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A novel integration: neural networks
with DEM principles.
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A B S T R A C T

This paper introduces a novel methodology, the Neural Network framework for the Discrete Element Method
(NN4DEM), as part of a broader initiative to harness specialised AI hardware and software environments,
marking a transition from traditional computational physics programming approaches. NN4DEM enables GPU-
parallelised computations by mapping particle data (coordinates and velocities) onto uniform grids as solution
fields and computing contact forces by applying mathematical operations that can be found in convolutional
neural networks (CNN). Essentially, this framework transforms a DEM problem into a series of layered ‘‘images’’
composed of pixels, using stencil operations to compute the DEM physics, which is inherently local. The method
revolves around custom kernels, with operations prescribed by the laws of physics for contact detection and
interaction. Therefore, unlike conventional AI methods, it eliminates the need for training data to determine
network weights. NN4DEM utilises libraries such as PyTorch for relatively easier programmability and platform
interoperability. This paper presents the theoretical foundations, implementation and validation of NN4DEM
through hopper test benchmarks. An analysis of the results from random packing cases highlights the ability
of NN4DEM to scale to 3D models with millions of particles. The paper concludes with potential research
directions, including further integration with other physics-based models and applications across various
multidisciplinary fields.
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1. Introduction

The Discrete Element Method (DEM) serves as a powerful tool
for analysing particle-based phenomena across a wide array of appli-
cations, encompassing granular flow [1,2], powder mechanics [3,4],
rock mechanics [5], molecular dynamics [6] and astrophysical pro-
cesses [7]. Despite its potential and longstanding development history,
the widespread adoption of DEM simulations is hindered by computa-
tional limitations. As particle systems increase in scale and complexity,
conventional DEM methodologies face difficulties in maintaining effi-
ciency, often necessitating specialised hardware and long simulation
times. This computational bottleneck profoundly inhibits the practical
utility of DEM, constraining its capacity to tackle real-world problems
with the requisite precision and complexity. These limitations manifest
across various facets of DEM application.

Firstly, traditional DEM algorithms exhibit quadratic scaling with
the number of particles, resulting in a rapid escalation of compu-
tational expense as the system size increases. For simulations com-
prising millions or even billions of particles, conventional methods
become impractical, if not unfeasible, to execute using standard com-
puting hardware [8]. Secondly, DEM simulations necessitate the stor-
age and continual updating of information pertaining to each individual
particle, including parameters such as position, velocity and contact
forces with neighbouring particles. This requirement imposes a sub-
stantial memory overhead, which can swiftly exceed the capabilities
of even high-performance workstations when dealing with large-scale
systems [9]. Thirdly, the computational overhead associated with con-
tact detection and force calculations during particle collisions adds
to the overall simulation time. This issue is particularly pronounced
in systems characterised by highly dynamic interactions and frequent
collisions, exacerbating the computational burden [10].

The constraints outlined above limit the range of problems that
can be effectively addressed by DEM, particularly when integrating
it with other physics, such as Computational Fluid Dynamics (CFD),
which introduces additional complexities and escalates further the
computational demands [11–13]. The pursuit of efficient parallelisation
techniques for DEM simulations, based on CPU and GPU-accelerated
methods, has been a focal point for years [8,14–18]. However, over-
coming this challenge remains difficult due to the complex nature of
particle interactions and dependencies [1,8,19]. Additionally, while
existing parallelisation techniques yield performance enhancements,
their applicability to new scenarios may be limited, necessitating exten-
sive calibration efforts. The development of frameworks that are both
generalisable and easily validated across diverse applications poses a
critical barrier. For multi-physics applications, DEM is often coupled
with other computational methods such as Finite Element Analysis
(FEA) [20,21] and the Lattice Boltzmann Method [22,23]. However,
existing DEM implementations may not integrate well with these tools,
impeding collaborative workflows for complex multi-physics simula-
tions. This bottleneck not only obstructs performance optimisation and
code implementation but also undermines scalability, thereby further
complicating the computational landscape.

To address these challenges effectively, and mitigate concerns re-
garding cross-platform compatibility and the utilisation of state-of-
the-art energy-efficient computing systems, we propose the adoption
of a pioneering methodology: Neural Networks for DEM (NN4DEM).
This innovative approach represents a paradigm shift in computational
techniques by integrating artificial neural networks (ANN) with funda-
mental principles of physics, providing a modern solution to complex
computational problems. NN4DEM capitalises on the many advan-
tages offered by ANN-based solvers, including platform agnosticism,
as the code can run on CPUs, GPUs and the next generation AI pro-
cessors; increased computational capacity; enhanced programmability;
straightforward coupling for modelling multi-physics systems, as neural
networks representing different physical processes can be easily joined

together; compatibility with surrogate models based on trained neural
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networks; and fully differentiable models, which enable optimisation
processes such as data assimilation, uncertainty quantification and
inversion. One example of integrating physics-based and AI models
incorporates a discretised system within an inversion problem. As the
physics-based model produced by NN4PDEs is fully differentiable, the
inversion problem can be solved easily using the AI tools associated
with backpropagation. However, if the discretised system were to be
a Fortran/CUDA model, this model would not be differentiable and
additional work would be required to perform the inversion. In all but
the simplest data-driven applications, our (differentiable) model will
have advantages over a traditional (non-differentiable) Fortran/CUDA
approach.

