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The Dean–Kawasaki (DK) equation is a stochastic
partial differential equation (SPDE) for the global

density ρ = N−1 ∑j = 1

N δ(x − Xj(t)) of a gas of N over-

damped Brownian particles, where Xj(t) is the
position of the jth particle. In the thermodynamic
limit N → ∞ with weak pairwise interactions, the
expectation ⟨ρ⟩ with respect to the white noise
processes converges in distribution to the solution
of a McKean–Vlasov (MV) equation. In this article,
we use an encounter-based approach to derive a
generalized DK equation for an interacting Brownian
gas on the half-line with a partially absorbing
boundary at x = 0. Each particle is independently
absorbed when its local time Lj(t) at x = 0 exceeds
a random threshold ℓj. The global density is now
summed over the set of particles that have not
yet been absorbed, and expectations are taken with
respect to the Gaussian noise and the random
thresholds ℓj. Assuming the DK equation has
a well-defined mean-field limit, we derive the
corresponding MV equation on the half-line. We
illustrate the theory by (i) analysing stationary
solutions for a Curie–Weiss (quadratic) interaction
potential and a totally reflecting boundary; and (ii)
calculating the effective rate of particle loss in the
weak absorption limit. Extensions to finite intervals
and partially absorbing traps are also considered.
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1. Introduction
There are many natural processes that can be modelled in terms of systems of interacting
particle systems, ranging from galaxy clusters and ionic plasmas to active colloids and
aggregating microorganisms such as bacteria [1–4]. Interacting particle systems are also
used to model the collective decision making of agents in social networks [5]. Mean-field
theory is often used to reduce the complexity of such systems by constructing nonlinear
partial differential equations for macroscopic quantities such as the global density [6–8].
Much of the focus in recent years has been on interacting passive or active Brownian parti-
cles with long-range interactions. The Dean–Kawasaki (DK) equation is a stochastic partial
differential equation (SPDE) that describes hydrodynamic fluctuations in the global densityρ(x, t) = N−1 ∑j = 1

N δ(x − Xj(t)) of N over-damped Brownian particles (Brownian gas) with positions

Xj(t) ∈ ℝd at time t [9,10]. More specifically, suppose that the positions evolve according to the
stochastic differential equation (SDE)

(1.1)dXj(t) = − 1Nγ ∑k = 1

N ∇K(Xj(t) − Xk(t))dt + 2DdWj(t),
where D is the diffusivity, γ is a drag coefficient with Dγ = kBT, K is a smooth pairwise potential
and Wj(t) is a vector of independent Brownian motions. The DK equation then takes the form
[9]

(1.2)

@ρ(x, t)
@t = 2DN ∇ ⋅ ρ(x, t)η(x, t) + D∇2ρ(x, t)

+ 1γ∇ ⋅ ρ(x, t) ℝdρ(y, t)∇K(x − y)dy ,

where η(x, t) is a vector of independent spatio-temporal white noise processes. Formally
speaking, equation (1.2) is an exact equation for the global density in the distributional sense,
and provides a basis for accurate and efficient numerical simulations of the density fluctuations
in interacting diffusing particles [11]. The DK equation has also been used to construct a
statistical field theory of a non-interacting Brownian gas [12]. If particle–particle interactions are
included, then averaging the DK equation with respect to the Gaussian noise processes results
in a moment closure problem for the one-particle density ⟨ρ⟩. One approximation scheme for
achieving moment closure, which is used extensively in non-equilibrium statistical physics, is
dynamical density functional theory (DDFT) [13–16]. A crucial assumption of DDFT is that the
relaxation of the system is sufficiently slow such that the pair correlation can be equated with
that of a corresponding equilibrium system at each point in time. An alternative approach is to
use mean-field theory. There is an extensive mathematical literature on the rigorous stochastic
analysis of the mean-field limit N → ∞ for weak pairwise interactions, see for example [17–20].
In particular, if the initial positions of the N particles are independent and identically distrib-

uted, i.e. the joint probability density at t = 0 takes the product form p(x1, …, xN, 0) = ∏j = 1

N
Á0(xj),

then it can be proven that ⟨ρ⟩ converges in distribution to the solution of the McKean–Vlasov
(MV) equation [6]

(1.3)@Á(x, t)
@t = D∇2Á(x, t) + 1γ∇ ⋅ Á(x, t) ℝdÁ(y, t)∇K(x − y)dy ,

with Á(x, 0) = Á0(x). Equation (1.3) has an alternative interpretation as the nonlinear Fok-
ker–Planck (FP) equation for the so-called nonlinear McKean SDE
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(1.4)dX = − 1γ ℝd∇K(X(t) − y)ρ(y, t)dy dt + 2DdW(t).
The interacting Brownian gas is said to satisfy the propagation of chaos property. The MV
equation is known to have a rich mathematical structure, which includes the existence of
multiple stationary solutions and associated phase transitions [21]. This has been explored in
various configurations, including double-well confinement and Curie–Weiss interactions on ℝ
[7,22,23], and interacting particles on a torus [24,25].

Most studies of interacting Brownian gases ignore the effects of boundaries, with a few
notable exceptions that consider the mean-field limit in the presence of totally reflecting
boundaries [26,27]. There have also been a few studies of absorbing boundaries within the
contexts of mathematical finance [28] and mean-field games [29,30]. In the case of the FP
equation for single-particle diffusion in a bounded domain Ω, the most general classical
boundary condition is the Robin condition D∇p(x, t) ⋅ n + κ0p(x, t) = 0 for all x ∈ @Ω, whereκ0 is a positive reactivity constant, and n is the outward unit normal at a point on the boundary
@Ω. The Dirichlet and Neumann boundary conditions are recovered in the limits κ0 → ∞ andκ0 = 0, respectively. However, implementing these boundary conditions at the level of the SDE
is non-trivial. In the case of a totally reflecting boundary, the underlying SDE is modified by
including an impulsive kick term that keeps the particle within Ω. This term can be written as
the differential of the boundary local time, which is a Brownian functional that determines the
amount of contact time between particle and boundary [31–36]. The modified SDE is known
as the Skorokhod equation. Probabilistic versions of the Robin boundary condition can also be
constructed using the local time [37]. One of the assumptions of the Robin boundary condition
is that the surface reactivity is a constant. However, various surface-based reactions are better
modelled in terms of a reactivity that is a function of the local time [38,39]. That is, the surface
may need to be progressively activated by repeated encounters with a diffusing particle, or an
initially highly reactive surface may become less active due to multiple interactions with the
particle (passivation). Recently, a theoretical framework for analysing a more general class of
partially absorbing boundary has been developed using a so-called encounter-based approach
[40–43].

