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Abstract. The microstate of any degree of freedom of any classical dynamical
system can be represented by a point in its two dimensional phase space. Since
infinitely precise measurements are impossible, a measurement can, at best, con-
strain the location of this point to a region of phase space whose area is finite.
This paper explores the implications of assuming that this finite area is bounded
from below. I prove that if the same lower bound applied to every degree of free-
dom of a sufficiently-cold classical dynamical system, the distribution of the sys-
tem’s energy among its degrees of freedom would be a Bose–Einstein distribution.
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1. Introduction

The development of quantum theory began with the discovery that energy radiat-
ing from a body at thermal equilibrium is not distributed among frequencies (f ) as
expected from (classical) statistical mechanics [1–3]. The only ways found to derive the
experimentally-observed distribution involved assuming that either radiation itself, or
the energy of an emitter of thermal radiation, was quantized into indivisible amounts
hf , where h≈ 6.6× 10−34 m2kgs−1 became known as Planck’s constant [1]. The distri-
bution of energy among frequencies that this quantization implies became known as the
Bose–Einstein distribution, in recognition of the refinement and extension of Planck’s
work by Bose and Einstein [4–6].
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The discrepancy between the observed spectrum of a hot object and the expected one
implied that the expectation was wrong. Planck’s recognition that it could be resolved
by assuming that light emitters have quantized energies [1] led Einstein to the conclu-
sion that the energy of light itself is quantized [7]. Light quanta later became known
as photons [8]. Here I show that the discrepancy can be resolved without concluding
that either light itself, or emitters of light, have quantized energies. It can be resolved
by assuming the existence of a universal lower bound on the precision to which the
instantaneous microstate of any classically-evolving degree of freedom can be measured
or known.

The Bose–Einstein distribution is generally regarded as among the most signific-
ant deviations of quantum physics from classical physics, and among the character-
istics by which bosons differ from fermions. However the derivation of it presented
here implies that any sufficiently-cold continuously-evolving classical dynamical sys-
tem would be observed to obey Bose–Einstein statistics if the information provided by
observations and measurements of it was limited by an uncertainty principle of the form
∆Q∆P > h? > 0, where ∆Q and ∆P are the uncertainties in the values of the canonically-
conjugate variables that specify a microstate of a single degree of freedom.

1.1. Assumptions

Consider an arbitrary isolated continuously-evolving deterministic dynamical system,
and let the instantaneous microstate of one of its degrees of freedom (DOF) be specified
by a coordinate Qt ∈Q and the coordinate’s conjugate momentum, Pt ∈ P, where Q∼= R
and P∼= R are the spaces of all possible coordinates and momenta, respectively.

Since the precision of any measurement is finite, the location of the point Γt ≡ (Qt,Pt)
in the DOF’s phase space, G≡Q×P∼= R×R, cannot be known to infinite precision.
There is always some degree of uncertainty in the values of Qt and Pt. Therefore the
only certain knowledge, as distinct from probabilistic knowledge, that an observer could
possess about the point Γt is that it is somewhere in a specified finite-area subset
of G.

For simplicity, and because only the most accurate and precise measurements of the
microstate are relevant to this work, let us assume that all measurements of Qt and
Pt result in the identifications of interval subsets of Q and P, respectively, which are
certain to contain them. Then all states of sufficiently-high certain knowledge about
the location of Γt in G can be communicated as four values, Q, P, ∆Q, and ∆P, which
specify a rectangular subset of G with vertices (Q±∆Q/2,P ±∆P/2) that is known to
contain (Qt,Pt).

The precisions, ∆Q and ∆P, to which Qt and Pt can be determined depend in part
on the microstate of the dynamical system at the time of measurement, and in part on
how the measurement is performed.
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1.1.1. Uncertainty principle. The unavoidably perturbative nature of the act of obser-
vation, and the fact that it is impossible for an observer to possess an infinite amount of
information, imply that ∆Q∆P > 0, but does not necessarily imply that the finite value
of ∆Q∆P cannot be arbitrarily small.

However a finite Universe contains a finite amount of information. Therefore a lower
bound on the value of ∆Q∆P must exist if the Universe is finite. For example, it is safe
to say that the values of ∆Q and ∆P cannot be smaller than 10−Np in SI units, where Np

is the number of particles in the Universe. Therefore it is safe to say that there never
has been, and never will be, a measurement of a DOF’s microstate which determined
the location of the microstate in its phase space to within an area of less than 10−2Np

in SI units.
This extreme example demonstrates that ∆Q∆P would be bounded from below in

a finite Universe, and its extremeness illustrates that larger universal lower bounds on
microstate precision must also exist (e.g. ∆Q∆P > 10−Np in SI units). Only the largest
of all universal lower bounds would be relevant to this work.

In an infinite Universe, it is not immediately obvious that ∆Q∆P cannot be arbitrar-
ily small. However, uncertainty principles of the form ∆Q∆P > h? arise in many contexts,
and these uncertainty principles do not need to be universal (applicable in every pos-
sible context) for the derivation presented in this work to imply that, at low T, the
distribution of a classical system’s energy would appear to have the Bose–Einstein form
in the context in which a particular uncertainty principle applies and is inviolable.

For example, [9] examines the relationship between macrostructure and microstruc-
ture, where macrostructure is the homogenized form that a microscopically-fluctuating
classical field (the microstructure) is observed to have on a much larger time and/or
length scale (the macroscale). It is shown that an uncertainty principle of the form
∆Q∆P > h? applies at the macroscale when the probe used for all measurements is
a macroscopic field (i.e. a homogenized microscopic field). Therefore if the direct or
indirect source of all empirical knowledge was measurements with a macroscopic field,
the energies of all sufficiently-cold classical systems would appear to be Bose–Einstein
distributed.

Another example would be a dynamical system that was immersed in a bounded
elastic medium. The wavelengths and frequencies (f ) of classical waves in a bounded uni-
form medium are quantized, and the energy of a wave of amplitude A can be expressed
as 1

2γA
2f 2, for some medium-dependent constant γ. If ∆f was the frequency quantum,

the smallest energy difference between two waves, one of whose frequencies was f,
would be

∆E =
1

2
γA2 (f +∆f)2− 1

2
γA2f 2 =

(
γA2∆f

)
f +O(∆f 2).

Therefore if all of an observer’s knowledge about the immersed object had been com-
municated to them via the medium’s waves, the smallest change in the energy of the
object that could be communicated to them by observing the change in energy of a
wave of frequency f would be hmf , where hm = γA2∆f .
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I base the otherwise-classical derivation presented in this work on the following
nonstandard and strong assumption: There exists a finite lower bound h? on the value of
∆Q∆P, and the same lower bound on microstate measurement precision applies to every
observer and to every DOF of every classical dynamical system. In other words, I assume
the existence of an uncertainty principle, ∆Q∆P > h? > 0, that is universal, meaning
valid in every possible context. However, as discussed, if an uncertainty principle has a
restricted validity, the derivation shares the uncertainty principle’s domain of validity.

For the purposes of this work I will assume that all measurements of a DOF’s micro-
state are performed at the lower bound on microstate precision, ∆Q∆P = h?. Therefore
each measurement of Γt reveals that it is in a rectangle of area h?, centered at a point Γ,
whose sides are parallel to the Q and P axes. I will denote such a rectangle by R(Γ,r),
where r≡∆Q/∆P =∆2

Q/h? = h?/∆
2
P.

I will use the assumption ∆Q∆P > h? > 0 to prove that, at thermal equilibrium, the
distribution of any classical dynamical system’s energy among its DOFs is a Bose–
Einstein distribution in the low temperature (T ) limit, albeit with h? in place of Planck’s
constant, h.

1.1.2. Low temperature limit. The low T limit is the limit in which Bose–Einstein stat-
istics apply within quantum mechanics. Both classically and quantum mechanically, the
low T limit is the weakly-interacting limit, and the Bose–Einstein distribution cannot
be derived without assuming that interactions are weak enough to be approximated as
absent for some purposes.

