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Global patterns of plant functional traits
and their relationships to climate
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Plant functional traits (FTs) determine growth, reproduction and survival strategies of plants adapted
to their growth environment. Exploring global geographic patterns of FTs, their covariation and their
relationships to climate are necessary steps towards better-founded predictions of how global
environmental change will affect ecosystem composition. We compile an extensive global dataset for
16 FTs and characterise trait-trait and trait-climate relationships separately within non-woody, woody
deciduous and woody evergreen plant groups, using multivariate analysis and generalised additive
models (GAMs). Among the six major FTs considered, two dominant trait dimensions—representing
plant size and the leaf economics spectrum (LES) respectively—are identified within all three groups.
Size traits (plant height, diaspore mass) however are generally higher in warmer climates, while LES
traits (leaf mass and nitrogen per area) are higher in drier climates. Larger leaves are associated
principally with warmer winters in woody evergreens, but with wetter climates in non-woody plants.
GAM-simulated global patterns for all 16 FTs explain up to three-quarters of global trait variation.
Globalmaps obtainedby upscalingGAMsare broadly in agreementwith iNaturalist citizen-science FT
data. This analysis contributes to the foundations for global trait-based ecosystem modelling by
demonstrating universal relationships between FTs and climate.

As primary producers, land plants regulate carbon and nitrogen cycling in
ecosystems and determine their productivity1–3. Functional traits (FTs)—
morphological, physiological, and phenological characteristics of individual
plants4—determine plant growth, reproduction, and survival strategies by
influencing life-history processes (e.g., seed traits), resource uptake and
utilisation (e.g., leaf nutrient contents), and responses to environmental
change anddisturbances (e.g., leaf traits andplant height)4–6. FTs thus reflect
the diverse ecological strategies of plants, which influence plant community
assembly and thereby biodiversity and function5,7–9.

FTs have been found to covary along a limited number of
dimensions4,10. FTs that vary together at species level might, in principle,
share genetic controls, or depend on trade-offs representing alternative
ecological strategies10. The leaf economics spectrum (LES) is one well-
known axis of trait covariation that embodies a trade-off between resource
acquisition and conservation11.Díaz and colleagues12 summarised the global
spectrumof plant form and function based on sixmajor FTs that are critical
for the growth, survival, and reproduction of species. They identified two
orthogonal dimensions of trait covariation: one corresponding to the size of
whole plants and plant organs, the other to the LES12. These two trait
dimensions are universal, existing even in ecosystemswith extremeclimates,

such as tundra13; at both species and community scales9,14; and within
plant groups, e.g., trees15. Different ecological strategies can facilitate the
coexistence of species (and their FTs) within communities9. At the com-
munity level, covarying FTs tend to perform interrelated functions2,16–18.
Wright et al.16 observed that wood density and leaf size are negatively
correlated in neotropical forests. Lower wood density related to
higher water conductivity per unit sapwood area and larger leaf area
associated with potentially higher photosynthetic rate but also higher
evapotranspiration. These two traits are thus interconnected through the
hydraulic system governing water transport and its trade-off with photo-
synthetic efficiency16. Quantifying the covariation of FTs and their controls
is necessary for a full understanding of how the diversity of plants translates
into community composition, productivity, and adaptations to
environment10.

Although the two dimensions of trait variation identified in ref. 12
are universal, the prevalence of specific FTs varies along environmental
gradients2,19: different combinations of FTs are selected for by environ-
mental conditions5,14,20, so climate change is expected to bring about shifts
in species composition determined by their FTs, such as migration and
extinction of needle-leaved trees in part of North America since the last
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glacial maximum21. In order to predict such shifts, it is essential to
understand global trait-climate relationships2,21. But there is no
comprehensive global map of trait measurements22. The models used
most widely to investigate climate change effects on ecosystems are
Dynamic Global Vegetation Models (DGVMs). These typically
compress functional diversity into a small (about 5–15) number of
plant functional types (PFTs)22,23, which are assigned fixed trait
values. Substantial, observed variability within PFTs is thereby
lost24,25. Moreover, as past and future climates may have no analogues
in present climate conditions, it is likely that this approach misses
potential trait variation and trait combinations within PFTs24,26,27. A
better approach to estimating trait values on a global scale is needed
to overcome the limitations of PFT-based modelling. Although
satellite remote-sensing offers potential to directly map plant traits at
large scales28–30, this approach can only retrieve a limited set of traits
from leaves and upper canopies, with moderate accuracy28. In addi-
tion, statistical upscaling and machine learning approaches based on
relationships between FTs and environmental factors have recently
been used to produce global maps for a few (mainly leaf)
FTs2,3,25,29,31–34. A recently published work simulated global maps of
three leaf traits via optimality models based on eco-evolutionary
optimality theory35. However, the various published global trait maps
do not always show consistent global patterns, reflecting differences
in data sources and upscaling methods35,36.

Newly published data and computational resources should facilitate
global-scale researchonFTs.The sPlotOpendataset37,38, a curated subset of a
large globally distributed set of vegetation plots, provides plot-level trait data
(as community-weighted means, CWMs) for 18 FTs. These CWMs were
calculated from trait data in the TRYdatabase39 and the relative abundances
of each taxonwithin each plot38. Díaz et al.40 recently published an enhanced
species-level trait dataset containing the species-mean values of the six
major FTs defining the primary axes of trait covariation in the global
spectrum of plant form and function as defined in ref. 12 Global trait
patterns have also beenmapped by complementing plant observations from
the global citizen-science project iNaturalist with measurements
from TRY41.

A study of the geographical patterns of six FTs across North and South
America found that trait-climate relationships differ overall between woody
and herbaceous plants, including different climate predictors and different
response shapes of FTs along climatic gradients42. Previous studies have also
found that woody evergreen plants tend to have thicker and longer-lived
leaves poleward,whilewoodydeciduousplants show theopposite pattern43,44.
A recently developed theory explains this divergence of latitudinal trends45.
According to the theory, leaves maximise the average net carbon gain over
their life cycle. The different relationships between leaf mass per area (LMA)
and environmental factors in deciduous and evergreen woody plants then
arise because the life cycle of deciduous leaves, unlike that of evergreen leaves,
is tied to the annual cycle45. It is, therefore, appropriate to analyze non-woody
plants, woody deciduous plants, and woody evergreen plants as separate
groups with potentially distinct trait-environment relationships.