In this article, we use the encounter-based method to derive a generalized DK equation
for a weakly interacting Brownian gas on the half-line with a partially absorbing boundary atx = 0. We begin by considering the simpler problem of diffusion on the half-line with a totally
reflecting boundary at x = 0 (§2). This requires using a multi-particle version of the stochastic
Skorokhod equation for reflected Brownian motion. Heuristically speaking, each particle is
independently given an impulsive lick whenever it encounters the boundary, which can be
represented as the differential of the local time Lj(t) at x = 0, that is, dLj(t) = Dδ(Xj(t)) for the jth
particle. Averaging the DK equation with respect to the white noise processes and assuming
that there exists a well-defined mean-field limit, we recover the MV equation for reflected
diffusions, which was previously obtained using methods from stochastic analysis [26,27]. The
straightforward extension to a Brownian gas on a finite interval is also described. In §3, we
consider the stationary solutions of the MV equation in the case of a Curie–Weiss (quadratic)
interaction potential for both the semi-infinite and finite intervals. In the latter case, we explore
how the existence of phase transitions depends on the size of the domain.

The core of the paper is presented in §4, where we use local times to combine the generalized
DK equation with the encounter-based model of a partially absorbing boundary at x = 0. Each
particle is independently absorbed when its local time Lj(t) exceeds a random threshold ℓj
with probability distribution Ψ(ℓ) = ℙ[ℓj > ℓ], j = 1, …,N [40–43]. The corresponding global joint
density μ only sums over the set of particles that have not yet been absorbed, that is,1
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(1.5)μ(x, ℓ, t) = 1N ∑j = 1

N δ(x − Xj(t))1Lj(t) < ℓj.
We derive the generalized DK equation for μ and then use a mean-field ansatz to obtain a
MV equation for pΨ(x, t) = E[⟨μ(x, ℓ , t)⟩], where ⟨ ⋅ ⟩ and E[ ⋅ ] denote, respectively, averaging
with respect to the Gaussian noise processes and the random local time thresholds. We show
that in the particular case of the exponential distribution, Ψ(ℓ) = exp( − κ0ℓ/D), the densitypΨ(x, t) satisfies the MV equation with a Robin boundary condition at x = 0, where κ0 is the
corresponding reactivity. Hence, assuming a solution of the nonlinear Robin boundary value
problem (BVP) exists, the corresponding solution for a non-exponential distribution Ψ(ℓ) can be
constructed along identical lines to [41,43]. We illustrate the theory by considering the effective
rate of particle loss in the weak absorption limit. Finally, in §5, we describe possible extensions
of the theory, including an interacting Brownian gas in ℝ with a finite interval acting as a
partially absorbing trap. Absorption is now conditioned on the occupation time (time spent
within the trapping region) crossing a random threshold [41,43].

2. Generalized DK equation for a totally reflecting boundary
In this section, we derive the generalized DK equation for a Brownian gas on [0,∞) with a
totally reflecting boundary at x = 0. Although the results can be obtained more simply using
other methods, our particular formulation prepares the ground for dealing with partially
absorbing boundaries, in particular, by introducing the notion of a local time. We begin with a
non-interacting gas.

(a) Non-interacting Brownian gas
Consider N identical, non-interacting Brownian particles on the half-line. Each particle is
subject to a totally reflecting boundary at x = 0. Let Lj(t) be the boundary local time of thejth particle, which is a Brownian functional of the form

(2.1)Lj(t) = limϵ→ 0+
Dϵ 0

t1(0, ϵ)(Xj(s))ds,
where 1 is the indicator function. (The factor of D means that Lj(t) has units of length.) It can
be proven that Lj(t) exists and is a non-decreasing, continuous function of t [32,33]. The SDE forXj(t) ∈ [0,∞) is given by the so-called Skorokhod equation for reflecting Brownian motion,

(2.2)dXj(t) = 2DdWj(t) + dLj(t), dLj(t) = Dδ(Xj(t))dt,
with Wj(t), j = 1, …,N, a set of independent Brownian motions. The differential dLj(t) represents
an impulsive kick applied to the jth particle whenever it hits x = 0. A compact description of
the dynamics can be obtained by considering a ‘hydrodynamic’ formulation of equation (2.2),
which involves the (normalized) global density

(2.3)ρ(x, t) = 1N ∑j = 1

N ρj(x, t), ρj(x, t) = δ(Xj(t) − x).

We construct an SPDE for the global density ρ by adapting the derivation of the DK equation
for a Brownian gas in ℝ [9,10]. Consider an arbitrary smooth test function f(x), and set

(2.4)F(t) = 1N ∑j = 1

N f(Xj(t)) =
0

∞ρ(x, t)f(x)dx.

Using Ito’s lemma to determine the differential dF(t), we have
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(2.5)
0

∞f(x)@ρ(x, t)
@t dx dt = 1N ∑j = 1

N f′(Xj(t))dLj(t) + Df″(Xj(t)dt + 2Df′(Xj(t))dWj(t)
≡ dF(t) .

Since dLj(t) = Dδ(Xj(t))dt, it follows that

(2.6)
0

∞f(x)@ρ(x, t)
@t = 1N 0

∞

∑j = 1

N ρj(x, t) Dδ(x)f′(0) + Df′′(x) + 2Df′(x)ξi(t) dx.

We have formally set dWi(t) = ξi(t)dt, where ξi is a d-dimensional white noise term such that

(2.7)⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = δ(t − t′)δi, j.
Integrating by parts the terms on the right-hand side of equation (2.6) and noting that the terms
involving f′(0) cancel, we have

(2.8)

0

∞f(x)@ρ(x, t)
@t dx =

0

∞f(x) − 1N ∑j = 1

N
2D@xρi(x, ℓ, t)ξi(t) + D@xxρ(x, t) dx

− f(0) 2DN ∑j = 1

N ρj(0, t)ξj(t)−D@xρ(0, t) .

Since f(x) is arbitrary, we obtain the following SPDE (in the weak sense):

(2.9a)@ρ(x, t)
@t = − 2DN ∑j = 1

N @ρj(x, t)
@x ξj(t) + D@2ρ(x, t)

@x2 − δ(x)J (0, t),
with

(2.9b)J (x, t) ≡ 2DN ∑j = 1

N ρj(x, t)ξj(t) − D@ρ(x, t)
@x .

Following along analogous lines to [9], we introduce the space-dependent Gaussian noise

(2.10)ξ(x, t) = − 1N ∑j = 1

N
@xρj(x, t)ξj(t) ,

with zero mean and the correlation function

(2.11)⟨ξ(x, t)ξ(y, t′)⟩ = 1N2δ(t − t′)∑j = 1

N
@x@y ρj(x, t)ρj(y, t) .

Since ρj(x, t)ρj(y, t) = δ(x − y)ρi(x, t), it follows that

(2.12)⟨ξ(x, t)ξ(y, t′)⟩ = 1Nδ(t − t′)@x@y δ(x − y)ρ(x, t) .

Finally, we introduce the global density-dependent noise field

(2.13)ξ (x, t) = 1N @
@x η(x, t) ρ(x, t) ,

where η(x, t) is a spatio-temporal white noise term:

(2.14)⟨η(x, t)η(y, t′)⟩ = δ(t − t′)δ(x − y).

