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The control volume finite element (CVFE) approach is based on the discretization of primary 
flow and transport unknowns on two different meshes. The element mesh, used to represent the 
physical properties of the medium, differs from the control volume mesh necessary to ensure a 
mass conservative solution. The inherent two mesh feature of the CVFE approximation introduces 
inconsistency in the transport solution due to the averaging of physical and computed quantities 
between neighboring elements in the mesh. In this work, we present a consistent approach 
for modeling multiphase flow and transport in heterogeneous porous media. The approach is 
applied in the CVFE framework by enabling the discretization of primary unknowns on a single 
mesh. We combine the discretization of an element-wise, discontinuous pressure approximation 
with a first-order, discontinuous velocity approximation to resolve the elliptic or parabolic flow 
problem. The effectiveness of the formulation is achieved by exploiting the same finite element 
mesh as the flow problem, when updating the saturation solution. This direct mapping between 
the flow and transport mesh is simple yet effective for establishing a consistent solution in 
addition to circumventing the non-physical mass leakage exhibited in the classical CVFE method. 
We describe the interface approximations and the discontinuous terms needed for consistent 
solutions. The method is well suited to model flow in complex geometrical subsurface domains 
and is shown to be numerically stable while providing locally and globally mass conservative 
solutions. We apply the approach to several domains with complex geometrical features to 
emphasize the superiority of the approximation over conventional methods. The analysis shows 
over two orders of magnitude reduction in solution error compared to the classical CVFE. The 
new formulation effectively captures accurate transport solutions, even in the presence of varying 
material properties, without the need for mesh refinement.

1. Introduction

Numerical modeling of subsurface processes plays a vital role in many applications concerning the management strategies for 
groundwater, energy and other natural resources, as well as contaminant remediation techniques. To accurately and effectively 
resolve flow dynamics in subsurface models, there has been an increasing interest in realistic material representations that capture 
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Fig. 1. Different approaches for discretizing the flow variables: (a) The two mesh approach used in the classical CVFE method (𝑃0,𝐷𝐺−𝑃1). (b) The two mesh approach 
from Salinas et al. [43] (𝑃2𝐷𝐺 − 𝑃1𝐷𝐺). (c) The single mesh approach used in the mixed finite element method.

the underlying heterogeneities (e.g. [30,17,24]); examples include faults, facies transitions, layering, or the presence of fractures 
[39,37,36]. The spatial variability of heterogeneous features often introduces multi-scale effects, locally or regionally, into the 
physical problem with scales spanning from millimeters to kilometers [26,22,36].

The finite element (FE) method presents a flexible approach to model flow in complex geometries. The flexibility of the method 
stems from decomposing the computational domain into elements that may be structured or unstructured. The flow field is then 
approximated by two independent variables, pressure and velocity, based on different spaces that must satisfy the inf-sup stability 
condition [8,9]. The flux approximation is determined by the continuity of the velocity space between volumes, or elements, within 
which mass is conserved. The flexible FE flow model is often combined with the stable, mass conservative finite volume (FV) approach 
to resolve the transport model.

When modeling flow and transport with the control volume finite element (CVFE) method, two meshes are used to capture the 
coupled problem [21,18,19,25,6,20,22,37,44,31,23,43]. The finite element mesh represents element-wise the petrophysical prop-

erties of the medium such as permeability and porosity. The control volume (CV) mesh is constructed around the vertices of the 
elements and is necessary to achieve a mass conservative transport solution. The discretization of primary flow unknowns on the 
two meshes for the classical CVFE method is shown in Fig. 1a. This example shows the element pair 𝑃0,𝐷𝐺 − 𝑃1 that represents an 
element-wise, discontinuous velocity approximation combined with a Lagrangian first order pressure approximation. The element-

wise approximation of velocity ensures that the fluxes are continuous within each element, including the control volume boundaries 
[22]. The drawback of having two meshes in the CVFE approach is that it introduces an inconsistency into the saturation solution 
because of the averaging between neighboring elements [43,40]. The issue is exacerbated for CV’s constructed along the interfaces 
between model subdomains with contrasting material properties [43].

Several studies devoted to addressing the challenge of preserving material property contrasts in the CVFE method have proposed 
different discretization approaches of the flow unknowns [2,43,4,40,47]. One notable approach that, despite employing two meshes, 
accurately captures material property contrasts is that of Salinas et al. [43]. The approximation is denoted by 𝑃2𝐷𝐺 − 𝑃1𝐷𝐺 which 
represents a second order discontinuous velocity and a first order discontinuous pressure approximation, respectively. Each element 
is discretized into 3 control volumes (Fig. 1b). Due to the higher order discontinuous approximation of velocity and pressure, the 
method requires 18 degrees of freedom (DoF) for each triangular element in 2D which is computationally very expensive. More 
recently, the Hybrid CVFE (HyCVFE) approach was developed to accurately and efficiently capture solutions for multiphase flow 
in subdomains that are internally homogeneous but have contrasting material properties [4]. For example, in a multi-layer system, 
each layer constitutes a homogeneous subdomain. The HyCVFE approach combines the continuous pressure approximation in each 
subdomain for efficiency, with a discontinuous pressure approximation applied exclusively across elements at the boundaries between 
subdomains. The method accurately captures the transport solution and introduces an insignificant computational overhead in terms 
of the total degrees of freedom. The HyCVFE approximation was designed to model multiphase flow through subdomains with 
contrasting material properties and does not address the general inconsistency of the dual mesh approach in the classical CVFE 
method.

Another approach for solving the coupled problem is based on combining the mixed finite element (MFE) method and the finite 
volume (FV) method. It provides a consistent approximation for coupled flow and transport on the same mesh [12,13,18,7]. The 
MFE and FV method employs an element-wise representation for the material properties as well as the pressure, the saturation, and 
the saturation dependent properties, while the velocity is established between elements using the lowest-order Raviart-Thomas (RT) 
approximation (Fig. 1c). The MFE approach requires more degrees of freedom compared to the classical CVFE method [19,22]. One 
limitation associated with the method is the indefinite linear system assembled by the MFE discretization [19]. The mixed hybrid 
finite element (MHFE) method has addressed the issue by introducing a trace variable on the edges between elements [14]. Later work 
2

by Hoteit et al. [28] showed that the MHFE method yields non-monotonic solutions which was then addressed by Younes et al. [49]. 
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The mimetic finite difference (MFD) method, a relevant development to the MFE methods, emerged to handle coupled processes in 
complex domains [35]. More specifically, the numerical evaluation of its basis function enables the approximation of essentially any 
polygonal shape [3]. Recent developments of the MFD approach have been tested in different applications [41,35,50,51,3,38].

