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COHOMOLOGICAL JUMP LOCI AND

DUALITY IN LOCAL ALGEBRA

BENJAMIN BRIGGS, DANIEL MCCORMICK, AND JOSH POLLITZ

Abstract. In this article a higher order support theory, called the coho-
mological jump loci, is introduced and studied for dg modules over a Koszul
extension of a local dg algebra. The generality of this setting applies to dg
modules over local complete intersection rings, exterior algebras and certain
group algebras in prime characteristic. This family of varieties generalizes the
well-studied support varieties in each of these contexts. We show that cohomo-
logical jump loci satisfy several interesting properties, including being closed
under (Grothendieck) duality. The main application of this support theory
is that over a local ring the homological invariants of Betti degree and com-
plexity are preserved under duality for finitely generated modules having finite
complete intersection dimension.

Introduction

Over a local complete intersection ring the minimal free resolution of a finitely gen-
erated module has polynomial growth. More precisely the Betti numbers are even-
tually modeled by a quasi-polynomial of period two. A striking result of Avramov
and Buchweitz in [4], implicitly contained in [1], is that the degrees of the quasi-
polynomials corresponding to the Betti numbers of a finitely generated module and
its (derived) dual coincide; see also [31, 38]. In this article we strengthen this result
by showing their leading terms also agree.

Throughout we fix a surjective map ϕ : A→ B of local rings with common residue
field k. We assume ϕ is complete intersection of codimension c in the sense that
its kernel is generated by an A-regular sequence of length c. Let M be a finitely
generated B-module that has finite projective dimension over A.

Classical results of Eisenbud [22] and Gulliksen [26] associate to ϕ a ring of coho-
mology operators S = k[χ1, . . . , χc], with each χi residing in cohomological degree
2, in a way that the graded k-space ExtB(M,k) is naturally a finitely generated

graded S-module. The Hilbert–Serre theorem implies that the Krull dimension of
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ExtB(M,k) over S is the degree of the quasi-polynomial eventually governing the
sequence of Betti numbers βB

i (M) for M . This value is called the complexity of M
over B, denoted cxBM ; see Definition 3.1 for a precise definition.

This article concerns the behaviour of this quasi-polynomial with respect to the
derived duality M∗ = RHomB(M,B). When M is maximal Cohen-Macaulay, this
coincides with the ordinary B-dual module.

In this notation, it was shown in [4] that the supports of ExtB(M,k) and ExtB(M
∗, k)

over S are the same and hence cxB M = cxB M∗; see also [31, 38] for different
proofs. However the methods in loc. cit. are not fine enough to show that the lead-
ing coefficients of the quasi-polynomials corresponding to the Betti numbers of two
B-modules agree.

Theorem A. Let ϕ : A → B be a surjective complete intersection map with com-

mon residue field k. For a finitely generated B-module M whose projective di-

mension over A is finite, the multiplicities of ExtB(M,k) and ExtB(M
∗, k) over

S coincide. In particular, the leading terms of the quasi-polynomials eventually

modeling βB
i (M) and βB

i (M∗) agree.

The theorem above is contained in Theorem 3.6 where it is stated in terms of Betti
degrees; see Definition 3.1. These values, studied in [1, 2, 3, 27], are normalized
leading coefficients for the quasi-polynomials eventually corresponding to sequences
of Betti numbers. Theorem A can also be proven using work of Eisenbud, Peeva
and Schreyer [23]; see Remark 3.7 for a discussion of this connection. From Theo-
rem A we deduce that the Betti degree of a module of finite complete intersection
dimension and its dual coincide; see Corollary 3.10. Another consequence is the
following.

Corollary B. If A is Gorenstein, the leading terms of quasi-polynomials eventually

modeling the Betti numbers and the Bass numbers of M are the same.

The proof of Theorem A is geometric in nature, and does not rely on special
properties of resolutions with respect to the duality functor. We show that the
Betti degree is encoded in a sequence of varieties, refining the support theory of
Avramov and Buchweitz, studied and extended by many others in local algebra
[1, 4, 11, 19, 28, 35]. Cohomological supports have yielded applications in revealing
asymptotic properties for local complete intersection maps in loc. cit., and more
recently, their utility has been detecting the complete intersection property among
surjective maps and maps of essentially finite type [15, 16, 34]. Below we discuss
properties of the support theory presented in this article, and direct the curious
reader to their construction in Definition 1.6.

We associate to M a nested sequence of Zariski closed subsets of Pc−1
k , called the

cohomological jump loci of M ,

Pc−1
k = V0

ϕ(M) ⊇ V1
ϕ(M) ⊇ V2

ϕ(M) ⊇ . . . .

The first jump locus V 1
ϕ (M) is the support of ExtB(M,k) over S, and hence it

coincides with the cohomological support of M studied by Avramov et. al. From a
geometric perspective, the sequence of cohomological jump loci can be arbitrarily
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complicated: any nested sequence of closed subsets of Pc−1
k can be realized as the

sequence jump loci of some B-module, up to re-indexing; see Theorem 1.14.