It can be checked that the Gaussian noises ξ and ξ  have the same correlation functions and
are thus statistically identical. Hence, we obtain a closed SPDE for the global density on the
half-line

(2.15a)@ρ(x, t)
@t = 2DN @ ρ(x, t)η(x, t)

@x + D@2ρ(x, t)
@x2 , x > 0,

5
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(2.15b)D@ρ(0, t)
@x = − 2DN ρ(0, t)η(0, t).

(Equation (2.15b) immediately follows from the Dirac delta function term on the right-hand
side of equation (2.9a). This can be seen by integrating the latter with respect to a boundary
layer around x = 0. Alternatively, one simply sets the sum of all terms multiplying f(0) to
zero.) Finally, averaging with respect to the white noise and setting p(x, t) = ⟨ρ(x, t)⟩ yields the
diffusion equation on the half-line with a totally reflecting boundary at x = 0:

(2.16)(6)@p(x, t)
@t = D@2p(x, t)

@x2 , D@p(0, t)
@x = 0 .

Note here p(x, t) represents the density of a large system of non-interacting particles rather than
the probability density of a single particle.

(b) Interacting Brownian gas
We now modify the SDE (2.2) by introducing an external potential V(x) and a pairwise
interaction potential K(x) such that

(2.17)dXj(t) = − 1γ V ′(Xj(t)) + N−1∑k = 1

N K′(Xj(t) − Xk(t)) dt + 2DdWj(t) + dLj(t).
The potentials contribute extra terms on the right-hand side of equation (2.6) given by

(2.18)A = − 1γN 0

∞

∑j = 1

N ρi(x, t) V ′(x) + 1N ∑k = 1

N
0

∞dy δ(y − Xk(t))K′(x − y) f′(x)dx .

Integrating by parts with respect to x yields

(2.19)A =
0

∞f(x)@xHρ(x, t)dx + Hρ(0, t)f(0),

with

(2.20)Hρ(x, t) = γ−1ρ(x, t) V ′(x) +
0

∞ρ(y, t)K′(x − y)dy .

The non-interacting terms are calculated along identical lines to the derivation of equation
(2.15), which leads to the following generalized DK equation for the interacting Brownian gas,
which we write in the form of a conservation equation:

(2.21a)@ρ(x, t)
@t = −

@J (x, t)
@x , J (0, t) = 0,

with the probability flux

(2.21b)J (x, t) = − 2DN ρ(x, t)η(x, t) − D@ρ(x, t)
@x − Hρ(x, t) .

As with the classical DK equation (1.2), averaging equation (2.21) with respect to the Gaus-
sian noise processes leads to a PDE that couples the one-particle density p(x, t) = ⟨ρ(x, t)⟩ to
the two-point correlation function ⟨ρ(x, t)ρ(x′, t)⟩ etc., resulting in a moment closure problem.
Assuming that the mean-field ansatz ⟨ρ(x, t)ρ(x′, t)⟩ → p(x, t)p(x′, t) as N → ∞ still holds in the
presence of a reflecting boundary, we obtain the following MV equation for an interacting gas
on the half-line with a totally reflecting boundary at x = 0:

6
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(2.22a)@p(x, t)
@t = − @ J(x, t)

@x ,x > 0, J(0, t) = 0,

(2.22b)J(x, t) = −D@p(x, t)
@x − 1γ p(x, t) V ′(x) +

0

∞p(y, t)K′(x − y)dy .

This is equivalent to the MV equation derived previously by proving the propagation of chaos
property in the thermodynamic limit [26,27].

(c) Brownian gas on a finite interval
Our derivation of the generalized DK equation can easily be extended to diffusion on the
finite interval [−R,R] with reflecting boundaries at both ends. The main modification is in the
definition of the local time of the jth particle:

(2.23)Lj(t) = limϵ→ 0+

Dϵ 0

tI(R − ϵ,R)(Xj(s))ds +
0

tI(−R, −R + ϵ)(Xj(s))ds .

The derivation of the corresponding DK equation for the global density ρ(x, t) proceeds along
similar lines to the half-line. In particular, equation (2.21) becomes

(2.24)@ρ(x, t)
@t = −

@J (x, t)
@x , x ∈ ( − R,R), J ( ± R, t) = 0,

with the probability flux given by equation (2.21b) and

(2.25)Hρ(x, t) = γ−1ρ(x, t) V ′(x) +
−R
Rρ(y, t)K′(x − y)dy .

Averaging with respect to the Gaussian’s noise processes, imposing the mean-field ansatz,
results in the following MV equation on the interval [−R,R]:

(2.26a)@p(x, t)
@t = − @ J(x, t)

@x ,x ∈ (−R,R), J(−R, t) = 0 = J(R, t),
(2.26b)J(x, t) = −D@p(x, t)

@x − 1γp(x, t) V ′(x) +
−R
Rp(y, t)K′(x − y)dy .

3. Stationary states for the Curie–Weiss interaction potential
For a finite system of interacting Brownian particles moving in a confining potential, one finds
that the associated linear FP equation has a unique stationary state given by the Boltzmann
distribution. On the other hand, the MV equation is a nonlinear non-local FP equation that
describes an interacting Brownian gas in the thermodynamic limit. Consequently, it can support
the existence of multiple stationary solutions and their associated phase transitions [7,21–25].
However, establishing the existence of a stationary solution of the MV equation is non-triv-
ial, even in the absence of boundaries. Here, we explore this issue for the MV equation on
the half-line and finite interval in the case of a Curie–Weiss (quadratic) interaction potentialK(x) = λx2/2, λ > 0.

(a) Stationary states on the half-line
In the case of the half-line, the SDE (2.17) reduces to the form

7
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(3.1)dXj(t) = − 1γ V ′(Xj(t)) + λN ∑k = 1

N
[Xj(t) − Xk(t)] dt + 2DdWj(t) + dLj(t).

The interaction term can be rewritten as −λ[Xj(t) − X(t)], where X = N−1 ∑k = 1

N Xk(t). It is an example

of a cooperative coupling that tends to make the system relax towards the ‘centre of gravity’ of
the multi-particle ensemble. If V(x) is taken to be a multi-well potential then there is competi-
tion between the cooperative interactions and the tendency of particles to be distributed across
the different potential wells according to the classical Boltzmann distribution.

The time-independent version of equation (2.22) is

(3.2)@ J(x)
@x = 0,x > 0, J(0) = 0,

with

(3.3)J(x) := −D @p(x)
@x + βp(x) V ′(x) + λ

0

∞
(x − y)p(y)dy .

We have used the Einstein relation Dγ = kBT = β−1. Note that the integral term reduces toλ(x − ⟨y⟩) with ⟨y⟩ = ∫0
∞yp(y)dy. Suppose, for the moment, that ⟨y⟩ = a for some fixed a, which

parameterizes the density p. The totally reflecting boundary condition in (3.2) implies thatJ(x) = 0 for all x ∈ [0,∞) and, hence,

(3.4)p(x) = pa(x) = Z(a)−1exp −β[V(x) + λx2/2 − aλx] .