This paper introduces a new formulation that eliminates the dual mesh from the CVFE method. It is a generalization of the 
technique used for embedding the discontinuous Galerkin approximation in the HyCVFE approach [4]. Instead of capturing solution 
discontinuities only between model subdomains, we employ a new discontinuous element type that captures element to element 
variations in the material properties and the corresponding solution fields. The method addresses the general inconsistency described 
earlier of CVFE methods for modeling multiphase porous media flow. The main contributions of this work are three-fold:

1. The proposed new CVFE method employs a single mesh that ensures consistency of the flow and transport problems. Solutions 
are stable and mass-conservative.

2. A new element type is introduced for the discretization of velocity and pressure that allows application of the discontinuous 
Galerkin approximation globally in the domain. The derivation of the approach is non-trivial and is described accordingly.

3. Geo-statistical models with element-to-element variations in material properties can be modeled accurately using the proposed 
method.

In this paper, we present the formulation of this new single-mesh control volume finite element (SM-CVFE) method. In section 2, 
we review the classical governing equations of porous media flow and transport. This is followed by an introduction of the new 
element, the discretization of the SM-CVFE approach, and the solution method implementation in section 3. Section 4 validates the 
approach for single and two phase flow, then tests a variety of challenging problems that include domains with complex geometries 
and geo-statistical models. Finally, sections 5 and 6 provide general discussion and conclusions, respectively.

2. Governing equations

Fluid flow through porous media is described by Darcy’s law, given by

𝐯𝐭 = −𝜆𝑡𝐊 ⋅∇𝑝, (1)

𝐯𝐭 is the total fluid Darcy velocity, 𝜆𝑡 is the total mobility, 𝐊 is the permeability tensor, and ∇𝑝 is the pressure gradient. The gravity 
and capillary forces (𝑃𝑐 ) are neglected here. Therefore, both fluid phases have the same pressure at any given location in the domain. 
The total mobility (𝜆𝑡) is defined as the summation of the individual phase mobility terms. The mobility of phase 𝛼 is

𝜆𝛼 =
𝑘𝑟𝛼

𝜇𝛼
, (2)

where 𝑘𝑟 and 𝜇 are the relative permeability and the dynamic viscosity, respectively. For an incompressible flow, the continuity 
equation is

∇ ⋅ 𝐯𝐭 = 𝑞𝑡, (3)

where 𝑞𝑡 denotes the source term. The fractional flow of phase 𝛼, 𝑓𝛼 , is

𝑓𝛼 =
𝜆𝛼

𝜆𝑡
. (4)

The mass balance equation of phase 𝛼 is

𝜙
𝜕𝑆𝛼

𝜕𝑡
+∇ ⋅ (𝑓𝛼𝐯𝐭 ) = 𝑞𝛼, (5)

assuming all phases are immiscible and incompressible. Here, 𝜙, 𝑡, and 𝑞 denote the porosity of the medium, time, and the phase 
source term, respectively. The mass balance equation is expressed with the fractional flow term (𝑓𝛼). We solve for the saturation 
unknown subject to the constraint

𝑆𝑤 +𝑆𝑛𝑤 = 1, (6)

for the total volume fraction. The subscripts 𝑤 and 𝑛𝑤 refer to the wetting phase and non-wetting phase, respectively.

3. Method

3.1. New element representation

The SM-CVFE approach introduces a new, fully discontinuous element pair (𝑃1,𝐷𝐺 − 𝑃0,𝐷𝐺) which represents a first order 
discontinuous Galerkin velocity approximation combined with an element-wise, discontinuous Galerkin pressure approximation, 
respectively, (Fig. 2). Unlike the classical CVFE method, in the SM-CVFE method the physical properties of the medium (perme-
3

ability and porosity), the pressure, the saturation and the saturation dependent properties are represented constant element-wise 



Journal of Computational Physics 513 (2024) 113186J. Al Kubaisy, P. Salinas and M.D. Jackson

Fig. 2. The new element pair discretization used in the SM-CVFE method.

for consistency. Despite the use of a discontinuous velocity approximation between control volumes (or elements), the discretization 
described in the next section constructs globally continuous fluxes between control volumes. We employ the finite element method to 
resolve the flow problem following the CVFE approach (e.g. [19,22,31,23,43,4]). Consider the domain (Ω ∈ℝ2) triangulated into 𝑁𝑒
elements with a constrained conforming Delaunay triangulation [45]. The finite element approximation of the total Darcy velocity 
(𝐯𝐭 ) is

𝐯𝐭 (𝐱) =
∑
𝑗∈Ω

𝚽𝑗 (𝐱)𝑣𝑡,𝑗 , (7)

where 𝚽(𝐱) denotes the linear basis function of the velocity and 𝑣𝑡 is the velocity unknown coefficient. The pressure (𝑝) is determined 
by

𝑝 =
∑
𝑗∈Ω

Ψ𝑗𝑝𝑗 , (8)

where Ψ𝑗 is the pressure basis function that is 1 for element 𝑗 and vanishes elsewhere and 𝑝𝑗 is the pressure unknown coefficient. 
This approximation employs a discontinuous space for the pressure that varies element-wise.

It is worth remarking that the SM-CVFE element approximation described by this work differs from the MFE and the approach of 
Salinas et al. [43]. In the MFE method, the velocity is approximated using an RT-0 element. The Salinas et al. [43] approach uses 
two meshes; an element mesh and a control volume mesh as shown in Fig. 1b, and therefore requires higher order approximations 
for both flow variables, described by 𝑃2,𝐷𝐺 − 𝑃1,𝐷𝐺 .

3.2. Discretization of Darcy’s equation

We capture the weak form of Darcy’s equation by multiplying with 𝚽𝐢, a test function from the velocity basis function space. 
Then we integrate over the computational domain (Ω)

∫
Ω

𝚽𝐢 ⋅ 𝐯𝑡 𝑑Ω+ ∫
Ω

𝚽𝐢 ⋅
(
𝜆𝑡𝐊 ⋅∇𝑝

)
𝑑Ω= 0. (9)

The following steps are essential to incorporate the discontinuous Galerkin pressure approximation globally in the domain. We 
decompose the domain using the triangulation ( = ∪𝑁𝑒

𝑒=1Ω𝑒) where 𝑁𝑒 is the total count of elements and Ω𝑒 is the element domain. 
To accommodate for the pressure discontinuity between elements, we apply integration by parts twice on the second term following 
Salinas et al. [43] and Al Kubaisy et al. [4], which yields