In NN4DEM, the weights of the convolutional layers within a Con-
volutional Neural Network (CNN) are determined using physics-based
principles, rather than relying on training data to establish relationships
and patterns. NN4DEM enables the construction of neural networks
that embody fundamental physical laws (albeit through their discreti-
sations), meaning that the weights of the neural network are shaped by
centuries of scientific understanding. This contrasts with traditional use
of NNs in existing work [24–28] to accelerate DEM simulations, where
some parts of the simulations are approximated by a trained NN, result-
ing in a data-driven model. For example, Lu et al. [24] trained a CNN
on DEM-generated images to derive position corrections for contact
detection between particles and boundaries. The use of physics-based
principles to determine the weights of the neural network rather than
training, represents the fundamental difference between our proposed
approach and other ANN-based methods. Although, as for traditional
methods, NN4DEM can also be used to generate training datasets for
applications that could benefit from data-driven models. The idea of
representing a discretised system of equations as a neural network with
pre-determined weights can be seen in recent literature. Zhao et al. [29]
presented a method which expressed a discretised system of PDEs as
a neural network whose weights (or filters) were specified by choice
of finite difference scheme. Later, Wang et al. [30], who also applied
this idea to finite difference schemes, demonstrated good strong and
weak scaling on Tensor Processing Units for some benchmarks in fluid
dynamics. Chen et al. [31] extended this idea to finite element discreti-
sations and introduced a neural network with a U-Net architecture in
order to represent a multigrid solver, therefore expressing and solving
the discretised system entirely with neural networks. Referred to as
NN4PDEs (Neural Networks for PDEs), the method in [31] has since
been developed to model neutron diffusion [32], multiphase flow [33]
and flooding [34], and has been extended to model higher-order finite-
element discretisations [35] and to use unstructured meshes [36].
The method has also been integrated with trained neural networks
for a geological inversion problem, where a trained generative neural
network suggests prior conductivity fields and a forward model, written
as a neural network, makes predictions for the potential field [37].
Using backpropagation functions from machine learning libraries, the
mismatch between observations of potential and the prediction of
the forward model is minimised with respect to the hidden variables
of the network that generates the prior. This demonstrates seamless
integration of trained and untrained neural networks.

This study proposes the adoption and adaption of the NN4PDEs ap-
proach, thus far applied to PDEs [31–36]. Inspired by the inherent anal-
ogy present in AI grid-based calculations, our aim is to simulate particle
dynamics and interactions within a unified computational framework
established on the PyTorch environment. This paper presents the im-
plementation of NN4DEM and demonstrates its effectiveness through
benchmark cases, including a particle packing problem and a hopper
test. The structure of the paper is as follows: Firstly, the background is
provided to elucidate the fundamental aspects of the physical phenom-
ena and governing equations used in DEM, as well as particle packing
simulations. Subsequently, the paper describes the implementation of
NN4DEM, detailing the methodology and techniques employed. Follow-

ing this, the paper presents and discusses the results obtained from the
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benchmark case studies, highlighting the performance and capabilities
of NN4DEM. Finally, concluding remarks are provided, summarising
the key findings and implications of the study, along with suggestions
for future research directions.

2. Background

2.1. Particle motion

The equations governing translational and rotational particle mo-
tion are as follows:

̇⃗𝒗 = �⃗�
𝑚

+ �⃗� , (1)

̇⃗𝝎 = 𝑻
𝐼
. (2)

Here, ̇⃗𝒗 represents the particle velocity vector, 𝑚 denotes the particle
mass, �⃗� is the sum of forces acting on the particle, �⃗� represents the
gravitational acceleration vector, �⃗� is the angular velocity vector, 𝑻
denotes the net torque caused by the contact force, 𝐼 represents the
moment of inertia of the particle and the superscript dot denotes a time
derivative. The new velocities and position after the time step 𝛥𝑡 are
calculated:

�⃗� = �⃗�0 + ̇⃗𝒗0𝛥𝑡 , (3)
�⃗� = �⃗�0 + �⃗�0𝛥𝑡 , (4)
�⃗� = �⃗�0 + ̇⃗𝝎0𝛥𝑡 , (5)

where subscript 0 denotes the initial value.