This theory is analogous to the jump loci in [18] for differential graded Lie al-
gebras which have found numerous applications in geometry and topology. The
cohomological jump loci in the present article have several interesting properties.
For example, they respect the triangulated structure of derived categories in an
“additive" sense; see Proposition 2.10 for a precise formulation. We highlight two
properties here. First, upon a reduction to the case of maximal complexity, the se-
quence of cohomological jump loci for M encodes its Betti degree; this is the content
of Lemma 3.5. The second property, found in Theorem 2.8, is the following.

Theorem C. Let ϕ : A→ B be a surjective complete intersection map. If M is a

finitely generated B-module whose projective dimension over A is finite, then there

are the equalities Vi
ϕ(M) = Vi

ϕ(M
∗) for all i > 0.

Outline. In Section 1 we introduce the theory of cohomological jump loci. This
is done in greater generality than discussed above. Namely we let A be a local
differential graded (=dg) algebra and consider a Koszul complex B on a finite list
of elements in A0; in this context M is a dg B-module that is perfect over A. A
number of examples are provided and we conclude the section with our realizability
result, discussed above, in Theorem 1.14.

In Section 2 we establish basic and important properties of cohomological jump
loci. The main result of the section is that the cohomogical jump loci of M and M∗

are the same; this is the subject of Theorem 2.8. Finally, Section 3 specializes to the
context of the introduction, and to modules of finite complete intersection dimen-
sion. This contains applications to local algebra like Theorem A and Corollary B,
discussed above.

1. Definitions and examples

Throughout this article (A,m, k) is a fixed commutative noetherian local dg algebra.
That is, A = {Ai}i>0 is a nonnegatively graded, strictly graded-commutative dg
algebra with (A0,m0, k) a commutative noetherian local ring, and the homology
modules Hi(A) are finitely generated over H0(A).

We fix a list of elements f = f1, . . . , fc in m0 and set

B := A〈e1, . . . , ec | ∂ei = fi〉

to be the Koszul complex on f over A—that is, B is the exterior algebra over A
on exterior variables e1, . . . , en of degree 1 with differential uniquely determined,
via the Leibniz rule, by ∂ei = fi. This will be regarded as a dg A-algebra in the
standard fashion, and we let ϕ : A→ B be the structure map.

We will also denote throughout

S := k[χ1, . . . , χc],

the graded polynomial algebra over k generated by polynomial variables χi of co-
homological degree 2. We refer to S as the ring of cohomology operators (over k)
corresponding to ϕ; this name is justified in 1.4.
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Remark 1.1. If A is a local ring (that is, concentrated in degree 0), as in the
introduction, then B is quasi-isomorphic to A/(f) under the additional assumption
that f is an A-regular sequence. In this case, everything that follows directly
translates to the setting where we instead define B = A/(f) from the beginning,
cf. [24, Theorem 6.10].

We let D(B) denote the derived category of dg B-modules. This is a triangulated
category in the usual way; see [5, Section 3]. Restricting along the structure map
A → B defines a functor D(B) → D(A). Through this map objects of D(B) are
regarded as objects of D(A). It will be convenient for us to work in the following
subcategory of D(B).

Definition 1.2. Let D
b(B/A) denote the full subcategory of D(B) consisting of

dg B-modules which are perfect when restricted to D(A). That is, M belongs
to D

b(B/A) provided that, while viewed as an object of D(A), it belongs to the
smallest thick subcategory containing A. This category is denoted D

ϕ–b(B) in [25].

Remark 1.3. When A is a regular local ring, D
b(B/A) is simply the bounded

derived category of dg B-modules; namely, Db(B/A) is exactly the full subcategory
of D(B) consisting of dg B-modules with finitely generated homology over the ring
A, which is often denoted D

b(B).

The utility of this category is due to a theorem of Gulliksen [26, Theorem 3.1] which
is recast in the following construction.

1.4. If M is an object of Db(B/A) then RHomB(M,k) can naturally be given the
structure of a perfect dg S-module.

Indeed, RHomB(M,k) is quasi-isomorphic to HomA(F, k) ⊗k S, with the twisted
differential

∂Hom(F,k) ⊗ 1 +

n
∑

i=1

Hom(ei−, k)⊗ χi

where F
≃
−→ M is a semifree resolution of M over B. This defines a dg S-module

structure that is independent of choice of F up to quasi-isomorphism; cf. [3, Sec-
tion 2]. When we need to refer to this dg S-module explicitly, it will be denoted
RHomA(M,k)⊗τ

k S; this notation is used, for example, in Theorem 2.8.

We point out that F
≃
−→ M can be taken to be any dg B-module map where the

underlying graded A-module of F is a finite coproduct of shifts of A, provided such
an F exists. When A is a ring, the existence of such a resolution is contained in
[3, 2.1]. If such a resolution exists, then one can show that HomA(F, k) ⊗

τ
k S is a

perfect dg S-module arguing as in [7, 9, 35]. However, at this level of generality,
the existence of such resolutions has not been established, and so we argue in a
different fashion.

Under the identification of RHomB(M,k) with RHomA(M,k) ⊗τ
k S we have the

following quasi-isomorphism

RHomB(M,k)

(χ)RHomB(M,k)
≃ RHomA(M,k)
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and because M is perfect over A, the homology module H(RHomA(M,k)) is a finite
k-space. It follows by a homological version of Nakayama’s lemma, see for example
[35, Theorem 3.2.4], that ExtB(M,k) = H(RHomB(M,k)) is finitely generated over
S. Finally, since S has finite global dimension, we conclude that RHomB(M,k) is
perfect when regarded as a dg S-module as claimed.

