
−4εik

∂iρ0∂k ρ̃

ρ0
+ (∇ρ̃ )2

ρ0
+ 2

∇ρ̃ · ∇ρ0

ρ0
εll − 2

∇ρ̃ · ∇ρ0

ρ2
0

ρ̃ + 2εik
∂iρ0∂kρ0

ρ2
0

ρ̃ − (∇ρ0)2

ρ2
0

ρ̃ εll + (∇ρ0)2

ρ3
0

ρ̃2

]

+ μ0ρ̃ + 1

2
((U ∗ ρ̃ )ρ̃ + 4εll (U ∗ ρ0)ρ̃ + 2εik ( fik ∗ ρ0)ρ̃ ), (A13)

which we can solve by the standard Euler-Lagrange technique. A key detail now is that the new normalization condition changes
the constraints we apply. Specifically, the equation we need to solve is

∂Lρ̃

∂ρ̃
− ∂i

∂Lρ̃

∂ (∂iρ̃ )
+ (

μ0 + μ1εll + μiklm
2 uikulm

)
(1 + εll + Miklmuikulm) = 0, (A14)

which can be shown via the strained normalization condition (14).
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A straightforward calculation follows of differentiating the ρ̃ dependent Lagrangian and collating all terms. We make use of
the zeroth-order equation of motion to simplify our expression and we find

h̄2

4m
∇ ·

(∇ρ̃

ρ0

)
− U ∗ ρ̃ + h̄2

4m

(
(∇ρ0)2

ρ3
0

− ∇2ρ0

ρ2
0

)
ρ̃

= −(
μiklm

2 + μik
1 δlm + μ0Miklm

)
uikulm + εik

[
−μik

1 + h̄2

4m

(
2
∂ikρ0

ρ0
− ∂iρ0∂kρ0

ρ2
0

)

+
∫

�

(
fik (r − r′) + δikU(r − r′)

)
ρ0(r′) dr′

]
, (A15)

which contains both O(u2) and O(u) terms. We can now begin to separate ρ̃ into first- and second-order components via Eq. (13),
and consider solving the equation component by component. That is to say that we solve the lowest-order component first, and
then use that solution to solve the next order component, and so on.

The first-order equation to solve is given by

h̄2

4m
∇ ·

(
∇(

ρ ik
1 εik

)
ρ0

)
− U ∗ (

ρ ik
1 εik

) + h̄2

4m

(
(∇ρ0)2

ρ3
0

− ∇2ρ0

ρ2
0

)(
ρ ik

1 εik
)

= εik

[
−μik

1 + h̄2

4m

(
2
∂ikρ0

ρ0
− ∂iρ0∂kρ0

ρ2
0

)
+

∫
�

(
fik (r − r′) + δikU(r − r′)

)
ρ0(r′) dr′

]
, (A16)

which we can solve numerically. We factor out εik and solve the set of equations where we have one for each index (in 2D we
have four equations to solve, in 3D there are nine). As this is an integrodifferential equation we can solve the equation by writing
the left-hand side as a matrix operator on an unraveled vector and applying an iterative matrix solver algorithm which converges
on some prespecified tolerance. We can introduce notation and write the first and second-order equations of motion as

L
(
ρ ik

1

) = F1
(
ρ0, μ

ik
1

)
, L

(
ρ iklm

2

) = F2
(
μ0, μ

ik
1 , μiklm

2

)
(A17)

for brevity. It is important to note that we do not actually need to solve the equation for ρ iklm
2 as it only appears in the Lagrangian

when multiplied by a constant, thus we can directly use the normalization condition (14) and short circuit the task of solving it.
We also do not need to find μiklm

2 for a slightly different reason, which is that it appears in the Lagrangian to too high order and
so is always discarded anyway. Thus, our only task now is to determine the first-order correction to the chemical potential μik

1
and the first-order solution to ρ̃ which is ρ ik

1 .
We first state ρ ik

1 ≡ ρ ik
1 (r, μik

1 ), i.e., it is now a function of the chemical potential. We specifically choose the functional form
ρ ik

1 = ρ̂ ik
1 + μik

1 ρ ′
1, in a kind of “homogeneous + inhomogeneous” fashion. Namely, we demand that

L
(
ρ̂ ik

1

) = h̄2

4m

(
2
∂ikρ0

ρ0
− ∂iρ0∂kρ0

ρ2
0

)
+

∫
�

[ fik (r − r′) + δikU(r − r′)]ρ0(r′) dr′, (A18)

i.e., ρ̂ ik
1 satisfies the equation of motion without any chemical potential considerations. Then we solve the equation