∑
Ω𝑒∈Ω

[
∫
Ω𝑒

𝚽𝐢 ⋅ 𝐯𝑡 𝑑Ω𝑒 + ∫
Ω𝑒

(
𝚽𝐢 ⋅ 𝜆𝑡𝐊

)
⋅∇𝑝 𝑑Ω𝑒 − ∫

Γ𝑒

(
𝚽𝐢 ⋅ 𝜆𝑡𝐊𝑝̃

)
⋅ 𝐧 𝑑Γ𝑒 + ∫

Γ𝑒

(
𝚽𝐢 ⋅ 𝜆𝑡𝐊𝑝

)
⋅ 𝐧 𝑑Γ𝑒

]
= 0, (10)

where Γ𝑒 is the element boundary, n is the unit normal vector and 𝑝̃ corresponds to the pressure of the neighboring element that 
shares an interface with element Ω𝑒. We combine the third and fourth terms on the left hand side into a single term that is referred 
to here as the jump term (see also [4]). The finite element approximations, shown in Eqn. (7) and (8), for the velocity and pressure, 
respectively, are substituted in Eqn. (10), which gives

∑
Ω𝑒∈Ω

𝑁𝑣∑
𝑗=1

∫
Ω𝑒

𝚽𝐢 ⋅𝚽𝐣𝑣𝑡,𝑗 𝑑Ω𝑒 +
∑
Ω𝑒∈Ω

𝑁𝑝∑
𝑘=1

∫
Ω𝑒

(
𝚽𝐢 ⋅ 𝜆𝑡𝐊

)
⋅∇Ψ𝑘𝑝𝑘 𝑑Ω𝑒 +

∑
Γ𝑒∈Ω

𝑁𝑝∑
𝑘=1

∮
Γ𝑒

(
𝚽𝐢 ⋅ 𝜆𝑡𝐊ℎΨ𝑘

(
𝑝𝑘 − 𝑝̃𝑘

))
⋅ 𝐧 𝑑Γ𝑒 = 0, (11)

𝑁𝑣 is the total count of velocity nodes, 𝑁𝑝 is the total count of pressure nodes, and 𝐊ℎ denotes the harmonic mean permeability 
of the two neighboring elements that share the interface (Γ𝑒). The jump term described here differs from the one defined in the 
4

HyCVFE method [4]; by construction of the SM-CVFE method, the jump term contribution is nonzero between all neighboring 
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Fig. 3. Snippet of a mesh comparison for the discretization of (a) the SM-CVFE method and (b) the HyCVFE method [4] with 2 subdomains. The SM-CVFE discretization 
applies the jump term for all neighboring elements while the HyCVFE method incorporates the jump term solely along subdomain boundaries.

elements (Fig. 3a), whereas the HyCVFE method incorporates a nonzero jump term only for elements at subdomain boundaries (Γ𝑑) 
(Fig. 3b).

In the SM-CVFE approach, since the pressure is represented element-wise, the second term in Eqn. (11) vanishes because the 
derivative of the pressure basis function is zero. This approach for derivation of the new element pair (𝑃1,𝐷𝐺 − 𝑃0,𝐷𝐺) achieves the 
final discretized form of Darcy’s equation as

∑
Ω𝑒∈Ω

𝑁𝑣∑
𝑗=1

∫
Ω𝑒

𝚽𝐢 ⋅𝚽𝐣𝑣𝑡,𝑗 𝑑Ω𝑒 +
∑
Γ𝑒∈Ω

𝑁𝑝∑
𝑘=1

∮
Γ𝑒

(
𝚽𝐢 ⋅ 𝜆𝑡𝐊ℎΨ𝑘

(
𝑝𝑘 − 𝑝̃𝑘

))
⋅ 𝐧

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
jump term

𝑑Γ𝑒 = 0. (12)

Contrary to the presented method, the HyCVFE applies a first order approximation for pressure, and thus the derivative of the 
pressure basis function does not vanish; the term analogous to the second term on the left hand side of Eqn. (11) is non-zero for the 
HyCVFE method.

3.3. Discretization of the continuity equation

In our SM-CVFE approach, the control volume mesh is the same as the element mesh. Consider Ω𝑒 that denotes the element 
entity at which flux continuity is applied. In order to derive the weak form of the continuity equation, Eqn. (3), we multiply with 
Ψ𝑖, the pressure basis function, and integrate over the computational domain (Ω). We then substitute the finite element velocity 
approximation, Eqn (7) as follows

∑
Ω𝑒∈Ω

𝑁𝑣∑
𝑗=1

∫
Ω𝑒

Ψ𝑖∇ ⋅𝚽𝐣𝑣𝑡,𝑗 𝑑Ω𝑒 −
∑
Ω𝑒∈Ω

∫
Ω𝑒

Ψ𝑖𝑞𝑡 𝑑Ω𝑒 = 0. (13)

Next, we use the divergence theorem for transforming the volume integral of the first term which yields

∑
Γ𝑒∈Ω

𝑁𝑣∑
𝑗=1

∫
Γ𝑒

Ψ𝑖
(
𝚽𝐣𝑣̃𝑡,𝑗

)
⋅ 𝐧 𝑑Γ𝑒 −

∑
Ω𝑒∈Ω

∫
Ω𝑒

Ψ𝑖𝑞𝑡 𝑑Ω𝑒 = 0, (14)

with 𝑣̃𝑡 indicating the velocity approximation over the control volume boundary (Γ𝑐𝑣). We describe how to compute 𝑣̃𝑡 in section 3.6. 
The first term in Eqn. (14) accounts for fluxes between elements while the second term incorporates source terms.

3.4. Discretization of the transport equation

Consider the mass conservation equation, Eqn. (5) where we apply the spatial discretization over the elements (Ω𝑒) and an 
explicit time discretization. Since the fractional flow term is a function of saturation that can be nonlinear (a quadratic or even a 
cubic function), we linearize the term (𝑓𝛼) in the saturation equation, see Eqn. (2) and (4). Finally, to determine the saturation of 
phase 𝛼 (𝑆𝛼), we use the integral-form of the equation, given by

∫
Ω𝑒

𝜙(𝑆𝑛+1𝛼,𝑒 −𝑆𝑛𝛼,𝑒)
Δ𝑡

𝑑Ω𝑒 = −∮
Γ𝑒

(
𝑓𝑛𝛼,𝑒𝐯̃

𝑛+1
𝑡 +

𝜕𝑓𝛼,𝑒

𝜕𝑆𝛼,𝑒

|||||
𝑛

(𝑆𝑛+1𝛼,𝑒 −𝑆𝑛𝛼,𝑒)𝐯̃
𝑛+1
𝑡

)
⋅ 𝐧𝑑Γ𝑒 + ∫

Ω𝑒

𝑞𝛼𝑑Ω𝑒, (15)
5

with the superscripts 𝑛 and Δ𝑡 denoting the time step and the time step size, respectively.
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Fig. 4. Diagram of two neighboring elements 𝑒𝐴 and 𝑒𝐵 to demonstrate the velocity approximation along an interface.