We compiled a global dataset for 16 FTs (Table 1), including
42,676 plant taxa from 77,074 natural vegetation plots based on the
sPlotOpen dataset38 and the enhanced species-level trait dataset of
ref. 40. All FTs in our dataset have plot-level means for each plot; six
also have species-level means. We refer to these six as ‘major FTs’ as
they also form the global spectrum of plant form and function. Plant
taxa were grouped into non-woody, woody deciduous and woody
evergreen categories according to their life form and leaf phenology.
We analysed trait covariation and characterised trait-climate corre-
lations within each category for the six major FTs. For all FTs, we
fitted generalised additive models (GAMs) for their relationships to
three bioclimatic variables. Then we simulated global patterns for
each FT at 0.1° spatial resolution, based on climate data and remotely
sensed global fractional cover of the three plant groups. Finally, we
compared our global maps for the 16 FTs against the iNaturalist
maps41 at 2° spatial resolution.

Results
Trait combinations
We calculated CWMs of each of the three plant groups within each vege-
tation plot for the sixmajor FTs. CWMswere natural-log transformedprior
to further analysis.We then used the CWMs to evaluate covariation among

Table 1 | Plant functional traits used in this study

Traita Abbreviationb Unitc Functionsd Availabilitye

Leaf area LA mm2 Leaf size; related to leaf energy and water balance10 Plot-level trait means38 and
species-level trait means40

Leaf mass per unit area LMA kg/m2 Key traits in the leaf economic spectrum (LES); reflecting investment
strategy11

Leaf nitrogen content per
unit area

Narea g/m2

Stem specific density SSD g/cm3 Trait in wood economics spectrum; reflecting drought-tolerance70

Plant height H m Whole plant size; reflecting the ability to compete for light12,54

Diaspore mass DM mg Seed size; reflecting dispersal and establishment ability12,55

Leaf fresh mass LFM g Related to energy transfer, plant growth and productivity9 Plot-level trait means38

Leaf phosphorus content per
unit area

Parea g/m2

Leaf carbon content Cmass mg/g

Leaf dry matter content LDMC g/g

Stem conduit (vessel and
tracheid) element length

WVL μm Related to water transport: safety versus efficiency9

Stem conduit density SCD mm-2

Seed number per
reproductive unit

SN NA Reflecting dispersal, regeneration and reproduction ability9. Here, SL is
the length of a seed, while DUL is the length of the dispersal unit, which
may include many seeds.

Seed length SL mm

Dispersal unit length DUL mm

Leaf nitrogen isotope ratio δ15N per million Reflecting nitrogen source, loss pathways, and root symbionts9,94

aPlant functional traits used in this study. bAbbreviation and cunit of eachof the 16 traits. dBrief descriptionof functions for eachof the 16 traits. eData availability for each trait. All 16 plant functional traits have
plot-level trait means (community-weighted means, CWMs)38, while the first six traits also have species-level mean trait values40.
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FTswithin the non-woody, woody deciduous andwoody evergreen groups.
Patterns of covariationwere summarised by Principal Component Analysis
(PCA). The first three PCA axes together captured 76% of trait variation in
non-woody taxa, 88% in woody deciduous taxa and 84% in woody ever-
green taxa (Fig. 1a–c, Table S6). Twoorthogonal dimensions emerged for all
groups. One dimension, represented by height (H) and diaspore mass
(DM), represents overall plant size—from short plants with light diaspores
to tall plants with heavy diaspores. The other, represented by LMA and leaf
nitrogen per unit area (Narea), reflects the LES11 and the predominant
influence of LMA on Narea

46,47. Leaf area (LA) tended to covary with plant
size,while being approximately orthogonal to the LES. Stem-specific density
(SSD) showed the opposite direction to the other traits along axis 3 of PCA.
SSD in non-woody plants was strongly correlated with LMA and Narea

(Fig. 1a). SSD inwoody evergreenplantswasmore correlatedwith plant size
(Fig. 1c), while SSD in woody deciduous plants showed an intermediate
pattern (Fig. 1b).

Relationships between traits and climate
We calculated three bioclimatic variables for each plot (Fig. S2), which
represent the three major independent climatic controls on the global
geographic distribution of vegetation physiognomy48.49,50 and therefore
likely also the global distribution of key plant traits48 (see Methods).
The three bioclimatic variables are: mean growing-season temperature
(MGST, °C, representing summer warmth), mean temperature of the
coldest month (MTCO, °C, representing winter cold), and the log-
transformed moisture index (ln MI, unitless, representing plant-available
moisture: see Methods). We subsequently conducted a Redundancy Ana-
lysis (RDA) to describe the extent to which the six major FTs covary with
these bioclimatic variables. The first three constrained RDA axes accounted
for 9%, 20%and32%of total trait variation innon-woody,woodydeciduous

and woody evergreen plants, respectively (Fig. 1d–f, Table S7). These three
axes revealed substantially the same combinations of plant size and LES
traits as were shown in the PCA, but further illustrated their relationships
with bioclimate. Along the three axes (Fig. 1d–f), plant height and diaspore
mass increased with the growing-season temperature (MGST) within all
groups, and LMA and Narea decreased with increasing moisture (ln MI)
within all groups. Plant size traits were positively correlatedwithwinter cold
(MTCO) on the first two axes, but they were negatively correlated on the
third axis. However, LA behaved differently, covarying with ln MI in non-
woody plants but with temperature variables in woody plants. The residual
or unconstrained RDA axes (Fig. S6) approximately replicate the PCA axes,
indicating that much trait variation along the main axes identified in ref. 12
persists even after climatic influences have been taken into account. How-
ever, a strong correlation between SSD and plant size traits in woody
evergreen plants disappeared (Fig. S6c).

We used GAMs to quantify relationships between each major FT and
bioclimatic variables in more detail, which allowed us to fit more complex
surfaces and to distinguish growing season from cold-month temperature
effects (Figs. 2–3). We calculated the relative importance values of expla-
natory variables (Fig. 2) in GAMs to quantify the individual contribution of
three bioclimatic variables to the major FTs. These values measure the
average percentage contribution of each variable in turn to the fit of the
models based on all three variables. Across all plant groups H variation was
dominated by growing-season temperature, and LMA and Narea variation
by moisture availability (with an additional influence of growing-season
temperature on LMA in non-woody plants). DM variation was dominated
by moisture availability in non-woody plants but by growing-season tem-
perature (with an additional influence of winter temperature) in woody
deciduous plants. By contrast, variation in SSD and LA showed similar
controls in non-woody and woody deciduous plants (dominated by
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Fig. 1 | Trait-trait and trait-climate correlations. Principal component analysis
(PCA) (a–c) and redundancy analysis (RDA) (d–f) for six major plant functional
traits of non-woody (a,d), woody deciduous (b, e) andwoody evergreen (c, f) plants.
Six major traits are leaf area (LA, mm2), leaf mass per unit area (LMA, kg/m2), leaf
nitrogen content per unit area (Narea, g/m