L
(
μik

1 ρ ′
1

) = −μik
1 → L(ρ ′

1) = −1 (A19)

simultaneously, which we can do numerically as it is the same operator but just a different RHS. We can state this in the notation
of Eq. (A17),

L
(
ρ̂ ik

1

) = F1
(
ρ0, μ

ik
1 = 0

)
, L(ρ ′

1) = F1
(
ρ0 = 0, μik

1 = 1
)
, (A20)

which we can readily substitute into the “homogeneous” and “inhomogeneous” solutions to see that

L
(
ρ̂ ik

1 + μik
1 ρ ′

1

) = F1
(
ρ0, μ

ik
1

)
, (A21)

which is the “general” solution we were looking for. The final task is to now actually calculate μik
1 which we can do by using the

normalization condition (14). Since we know what the first-order condition is, we can rearrange to find that

μik
1 = −

∫
�

(
ρ0δik + ρ̂ ik

1

)
dr

/ ∫
�

ρ ′
1 dr, (A22)

which is the final ingredient.
We have now fully solved for ρ̃ (and discarded the parts that we don’t need), so we can re-express Lρ̃ using integration by

parts. The calculation is relatively straightforward and makes use of the base EoM (2), allowing one to find

−Lρ̃ = 1

2

(
2μ0ρ

iklm
2 uikulm + ρ ik

1

[
h̄2

4m

(
2
∂ikρ0

ρ0
− ∂iρ0∂kρ0

ρ2
0

)
+ ( fik + δikU ) ∗ ρ0 + 2μ0δik + μik

1

]
εikεlm

)
+ O(ε3), (A23)

which contains all the second-order contributions from ρ̃.

043040-16



ELASTIC PROPERTIES AND THERMODYNAMIC … PHYSICAL REVIEW RESEARCH 6, 043040 (2024)

We can combine this with all the second-order contributions that do not contain ρ̃, and obtain a long expression

−L2 = 1

2

[
2(U ∗ ρ0)ρ0Miklmuikulm + ((U ∗ ρ0)ρ0δikδlm + 2( fik ∗ ρ0)ρ0δlm + (Wiklm ∗ ρ0)ρ0) εikεlm

+ ( fik ∗ ρ0)ρ0�ik + 2
h̄2

4m

∂iρ0∂kρ0

ρ0
(�ik + χik ) + h̄2

4m

(
−2

∂iρ0∂kρ0

ρ0

)
δlmεikεlm

+ h̄2

4m

(∇ρ0)2

ρ0
Miklmuikulm + 2μ0ρ0(δikδlm − Miklm)uikulm

+ ρ lm
1

[
h̄2

4m

(
2
∂ikρ0

ρ0
− ∂iρ0∂kρ0

ρ2
0

)
+ ( fik + δikU ) ∗ ρ0 + 2μ0δik + μik

1

]
εikεlm

]
, (A24)

which will be used in the calculation of the elastic constants. To summarize, we have expanded our Lagrangian up to second
order in the strain tensor and collected all the terms. We have solved for ρ̃ such that the new state is a ground state with the
strained normalization condition, and subsequently re-expressed the second-order Lagrangian with that solution in hand.

APPENDIX B: CONNECTING CAUCHY ELASTIC
TENSOR TO EXPANSION

This section closely follows the calculation done by
Bavaud et al. [31]. To begin with, we define an analytic ex-
pansion in the free energy of our system around a deformation
x′
α = (δαβ − uαβ )xβ with a mapping � �→ �′,

F (�′) = F (�) − |�|παβ (�)uαβ + |�| 1
2 Aαβγ δ (�)uαβuγ δ,

(B1)

where

παβ (�) = 1

|�|
∂F (�′)
∂ (−uαβ )

∣∣∣∣
u=0

= − 1

|�|
∂F (�′)
∂uαβ

∣∣∣∣
u=0

, (B2)

and similarly

Aαβγ δ (�) = 1

|�|
∂2F (�′)
∂uαβuγ δ

∣∣∣∣
u=0

. (B3)

To clarify, we map between spaces � �→ �′ through the trans-
formation x �→ x′.

It is important to note that the tensor Aαβγ δ is not the
elastic tensor. It is the expansion of the free energy due to the
deformation, but the elastic tensor strictly connects the stress
tensor to the strain. We are searching for Hooke’s Law which
maps strain in a deformed point to strain in an undeformed
point but now with the notation

πik (�′) = πik (�) − Biklm(�)ulm. (B4)

An important additional feature of the elastic tensor Biklm is
that, for a sufficiently symmetric system, it has certain sym-
metry properties as described by Landau and Lifshitz [30],
whereas the expansion tensor Aiklm does not necessarily have
these symmetries.

