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Abstract. Work function is a fundamental property of metals and is related to many

surface-related phenomena of metals. Theoretically, it can be calculated with a metal

slab supercell in density functional theory (DFT) calculations. In this paper, we

discuss how the commensurability of atomic structure with the underlying fast Fourier

transform (FFT) grid affects the accuracy of work function obtained from plane-wave

pseudopotential DFT calculations. We show that the macroscopic average potential,

which is an important property in work function calculations under the ‘bulk reference’

method, is more numerically stable when it is calculated with commensurate FFT

grids than with incommensurate FFT grids. Due to the stability of the macroscopic

average potential, work function calculated with commensurate FFT grids shows better

convergence with respect to basis set size, vacuum length and slab thickness of a slab

supercell. After we control the FFT grid commensurability issue in our work function

calculations, we obtain well-converged work functions for Al, Pd, Au and Pt of (100),

(110) and (111) surface orientations. For all the metals considered, the ordering of

our calculated work functions of the three surface orientations agrees with experiment.

Our findings reveal the importance of the FFT grid commensurability issue, which

is usually neglected in practice, in obtaining accurate metal work functions, and are

also meaningful to other DFT calculations which can be affected by the FFT grid

commensurability issue.

Keywords : work function, plane-wave density-functional theory, DFT, fast Fourier

transform, FFT.
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Improving the precision of work-function calculations within plane-wave DFT 2

1. Introduction

The work function of a metal is defined as the minimum energy needed to

remove an electron from the metal interior to an infinite distance from the metal

surface1. It is a fundamental surface property of a metal and is important to many

surface-related phenomena such as charge injection at interfaces and surface corrosion.

Experimentally, it is usually measured by photoemission methods such as X-ray

photoelectron spectroscopy (XPS)2. Computationally, it can be calculated within the

framework of first-principles density functional theory (DFT) by simulating a supercell

containing a metal slab. The work function is given by the difference between the

electrostatic potential energy in the vacuum region of the supercell and the Fermi energy

of the metal slab. With this method, work functions of 19 common bcc and fcc metals

of six close-packed surfaces have been predicted3. Fall et al.1, however, showed that

such slab supercell calculations can suffer significant quantum size effects, with poor

convergence of the Fermi energy (and hence the work function) as a function of slab

thickness. To reduce these finite-size effects and improve convergence, they introduced

what is known as the ‘bulk reference’ method in which the Fermi energy of the metal

slab is determined by referencing it to the relative position of the Fermi energy and

the average electrostatic potential calculated for bulk metal. Under the ‘bulk reference’

method, they obtained work functions for aluminum of (100), (110) and (111) surfaces

with the numerical uncertainty to be around 0.03 eV4. Chen et al.5 obtained work

functions within 5% of the experimental data for the (111) surface of Al, Ag, Au, Pd

and Pt with a nine-layer metal slab. Singh-Miller et al.6 found a quick convergence (

by 7 layers) of the work function of the unrelaxed Pd(100) slab.

Despite this progress in improving the accuracy and size convergence of work

function calculations using first-principles DFT, values reported in the literature for

the calculated work functions of nominally the same metal surface have surprising

variation. Table 1.1 summarizes the work functions of Al (100), (110) and (111) surfaces

reported in the literature, calculated within the plane-wave pseudopotential (PWPP)

DFT approach. Experimentally-determined values are provided in the bottom row

for comparison. It is tempting to attribute these differences to the use of different

pseudopotentials, exchange and correlation functionals and basis sets; however, there

are discrepancies even among reports that use very similar methods and approximations.

For example, the difference of the calculated work function in reference 4 and 7 is 0.55

eV, which is quite big considering that the variation in work functions of three surfaces is

only within 0.17 eV according to the experimental fact. This is somewhat unsatisfactory

for such a fundamental electronic property. These differences indicate there may be other

computational and/or numerical factors that affect work function calculations and that

have not been sufficiently controlled.

In the ‘bulk reference’ method, a key parameter to be determined is the electrostatic

potential. In DFT calculations, it is sampled on a fast Fourier transform (FFT) grid.

