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A physics-informed machine learning model
for global-local stress prediction of open
holes with finite-width effects in composite
structures

Omar Ahmed Imran Azeem and Silvestre T Pinho

Abstract
Fast and accurate methods are required to predict stresses in the vicinity of open and closed holes in composite structures,
especially in a global-local modelling context as applied during the design of airframe structures. Fast analytical solutions for
infinite-width anisotropic plates with open holes do not consider finite-width effects. Heuristic methods and semi-analytical
solutions can be used to towards addressing such effects. To improve the accuracy and speed of these respective methods, we
use machine learning (ML) methods trained on high-fidelity finite element analyses to make finite-width corrections. However,
such methods require large amounts of training data to reduce errors to satisfactory levels. Therefore, in this study, the fusion
of analytical solutions with machine learning is performed.We develop an analytical solution-informed ML model that is as fast
as an analytical solution and superior in accuracy to analytical solutions with heuristic finite-width scaling. Our informed ML
model offers accuracies equal to analytical solutions for the infinite-width case, and it is capable for use in a global-local
modelling context, under uniaxial and biaxial loading. Our informedMLmodel outperforms prediction accuracy across all cases
compared to uninformed ML models and requires a significantly lower size training dataset size.
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Introduction and literature review

Open holes and closed holes (pinned holes and bolted joints)
are common in composite structures,1 and it is important to
accurately predict their failure in a fast and virtual manner to
enable sizing and optimisation studies of large composite
structures. Progressive damage modelling requires high-
fidelity meshing, a failure criterion and a degradation
model. Therefore, progressive damage models are compu-
tationally expensive. Analytical methods have been devel-
oped in order to make faster predictions. Analytical methods
to predict failure as a result of stresses at the hole edge result in
conservative predictions.2,3 Therefore, non-local semi-
analytical approaches to predict failure have been developed.

The most popular of these approaches is the character-
istic length method. This method is based on evaluating the
failure indices using stresses at/over a given distance from
the hole boundary.4 This distance lies perpendicular to
loading, in the net section plane, for open hole composites,
and it may also exist parallel to loading, in the bearing plane,
for bolted joint analysis.5 In this method, stress analysis can

be conducted using linear-elastic finite element analysis and
therefore substantial computational expense is saved. An-
alytical methods for open hole stress analysis, such as those
based on Lekhnitskii’s formalism,6 reduce computation
expense further. Modifications built on this formalism are
used in the bolted joint stress field model which is popular in
industry,7 and combined with composite laminate theory, to
apply the characteristic length method to bolted composite
joints.

The Lekhnitskii formalism assumes an infinite plate.6

However, in application, free edges due to structure
boundaries or due to nearby holes affect stress distribution
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and so finite-width effects require consideration. Various
methods have been developed to generate finite-width
correction factors. Heuristic methods scale stresses to
conserve section forces,8,9 but lack accuracy in capturing
the change in stress distribution due to finite width. Semi-
analytical methods based on auxiliary functions or
boundary collocation can be used to satisfy finite-width
boundary conditions,10,11 however, their computational
time and prediction accuracy varies with the amount of
series truncation and boundary collocation points. Finite-
width correction factors can also be derived by correction of
failure strength and require a failure prediction model12;
however, errors in this failure prediction model are not fully
considered in Ref. 12.

In this work, we aim to use machine learning to modify
predictions based on Lekhnitskii’s formalism, to account for
finite-width effects. Machine learning methods use fast
matrix multiplication and can deal with problems with non-
linearities particularly well. This makes them suitable for an
attractive compromise between speed and accuracy in
comparison to existing methods.

Machine learning can be used to predict stress fields
directly with numerical training data as in previous studies
for composites structures. In such studies, image-based
neural networks such as convolutional neural networks,
U-nets, and generative adversarial networks are used to
predict stress fields.13–15 In a previous study, we used se-
quential neural networks to predict through-thickness stress
distributions in a global-local multifidelity context.16 The
study involved the development of an improved design of
experiment, input and output feature engineering and neural
network customisations to enable the machine learning
methodology.