We first define an additional two deformations, u′ and u′′
such that

x′′
α = (δαβ − u′

αβ )x′
β, x′′

α = (δαβ − u′′
αβ )xβ. (B5)

To clarify, we have an initial space � which we can deform
with the transformation u into the space �′. We can then de-
form from �′ �→ �′′ with the deformation u′, and we can also

deform to the �′′ space from the original space like � �→ �′′
with the deformation u′′. We can combine the deformations to
find the relation

u′′
αβ = uαβ + u′

αβ − u′
ασ uσβ . (B6)

We then use the above relation to expand the stress tensor that
connects the �′ and �′′ space. Examining the expansion of
the free energy from the �′ space to the �′′ space, we find

F (�′′) = F (�′) − |�′|παβ (�′)u′
αβ + |�′|

2
Aαβγ δ (�′)u′

αβu′
γ δ.

(B7)

Expanding παβ (�′) and using Eqs. (B2) and (B6) we find

παβ (�′) =− 1

|�′|
∂F (�′′)
∂u′

αβ

∣∣∣∣∣
u′=0

=− 1

|�′|
∂F (�′′)
∂u′′

γ ε

∂u′′
γ ε

∂u′
αβ

∣∣∣∣∣
u′=0

=− 1

|�′|
∂F (�′′)
∂u′′

γ ε

(δγαδβε − δγαδβσ uσε )

∣∣∣∣∣
u′=0

=− 1

|�′|
(
δβε − uβε

)∂F (�′′)
∂u′′

αε

∣∣∣∣
u′=0

. (B8)

We can now turn our attention to the derivative in the above
expression. Namely, since the derivative actually does not
depend on u′ explicitly (recall that we can map from � �→ �′′
through u′′ without needing u′ at all), we can remove the
evaluation at u′ = 0. As such, the derivative is now not a num-
ber, but a function instead! This function describes the energy
response of the mapping � �→ �′′ through u′′ for any arbitrary
�′′ and u′′. That means it must be equivalent to the function
which maps from � �→ �′ through u. Thus, we can write

∂F (�′′)
∂u′′

αε

∣∣∣∣
u′=0

= ∂F (�′)
∂uαε

, (B9)
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and the final result from Eq. (B8) becomes

παβ (�′) = − 1

|�′| (δβε − uβε )
∂F (�′)
∂uαε

. (B10)

Since the derivative is no longer evaluated at u = 0, we now
substitute in Eq. (B1) to find

∂F (�′)
∂uαε

= −|�|παε (�) + |�|Aαεγ δ (�)uγ δ. (B11)

We now also expand the 1/|�′| term to find

1

|�′| = 1

|�|
1

det(1 − U)
= 1

|�| [1 + δxyuxy + O(2)], (B12)

where the indices x and y are tensor indices of the same nature
as α, β, etc. It is important to note that we are discarding
terms of O(u2) or higher as we are trying to derive Hooke’s
law, i.e., F = kx, and we do not want anharmonic terms.

We can now combine the results of Eqs. (B11) and (B12)
into Eq. (B10) (discarding O(u2

ik ) terms) to find

παβ (�′) = παβ − (Aαβγ δ + δγβπαδ − δγ δπαβ )uγ δ, (B13)

where everything on the RHS is a function of �. This is the
expression of Hooke’s Law as described in Eq. (B4) We can
therefore find that

Biklm = Aiklm + πimδkl − πikδlm, (B14)

with now the final task being to relate πik to the pressure tensor
Pik . Recalling that the stress tensor is just the negative of the
pressure, we can write the final expression as

Biklm = Aiklm + Pikδlm − Pimδkl , (B15)

which is the Cauchy elastic tensor. For the case of C3 symme-
try, we have the relation [30]

Bxxxx = Bxxyy + 2Bxyxy. (B16)

APPENDIX C: TENSOR DIFFERENTIATION

We have shown in previous sections how to expand a La-
grangian under a strain tensor. Once we have that expansion,
how do we recover the homogenized tensors as first and sec-
ond derivatives: πik = ∂F/∂uik and Aiklm = ∂2F/∂uik∂ulm?

We will now write out explicitly how expressions involv-
ing the tensors listed in Eq. (9) differentiate. Consider first
F = Fikuik with Fik = Fki, its first derivative is ∂F/∂uik = Fik .
Similarly, the first derivative of F = Fikεik is ∂F/∂uik = −Fik .