The factor Z(a) ensures the normalization ∫0
∞pa(x)dx = 1. The unknown parameter a is then

determined by imposing the self-consistency condition

(3.5)a = m(a) ≡
0

∞xpa(x)dx.

A necessary condition for the existence of a non-trivial solution pa(x) is that V(x) + λx2/2 → 0
as x→ ∞. The number of equilibrium solutions is then equal to the number of solutions of
equation (3.5). Note that one major difference when diffusion is restricted to the half-line is thata > 0 for any non-trivial solution pa(x).

A common choice for V  in the case of a Brownian gas on ℝ is the double-well potentialV(x) = x4/4 − x2/2. Although is not possible to analytically solve the corresponding equationa = ∫−∞∞ xpa(x)dx, one can prove that there exists a phase transition at a critical temperatureTc such that a = 0 for T > Tc and a = ±a0 ≠ 0 for T < Tc [7,22,23]. On the other hand, since the
double-well potential only has a single minimum in [0,∞), we expect there to exist at most
one stationary solution for the reflected boundary problem. Therefore, we focus here on the
existence of a unique stationary density for the simpler quadratic potential V(x) = νx2/2, ν > 0.
We then have

(3.6)

Z(a) =
0

∞
e−β[(ν + λ)x2/2 − aλx]dx

= π
2β[ν + λ]eβa2λ2/2[ν + λ]erfc( − aλ β/2[ν + λ]),

and equation (3.5) becomes

8
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(3.7)

a = Z(a)−1

0

∞xe−β[(ν + λ)x2/2 − aλx]dx = 1λβ @ logZ(a)
@a

= aλν + λ + 2
πβ[ν + λ]

e−βa2λ2/2[ν + λ]

erfc( − aλ β/2[ν + λ])
.

Rearranging this equation implies that a is the implicit solution of

(3.8)a = F(a) := ν + λν 2
πβ[ν + λ]

e−βa2λ2/2[ν + λ]

erfc( − aλ β/2[ν + λ])
.

In figure 1a, we plot the function F(a) for different values of ν and λ = β = 1. This provides
a graphical proof that there exists a unique stationary solution. The variation of the solutiona with ν is plotted in figure 1b. We also compare with the mean position in the absence of
interactions (λ = 0). It can be seen that as ν→ νc = 0, the effects of the cooperative interactions
become more significant.

(b) Stationary states on [−R,R]
The stationary solution (3.4) still holds in the finite interval except that a is now a solution of the
modified self-consistency condition

(3.9)a = m(a) ≡
−R
Rxpa(x)dx.

In the case of the quartic confining potential V(x) = x4/4 − x2/2, we recover the results of [7,22] in
the limit R→ ∞. That is, for sufficiently large R, there is a phase transition at a critical inverse
temperature βc(R) between a single stationary state a = 0 when β < βc, and three stationary
states a = 0, ± a0(β, L), a0 > 0, when β > βc. This is illustrated in figure 2a for R = 100. We find
numerically that βc ≈ 2 when λ = 1, which is consistent with the critical point obtained in the
limit R→ ∞ [7,22]. Our generalized mathematical framework allows us to explore how the
phase transition depends on the size R of the domain. As might be expected, for fixed β > βc*,
where βc* is the critical point in the limit R→ ∞, there exists a critical length Rc(β) at whicha0(β,Rc(β)) = 0, see figure 2b.

4. Generalized DK equation for a partially absorbing boundary: an encounter-
based model

So far we have focused on totally reflecting boundary conditions, which can be handled using
Skorokhod SDEs and differentials of the local time. However, the introduction of individual
local times also allows us to incorporate a much more general class of boundary conditions via
the encounter-based approach to diffusion-mediated surface absorption [40–43]. In this section,
we derive a generalized DK equation on the half-line with a partially absorbing boundary
at x = 0. In order to extend the DK construction to include partial absorption, it is necessary
to significantly modify the definition of the empirical measure. We begin by considering the
example of a single Brownian particle. We show how Ito’s lemma can be used to develop
an alternative formulation of the encounter-based approach that is particularly suitable for
multiple particles.

9
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(a) Single Brownian particle
At the single-particle level, the encounter-based approach assumes that a diffusion process
is killed when its local time L(t) at x = 0, as defined in equation (2.1), exceeds a randomly
distributed threshold ℓ. In other words, the particle is absorbed at x = 0 at the stopping time

(4.1)T = inf {t > 0:  L(t) > ℓ},  ℙ[ℓ > ℓ] ≡ Ψ(ℓ) .

Since L(t) is a non-decreasing process, the condition t < T  is equivalent to the condition L(t) < ℓ.

Hence, the corresponding single-particle SDE is

(4.2)dX(t) = [ 2DdW(t) + dL(t)]1L(t) < ℓ,
where 1L(t) < ℓ ≡ Θ(ℓ − L(t)) with Θ(x) a Heaviside function. In anticipation of the multi-particle
case, we introduce the single-particle empirical measure
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Figure 1. Brownian gas on the half-line. (a) Plot of function F(a) defined in the the self-consistency condition (3.8) for
the mean position a and various values of strength ν of the quadratic confining potential. The intercepts with the diagonal
determine the unique solution a. Other parameters are λ = β = 1. (b) Plot of intercepts as a function of ν for λ = 1. The
solid curve shows the mean position in the absence of coupling (λ = 0)).
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Figure 2. Brownian gas on [−R,R]. (a) Plot of first moment m(a) as function of a and various inverse temperaturesβ. The intercepts with the diagonal determine the positive solutions a. Other parameters are λ = 1, R = 100.
(b) Corresponding plots for β = 10 and various sizes of R.
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(4.3)μ(x, ℓ, t) = δ(x − X(t))1L(t) < ℓ.
Let f(x) be a bounded smooth test function and set

(4.4)F(ℓ, t) = f(X(t))1L(t) < ℓ.
Using Ito’s lemma and the definition of the local time, we have

(4.5)

dF(ℓ, t) = Df″(X(t))dt + 2Df′(X(t))dW(t) + Df′(X(t))δ(X(t))dt 1L(t) < ℓ
− Df(0)δ(X(t))δ(L(t) − ℓ) .

It follows that

(4.6)

0

∞f(x)@μ(x, ℓ, t)
@t dx dt = dF(ℓ, t)

=
0

∞μ(x, ℓ, t) Df″(x)dt + 2Df′(x)dW(t) + Dδ(x)f′(0) dx
− Df(0)δ(X(t))δ(L(t) − ℓ) .

Integrating by parts and using the arbitrariness of f yields an SPDE for μ:

(4.7a)@μ(x, ℓ, t)
@t = D@2μ(x, ℓ, t)

@x2 + 2D@μ(x, ℓ, t)
@x ξ(t), x > 0

and

(4.7b)D@μ(0, ℓ, t)
@x = 2Dξ(t)μ(0, ℓ, t) + Dδ(X(t))δ(L(t) − ℓ) .