However, the numerical finite element methods used to
generate training data can still be time-consuming. Further-
more, the physics information in these machine learning
models is limited to numerical data. In this study, we propose
the addition of physics information via analytical methods.
The machine learning model aims to correct the approximate
solution given by the analytical solution. The use of com-
putationally efficient analytical solutions to inform the input
of these machine learning models may result in higher ac-
curacy predictions and/or reduce the amount of numerical data
required to train the machine learning models.

In order to embed the analytical solution-informed
machine learning model into the global-local sub-
modelling procedure, we also develop a method to inter-
rogate the forces from a global model which may not have a
fully represented hole feature. These forces are to be
converted into remotely applied unit loads for input to the
physics-informed machine learning model. This is per-
formed under uniaxial and biaxial loading conditions.

In this study, we focus on open hole stress analysis and
therefore the stresses in the net section plane. Overall, we

show that the analytical solutions used in this study are both
improved by the machine learning model and used to im-
prove the machine learning model for use in multifidelity
global-local submodelling frameworks.

Aims and objectives

The objectives of this study are to:

1. Predict the stress distribution around an open hole in
infinite-width anisotropic plates with membrane
loading using an analytical solution-informed ma-
chine learning model.

2. Generate finite-width stress corrections with the
above machine learning model.

3. Develop a method to determine the equivalent re-
mote loading applied to the open hole by the global
model.

4. Use the machine learning model in a global-local
modelling context to predict stress distributions
around an open hole.

Methodology

Workflow

The workflow of the code to train and use our machine
learning model starts with the generation of samples using a
design of experiments method. Open hole laminates of
varying hole geometry, W

D ratios and laminate stacking se-
quences are created. This design of experiment, as ac-
cording to a previous study,16 results in well distributed
sampling of laminate stacking sequence in both the lami-
nation parameters space and the ply angle space.

Thereafter, analytical solutions and numerical solutions
for loading the laminate under varying membrane loads are
created and saved. For our analytical solution, we extend the
code developed by an online resource,17 to calculate ply-by-
ply stress distributions in the net section plane with
Lekhnitskii’s formalism. Numerical solutions generate
stresses at nodes, and therefore need to be smoothly re-
sampled using Paraview.18 These stresses are saved as
image files.

The analytical solutions and the design of experiment
variables can be used as input features when developing our
machine learning model. The output features are the stress
field images generated by numerical methods.

In order to use our developed machine learning model,
we develop a script that converts nodal forces in a given
global model to the equivalent remote loads. Analytical
solutions of a given open hole laminate can then be de-
termined, the results of which are improved by the use of our
machine learning model to account for finite-width effect.
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Predicted stresses can then be saved for use as appropriate,
with a failure criterion for example to predict failure.

Analytical solution

The Lekhnitskii formalism,6 which underpins the open hole
stress calculation, extends the theory of elasticity to an-
isotropic materials using complex analysis. The full deri-
vation of the analytical solution6 utilises an Airy stress
function to satisfy stress equilibrium and compatibility
equations in combination with Hooke’s law. In this study,
we present the explicit expressions required to calculate
stress components. Note that ply-by-ply stresses are cal-
culated using composite laminate theory.

The stress distribution for a single cutout given loading at
an infinite width is given by

σx ¼ 2Re
�
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where the x, y domain is transformed into the complex plane
using

zk ¼ xþ μky for k 2f1, 2g (2)

The characteristic equation below is solved to find the
principal roots μ1 and μ2
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where α1 and β1 are given as a function of the remotely
applied stresses σ∞x , σ

∞
y , σ

∞
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Finite element solution

We use Abaqus/2021 to generate our finite element models
and run the linear-elastic implicit simulations.19 Square
laminates with a central open hole are modelled. The hole
radius is varied from 1 mm to 4 mm, and laminate thickness
is varied from 1 mm to 10 mm in the design of experiment.
As our plies are of 0.125 mm thickness, this corresponds to
varying the number of plies between 8 and 80 plies. The W

D
(finite-width factor) ratio is varied between 3, 7 and 10. A
ratio of 3 represents minimum finite-width as defined by
hole and edge spacing design guidelines.20 A ratio of 10 is
used to represent plates of infinite-width, as boundary ef-
fects are shown to have dissipated by this distance.10 In
total, 452 training samples were generated.