When A is an (orindary) ring and f is an A-regular sequence, S2 is the usual
k-space of operators associated to f in the works of Avramov [1], Eisenbud [22],
Gulliksen [26], Mehta [33], and others; this is clarified in [12].

Remark 1.5. While our focus is on the S-action on ExtB(M,k), the cohomology
operators χ do lift to elements of ExtB(M,M), and we will use this in 1.15 below.

Indeed, mimicking the proof of [3, Proposition 2.6], it follows that the operators χ
defining S can be realized as elements in the Hochschild cohomology of B over A.
More precisely, with Be

A denoting the enveloping dg algebra of B over A, there is
an isomorphism of dg algebras

RHomBe

A
(B,B) ≃ B[χ1, . . . , χc]

where each χi is in cohomological degree 2. This quasi-isomorphism yields a
homomorphism B[χ1, . . . , χc] → RHomB(M,M), through which ExtB(M,M) ob-
tains an action of the cohomology operators. Furthermore, the natural projection
π : B[χ1, . . . , χc]→ S determines the same S-action as the one discussed in 1.4 on
RHomB(M,k) for any dg B-module M .

Let SpecS denote the set of homogeneous prime ideals of S with the Zariski topol-
ogy, having closed sets of the form

V(η1, . . . , ηt) = {p ∈ SpecS : ηi ∈ p for all i}

for some list of homogeneous elements η1, . . . , ηt in S. For a graded S-module X and
p ∈ SpecS we write Xp for the (homogeneous) localization of X at p. Furthermore,
κ(p) will be the graded field κ(p) := Sp/pSp.

Given a graded field κ, any finitely generated κ-module X has the form κr for some
r, and below we use the notation rankκX = r.

Definition 1.6. Let p be in SpecS and M be in D(B). Define the cohomological

rank of M at p to be

crkp(M) := rankκ(p) H(RHomB(M,k)⊗L

S κ(p)).

The ith cohomological jump locus of M is defined to be

Vi
ϕ(M) := {p ∈ SpecS : crkp(M) > i}.

Remark 1.7. For a dg B-module M , trivially V0
ϕ(M) = SpecS and there is a

descending chain of subsets of SpecS:

(1.7.1) V0
ϕ(M) ⊇ V1

ϕ(M) ⊇ V2
ϕ(M) ⊇ . . . .

Hence when M is in D
b(B/A), this chain must stabilize at ∅ since RHomB(M,k)

is perfect over S by 1.4.
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If M is in D
b(B/A) we have that V1

ϕ(M) is simply the support of ExtB(M,k)
regarded as a graded S-module; this is contained in [20, Theorem 2.4]. That is,

V1
ϕ(M) = {p ∈ Spec S : ExtB(M,k)p 6= 0}

= V(η1, . . . , ηt)

where η1, . . . , ηt generate annS ExtB(M,k). In particular, V1
ϕ(M) is a closed subset

of SpecS, provided M is in D
b(B/A). Looking ahead, in Proposition 2.1, we show

that Vi
ϕ(M) is closed for all i, whenever M is in D

b(B/A).

Remark 1.8. When A is a ring, V1
ϕ(M) is the cohomological support of M over

B as defined in [34, 35]; these are derived versions of the support varieties in local
algebra studied in [1, 4, 11, 28].

1.9. Let X be a dg S-module with finitely generated homology. The total Betti

number of X is
βS

total(X) =
∑

i∈Z

rankk Tor
S
i (X, k);

the sum is only over finitely many integers as S has finite global dimension.

Example 1.10. AssumeM is a perfect dgB-module and r = βS
total

(RHomB(M,k)).
It follows directly that

Vi
ϕ (M) =











Spec S i = 0

{(χ)} 1 6 i 6 r

∅ i > r.

Example 1.11. Let ν denote the embedding dimension of A0 and let KA denote
the Koszul complex on a minimal generating set for the maximal ideal of A0 over A.
As f is contained in m0, there is a dg B-module structure on KA which is explained
below: Fixing a minimal generating set x = x1, . . . , xν for m0 with ∂e′i = xi in KA

and writing each

fi =

ν
∑

j=1

aijxj ,

determines a B-action on KA by

ei · ω =





ν
∑

j=1

aije
′
j



ω.

In particular, if f ⊆ m2
0 it follows from 1.4 that there is the following isomorphism

of graded S-modules

RHomB(K
A, k) ∼= HomA(K

A, k)⊗k S ∼=
∧

(

Σ
−1 kν

)

⊗k S

and hence, crkp(K
A) = 2ν. Therefore, there are the following equalities

Vi
ϕ

(

KA
)

=

{

SpecS i ≤ 2ν

∅ i > 2ν .

When A is a regular local ring, we have calculated the sequence of jump loci Vi
ϕ(k)

since KA ≃
−→ k as dg B-modules.
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Example 1.12. Assume A is a regular local ring (or more generally, a UFD) and

consider R := A/(f) where f = f1, f2. When f is a regular sequence, B
≃
−→ R and

so from Example 1.10 we have the equalities

Vi
ϕ (R) =











SpecS i = 0

{(χ)} i = 1

∅ i > 1.