2.2. Modelling of contact force

The concept of contact force, a pivotal aspect of DEM, has been
extensively covered in existing literature [38]. However, for the sake
of clarity and convenience, a concise overview will be provided. In
this approach, contact is modelled using an elastic spring and viscous
dissipation model. When two particles (𝑖 and 𝑗) come into contact with
each other, the force exerted by particle 𝑗 on particle 𝑖, �⃗� 𝑗→𝑖, can
be decomposed into two primary components: a normal contact force
�⃗� 𝑛,𝑗→𝑖 and a tangential force �⃗� 𝑡,𝑗→𝑖. The former is described as follows:

�⃗� 𝑛,𝑗→𝑖 =

{

−𝑘𝛿𝑖𝑗 �⃗�𝑖𝑗 − 𝜂�⃗�𝑖𝑗,𝑛 if 𝛿𝑖𝑗 < (𝑟𝑖 + 𝑟𝑗 );
𝟎 otherwise ,

(6)

where 𝛿𝑖𝑗 denotes to the overlap between the particles (𝑟𝑖+𝑟𝑗−|𝒙𝑖 − 𝒙𝑗 |),
for two particles whose centres are located at 𝒙𝑖 and 𝒙𝑗 respectively;
𝑟𝑖 and 𝑟𝑗 refer to the radius of particles 𝑖 and 𝑗; 𝑘 is the stiffness of
the spring; 𝜂 is the coefficient of viscous dissipation; and �⃗�𝑖𝑗 represents
the unit normal vector from particle 𝑖 to particle 𝑗. Finally, the normal
relative velocity between particle 𝑖 and 𝑗 is denoted by �⃗�𝑖𝑗,𝑛 and is
calculated as,

�⃗�𝑖𝑗,𝑛 = ((𝒗𝑖 − 𝒗𝑗 ) ⋅ �⃗�𝑖𝑗 )�⃗�𝑖𝑗 . (7)

Taking account of both friction and rotation, the tangential force is
given by,

�⃗� 𝑡,𝑗→𝑖 = −𝑘𝛿𝑖𝑗,𝑡 �⃗�𝑖𝑗 − 𝜂�⃗�𝑖𝑗,𝑡 (8)

where the unit tangential vector �⃗�𝑖𝑗 is defined by �⃗�𝑖𝑗 = �⃗�𝑖𝑗,𝑡∕|�⃗�𝑖𝑗,𝑡|.
The term 𝛿𝑖𝑗,𝑡 �⃗�𝑖𝑗 represents the displacement in the tangential direction
and is calculated using the displacement from the previous time step,
denoted by (𝛿𝑖𝑗,𝑡 �⃗�𝑖𝑗 )∗, and the current velocity and time step as (𝛿𝑖𝑗,𝑡 �⃗�𝑖𝑗 )∗+
�⃗�𝑖𝑗,𝑡𝛥𝑡. If, however, the following condition is met

|�⃗� 𝑡,𝑗→𝑖| > 𝜇𝑓
|

|

|

�⃗� 𝑛,𝑗→𝑖
|

|

|

(9)

where 𝜇𝑓 refers to friction coefficient, then sliding occurs, and the
tangential force is given by

�⃗� 𝑡,𝑗→𝑖 = −𝜇𝑓
|

|

|

�⃗� 𝑛,𝑗→𝑖
|

|

|

�⃗�𝑖𝑗 . (10)
Table 1 lists the two sets of particle properties used in this study. o
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Table 1
Mechanical and geometric properties.

Properties Values

I II

Sphere radius, 𝑅 (m) 0.05 0.003
Density, 𝜌 (kgm−3) 2700 1592
Stiffness, 𝑘 (Nm−1) 50 000 10 000
Coefficient of viscous dissipation, 𝜂 0.5 0.79
Friction coefficient, 𝜇𝑓 0.5 0.4

3. Methodology: Implementing neural network for DEM

We use AI tools from the PyTorch library, as it offers several
advantages over TensorFlow for the NN4DEM framework: (i) greater
flexibility in supporting multiple GPUs, which can facilitate large-scale
particle simulation; (ii) more feasibility in customising models due
to dynamic computational graph capabilities, allowing for efficient
management of computational resources during training (which might,
in the future, be integrated with the current method that does not
involve training); and (iii) competitive computational efficiency given
equivalent model structures.

3.1. Grid system overview for neural network-based computations

The proposed computational methodology relies on a structured
grid which facilitates the easy application of convolutional neural
networks. The computations are organised in correlation with the
geometry and motion of particles, establishing the following guidelines,
elucidated with reference to Fig. 1a: (i) Each grid cell can accommodate
only one particle at a time; (ii) Each particle is treated as a perfect
sphere; (iii) The diagonal cell length is equal to the diameter of each
particle (i.e., 2𝑅 =

√

3𝛥𝑥 =
√

3𝛥𝑦 =
√

3𝛥𝑧 for 3D, 2𝑅 =
√

2𝛥𝑥 =
√

2𝛥𝑦
for 2D); (iv) An explicit time-stepping scheme is implemented in both
spatial and temporal dimensions; and (v) Each particle is permitted to
move to a neighbouring cell per time step. Therefore, the maximum
time step should be calculated considering the cell size/particle radius,
physical properties and stability of the calculation. A widely accepted
criterion [38] was implemented as described below:

𝛥𝑡max = min
{

𝜋
5

√

𝑚
𝑘
, 𝛥𝑥
𝑣max

}

(11)

where 𝑣max denotes the maximum particle velocity at each time step.
Adopting a smaller time step will lead to smaller particle movements
in each step, thereby reducing the likelihood of unrealistic overlaps.
However, this comes at the cost of increased computational time.