For a certain metal slab supercell, different choices of the FFT sampling patterns, i.e.,
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Improving the precision of work-function calculations within plane-wave DFT 3

Table 1.1: A summary of work functions of Al surfaces from the literature, calculated

within the plane-wave pseudopotential DFT formalism with different approximations

for exchange and correlation (XC), namely the local-density approximation (LDA) and

generalised-gradient approximation (GGA), and different types of psuedopotential. The

bottom row gives experimental results for comparison.

XC Pseudopotential Al(111) (eV) Al(100) (eV) Al(110) (eV)

GGA Norm-conserving 4.026 4.306 4.096

GGA Ultrasoft 4.178, 4.099

GGA PAW 4.2010, 4.0811 4.2710, 4.3212 3.9610, 3.9213

LDA Norm-conserving 4.254, 3.77 4.304, 4.1214, 4.3215

LDA Ultrasoft 4.1616

LDA PAW 4.3610 4.4110 4.0810

Experiment 4.24± 0.0217 4.41± 0.0317 4.28± 0.0217

whether or not the chosen FFT grid is commensurate with the underlying atomic

structure, can give different values of the electrostatic potential in the middle of the

metal slab, which determines the final calculated work function. In other words, the

choice of the FFT grid results in some uncertainty in the calculated work function of

a certain metal surface. We suspect that different choices of the FFT grid can explain

the variation in calculated work functions of the same metal surface to some extent.

In this paper, we show that for PWPP DFT calculations of work functions using the

bulk reference method, the commensurability of the FFT grid with atomic planes of a

metal slab supercell has a significant influence on the convergence and precision of DFT

calculations of work functions. We show that choosing the FFT grid to be commensurate

with the atomic planes leads to significantly better convergence with respect to several

parameters including basis set size, slab thickness, and the length of the vacuum region

in the slab supercell, and therefore accurate values of work function can be obtained. On

the other hand, incommensurate FFT grid can lead to poor convergence and inaccurate

work function values. With the commensurability of FFT grid with atomic position

controlled, we obtain well-converged and accurate work functions for Al, Pd, Au and Pt,

which all have a fcc crystal structure and can be used as electrode materials5,18. For all

metals studied, the surface orientations we consider are (100), (110) and (111), which are

the most commonly occurring and most frequently studied surface planes of fcc metals.

The knowledge gained from this limited selection of metal surfaces greatly advances our

understanding of work-function calculations within the bulk reference method and goes

a long way towards studying other metal surfaces. Whilst the numerical imprecision

caused by incommensurate FFT grid can be mitigated to some extent by interpolating

the electrostatic potential obtained from a DFT calculation onto a very fine grid, because

the commensurability of the FFT grid with the atomic structure is not something that
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Improving the precision of work-function calculations within plane-wave DFT 4

Figure 2.1: An illustration of a periodic metal slab supercell containing ten metal layers

and a vacuum region used in DFT calculations of work function.

users of plane-wave DFT codes typically control or consider in detail, we believe that

this is a potential source of the scatter in calculated work functions in the literature,

and should be paid attention to for accurate work function calculations.

2. Methods

2.1. The bulk reference method

When calculating metal work function within the framework of DFT, a supercell

containing a metal slab and a vacuum region, as shown in Fig. 2.1, is usually needed. To

illustrate the bulk reference method, we plot the planar and macroscopic electrostatic

potential calculated along the z-axis for such a metal slab supercell, and the alignment

of electrostatic potential of the metal slab with that of a bulk metal in Fig. 2.2.