2), stem specific density (SSD, g/cm3), plant
height (H,m) and diasporemass (DM,mg). The orientation of axes has been rotated
according to the Fig. 2 in ref. 12. Grey scales indicate the loadings on the third axis.
Solid arrows (with blue labels in RDA) represent traits, and dashed arrows (with red

labels in RDA) represent bioclimatic variables. All six traits were natural-log
transformed before analysis. Both log-transformed traits and bioclimatic variables
were rescaled to amean of 0 and a standard deviation of 1 before analysis. lnMI, log-
transformed moisture index; MTCO mean temperature of the coldest month,
MGST mean growing-season temperature (see Methods for definition). All ele-
ments of the figure were created by the authors using R v4.2.2 (https://www.r-
project.org/)81.
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moisture availability andgrowing-season temperature for SSDandmoisture
availability for LA), but a different type of control—dominated by growing-
season and winter temperatures—for woody evergreen plants.

We visualised the trait distributions in the global climate space
defined by three bioclimatic variables for each of the six major FTs
(Fig. 3, S8). This allowed for a more intuitive comparison of trait-
climate relationships among the FTs and three plant groups. FTs
related to the same principal axis of trait variation presented similar
distribution patterns in the global climate space. However, the
GAMs reveal many more subtle distinctions. For example, among
FTs related to the LES, Fig. 3b, e, h shows that LMA in all plant
groups increases towards drier climates—but LMA in non-woody
plants tends to decrease with growing-season temperature in climates
with cold winters (MTCO ≤−2 °C in Fig. 3b). LMA in woody
plants is less sensitive to temperature (Fig. 3e, h); however woody
deciduous plants show highest LMA in climates with warmer winters
(MTCO ≥ 10 °C in Fig. 3e), while woody evergreen plants show
highest LMA in climates with colder winters (MTCO ≤−2 °C in
Fig. 3h). Among FTs representing plant size (Fig. 3c, f, i), H is
greatest in climates that are both wet (ln MI > 1) and warm
(MGST > 15 °C, MTCO ≥ 10 °C) within all groups.

LA showed a general pattern of increase withmoisture within all three
plant groups (Fig. 3a, d, g), but LA was less sensitive to moisture in woody
plants (Fig. 3d, g) compared tonon-woodyplants (Fig. 3a; also confirmedby
Fig. 1d–f).Amongwoody evergreens (Fig. 3g), the largest leaves are found in
wet climates with warmwinters (MTCO> 10 °C) as well as warm summers
(MGST > 15 °C). Consistent with their habit, woody deciduous (Fig. 3d)
and non-woody plants (Fig. 3a) do not show the same strong sensitivity of
LA to cold winters.

Global maps for the six major traits
For each of the three plant groups, we upscaled the GAMs based on three
bioclimatic variables to generate global distribution maps for the six major
FTs at 0.1° spatial resolution, separately. The separate trait maps for each
plant group are shown in Fig. S9.

Global maps for all traits
In order to predict global patterns for all 16 FTs having plot-level mean
values (CWMs) in the sPlotOpen dataset38, we fitted new GAMs based on

the same three bioclimatic variables, combined with the (remotely sensed)
fractional cover of the three plant groups as additional predictors. All FTs
were natural-log transformed prior to the analyses. These GAMs explained
up to 77% of the global variation of plot-level mean trait values, with a
median adjusted R2 of 52% (averagemedian calculated from 54% and 49%)
over all 16 FTs. Best fits (Radj

2 ≥ 49%) were obtained for the following nine
FTs: H (77%), SSD (68%), DM (64%), SCD (61%), LMA (57%), LA (56%),
LFM(55%),Cmass (54%) andNarea (49%) (seeTable S11 for a summary).We
created global trait maps for all 16 FTs based on these GAMs at 0.1° spatial
resolution (Fig. 4; see Fig. S12 for all 16 FTs). H, LA, and LFM (Fig. 4a–c)
were predicted to be higher in tropical regions and warm and humid
environments,with lower values found in coldhigh-latitude regions anddry
temperate environments. The global distribution of LMA (Fig. 4d)might be
related to the joint effects of global patterns of LA (Fig. 4b) and LFM
(Fig. 4c). Plants with higher LMAwere predicted to inhabit tropical regions
and drier environments, while plants with lower LMA mainly appeared in
humid northern temperate regions. Tropical zones subject to high
moisture stress harbour species with higher SSD but lower SCD (Fig. 4e–f).
However, plants in humid northern temperate regions and boreal forests
had relatively higher values of SCDand lower SSD (Fig. 4e–f). AlthoughFTs
within the same trait dimension did not show identical global patterns, their
maximum values tended to occur under similar environmental conditions.
Like high-LMA plants (Fig. 4d), plants with higher Narea (Fig. 4g) were
generally favoured in hot and dry environments, supporting earlier
findings51–53. DM (Fig. 4h) was predicted to be notably high in equatorial
regions and warm and humid temperate regions with hot summers, coin-
ciding with H (Fig. 4a). Cmass showed little variation across the globe
(Fig. 4i). It was found to be slightly lower in deserts and arid temperate
regions.

Comparison to iNaturalist data
Independent global trait maps41 generated by linking plant observations
from the iNaturalist citizen-science project to trait measurements from the
TRYdatabasewere used as a benchmark for ourGAM-based predictions, as
the iNaturalist data included all 16 FTs considered in our study. We eval-
uated the pixel-by-pixel agreement between ourGAM-predictedmapswith
the iNaturalist maps at 2° resolution, chosen because some FTs presented
the highest correlations between sPlotOpen and iNaturalist at this
spatial scale41.

Fig. 2 | Relative importance of three bioclimatic variables. Relative importance of
each bioclimatic variable in predicting six major plant functional traits of non-
woody (a), woody deciduous (b) and woody evergreen (c) plants derived from
Generalised Additive Models (GAMs). Six major traits are leaf area (LA, mm2), leaf
mass per unit area (LMA, kg/m2), leaf nitrogen content per unit area (Narea, g/m

2),
stem specific density (SSD, g/cm3), plant height (H,m) and diasporemass (DM,mg).