As illustrated in Fig. 1b, particles are initially mapped onto the
grid structure. The discretised solution fields, which include particle
coordinates and velocity components in different Cartesian directions,
are then generated within the same grid structure. Each cell in the
grid contains relevant information pertaining to the particle located
within it. The core of our implementation strategy revolves around the
grid system and leveraging the convolutional operations used within
a CNN, tailored for tasks such as contact detection and interaction.
Discrete convolutions of a CNN are realised by applying kernels/filters
(that contain what are commonly referred to as the weights of the
neural network) to images (in many machine learning applications) or
solution fields (in our case). The weights are typically determined by
training the network with datasets. However, instead of training for
the weights, we designed a custom kernel based on particle kinematics
and dynamics in order to represent physics with the neural network.
This filter is a 5 × 5 in 2D (5 × 5 × 5 in 3D) tensor that traverses
(or convolves) across the grid-based input data. At each position of
the filter (illustrated by the cell (𝑖, 𝑗) highlighted in red in the figure),
ensor operations are conducted between the corresponding cell values

f the grid data currently aligned with the filter and the values of the
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Fig. 1. Illustration of grid system guidelines for NN-based computations using 2D examples. (a) Alignment with particle geometry and motion. (b) Overview of domain discretisation,
particle mapping onto the grid and a 5 × 5 convolutional filter operation applied to the solution fields for contact detection and interaction calculation. The operation outputs the
ontact force for particles at cell (𝑖, 𝑗) (if any). The cell values are arbitrary and used for illustration purposes, not representing actual particle physics.
s
c

A

eighbouring cells. This process results in the kernel outputting the
esultant contact force for the particle at cell (𝑖, 𝑗).

In essence, this method offers a means by which to replace the
computationally expensive loops often encountered in DEM algorithms,
executing operations simultaneously across the entire grid and thereby
facilitating fast computations. More details on the operations of the
kernel and the NN4DEM structure will be presented in the next section.

3.2. Custom kernel for contact detection and interaction

Fig. 2 presents an overview of the CNN architecture used for con-
tact detection and force calculations in the 2D case. The architecture
comprises three primary components: a multi-layer input, a physics-
based kernel and a convolutional layer. The multi-layer input includes
four datasets for particle coordinates and velocity (x_grid, y_grid,
vx_grid, and vy_grid), all sharing a common grid structure. The
input tensor has dimensions (𝑛ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑛𝑤𝑖𝑑𝑡ℎ) × (𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 4), where 𝑛
denotes the number of cells in each dimension and channels. A new
kernel, based on the kinematics and dynamics of particles, is used for
operations related to contact detection and contact force computations,
as shown in the figure. The kernel, with a size of 5, stride of 1 and
padding of 2, is applied to the input layers. It returns the contact force
interaction between the particle located in the central cell (if any) and
the particles in the neighbouring cells (if any). The convolutional layer
outputs fx_grid and fy_grid with the same dimensions as the input
layers.

3.2.1. Contact detection algorithm
As depicted in Fig. 2, two key functions are employed to detect

article contacts: slicing (Function 1) and PairwiseDistance
Function 2). The function slicing is used to extract 5 × 5 × 5
liding local blocks (i.e., sub-grids) from the original input grid as
utlined in Algorithm 1. The process effectively segments the input grid
nto manageable sub-grids, which enables localised analysis of particle
nteractions.
PairwiseDistance is a built-in PyTorch function that computes

he pairwise distance between input vectors or between columns of
nput matrices [39]. Here, this function calculates the distance (Dist)
etween the particles in the central cell of the sub-grid and those
n the neighbouring cells using the sub-grids of x and y. If Dist is
maller than the particle diameter 2𝑅, the particles are considered to
e in contact. The condition can be verified using torch.lt
Dist,2R). Accordingly, a mask is introduced with torch.where
torch.lt(Dist,2R), input, other) function to represent the

ub-grid space, containing cell values of 0 and 1, where a cell value of 0

4 
ignifies the absence of a particle. The mask is later integrated with the
ontact force computation process.

lgorithm 1: Function for extracting sub-grids

1 import torch.nn.functional as F
2

3 def torch_slicing(self, grid, filter_size
):

4 # Pad the input grid with zeros
5 padded_grid = F.pad(grid, (2, 2, 2,

2, 2, 2))
6 # Use unfold to extract sliding local

blocks from a batched input tensor
7 subgrids = padded_grid.unfold(2,

filter_size , 1).unfold(3, filter_size , 1)
.unfold(4, filter_size , 1)

8 return subgrids

To simulate particle interactions with boundaries, the relative dis-
tance of particles from the centre of each cell’s side is calculated,
representing the free surface or boundary. For ease of implementation
and compatibility with the contact detection algorithm, we introduce
sets of dummy cells and particles as halo layers around the model by
extending the grid. Fig. 3 schematically illustrates the construction of
these halo layers at the boundary. Essentially, a dummy particle is
added, mirroring the original particle with respect to the boundary.