Within the bulk reference method1, and with reference to the schematic slab

(periodic) supercell setup shown in Fig. 2.1, the work function ϕ is calculated as

ϕ = V̂ slab
vac − (V̂ slab

metal + Ebulk
F − V̂ bulk), (1)

where V̂ slab
vac is the so-called “macroscopic average” local electrostatic potential in the

middle of the vacuum region of the slab supercell, V̂ slab
metal is the same quantity evaluated

in the middle of the metal slab, and V̂ bulk and Ebulk
F are the macroscopic average local

electrostatic potential and Fermi energy of the bulk metal (obtained from a separate

bulk calculation), respectively. The term in parenthesis in Equation (1) represents the

Fermi energy of the metal slab Eslab
F , which is effectively calculated by referencing it

to the macroscopic average potential in the bulk-like region in the deepest part of the

metal slab (V̂ slab
metal) using the relative positions of the same quantities for the bulk metal

(Ebulk
F and V̂ bulk), as illustrated in Fig. 2.2.
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Improving the precision of work-function calculations within plane-wave DFT 5

Figure 2.2: An illustration of the ‘bulk reference’ method with a periodic slab supercell

containing ten atomic layers (Nmetal=10) and a vacuum region of 17.98 Å (Lvac=17.98 Å)

along the z-direction. The planar averaged potential [Equation (2)] is shown with the

grey line, and the macroscopic averaged potential [Equation (3)] is shown with the red

line. In practice, the electrostatic potential is sampled on a discrete FFT grid (purple

symbols). The Fermi energy of the slab Eslab
F is obtained by referencing its difference

with the macroscopic averaged electrostatic potential in the middle of the metal slab

V̂ slab
metal to E

bulk
F − V̂ bulk (shown in green) obtained from a separate calculation on bulk

metal [Equation (1)].

The macroscopic average local potential is calculated from the local electrostatic

potential V (r) that can be obtained from a DFT calculation. V (r) is the sum of the local

part of the ionic pseudopotential and the Hartree potential and is usually available on a

grid of points in the computational cell that is the same as the FFT grid associated with

the electronic charge density. V̂ (z) is obtained by first computing the planar average

local electrostatic potential,

V (z) =
1

S

∫
S
V (r) dS, (2)

where S is the surface spanned by the slab in the (periodic) computational cell and we

have assumed that the slab surface is perpendicular to the z-axis of the computational

cell. This planar averaged potential is then smoothed by convolving with a filter function

f(z) to give the macroscopic average potential V̂ (z):

V̂ (z) =
∫
f(z − z′)V (z′) dz′. (3)

Different smoothing/filter functions are possible19 and, in this work, we use a rectangle

function of width equal to the interplanar distance d in the centre of the metal slab,
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Improving the precision of work-function calculations within plane-wave DFT 6

and a height 1/d, to give

V̂ (z) =
1

d

∫ +d/2

−d/2
V (z − z′) dz′. (4)

The process of macroscopic averaging smooths out the large spatial oscillations in the

electrostatic potential caused by the discreteness of the atomic positions19. For a bulk

calculation, V̂ (z) is a constant that is precisely equal to the direct average of the

local electrostatic potential over the computational cell, 1
Vcell

∫
Vcell

V (r) d3r. For a slab

calculation, V̂ (z) will, in general, have some spatial variation and, for the purpose of

evaluating the work function in Equation (1), V̂ slab
vac and V̂ slab

metal are taken at the middle

of the vacuum and metal slab regions of the slab supercell, respectively, as illustrated

in Fig. 2.2.

2.2. Calculation details

We calculate the work functions of the face-centred cubic (FCC) metals Al, Pt, Au

and Pd for three of their surfaces, namely (100), (110) and (111). In each case, we use

a primitive surface unit cell (i.e., there is only one inequivalent atom in each atomic

plane of the slab). The initial interplanar spacings for the three different surfaces are

a0/2,
√
2a0/4 and

√
3a0/3, respectively, where a0 is the equilibrium lattice constant of

the FCC unit cell of the bulk metal. We allow the surfaces to relax whilst constraining

three (four) atomic layers in the middle of the slab to be fixed to the bulk interplanar

spacing when there is an odd (even) number of atomic layers in the slab. For each

system, to ensure maximum consistency between the slab supercell calculations and

bulk calculations that are used to compute the work function, we use a bulk unit cell

taken from the middle (bulk-like) region of the slab supercell to calculate V̂ bulk and

Ebulk
F in Equation (1).