However it is important to clarify that assuming that an isolated physical system
is in the low T limit means assuming that interactions are arbitrarily weak, but finite.
It does not mean assuming that interactions are absent. This distinction is important
because there would not be any energy exchange between DOFs if interactions were
absent. Therefore a state of thermal equilibrium could never be reached, and it would
not be meaningful to speak of the physical system having a temperature.

Let us assume that each DOF’s pair of canonically-conjugate phase space coordin-
ates, (Qη,Pη), has been chosen such that, at any temperature, the Hamiltonian can be
expressed exactly as

H ({(Qη,Pη)}) = U ({Qη})+
∑
η

Kη (Pη) ,

where U is the potential energy and Kη is the kinetic energy of DOF η.
Cooling the system brings its set of coordinates, {Qη}, closer to a local minimum

of U. Therefore, by reducing T, {Qη} can be brought arbitrarily close to a set, {Qmin
η },

at which the partial derivative ∂U/∂Qη vanishes for every η, and the second partial
derivatives ∂2U/∂Qη∂Qµ are all either zero or positive. Furthermore, it is always possible
to choose the set {Qη} such that the mixed derivatives, ∂2U/∂Qη∂Qµ ̸=η, vanish at
{Qη}= {Qmin

η }. Therefore it is always possible to express the potential energy as

U = Umin+
1

2

∑
η

∂2U

∂Q2
η

∣∣∣∣∣
{Qmin

η }
∆Q2

η +O
(
∆Q3

)
,
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where Umin ≡ U({Qmin
η }) and ∆Qη ≡Qη −Qmin

η .
Reducing T reduces the thermal averages of the ∆Qη’s and the standard devi-

ation of their fluctuations. Therefore, by cooling to a sufficiently low T, the terms of
orders ∆Q3 and higher can be made negligible. This means that, by reducing T, the
potential energy can be approximated arbitrarily closely as U ≈ Umin+

∑
ηUη, where

Uη = Uη(Qη)∝∆Q2
η. Therefore assuming that a physical system is in the low T limit

allows the Hamiltonian to be approximated as

H≈ Umin+
∑
η

Hη (Qη,Pη) , (1)

where Hη(Qη,Pη)≡ Uη(Qη)+Kη(Pη).
Since none of the terms on the right hand side of equation (1) depend on the phase

space coordinates of more than one DOF, if the derivatives ∂2U/∂Q2
η

∣∣
{Qmin

η } are positive

the DOFs only exchange energy through the neglected terms in the potential energy.
These terms can be made arbitrarily small by reducing T, so interactions between DOFs
can be made arbitrarily weak by reducing T.

If the derivatives ∂2U/∂Q2
η are all zero, then each Hη is independent of Qη, meaning

that the system is gaseous. Therefore the DOFs only exchange energy during rare and
brief ‘collisions,’ i.e. when the constant rates of change of two or more coordinates bring
the set {Qη} into a region of the configuration space Q where U is not independent
of the Qη’s. When that happens, the coordinates either condense into a set of weakly-
interacting oscillators, or cease interacting again. If they cease interacting, their kinetic
energies after the collision differ, in general, from their kinetic energies before the col-
lision. If the duration of each collision is comparable to the time between collisions, T
can be reduced until the former is a negligible fraction of the latter.

Regardless of whether a DOF becomes part of a set of weakly-interacting oscillators
in the T → 0 limit, or becomes an independent entity with constant potential energy
in that limit, the assumption of a state of thermal equilibrium implies that energy is
exchanged—either slowly or rarely. Therefore the equipartition theorem applies, which
means that the time average of each DOF’s energy is 1

2kBT , where kB is Boltzmann’s
constant.

1.2. Outline of the derivation

The uncertainty principle is the only non-standard assumption that I make to show
that the energy of every classical dynamical system is Bose–Einstein distributed in
the T → 0 limit. To derive this result, I take an information theoretical approach to
statistical mechanics that is very similar to the one introduced, or championed, by
Jaynes [10, 11]. Jaynes’ approach leans heavily on the work of Shannon [12].

There are three important steps in the derivation. The first step, which I discuss
in detail in section 2, is to recognize that, in the presence of uncertainty, the only
empirically-unfalsifiable theories are statistical theories, and that the only empirically-
unfalsifiable statistical theories are those in which uncertainty is maximised subject to
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the constraint that everything that is known about the system is true. I refer to the set
of all known information pertaining to a physical system as the system’s macrostate.

The second step, which I discuss in detail in section 3, is to recognize that when an
uncertainty principle applies, the domains of empirically testable probability distribu-
tions are quantized. The third step is to transform the coordinates (Qη,Pη) canonically,
such that Hη is transformed to a Hamiltonian with a particular form.

I will now outline the third step and explain why the derivation applies to every
sufficiently cold classical dynamical system.

1.2.1. Transforming the Hamiltonian of each degree of freedom to an affine form. In
section 4 I will show that when the uncertainty principle applies there is no incon-
sistency between the Bose–Einstein distribution and the Maxwell-Boltzmann distribu-
tion for a classical dynamical system: If the system is cold enough, the latter becomes
the former under a canonical transformation of the set {(Qη,Pη)} of all phase space
coordinates to a new set {(Xη,Yη)}, which transforms the Hamiltonian of each DOF
from Hη(Qη,Pη) = Uη(Qη)+Kη(Pη) to one of the form

H̃= H̃0+
∑
η

H̃η = H̃0+
∑
η

[Bη +CηXη] ,

where H̃0 is constant, and Bη, C η, and Y η are (approximately) constants of the motion
of DOF η. Such a transformation is possible for every sufficiently-cold classical dynam-
ical system at thermal equilibrium because, as discussed in section 1.1.2, each DOF is
either a harmonic oscillator in that limit, or has a constant potential energy almost all
of the time in that limit.

If the potential energy is constant, the only energy that the DOF can exchange
with other DOFs is its kinetic energy, Hη =Kη ∝ P 2

η . If Qη oscillates harmonically, the

energy of DOF η is proportional to the square of its oscillation amplitude, i.e. Hη ∝A2
η.

Therefore Hη has the same mathematical form in each case, and this quadratic function
of a single variable can be transformed canonically into an affine function of a single
variable X η whose form is H̃η =Bη +CηXη [13].

For example, by transforming to action-angle coordinates (Qη,Pη) 7→ (Iη,θη), the
Hamiltonian of a set of harmonic oscillators is transformed from H= 1

2

∑
η

[
P 2
η +ω2

ηQ
2
η

]
to H̃=

∑
η Iηωη, where ωη = θ̇η and the action Iη is a constant in the T → 0 limit of

arbitrarily weak interactions [14–16].

2. Unfalsifiable statistical models of deterministic systems

The purpose of this section is to explain the concept of an unfalsifiable statistical model
of a classical Hamiltonian system. An example of such a model is the 19th century
classical theory of thermodynamics. Some readers may wish to skip to section 4, and to
return if or when they wish to scrutinise the logical foundations of the derivation more
carefully.

I begin by explaining what I mean by an unfalsifiable statistical model. Then I
explain my theoretical setup, before using this setup to derive the Maxwell-Boltzmann
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distribution. In section 5 I show that, simply by changing the set of coordinates with
which the microstate of a set of oscillators or waves is specified, the Maxwell-Boltzmann
distribution becomes the Bose–Einstein distribution, albeit with an unknown constant
in place of Planck’s constant.

To understand what I mean by an unfalsifiable statistical theory or model, it is
crucial to understand the difference between a macrostate and a microstate.

2.1. Macrostates and microstates

A classical microstate is complete information about the state of a deterministic system.
It is a precise specification of the positions and momenta of all degrees of freedom of the
system, or the values of any variables from which these positions and momenta could,
in principle, be calculated.

A classical microstructure is complete information about the structure of a determ-
inistic system, without any information about its rate of change with respect to time.