The current contact detection method is designed for monodisperse
particles using a uniform grid and is now described. First, determine
the smallest particle’s mass and radius, as well as the largest stiffness,
to calculate the adaptive time step (Eq. (11)). Then, set up a uniform
grid with cell sizes smaller than the diameter of the smallest particle.
For particles with a radius equal to the minimum radius (𝑅 = 𝑅𝑚𝑖𝑛),
each particle can occupy one cell as before. For particles with a ra-
dius greater than the minimum radius (𝑅 > 𝑅𝑚𝑖𝑛), they can occupy
multiple cells, with each cell centre inside the particle, but each cell
can still be occupied by only one particle. Finally, determine the filter
size based on the maximum and minimum particle radii using the
formula: 𝑓𝑖𝑙𝑡𝑒𝑟𝑠𝑖𝑧𝑒 = 5 + floor(𝑅𝑚𝑎𝑥∕𝑅𝑚𝑖𝑛). For a polydisperse system,
modifications would be required to adapt this approach. Building upon
traditional DEM techniques, additional modifications can be considered
for more complex particle systems. In cases where particles have a high
aspect ratio, a multiscale approach can be beneficial by employing a
hierarchical grid structure. This method divides the simulation space

into nested grids with varying resolutions. Finer grid systems handle
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Fig. 2. Overview of the CNN architecture and the tensor operations designed for the physics-based kernel.
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Fig. 3. Schematic representation of the extended 2D halo grid depicted in grey and
dotted lines surrounding the main grid, used for boundary condition simulation within
the DEM framework. Dummy particles (highlighted in blue and green) are introduced
within the halo grid to mirror the positions of original particles with respect to two
boundaries.

smaller particles, preventing their overshadowing by larger particles
in the same grid cell, which can be an issue with uniform grids.
The rules and constraints for NN4DEM will vary depending on the
grid coupling techniques employed. For irregularly shaped particles,
techniques such as clumped spheres can be implemented [40,41]. The
pproach involves creating a rigid assembly of smaller spheres that
pproximate the shape of the irregular particle, with each sphere fixed
elative to the others. Within the clump, each sphere functions as an
ndividual contact point, ensuring that interactions adhere to the rigid
ody constraints of the assembly.

.2.2. Contact interaction algorithm
To compute the contact forces, diff (Function 3) is introduced

s another key function for calculating differential values between the
entral cell and its neighbouring cells, as detailed in Algorithm 2. The
unction operates by generating a dummy 5 × 5 matrix, where the value
 r

5 
f the central cell is replicated across all cells in the matrix. Then, the
unction calculates the difference between the original input matrix and
his dummy matrix.

lgorithm 2: Calculation of normal contact force excluding damping
erm

1 def diff(input_matrix):
2 # Assume input_matrix is of shape [n,

5, 5], where n is the number of sub-
grids

3 n, h, w = input_matrix.shape
4

5 # Initialise a dummy matrix where the
central value is copied to all cells

6 central_value = input_matrix[:, 2,
2].unsqueeze(-1).unsqueeze(-1)

7 dummy_matrix = central_value.expand(n
, h, w)

8

9 # Calculate the difference between
the input matrix and the dummy matrix

0 diff_matrix = input_matrix -
dummy_matrix

1

2 return diff_matrix

This function is applied to the sub-grids of x and y coordinates to
ompute the sine and cosine values, representing the normal direction
etween two particles. Moreover, the diff function is applied to the
elocity components vx and vy to obtain the relative velocities (vn
nd vt). Using these relative velocities, along with the previously
omputed mask, the force components are calculated in the x and y
irections for both the normal and damping forces (force_normal
nd force_damping). The total contact force is then computed as
he sum of these force components in the x and y directions, and this
esultant force is outputted by the kernel. To illustrate this concept,



S. Naderi et al.

1

1

1

1

1

1

1

1

1

1

i
f
a
9
v

Powder Technology 448 (2024) 120258 
consider the following code snippet for calculating the spring term in
the normal contact force:

Algorithm 3: Calculation of normal contact force excluding damping
term

1 # "epsilon " guarantees a non-zero value
in the denominator.

2 fx_normal = torch.where(torch.lt(dist,2*R
),

3 k*(dist-2*R)*diffx/torch.
maximum(epsilon, dist), zeros)

4 fx_total = fx_normal.view(batch_size ,
-1).sum(dim=1)

The same implementation approach will be applied to handle rota-
tional motion. Following the computation of contact interactions, the
translational and rotational velocities, as well as the coordinates and
orientations, require updating. The particle’s relocation to neighbour-
ing cells involves updating the cell data to reflect the ID (identification)
numbers of the particles present, if any. To calculate the tangential
force as described in Eqs. (8) to (10), it is necessary to maintain a
history of tangential displacement. This can be achieved by storing
and recalling data for each particle across time steps. However, in
this study, the primary focus is on evaluating the computational per-
formance of the NN4DEM framework, prioritising sufficient physics
over detailed exploration. Therefore, we have simplified the calculation
by basing the tangential force solely on the current state (Eq. (10)).
While this may lead to some inaccuracy in the physics, it allows for a
more straightforward assessment of the computational efficiency and
scalability of the method.