Now assume f does not form an A-regular sequence; in this case there exists an
A-regular sequence f ′

1, f
′
2 with fi = f ′

ig for some g ∈ m0. It follows that

0→ A





−f ′
2

f ′
1





−−−−−→ A2

(

f1 f2
)

−−−−−−−→ A→ 0

is an A-free resolution of R, and this has a dg B-module structure with the e1 and
e2 action indicated by

e1 : 0 A A2 A 0

e2 : 0 A A2 A 0.

(

0 g
)

(

1
0

)

(

−g 0
)

(

0
1

)

It follows easily, using 1.4, that RHomB(R, k) is isomorphic to the complex of free
S-modules:

0→ Σ
−4 S

0
−→ Σ

−2 S⊕2

(

χ1 χ2

)

−−−−−−−→ S → 0.

Therefore, assuming k is algebraically closed,

Vi
ϕ(R) =











Spec S i 6 2

{(χ1, χ2)} i = 3, 4

∅ i > 4.

Example 1.13. Let A = kJx, y, zK and set f = x3, y3, z3. For the A/(f)-module
M = A/(f , xz, yz2). Using similar calculations as the ones in Example 1.12 it
follows that

Vi
ϕ(M) =































SpecS i 6 8

V(χ1) 9 6 i 6 12

V(χ1, χ2) 13 6 i 6 14

{(χ)} 15 6 i 6 16

∅ i > 16.

In particular, this example produces a complete flag in A3 from an indecomposable
A/(f)-module.

We end this section with the following realizability theorem that, roughly speaking,
says there is essentially no restriction on the sequence of closed subsets that appear
as the sequence of jump loci for a fixed dg B-module. This is a higher order version
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of the realizability results for supports corresponding to a deformation (or Koszul
complex); see [8, 19, 35].

Theorem 1.14. If f ⊆ m2
0, then for every descending chain of closed subsets

SpecS =W0 )W1 )W2 ) . . . )Wt = ∅

there exists M in D
b(B/A) and an increasing sequence of integers 0 = j0 < j1 <

. . . < jt such that

Vj
ϕ(M) =Wi

for ji ≤ j < ji+1.

For a fixed dg B-module M , we call the numbers j0, . . . , jt in Theorem 1.14, at
which the jump loci change, the jump numbers of M . It follows from Lemma 3.5
below that the first jump number is always even. The last jump number jt is always
βS

total
(RHomB(M,k)); see 1.9.

An essential ingredient in the proof of Theorem 1.14 is the theory of Koszul objects
introduced by Avramov and Iyengar in [8].

1.15. Fix a dg B-module M and η as in S. Lifting η to B[χ1, ..., χc] along π in
Remark 1.5 determines a morphism η̃ in D(B)

M
η̃
−→ Σ

|η|M.

A Koszul object on M with respect to η is the mapping cone of η̃, denoted M//η;
we point out that M//η is not unique, even up to isomorphism, in D(B). Given a
sequence η = η1, . . . , ηn in S we define M//η inductively as Mn where

Mi+1 :=Mi//ηi+1 with M0 =M.

It is a direct calculation that RHomB(M//η, k) is isomorphic to

Kos
S(η)⊗S RHomB(M,k)

as dg S-modules, up to a shift; in particular, RHomB(M//η, k) is independent of
the chosen lifts η̃i of each ηi along π.

Proof of Theorem 1.14. Write each Wi as V(ηi) for some list of elements ηi from
S of length ni. Define M i to be KA//ηi; see 1.15. It follows from Example 1.11
that RHomB(M

i, k) is isomorphic to

Kos
S(ηi)⊗k

∧

Σ
−1 kν

as dg S-modules, up to shift, where ν denotes the minimal number of generators
for m0. From here it is clear that

Vj
ϕ(M

i) = V(ηi)

for all j = 1, . . . , ni and Vϕ(M
i) = ∅ for all j > ni. The dg B-module

M :=M1 ⊕ . . .⊕M t−1

has the desired properties. �
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2. Basic properties

We adopt the notation set in Section 1. In this section we show the support theory
introduced in the previous section satisfies several important properties.

Proposition 2.1. Let M be in D
b(B/A). For each i > 0, the jump locus Vi

ϕ(M)
is a Zariski closed subset of SpecS.

This follows from the following standard lemmas.

Lemma 2.2. Fix a graded field κ, and let X be a finitely generated dg κ-module.

Then

rankκ H(X) = 2 rankκ
(

coker∂X
)

− rankκX.

Proof. Let B and Z denote the boundaries and cycles of X . Since rank is additive
on exact sequences, the desired statements follow immediately from the following
diagram with exact rows and columns.

0 0 0

0 B Z H(X) 0

0 B X coker∂X 0

0 0 ΣB ΣB 0

0 0 0 �

Lemma 2.3. Let X be a dg S-module which, upon forgetting its differential, is free

of rank of r over S, and set C = coker∂X . For each i > 0, there is an equality

SuppS

(

r+i
∧

(C ⊕ C)

)

= {p ∈ SpecS : rankκ(p) H(X ⊗S κ(p)) > i},

and so, in particular, the right-hand set above is a Zariski closed subset of SpecS.