The latter equation follows from equating the sum of terms multiplying f(0) to zero.
In order to derive a generalized FP equation, we need to take expectations with respect to

both the white noise process and the random threshold. Recall that these are denoted by ⟨ ⋅ ⟩
and E[ ⋅ ], respectively. Note, in particular, that

(4.8)E 1L(t) < ℓ = Ψ(L(t)), E δ(L(t) − ℓ) = ψ(L(t)) := − Ψ ′(L(t)) .

Introducing the pair of densities

(4.9a)pΨ(x, t) = E[⟨μ(x, ℓ, t)⟩] = δ(x − X(t))E[1L(t) < ℓ] = δ(x − X(t)Ψ(L(t)) ,

(4.9b)νψ(x, t) = δ(x − X(t))E[δ(L(t) − ℓ̂)] = δ(x − X(t)ψ(L(t)) ,

and taking expectations of equation (4.7) gives

(4.10)@pΨ(x, t)
@t = D@2pΨ(x, t)

@x2 ,  x > 0, D@pΨ(x, t)
@x x = 0

= Dνψ(0, t) .

For a general local time threshold distribution Ψ , we do not have a closed equation for
the marginal density pΨ(x, t). However, in the particular case of the exponential distributionΨ(ℓ) = e−κ0ℓ/D, we have ψ(ℓ) = κ0Ψ(ℓ)/D and equation (4.10) reduce to the classical Robin BVP
with reactivity κ0:

(4.11a)@p(x, t)
@t = D@2p(x, t)

@x2 , x > 0,

(4.11b)D@p(0, t)
@x x = 0

= κ0p(0, t).

11
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(We have set pΨ = p for Ψ(ℓ) = e−κ0ℓ/D.) Within the context of the encounter-based formalism,
we now make the crucial observation that the solution of the Robin BVP is equivalent to the
Laplace transform of the so-called local time propagator with respect to ℓ:

(4.12)p(x, t) =
0

∞
e−zℓP(x, ℓ, t)dℓ = P(x, z, t), z = κ0/D,

where [40–43]

(4.13)P(x, ℓ, t) := δ(X(t) − x)δ(L(t) − ℓ) .

Assuming that the Laplace transform P~(x, z, t), can be inverted with respect to z, the solution of
equation (4.10) is obtained from equation (4.9a):

(4.14)pΨ(x, t) =
0

∞Ψ(ℓ)P(x, ℓ, t)dℓ =
0

∞Ψ(ℓ)Lℓ−1P(x, z, t)dℓ .

One way to implement a non-exponential law is to consider an ℓ-dependent reactivity κ(ℓ) such
that

(4.15)Ψ(ℓ) = exp( − D−1

0

ℓκ(ℓ′)dℓ′) .

Since the probability of absorption now depends on how much time the particle spends in a
neighbourhood of the boundary, as specified by the local time, it follows that the stochastic
process has memory. That is, absorption process itself is non-Markovian.

(b) Interacting Brownian gas on the half-line
Writing down the SDE for an interacting Brownian gas with a partially absorbing boundary
condition at x = 0 requires that we only include particles that have not yet been absorbed. Given
a set of local time thresholds ℓ = {ℓ1, …ℓN} and the set of stopping conditions

(4.16)T j = inf {t > 0:  Lj(t) > ℓj}, ℙ[ℓj > ℓ] ≡ Ψ(ℓ),

equation (2.17) becomes

(4.17)

dXj(t) = − 1γ V ′(Xj(t)) + N−1∑k = 1

N K′(Xj(t) − Xk(t))1Lk(t) < ℓk dt
+ 2DdWj(t) + dLj(t) 1Lj(t) < ℓj .

For simplicity, we assume that the particle absorption processes are independent and that the
distributions Ψ  of the local time thresholds are the same for all particles. That is, each particle is
assigned its own independent local time Lj(t) and local time threshold ℓj. (See the discussion in
§5 for further elaboration.) Introduce the global density or empirical measure

(4.18)μ(x, ℓ , t) = 1N ∑j = 1

N μj(x, ℓj, t) = 1N ∑j = 1

N δ(Xj(t) − x)1Lj(t) < ℓj,
which tracks the spatial evolution of the surviving particles given the thresholds ℓ . For a given
set of local time thresholds, we derive a generalized DK equation for μ by combining the
analysis of §§2 and 4a. Introduce a smooth test function f and set

(4.19)F(ℓ , t) = 1N ∑j = 1

N f(Xj(t))1Lj(t) < ℓj =
0

∞μ(x, ℓ , t)f(x)dx .

12
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Using similar arguments to the previous cases, we use Ito’s lemma to evaluate dF(ℓ, t), which
yields

(4.20)

0

∞f(x)@μ(x, ℓ , t)
@t dx

= 1N 0

∞

∑j = 1

N μj(x, ℓj, t) 2Df′(x)ξj(t) + Df″(x) + Dδ(x)f′(0) +A(x)f′(x) dx
− Df(0)N ∑j = 1

N δ(Xj(t))δ(Lj(t) − ℓj) .

with

(4.21)

A(x) = − 1γ V ′(x) + 1N ∑k = 1

N 1Lk(t) < ℓk
0

∞δ(y − Xk(t))K′(x − y)dy
= − 1γ V ′(x) +

0

∞μ(y, ℓ , t)K′(x − y)dy .

Integrating by parts the various terms on the right-hand side of equation (4.20), which picks up
additional terms at x = 0, and exploiting the arbitrariness of f, yields the following SPDE for μ:

(4.22a)@μ(x, ℓ , t)
@t = −

@J (x, ℓ , t)
@x ,

(4.22b)−J (0, ℓ , t) = Dν(0, ℓ , t), ν(0, ℓ , t) := 1N ∑j = 1

N δ(Xj(t))δ(Lj(t) − ℓj),
with the probability flux

(4.23)J (x, ℓ , t) = − 2DN μ(x, ℓ , t)η(x, t) − D@μ(x, ℓ , t)
@x − Hμ(x, ℓ , t),

and

(4.24)Hμ(x, ℓ , t) = γ−1μ(x, ℓ , t) V ′(x) +
0

∞μ(y, ℓ , t)K′(x − y)dy .

Note that we have simplified the noise terms using identical arguments to the derivation of
equation (2.15). However, the DK equation is not closed with respect to μ, since it couples to a
second empirical measure

(4.25)ν(x, ℓ , t) = 1N ∑j = 1

N δ(Xj(t) − x)δ(Lj(t) − ℓj),
at x = 0

In order to obtain the analogue of the single-particle density equation (4.10), we take
expectations of equation (4.22) with respect to the Gaussian noise processes and the random
local time thresholds. We again make use of the identities

(4.26)E[1Lj(t) < ℓj] = Ψ(Lj(t)), E[δ(Lj(t) − ℓj)] = ψ(Lj(t)) .