In a CNN, operations are performed at two levels: (i) convolutional
filters are applied across the entire input simultaneously, and (ii) within
each filter, some operations can be vectorised/parallelised (e.g., diff),
while others, such as force calculation processes, are naturally sequen-
tial. Vectorised operations at the filter level can be problematic as
increasing the batch size of NNs demands more memory e.g., the batch
size can increase from (1, 100, 100, 100) to (125, 100, 100, 100).
Therefore, to improve memory efficiency, kernel operations can be
performed sequentially for the central cell and each neighbouring cell
within each iteration. This approach, which mirrors the training process
in traditional CNNs, involves iterating through each neighbouring cell,
calculating the distance, detecting contact, computing the interaction
forces and adding these forces to the existing total force. For example,
in Algorithm 4, the process allows the kernel to focus on one neighbour-
ing cell at a time, calculating the differential and distance values, and
updating the total force accordingly. However, it should be noted that
this method comes at the cost of reduced computational speed. Each
iteration updates the total contact force, ensuring memory efficiency
by not storing large intermediate results.

Algorithm 4: Calculation of normal contact force excluding damping
term

1 def compute_forces(x_sub_grid , y_sub_grid
, vx_sub_grid , vy_sub_grid , R):

2 n, h, w = x_grid.shape
3 force_x = torch.zeros_like(x_grid)
4 force_y = torch.zeros_like(y_grid)
5

6 for i in range(5):
7 for j in range(5):
8 if i == 2 and j == 2:
9 continue # Skip the

central cell
0 diff_x = x_grid[:, 2, 2] -

x_grid[:, i, j]
6 
1 diff_y = y_grid[:, 2, 2] -
y_grid[:, i, j]

2 dist = torch.sqrt(diff_x**2 +
diff_y**2)

3 contact_mask = (dist < 2 * R)
.float()

4

5 # Compute forces based on
differences and contact mask

6 fx[:, 2, 2] += contact_mask *
(diff_x / dist)

7 fy[:, 2, 2] += contact_mask *
(diff_y / dist)

8

9 return fx, fy

3.3. Single particle validation

To assess the accuracy and reliability of the developed DEM code,
we use two benchmark tests: dropping a single particle under gravity
both with and without damping, and the sliding test. These tests
serve as standard benchmarks to verify the code’s ability to simulate
particle dynamics, interactions and frictional behaviour through do-
main discretisation and neural network computations. The fidelity of
the results is assessed by comparing them with those obtained from
analytical methods. The physical properties of the particle used in the
simulations are those listed under Set I in Table 1. The values of 𝑘 and
𝜇𝑓 for particle–particle interactions are also used for particle-surface
nteractions. In both cases the time step is set to 0.001 s. For the free
all test, a single particle is released from an initial height of 0.95m
bove a flat rigid surface, subjected to the gravitational acceleration of
.8m∕s2. In the sliding test, the particle begins moving with an initial
elocity of

√

2m∕s in the 𝑥𝑦 plane. In the free fall test without damping,
the particle returns to its original height. For the damped case, Fig. 4a
compares simulation results with outcomes from the analytical method,
demonstrating alignment in particle’s height history data. In the sliding
test, the model ceases movement after traversing a distance of 0.20m,
consistent with the analytical method (Fig. 4b).

4. Test cases

4.1. Random loose packing and scaling analysis

Assessing the performance of NN4DEM in handling particle pack-
ing is essential for understanding its computational capabilities and
scalability. This evaluation allows us to determine its efficiency and
accuracy in simulating large-scale systems. Random loose packing sce-
narios, especially those involving spheres, are prevalent across various
engineering and scientific fields, including geotechnical engineering
and the pharmaceutical industries [42–46]. The significance of these
scenarios lies in their interesting geometric properties, technological
relevance and potential utility as simplified models. We initially in-
vestigate two special cases with differing particle numbers to evaluate
the computational efficiency and capacity of the method based on the
kernel with the sequential operations. These scenarios are run on two
different GPU types, representing two distinct computing resources: the
Apple MacBook Pro M1 with an 8-core GPU, representing a typical
consumer laptop, and an NVIDIA A100 Tensor Core GPU with 6912
CUDA cores, representing high-performance computing for large-scale
parallel computation. It should be mentioned that PyTorch can po-
tentially leverage both Tensor Cores and CUDA Cores on an NVIDIA
A100 GPU, but it does not directly control which core type gets used
for specific operations. It focuses on providing a high-level interface
for working with tensors and computations. It relies on the underlying
CUDA libraries to manage hardware resources such as cores. The CUDA
libraries schedule operations on the available cores (Tensor or CUDA)
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Fig. 4. Comparison of simulation results with analytical predictions for (a) free fall test and (b) sliding test.
Fig. 5. Illustration of the poured packing process in cuboid containers: (a) schematic example in 2D and (b) 3D DEM results at three sequential steps.
ased on factors including the type of operation, data precision and
verall workload efficiency [47,48].