DFT calculations were carried out using the PWscf code of the Quantum-

ESPRESSO software package20. In all cases, the Perdew-Burke-Ernzerhof (PBE)

functional21 was used to describe exchange and correlation. Rappe-Rabe-Kaxiras-

Joannopoulos (RRKJ) ultrasoft pseudopotentials22 were used for Pd, Au and Pt, and

an RRKJ norm-conserving pseudopotential22 was used for Al. Unless otherwise stated,

for Al, Pd, Au and Pt, the plane-wave kinetic energy cutoffs were, respectively, 32 Ry,

48 Ry, 48 Ry and 40 Ry for wavefunctions and 128 Ry, 288 Ry, 192 Ry and 160 Ry

for the charge density. Marzari-Vanderbilt smearing was used in all calculations with a

smearing width of 0.01 Ry. In calculations on slab supercells, a 16× 16× 1 Monkhorst-

Pack k-point mesh23 was used to sample the first Brillouin zone. In calculations on

bulk metal, an 8 × 8 × 8 k-point mesh was used for primitive FCC unit cells used to

calculate equilibrium lattice parameters, and a 36× 36× 26 mesh was used for the unit

cells used to obtain V̂ bulk and Ebulk
F . For the surface relaxations, the force and the total

energy thresholds were 0.026 eV/Å and 1.4 meV, respectively. The calculated bulk

lattice constants of the four metals are shown in Table 2.1; experimental values are also

provided for comparison.
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Improving the precision of work-function calculations within plane-wave DFT 7

Table 2.1: Bulk lattice constants a0 calculated with DFT (this work)

and from experiment24. ∆ = (aDFT
0 − aexpt0 )/aexpt0 is the fractional

difference between the calculated and experimental values.

aDFT
0 (Å) aexpt0 (Å) ∆ (%)

Al 4.06 4.05 0.24

Pd 3.96 3.89 1.80

Au 4.17 4.08 2.21

Pt 3.99 3.92 1.79

3. Results and discussion

3.1. Convergence

When calculating metal work functions within the bulk reference method, the first

thing that may occur to us is the convergence of work functions. Here, we consider

the convergence of the work function with respect to basis set size, the length of the

vacuum region in the slab supercell (Lvac) and the number of metal layers in the slab

(Nmetal), which are commonly checked in DFT calculations. Usually, it is believed that

the work function of a metal surface can converge well as long as these parameters are

large enough. However, in the following paragraph, we will show how work function

shows significant non-monotonic convergence with respect to these parameters.

In PWPP DFT codes, the local electrostatic potential, which enters the calculation

of the work function through Equation (1), is typically represented on the same FFT

grid that is used for the electronic charge density. This FFT grid depends on the

chosen kinetic energy cutoff for the charge density, and hence the size of the plane-wave

basis used in the calculation. Figure 3.1(a) shows the convergence of the work function

with basis-set size for a 10-layer Al(100) slab with Lvac = 18.27 Å, where our measure

of basis-set size is the number nzFFT of FFT grid spacings along the perpendicular

direction between two interatomic planes in the interior (bulk-like) region of the metal

slab. We see immediately that the work function varies very non-systematically (green

data) except when the FFT grid is chosen to be perfectly commensurate with the

interlayer spacing, in other words, when nzFFT is an integer (purple data). For the

commensurate case, the variation in the work function is at most 1 meV from nzFFT = 12

to nzFFT = 27, whereas for the incommensurate case it varies by almost 200 meV over

the same range of nzFFT and shows no indication of systematic convergence even at the

largest incommensurate value of nzFFT = 26.67 that we went up to, which corresponds

to a plane-wave energy cutoff for the charge density of 470 Ry. It is important to note

that commensurability of the FFT grid with the interplanar spacing is not typically

guaranteed in a PWPP DFT calculation unless the size of the FFT grid is explicitly

specified to be such in the input file.
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Improving the precision of work-function calculations within plane-wave DFT 8

(a) (b)

Figure 3.1: The work function of a 10-layer Al(100) slab as a function of the number

nzFFT of FFT grid spacings between two adjacent interatomic planes in the interior

(bulk-like) region of the slab. Panel (a): comparison between the FFT grid being

commensurate (purple) and incommensurate (green) with the interlayer spacing in the

interior (bulk-like) region of the metal slab. Panel (b): the same as panel (a) but with a

10-fold interpolation applied to the local potential V (z). The number adjacent to each

data point shows the value of nzFFT for each calculation.