However, in the interacting case, we have to deal with the fact that Hμ is a nonlinear, non-local
function of μ(x, ℓ , t). Analogous to §2, see the discussion above equation (2.22), we will assume
the mean-field ansatz2

(4.27)E μ(x, ℓ , t)μ(y, ℓ , t) = E μ(x, ℓ , t) E μ(y, ℓ , t) ,
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holds in the thermodynamic limit N → ∞. This then yields an MV equation for the marginal
density on the half-line with a partially absorbing boundary at x = 0,

(4.28)pΨ(x, t) = E μ(x, ℓ , t) ,

which takes the form

(4.29a)@pΨ(x, t)
@t = − @ JΨ(x, t)

@x , − JΨ(0, t) = Dνψ(0, t),
with probability flux

(4.29b)JΨ(x, t) = − D@pΨ(x, t)
@x − γ−1pΨ(x, t) V ′(x) +

0

∞pΨ(y, t)K′(x − y)dy ,

and

(4.29c)νψ(x, t) = 1N ∑j = 1

N δ(x − Xj(t))δ(Lj(t) − ℓj) = 1N ∑j = 1

N δ(x − Xj(t)ψ(Lj(t)) .

First note that if Ψ(ℓ) = 1 for all ℓ then ψ(ℓ) = 0 and we recover the MV equation (2.22) for a
totally reflecting boundary. For almost all other choices for Ψ , equation (4.29) does not yield
a closed PDE for pΨ(x, t) due to the dependence of the boundary condition at x = 0 on νψ(0, t).
However, as in the case of a single particle, see §4a, we do obtain a closed MV equation in the
special case of an exponential distribution Ψ(ℓ) = e−κ0ℓ/D. The boundary condition then takes the
Robin form

(4.30)JΨ(0, t) = − κ0pΨ(0, t),
where κ0 is the effective reactivity. It immediately follows by analogy with the single-particle
case, that if we can solve the nonlinear Robin BVP then we can interpret the solution as the
Laplace transform of a local time propagator. That is, from the definition (4.18) of the empirical
measure μ, we can rewrite equation (4.28) as

(4.31)

pΨ(x, t) = 1N ∑j = 1

N E δ(x − Xj(t))1Lj(t) < ℓj, = 1N ∑j = 1

N δ(x − Xj(t))Ψ(Lj(t))
=

0

∞Ψ(ℓ)P(x, ℓ, t),
where

(4.32)P(x, ℓ, t) = 1N δ(x − Xj(t))δ(ℓ − Lj(t) .

It immediately follows that pΨ(x, t) and P(x, ℓ, t) are also related according to equation (4.14) at
the multi-particle level. The relationships between the various equations obtained by combining
the hydrodynamics of an interacting Brownian gas and an encounter-based model of partially
absorbing boundaries are summarized in figure 3.

(i) Remark

As in the case of reflecting boundaries, it is possible to extend our results to an interacting
Brownian gas confined on the interval [−R,R] with a partially absorbing boundary at each
end. The details of the absorption process will depend on whether or not we have separate
thresholding conditions at the two ends (see the discussion in §5). Here, we consider the
simpler case in which absorption of the jth particle occurs as soon as the joint local time Lj(t)

14
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given by equation (2.23) exceeds the random threshold ℓj, irrespective of which end this occurs.
The corresponding MV equation is

(4.33a)@pΨ(x, t)
@t = − @ JΨ(x, t)

@x , JΨ( ± R, t) = ± Dν( ± R, t),
with probability flux

(4.33b)JΨ(x, t) = − D@pΨ(x, t)
@x − γ−1pΨ(x, t) V ′(x) +

−R
RpΨ(y, t)K′(x − y)dy .

(c) Weak absorption limit

As a simple example, consider the half-line with the potential V(x) = νx2/2 and take the
interactions to be given by the Curie–Weiss potential K(x) = λx2/2, λ > 0. We also choose the
exponential distribution Ψ(x) = e−κ0ℓ/D with κ0 ≪ D/L, so that absorption is much slower than
diffusion. The probability flux becomes (after dropping the superscript Ψ)

(4.34)

J(x, t) = − D@p(x, t)
@x − 1γV ′(x)p(x, t) − λγp(x, t)

0

∞p(y, t)(x − y)dy
= − D@p(x, t)

@x − 1γp(x, t)[V ′(x) + λΛ(t)x − λm(t)],
with the loss function and first moment defined, respectively, according to

(4.35)Λ(t) =
0

∞p(x, t)dx, m(t) =
0

∞xp(x, t)dx .

We thus obtain the non-autonomous FP equation

DK equation [μ(x, l, t), v (0, l, t)]]

averaging

ψ(l)

exponential ψ

inverse LT

~

mean field

ansatz

Robin BVP

P (x, z, t)pψ(x,t) P (x, l, t)

set z, = k0 /D

MV equation[pψ (x, t), vψ (0, t)]

^ ^

Figure 3. Hierarchy of equations obtained by combining the hydrodynamical theory of interacting Brownian gases with an
encounter-based model of a partially absorbing boundary. The generalized DK equation (2.22) is an SPDE for μ(x, ℓ , t)
that depends on a second measure ν(x, ℓ , t) at x = 0. Taking expectations with respect to the Gaussian noise processes
and the local time thresholds and imposing a mean-field ansatz leads to the MV equation (4.29) for the marginal densitypΨ(x, t) =

0

∞Ψ (ℓ)P(x, ℓ, t)dℓ, which couples to the absorption flux νψ(x, t) = ∫0
∞ψ(ℓ)P(0, ℓ, t)dℓ. In the

exponential case Ψ (ℓ) = e−κℓ/D, the MV equation reduces to a closed Robin BVP for the marginal density, which is
equivalent to the Laplace transform of P(x, ℓ, t) with respect to ℓ. Inverting the Laplace transform then determinesP(x, ℓ, t) and hence pΨ(x, t).
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(4.36)@p(x, t)
@t = − @ J(x, t)

@x = D@2p(x, t)
@x2 + 1γ @[A(x, t)p(x, t)]

@x ,  x ∈ (0,∞),

(4.37)J(0, t) = − ϵκ0p(0, t),
with

(4.38)A(x, t) = λm(t) − V ′(x) − λxΛ(t) .

We have rescaled the reactivity by the small positive parameter in order to reflect the relative
slow rate of absorption. We wish to calculate the loss function, which is the expected fraction of
particles that have not been absorbed up to time t. (It is the analogue of the survival probability
for a single particle.) It follows from integrating equation (4.36) with respect to x and using
integration by parts that

(4.39)dΛ(t)dt = − ϵκ0p(0, t) .

In order to solve equation (4.36), we exploit the fact that when ϵ = 0 there exists a unique
stationary state p = pa(x), m = m(a) = a and Λ = 1, see §3a. Using a quasi-steady-state approxi-
mation, we introduce the slow timescale τ = ϵt and assume that the solution can be decomposed
as

(4.40)p(x, t) = Λ(τ)pa(x) + ϵu(x, τ),

with ∫0
∞u(x, τ)dx = 0, Λ(0) = 1 and u(x, 0) = 0. In particular, we assume that the system starts in

the stationary state of the reflecting BVP. Substituting the above decomposition into equation
(4.39) implies that to leading order

(4.41)dΛ(τ)dτ = −κ0pa(0)Λ(τ),

so that

(4.42)p(x, t) ∼ e−ϵκ0pa(0)tpa(x).