3.5. Coupled flow and transport

In the implementation of the coupled flow and transport of the SM-CVFE method presented here, we use an implicit-pressure 
explicit-saturation (IMPES) based approach. This solution approach is commonly used as it is straightforward to implement for 
validation and testing [4]. For completeness, the IMPES coupling approach is briefly described as follows. The stability of the system 
is achieved by restricting the Courant–Friedrichs–Lewy (CFL) number such that CFL < 1 [5]. The range of CFL numbers tested in this 
study spans from 0.01 to 0.1. For the flow model, we combine Eqn. (12) and (14) to construct the algebraic system given by{

𝐀𝐯𝑛+1𝑡 +𝐁𝑝𝑛+1 = 𝑏1
𝐂𝐯𝑛+1𝑡 = 𝑏2

(16)

where A denotes the mass matrix, and B is the stiffness matrix that is assembled by the jump term connecting neighboring elements; 
see the first and second terms, respectively, in Eqn. (12). C is the divergence-free operator computed by the first term in Eqn. (14). 
The IMPES-based approach involves solving the flow model while assuming the saturation field is unchanged. The primary flow 
unknowns, 𝐯𝑛+1𝑡 and 𝑝𝑛+1, described in Eqn. (16), can be solved simultaneously or by using a projection-based approach [15,46]. We 
employ the latter approach where the pressure is first resolved by eliminating the velocity unknown. Then the velocity is determined 
by substituting the pressure solution in Eqn. (12). Next, the saturation is solved explicitly via Eqn. (15).

3.6. Interface approximations

The velocity approximation at the interfaces between elements and, therefore, control volumes of the SM-CVFE is constructed 
by evaluating the effective contribution of the element velocity at the midpoint on either side of the interface, denoted by 𝐯𝑡,𝑒𝐴 and 
𝐯𝑡,𝑒𝐵 . These are combined using a permeability-weighted harmonic average as described in Al Kubaisy et al. [4]:

𝐯̃𝑡(𝐱) =
1
2

(
𝐊ℎ𝐊−1

𝑒𝐴
𝐯𝑡,𝑒𝐴 (𝐱) +𝐊ℎ𝐊−1

𝑒𝐵
𝐯𝑡,𝑒𝐵 (𝐱)

)
, (17)

where 𝐯̃𝑡 is the velocity approximation on the interface shared by the two elements 𝑒𝐴 and 𝑒𝐵 , 𝐊−1 is the inverse of the element 
permeability, and 𝐱 is the midpoint position on the interface. The schematic of two neighboring elements is shown in Fig. 4. By 
construction of the SM-CVFE approach, the velocity in each element is not uniform and differs based on the location of the midpoint, 
due to the first order Lagrangian approximation used for velocity. Therefore, the velocity on each interface of an element is not 
the same. The described velocity approximation is applied in the coefficients of the divergence-free operator (C), Eqn. (14), and in 
the saturation equation, Eqn. (15). We adopted a first-order upwind scheme to approximate saturation dependent properties at the 
interface, including the total mobility, the fractional flow term, and the derivative of the fractional flow term. In the next section, we 
show that the scheme is effective in producing stable, mass conservative, and monotonic solutions.

4. Numerical experiments

The validation of the SM-CVFE approach for the single phase model and two phase flow model are shown in experiments 
4.1 and 4.2. We share the convergence with respect to the semi-analytical Buckley-Leverett solution [11]. Then we demonstrate 
the performance of the SM-CVFE in three additional experiments with geometrical complexities. In experiment 4.3 we test two 
fracture-barrier intersection scenarios. Next, geostatistical fields are generated for a single channel with meandering geometry and a 
challenging flow system of intersecting channels in experiments 4.4 and 4.5, respectively.

The relative permeability for two phase flow that we incorporated in our implementation is the Brooks-Corey model [10] given 
by

𝑘𝑟𝑤(𝑆𝑤) =

(
𝑆𝑤 − 𝑆𝑤,𝑟

1 −𝑆𝑤,𝑟 − 𝑆𝑛𝑤,𝑟

)𝑛𝑤

, (18)

and (
1 −𝑆𝑤 − 𝑆𝑛𝑤,𝑟

)𝑛𝑛𝑤
6

𝑘𝑟𝑛𝑤(𝑆𝑤) = 1 −𝑆𝑤,𝑟 − 𝑆𝑛𝑤,𝑟
, (19)
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Table 1

Model setup for the numerical experiments.

Numerical experiment

4.1 4.2 4.3 4.4 4.5

X-axis domain length (𝐿𝑥) 1. 1. 1. 1. 1.

Y-axis domain length (𝐿𝑦) 0.05 0.05 1. 0.5 1.

Porosity (𝜙) 0.1 0.1 variable 0.1 0.1

Corey exponent of wetting phase (𝑛𝑤) N/A 2. 1. 2. 2.

Corey exponent of non-wetting phase (𝑛𝑛𝑤) N/A 2. 1. 2. 2.

Residual wetting saturation (𝑆𝑤,𝑟) N/A 0.2 0. 0.2 0.2

Residual non-wetting saturation (𝑆𝑛𝑤,𝑟) N/A 0.3 0. 0.3 0.3

Viscosity ratio (𝜇𝑛𝑤/𝜇𝑛) N/A 2. 2. 2. 2.

Table 2

Comparison of the DoF requirements in the numerical experiments.

Numerical Number of CVFE SM-CVFE Factor

experiment elements DoF DoF (increase)

4.1 (case I and II, 𝑛𝑥 = 40) 160 443 1120 2.53

4.1 (case I and II, 𝑛𝑥 = 80) 320 883 2240 2.53

4.1 (case I and II, 𝑛𝑥 = 160) 640 1763 4480 2.54

4.2 (𝑛𝑥 = 40) 160 566 1280 2.26

4.2 (𝑛𝑥 = 80) 320 1126 2560 2.27

4.2 (𝑛𝑥 = 160) 640 2246 5120 2.28

4.3 (case I) 1280 3934 10240 2.60

4.3 (case II) 1310 4024 10480 2.60

4.4 (case I, uniform mesh) 591 1844 4728 2.56

4.4 (case II, uniform mesh) 1428 4394 11424 2.60

4.4 (case III, uniform mesh) 2992 9132 23936 2.62

4.4 (non-uniform mesh) 3583 10834 N/A N/A

4.5 3900 N/A 31200 N/A

where 𝑆𝛼,𝑟 and 𝑛𝛼 are the residual 𝛼 phase saturation and the Corey exponent of 𝛼 phase, respectively. The parameters of the 
numerical experiments are provided in Table 1.