A macrostate M is simply a specification of the domain of applicability of a par-
ticular unfalsifiable statistical model. A macrostate is a set of information specifying
everything that is known about the system to which the model applies. Because the
model is statistical, it could only be falsified by a very large number of independent
measurements. The macrostate is the complete list of everything that the samples on
which these measurements are performed are known to have in common. It is also the
complete list of everything that is known about each individual sample, and which may
significantly influence the final reported result of the measurement, assuming that the
uncertainty in this result is quantified correctly and reported with it.

2.2. Examples

2.2.1. Toy example. As a very simple example, let us suppose that M contains the
following information only:

There are three lockable boxes, coloured red, green, and blue, at least one of which is
unlocked. A ball has been placed inside one of the unlocked boxes. If more than one box
is unlocked, the box into which the ball has been placed was chosen at random.

Let us suppose that an experiment on a system meeting specification M consists
of an experimentalist checking which box the ball is in. Then, the only empirically-
unfalsifiable statistical model of the experiment’s results would be a probability distri-
bution that assigns a probability of 1

3 to the ball being in each box. Any other model
could be falsified by statistics from an arbitrarily large number of repetitions of the
experiment performed on independent realisations of system M.

The fraction of times the ball would be found in each box would be 1
3 even if different

experiments were performed with different boxes locked, as long as the choice of which
boxes were locked was made without bias, on average.

The model would be falsified by the empirical data if, say, the red box was chosen
to be locked more frequently than the blue or green boxes. However, if that occurred,
it would not mean that the unfalsifiable model was defective, but that it was being
applied to the wrong macrostate. After the bias was discovered and quantified it would
form part of the specification of a new macrostate, M ′, and an unfalsifiable statistical
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theory ofM ′ would be developed. Then, if no further macrostate-modifying peculiarities
were found, the set of all subsequent repetitions of the experiment would produce data
consistent with the unfalsifiable statistical theory of M ′.

2.2.2. Realistic example. While considering a more complicated example, it may be
useful to have an infinite set of independent laboratories in mind. The equipment in
each laboratory may be different, and different methods of measurement may be used in
each one, but all are capable of measuring whatever quantities the unfalsifiable statistical
model applies to. They are also capable of correcting their measurements for artefacts
of the particular sample-preparation and measurement techniques they are using, and
of accurately quantifying uncertainties in the corrected values.

Then one can imagine asking each laboratory to measure, say, the bulk modulus
B of diamond at a pressure of 100 GPa and a temperature of 100 K. In this case,
the statistical model would be a probability distribution, p(B), for the bulk modulus
of an infinitely large crystal (to eliminate surface effects, which are sample-specific) at
precisely those values of pressure and temperature.

In general, each laboratory will prepare or acquire their sample of diamond in their
own way, use a different method of controlling and measuring temperature and pressure,
and use a different method of measuring B. In addition to the quantified uncertainties in
the measured value of B, each independently-measured value will be influenced to some
unquantified degree by unknown unknowns, i.e. unknown peculiarities of the sample,
the apparatus, and the scientists performing the measurements and analysing the data.
However, we will assume that this ‘data jitter’ either averages out, when the data from
all laboratories is compiled, or is accounted for when comparing the compiled data to
the statistical model.

If p(B) was an unfalsifiable statistical model of B, it would be identical to the
distribution of measured values. To derive or deduce an unfalsifiable distribution, one
must carefully avoid making any assumptions, either explicitly or implicitly, about the
sample or the measurement, apart from the information specified by the macrostate.
This means maximising one’s ignorance of every other property of a sample of diamond
at (P ,T ) = (100GPa,100K). This is achieved by maximising the uncertainty in the
value of B that remains when its probability distribution, p, is known.

To derive an unfalsifiable distribution for a given macrostate, one must express
the information specified by the macrostate as mathematical constraints on p. Then,
under these information constraints, one must find the distribution p for which the
uncertainty in the value of B is maximised. Maximising uncertainty eliminates bias and
means that the information content of p is the same as the information content of the
distribution of measured values of B. The differences between each distribution and a
state of total ignorance is the same: it is the information about the value of B implied
by the macrostate when no further information is available.

In summary, elimination of bias, subject to the constraint that information M is
true, guarantees that the resulting statistical model of the physical system defined by
M is unfalsifiable: It guarantees that the model would agree with a statistical model
calculated from a very large amount of experimental data pertaining to physical systems
about which M, and only M, is known to be true.
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3. Probability domain quantization

The purpose of this section is to explain why one consequence of the uncertainty prin-
ciple is that the most informative statistically unfalsifiable probability distribution for
the location of a physical system’s microstate in its phase space G is not a probability
density function whose domain is G, but a probability mass function whose domain is
a partition of G. In other words, the uncertainty principle quantizes the domain of any
empirically testable probability distribution for the location of a classical dynamical
system’s microstate.

The derivations of the Maxwell-Boltzmann distribution in section 4 and the Bose–
Einstein distribution in section 5 are reasonably self-contained, and reading this section
is unnecessary to understand the gist of these derivations. However, skipping this section
makes the derivations’ logical foundations appear simpler than they are.

It also makes it appear that the derivations are built on an unjustified assumption:
Namely, that an observer is capable of determining which point Γ on a lattice in phase
space the microstate Γt of a physical system is closest to. This section will make clear
that such an assumption is not made. It is important that it is not made because, as I
now explain, the uncertainty principle, ∆Q∆P > h?, implies that an observer would not
be capable of such a determination. Therefore that assumption would be a false premise.

If Γ and Γ+∆Γ are adjacent points of the lattice in the phase space G of a single
DOF, and if NΓ and NΓ+∆Γ are the sets of points in G that are closer to Γ and Γ+∆Γ,
respectively, than to any other points of the lattice, then NΓ and NΓ+∆Γ share a border.
The limit h? on microstate measurement precision implies that it is impossible for an
observer to determine which side of their shared border the DOF’s microstate Γt is
on. Furthermore, as discussed in section 1.1, the result of a measurement of Γt is the
identification of an element Γ of G and a ratio r=∆Q/∆P ∈ R+, such that Γt ∈R(Γ,r).
The value of Γ is not restricted to a point on a lattice, and the probability is zero
that, by chance, it turns out to be one of the points of a particular lattice, because the
measure of a lattice in G is zero. Therefore it is impossible for an observer to determine
which point on a specific lattice Γt is closest to.

The purpose of section 3.1 is to discuss probability spaces that are capable of sat-
isfying Kolmogorov’s probability axioms [17–20]; and, in particular, some difficulties
that arise when deriving a probability distribution for the location of Γt in G. It is the
uncertainty principle that causes the difficulties, and which forces us to confront certain
subtleties in the definitions of probability spaces.

In order to resolve the difficulties, while ensuring empirical testability of the prob-
ability distributions that will be derived in sections 4 and 5, a detail will be added in
section 3.2 to the infinite set of measurements (M measurements in the limit M →∞)
performed on independently prepared physical systems that we imagined in section 2.

This detail is a filtration of the M results of those measurements: We will imagine
defining an infinite set {p(C)} of different probability mass functions, p(C), each of which
is consistent with a different subset of the M →∞ measurements, and each of whose
domains is a different partition of G. The introduction of this detail will clarify the true
meaning of the apparently-false premise on which the derivations in sections 4 and 5
are built.
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A brief clarification is that we can imagine that each function p(C) is assigned to a
different agent, or ‘statistician’, and each probability mass function p that is derived
in later sections is the function p(C) that has been assigned to one of those statisticians.
This construction allows us to imagine calculating each distribution p(C) in two ways: The
first is from the statistics gathered by the statistician to whom p(C) has been assigned
(‘Statistician C’). The second is by using Jaynes’ approach, as discussed in section 2,
and as will be used in section 4, to theoretically derive the distribution that Statistician
C would be unable to falsify.

3.1. Probability spaces

To develop a probabilistic description of the location of a microstate in its phase space,
we must construct one or more probability spaces, each of which satisfy Kolmogorov’s
axioms of probability [17–20]. For simplicity, let us consider a physical system with a
single DOF, whose microstate is Γt ∈G.