Next, we consider convergence with respect to Lvac. Figure 3.2(a) shows the work

function of a 10-layer Al(100) slab with respect to Lvac. It can be seen that in the

incommensurate case (green data), the work function shows no systematic convergence

and varies by up to 0.32 eV even when Lvac ≥ 15 Å, whereas in the commensurate case

(purple data), there is rapid convergence within 1 meV by Lvac = 10.73 Å.

We also study the convergence of the work function of a Al(100) slab with respect

to Nmetal. In Figure 3.3(a), for the incommensurate case (green data), the work function

shows no systematic convergence and shows a variation of 0.64 eV even when Nmetal is

over 15. In contrast, for the commensurate case (purple data), the convergence is within

35 meV by Nmetal = 9.

With respect to nzFFT, Lvac and Nmetal, the work function does not show any

trend of convergence for the incommensurate case without interpolation, and a 10-

fold interpolation greatly improves the convergence (Figure 3.1(b), Figure 3.2(b) and

Figure 3.3(b)). By contrast, at integer nzFFT, the work function is stable and is almost

not influenced by interpolation, which can be easily observed in Figure 3.1. It seems that

the convergence of work function is more about whether or not nzFFT is an integer, i.e.,

whether or not the FFT grid is commensurate with the positions of underlying metal

planes. According to Equation (1), Ebulk
F and V̂ bulk are from bulk metal calculations and

are constant in different slab supercell calculations. Therefore, the commensurability

of FFT grid actually influences the convergence of work function through the values of
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Improving the precision of work-function calculations within plane-wave DFT 9

(a) (b)

Figure 3.2: The work function of a 10-layer Al(100) slab as a function of the length Lvac

of the vacuum region separating periodic images in the supercell. Panel (a): comparison

between the FFT grid being commensurate (purple) and incommensurate (green) with

the interlayer spacing in the interior (bulk-like) region of the metal slab. Panel (b): the

same as panel (a) but with a 10-fold interpolation applied to the local potential V (z).

The number next to each data point shows the corresponding nzFFT; for the case in

which the FFT grid is commensurate (purple data), nzFFT = 14 for all data points.

(a) (b)

Figure 3.3: The work function of a Al(100) slab as a function of Nmetal. Panel (a):

comparison between the FFT grid being commensurate (purple) and incommensurate

(green) with the interlayer spacing in the interior (bulk-like) region of the metal slab.

Panel (b): the same as panel (a) but with a 10-fold interpolation applied to the local

potential V (z). The number next to each data point shows the corresponding nzFFT;

for the case in which the FFT grid is commensurate (purple data), nzFFT = 14 for all

data points.
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Improving the precision of work-function calculations within plane-wave DFT 10

V̂ slab
vac and V̂ slab

metal. We have checked that the value of V̂ slab
vac is not affected by the FFT

grid commensurability issue, while V̂ slab
metal shows great dependence on it, which will be

explained in detail in the next section.

3.2. The FFT grid commensurability issue

To study the effects of nzFFT on V̂ slab
metal, we performed two 10-layer Al(100) slab

calculations under same conditions except that for one case (commensurate), nzFFT is

set to be an integer (15), while for the other one (incommensurate), nzFFT is a non-

integer (17.8). In Figure 3.4, we show V (z) (planar average potential) within the

middle four atomic planes (denoted by dashed lines) of the slab of the commensurate

and the incommensurate cases in the top and middle panels, respectively. Compared

to the commensurate case, the sampling pattern of V (z) between two atomic planes

is not guaranteed to be the same for the incommensurate case. In the bottom panel

of Figure 3.4, we show the resulting V̂ (z) (macroscopic average potential) for the two

cases. The V̂ (z) of the commensurate case shows a much smaller oscillation, with the

oscillation magnitude ∆V̂ (defined as the difference between the maximum and the

minimum of V̂ within the middle two atomic planes) to be only 15 meV, compared to

490 meV of the incommensurate case. Furthermore, V̂ at the central point of the metal

slab, i.e., V̂ slab
metal in Equation (1), shows a difference of 0.24 eV between the two cases.