Proof. Fix p ∈ Spec S. Applying Lemma 2.2 to X ⊗S κ(p) gives

rankκ(p)H(X ⊗S κ(p)) = 2 rankκ(p) (C ⊗S κ(p))− r,

from which we obtain the equivalence

rankκ(p) H(X ⊗S κ(p)) > i ⇐⇒ rankκ(p) ((C ⊕ C)⊗S κ(p)) > r + i.

We are done once noting the latter statement is true precisely when
(

r+i
∧

(C ⊕ C)

)

⊗S κ(p) =

r+i
∧

((C ⊕ C)⊗S κ(p))) 6= 0. �
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Proof of Proposition 2.1. First, sinceM is perfect as a dg A-module, RHomB(M,k)
is perfect as dg S-module by 1.4. This means there is a quasi-isomorphism of dg S-
modules RHomB(M,k) ≃ X , where X is a dg S-module with underlying S-module
being free of finite rank; see [5, Theorem 4.8]. Hence we may apply Lemma 2.3 to
X to obtain

Vi
ϕ(M) = SuppS

r+i
∧

(C ⊕ C)

where C = coker∂X and r is the rank of X regarded as a free S-module. �

2.4. Let ψ : A0 → A′
0 be a flat local extension, and write k′ for the residue field of

A′
0. Denote the corresponding dg algebras by A′ = A⊗A0A

′
0 and B′ = B⊗A0A

′
0, the

induced homomorphism by ϕ′ : A′ → B′, and the corresponding ring of cohomology
operators by S ′ = S ⊗k k

′. Then there is an induced map on spectra

ψ∗ : SpecS ′ → SpecS.

The next result explains how the cohomological jump loci behave with respect to
these maps.

Lemma 2.5. With notation as in 2.4 above, if M is an object of D
b(B/A) then

M ′ =M ⊗A A
′ is an object of Db(B′/A′) and for all i

Vi
ϕ(M) = ψ∗

(

Vi
ϕ′(M ′)

)

.

Proof. Let p′ be a prime of SpecS ′ and set p = ψ∗p′. There are isomorphisms

RHomB′(M ′, k′)⊗L

S′ κ(p′) ∼= RHomB(M,k)⊗L

S S
′ ⊗L

S′ κ(p′)

∼= RHomB(M,k)⊗L

S κ(p)⊗κ(p) κ(p
′).

Knowing this, the lemma follows directly from the definition of cohomological jump
loci; see Definition 1.6. �

Lemma 2.6. Let M,N be in D
b(B/A). Suppose

q : RHomA(M,k)⊗k S → RHomA(N, k)⊗k S

is a dg S-module map such that the underlying map of S-modules remains a chain

map between the twisted complexes

qτ : RHomA(M,k)⊗τ
k S → RHomA(N, k)⊗

τ
k S.

Then q is a quasi-isomorphism if and only if qτ is a quasi-isomorphism.

Proof. This follows directly from the Eilenberg–Moore comparison theorem [39,
Theorem 5.5.11] following the observation that the ordinary and twisted complexes
coincide upon passing to their associated graded complexes with respect to the
(χ)-adic filtration. �

Lemma 2.7. Consider, for some 1 ≤ c′ ≤ c, the factorization A→ B′ → B where

B′ = A〈e1, . . . , ec′ | ∂ei = fi〉. Then for any M in D
b(B/A) we have

RHomB′(M,k) ≃ RHomB(M,k)⊗L

S S/p

as dg S-modules where p = (χc′+1, . . . , χc) ⊆ S.
10



Proof. Let S ′ = k[χ1, . . . , χc′ ] denote the ring of cohomology operators correspond-
ing to A→ B′. By direct inspection of the construction in 1.4, we see

RHomB′(M,k) = RHomA(M,k)⊗τ
k S

′

≃ RHomA(M,k)⊗τ
k S/p

≃ (RHomA(M,k)⊗τ
k S)⊗

L

S S/p

≃ RHomB(M,k)⊗L

S S/p. �

The next result is the main one from this section. For what follows, we reserve the
notation

(−)∗ := RHomB(−, B)

for the duality functor on D(B). However, as A → B is a Koszul extension, B-
duality coincides with Σ

c
RHomA(−, A). Thus (−)∗ restricts to an endofunctor on

D
b(B/A).

Theorem 2.8. For any M in D
b(B/A), there are equalities Vi

ϕ(M) = Vi
ϕ(M

∗)
for each positive integer i. Hence crkpM = crkpM

∗ for all primes p of S.

Proof. First, we may assume that the residue field k is algebraically closed by
Lemma 2.5 and by [14, Appendice, §2] (see also [30, Theorem 10.14]). Since the
jump loci are closed, conical subsets of SpecS by Proposition 2.1, it follows that
Vi

ϕ(M) is either empty, {(χ)}, or the closure of the coheight one primes it contains.
Therefore it suffices to show that crkpM = crkpM

∗ for all coheight one primes p

of Spec S and for p = (χ). The proof of the latter is essentially contained in the
former, so we will proceed assuming p is coheight one. Using the Nullstellensatz
and a linear change of variables, we may further assume p = (χ2, . . . , χc).