A probability space (S,Σ,P ) consists of a sample space S, a σ-algebra Σ, and a
probability measure, P : Σ→ [0,1]. The sample space S is the set of all mutually-exclusive
outcomes or results of a trial or measurement, and the σ-algebra Σ is the set of all events
to which P assigns probabilities.

Σ is a cover of S, meaning that it is a collection of subsets whose union is the
whole set. However, it is not necessary for the elements of S, which are the mutually
exclusive outcomes, to be elements of Σ. The only properties of Σ that are required
for the probability space to satisfy the axioms of probability are that it is a set of
subsets of S, which includes S itself, and which is closed under countable unions
(A1,A2, · · · ∈ Σ =⇒

⋃∞
i=1Ai ∈ Σ), closed under countable intersections (

⋂∞
i=1Ai ∈ Σ),

and closed under complements (A ∈ Σ =⇒ S \A ∈ Σ).
In section 3.1.1, we will consider the construction of a probability space for the

outcome of a measurement of a microstate, in order to show that constructing it is
straightforward.

In section 3.1.2 we will consider the construction of a probability space for the
location of Γt in G in order to show that the uncertainty principle makes an unbiased
construction of a single probability space impossible. To avoid introducing bias, it is
necessary to introduce an infinite number of probability spaces.

In section 3.2, a logical construction will be outlined, which resolves some conceptual
difficulties that arise when describing the location of Γt in G with an infinite number
of probability distributions. This lays the logical foundations for the derivations of the
Maxwell-Boltzmann and Bose–Einstein distributions presented in sections 4.2 and 5,
respectively.

3.1.1. Probability space for the outcome of a measurement of Γt. The assumption made
in section 1.1 was that the outcome of an accurate and maximally precise measurement
of the location of Γt in G would be the identification of an element (Γ,r) of

Ω≡G×R+ =
{
(Γ,r) : Γ ∈G, r ∈ R+

}
,

such that Γt ∈R(Γ,r), and with no constraints placed on the values of Γ ∈G and r ∈ R+

that might be discovered.
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Let M : S → Ω denote a random variable that maps the outcome o of a measurement
of Γt to an element M(o) of Ω; and let ‘Γt ∈R(Γ,r)’ represent the outcome of the
measurement that M would map to the point (Γ,r) ∈ Ω. Quotes are placed around
Γt ∈R(Γ,r) to indicate that ‘Γt ∈R(Γ,r)’ represents the measurement outcome, which
is a revelation and a piece of information, rather than the location of Γt that the
information revealed implies.

The sample space for the measurement outcome is

‘Ω’≡ {‘Γt ∈R(Γ,r) ’ : (Γ,r) ∈ Ω} .

It is denoted by ‘Ω’ because its elements are in one-to-one correspondence with elements
of Ω, and the quotes indicate that its elements are revelations, rather than locations.

The elements of ‘Ω’ are mutually exclusive because, assuming that Γ1 6= Γ2 and/or
r1 6= r2, the outcome of the measurement can be ‘Γt ∈R(Γ1,r1)’ or ‘Γt ∈R(Γ2,r2)’, but
not both. It cannot be both because the result of each measurement is the revelation of
a single imprecisely specified location. Since R(Γ1,r1) 6=R(Γ2,r2), ‘Γt ∈R(Γ1,r1)’ and
‘Γt ∈R(Γ2,r2)’ are two different revelations, and both cannot occur.

The mutual exclusivity of elements of ‘Ω’ makes it straightforward to define a prob-
ability space (‘Ω’,℘(‘Ω’),Po) for the measurement outcome, whose σ-algebra is the power
set ℘(‘Ω’) of ‘Ω’. A probability density function ρo : Ω→ R+ can also be defined such
that, for any A⊆ Ω,

Po ({o ∈ ‘Ω’ :M(o) ∈A}) =
ˆ
A

dwρo (w) .

This is the probability that the measurement discovers that Γt ∈R(Γ,r) for some
(Γ,r) ∈A⊂ Ω=G×R+. It is not the probability that Γt is in a particular subset of
G. However, in the limit h? → 0+, we could define Ω as G instead of G×R+, in which
case it would become such a probability.

Therefore, were it not for the uncertainty principle, it would not be necessary to draw
attention to the distinction between the outcome o ∈ ‘Ω’ of a measurement, and the
element M(o) of the measureable space Ω to which it is mapped by M. The uncertainty
principle makes discussing this distinction important, because it is the location of Γt

that we wish to model statistically, and we cannot directly use the range Ω of M as
the domain of a probability distribution for its location. We will explore the reasons for
this next.

3.1.2. Probability space for the location of Γt in G. To understand why it is not straight-
forward to define a probability space for the location of Γt, consider that, although the
elements of ‘Ω’ are mutually exclusive, the elements of the set

R(Ω)≡ {R(w) : w ∈ Ω} ,

which is the set of all imprecisely-specified locations of Γt that the measurement might
discover, are not mutually exclusive locations. They are not mutually exclusive because
R(Γ1,r1) and R(Γ2,r2) might intersect. If they intersected, R(Γ1,r1) and R(Γ2,r2) would
not be mutually exclusive locations, but ‘Γt ∈R(Γ1,r1)’ and ‘Γt ∈R(Γ2,r2)’ would still
be mutually exclusive revelations because only one of them, at most, would be revealed.
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The fact that the elements of R(Ω) are not mutually exclusive means that it cannot
be treated as a sample space for the purpose of building a probability space. However, the
problem is more serious than this: R(Ω) cannot even be a subset of a probability space’s
σ-algebra, because probabilities cannot be assigned to intersections of elements of R(Ω),
and because a σ-algebra must be closed under intersections of countable numbers of its
elements.

For example, a probability cannot be assigned to the event Γt ∈R(Γ1,r1)∩R(Γ2,r2),
despite the fact that there is an intuitively clear sense in which Γt ∈R(Γ1,r1)∩R(Γ2,r2)
is a possibility. It cannot be assigned a probability because whether or not
this possibility has been realised is unknowable. It is unknowable because the
area of R(Γ1,r1)∩R(Γ2,r2) is less than h?, which means that to know that
Γt ∈R(Γ1,r1)∩R(Γ2,r2) would imply a violation of the uncertainty principle.

Therefore, in the context of defining the σ-algebra of a probability space, the prob-
ability

Pr(Γt ∈R(Γ1,r1)∩R(Γ2,r2))

is not a meaningful quantity. The only probabilities that are meaningful in that context
are the probabilities of events that can be known to have occurred or to have not
occurred.

One illustration of the problems that would arise if Γt ∈R(Γ1,r1)∩R(Γ2,r2) was
regarded as an event that could be assigned a finite probability is the fact that the
probability measure that assigned the probability would be inconsistent with statistics
gathered from an infinite number of measurements: The fraction of the measurements
that would discover that event Γt ∈R(Γ1,r1)∩R(Γ2,r2) had occurred would be zero.

Therefore a probability space whose probability measure would be consistent with
an infinite number of measurements must be built from a sample space C that is a cover
of G whose elements are mutually disjoint subsets of G of area no less than h?. I use
the term disjoint in the unconventional weaker sense that sets A and B are disjoint
if the measure |A∩B| of their intersection is zero. Therefore elements of C may share
boundaries.

Unfortunately, there are an infinite number of covers of G that meet these specific-
ations. Therefore there are an infinite number of probability spaces that could be built
for the location of Γt in G, and choosing any one of them as the statistical model that
describes Γt would be to introduce bias. For example, in general, the expectation value,

〈O〉C ≡
∑
c∈C

Pr(Γt ∈ c)

(
1

|c|

ˆ
c

dΓO (Γ)

)
,

depends on which cover C is chosen, where |c|−1
´
cdΓO(Γ) is the average on c⊂G of

some function O :G→ R, and |c| is the area of c.
To avoid bias, we must define, or be aware of the existence of, an infinite number

of probability spaces: There is one probability space, (C,℘(C),PC), and one probability
distribution, p(C) : C → [0,1];c 7→ p(C)(c)≡ PC(c), for each cover C.