All six traits were natural-log transformed before the analysis. Moisture availability,
log-transformed moisture index (ln MI, unitless); winter temperature, mean tem-
perature of the coldest month (MTCO, °C); growing-season temperature, mean
growing-season temperature (MGST, °C) (see Methods for definition). All elements
of the figure were created by the authors using R v4.2.2 (https://www.r-project.
org/)81.
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Fig. 3 | Examples of climate space diagrams. Climate space diagrams of non-woody
(a–c),woodydeciduous (d–f) andwoody evergreen (g–i) plants: showingdistributions of
natural-log transformed leaf area (LA, mm2) (a, d, and g), leaf mass per unit area (LMA,
kg/m2) (b, e, andh) andplantheight (H,m) (c, f, and i) in the global climate spacedefined
by three bioclimatic variables. Fitted trait values are presented as contours, with darker
colours in the right colour bar representinghigher trait values.Valuesof lnMIandMGST

vary continuously along the horizontal and vertical axes, respectively. Each slice is created
at an exact MTCO value. Abbreviations and units of traits are shown in Table 1. ln MI,
log-transformedmoisture index;MTCOmean temperature of the coldestmonth,MGST
mean growing-season temperature (seeMethods for definition). Climate space diagrams
for all six major FTs are shown in Fig. S8. All elements of the figure were created by the
authors using R v4.2.2 (https://www.r-project.org/)81.
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The highestR2 andmedianR2 of linear regressions between ourGAM-
derived maps and the iNaturalist maps, overall 16 FTs, were 64% and 15%.
Figure 5 shows nine FTs that present better agreement than the remaining
FTs (R2 ≥ 13% and slope >0.5 and <2): SCD, LA, LFM, SSD, δ15N, H, Narea,
LMA, and DM (see Table S13 for more information).

The slope of the linear regression also indicates the direction in which
the GAM-predicted values deviate from the iNaturalist gridded values.
According to Fig. 5, GAMs tended to estimate higher LMA and lower LA
and Narea in comparison to the iNaturalist data. GAM tended to over-
estimate SSD at lower values and underestimate SSD at higher values
compared with the iNaturalist data. For larger values, GAMs predicted
higher H and DM but predicted lower LFM, SCD and δ15N than the iNa-
turalist data.

Discussion
Ecological strategies reflected by trait-trait and trait-climate
relationships
Analysing six major FTs in non-woody, woody deciduous and woody
evergreenplants separately,we found that the twoorthogonal dimensionsof
covariation in plant size traits (H–DM) and LES traits (LMA–Narea), first
identified by Díaz and colleagues12, also apply within each of the three plant
groups (Fig. 1a–c). Although Díaz et al.12 showed that non-woody and
woodyplants form twoalmost disjunct hotspots along theH–DMaxis42, our
study shows nonetheless that the covariation of H and DM follows almost
the same pattern within the non-woody and woody taxon groups
(Fig. 1a–c). FTs from the same dimensions of trait covariation tended to be
influenced by climate in similar ways (Figs. 1–3 and S8). H relates to light
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Fig. 3 | continued.
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competition and DM to dispersal54,55. In resource-rich environments (wet-
ter, warmer andmoreproductive sites), plantsmakemore carbonprofit that
can be invested in stems and also used for seed production. Consequently,
they can grow taller to have greater access to light, and produce larger seeds,
promoting both a strong competitive status and a high survival
probability2,54–57. LMA and Narea represents resource acquisition
strategies11,12. LMA reflects a trade-off between the amount of carbon
invested in leaves and their lifespan58.Narea has been considered as the sum
of a metabolic component and a structural component, the former pro-
portional to photosynthetic capacity, the latter to LMA46,47. Leaveswith high
LMA and Narea are favoured in hot and dry climates because this combi-
nation can conserve water to allow the plants to maintain a relatively high
photosynthetic rate in the face of increased evapotranspiration51–53.

Our analysis also revealed a differentiation in trait combinations
among the three plant groups, specifically in the covariation of SSD with
other FTs. SSD in non-woody plants was strongly correlatedwith LES traits
(Fig. 1a). SSD in woody deciduous plants was relatively independent
(Fig. 1b), while SSD in woody evergreen plants was more correlated with
plant size traits (Fig. 1c). This novel finding is explicable in adaptive terms.
In dry climates, some herbaceous and succulent plants (typically with low
SSD) can fix CO2 though their green stems, reducing water loss from the
leaves and providing an extra source of carbon59–61. The variation of SSDdid
not showstronger correlationwith a single of the twomajor trait dimensions
in the global spectrum of plant form and function12. Previous studies were
either conducted on global vascular plants12 or analysed trait data at the
community levelbyusing community-weightedmeans9,14. These studies did
not identify the functional differences among the non-woody, woody
deciduous and woody evergreen plants, consequently failing to detect the
distinctive trait combinations associated with SSD. We also extracted pixel
values from theGAM-basedglobalmaps of the sixmajor traits in each plant
group and performed PCA and RDA on them to test these observed trait
combinations were still present in the predicted trait values (Fig. S16). The
distinct patterns of SSD among the three plant groups were not evident in

the predicted trait values—particularly in non-woody plants, where the
previously strong correlation between SSD and LES traits was now absent
(Fig. S16a). Trait data used in original PCA and RDAwere calculated from
the database ofDíaz et al.40 (seeMethods) inwhichobserved records for SSD
are available only for a few non-woody species; missing values of SSD were
imputed via leaf dry matter content (LDMC)40, which was found to be
closely related to both LMA and Narea

9: perhaps accounting for the strong
correlation between (LDMC-derived) SSD and the LES traits.

Correlations between the six major FTs and the three bioclimatic
variablesvaried amongnon-woody,woodydeciduous andwoody evergreen
plants. The relative importance of predictors was different among the
groups, as were patterns of trait distribution in climate space (Figs. 1–3 and
S8). Bioclimatic variables explainedmore trait variance forwoody thannon-
woody plants (Fig. 1d–f, Table S7). One explanation is that woody plants
have permanent organs that must endure climatic conditions year-round
over the years. In addition, short-stature non-woody plants are closer to the
ground and experience different physical conditions compared with tall-
staturedwoodyplants42; therefore, themicroclimate of non-woody plants in
the understorey cannot be directly represented bymacroclimate variables42.