To further compare V̂ (z) calculated with commensurate and incommensurate FFT

grids, we study the change of V̂ (z) within the middle two atomic planes of a 10-

layer Al(100) slab calculation with different nzFFT. In Figure 3.1, we have shown the

convergence of work function with respect to nzFFT. V̂ (z) within the middle two atomic

planes is characterised by the middle point potential, which is used as V̂ slab
metal in Equation

(1), and the oscillation magnitude ∆V̂ defined before. In Figure 3.5(a), we show that

for the commensurate cases (purple), both the middle point potential and ∆V̂ remain

stable with the increase of nzFFT, while for the incommensurate cases (green), the two

parameters show significant non-monotonicity of convergence, which explains the poor

convergence of work function of incommensurate cases in Figure 3.1(a).

3.3. A further averaging process

In principle, V̂ (z) should be flat in the middle ‘bulk-like’ region of a metal slab.

However, in Figure 3.4 (bottom), it is shown that even if the FFT grid commensurability

issue is controlled (purple), V̂ (z) still shows a small variation (15 meV) in the middle

region of a metal slab. In Section 2.1, we mention that V̂ slab
metal in Equation (1) is taken at

the middle of a metal slab region. In fact, the variation shown in Figure 3.4 (bottom)

suggests that there is some uncertainty in choosing the particular z-axis FFT grid point

in the middle region to obtain V̂ slab
metal.

To eliminate the variation, we performed a further averaging process over V̂ (z) in

the middle region and show its effects on the convergence of work function with respect

to Nmetal. For an odd and an even number of atomic layers in a metal slab, we averaged
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Improving the precision of work-function calculations within plane-wave DFT 11

Figure 3.4: Planar average potential V (z) (top and middle) and macroscopic average

potential V̂ (z) (bottom) within the middle four atomic planes of commensurate and

incommensurate 10-layer Al(100) slab calculations. The positions of atomic planes are

shown with dashed lines.

V̂ (z) within the middle three and middle two atomic layers, respectively, and the further

averaged macroscopic average potential was used as V̂ slab
metal in Equation (1). In Figure

3.6(a), it is shown that the work function can converge to within 30 meV by 11-layers

for both commensurate and incommensurate cases. Also, the difference of work function

calculated at a certain Nmetal between commensurate and incommensurate FFT grids

has a maximum value of 6 meV.

Compared to Figure 3.3(a), it can be seen that the further averaging process has

almost no effect on the convergence of work function calculated with commensurate FFT

grids, but it can greatly improve the convergence of incommensurate FFT grids. To the

best of our knowledge, this further averaging process is not routinely performed in these

sorts of calculations. The fact that V̂ (z) in the middle atomic region is not perfectly

flat is just an indication that the centre of the slab is not quite at the ‘bulk-like’ limit.

Nevertheless, the further averaging process does seem to alleviate the poor convergence

of work functions calculated with incommensurate FFT grids.
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Improving the precision of work-function calculations within plane-wave DFT 12

(a) (b)

Figure 3.5: The middle-point potential (top) and oscillation magnitude (bottom) of

V̂ (z) within middle two atomic planes of a 10-layer Al(100) slab as a function of

nzFFT. Panel (a): comparison between the FFT grid being commensurate (purple) and

incommensurate (green) with the interlayer spacing in the interior (bulk-like) region of

the metal slab. Panel (b): the same as panel (a) but with a 10-fold interpolation applied

to the local potential V (z). The number adjacent to each data point shows the value of

nzFFT for each calculation.