The next step is to understand how each element of the infinite set {p(C)} of prob-
ability distributions could, in principle, be validated or invalidated by statistics from
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an infinite set of measurements of Γt, each of whose outcomes is an element of ‘Ω’.
If it is not possible to imagine calculating a distribution from statistics, rather than
deriving it theoretically, it cannot be claimed that the theoretically derived distribution
is empirically unfalsifiable.

3.2. An infinitude of statisticians

Let us restrict attention to the most informative probability distributions possible.
Therefore, let us disregard covers whose elements are larger than necessary, and only
consider probability distributions p(C) whose domains are covers C whose elements all
have areas of exactly h? + δh?. Let us also take the limit δh? → 0+, so that δh? can be
regarded as both finite and arbitrarily small. Let Λ denote the set of all covers that
meet these specifications.

Now let us assume that the results of the M →∞ measurements are distributed
among an infinite number of statisticians, such that there is exactly one statistician
(‘Statistician C’) for each C ∈ Λ. Then let us imagine that each measurement whose
outcome is ‘Γt ∈R(Γ,r)’ is communicated to all of the statisticians whose covers contain
an element of which R(Γ,r) is a subset, and is not communicated to the rest of the
statisticians.

Clearly, every measurement of Γt determines that Γt ∈G. Therefore, by definition of
a cover, every measurement determines that Γt is in some element of every statistician’s
cover. However, we are supposing that each statistician learns the result of each meas-
urement of Γt if and only if the measurement has determined which element of their
cover contains Γt. This can only be the case if the set R(Γ,r) that the measurement
discovers Γt to be in is a subset of an element of their cover.

For each element c of C, Statistician C calculates the fraction, p(C)(c), of the total
number MC <M of measurements whose outcomes they are privy to, for which Γt ∈ c.
Therefore, in the limit M →∞ =⇒ MC →∞, Statistician C calculates a probability
distribution p(C), whose domain is C.

The next question to address is the following: If one of the M measurements was
chosen at random, is p(C)(c) the probability that c contains the microstate of the sample
being measured in that measurement? In other words, is Pr(Γt ∈ c) = p(C)(c)?

The first thing to note is that Pr(Γt ∈ c) is an unknowable probability, for the same
reason that, in general, Γt ∈ c is an untestable proposition: Pcertain ≡ Po({‘Γt ∈ c’}) is
the fraction of the M measurements in which it is known that Γt ∈ c, and

Ppossible ≡ Po ({o ∈ ‘Ω’ :R(M(o))∩ c 6= ∅})

is the fraction of the M measurements in which it is known that Γt ∈ c is possible.
However it is impossible to know the fraction of the M measurements for which Γt ∈ c,
for reasons discussed in the introduction to section 3: the uncertainty principle implies
that it can never be known which side of a border between elements of C Γt is on.
Furthermore, because ‘Ω’ has an infinite number of elements, the ratio Pcertain/Ppossible

vanishes.
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To shed more light on the empirically-unanswerable question of whether
Pr(Γt ∈ c) = p(C)(c), let us consider the possibility that

p(C1) (c) 6= p(C2) (c) ,

for two covers C1,C2 ∈ Λ that both contain c. By construction, every time the meas-
urement outcome is ‘Γt ∈ c’, this outcome is revealed to both Statistician C1 and
Statistician C2. Therefore the numbers of times that these statisticians learn that Γt ∈ c
are the same. Let us denote that number by mc. Therefore

p(C1) (c)≡ mc

MC1
6= mc

MC2
≡ p(C2) (c)

would imply that, even in the M →∞ limit, MC1 6=MC2. Therefore

MC1\{c} =MC1 −mc 6=MC2 −mc =MC2\{c},

where, for example, MC1\{c} is the number of times that it has been revealed to
Statistician C1 that Γt is in an element of C1 that is not c. This implies that∑

c′∈C1\{c}

p(C1) (c ′) 6=
∑

c′∈C2\{c}

p(C2) (c ′) .

Therefore, since C1 \ {c} and C2 \ {c} are both covers of G \ c, p(C1)(c) 6= p(C2)(c) would
imply that the fraction of the M measurements that discover that Γt is in a particular
subset of G of dimensions ∆Q ×∆P = h? + δh?, would not be determined solely by the
fraction of the M measured samples for which Γt is in that subset

In other words (and for clarity I will use the unjustifiable and unphys-
ical assumption that it is possible to know the probabilities {Pr(Γt ∈ g) : g ⊂G}),
p(C1)(c) 6= p(C2)(c) would imply that there does not exist a constant K such that
Po(‘Γt ∈R(Γ,r)’) =KPr(Γt ∈R(Γ,r)) for all (Γ,r) ∈ Ω.

Not only can we not rule out the possibility that K is not constant, it would be
surprising if it were constant: It was mentioned in section 1.1 that the measurement
precisions ∆Q and ∆P depend in part on Γt and in part on how the measurement of Γt

is performed. Therefore, if the measurement outcome is ‘Γt ∈R(Γ,r)’, the location of
Γt in G has played a part in determining r, in general. The fact that it has also played
a part in determining Γ is obvious.

However the dependence of K on the microstate of a physical system implies that
K depends on the system’s Hamiltonian, which implies that it depends on what the
physical system is. In other words, this dependence cannot be a universal limitation on
the act of measuring a DOF’s microstate.

Therefore, instead of abandoning the prospect of devising a universally-applicable
statistical model, such as Bose–Einstein statistics, this dependence should be treated as
one of the pecularities of individual physical systems, or methods of measurement, that
were discussed in section 2.2.2 and whose effects on statistics must be accounted for
before those statistics can be compared with the predictions of universally-applicable
statistical models. When deriving a statistical model that is universally applicable, it
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is not only reasonable to assume that K is the same for every (Γ,r) ∈ Ω, making that
assumption appears to be unavoidable.

In other words, while bearing in mind that p(C)(c)∝ Po(‘Γt ∈ c’)∝ Pr(Γt ∈ c) is an
empirically untestable proposition, let us use it as a rough approximation to a more
nuanced and precise interpretation of p(C)(c). Then, so that we can derive a universally-
applicable statistical model, we purposely neglect pecularities of individual physical sys-
tems, and samples of those systems, because this is the only way to derive a model that
is generally applicable. This entails assuming that the fraction of the MC measurements
revealed to Statistician C for which Γt ∈ c equals the fraction of all M measurements
for which Γt ∈ c.

3.2.1. Justification of a working assumption used in the derivations. As discussed
above, p(C)(c) = Pr(Γt ∈ c) is an empirically untestable proposition, but is also the only
reasonable assumption to make when deriving a generally-applicable unfalsifiable prob-
ability distribution. It is equivalent to the assumption that the number of measurements
whose outcome is ‘Γt ∈R(Γ,r)’ is proportional to the number of measurements in which
Γt ∈R(Γ,r), with the same constant of proportionality for every Γ and every r.

Under the assumption that p(C)(c) = Pr(Γt ∈ c), we can justify the working assump-
tion that it is possible to determine which element of cover C contains Γt as follows:
From the perspective of Statistician C, the revelation of a measurement outcome to
them can be regarded as their ‘measurement’ of Γt. Therefore, from their perspective,
each of their measurements determines which element of C contains Γt.

Then we can imagine that Statistician C calculates p(C)(c) from the results of their
‘measurements’, and that if we are told the macrostate M that defines the measure-
ments, we can theoretically derive a probability distribution whose domain is C, and
which agrees perfectly with p(C)(c), by eliminating all bias subject to the constraint that
information M is true.

Each of the distributions derived in sections 4 and 5 can be interpreted as this
theoretically-derived statistically-unfalsifiable probability distribution, where the stat-
istics that fail to falsify it are those gathered by Statistician C.

4. Derivation of an unfalsifiable energy distribution

Section 4.1 presents a brief summary of the theoretical setup that is used in sections 4.2
and 5 to derive the Maxwell-Boltzmann distribution and the Bose–Einstein distribution,
respectively.