Next, let B′ denote the dg subalgebra A〈e1〉 ⊆ B and S ′ = k[χ1] denote the
corresponding ring of cohomology operators for A→ B′. Since S ′ = S/p, if we let
κ′ denote the residue field of S ′ at (0), then κ′ = κ(p) and hence by Lemma 2.7,

RHomB(M,k)⊗L

S κ(p) ≃ RHomB(M,k)⊗L

S S
′ ⊗L

S′ κ′

≃ RHomB′(M,k)⊗L

S′ κ′.

Once we recall the fact that for a perfect dg S ′-module N one has the equality

rankκ′ H
(

N ⊗L

S′ κ′
)

= rankκ′ H
(

RHomS′(N,S ′)⊗L

S′ κ′
)

,

we see that it is sufficient to show

RHomB′(M∗, k) ≃ RHomS′(RHomB′(M,k),S ′).

To this end, observe that we have the following isomorphisms of dg S ′-modules:

RHomB′(M∗, k) ≃ RHomA(M
∗, k)⊗τ

k S
′

≃ Homk(k ⊗
L

A M
∗, k)⊗τ

k S
′

≃ Homk(RHomA(M,k), k)⊗τ
k S

′;

the second one being nothing more than adjunction, while the third uses the dg B-
module isomorphism RHomA(M,k) ≃ k ⊗L

A M
∗ which is one place the assumption

11



that M is perfect over A is being invoked. Furthermore, the natural maps

Homk(RHomA(M,k), k)⊗k S
′

Homk(RHomA(M,k),S ′)

RHomS′(RHomA(M,k)⊗k S
′,S ′)

≃
≃

are each quasi-isomorphisms of dg S ′-modules. A direct computation shows that
the composite map is compatible with the twisted differential, inducing a map

Homk(RHomA(M,k), k)⊗τ
k S

′ → RHomS′(RHomA(M,k)⊗τ
k S

′,S ′),

which, by Lemma 2.6, is also a quasi-isomorphism. Combining this quasi-isomorphism
with the already established ones above, we obtain the desired result. �

Remark 2.9. In the case that A is a local ring and B = A/(f) is the quotient
by a regular sequence f = f1, . . . , fc, we indicate here how to interpret the above
theory more classically in terms of matrix factorizations.

Fix a nonzero point (a1, . . . , ac) in kc and choose lifts ãi of each ai to A. Any
complex M in D(B) be regarded as a A/(

∑

ãifi)-module through the factorization

A→ A/(
∑

ãifi)→ B.

For ease of notation, let Aã denote A/(
∑

ãifi). By [11, Theorem 2.1], for lifts ã and

ã′ of a point a in kc there is an equality of Betti numbers βAã

i (M) = β
A

ã′

i (M) for

each integer i. Hence we simply write βa
i (M) for βAã

i (M). Furthermore, when M
is in D

b(B/A) the sequence of values βa
i (M) eventually stabilizes; this stable value

is denoted βa(M), called the stable Betti number of M at a. Moreover βa(M) is
exactly the rank of the free modules appearing in a matrix factorization describing
the tail of a free Aã-module resolution of M ; cf. [22, 37]. When A is Gorenstein,

this is also the k-rank of each stable (or Tate) cohomology module Ext
i
B(M,k).

When k is algebraically closed, by invoking the Nullstellensatz, the (inhomoge-
neous) maximal ideals of SpecS correspond to kc, affine c-space over k. In light of
the discussion above, for each nonnegative integer i, it is sensible to consider the
following subset of kc:

(2.9.1) {a ∈ kc : 2βa(M) > i} ∪ {0}.

The proof of Theorem 2.8 shows that the closed points of the cone over Vi
ϕ(M)

correspond exactly with the subset in (2.9.1). When i = 1, the subset (2.9.1) is the
classical support variety from [1, 3.11].

We end this section with an accoutrement demonstrating an a priori surprising
property of the cohomological jump loci when taken in total. There are general
axioms for a support theory on a triangulated category; see, for example, the con-
ditions specified in [13, Theorem 1]. Two such axioms are: first, that the support
takes direct sums to unions, and second, the so-called two-out-of-three property

on the supports of objects in an exact triangle. The following proposition says
that the jump loci all together satisfy a higher-order generalization of these usual
containment properties.

12



Proposition 2.10. Given an exact triangle L→M → N → in D
b(B/A) there is

the following containment of jump loci

Vl
ϕ(M) ⊆

⋃

i+j=l

Vi
ϕ(L) ∩ Vj

ϕ(N);

equality holds when M → N admits a section.

Proof. This follows directly from the exact triangle obtained by applying −⊗L

S κ(p)
to the exact triangle L → M → N →, and noting that when M → N admits a
section, so does the corresponding induced map. �

Remark 2.11. In light of Proposition 2.10, the higher jump loci Vi
ϕ for i > 1 do

not respect containment among thick subcategories of D
b(B/A). This should be

contrasted with usual support varieties V1
ϕ which can even be used to classify the

thick subcategories of D
b(B/A) when A is a regular ring and f is an A-regular

sequence; see [31, 38].

3. Applications to Betti degree

In this section (A,m, k) is a local ring, f = f1, . . . , fc is an A-regular sequence. Set
B = A/(f), and let ϕ : A→ B be the canonical projection. As noted in Remark 1.1,
we can freely apply the results from the preceding sections while studying Ext-
modules over B in the present section.