Different trait-climate correlations among the three plant groups are
associatedwith their life-history strategies. For non-woodyplants, LMAwas
less constrained by plant-available moisture (represented by ln MI) than
woody plants (Fig. 2), and their DM showed little correlation with all three
bioclimatic variables (Figs. 2–3 and S8). Such discrepancies may arise
because non-woody species tend to occupy smaller, more specialised and
diverse niches than woody species42,62. Once climatic conditions are outside
their tolerance, they undergo dieback63. Therefore, they must grow quickly
and reproduce efficiently within the favourable portion of a short lifespan.
Such a strategy precludes tall stature64, supports lower LMA leaves (thus
lower leaf Narea) even in drier climates in order to maintain high photo-
synthetic and respiration rates63, and supports the production of copious
small seeds to maximise fitness under high resource availability57,65,66. The
short lifespan of many non-woody plants also represents an adaptive

Fig. 4 | Examples of global trait maps.Global patterns of plant height (a), leaf area
(b), leaf fresh mass (c), leaf mass per unit area (d), stem specific density (e), stem
conduit density (f), leaf nitrogen content per unit area (g), diasporemass (h) and leaf
carbon content (i), produced by the best-fit generalised additive models (R2 ≥ 49%)
based on three bioclimatic variables combined with remotely sensed fractional cover
data for the three plant groups (see Methods for details). The best-fit model here

refers to themodel with adjustedR2 above themedian level of the adjustedR2 over all
16 FTs. Colour gradients from blue to red indicate the increase in trait values. All
traits are natural-log transformed. All maps are at 0.1° resolution. Global trait maps
of all 16 functional traits are shown in Fig. S12. For maps in GeoTiff format, refer to
theData availability statement. All elements of the figure were created by the authors
using R v4.2.2 (https://www.r-project.org/)81.
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strategy that facilitates their survival in demanding environments. They can
live their short lives betweenfires, physical disturbances, droughts, or annual
freezes64.

Tall woody plants, on the other hand, are successful competitors for
light, persisting across years in changing environments64,65. However,
deciduous and evergreen woody plants also adopt different ecological
strategies.We found that LES traits (LMA–Narea) ofwoodydeciduousplants
were insensitive to growing-season temperature (MGST) but were strongly

affected by plant-available moisture (ln MI) and winter temperature
(MTCO) (Fig. 3 and S8). This distinction corresponds to the fact that
deciduous plants shed their leaves in response to dry or cold conditions67,68.
As a result, the leaf life cycle of woody deciduous species is tied to the
growing season45; their lower LMA (and thus lower Narea) represents an
adaptation to a short lifespan42,45. In contrast,woody evergreenplants,which
need to maintain leaves and vascular networks over successive seasons64,
typically adopt more conservative nutrient-use strategies (higher LMA and
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Fig. 5 | Comparison between predicted trait values and the iNaturalist estimated
trait values. a leaf area (LA); b leaf mass per unit area (LMA); c leaf nitrogen content
per unit area (Narea); d, stem specific density (SSD); e plant height (H); f diaspore
mass (DM); g leaf fresh mass (LFM); h stem conduit density (SCD); i leaf nitrogen
isotope ratio (δ15N). Red lines visualise the linear regression between model-
predicted map pixel values and the iNaturalist map pixel values estimated at a 2°
spatial resolution. The dotted line is the 1:1 line.R2 is the coefficient of determination;
RRMSE is the root-mean-square error expressed as a proportion of the observed
mean trait value (here observations are represented by iNaturalist trait values); bias is
the difference between observed and model-predicted mean values, as a proportion

of the observed mean trait value (here observed values are iNaturalist trait values);
slope is the slope of the linear regression of iNaturalist estimations against model
predictions. The nine traits displayed here showed higher agreement between
model-predicted maps and the iNaturalist maps compared to the remaining traits
(R2 ≥ 13% and slope >0.5 and <2). All traits are natural-log transformed. Scatter plots
of model-predicted trait values versus iNaturalist estimated trait values for all 16
traits are shown in Figure S13 and parameters for evaluating linear regressions for all
16 traits are shown in Table S13. Abbreviations and units of traits are shown in
Table 1. All elements of the figure were created by the authors using R v4.2.2 (https://
www.r-project.org/)81.
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Narea) and may require greater protection against drought and/or frost
damage11,13,14.

LA in woody plants was positively correlated with winter temperature
(MTCO) (Fig. 3), but the relative importance of winter cold for LA in
evergreenplantswashigher than that in deciduousplants (Fig. 2). Evergreen
woodyplantswith small leaves (lowLA) are better adapted to harshwinters.
Larger leaves are more prone to frost damage because of their thicker
insulating boundary layers of still air that slow sensible heat exchanges with
their surroundings69. This means that their ability of heat uptake from their
surroundings to compensate for the energy lost to the night-time sky is
diminished, leaving them vulnerable to frost69. Although all three plant
groups showed the highest SSD at the same moisture level, the SSD in
evergreen plants was higher (Fig. S8) and was less controlled by moisture
(Fig. 2) than that of the other two groups. SSD reflects wood density and is
related to drought-tolerance of plants70. Evergreen trees with higher wood
density are less vulnerable to drought-induced embolism than co-existing
drought-deciduous trees with lower wood density in arid environments71.
The hydraulic architecture of high-SSD evergreen woody plants, including
fibres and thick-walled vessels, allows them to maintain water transport to
the canopy under greater xylem pressure caused by water shortage and to
continue growing in seasonally dry climates70,71.

Evaluations of global trait maps
Mindful of potential differences in trait-climate correlations among non-
woody, woody deciduous and woody evergreen plants, as shown for the six
major FTs, we fitted a set of GAMs that included fractional abundances of
these groups to simulate global patterns of all 16 FTs. These GAMs predicted
up to 77% of variation in our global data sample correctly (Table S11). We
evaluated the agreement of our GAM-predicted maps with the iNaturalist
maps41. The iNaturalist41 data represents a large and independent trait dataset
based on citizen-science plant observations and trait measurements from the
TRY database39. The data included all 16 FTs considered in our study. Pre-
viously published global trait maps generated by statistical modelling or
machine learningmethods2,3,25,29,31–34 have only simulated global patterns for a
subset of FTswe studied here;moreover, thesemaps show large differences in
data sources, methodology and results35,36. We also compared the general
patternsof global traitmaps generatedhereinwith those fromotherpublished
products for six major traits and LDMC. The predictability of our GAMs for
the common six major traits was significantly stronger than models of other
products (Table S12). Almost all six major traits presented similar global
spatial patterns to that of previous studies. Nevertheless, regional differences
emerged between our results and other products. For example,Narea values in
CentralAfricawere at intermediate level inourGAM-predictedmap (Fig. 4g),
contrastingwith the relatively lowest values observed in the theory-basedmap
byDong et al.35; plant height (H) was predicted to be higher in Europe in this
study compared to Schiller et al.’s predictions33. The predictability of GAMof
this study for LDMC was relatively weaker (Radj

2 = 0.39, Table S12) and the
global pattern of LDMC simulated in this study suggested significant devia-
tion from the previous remote-sensing-based projections29.