It is assumed that it is possible for a measurement to determine which element of a
cover of a DOF’s phase space, comprising disjoint subsets of area h?, contains the DOF’s
microstate. Although this assumption is not compatible with the uncertainty principle
discussed in section 1.1.1, its use in derivations as a working assumption was justified
in section 3.2.
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4.1. Theoretical setup

Consider an arbitrary continuously-evolving deterministic system whose microstate can
be specified by Γ≡ (P,Q), where Q≡ (Q1,Q2 · · ·) is some set of generalized coordinates
and P≡ (P1,P2 · · ·), where Pη is the momentum conjugate to Qη. In this coordinate sys-
tem, let H(Γ) denote the system’s Hamiltonian, and, as before, G≡Q×P 3 Γ, Q 3Q,
and P 3P denote the system’s phase space, configuration space, and momentum space,
respectively.

Let us begin by partitioning G into nonoverlapping subsets of equal measure (phase
space ‘volume’) as follows: We choose a countable set G of evenly-spaced points (micro-
states) in G and define a neighbourhood NΓ ⊂G of each point Γ ∈ G such that
G=

⋃
Γ∈GNΓ, and such that, if Γ,Γ ′ ∈ G are any two different points (Γ 6= Γ ′), then

|NΓ ∩NΓ ′|= 0 and |NΓ|= |NΓ ′|, where |NΓ| denotes the measure of NΓ in G. For sim-
plicity, let us assume that if Γt ∈NΓ, then Γt is closer to Γ than to any other element
of G. Therefore the interior of NΓ is the set of all points in G that are closer to Γ than
to any other element of G.

Now let pΓ, where Γ ∈ G, denote the probability, Pr(Γt ∈NΓ), that Γt is within NΓ.
The probability distribution for the point Γ that identifies the region NΓ containing Γt

is p : G → [0,1];Γ 7→ pΓ.
Now let us suppose, momentarily, that Γt is known to be in region NΓ, and that NΓ

is partitioned into WΓ nonoverlapping subsets of equal measure v ≡ |NΓ|/WΓ. Then, as
Shannon demonstrated [12], we can quantify the amount of information that must be
revealed to determine which of these subsets Γt is in by logWΓ = log |NΓ| − logv. In the
limit WΓ →∞, v → 0, the quantity of information required becomes infinite. However,
as discussed in section 1.1.1, we are assuming that v has a lower bound, which means
that WΓ has an upper bound.

Without losing generality, let us assume that these bounds are |NΓ| and 1, respect-
ively. In other words, let us assume that when we originally partitioned G, we chose the
set G such that the following is true:

Given any microstate Γ ∈ G, and any microstate Γ ′ ∈G, which is closer to Γ than
to any other element of G, it is theoretically possible to distinguish between Γ ′ and any
element of G \ {Γ } by empirical means; and it is impossible to distinguish between Γ ′

and Γ by empirical means.
I will refer to G as a maximal set of mutually-distinguishable microstates; I will refer

to a sampling of G with such a set as a maximal sampling ; and I will use h≡ |NΓ| to
denote the measure of each neighbourhood NΓ in a maximal sampling of phase space.

4.2. Maxwell-Boltzmann statistics

This section draws heavily from the works of Jaynes [10] and Shannon [12].
Let us add the assumption that we know that the expectation value of the system’s

energy is E . For example, the system might be a classical crystal whose average energy
is determined by a heat bath to which it is coupled.
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The system’s state of thermal equilibrium can be defined as the probability distri-
bution p that maximises the Shannon entropy [12], subject to the constraint that the
Hamiltonian’s expectation value,

〈H〉 [p]≡
∑
Γ∈G

pΓH (Γ) ,

is equal to E , and subject to the normalization constraint
∑

Γ∈G pΓ = 1. The Shannon
entropy is

〈S〉 [p]≡
∑
Γ∈G

pΓI(pΓ) , (2)

where I(pΓ)≡− logpΓ is the Shannon information [12] of p at Γ. From now on it will
be implicit that

∑
Γ means

∑
Γ∈G.

The Shannon information, I(pΓ), quantifies how much would be learned, meaning by
how much would the uncertainty in the location of Γt reduce, if it was discovered that
Γt ∈NΓ. The functions kI(pΓ), for any k ∈ R+, are the only functions that satisfy the
following three conditions: (i) they would vanish if it was known that Γt was in NΓ prior
to ‘discovering’ it there, i.e. if pΓ = 1; (ii) they increase as the discovery that Γt ∈NΓ

becomes more surprising, i.e. as pΓ decreases; and (iii) they are additive. Additivity
means that if, for example, it was discovered that Γt was in either NΓ or NΓ ′ (i.e.
Γt ∈NΓ ∪NΓ ′), the quantity of information about the location of Γt that was unknown
would decrease by I(pΓ)+ I(pΓ ′).

Any probability distribution, p, is a state of knowledge that an observer could be
in. The Shannon information, I(pΓ), of pΓ, quantifies the information that would be
revealed by the discovery that Γt ∈NΓ, and the Shannon entropy is the expectation
value of the quantity of information that would be revealed by discovering which point
Γ in the maximal set of mutually-distinguishable microstates G the true microstate Γt

is closest to. Therefore 〈S〉[p] quantifies the incompleteness of distribution p, as a state
of knowledge, when the identity of the element of G that is closest to Γt is regarded as
complete knowledge.

Whether or not 〈S〉[p] is satisfactory as a quantification of uncertainty in all con-
texts is probably irrelevant in the present context, because we will be maximising its
value subject to the stated contraints. Therefore what is relevant is that it increases
monotonically as the location of Γt in G becomes more uncertain.

We can express the stationarity of 〈S〉[p] subject to constraints 〈H〉[p] = E and∑
Γ pΓ = 1 as

δ

{
〈S〉 [p]−β (〈H〉 [p]−E )−βλ

(∑
Γ

pΓ− 1

)}
= 0,

where β and βλ are Lagrange multipliers. If we divide across by −β and define the
constant T ≡ (kBβ)

−1, where kB is the Boltzmann constant, this can be expressed as

δ
(
F̃ [p] +λ

∑
Γ pΓ

)
= 0, where F̃ [p]≡ 〈H〉[p]− kBT 〈S〉[p]. By taking a partial derivative
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of F̃ [p] +λ
∑

Γ pΓ with respect to pΓ and setting it equal to zero, we find that

pΓ = e−(H(Γ)−F)/kBT = Z−1e−H(Γ)/kBT , (3)

where Z ≡ exp(−F/kBT ) is known as the partition function and we refer to the quantity

F =−kBT logZ, which is the value taken by F̃ [p] when it is stationary with respect to
normalization-preserving variations of p, as the free energy.

Equation (3) is the familiar Maxwell-Boltzmann distribution and T is the temperat-
ure. The derivation of equation (3) is a derivation, based on the premises that precede it
and those stated within it, of the only empirically-unfalsifiable probability distribution
for the true microstate. It is unfalsifiable because it explicitly rejects bias by maximising
uncertainty subject to one physical constraint, which is the only thing that we know
about the state of the system; namely, that a heat bath ensures that its average energy
is E .

As discussed in section 2, the absence of bias guarantees us that if we had enough
independent replicas of the physical system, and if the only thing we knew about each
one was that its average energy was E , and if we could determine by measurement
which element NΓ of the phase space partition the microstate of each one was in, the
fraction of those whose microstate was in NΓ would be pΓ = e−βH(Γ)/Z.

Now let us make the simplifying assumption under which the Bose–Einstein distri-
bution is valid within quantum mechanics: The total energy is a sum of the energies
of independent DOFs. Within quantum mechanics these DOFs are often interpreted as
particles.