The computational efficiency of the numerical experiments is compared using the Degrees of Freedom (DoF) or the total number 
of unknowns in a given time step. We use

𝐷𝑜𝐹 =𝑁𝑝 +𝑁𝑣 +𝑁𝑠, (20)

to describe the computational requirements of the approximation where 𝑁𝑠 denotes the saturation DoF, equivalent to the total count 
of control volumes. In Table 2, we highlight the DoF requirements used in the following numerical experiments.

4.1. Single phase flow

The validation for single phase flow is captured in two pseudo one-dimensional cases. In case I, a homogeneous medium is used 
with pressure boundary conditions applied on the left and right, with the top and the bottom boundaries set to no-flow. Case II has 
a similar setup except that the permeability is heterogeneous. The mesh used in the model is shown in Fig. 5a where the number of 
elements along the x-axis (𝑛𝑥) is 40, while the permeability of cases I and II are shown in Fig. 5b and 5c, respectively. The steady state 
solution of pressure (Fig. 5d) is a straight line for case I while the heterogeneity introduced in case II is reflected in the solution as a 
change of slope at position 𝑥 = 0.5. In case II, the right region, shown between [0.5, 1.0], has half the slope of the left region, between 
[0., 0.5] which is correct with the change of property. The continuous pressure solution obtained using the classical CVFE method on 
the same mesh is shown in Fig. 5d and corroborates the SM-CVFE results. In both cases, the 𝐷𝑜𝐹𝐶𝑉 𝐹𝐸 and 𝐷𝑜𝐹𝑆𝑀−𝐶𝑉 𝐹𝐸 are 443 
and 1,120, respectively, see Table 2. Thus, the SM-CVFE method requires 2.5 times more degrees of freedom than the CVFE method, 
similar requirements to the MFE method [19,22]. The increase of the SM-CVFE method computational requirements is attributed 
to a higher resolution of the control volume mesh that is consistent with the element mesh and one higher order of the velocity 
approximation compared to the CVFE method. To demonstrate the convergence of the SM-CVFE approach, we refine the mesh along 
the x-axis (𝑛𝑥 = 80 and 160). In both cases, the proposed SM-CVFE method yields linear convergence, see Fig. 5e.

4.2. Buckley-Leverett problem

For the two phase model validation, we simulate the Buckley-Leverett problem on a pseudo one-dimensional, homogeneous 
7

domain. The domain is discretized with several mesh resolutions in the direction of the x-axis (𝑛𝑥 = 40, 80, 160). The model setup is 
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Fig. 5. The single phase validation model experiment 4.1: (a) The mesh discretized with 40 elements along the x-axis. (b) Case I permeability field. (c) Case II 
permeability field. (d) Comparison of pressure solution of both cases, I and II. (e) Convergence of the pressure solutions for both cases. For case I, the CVFE pressure 
solution is found in perfect agreement with the exact, analytical solution (not included in the plot).

Fig. 6. The two phase validation model in experiment 4.2 for the Buckley-Leverett problem. (a) The convergence of numerical SM-CVFE method to the semi-analytical 
solution as the mesh is refined. The two clusters of curves refer to 0.1 and 0.2 PVI. For the numerical comparison, we use several mesh resolutions along the x-axis 
including 40, 80, and 160 elements. (b) A comparison of the 𝐿1 norm of the error for the reference CVFE method, the HyCVFE method and the developed SM-CVFE 
method.

as follows: the initial non-wetting phase saturation (𝑆𝑛𝑤,𝑖) is 0.8, and the residual wetting phase saturation (𝑆𝑤𝑟) is 0.2. We inject the 
wetting phase from the left to the right whereas the top and bottom have no-flow boundary conditions. Fig. 6a provides a comparison 
of the SM-CVFE saturation solution to the semi-analytical Buckley-Leverett reference solution after 0.1 and 0.2 pore volume injected 
(PVI). We observe that the agreement between the numerical and semi-analytical solution is improved as the mesh is refined. We 
demonstrate that the system is locally and globally mass conservative from the representative area under the cluster of curves; for 
each time step, the area under the curve represents the same wetting phase mass injected into the system. Fig. 6b compares the L1 
norm of the saturation solution error of the SM-CVFE method and the classical CVFE with respect to the semi-analytical solution. 
The overlap of the two curves indicates that for a given number of degree of freedom, the error is essentially the same in both 
methods. Additionally, both curves follow the same convergence trend as we increase the mesh resolution and provide near linear 
8

convergence.
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Fig. 7. The mesh for experiment 4.3. The background, the fracture, and the barrier regions are denoted by gray, red, and blue colors, respectively. Case I: the fracture 
reaching the barrier without crossing through shown in (a) and the close up in (c). Case II: the fracture penetrating the barrier in (b) and the close up in (d). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 3

Geometry and petrophysical properties of different regions for experiment 4.3.

Fracture Barrier Background

Aperture 0.005656𝐿𝑥 0.005656𝐿𝑥 N/A

Porosity 1. 0. 0.1

Log permeability 6. -6. 0.

𝐿𝑥 denotes the length of the domain with respect to the x-axis.

4.3. Fracture-barrier intersection

The experiment described here is adopted from Hoteit and Firoozabadi [27]. We explore both of their cases I and II. In case 
I, a highly permeable fracture spans diagonally from the bottom left to the top right of the domain such that it reaches a barrier 
without crossing it (Fig. 7a and close up in Fig. 7c). Case II is similar except that the fracture penetrates the barrier (Fig. 7b and 
close up in Fig. 7d). Fracture and barrier petrophysical properties are provided in Table 3. We apply pressure boundary conditions 
from the bottom left corner to the top right corner and the wetting phase is injected at the bottom left corner. The remaining domain 
boundaries are set to no-flow. The number of elements in cases I and II are 1,280 and 1,310, respectively.