Equations (3.4) and (3.6) imply that

(4.43)pa(0) = 1Z(a) , Z(a) = π
2β[ν + λ]eβa2λ2/2[ν + λ]erfc( − aλ β/2[ν + λ]),

with a determined from equation (3.5). Example plots of the loss function Λ(τ) = e−τ/Z(a) are
shown in figure 4a for various first moments a. We absorb the constant κ0 into the slow
time τ. Finally, given the relationship between the solution to the Robin BVP and the Laplace
transformed propagator, we can set

(4.44)p(x, ℓ, t) ∼ δ(ℓ − ϵDpa(0)t)pa(x),

and for a general local time threshold distribution

(4.45)pΨ(x, t) ∼ Ψ(ϵDpa(0)t)pa(x) .

One example of a non-exponential threshold distribution is the gamma distribution

(4.46)ψgam(ℓ) = r(rℓ)σ − 1e−rℓ
Γ(σ) , Ψgam(ℓ) = Γ(σ, rℓ)

Γ(σ) ,σ > 0, r = κ0/D,

where Γ(σ) is the gamma function and Γ(σ, z) is the upper incomplete gamma function:

(4.47)Γ(σ) =
0

∞
e−ttσ − 1dt, Γ(σ, z) = z

∞
e−ttσ − 1dt,  σ > 0.

16

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 480: 20230915
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
28

 A
ug

us
t 2

02
4 



The parameter r determines the effective absorption rate so that the boundary x = 0 is non-
absorbing in the limit r→ 0 and totally absorbing in the limit r→ ∞. If σ = 1 then ψgam reduces
to the exponential distribution ψgam(ℓ)|σ = 1 = re−rℓ. The parameter σ thus characterizes the
deviation of ψgam(ℓ) from the exponential case. If σ < 1 (σ > 1) then Ψ(ℓ) decreases more rapidly
(slowly) as a function of the local time ℓ, that is, the boundary is more (less) absorbing. Example
plots of the corresponding loss function Λ(τ) = Ψgam(τ/Z(a)) are shown in figure 4b. We fix D = 1
and a = 0.25, and consider various values of the gamma distribution parameter σ. It can be
seen that as the boundary becomes more absorbing (decreasing σ), the loss function decays
more rapidly. Moreover, Λ(τ) is a convex down (up) function of τ for σ > 1 (σ < 1). Finally, note
that a more detailed asymptotic analysis is needed in order to determine the validity of the
quasi-steady-state approximation at large times.

5. Summary and extensions
In this article, we considered the problem of an interacting Brownian gas on the half-line.
In order to handle a partially absorbing boundary condition at x = 0, we introduced a global
density that depends on both the positions and local time thresholds of all of the surviving
particles. We derived a generalized DK equation for the global density, see equation (4.22),
which is an exact SPDE that prescribes how to incorporate the effects of spatio-temporal noise
at the population level. We then used a mean-field ansatz to reduce the DK equation to a
nonlinear MV equation in the thermodynamic limit, see equation (4.29). We also indicated how
to extend the analysis to a finite interval. The rigorous mathematical proof that the mean-field
limit exists via propagation of chaos has been carried out in the case of a reflecting boundary
[26,27] but not, as far as we are aware, for a partially absorbing boundary. The latter also has
the additional complication that there is a constant loss of particles due to absorption, so that
for a large but finite number of particles and recurrent diffusion, any mean-field approximation
will eventually break down. Independently of these particular issues, the boundary value
problems for the generalized DK equation and the MV equations are of intrinsic interest. The
former provides a starting point for developing various approximation schemes for large but
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Figure 4. Loss function in the weak absorption limit for an interacting Brownian gas on the half-line. (a) Plot of
the exponential loss function Λ(τ) = e−τ/Z(a) for various values of the first moment a. (b) Plot of loss function
Λ(τ) = Ψgam(τ /Z(a)) for ψgam(ℓ) = − Ψgam′ (ℓ) given by the gamma distribution (4.46) and various values of the
parameter σ. The first moment is a = 0.25. Other parameters are D = κ0 = 1.
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finite populations, whereas the latter is an example of a nonlinear, non-local PDE with rich
mathematical structure.

One natural direction for future work is to consider higher dimensional versions of
interacting Brownian gases in bounded domains. Here we briefly discuss two particular
extensions of the encounter-based approach.

(a) Independently absorbing boundaries
In §4, we assumed that each particle is independently absorbed according to the stopping
conditions (4.16), with all particles having the same local time threshold distribution Ψ . A
simple generalization would be to take the distributions to be j-dependent. A related issue is
that, in the case of the finite interval [−R,R], we did not distinguish between absorption events
at the two ends x = ±R. That is Lj(t) was taken to be the sum of the local times accrued at both
ends, see equation (2.23). An alternative model would treat the absorption processes at x = ±R to
be independent. At the single-particle level, this would mean introducing the pair of local times

(5.1)L+(t) = limϵ→ 0+
Dϵ 0

tI(R − ϵ,R)(X(s))ds, L−(t) = limϵ→ 0+
Dϵ 0

tI( − R, − R + ϵ)(X(s))ds
and the modified stopping condition

(5.2)T = min {T −,T +}, T ± = inf {t > 0:  L±(t) > ℓ±
}, ℙ[ℓ±

> ℓ] ≡ Ψ ± (ℓ) .

The difference between the two scenarios also has a possible physical interpretation as
illustrated in figure 5. In particular, recall that if Ψ  is non-exponential, then the absorption
process is non-Markovian, that is, some memory trace of previous particle-boundary encoun-
ters is maintained. Treating each particle as independently absorbed suggests that the memory
traces are associated with internal states of the particles, see figure 5a. However, another
possibility is that the individual boundaries maintain the memory traces, see figure 5b, so
that the absorption process at the two ends can be separated. However, the latter significantly
complicates the analysis of the multi-particle Brownian gas, since the probability that any one
particle is absorbed will depend on previous interactions between the boundary and all other
particles.

(b) Interacting Brownian gas in ℝ with a partially absorbing trap
The encounter-based approach to single-particle absorption has also been developed within the
context of heterogeneous media, where one or more subregions of a domain act as partially
absorbing traps [41,43]. This is illustrated in figure 6 for an absorbing trap in the interval [−R,R].
A Brownian particle can freely enter and exit the trap but is only absorbed within the trap
when its occupation time exceeds some random threshold. The occupation time is a Brownian
functional defined according to [35]

(5.3)A(t) =
0

t1( − R,R)(X(τ))dτ =
0

t
−R
Rδ(x − X(τ))dx dτ .

A(t) specifies the amount of time the particle spends within [−R,R] over the time interval [0, t].
The stopping time condition for absorption is

(5.4)T = inf {t > 0:  A(t) > a},

where a is a random variable with probability distribution Ψ(a) = ℙ[a > a]. Hence, the
corresponding single-particle SDE is
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(5.5)dX(t) = 2DdW(t)1A(t) < a .