Definition 3.1 ([1, (3.1),(4.1)]). Let M be an object of D(B). The complexity

of M , denoted cxB(M), is the smallest natural number b such that the sequence

{βB
i (M)}∞n=0 of Betti numbers over B, given by βB

i (M) = rankk Ext
i
B(M,k), is

eventually bounded by a polynomial of degree b − 1. If no such integer exists one
sets cxB(M) to be infinity.

If M has finite complexity cxB(M) = n + 1, the Betti degree of M (over B) is
defined to be

(3.1.1) βdegB(M) = 2nn! lim sup
i→∞

βB
i (M)

in
.

3.2. According to 1.4, if M is in D
b(B/A) then ExtB(M,k) is a finitely gener-

ated graded S-module. In particular, by the Hilbert-Serre Theorem, cxB(M) is
exactly the Krull dimension of ExtB(M,k) over S. Hence, cxB(M) ≤ c, and by
the Nullsetellsatz, cxB(M) is the dimension of the Zariski closed subset V1

ϕ(M); cf.
[1, 4]. It is worth remarking that the above assertions hold at the level of generality
in Section 1; however, the next discussion is one place we are forced to specialize
to the setting of the present section.

3.3. Let M be in D
b(B/A) with cxB(M) = n + 1. Then there exist polynomials

qev and qodd of degree n whose leading coefficients agree such that for all i≫ 0

βB
i (M) =

{

qev(i) i is even

qodd(i) i is odd;

see [1, Remark 4.2]. In particular, the sequence defining βdegB(M) in Definition 3.1

converges and the leading coefficient of both qev and qodd is βdegB(M)/2nn!.
13



Finally up to further scaling βdegB(M) can also be realized as the multiplicity of
ExtB(M,k) over S.

3.4. Fix M in D
b(B/A) with complexity cxB(M) = n+1. Let S be the polynomial

ring S regraded so that the variables χi are in cohomological degree 1. We may
define E to be the graded S-module consisting of the even degrees of ExtB(M,k),
i.e.

Ei = Ext
2i
B (M,k).

When endowed with the degree filtration, E≥n =
⊕

i≥nE
i, the associated Hilbert

polynomial is qev(2t) as defined in 3.3. In particular, the leading term is given by

βdegB(M)/2n

n!
(2t)n =

βdegB(M)

n!
tn.

When endowed with the (χ)-adic filtration, the leading term of the associated
Hilbert polynomial is of the form

e(E)

n!
tn

where e(E) is the multiplicity of E as an S-module. Since E is finitely generated
over S, for all n sufficiently large, En+1 = (χ)En, and hence the leading terms of
the two Hilbert polynomials agree, so

e(E) = βdegB(M).

This is the reason for the normalization factor of 2nn! in the definition (3.1.1); in

particular the number βdegB(M) is always a positive integer.

Finally, since S is a regular integral domain, we obtain the equality [32, Theorem
14.8]

e(E) = e(S) · rankS(0)
E(0) = rankS(0)

E(0).

Repeating this process for the module consisting of the odd degrees of ExtB(M,k)
yields

rankS(0)
ExtB(M,k)(0) = 2βdegB(M).

Lemma 3.5. An object M of D
b(B/A) has maximal complexity c if and only if

V1
ϕ(M) = SpecS, and in this case

2βdegB(M) = max
{

i : Vi
ϕ(M) = SpecS

}

.

Proof. Recall from 3.2, that cxB(M) = dimV 1
ϕ (M). From this, we see that maximal

complexity of M is equivalent to V1
ϕ(M) = SpecS.

Since the jump loci are closed, Vi
ϕ(M) = SpecS if and only if (0) ∈ Vi

ϕ(M).
However,

rankκ(0) H(RHomB(M,k)⊗L

S κ(0)) = rankS(0)
ExtB(M,k)(0)

hence

max
{

i : Vi
ϕ(M) = SpecS

}

= rankS(0)
ExtB(M,k)(0).

The lemma now follows from 3.4. �
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We remind the reader that we use the notation (−)∗ = RHomB(−, B) for B-duality
throughout, and that up to a shift, this coincides with the A-duality RHomA(−, A).

Theorem 3.6. Let A→ B be a surjective map of local rings whose kernel is gener-

ated by an A-regular sequence. If M is in D
b(B/A) then βdegB(M) = βdegB(M∗).

Proof. We first reduce to the case of full complexity. Since Betti numbers, and hence
the Betti degree, are unchanged by flat base change, we may assume that the residue
field k is infinite. Recall from 3.2 that the Krull dimension of ExtB(M,k) over S
is equal to cx(M) = c′. By Noether normalisation we can make a linear change
of coordinates and assume that ExtB(M,k) is finite over k[χ1, . . . , χc′ ]. Writing
B′ = A/(fc′+1, . . . , fc) and p = (χ1, . . . , χc′) ⊆ S it follows from Lemma 2.7 that

RHomB′(M,k) ≃ RHomB(M,k)⊗L

S S/p.

The right-hand-side has cohomology which is finite over k[χ1, . . . , χc′ ] (since it is
built by RHomB(M,k)), and simultaneously annihilated by p; therefore it must be
finite dimensional. This means that ExtB′(M,k) is bounded, and we conclude that
M is in D

b(B/B′), and it has the maximal complexity c′ among objects of this
category.