We compare the saturation solutions obtained using the proposed SM-CVFE and the classical CVFE method for both cases (Fig. 8). 
For the early time step (Fig. 8a-b and Fig. 8e-f for case I and II, respectively), the saturation front of the proposed SM-CVFE method 
reaches the barrier whereas the CVFE solutions exhibit overall delay in the saturation fronts. At the later time step, we observe in 
both cases the injected fluid phase migration beyond the barrier in Fig. 8 c-d and Fig. 8 g-h with different flow behaviors in the 
fracture and barrier regions which in turn affect the flow in the matrix region. In both cases, the solutions of the classical CVFE 
method emphasize the inconsistency to preserve material properties due to the two mesh approach in comparison to the single mesh 
approach. The 𝐷𝑜𝐹𝐶𝑉 𝐹𝐸 and 𝐷𝑜𝐹𝑆𝑀−𝐶𝑉 𝐹𝐸 for case I are 3,934 and 10,240, respectively, while case II required 4,024 and 10,480, 
respectively, see Table 2.

Next, we compare the saturation solutions of the classical CVFE, the proposed SM-CVFE, and the MFE-DG method [27] in Fig. 9. 
It is worth mentioning the differences in the approach and the employed mesh; the MFE-DG approach represented the fractures and 
barriers as lower dimensional entities and employed a mesh that is slightly different to the one used in the CVFE and the SM-CVFE 
results. Moreover, the MFE-DG method applied a slope limiter in the formulation to reduce the numerical dispersion of the saturation 
9

solution. Despite the aforementioned differences, after 0.5 PVI the flow patterns around the fracture and barrier in both cases I and 
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Fig. 8. The wetting phase saturation solution for experiment 4.3. The top row refers to case I. The solution after 0.08 PVI is shown in (a) and (b) for the CVFE method 
and the SM-CVFE method, respectively. After 0.5 PVI, the solution is shown in (c) and (d) for the CVFE method and the SM-CVFE method, respectively. The bottom 
row features case II. After 0.05 PVI, the solution is shown in (e) and (f) for the CVFE method and the SM-CVFE method, respectively. After 0.5 PVI the solution is 
shown in (g) and (h) for the CVFE method and the SM-CVFE method, respectively.

Fig. 9. The saturation solution comparison including the results of MFE-DG method from Hoteit and Firoozabadi [27] for experiment 4.3 at 0.5 PVI. For comparison 
purposes, the color map used here follows the one used by Hoteit and Firoozabadi [27]. The top row shows case I results using the classical CVFE in (a), the SM-CVFE 
in (b), and the MFE-DG by Hoteit and Firoozabadi [27] in (c). The bottom row shows case II using the classical CVFE in (d), the SM-CVFE in (e), and the MFE-DG by 
Hoteit and Firoozabadi [27] in (f). The results shown in (c) and (f) were obtained from Fig. 12 in [27].

II for the SM-CVFE and the MFE-DG are remarkably similar and are different to the solution obtained using the CVFE method. The 
reason is essentially due to the use of a single mesh approach that is analogous to the MFE. The SM-CVFE solutions presented in 
this experiment are comparable to those obtained using specialized numerical methods that include, but are not limited to, discrete 
10

fracture networks (DFN) within the mixed finite element frameworks.
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Table 4

The parameters used to generate the spatial permeability fields (GSTools 
package) for experiment 4.4.

Region Channel Background

Variogram exponential exponential

Dimensions 2 2

Length scale 1. 0.4

Anisotropy ratio 1. 0.3

Seed 200000 100000

Nugget 0. 0.

Variance 1. 1.

increment* 6 0

* Parameter used as a post-processing step to combine the fields.

Fig. 10. The log permeability distribution of experiment 4.4. The channel region is denoted with high permeability values. This permeability distribution refers to 
case III with 2992 elements.

4.4. Meandering channel flow

The aim of the experiment is to highlight the effectiveness of the SM-CVFE formulation to capture accurate solutions of models 
with element to element variability in the underlying petrophysical properties while simultaneously eliminating the undesirable arti-

ficial mass leakage effects exhibited by the control volumes spanning different permeability regions in the classical CVFE method. We 
consider a channelized sand-shale system comprised of a high permeability channelized sand body embedded in a low permeability, 
shale background. The permeability distribution is shown in Fig. 10 where two fields were generated then combined to create a 
bimodal permeability distribution. A geostatistical tool was used to generate those fields; GSTools python package used with the 
parameters provided in Table 4. We use several mesh resolutions in this model with the total elements of 591, 1428, and 2992 for 
cases I, II, and III, respectively. The average variance of the permeability distribution is preserved for all cases. The pressure boundary 
conditions are applied from the left to the right of the domain while the wetting phase is injected from the left boundary. The top 
and the bottom boundaries are set to no-flow.

We compare the saturation solution obtained using the classical CVFE method for cases I-III (see Fig. 11a-c) after 0.03 PVI. In case 
I, the left winding of the meander produces a non-physical connection in the channel, see Fig. 11a, as a result of the construction 
of the coarse control volume dual mesh. Case II uses relatively smaller control volumes which prevent the non-physical connection; 
however, the leakage exhibited around the channel is still considerable. Finally, case III utilizes the finest tested mesh which reduces 
the leakage around the channel. From Fig. 11a-c we note that, at a given time step, the location of the wetting phase front differs 
considerably as the mesh is refined while using the CVFE method because a coarse mesh contributes to additional loses of injected 
fluid smeared across the large sand-shale interface, delaying the propagation of the saturation front in the channel region. Second, 
the meandering of the channel exaggerates the effect of the leakage when compared to a straight channel path. The meandering of 
the channel creates a larger interface with the background region and, therefore, increases the leakage effects. The CVFE method is 
inadequate to capture the flow and transport dynamics without exploiting a very fine mesh. Now consider the saturation solutions 
provided in Fig. 11d-f which show the corresponding SM-CVFE solution for cases I-III, respectively. We observe excellent agreement 
of the saturation front for the SM-CVFE solution at a given time step irrespective of the mesh size, due to the use of single mesh that 
eliminates the non-physical mass leakage in the transport solution. We note that the effect of numerical dispersion of the saturation 
front is reduced as we refine the mesh (Fig. 11d compared to Fig. 11e and Fig. 11f) that is consistent with convergence analysis 
demonstrated in numerical experiment 4.2.