Overall, ourGAM-predictedmaps showedvariably strong correlations
with the iNaturalistmaps,with the highestR2 of 64%but amedianR2 of only
15% (Table S13). They showed varying degrees of overestimation or
underestimation compared to the iNaturalist maps (Fig. S13). We first
checked which regions across the globe showed overestimation and
underestimation of our predicted FTs compared to iNaturalist data
(Fig. S14). Our GAMs tended to predict higher LMA, DM and SSD and
lower SCD than iNaturalist data in the northern temperate regions, but
lower Narea, SSD and LFM than iNaturalist data in southern tropical and
temperate regions. H was overestimated globally by the GAM compared to
iNaturalist, especially in the northern high latitudes.

Plot-level mean values of 16 FTs in our study were obtained from the
sPlotOpendataset. In principle, the above disagreementsmay arise from the
respective sampling biases of iNaturalist and sPlotOpen. The iNaturalist
contributors are by no means evenly sampled across growth forms (tree/

shrub/herb)41, while the sPlotOpen data cover a relatively small portion of
the global climate space. The coverage of growth form in each grid cell of the
iNaturalistmaps indicated a bias towards herbaceous plants in the northern
regions, and towards woody plants further south. This is because plant
observations in iNaturalist are largely governed by individual decisions33,41

and are a priori likely to underrepresent grasses41, for example. The data are
nonetheless of value because of their independence fromother data sources.
The sPlotOpen dataset has both commonalities and disagreements with the
iNaturalist data41. sPlotOpen is an aggregation of vegetation plots from
various studies with specific and distinct research aims across global eco-
systems that do not share the same criteria in the sampling approach, which
may also lead to biases in this dataset37,38. Large areas of the globe, including
Canada,Central SouthAmerica, CentralAfrica, CentralAsia, EastAsia, and
Siberia, are undersampled (Fig. S4). This sampling bias affects the robust-
ness of prediction of trait distribution for large areas. Furthermore, while
sPlotOpen provides plot-level means for each trait, not all species within
every vegetation plot have been recorded. 16.5% of plots have all vascular
plant records, plant records of 72.1% plots are not specified, and the
remaining 11.4%of plots have only certain species records (e.g., only woody
plants or dominant plants) in the final plot-level mean trait dataset used in
this study (Table S2). As a result, plot-level trait means sampled for specific
target plant in a vegetation plot cannot accurately reflect the CWMsof traits
within the corresponding regions.

The selection of predictor variables in GAMs might contribute to the
disagreement between the two set of global trait maps. Our study applied a
consistent set of three bioclimatic variables to each FT, thereby preserving
model simplicity and providing a consistent baseline for comparison. The
three selected variables reflect three most important aspects of climate that
govern plant distributions, i.e., winter cold, summer warmth and moisture
availability48,49,50. These three variables effectively explained global patterns
of different FTs and sufficiently distinguished the main differences in trait-
climate relationships among three plant groups. However, some FTs can be
influenced by other factors in addition to the bioclimatic variables used in
this study. Soil fertility factors and soil age have been indicated to correlate
with leaf nutrient traits3,14,72–74. Land use and disturbance regimes can also
affect trait-environment relationships25,32,75. Disturbance by fire or grazing
and browsing by megaherbivores have strong effects on traits of seed dis-
persal and plant regeneration25. Atmospheric CO2 concentration is also an
important driver of some FTs, directly affecting the growth rates and pro-
ductivity of plants25,76. Evolutionary history effects (represented by phylo-
geny) were reported to explain on average more than two-thirds of the
variability of the foliar concentrations of N, P and K3.

The scale at which trait variation occurs may be another reason for
the lower correlations between GAM maps and the iNaturalist data for
some FTs. Some FTs lack macroecological patterns, such as Cmass, which
showed little variation on a global scale (Fig. 4i). In addition, our
community-level prediction ignores intraspecific trait variation. A global
meta-analysis based on 36 plant traits indicated that traits can vary sub-
stantially among individuals within species, and that the relative amount of
intraspecific trait variation does not vary with plant growth forms or
climate77.

This study has characterised universal relationships among FTs and
between FTs and climates within non-woody, woody deciduous andwoody
evergreen plants, and simulated global patterns of FTs based on these
relationships. It has highlighted certain key differences between the three
plant groups in their ecological strategies as represented by trait-climate
correlations, indicating that it is useful to differentiate between non-woody,
woody deciduous and woody evergreen plants in large-scale, trait-based
studies. Based on threebioclimatic variables and global vegetation cover and
their interaction effects, we can explain up to three-quarters (on average
about a half) of global variation of community-weighted means for all
16 FTs. By generating global maps for all 16 FTs at 0.1° resolution, we have
provided the most comprehensive set of trait maps based on statistical
upscaling approach to date.
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Methods
Plant functional traits and three plant groups
The FT data were collected from the sPlotOpen dataset38 and the enhanced
species-level trait dataset of Díaz et al.40 (see Table 1).

The sPlotOpen dataset provides plot-level trait means (as community-
weighted means, CWMs) of 18 FTs, as well as plant taxa within each
vegetation plot and their relative abundances38.We calculated the LMAand
area-based leaf phosphorus content (Parea) from specific leaf area (SLA) and
mass-based leaf phosphorus content (Pmass) in the sPlotOpen dataset
according to Eqs. (1) and (2). After removing some redundant traits, such as
SLA, Pmass, mass-based leaf nitrogen content (Nmass) and leaf N:P ratio
(which can be directly calculated fromNarea and Parea), 16 FTs were selected
for analysis (Table 1). All 16 FTs were natural-log transformed before
analysis.Herewe focus onNarea andParea, becauseOsnas et al.

78 showed that
leaf nitrogen and phosphorus contents are approximately distributed pro-
portional to leaf area rather than mass. Narea and Parea were found to be
proportional toLMAandphotosynthetic capacity of plants46,47,79. BothLMA
and photosynthetic capacity are quantitatively predictable from climate45,79,
which may lead to potentially high predictability of Narea and Parea from
climates. In contrast, values of Nmass and Pmass may be more conservative
under climate change. We also conducted the following analyses on Nmass

and Pmass (see Supplementary Information SI 2 for details) and found that
climate is not good predictor of their distributions.