We use IM7/8852 carbon fibre material with properties
as defined in Table 1. Conventional shell elements (S4R) are
used, and a convergence study is performed in order to
choose the appropriate mesh size. In Figure 1, we compare
the stress at the hole boundary in the net section plane as
predicted by the analytical simulation and the numerical
simulation, of a given laminate [45/-45/0/90]s with a 4 mm
hole and a W

D ratio of 10 that is loaded in the x-direction by a
given loading (100 N/mm). It is clear that the analytical
solution and numerical solution converge using a very fine
mesh size of 0.1 mm, therefore this mesh size is chosen for
the rest of the study. The selection of a lower mesh density
would result in lower-quality training data, and conse-
quently a reduction in the maximum accuracy of the ML
model. For example, a mesh size of 0.5 mmwould result in a
lower bound ML prediction error of ∼63 MPa in the 11-
direction, as opposed to ∼0.5 MPa error using a 0.1 mm
mesh size.

Neural network

We use Tensorflow21 and Keras22 to develop our machine
learning models. Two forms of network are required in this
study and are depicted in Figure 2. The uninformed neural
network predicts the high-fidelity FE stress field in the net
section plane given simple scalar inputs as defined by the
design of experiment. The physics-informed neural network
additionally incorporates the analytically derived stress
fields as input features. To accommodate the different di-
mensions of input and output between these two networks,
the neural network architecture is varied. However, details
such as the cost function and optimiser are the same.
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For the uninformed neural network, a singular value for
the ply angle, hole radius and finite width factor is given to
each of a maximum of 80 plies. Therefore, the input shape
is 1 × 80 × 3. Note that for laminates with less than
80 plies, zero values are applied to the respective rows and
columns. The output shape is an 80 × 80 stress field for the
net section plane, for every 2D stress component given 2D
loadings, as generated by FE simulations. Therefore, the
output shape is 80 × 80 × 9. This uninformed neural
network therefore requires upscaling of dimensions,
which is performed using the decoder structure of the
convolutional U-net model.23

The input shape for the second network is an 80 ×
80 stress field for the net section plane, for every 2D stress
component given 2D loadings, as generated by analytical
simulations. This results in an 80 × 80 × 9 matrix, which
we concatenate to the 1 × 80 × 3 matrix as described for
the uninformed network, to result in an 80 × 80 × 12 input
shape. Note that we repeat the 1 × 80 × 3 matrix to make
the concatenation compatible. The output matrix is the
same as for the uninformed neural network. The inputs
and outputs in this second network are therefore of similar
dimensions. For this physics-informed neural network, we
use the full encoder-decoder structure of the U-net
model.23

We use three-fold cross-validation on a train-
validation-test dataset split. We vary the proportions of
data in each sub-dataset, to investigate the effect of
training dataset size on our model. We use an Adam

optimiser, our cost function is the mean absolute error,
and we use early stopping to terminate models when this
error has converged.

Interrogation of force from the global model

The analytical solution determines the stress field around an
open hole within an infinite-width composite plate. How-
ever, during the design and predictive virtual testing stage of
large composite structures, stresses are interrogated within a
global model which is of finite dimensions. We therefore
develop a method to interrogate the forces around the local
area of interest in the global model, and convert this into
equivalent loads applied to a plate of infinite length, see
Figure 3. For this, we define a circle of radius r, within a
local area of interest of square of side length l and ply
thickness t, located in a global model with infinite length
and finite width w. Our method is used to interrogate the
forces F on the left L, right R, top T and bottom B
boundaries of the local area of interest and convert this into
equivalent unit loads N applied to a plate of infinite length.

This conversion is performed by appropriately equating
the forces at the boundary nodes n of the local area with the
integral of analytically derived stresses at this same
boundary. This sets up three non-linear equations
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2
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l

2
, y,Nx,Ny,Nxy

�
dy ¼ 1

2

Xn

i¼0

�
FR
x � FL

x

�
(6)

Table 1. Carbon fibre material properties.