In the poured packing scenario, we conduct two simulations in
uboid containers (bulk domains) of dimensions 5m×5m×5m and 80m
80m × 5m, accommodating 72 029 particles (Case I) and 32 million

articles (Case II), respectively. The particle properties for both cases
re configured as Set I in Table 1 for both cases. To mitigate the risk of
xcessive overlap, which could lead to unrealistic solid packing within
stationary bed, we applied a criterion for the stiffness of the spring

𝑘) as follows:

≫ 𝐻𝑏
𝑚𝑝𝑔

𝑑2𝑝
(12)

where 𝐻𝑏 denotes the height of the bed, and 𝑚𝑝 and 𝑑𝑝 refer to the
mass and the diameter of particles respectively.

The simulations begin with empty containers and particles are
introduced progressively from the top in a layer-by-layer fashion under
the influence of gravitational force. In each new layer, particles are
arranged in a single row within the grid (i.e., a single sheet), with
one particle occupying the centre of every two adjacent cells. To in-
troduce randomness into the packing configuration, the initial vertical
velocities (parallel to gravity) are taken from a uniform distribution
over the range [−0.5, 0.5]m∕s and horizontal velocities are taken from
a uniform distribution over the range of [−0.1, 0.1]m∕s. The particles
are filled in that fashion until the targeted number of particles is
reached. Fig. 5 provides a schematic illustration of this process. In this
simulation: (i) particle growth is not considered, (ii) rolling motion
is included in the dynamics, (iii) friction is neglected in Case II to
examine the maximum number of particles computationally feasible,
(iv) physical properties remain consistent with the validation cases and
(v) the time step is set to 0.001 s for both cases. It is important to note
that it is well known that a more rapid feed rate for each particle
sheet will contribute to less energy dissipation and sub-optimal particle
positions resulting in less dense packings. The speed in which a packing

simulation will be completed also depends on the damping due to the

7 
restitution coefficient and to a lesser extent on the friction. However,
the objective here is not to devise a method for generating the densest
packs possible for a given bulk shape and particle size, but rather to
create packs that are sufficiently dense and randomly (dis)ordered to
serve as representative samples of granular compacts for computational
simulations.

Fig. 6 illustrates examples of particle packing, showcasing average
packing densities of 30.01% and 52.36%, respectively, based on three
realisations for each case — packing density is defined as the ratio of
the total volume of particles to the volume of the bulk domain. The
simulation runtimes for Cases I and II are 0.05 s per time step and 15 s
per time step, respectively. The simulation parameters are summarised
in Table 2. A scaling analysis was conducted to evaluate the relation-
ship between the number of particles and simulation speed, while also
enabling a comparison with a traditional GPU-parallelised code [49].
The problem domain was a square patch with dimensions 𝐿×𝐿× 1 (in
metres) and the particle properties were set according to Table 1 under
Set I. To accommodate an increasing number of particles, 𝐿 ranged
from 0.2m to 2.7m. Both vectorised and sequential kernels were tested
on the A100 40GB chip. Mixed precision arithmetic is implemented,
utilising both single (float32) and half precision (float16), using the
torch.autocast function. The results were compared with those
from simulations using the Chrono::Granular code on an NVIDIA Tesla
V100 with 32GB of memory, with both simulations running for 50,000
steps. As shown in Fig. 7, the codes exhibited linear scaling with
problem size up to approximately 40 million particles, where the device
memory was exhausted using NN4DEM::Sequential. The memory limit
for NN4DEM::Vectorised was about 12 million particles, but its speed
was 4.1 times faster than NN4DEM::Sequential and 4.9 times faster than
Chrono::Granular. Chrono::Granular can handle up to 700 million parti-
cles, which is significantly higher than the current version of NN4DEM,
highlighting the potential for further memory efficiency optimisation in
NN4DEM. Although, for a fair evaluation of computational efficiency,
the following points should be considered: (i) The methodology pre-

sented in this paper prioritises demonstrating principles without adding
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Fig. 6. Examples of particle packing for (a) Case I with 100 000 particles, (b) Case II with 32 million particles and (c) cross-sectional view of the pack in Case I showcasing particle
arrangements in the middle of the bulk domain. Different colour tones represent individual particles for enhanced visualisation.
Table 2
Simulation parameters for the random packing test.

Properties Values Unit

Case 1 Case 2

Bulk domain dimensions 5 × 5 × 5 80 × 80 × 5 m
Cells number in x, y and z directions 100, 100, 100 1600, 1600, 100 –
Cell size 0.05 0.05 m
Time step 0.001 0.001 s
Number of particles 72 029 32 000 000 –
Initial velocity in x and y directions [−0.1, 0.1] [−0.1, 0.1] m∕s
Initial velocity in z direction [−0.5, 0.5] [−0.5, 0.5] m∕s
Feed rate 4 8 layer∕s

complexity that may arise from further code optimisation, which could
potentially improve computational efficiency. (ii) The computational
capacity of the method is mainly determined by the number of grid
cells, unlike traditional DEM, where the number of particles is the
primary factor. Thus, comparing with conventional methods involv-
ing similar physics and employing other parallelisation techniques,
there may be negligible differences in terms of runtime and maximum
particle count.