Here, we sketch how to adapt the previous analysis to an interacting Brownian gas in ℝ with a
partially absorbing trap. We begin by considering a single particle. Following along analogous
time to an absorbing boundary, we introduce the single-particle empirical measure

(5.6)μ(x,a, t) = δ(x − X(t))1A(t) < a,

and set F(a, t) = f(X(t))1A(t) < a for a test function f(x) in ℝ. Using Ito’s lemma and the definition
of the occupation time, we have

(5.7)dF(a, t) = Df″(X(t))dt + 2Df′(X(t))dW(t) 1A(t) < a − δ(A(t) − a)
−R
Rδ(X(t) − y)f(y)dy .

It follows that

(5.8)

−∞

∞f(x)@μ(x,a, t)
@t dx

=
−∞

∞μ(x,a, t) Df″(x)dt + 2Df′(X(t))dW(t) dx − δ(A(t) − a)
−R
Rδ(X(t) − y)f(y)dy .

Integrating by parts and using the arbitrariness of f yields an SPDE for μ:

time tinterface

interface

(a)

x

time tinterface
–R

R

x

–R

R
interface

(b)

Figure 5. Schematic diagram indicating two different absorption scenarios for a Brownian particle diffusing in the interval
[−R,R]. For the sake of illustration, the local times are taken to be the amount of time spent in a small boundary layer
around x = ±R. (a) The particle has an internal state S(t) that increases strictly monotonically with the amount of timeL(t) spent in contact with either boundary. Absorption occurs when the internal state, and hence L(t), crosses a threshold.
(b) Each boundary has its own internal state denoted by S±(t), which is a strictly monotonic function of the amount of time
the boundary is in contact with the particle, which is specified by the local time L±(t). Absorption occurs as soon as one of
the internal states crosses its corresponding threshold. In both cases (a) and (b), the value of the internal state is represented
by the colour of the shaded regions.

x = Tx = –R

absorbing

non-absorbing non-absorbing

Figure 6. One-dimensional diffusion with a partially absorbing trap in the interval [−R,R].
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(5.9a)@μ(x, a, t)
@t = D@2μ(x,a, t)

@x2 + 2D@μ(x, a, t)
@x ξ(t) − ν(x, a, t),

with

(5.9b)ν(x, a, t) = δ(A(t) − a)δ(X(t) − x)1( − R,R)(x) .

Note that ν vanishes outside the trap. Finally, averaging with respect to the white noise process
and the random occupation time threshold yields

(5.10)@pΨ(x, t)
@t = D@2pΨ(x, t)

@x2 − νψ(x, t)1( − R,R)(x),

with

(5.11a)pΨ(x, t) = E[⟨μ(x, a, t)⟩] = ⟨δ(x − X(t)Ψ(A(t))⟩,
(5.11b)νψ(x, t) = δ(x − X(t))δ(A(t) − a) = ψ(A(t))δ(x − X(t) .

The subsequent solution strategy is analogous to the case of an absorbing boundary [41,43].
That is, for an exponential distribution Ψ(a) = e−κ0a, we recover the classical inhomogeneous
diffusion equation

(5.12a)@p(x, t)
@t = D@2p(x, t)

@x2 , x ∈ ( − ∞, − R) ∪ (R,∞),

(5.12b)@q(x, t)
@t = D@2q(x, t)

@x2 − κ0q(x, t), x ∈ ( − R,R),

together with the matching conditions

(5.12c)p( ± R, t) = q( ± R, t), @xp( ± R, t) = @xq( ± R, t) .

We denote the solution within the trap by the function q(x, t). The final step is to identify the
solution p and q as the Laplace transforms of the corresponding propagators

(5.13a)P(x, a, t) = δ(x − X(t)δ(a − A(t) , x ∈ ( − ∞, − R) ∪ (R,∞),

(5.13b)Q(x, a, t) = ⟨δ(x − X(t)δ(a − A(t)⟩, x ∈ ( − R,R) .

Now suppose that there are N interacting Brownian particles with individual occupation timesAj(t). The SDE (4.17) is replaced by

(5.14)

dXj(t) = − 1γ V ′(Xj(t)) + N−1∑k = 1

N K′(Xj(t) − Xk(t))1Ak(t) < ak dt
+ 2DdWj(t) 1Aj(t) < aj,

and the global density is defined according to

(5.15)μ(x,a, t) = 1N ∑j = 1

N μj(x, aj, t) = 1N ∑j = 1

N δ(Xj(t) − x)1Aj(t) < aj .

Introduce a smooth test function f(x) for x ∈ E and set

(5.16)F(a, t) = 1N ∑j = 1

N f(Xj(t))1Aj(t) < aj .

Applying Ito’s lemma, integrating by parts, and using the fact that f is arbitrary leads to the
following generalized DK equation for μ:
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(5.17a)@μ(x,a, t)
@t = −

@J (x,a, t)
@x − ν(x,a, t)1( − R,R)(x),

(5.17b)J(x,a, t) = − 2DN μ(x,a, t)η(x, t) − D@μ(x,a, t)
@x − Hμ(x,a, t),

with

(5.18)Hμ(x,a, t) = γ−1μ(x,a, t) V ′(x) +
−∞

∞μ(y,a, t)K′(x − y)dy ,

and

(5.19)ν(x,a, t) = 1N ∑j = 1

N δ(Aj(t) − aj)δ(Xj(t) − x) .

We have also transformed the noise terms. The final step is to take expectations with respect to
the Gaussian noise and occupation time thresholds. Under a mean-field ansatz, we obtain an
MV equation for the marginal density

(5.20)pΨ(x, t) = E μ(x,a, t) = 1N ∑j = 1

N
Ψ(Aj(t))δ(x − Xj(t) ,

which takes the form

(5.21a)@pΨ(x, t)
@t = − @ JΨ(x, t)

@x − νψ(x, t)1( − R,R)(x),

with probability flux

(5.21b)JΨ(x, t) = − D@pΨ(x, t)
@x − γ−1pΨ(x, t) V ′(x) +

−∞

∞pΨ(y, t)K′(x − y)dy ,

and absorption flux

(5.21c)νψ(x, t) = 1N ∑j = 1

N ψ(Aj(t))δ(x − Xj(t) .
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Endnotes
1Note that we normalize μ using the initial number of particles N, rather than the number of particles that
have not yet been absorbed. This is consistent with the normalization of the interaction term, and avoids
complications arising from the fact that the number of surviving particles is itself a stochastic variable. It
follows that ∫0

∞μ(x, ℓ, t)dx is a decreasing function of t.
2In the case of a partially absorbing boundary, the fraction of surviving particles is a monotonically
decreasing function of time. Clearly, for a large but finite number of particles and a recurrent diffusion
process, the number of remaining particles will eventually approach zero so that any mean field approxima-
tion will break down. There have been a few rigorous mathematical studies of the mean field limit and
propagation of chaos for mean field games with totally absorbing boundaries [28–30].
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