Let us now consider second derivatives. Suppose there is a
term in the Lagrangian of the form F = Fiklmuikulm. We have
the result ∂2F/∂uik∂ulm = 2Fiklm. Consider now F = Fikχik

where χik = (uliukl + ulkuil )/2. Since χik is symmetric under
i ↔ k, we can impose that Fik is also symmetric under the
same exchange.

∂2χik

∂ucd∂uab
= 1

2

∂

∂ucd
(δlaδibukl + δlaδkbuil + δkaδlbuli

+ δiaδlbulk )

= 1

2
(δibδkcδad + δkbδciδad + δkaδbcδid + δiaδbcδkd ).

(C1)

TABLE I. Top row lists terms that may appear in the expansion,
and the bottom row shows their corresponding contributions to the
elastic tensor after differentiation.

F Fiklmεikεlm Fik�ik Fikωik Fikχik

∂2F

∂uik∂ulm
2Fiklm Filδkm Fkmδil Fklδim + Fimδkl

This allows us to obtain

∂2F

∂uik∂ulm
= 1

2
(Fbcδad + Fcbδad + Fdaδbc + Fadδbc)

= Fklδim + Fimδkl , (C2)

using the symmetry of Fik under exchange of indices. A
similar calculation can be done for other tensor contractions
involving the tensors in Eq. (9). This is listed in Table I.

It is important to briefly discuss the symmetry of each of
these expressions. For terms that look like Fiklmεikεlm, these
already have all the symmetry properties we would want from
our elastic tensors. However, we can immediately see that the
contribution from Fik�ik , Fikωik and Fikχik do not have the req-
uisite symmetries. We instead need to create these symmetries
from combinations of these tensors. This cannot be achieved
a priori by adding in whatever we like. However, if we expect
elastic theory to hold, then we would expect any expansion in
any strain tensor (including ours) to lead us eventually back to
symmetric expressions. This is a good test to check whether
the expansion calculation has been done correctly.

APPENDIX D: NUMERICAL DEFORMATIONS

In our numerics, we use a spatial discretization consisting
of a triangular lattice as a grid so that the numerical scheme
is consistent with the symmetry of the supersolid phase under
rotations. Therefore, each “pixel” is a parallelogram and the
simulation cell is also a parallelogram with basis vectors a
and b parallel to (

√
3/2, 1/2) and (0,1) in Cartesian coor-

dinates. This Appendix provides some algebraic details on
how deformations V of the simulation cell can be used to
extract the elastic tensors numerically using the energy change
F2 ≡ Pull + 1

2 Aiklmuikulm up to second order in the strain.
Let us write all positions and displacements in the basis of

the triangular grid: r = raa + rbb and u = uaa + ubb. The
strain tensor in this basis,

V =
(

∂ua/∂ra ∂ua/∂rb

∂ub/∂ra ∂ub/∂rb

)
,

is related to the strain tensor in the Cartesian basis:
(U)ij ≡ uij by

U = T−1VT, with T =
⎛
⎝ 2√

3
0

− 1√
3

1

⎞
⎠. (D1)

In our numerics, we apply strains diagonal in the
triangular-grid basis by deforming the simulation cell in the
directions of a and b. Using the above, we can calculate
the energy changes we should expect to see. There are three
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deformations that give linearly independent results.

V =
(

ε 0
0 0

)
: F2 = Pε +

(
Axxxx + Axyxy

3

)
ε2

2
,

V =
(

0 0
0 ε

)
: F2 = Pε +

(
Ayyyy + Axyxy

3

)
ε2

2
,

V =
(

ε 0
0 ε

)
: F2 = 2Pε +

(
Axxxx + Ayyyy

2
+ Axxyy

)
ε2.

(D2)

For our system with C3 symmetry, there are only two in-
dependent elastic constants. Using Eqs. (B15) and (B16), we

see that Axxxx = Axxyy + P + 2Axyxy. Therefore, we have three
equations to solve for the elastic constants and the pressure for
a given ε � 1.

We have calculated these quantities at several values of ε

to check for the self-consistency of this analysis. This gives a
measure of the numerical errors of this technique.

A good question to ask is whether or not we are allowed to
a priori assume the system is symmetric, and whether we are
biasing towards a symmetric result. This is a valid question,
but really what we are doing is seeking to compare the results
we obtain with the analytical theory derived. Importantly, the
theory assumes nothing about symmetry, so if the numerics
agree with the theory, then this assumption is justified.
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