With the Hamiltonian of DOF η denoted by Hη(Γη), where Γη ≡ (Qη,Pη), we can
express the Hamiltonian of the set of all DOFs as

H (Γ) =
∑
η

Hη (Γη) , (4)

and we can express the partition function as

Z ≡
∑
Γ

e−βH(Γ) =
∑
Γ

∏
η

e−βHη(Γη) (5)

where the product
∏

η is over all DOFs.
Now let us choose the maximal set of mutually-distinguishable microstates, G, to

be a lattice, which is the direct product
∏×

η Gη, where Gη is both a two dimensional
lattice and a maximal set of mutually-distinguishable points in the phase space Gη of
DOF η. The area of the non-overlapping neighbourhoods NΓη of Γη whose union is Gη is

h? ≡ |NΓη |=∆Qη∆Pη =∆Q∆P, where
1
2∆Pη is the smallest difference in momentum Pη

between mutually-distinguishable microstates of η with the same coordinate; and 1
2∆Qη

is the smallest difference in coordinate Qη between mutually-distinguishable microstates
with the same momentum.

These choices and definitions allow us to swap the order of the sum and the product
in equation (5), thereby expressing it as Z =

∏
ηZη, where

Zη ≡
∑
Γη

e−βHη(Γη), (6)
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and where
∑

Γη
denotes

∑
Γη∈Gη

. If we know the partition function Zη of each DOF η,
we can calculate the partition function Z of the system as a whole.

In section 5 we will explore other ways to calculate Z by transforming away from
(P,Q) and (Pη,Qη) to different sets of variables. To avoid a proliferation of new symbols,
I will recycle the symbols G, Gη, H, Hη, Γ, Γη, NΓ, G, Gη, h, pΓ, and p. They will have
the same meanings in the new coordinates as they do for coordinates (P,Q).

5. Bose–Einstein statistics

I will now derive the Bose–Einstein distribution for a classical system of non-interacting
oscillators or standing waves. Then I will briefly discuss how the derivation can be
generalized to other kinds of physical systems.

5.1. Oscillators and standing waves

As discussed in section 1.1.2, if the potential energy of a classical dynamical system is
a smooth function U(Q) of its microstructure Q, the system can be brought arbitrarily
close to a minimum of its potential energy, Qmin, by cooling it slowly. Once ||Q−Qmin||
is small enough, lowering its temperature further brings its dynamics closer to a super-
position of harmonic oscillations of the normal modes of its stable equilibrium struc-
ture, Qmin. For example, a set of mutually-attractive particles would condense into a
stable vibrating cluster when cooled. The normal modes of a finite crystal or a continu-
ous bounded medium are standing waves, so their dynamics become superpositions of
standing waves when they are cold enough.

If we specify the microstructure by the set of displacements from mechanical equi-
librium along the normal mode eigenvectors, each DOF η is an oscillator or stand-
ing wave with a different angular frequency ωη, in general, whose energy can be
expressed as

Eη ≡
1

2

(
Q̇2

η +ω2
ηQ

2
η

)
, (7)

where the mode coordinate Qη has the dimensions of distance×
√
mass. In the limit

T → 0 the behaviour of the system is described perfectly by a Hamiltonian of the form

H (Q,P) = U
(
Qmin

)
+

1

2

∑
η

[
P 2
η +ω2

ηQ
2
η

]
, (8)

where U(Qmin) is a constant that is irrelevant to the dynamics, and Pη ≡ Q̇η is the
momentum conjugate to Qη.

As illustrated in figure 1, the true path ∂Rη of mode η in its phase space Gη is
continuous. It is only the accessible information about the path that is quantized. As
discussed in section 4.2 and at the beginning of section 5, each point Γη ∈ ∂Rη is indis-
tinguishable from all points within a neighbourhood of it, whose area is h?.

Uncertainty manifests differently in the microstate probability distribution depend-
ing on which set of coordinates is used to specify the microstate. Having found that p is
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Figure 1. (a) A portion of the phase space Gη of mode η. The continuous
blue ellipse, ∂Rη, is a particular constant-energy path that the oscillation fol-
lows when it is decoupled from other modes. The set of pale blue and green
spots is a maximal set of mutually-distinguishable microstates, Γη, of mode η.
In statistical models of the mode’s microstates, each spot represents all points
within its rectangular neighbourhood. (b) A portion of the microstructure space
of modes η and ν. The spots belong to a maximal set of mutually distinguish-
able points and represent the rectangular regions they inhabit. The pale blue
spots mark regions visited during the motion of the modes, assuming that their
energies, Eη and Eν , are constant and that neither of their frequencies, ωη and
ων , is an integer multiple of the other. Each of the 15 pale blue spots represents

the four points (Qη,Qν ,Pη,Pν) =
(
Qη,Qν ,±

√
2Eη −ω2

ηQ
2
η,±
√

2Eν −ω2
νQ

2
ν

)
in their

joint phase space Gη ×Gν . (c) The pale blue spot is the energy of the trajectory rep-
resented by pale blue spots in panels (a) and (b). We cannot calculate the partition
function of modes η and ν as ZηZν =

∑
Eη

∑
Eν
e−β(Eη+Eν) if the double summation

is over a square grid in (Eη,Eν)-space. The numbers of energies sampled along
each axis are only in the same ratio as the numbers of mutually-distinguishable
mode coordinates along each axis in (Qη,Qν)-space, and the numbers of mutually-
distinguishable points in Gη and Gν , if the spacings of sampled values along the
mode’s energy axes are their frequencies times the same constant.

a Maxwell-Boltzmann distribution when standard position and momentum coordinates
(Pη,Qη) are used, let us now perform the canonical transformation (Qη,Pη) 7→ (Iη,ϑη),
where (Iη,ϑη) are the action-angle variables [14–16]. Then we will deduce the form of p
when the microstate is specified as Γ= (I,ϑ)≡ (I1,I2, · · · ,ϑ1,ϑ2, · · ·).

The action variable is defined as

Iη ≡
1

2π

˛
∂Rη

PηdQη =
1

2π

ˆ ˆ
Rη

dPη ∧dQη,

where the first integral is performed around the closed continuous trajectory ∂Rη defined
by the equation Hη(Qη,Pη) = Eη and depicted in figure 1(a). The second expression,
which involves an integral over the region Rη enclosed by the elliptical path ∂Rη, follows
from the generalized Stokes theorem.

It follows from the definition of Iη that 2πIη is the area enclosed by ∂Rη. From

equation (7), it is easy to see that the semi-axes of ∂Rη are
√
2Eη/ωη and

√
2Eη.
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Therefore, equating two expressions for the area enclosed gives

2πIη =
2π

ωη
Eη =⇒ Iη =

Eη

ωη
.

The reason for choosing Iη as one of our variables should now be apparent: It allows us
to express the new mode Hamiltonian as

Hη (ϑη,Iη) =Hη (Iη) = Iηωη. (9)

If we now followed precisely the same procedure with the new coordinates as we
used to derive the Maxwell-Boltzmann distribution in section 4.2, we would reach
equation (3), with Z and Zη expressed as sums over all Γ≡ (I,ϑ) ∈ G and over all
Γη ∈ Gη, respectively. That is,

Z =
∑
Γ

e−βH(Γ) =
∑
I

e−βH(I) =
∏
η

Zη,

where

Zη ≡
∑
Iη

e−βHη(Iη) =
∑
Iη

e−βIηωη , (10)

and the sum over Iη is a sum over a maximal set, Gη ≡∆Iη
(
Z+
0 + 1

2

)
, of mutually-

distinguishable values of Iη. The reason for the factor 1
2 is that the lower bound, 1

2∆Iη,
on the difference between mutually-distinguishable values of Iη makes all points within
the interval [0, 12∆Iη) indistinguishable from zero, and makes zero indistinguishable from
all points in this interval. Therefore, the sum in equation (10) can be viewed as 1/∆Iη
times a Riemann sum over R+, which samples intervals of width ∆Iη centered at 1

2∆Iη,
3
2∆Iη, 5

2∆Iη, etc.
Now, since h? is a phase space area, the unavoidable uncertainty in the value of 2πIη

must be h?, and the unavoidable uncertainty in the value of Iη must be h̄? ≡ h?/(2π).
Therefore the partition function can be expressed as

Zη =
∑
nη∈Z+

0

e−β(nη+
1
2) h̄?ωη

=
e−

1
2
β h̄?ωη

1− e−β h̄?ωη
=

e
1
2
β h̄?ωη

eβ h̄?ωη − 1
,

where the second line has been reached by using the fact that the right hand side of the
first line is an infinite geometric series. We can now express the free energy as

F =−β−1 logZ =−β−1
∑
η

logZη

=
∑
η

[
1

2
h̄?ωη + kBT log

(
1− e−β h̄?ωη

)]
.
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The term 1
2 h̄?ωη is commonly known as the zero point energy of mode η.