E11 (GPa) E22 (GPa) E33 (GPa) υ12 υ13 υ23 G12 (GPa) G13 (GPa) G23 (GPa)

161 11.4 11.4 0.32 0.32 0.43 5.17 5.17 3.98

Figure 1. FE modelling details. (a) Mesh convergence study (b) Detailed FE meshing strategy (0.1 mm mesh size). FE: finite element.
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The roots of these equations are solved by a modified
version of Powell’s hybrid method (a form of gradient
descent), which is available within the fsolve function of the
python based SciPy library.24

Under the aforementioned root-finding method, our
predicted far-field loadings may differ from the actual far
field loadings under finite-width. This would then result
in the analytical solution used to inform our method being

Figure 2. Block diagrams of the neural networks used in this study. (a) Uninformed neural network architecture (b) informed neural
network architecture.
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inaccurate, and as a result, the overall ML-enhanced
solution may be inaccurate. To correct for this, we can
use the reasoning behind the heuristic approach by Tan to
finite-width corrections.8 The Tan approach correctly
aims to ensure that the integral of stresses σinfy across a
finite-width is equivalent to the far field loading due to
remote stress σ0

2
KTan

T

Kinf
T

Z w
2

r

σinfy ðx, 0Þ dx ¼ σ0 � w (9)

However, for finite-width problems, the Tan factor
KTan
T

Kinf
T

derived to ensure this equivalence, is uniformly applied to
scale the infinite-width solution

σTany ðx, 0Þ ¼ KTan
T

Kinf
T

σinf
y ðx, 0Þ (10)

This therefore assumes that stress decay is equivalent in
finite-width and infinite-width settings, and so it is limited in
accuracy.10 However, in our work, we do not propose to use
the Tan factor to accurately predict the finite-width stress
distribution at the net-section through the hole centre, as that
is the role of our ML-assisted model. Instead, we aim to use a

modified Tan factor
Kmodified�Tan
T

Kinf
T

to scale the integral of stresses at

this net-section back towards the infinite-width solution with
corrected remote loading (that is unaffected by finite-width
effects in the global model) so that we can use this infinite-
width solution to better inform our ML-assisted model

σmodified�Tan
y ðx, 0Þ ¼ Kmodified�Tan

T

Kinf
T

σinfy ðx, 0Þ (11)

Our modified Tan correction factor is therefore derived by
equilibrating the stresses, not at the net-section width, but on

the finite-width cross-section (as determined from the global
model) along the boundary of the local area of interest in the
infinite-width solution to the remote finite-width loading, using
the unit loads predicted from the root-finding methodology

Kmodified�Tan
T

Kinf
T

t

Z w
2

w
2

σinfy

�
x,
l

2

�
dx ¼ Ny � w (12)

As our models are linear elastic, we can employ linear
superposition. Therefore, we can scale machine learning
predictions given a unit load, now that we know the total
load applied. According to Saint Venant’s principle, the
stresses due to statically equivalent loads are approximately
the same, at a sufficient distance from the loaded area.25

Therefore, for highly non-uniform global loading condi-
tions applied close to the hole boundary, the accuracy of our
method may decrease. However, this is not expected at a
preliminary design stage, where global models are loaded
with uniform unit loads calculated from sizing studies.26

Results

Effect of training dataset size, width, and prediction
method on average test error

In Figure 4 we evaluate the effect of dataset size on stress
prediction error made by the analytical solution, the un-
informed machine learning methodology and the analytical
solution-informed machine learning methodology. This is
done for all the widths investigated, as well as for the
infinite-width case and the finite-width (factor 3) case
separately. Average test error is defined as the mean error to
the stresses predicted by FEA for the net section planes of
laminates in the test dataset. Vertical ticks represent the
standard deviation of this error for predictions made by ML
models trained on cross-validation folds.

Figure 3. Interrogation of forces from global mesh and conversion into equilibrated unit forces for input to the analytical model.
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Effect of width and prediction method on maximum
test error

In Table 2, we evaluate the maximum test error on stress
predictions made by the analytical solution, the uninformed
machine learning methodology and the analytical solution-
informed machine learning methodology. Maximum test
error is defined as the maximum error to the stresses pre-
dicted by FEA for the net section planes of laminates in the
test dataset. The maximum amount of 406 dataset samples
was used in this comparison.