We quantify each method’s mesh sensitivity with respect to the non-physical leakage. We compute the non-physical leakage to in 
the low permeability, background region (Ω𝑙𝑜𝑤) using:∑

𝑘∈Ω𝑙𝑜𝑤

(
𝑆𝑤,𝑘 − 𝑆𝑤,𝑟,𝑘

)
Ω𝑐𝑣,𝑘
11

𝜖𝑚𝑎𝑥 = ∑
𝑘∈Ω𝑙𝑜𝑤 Ω𝑐𝑣,𝑘

(21)



Journal of Computational Physics 513 (2024) 113186J. Al Kubaisy, P. Salinas and M.D. Jackson

Fig. 11. The wetting phase saturation of experiment 4.4 after 0.03 PVI. The saturation distribution of the classical CVFE method solution is displayed on the left 
column and the SM-CVFE method is displayed to the right. Case I: the coarse mesh in (a) and (d). Case II: medium refinement in (b) and (e). Case III: the fine mesh in
(c) and (f). Note that the left boundary’s inlet saturation that does not coincide with the channel is not accounted for in the PVI approximation in order to eliminate 
the irrelevant mesh effects from our study. We include an outline of the channel boundaries on the left column to emphasize the leakage along the boundaries as we 
refine the mesh in cases I, II, and III.

where 𝑆𝑤,𝑘 is the wetting phase saturation of control volume k, 𝑆𝑤,𝑟,𝑘 is the residual wetting saturation of control volume k, and 
Ω𝑐𝑣,𝑘 is the control volume. This approach follows the work of Salinas et al. [43] and Al Kubaisy et al. [4] in order to quantify the 
undesirable leakage effects in the saturation solution. Fig. 13a compares the non-physical leakage (𝜖𝑚𝑎𝑥) in the SM-CVFE and the 
CVFE methods. We observe a consistent improvement in the saturation solution of the SM-CVFE such that the leakage is reduced by 
more than 2 orders of magnitude compared to the CVFE approach. Additional refinement of the mesh in the CVFE does not close the 
2 order of magnitude gap with the SM-CVFE.

Next, we extend this experiment with an additional case for the reference CVFE method to accommodate non-uniform meshes. 
As shown in Fig. 12a, the mesh refinement is applied near the interface between the channel and background region. The saturation 
solution in Fig. 12b, captured after 0.03 PVI, shows the saturation front has advanced further into the channel compared to previous 
cases (I-III). However, we note that the position accuracy of this saturation front is not comparable with that achieved by the SM-

CVFE method. This case highlights the necessity of minimizing control volumes that span different regions when employing the CVFE 
method. Ideally, the control volume size need to approach zero to yield solutions comparable to those obtained with the SM-CVFE 
approach.

The blue cross shown in Fig. 13a refers to the non-uniform mesh employed for the CVFE method. Despite the marginal improve-

ment in leakage reduction, a comparison for equivalent DoF between the SM-CVFE (uniform mesh) and CVFE (non-uniform mesh) 
methods reveals that the SM-CVFE method still exhibits a two order of magnitude improvement in accuracy compared to the classical 
12

CVFE method.
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Fig. 12. (a) The non-uniform mesh for experiment 4.4. Refinement is applied near the channel boundaries. (b) The wetting phase saturation of the CVFE method 
after 0.03 PVI.

Fig. 13. Comparison of different methods in experiment 4.4. (a) The mass leakage plot for the reference CVFE method and the proposed SM-CVFE method as we 
refine the mesh. We observe about two orders of magnitude improvement in the solution of the SM-CVFE compared to the reference solutions for both uniform 
and non-uniform meshes.(b) Comparison of the DoF requirements as the mesh is refined showing the reference CVFE, the proposed (SM-CVFE) method, and Salinas 
et al. [43] method. The dotted line has a slope of one and is used as a reference to the CVFE method’s computational requirements.

Finally, we compare the DoF of the reference CVFE with the SM-CVFE and the Salinas et al. [43] approximations in Fig. 13b. 
The cross-plot enables us to compare the computational requirements of the different methods for a given mesh. The CVFE reference 
unit slope is a benchmark. The SM-CVFE method computational requirements are slightly less than half that of the Salinas et al. [43]

method despite both approximations relying on discontinuous discretization techniques. The SM-CVFE is more effective since it is 
based on a lower order approximation while employing a single, consistent mesh; it requires about 2.5 times the DoF of the reference 
CVFE method for the same mesh. In this experiment we show that the saturation solution obtained from the SM-CVFE exhibits 
significant reduction in the undesirable leakage compared to the reference CVFE independent of the mesh resolution. When modeling 
flow through complex geometry, this approximation outperforms conventional methods due to the elimination of the secondary mesh 
that introduces inaccurate solutions along subdomain interfaces. In the SM-CVFE method, the ability to capture accurate flow model 
in complex geometrical domains stems from the use of unstructured, flexible elements rather than mesh refinement.

4.5. Intersecting channels

In this experiment, we introduce a complex 2D domain of intersecting channels with the permeability distribution shown in 
Fig. 14. Similar to the previous experiment, we generate several geostatistical fields then combine them to create the final permeabil-
13

ity distribution. We note that the high permeability regions are concentrated in the channels (1-5 in Fig. 14) where it is nonuniform 
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Fig. 14. The log permeability distribution of experiment 4.5. The numbers to the left aid to identify individual channels in the text.

Table 5

The parameters used to generate the spatial permeability fields (GSTools package) 
for experiment 4.5.

Region Irregular channel Sinusoidal channel Background

Variogram exponential exponential exponential

Dimensions 2 2 2

Length scale 1. 1. 0.4

Anisotropy ratio 1. 1. 0.3

Seed 208 208 62534

Nugget 0. 0. 0.

Variance 1. 1. 1.

increment* 1.5 1. 0

* Parameter used as a post-processing step to combine the fields.

and spans a wide range of values. The setup parameters needed to generate the geostatistical permeability fields are provided in 
Table 5. In the table, the irregular channel settings are used for channels 2 and 4, while the sinusoidal channel refers to channels 1, 
3, and 5. A single mesh resolution is demonstrated in this experiment where the domain is discretized into 3,900 triangular elements 
and the corresponding 𝐷𝑜𝐹𝑆𝑀−𝐶𝑉 𝐹𝐸 required for modeling the coupled flow and transport is 31,200 (Table 2). Pressure boundary 
conditions are applied from the left to the right boundary while injection of the non-wetting phase is taking place from the left 
boundary. The top and bottom boundaries are set to no-flow.

We provide the saturation solution at several time steps in Fig. 15. After 0.03 PVI (Fig. 15a) the saturation solution shows the 
migration of injected fluid phase from channels 4 to 3, as well as the inter-connectivity between channels 1 and 2 as a result of 
intersections near the inlet. The next time step shown in Fig. 15b refers to the saturation solution after 0.07 PVI with the injected 
fluid advanced over half way through channel 3 which provides the shortest flow path to the outlet. After breakthrough, both Fig. 15c 
and 15d show that the overall sweep through the bottom region is more efficient when compared to the top region. In this example, 
we demonstrate that the general SM-CVFE approach is applicable to model flow and transport through complex intersecting domains, 
including highly heterogeneous and nonuniform permeability fields.