Insights from our previous work in fluid dynamics [31] and neutron
iffusion [32], which employs similar concepts albeit with more com-
lex physics, suggests the potential for a substantial increase in particle
ount. These studies involve solving PDEs on structured grids, where
ariables are stored within the grid cells/nodes and have been able to
un on multiple GPUs. This makes the proposed NN4DEM approach
menable to the parallelisation methods used in such structured grid
odels. The methods distribute and assign computational tasks to sub-
omains (i.e., GPUs), with communication between these subdomains
ccurring through halo cells/nodes. This message-passing approach
s well-suited for model parallelisation and inter-GPU communication
n PyTorch, using packages such as NCCL. With further code im-
rovements, particularly focusing on memory efficiency (e.g., two-grid
ystems and compression approaches), NN4DEM could be extended
o accommodate about 10 billion particles. For example, simulating
00 million particles per GPU by employing techniques to store more
article data per cell would require approximately either 50 A100
0 GB or 25 A100 80 GB GPUs — at the time of writing, the necessary
omputational resources for both configurations are available.

It should be noted that the dependency of computational cost on
he number of grid cells may present limitations in certain applications.
8 
Fig. 7. Scaling results of the packing simulation, comparing NN4DEM methods with
Chrono::Granular, a traditional GPU-parallelised code. The Chrono::Granular data refers
to results from [49] using a V100 —SI32GB GPU.

However, this dependency can be particularly advantageous in scenar-
ios such as DEM-Fluid modelling, where the entire domain can typically
be discretised, and an Eulerian framework is used for fluids.

4.2. Hopper test

The hopper test evaluates NN4DEM on the dynamics exhibited by a
flow of particles. A flat-bottomed hopper with a single-component sys-
tem consisting of plastic spheres is set up according to the experiment
in Jian and Gao [50], as shown in Fig. 8a. The hopper has a height
(𝐻ℎ) of 0.40m, a width (𝑊ℎ) of 0.20m and a depth (𝐷ℎ) of 0.04m.
An orifice (𝑊𝑜) of 0.04m is symmetrically positioned on the lower
surface. The simulation consists of two parts: first, packing the particles
into the hopper, and second, discharging them. The initial height of
the packed particles (𝐻𝑝) is 0.36m. The properties of the particles are
listed under Set II in Table 1. The discharging simulation runs for a
physical time of 7.5 s, with approximate runtimes of 0.29 h and 1.18 h
on the HPC system with the A100 chip, utilising the kernel with the
vectorised and sequential operations, respectively. For comparison, a
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Fig. 8. (a) Schematic visualisation of the flat-bottomed hopper. (b) The mass discharge
ratio for single-component hoppers with plastic spheres, as obtained from NN4DEM
simulations and compared with experimental results [50].

similar case performed by the Chrono-DEM engine on a single NVIDIA
A5000 GPU [51] has a runtime of 0.35 h. The runtime is ∼17% slower
than NN4DEM with the vectorised kernel, where both simulations used
the same time step of 5 × 10−6 s. Some caution should be applied to
this comparison, as there are differences in computational resources
and the contact detection process used by Chrono-DEM and NN4DEM.
Chrono-DEM uses an interesting method called asynchronous threads
management algorithm, which runs contact detection and contact cal-
culation in parallel to speed up the model. However, this approach
involves a trade-off: contact detection is not performed at each time
step. Instead, it artificially enlarges contact geometries in the DEM
system, which can lead to false positives in contact detection. In con-
trast, NN4DEM performs contact checks at every time step. Therefore,
NN4DEM’s performance is competitive with other GPU-parallelised
codes and could be significantly faster if such a threads management
method is implemented.

Fig. 8b presents the relative mass discharge, comparing the re-
sults obtained from NN4DEM with experimental data. The comparison
demonstrates an excellent match. Also, Fig. 9 includes snapshots with
lateral views of the hopper at one-second intervals. In the final frame at
6 s, the residual inclination angle is 18◦, which aligns with experimental
observations. This angle indicates the presence of dead zones within
flat-bottomed hoppers, where particles are unable to fully discharge.

5. Conclusion

This paper introduces NN4DEM, a pioneering computational ap-
proach to DEM simulations employing a neural network framework.
9 
The neural network in NN4DEM derives its weights from the discre-
tised governing equations of a spring-dashpot model, enabling contact
detection and interaction between particles and boundaries. NN4DEM’s
performance was validated through standard benchmark cases such as
free fall and sliding tests, where its results were compared against ana-
lytical methods. Moreover, NN4DEM exhibits computational efficiency
and scalability, as demonstrated by its performance in random packing
simulations using two different GPU types, capable of accommodating
up to 10 billion particles.

The method presented here outlines the implementation principles
of neural networks for this application. In future work, the method
will be optimised in three ways: (i) improving versatility for broader
applications, including polydisperse systems with irregularly shaped
particles and multiscale multi-physics problems; (ii) advancing pro-
gramming techniques through the following approaches: (a) imple-
menting memory-efficient methods, such as a two-grid system and com-
pression techniques, and addressing memory concerns by incorporating
a comprehensive history-based friction model; (b) applying traditional
optimisation techniques, such as selective updates, data management,
error tolerance and adaptive methods; (c) employing multiple GPU par-
allelisation techniques; and (iii) integrating this method with surrogate
data-driven modelling frameworks.
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