Through-thickness and radial stress distribution
predictions

In this section, we compare the analytical solution
predictions, uninformed machine learning predictions
and analytical solution-informed ML predictions of net
section stresses. The errors between such predictions to
the FE stresses are shown for an example laminate in
Figure 5. In this figure, multiple stress components are
displayed for a comprehensive analysis. For further
detail, this comparison is done radially away from the
hole boundary (with radial distances normalised up to
2 × hole radius) for a given ply, and also through-

thickness for all plies at a given distance (0.5 × ra-
dius) from the hole boundary. In Figure 6 we compare
predictions made for an infinite-width plate, whereas in
Figure 7 we compare predictions made for a finite-width
(factor 3) plate.

Application to global-local submodelling framework

Finally, we evaluate the use of the different prediction
methods in a global-local context. We load a global
model, with an average element length of 8 mm, by given
membrane unit loads. Using the analytical solution, we
can determine the expected loads if the plate is infinite in
width. However, in a global-local modelling context,
these loads would be unknown to the analyst. Therefore,
we interrogate forces on the boundary of a local area of
interest, with a central hole, to determine the far-field
loading that was applied.

We use our modified Tan methodology to re-scale our
predictions given interrogated loads towards predictions
given expected loads. This can therefore be used to inform
the analytical solution-informed machine learning model.
The predictions made by this corrected machine learning
model can be compared to predictions made by the com-
monly used Tan methodology. These comparisons are
done under uniaxial loading ðNx ¼ 100N=mmÞ and under
biaxial loading ðNx ¼ 100N=mm,Ny ¼ 80N=mm,Nxy ¼
60N=mmÞ in Figure 8.

In Figure 9(a), we evaluate the distributions and pre-
dictions with further stress components. In Figure 9(b), we
compare the effect of hole radius and laminate thickness on
FE stress distributions andML predictions. Laminate 1 has a
4 mm radius hole and is 5 mm thick, and laminate 2 has a
1 mm radius hole and is 7.5 mm thick.

In Figure 10, we compare the total wall clock time made
by different steps in the process of the stress analysis
methods in this study. Both FE and ML analyses were run
with 4 CPUs.

Figure 4. Average test error for stress predictions methods for varying width and varying training dataset size.

Table 2. Maximum test error for prediction methods for varying
FWF.

Maximum test error (MPa)

Uninformed ML Informed ML Analytical (∞)
Infinite width
(FWF = 10)

449.6 46.8 39.2

Finite width
(FWF = 3)

416.9 59.5 127.7

FWF: finite width factor; ML: machine learning.
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Figure 5. Example stress prediction errors for multiple stress components across the net section plane for a finite-width plate (with an
additional key to show the ply angle for a given ply).

2508 Journal of Composite Materials 58(23)



Discussion

In all cases analysed, for the dataset sizes investigated, the
error has not yet converged, see Figure 4. Therefore, errors
may be expected to improve further with more training data.
However, we suggest that the ML performance will not
exceed that of the analytical method on the infinite-width
samples, as this is the theoretical minimum error of FE data
to the analytical method.

As we can observe in Figure 4, the analytical solution-
informed machine learning model performs significantly
better than the uninformed machine learning model, across
all widths. Given >400 samples, the uninformed ML model
is still outperformed by an informed ML model
with <50 samples. In Table 2, we can observe that the
uninformedMLmodel is 9-10 times less accurate than other
prediction methods. In Figures 6 and 7 the uninformed

model shows unsatisfactory radial and through-thickness
stress prediction, as neither the magnitude nor distribution
of stresses match the detailed FEA results. In Figure 5 we
further observe the uninformed neural network shows the
largest errors in all stress components across the net section
plane. Therefore, we can conclude that analytical infor-
mation significantly improves the prediction accuracy of our
ML model. Reducing the complexity of the additional
analytical information, via an autoencoder, for example,
may also be considered to further improve model
accuracy.27,28

When comparing errors for infinite-width predictions see
Figure 4, the error from the analytical solution informed ML
model approaches that of the analytical solution with in-
creasing dataset size. We also see in Table 2 that the
maximum test error for the informed ML model is similar to
that of the analytical solution. From Figure 6, we find that

Figure 6. Example stress distribution predictions for an infinite-width plate.