3.4. Work functions of Al, Pd, Au and Pt

We now show the convergence of work function with respect to Nmetal with the

FFT grid commensurability controlled for Al, Pd, Au and Pt of the (100), (110) and

(111) surface orientations in Figure 3.7. For a certain metal surface, we performed all

slab supercell calculations with nzFFT controlled to be a constant integer. The vacuum

lengths in different calculations may vary and are all above 15 Å. V̂ slab
metal in Equation (1)

is still taken at the middle of a metal slab region. We have checked that with the FFT

grid commensurability controlled, a 10-fold interpolation applied to V (z) has almost

no effect on the calculated work function. Therefore, we only show the data without

interpolation here.

For each metal surface, we show the work function value for the largest slab

thickness considered as the number before a slash in the left part of Table 3.1. The
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(a) (b)

Figure 3.6: The work function of a Al(100) slab as a function of Nmetal after a further

averaging process is performed. Panel (a): comparison between the FFT grid being

commensurate (purple) and incommensurate (green) with the interlayer spacing in the

interior (bulk-like) region of the metal slab. Panel (b): the same as panel (a) but with

a 10-fold interpolation applied to the local potential V (z).

experimental values are given in the right part of the table for comparison. For all metals

studied, the ordering of the calculated work function of the three surface orientations

is the same with the experimental fact: for Pd, Au and Pt, it is ψ111 > ψ100 > ψ110,

showing that ψ increases as the atomic packing density of the surface increases; for

Al, it is ψ100 > ψ110 > ψ111. The anomaly of Al has also been observed in other DFT

calculations within the plane-wave pseudopotential framework4,6 of the work functions of

Al surfaces. However, we also notice that there do exist discrepancies in values between

our calculations and experimental data. The experimentally measured work functions

are all higher than our calculated values, and the maximum difference is of 0.65 eV for

the Pd(111) surface. The discrepancy may result from surface reconstruction of metals

in experiment that we don’t consider in our calculations. Also, in our study, we only

use PBE as the exchange and correlation functional, and other functionals such as LDA

may give results closer to the experimental values.

To show the effect of the controlled FFT grid commensurability on the calculated

work function, we also provide the value calculated without controlling the FFT grid

commensurability, as the number after a slash in the left part of Table 3.1. The work

functions calculated with commensurate and incommensurate FFT grids can have great

discrepancies (e.g. 0.4 eV for Al(100) surface and 0.15 eV for Pd (111) surface), although

small discrepancy (0.01 eV for Pt(110) surface) can also be seen. Furthermore, with

incommensurate FFT grids, the ordering of calculated ϕ among (100), (110) and (111)

orientations differs from the experiment fact for Al, Au and Pt. For example, the

calculated ψ of the Al(100) surface is the smallest, while in experiment, the Al(100)

surface has the largest work function. The above discussion suggests that in practice,
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Improving the precision of work-function calculations within plane-wave DFT 14

Figure 3.7: The convergence of calculated work function (with commensurate FFT

grids) with respect to Nmetal for (100), (110) and (111) surface orientations of Al, Pd,

Au and Pt. In each subfigure, the experimental data is shown as a label in the right

bottom corner for comparison.
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Table 3.1: Calculated (left part) and experimental (right part) work functions of (100),

(110) and (111) surface orientations of Al, Pd, Au and Pt. For calculated results, the

work functions calculated with and without commensurate FFT grids are shown before

and after a slash, respectively. For each metal surface, the value is for the largest slab

thickness considered.

Calculated results (eV) Experimental results (eV)

Surface (111) (100) (110) (111) (100) (110)

Al 4.10/4.18 4.25/3.85 4.12/4.18 4.24± 0.0217 4.41± 0.0317 4.28± 0.0217

Pd 5.25/5.10 5.11/4.93 4.86/4.88 5.90± 0.0125 5.65± 0.0125 5.20± 0.0125

Au 5.18/5.12 5.15/5.13 5.02/5.05 5.26± 0.0426 5.22± 0.0426 5.20± 0.0426

Pt 5.74/5.72 5.70/5.75 5.34/5.35 6.08± 0.1527 5.82± 0.1527 5.35± 0.0528

if we don’t pay attention to the FFT grid commensurability issue, the calculated work

functions may not only be quantitatively incorrect but also qualitatively.