LMA kg=m2
� � ¼ 1

SLA m2=kg
� � ð1Þ

Parea g=m2
� � ¼ Pmass mg=g

� �

SLA m2=kg
� � ð2Þ

All plant taxa within each vegetation plot in the sPlotOpen data were
extracted. We collected plant information including woodiness, plant
growth form and leaf phenology for each taxon from public databases,
regional floras, and published papers (see Data availability for relevant
references of plant information). Each plant taxon was then assigned to a
growth form according to the collected plant information to create a plant
growth form dataset. There are 42,676 unique taxa in the dataset. Table S3
presents 16 growth forms in total and the proportion of each growth form in
the plant growth form dataset.

We classified all taxa as non-woody, woody deciduous or woody
evergreen according to their growth forms. Some minority growth forms,
including ferns, palms, cycads, bamboos, cacti and succulents, were omitted
from subsequent analyses.We then used the relative coverage of each taxon
within a vegetation plot provided by the sPlotOpen data and the assigned
probability of each taxon being in each plant group (Table S4) to calculate
the relative coverage of each of the three plant groups within a plot. The
calculation followed Eqs. (3) and (4).

RA group
� � ¼

X
RC taxonð Þ×P group

� �� � ð3Þ

RC group
� � ¼ RA group

� �

P
RA group

� �� � ð4Þ

where RAðgroupÞ is the relative abundance of each plant group within a
vegetation plot; RC taxonð Þ is the relative coverage of each taxon within a
vegetation plot provided by the sPlotOpen dataset; PðgroupÞ is the prob-
ability of each taxon being in each plant group, which is derived from the
probability of eachgrowth formbeing in eachplant group;RC group

� �
is the

relative coverage of each plant group within a vegetation plot.
The species-level trait dataset from Díaz et al.40 provides species-

mean values of six major FTs that constitute the global spectrum of plant
form and function12. We converted Nmass to area-based leaf nitrogen
content (Narea) based on the raw data, according to the Eq. (5). After
merging this species-level trait dataset with the sPlotOpen dataset and the

plant growth form dataset, a total of 35,773 common species were
explicitly classified into non-woody, woody deciduous and woody ever-
green groups. The scientific names of all taxa from different datasets were
aligned before integration by using Taxonomic Name Resolution Service
V5.2 (TNRS, https://tnrs.biendata.org/)80. We then calculated CWMs for
the six major FTs of each of the three plant groups within each vegetation
plot based on their species-level means and the relative coverage of each
plant group. These CWMs were then natural-log transformed prior to
further analyses. All data manipulations and following analyses were
conducted in R v4.2.2 (https://www.r-project.org/)81.

Narea g=m2
� � ¼ Nmass mg=g

� �

SLA m2=kg
� � ð5Þ

Bioclimatic variables
Three bioclimatic variables were selected48,49,50 (Fig. S2): (i) moisture index
(MI, unitless) representing plant-available moisture—the natural-log
transformed MI (ln MI) was used in the analysis to emphasise differences
at the dry end of the moisture range82; (ii) mean temperature of the coldest
month (MTCO, °C) representing winter cold; (iii) mean growing-season
temperature (MGST, °C) representing summer warmth. The three selected
variables correspond to the three recognised climatic dimensions that reg-
ulate global geographic distribution of vegetation48,49,50. They control the
plant distribution limits by affecting the plant attributes that determine
physiological processes and adaptive strategies, such as life form, leaf phe-
nology, leaf size and stomatal conductance48,49,50. Hence, the distribution of
some key plant traits is likely to be a function of these bioclimatic variables,
and thus may be quantitatively predicted by these variables48.

We collected gridded climatological data for further calculations,
with a spatial resolution of 30 arc-second (ca 0.01°). Growing degree days
(heat sum) above 0 °C (GDD0, °C), number of growing degree days above
a base level of 0 °C (NGD0, number of days), monthly averaged mean
daily air temperature (tas, K/10) and mean monthly precipitation
amount (pr, kg m–2 month–1/100) were obtained from CHELSA V2.1
(https://chelsa-climate.org/)83,84, covering the period from 1981 to 2010.
Downward total shortwave solar radiation data accumulated over the
month (srad, kJ m–2) were downloaded from the CHELSA V1.2 (https://
chelsa-climate.org/)83,84, covering the period from 1979 to 2013. Global
elevation derived from the SRTM elevation data (elev, m) was acquired
from WorldClim v.2.1 (https://www.worldclim.org/)85.

We used the Simple Process-Led Algorithms for Simulating Habitats
(SPLASH)model86,87 with climatic variables as inputs to calculate the mean
monthly potential evapotranspiration (PET, mm). We extracted the cli-
matic values for each vegetation plot according to its longitude and latitude.
The ‘splash.point()’ function in R rsplash package86,87 was applied to cal-
culate thePETof eachplot.We thendecreased the resolutionof raw climatic
raster data from 0.01° to 0.1° and fitted them into the SPLASH model by
‘splash.grid()’ function in R rsplash package86,87 to calculate the global PET.
Three bioclimatic variables (Fig. S2) were then calculated as follows:

MI unitlessð Þ ¼
P12

k¼1 prkP12
k¼1PETk

ð6Þ

MTCO ð°CÞ ¼ min
1≤ k≤ 12

task ð7Þ

MGST ð°CÞ ¼ GDD0

NGD0
ð8Þ

where prk (mm) is mean monthly precipitation; PETk (mm) is mean
monthly potential evapotranspiration calculated from the SPLASH model;
task (°C) is monthly average temperature; GDD0 (°C) are growing degree
days heat sum above 0 °C; and NGD0 (number of days) is number of
growing degree days above a base level of 0 °C.

https://doi.org/10.1038/s42003-024-06777-3 Article

Communications Biology |          (2024) 7:1136 10

https://tnrs.biendata.org/
https://www.r-project.org/
https://chelsa-climate.org/
https://chelsa-climate.org/
https://chelsa-climate.org/
https://www.worldclim.org/
www.nature.com/commsbio


Vegetation coverage
Wechecked the ‘naturalness’ of each vegetation plot in our trait dataset

against the global map of land cover provided by the ESACCI-LC database
(https://www.esa-landcover-cci.org/?q=node/164)88 at 300m spatial reso-
lution in2010. Forplots belonging to all types of croplands, urbanareas, bare
areas, water bodies and permanent snow and ice in the ESA CCI-LC
database, we defined them as ‘unnatural vegetation’ and removed those
plots from the trait dataset used for data analysis. After matching the trait
datasetwith bioclimate data, 77,074natural vegetationplots remained in the
final dataset for our study.