5. Discussion

In this paper, we have described the original formulation of the single-mesh CVFE (SM-CVFE) method and demonstrated the 
versatility of the approach using several numerical experiments featuring domains with complex geometries. In the last two numerical 
experiments, 4.4 and 4.5, we constructed highly heterogeneous, geostatistical permeability fields. Those are challenging to resolve 
accurately without resorting to a very fine mesh when using the classical CVFE approach especially along boundaries between 
subdomains. Now consider a slight modification to the last two experiments where we assign distinct permeability values and apply 
them uniformly to each region [42,31]. The use of HyCVFE method [4] will outperform the proposed SM-CVFE, the MFE, the 
classical CVFE, and the Salinas et al. [43] methods. In such a model, the uniform permeability regions are accurately and efficiently 
resolved using the subdomain approach where we combine the continuous pressure approximation in homogeneous subdomains 
14

while exclusively assigning hybrid nodes that account for jumps in the solution along material boundaries, by preventing the control 
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Fig. 15. The wetting phase saturation profile for experiment 4.5. The saturation solution before breakthrough in (a) and (b) with 0.03 and 0.07 PVI, respectively. 
The saturation solution after breakthrough in (c) and (d) with 0.11 and 0.16 PVI, respectively.

volumes from spanning subdomain boundaries. The approach is very efficient since it has similar DoF count to the CVFE and only 
introduces a small overhead to the computational requirements [4]. The computational overhead associated with using the HyCVFE 
method in comparison to the classical CVFE for numerical experiment 4.4 is 5%, 7%, and 11% for cases I, II, and III, respectively, 
while for numerical experiment 4.5 the HyCVFE method introduces about 11%.

The finite volume method using the two-point flux approximation (FV-TPFA) is well-suited for capturing cell-to-cell variability 
in material properties (e.g. [16]) on k-orthogonal grids. We compared the saturation solutions of FV-TPFA with the SM-CVFE to 
assess the robustness of FV-TPFA on the unstructured mesh shown in Fig. 16a that features variable element sizes and internal angle 
distributions, while exhibiting moderate permeability contrast between the background and the channel region. A snapshot of the 
saturation solution at 0.13 PVI for the SM-CVFE and the FV-TPFA is shown in Fig. 16b and 16c, respectively. Fig. 16d shows the 
𝐿∞ norm of the relative error of the FV-TPFA saturation solution across all time steps with respect to the SM-CVFE solution. Large 
error values are observed for the FV-TPFA solution reaching up to 92%, indicating inaccuracies associated with the TPFA method. 
The limitations of FV-TPFA scheme on general, non-k-orthogonal grids were discussed in earlier work (e.g. [1,48,34]). The SM-CVFE 
combines the suitability of FV-TPFA to capture cell-to-cell variations in material properties, with the flexibility of CVFE methods for 
capturing accurate and stable flow field on arbitrary, unstructured and non-k-orthogonal, meshes.

We note that the benefits offered by the SM-CVFE approximation can extend beyond porous media flow problems. For example, 
the study of Hu et al. [29] applied the CVFE method to approximate the shallow water equations for an urban flooding model. 
Despite using a refined mesh where accuracy is needed, the model exhibited non-physical leakage along the boundaries separating 
the buildings from the surrounding region. The potential advantages offered by the SM-CVFE approach to model shallow water 
equations while eliminating the inconsistency of using the two-mesh approach are promising.

Future work

In our implementation of the SM-CVFE method, we used an IMPES-based approach to couple the flow and transport model for 
validation and testing of this new methodology. Ultimately, a fully implicit (FI) or a sequential fully implicit (SFI) (e.g. [32,33]) 
15

approximations are appropriate to overcome the CFL number limitation associated with explicit time stepping.
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Fig. 16. (a) Model and mesh employed to compare the SM-CVFE and FV-TPFA saturation solutions, adapted from that used in experiment 4.5. The blue elements and 
red elements identify the low permeability background and high permeability channel regions, respectively, with an order of magnitude change in the permeability 
contrast between the regions. (b) The SM-CVFE saturation (reference) solution at 0.13 PVI. (c) The FV-TPFA saturation solution at 0.13 PVI. (d) 𝐿∞ norm of the 
relative saturation error for FV-TPFA scheme over all time steps.

Despite the general formulation described in Sections 3.2-3.3, the numerical experiments were established for 2D models. Demon-

strations for 3D domains as well as implementation of parallel framework are essential for adopting this method to large scale and 
realistic subsurface models. The 3D implementation of the SM-CVFE approach has been tested and validated; the results will be 
subject of future work. For 3D models, we recommend employing tetrahedral elements, which offer flexibility in capturing the un-

derlying geometry. The flow unknown discretization outlined in Section 3.1 is applied to tetrahedral elements with an element-wise 
pressure approximation and a linear velocity approximation. The fluxes between elements are then captured through triangular 
interfaces for tetrahedral elements, in contrast to line segments utilized in triangular elements, described in Section 3.6.

It is worth noting that the proposed SM-CVFE approach eliminates the dual control volume mesh which in return reduces the 
overall memory and CPU requirements. Both resources are often limited and can present a challenge to allocate while modeling 
large scale models. This has yet to be tested for 3D numerical experiments and compared to the classical approaches. Finally, 
the conditioning of the system assembled by the equations presents another challenge especially for modeling 3D domains. In our 
experience, realistic large-scale 3D models often suffer from poorly conditioned systems. The implications of the proposed SM-CVFE 
16

method on conditioning for 3D domains will be the subject for future work.
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6. Conclusions

In this work, we presented a new discretization approach: the single mesh control volume finite element (SM-CVFE) method. 
The approach overcomes a well known challenge facing the family of CVFE methods by employing the element pair 𝑃1,𝐷𝐺 − 𝑃0,𝐷𝐺
that requires a single, consistent mesh for the discretization of flow and transport variables. The computational requirements are 
comparable to the MFE methods; the SM-CVFE approach requires about 2.5 times the degrees of freedom (DoF) when compared 
to the CVFE method. The SM-CVFE approach establishes stable solutions that are mass conservative. We validated the approxima-

tion for single phase flow and two phase Buckley-Leverett model. Additionally, we presented several numerical experiments with 
challenging aspects including complex geometries and incorporated geostatistical models with strong heterogeneities. This work is 
first to show that the family of CVFE methods are suitable and efficient for modeling multiphase flow in the presence of element to 
element variations in the material properties. The presented SM-CVFE method offers a powerful framework that applies a consistent 
discretization and achieves accurate solutions while requiring a simple implementation that, in retrospect, seems quite natural. We 
believe that the SM-CVFE techniques put forth in this work provide interesting avenues for generalization and extension within and 
beyond the scope of porous media flow problems.
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