We can also calculate the expectation value,

n̄η ≡Z−1
η

∑
nη∈Z+

0

nηe
−β(nη+

1
2) h̄?ωη , (11)

of nη using equation (10) as follows:

∂

∂β

∑
nη∈Z+

0

e−β(nη+
1
2) h̄?ωη

=
∂

∂β

(
e

1
2
β h̄?ωη

eβ h̄?ωη − 1

)
.

After taking the derivatives and simplifying, this can be expressed as

n̄η =
1

eβ h̄?ωη − 1
.

The integer nη is commonly referred to as the occupation number of mode η and n̄η is
its thermal average.

When the modes’ amplitudes are large enough that they do interact, their energies
and frequencies vary, their paths in their phase spaces are no longer elliptical, and mat-
ters become more complicated. Nevertheless, simplifying assumptions are often justified,
which allow a Bose–Einstein distribution to be used as the basis for a statistical descrip-
tion of the system’s microstates and observables. For example, if the energy of mode
η is modulated by a mode η ′ whose frequency is sufficiently low (ωη ′ � ωη), then Iη is
approximately adiabatically invariant under this modulation [14–16], and the dominant
effect of the interaction on mode η is to modulate its frequency.

As another example, when the interactions between modes are weak, the distribution
of each mode’s energy among frequencies is broadened and shifted relative to its T → 0
limit. Therefore, it still has a well defined mean frequency and mean energy, which
allows the Bose–Einstein distribution to be used effectively in many cases.

5.2. Generalizations to non-oscillatory systems

I have now derived the Bose–Einstein distribution for a classical system whose dynamics
is a superposition of independent harmonic oscillations. My derivation made use of two
properties of the system’s Hamiltonian: The first was that it could be expressed as a
sum H=

∑
ηHη of the Hamiltonians Hη of independent DOFs. The second was that

each Hη could be expressed as an affine function of only one variable. For oscillations,
this was achieved by transforming to action-angle variables, so that each Hη took the
form Hη(Iη) = Iηωη. Since variations of ωη are negligible when interactions are weak,
Iη is effectively the only variable that appears in Hη.

The Hamiltonians of many other kinds of physical systems, composed of mutually-
noninteracting DOFs, can be transformed canonically into forms that allow the Bose–
Einstein distribution to be derived. In principle it can be derived whenever there exists
a curve γη : R+ →Gη; t 7→ γη(t) in the phase space Gη of each DOF such that energies
of DOF η are represented on γη in the same proportions as they are represented in Gη.
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To be more precise, energies should be represented on maximal samplings of γη in the
same proportions as they are represented on maximal samplings of Gη.

Once each Hη has been transformed canonically into the form Hη(Xη) =Bη +CηXη,
where Xη ∈ R is a continuously-varying generalized coordinate or momentum, and Bη

and C η are constants, the full Hamiltonian becomes

H (X)≡ U
(
Qmin

)
+
∑
η

Bη +
∑
η

CηXη (12)

where X≡ (X1,X2, · · ·). Let 1
2∆Xη denote the smallest difference between mutually-

distinguishable values of X η; let ϵη ≡ Cη∆Xη; and let D ≡ e−β(U(Qmin)+
∑

ηBη). Then the
partition function can be expressed as

Z =D
∏
η

∑
nη∈Z+

0

e−β(nη+
1
2)ϵη ,

and it is straightforward to show that n̄η = 1/
(
eβϵη − 1

)
.

One example of a system whose Hamiltonian can be transformed canonically into the
form of equation (12) is an ideal gas. At any given point in time, its Hamiltonian has the
form, H(P)≡

∑
ηHη(Pη) =

1
2

∑
ηP

2
η , which is the Hamiltonian of a set of independent

free particles. A free particle Hamiltonian can be transformed canonically into a har-
monic oscillator Hamiltonian [13]; therefore, it can also be transformed into action-angle
coordinates.

As discussed in section 1.1.2, in the limit T → 0 the Hamiltonian of every clas-
sical dynamical system either takes the same form as a set of weakly interacting har-
monic oscillators or as an ideal gas, or as a combination of both. Therefore, all classical
dynamical systems that are subject to an uncertainty principle, ∆Q∆P > h? > 0, obey
Bose–Einstein statistics in the T → 0 limit as a consequence of the probability domain
quantization discussed in section 3.

As the derivation of the Bose–Einstein distribution presented in section 5.1 makes
clear, when an uncertainty principle applies, the Maxwell-Boltzmann and Bose–Einstein
distributions are perfectly compatible with one another in the T → 0 limit. In that
limit, a classical system’s energy distribution can be expressed either as a Maxwell-
Boltzmann distribution or as a Bose–Einstein distribution, depending on which choice
of coordinates and their conjugate momenta are used to specify the microstate.

6. Discussion

I have shown that the Bose–Einstein distribution follows mathematically from probab-
ility domain quantization, and that probability domain quantization is a consequence
of the existence of a limit, h?, on the precision with which a system’s microstate can be
determined experimentally. Probability domain quantization does not imply that the
microstates of the underlying physical system are quantized. It implies a quantization of
the information contained in probability distributions that possess the quality of being
testable empirically.
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I have not justified my working assumption that a lower bound h? exists, but only
demonstrated that one of its consequences would be that all sufficiently-cold clas-
sical dynamical systems are described by Bose–Einstein statistics. Therefore I have
demonstrated that the existence of such a lower bound would have many important
implications.

One implication would be that there is no qualitative discrepancy between the
experimentally-observed spectrum of a blackbody and what should be expected if light
was a mechanical wave in a bounded medium. As discussed in section 1.1.1, if light was
such a wave, the boundedness of the medium would mean that the smallest energy dif-
ference between two light waves of frequency ≈ f would be hmf , for some constant hm.
In section 5 I showed that the lower bound that an uncertainty principle would place
on observable energy differences would be ∆(Iω) = (∆I)ω = h?f . Therefore, if hm = h?,
the existence of an uncertainty principle in a classical Universe could be explained by
all observations being mediated by classical light waves.

Another implication of a lower bound h? would be that there is no qualitative dis-
crepancy between the experimentally-observed temperature dependence of a crystal’s
heat capacity and what should be expected of classical lattice waves.

Another implication would be that classical oscillators and waves would have
zero point energies that were simply an artefact of small energies being empirically-
indistinguishable from no energy.

Another implication would be that, when a cluster of massive particles was cold
enough, the classical expectation would be that almost all of its vibrational energy
would be possessed by its lowest-frequency normal mode. Therefore, below a certain
temperature, all but one of its degrees of freedom would be almost inactive and it
would be a Bose–Einstein condensate.

For simplicity I have assumed that the limit on microstate measurement precision
that leads to probability domain quantization is a limit on certain knowledge. In other
words, I assumed that it is theoretically possible to know with certainty that a DOF’s
microstate is within a subset of its phase space if and only if the area of that subset is
greater than h?. If, instead, it is assumed that the result of the most precise microstate
measurements possible are probability density functions of the form

ρ(σQ,σP) :Q×P→ R+; (Q,P ) 7→ ρ(Q,P ;σQ,σP) ,

where σQ and σP are the standard deviations along the coordinate axis Q and the
momentum axis P, respectively, a more general form of uncertainty principle would be
σQσP > h?. This would be a limit on probabilistic knowledge. It may be possible to adapt
the derivations presented in this work to uncertainty principles of this more general
form.
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