The ESA CCI-LC global land cover data were also used to calculate
the global fractional cover of three plant groups. The spatial resolution of
the raw land cover rasterwas decreased from300mto0.1° tomatchwith the
resolution of bioclimate raster for further analyses. This ESA CCI-LC
dataset contains 23 classes including 38 sub-classes of global land cover
(Table S5). We first selected the vegetation plots that contained records of
‘all vascular plants’ in our trait dataset (12,743 plots in total). We then
identified the land cover class and sub-class of each of these vegetation plots
according to the ESA CCI-LC maps at original 300m resolution and
accordingly calculated themedian relative coverof the threeplant groups for
each sub-class. The coverages of three plant groups of artificial ecosystems
and non-natural and non-terrestrial vegetationswere set to beNA.We then
replaced grid values representing sub-classes of global land cover in the ESA
CCI-LC maps with the median relative cover of the three plant groups
within each sub-class and calculated the average values at 0.1° resolution to
produce the global fractional cover of the three plant groups.

Multivariate analysis
The natural-log transformed CWMs of six major FTs of each plant group
were rescaled to ameanof 0 anda standarddeviationof 1 and thensubjected
to a PCA and a Redundancy Analysis (RDA), conducted by ‘prcomp()’
functionand ‘rda()’ function in theR veganpackage89, respectively. PCAwas
used to evaluate the covariation of trait combinations among six FTs in
different plant groups. RDAwas applied to describe the extent to which the
variation of trait combinations (response variables) can be explained by
bioclimatic variables (explanatory variables).

Generalised additive models
Correlations between FTs and three bioclimatic variables were char-
acterised and visualised by GAMs. GAMs were fitted for natural-log
transformedCWMsof sixmajor FTs in each of the three plant groups with
three bioclimatic variables as explanatory variables, without interaction
terms, using the ‘gam()’ function in Rmgcv package90. We used the RMEL
(restricted maximum likelihood) as smoothing parameter to control the
smoothness of the predictive functions. We then calculated the relative
importance of each bioclimatic variable in the GAMs to determine which
of the predictors ismore significantly related to the distribution of each FT.
The concurvity of three bioclimatic variables in GAMswas checked before
fitting models (mean values: ln MI = 0.487 ± 0.06, MTCO= 0.651 ± 0.07,
MGST = 0.867 ± 0.02). MGST presented relatively high concurvity, which
makes it challenging to interpret the individual importance of variables in
trait prediction. Nonetheless, the overall predictive performance of the
GAMs remains robust, with the combined effect of the predictors effec-
tively capturing the variation in FTs.

We sampled the bioclimates at regular intervals from minimum to
maximumover the globe, e.g., sampling at increments of 0.05 (unitless) for
lnMI, 0.25 °C forMTCO, and 0.25 °C forMGST, to generate three sample
datasets simulating the global climate space. The sample data and GAMs
were thenused topredict thedistributionof trait values in the global climate
space for eachplantgroup.The response surfacesof trait values (natural-log
transformed) resulting from GAMs were presented as contours in the
three-variable climate space in the form of two-dimensional slices. Convex
hulls generated by ‘convhulln()’ function in the R geometry package91 were
usedtoavoidrepresentingpartsof thefittedsurface thatarenot constrained
by data. For each plant group separately, we also predicted andmapped the

global distribution of natural-log transformed values of six major FTs, as
predictedby theGAMs,basedonglobal rasterdata for the three bioclimatic
variables at 0.1° spatial resolution.

Global trait maps and evaluation
In order to simulate global trait patterns for all plant taxa, we fitted new
GAMs for all 16 FTs with natural-log transformed plot-level means
(CWMs). In the new GAMs, trait values were predicted by not only three
bioclimatic variables, but also global fractional cover of plant groups, and
interactions between each bioclimatic variable with the cover fraction of
eachplant group.As the sumof the global fractional cover for the three plant
groups is 1, we only considered the coverage of two of these groups (woody
deciduous and woody evergreen) when fitting the new GAMs. The new
GAMs also used the RMEL as smoothing parameter and were fitted using
the ‘gam()’ function in the Rmgcv package90.We then generated global trait
maps for all 16 FTs at 0.1° spatial resolution.

Although using a weighted average of threemaps from different plant
groups should be a more straightforward way to generate global maps, we
did not adopt this approach. This is because simulating separate global trait
patterns for each of the three plant groups and calculating weighted
averages of them with fractional cover of plant groups as weights would
only be applicable where traits possess species-level values. In this study,
only the six major traits are provided with species-level mean values. The
remaining traits have plot-level mean values, which are weighted averages
of trait values for all plant taxa within the plot. It is almost impossible to
predict global trait patterns for each plant group from such community-
weightedmean trait values.However, using theGAMs, including fractional
covers of plant groups, provides a more universal alternative approach,
which is directly applicable to plot-level means.

We tested our global trait maps based on GAMs predictions against
another set of global trait maps41 based on the combinations of citizen-
science plant observations from the iNaturalist project and trait measure-
ments from the TRYdatabase. The iNaturalist-basedmaps provided all FTs
available for the calculationof the same16FTs as in our study.Theplot-level
means of all 16 FTs in our study were taken from the sPlotOpen, and the
global trait patterns estimated by the iNaturalist tend to most strongly
resemble that of the sPlotOpen at 2° resolution41. Therefore, we aggregated
and reprojected our global trait maps according to the iNaturalist maps (2°
spatial resolution) using bilinear interpolation by ‘projectRaster()’ function
in the R raster package92. Then, we assessed the pixel-by-pixel agreement
between our trait maps and the iNaturalist trait maps by linear regression
using the ‘lm()’ function in the R stats package.

Statistics and reproducibility
All of the above statistical analyses are reproducible by following the pro-
cedures in Methods. All data and R scripts for carrying out all the above
analyses are provided in the Data availability and Code availability sections.

Data availability
The plant functional traits are collected from openly accessible databases:
the sPlotOpen dataset38 and the enhanced species-level trait dataset of Díaz
et al.40. Raw climate data are obtained from CHELSA V2.1 (https://chelsa-
climate.org/)83,84. Global land cover maps are from the ESA CCI-LC data-
base (https://www.esa-landcover-cci.org/?q=node/164)88. Plant growth
form dataset, global maps of three bioclimatic variables (GeoTiff format),
global trait maps for 16 plant functional traits and separatemaps of 6major
traits for non-woody, woody deciduous and evergreen plants (GeoTiff
format), global fractional coverof non-woody,woodydeciduous andwoody
evergreen plants (GeoTiff format), as well as compiled datasets used for all
analyses in this study are openly available at: https://doi.org/10.5281/
zenodo.13325275 (ref. 93).

Code availability
The reproducible R Scripts used to conduct all data manipulations and
analyses are available at: https://doi.org/10.5281/zenodo.13325275 (ref. 93).
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