We may now assume that M has maximal complexity within D
b(B/A), so we can

use Lemma 3.5 and Theorem 2.8 to deduce

2βdegB(M) = max
{

i : Vi
ϕ(M) = SpecS

}

= max
{

i : Vi
ϕ(M

∗) = SpecS
}

= 2βdegB(M∗).

From this we obtain the desired equality βdegB(M) = βdegB(M∗). �

Remark 3.7. Let M be a module over a deformation A → B, as in the setup of
Theorem 3.6. Eisenbud, Peeva and Schreyer prove in [23] that the Betti degree ofM
is equal to the rank of a minimal matrix factorization for M , of a generically chosen
relation in an intermediate deformation A′ (chosen as in the proof of Theorem 3.6);
see [23, Theorem 4.3] for a precise statement. Our Theorem 3.6 can also be deduced
from this result. Conversely, [23, Theorem 4.3] can alternatively be proven using
the cohomological jump loci along the lines of Theorem 3.6.

Eisenbud, Peeva and Schreyer make essential use of the theory of higher matrix
factorizations in their work. This raises the question of the connection between the
data visible in a higher matrix factorization of a module M and its cohomological
jump loci.

The conclusion in Theorem 3.6 for the quasi-polynomials governing the Betti num-
bers of M and M∗ cannot be improved. That is to say, the lower order terms of
the respective quasi-polynomials need not agree.

Example 3.8. Consider A = kJx, yK and B = A/(x3, y3). For M = B/(x2, xy, y2)
and i > 0 there are equalities

βB
i (M) =

{

3
2 i+ 1 i even
3
2 i+

3
2 i odd

and βB
i (M∗) =

{

3
2 i+ 2 i even
3
2 i+

3
2 i odd.
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3.9. We now fix a local ring B (and we forget A for a brief moment). Following the
work of Avramov, Gasharov and Peeva [6] and Sather-Wagstaff [36], a complex M
of B-modules is said to have finite ci-dimension if there exists a diagram of local
rings

A −→ B′ ←− B

in which B → B′ is flat and A → B′ is a surjective deformation, and such that
M ⊗B B′ is isomorphic in D(A) to a bounded complex of projective modules.

Corollary 3.10. If B is a local ring and M is a complex of B-modules with finitely

generated homology and finite ci-dimension, then βdegB(M) = βdegB(M∗).

Proof. Both the duality and the Betti degree are preserved by flat base change, so
we may assume that B admits a deformation ϕ : A→ B such that M is in D

b(B/A),
and the statement follows from Theorem 3.6. �

Remark 3.11. Let M be a maximal Cohen-Macaulay module over B which has
finite ci-dimension. It is well known that M admits a complete resolution over B,
in the sense of [17] that M is the cokernel of a differential in a acyclic complex
of projective B-modules. The two ends of this complete resolution (the projective
resolution and coresolution of M) grow quasi-polynomially with the same degree;
see, for example, [4, 9, 31]. Corollary 3.10 asserts that moreover the leading terms
of these two quasi-polynomials are the same. This is in stark contrast with the
results of [29], where modules are exhibited with complete resolutions that have
wildly asymmetric growth. All such modules must have infinite ci-dimension.

We now move on to our final result. If we specialize to the case where A is a Goren-
stein ring, then Gorenstein duality allows us to form a connection between the Betti
numbers of a module and its Bass numbers as a direct corollary to Theorem 3.6.

Definition 3.12 ([1, (5.1)]). Let M be an object of D(B). Recall that the i-th
Bass number of M is defined to be

µi
B(M) := rankk Ext

i
B(k,M).

The cocomplexity (or plexity as used in [4, 10]) of M , denoted pxB(M), is defined to
be the smallest nonnegative integer b such that the sequence {rankk Ext

n
B(k,M)}∞n=0

is eventually bounded by a polynomial of degree b− 1.

Suppose pxB(M) = n+ 1. Define the Bass degree of M over B to be

µdegB := 2nn! lim sup
i→∞

µi
B(M)

in
.

Corollary 3.13. If A is Gorenstein then for any M in D
b(B/A)

µdegB(M) = βdegB(M).

Proof. This is an easy consequence of Gorenstein-duality and Theorem 3.6. Namely,
A being Gorenstien forces B to be Gorenstein and so there is an isomorphism of
graded k-spaces

ExtB(M
∗, k) ∼= Σ

s
ExtB(k,M)
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for some integer s. Hence µdegB(M) = βdegB(M∗) and so now applying Theo-
rem 3.6, we obtain the desired equality. �

Question 3.14. Let M and N be two dg B-modules, each perfect over A, and
assume that ExtB(M,N) is degree-wise of finite length (in large degrees). In this

context the numbers lengthB Ext
i
B(M,N) are also eventually modelled by quasi-

polynomial q(M,N) of period two; cf. [17, 10.3] and [21]. In the case that A is
regular, Avramov and Buchweitz prove, using the theory of support varieties for
pairs of modules, that q(M,N) and q(N,M) have equal degrees [4]. Corollary 3.13
suggests the following question: Assuming A is Gorenstein, what is the relationship
between the leading terms of q(M,N) and q(N,M)?
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