Figure 7. Example stress distribution predictions for a finite-width plate.
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the uninformed model achieves unsatisfactory prediction,
whereas the informed ML model is able to closely match
the radial and through-thickness distributions of the de-
tailed FEA. We note that the informed ML model deviates
from the FEA at the outermost radius. This may be due to

the convolutional window sizes used in the neural net-
work. Further hypertuning and increasing dataset size may
be considered to remove this deviation, and further reduce
error. However, overall, we can conclude that our in-
formed ML model is able to perform as accurately as the

Figure 8. Comparison of stress distributions in a given 0° ply. (a) Uniaxial loading (b) biaxial loading.
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analytical solution for infinite-width plates, given >400
training samples.

For finite-width plates, we can observe in Figure 4 that
the informed ML model outperforms the analytical solution
after ∼50 training samples. The maximum test error for the
informed MLmodel is 47% of that of the analytical solution
for the maximum training dataset size, see Table 2. As from
Figure 5, the informed ML achieves lower errors overall
than the analytical solution for 2D stress components across
the net section plane. This is especially clear for stresses in
the 11-direction. The magnitude of errors in this direction is
higher due to the high fibre stiffness resulting in much
higher stresses than in other components. From Figure 7, we
further observe that, apart from the extremes in radius which
may suffer deviations due to convolutional window size, the
informed ML better captures the change in magnitude and

Figure 9. Performance of informed ML model on further testing. (a) Performance of informed ML for further stress components (b)
effect of varying hole radius and laminate thickness on informed ML and detailed FEA. ML: machine learning; FEA: finite element
analysis.

Figure 10. Comparison of simulation time for different stress
analysis methods.
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distribution of stresses due to finite-width loading. There-
fore, we conclude that our informed ML model is able to
improve the analytical solution predictions to consider
finite-width effects, given >150 training samples.

Under a global-local modelling context, as seen in
Figure 8, we can observe that finite-width effects raise stress
from the analytical solution of the infinite-width plate to-
wards the detailed FEA results. This explains why the
uncorrected analytical solution given interrogated loadings
is higher than the infinite-width analytical solution. The use
of a Tan factor on the uncorrected analytical solution raises
stress accordingly, however, the distribution of stresses
changes under finite-width effects and this Tan correction is
unable to capture this.

Instead, we can see that our modified Tan correction
is able to correct our uncorrected analytical solution
given interrogated loads. As the global model has a
significantly higher average element length, we see that
despite our modified Tan correction the stress distri-
bution slightly differs from the expected infinite-width
analytical solution. The low fidelity modelling at the
global level, results in the hole not being accurately
represented and therefore the stiffness of the model in
the local area results in inaccurate boundary forces.
This is an artefact of the global-local modelling process,
and a reminder that the global representation of the
design feature affects the accuracy of stress predictions
in its vicinity in the local model. However, our inter-
rogation method is able to successfully capture a rea-
sonable approximation of the stress distribution in a
global-local context. Methods to more accurately
capture stiffness despite low mesh density global
modelling may be used to further reduce related
errors.29

For uniaxial loading, the mean absolute error of the
Tan method to the detailed FEA results is 2.93%, whereas
the mean absolute error of our informed ML methodology
(without correction) increases to 3.30%. Combination of
our modified Tan correction with our informed ML model
results in a reduction of mean absolute error to 1.94%. For
the case of biaxial loading, we see that our informed ML
model shows further improvement in performance to
traditional heuristic Tan scaling. The mean absolute error
of the Tan method is 4.22%, whereas the mean absolute
error of our informed ML methodology (without cor-
rection) is similar at 4.32%. Combination of our modified
Tan correction with our informed ML model results in a
reduction of mean absolute error to 1.77%. In this biaxial
case, transverse and shear loads result in significant
changes to stress distributions, which the Tan method is
unable to capture. Overall, across loading, the use of the
analytical solution with modified Tan correction to in-
form our ML model results in predictions that better
capture the change in stress distribution due to finite-

width effects. From Figure 9(a), we see that our informed
ML methodology yields reasonable predictions across 2D
stress components. Generally, it is observed that ML
predictions in the radial direction can be discrete and
irregular, as compared to the continuous FE and ana-
lytical predictions. Therefore, to further improve the
accuracy of the ML model, a post-processing step in-
volving smoothing such stress distributions may be
considered.