4. Summary

In this paper, we have studied how the commensurability of FFT grid on which

the electrostatic potential is evaluated with the atomic plane position of a metal slab

influences the convergence and precision of metal work function calculated with the

‘bulk reference’ method. We find that without explicitly controlling the FFT grid

commensurability issue, the work function of the Al(100) surface shows non-monotonic

and poor convergence with respect to the basis set size nzFFT, the amount of vacuum

region in the supercell Lvac, and the number of metal layers in the slab Nmetal. By

contrast, commensurate FFT grid can lead to good convergence and accurate work

function values. We have also shown that compared to incommensurate FFT grid,

commensurate FFT grid gives rise to more stable and accurate macroscopic average

potentials in the middle of a metal slab, which explains the improved convergence and

precision of work function. Although we find that by applying a 10-fold interpolation to

planar average electrostatic potential or doing a further average of macroscopic average

electrostatic potential can alleviate the poor convergence with the incommensurate FFT

grid, we believe that we can always obtain well-converged and accurate work functions

by making the FFT grid commensurate with the underlying atomic position.

With the FFT grid commensurability issue controlled in each slab supercell

calculation, we show good convergence of calculated work function of (100), (110)

and (111) surface orientations for Al, Pd, Au and Pt. Also, for all metals studied,

we obtain the same ordering of the calculated work functions among (100), (110)

and (111) orientations to the experimental fact. For comparison, we show that

without controlling the FFT grid commensurability issue, the obtained ordering is
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different with experiment, suggesting the importance of the FFT grid commensurability

issue. Although there is discrepancy between our calculated work function values and

experimental data, we believe that it may result from metal surface reconstruction in

experiments and the choice of exchange and correlation functionals. Furthermore, the

FFT grid commensurability issue is not limited to the four metals considered in this

work, since the ‘bulk reference’ method is also applicable to metals with other crystal

structures, i.e, body-centered cubic and hexagonal close packing, and surfaces of higher

indexes.

Our conclusion is that to obtain well-converged and accurate metal work function

in PWPP DFT calculations, we should always make the positions of atomic planes

along the z-axis (perpendicular to surface) commensurate with the underlying FFT

grid points along the z-axis. The FFT grid commensurability issue also exists in work

function calculations within the bulk reference method for metals with other crystal

symmetries and other surface orientations. Besides, it can be seen in DFT calculations

of other material properties, such as the electron affinity defined as the energy difference

between the vacuum level and the conduction band minimum of an insulator, that can

be obtained with a surface slab supercell under the bulk reference method. Generally,

it is important in DFT calculations where the properties of interest are sampled on a

FFT grid, and we suggest that in these calculations, the sensitivity of the properties of

interest to the FFT grid commensurability issue should always be checked to improve

the precision of the calculations.
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[25] J. Hulse, J. Küppers, K. Wandelt, and G. Ertl, “Uv-photoelectron spectroscopy from xenon

Page 17 of 18 AUTHOR SUBMITTED MANUSCRIPT - EST-100584.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Improving the precision of work-function calculations within plane-wave DFT 18

adsorbed on heterogeneous metal surfaces,” Applications of Surface Science, vol. 6, no. 3-4,

pp. 453–463, 1980.

[26] G. Hansson and S. Flodström, “Photoemission study of the bulk and surface electronic structure

of single crystals of gold,” Physical Review B, vol. 18, no. 4, p. 1572, 1978.

[27] M. Salmeron, S. Ferrer, M. Jazzar, and G. Somorjai, “Photoelectron-spectroscopy study of the

electronic structure of au and ag overlayers on pt (100), pt (111), and pt (997) surfaces,” Physical

Review B, vol. 28, no. 12, p. 6758, 1983.

[28] R. Vanselow and X. Li, “The work function of kinked areas on clean, thermally rounded pt and rh

crystallites: Its dependence on the structure of terraces and edges,” Surface science, vol. 264,

no. 1-2, pp. L200–L206, 1992.

Page 18 of 18AUTHOR SUBMITTED MANUSCRIPT - EST-100584.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