As visible in Figure 9(b), the magnitude of stresses
differs between laminates of varying thickness and hole
radius. The greater the laminate thickness, the greater the
cross-sectional area, and therefore the lower the net-section
stresses for a given unit force. However, the distributions of
stresses and predictions do not change greatly. It is the finite
width factor which plays the most importance in distribu-
tions, not the hole radius itself. The effects of finite width
factor are shown in Figures 5–7.

Finally, from Figure 10, we observe that our informed
ML prediction is performed nearly as fast as the analytical
solution, and both methods offer a 6-fold time-saving
benefit to the detailed FEA model. The time to run the
ML model itself is in the order of ∼200 ms and so is of
negligible concern as an addition to the time to run the
analytical solution. The longest time for both analytical
solutions and informedMLmodels is the interrogation time.
This includes the time to run the root-finding analyses to
convert interrogated boundary forces to remote loads, as
well as the time to compute (modified) Tan corrections.
While our informed ML method shows a 200 s improve-
ment to traditional detailed FEA methods, this saving is
expected to compound given thousands of such features
exist in an airframe, and for optimisation studies further
orders of magnitude of runs may be required. For a large
scale structure with a thousand features, for example, the
nominal CPU time-saving benefit of our methodology is
over 220 h. ML models make fast and scalable predictions
using simple matrix operations. Therefore, for more com-
plex features than open holes, which require longer FE
simulations, the time-saving benefit of our methodology
would further increase. This would be the case for bolted
joints for example, which have a similar analytical solution 7

but require longer FEA simulation times due to higher fi-
delity meshing, larger model size and consideration of
contact.30

For composite structures with non-circular hole
boundaries, modifications may be required to the underlying
analytical method using methods from previous studies.31,32

Our methodology is used to investigate the stresses around a
singular hole. For multiple holes, hole interaction effects are
minimised by following design guidelines,20 and so are
neglected in this methodology. Our methodology is ap-
plicable for static analyses, as for the early validation stages
of airframe design, for example. Dynamic effects are
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therefore neglected. To account for local variations in
composite layup, material discontinuities and manufactur-
ing defects, we suggest parameterising such variations and
including these variations in the training data.

Conclusions

In this study, we have used the analytical solution for an
infinite-width plate under membrane loading to inform
convolutional neural network-based predictions for
finite-width analyses within a global-local modelling
context.

We have found that our informed ML model performs
significantly more accurately than an uninformed ML
model. The informed ML model performs as accurately
with less than 50 samples as the uninformed model with
greater than 400 samples. We find that the informed ML
model approaches the accuracy of the analytical solution for
infinite-width plates and outperforms this solution for finite
widths. We find that the informed ML model also outper-
forms heuristic-based Tan corrections for finite-width cor-
rection, as it is better able to capture the change in stress
distributions under finite-width effects.

In a global-local submodelling context, our modified Tan
correction is able to improve our informed ML model
predictions, by considering errors made in calculating re-
mote loads following interrogation of loads on the boundary
of the local area of interest in the global model. Our model
demonstrates accuracy benefits under both uniaxial loading
and biaxial loading. We also show a 6-fold time-saving
benefit of our informed ML model over traditional detailed
FE submodelling, and a negligible addition to simulation
time as compared to the analytical solution.

Overall, our informed ML model results in fast, high-
accuracy predictions given reduced training dataset sizes for
both infinite-width and finite-width plates. This method-
ology can in principle be applied to a variety of structural
components including, for instance, both bearing and by-
pass situations for a bolted composite joint.
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