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Abstract

This thesis addresses the problem of model order reduction for quadratic-bilinear systems

through an interconnection-based methodology. Initially, we compute the nonlinear moments for

this type of systems by utilizing a formal power series representation. Two families of reduced-

order model are proposed to achieve moment matching at specific interpolation points, while

maintaining some key properties of the original system. Based on the model-based strategy, we

then apply a data-driven algorithm to achieve reduced-order models by moment matching, using

input and output data. This dual approach, both model-based and data-driven, is applied to the

task of model order reduction for incompressible flows derived directly from the Navier-Stokes

equations. Subsequently, we extend this approach to quadratic-bilinear time-delay systems

by matching an approximated moment, achieved by truncating the power series. We present

findings for both time-delay and non-time-delay systems represented in polynomial form. Finally,

we introduce a two-sided interconnection for the model order reduction of quadratic-bilinear

systems. This approach effectively doubles the number of matched moments in reduced-order

models of the same size by considering both “direct” and “swapped” moments. We propose two

families of reduced-order models: the first is designed based on the idea for general nonlinear

systems, and the second leverages power series approximations.
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Chapter 1

Introduction

In this chapter relevant literature is reviewed, the motivations and objectives of the thesis are

stated, and the thesis organization is described. The chapter is structured as follows. In Section

1.1, the motivations for model order reduction for quadratic-bilinear systems are discussed and

the objectives of the thesis are stated. In Section 1.2 a brief review of the literature for model

order reduction is given. In Section 1.3 the organization and the contributions of the thesis are

discussed. Publications relating from the work in this thesis are listed in Section 1.4.

1.1 Motivation and Objectives

Model order reduction is a hot topic in fluid dynamics field as both linear and nonlinear

techniques have been developed in this area [4]. The majority of established model order

reduction methods have been designed primarily for linear systems and are frequently applied

to linearized models of fluid dynamic systems, which simplifies the complexity inherent in these

high-dimensional simulations [5]. When we turn to nonlinear systems, model order reduction

techniques are much less developed due to the complexity of the system dynamics. However,

in many situations, the problem is not so dire. For instance, the incompressible Navier-Stokes

equations are nonlinear, but the nonlinearities have a specific form, i.e., they are quadratic, see [6].

Motivated by this, we focus on the problem of model order reduction for quadratic-bilinear
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systems by using the interconnection-based method. Another motivation for studying this

problem is that a large class of nonlinear systems can be written in quadratic-bilinear form by

using exact transformations [7]. These transformations can be applied to many different fields,

e.g. fluid mechanic systems, electrical circuit models, and biochemical rate equations [8]. Also,

compared with more general nonlinear systems, quadratic-bilinear systems have a structure that

is similar to that of linear systems (i.e., they are described by matrices) and can be exploited to

simplify the model order reduction problem.

The objective of this thesis is to develop the interconnection-based moment matching method for

quadratic-bilinear system. By exploiting the interconnection-based interpretation, we propose

both one-sided and two-sided reduced-order models by moment matching for quadratic-bilinear

systems. The one-sided moment matching method is then applied to Navier–Stokes type

quadratic-bilinear descriptor systems together with the data-driven algorithm. The extension to

quadratic-bilinear time-delay systems is also provided.

1.2 Model Order Reduction

The objective of model order reduction is to reduce the complexity issue that arises in the

prediction, analysis, and control of modern complex systems. The complexity of a model is

primarily described by its order, i.e., the number of state variables, which describe the dynamics

of real-world systems. This problem, for both linear and nonlinear systems, has been extensively

studied in the systems and control community due to its importance across various fields.

For example, in fluid dynamics, the evolution of quantities of interest is typically described

by the Navier-Stokes partial differential equation (PDE), which is difficult to find solutions.

Since this equation lacks a closed-form solution, simulations and analysis rely on discretization

techniques that convert the PDEs into ordinary differential equations (ODEs) with millions

of states, as mentioned in [6]. Similarly, in the power systems sector, the interconnection of

thousands of generators, buses, and interfacing devices increases the number of state variables

to several thousands, as noted in [9–11]. Consequently, there is demand for simplified models of
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smaller dimension that can provide essential insights for the simulation, analysis, and control

of such systems at a lower computational cost, according to [12]. The model order reduction

problem can be informally described as follows: given a higher order system, the goal is to find

a reduced-order model that preserves some important behaviors (e.g., frequency response) or

properties (e.g., stability).

Over the years, numerous strategies have been developed for effective model order reduction.

Broadly speaking, these methods can be divided into those based on singular value decomposition

(SVD) and those that rely on Krylov projectors and moment matching [13]. SVD-based

techniques for model order reduction typically provide error bounds and enable the preservation

of stability and structural properties. Balanced truncation, as an example, involves transforming

a system into a balanced representation where two positive definite matrices are made diagonal

and equal, as observed in [14], [15], [16], [17], [18] and [19]. Traditionally, controllability and

observability Gramians are utilized in the Lyapunov balancing approach [13], [20]. In the

balanced representation, states that require a substantial amount of input energy for control

contribute minimal energy to the output, and vice versa. Consequently, these states are suitable

candidates for truncation when reducing the system order. Other positive definite matrices

have been explored for use in balanced truncation, such as stochastic balancing [21], [22], [23],

and others [24], [25], [26], [27] and [28]. Balancing techniques have been extended to nonlinear

systems [29], [30], [31], [32]; time-varying systems [33], [34], [35], [36]; and linear differential-

algebraic equations (DAEs) [37], [38], [39], [40], [41], [42]. The Hankel-norm approximation

approach aims to determine an approximant such that the associated error system is optimal in

the Hankel-norm [43], [44], [45], [46]. This method has been developed for nonlinear systems

[47], [48], [49], [50], time-varying systems [51], and linear DAEs [52].

Another widely-used family of model order reduction approaches is the interpolation or Krylov

methods, which construct a reduced order model as a rational interpolant, as seen in [53], [54],

[55], [56], [57], [58], [59]. (These methods are also known as moment matching methods, but in

this paper we try to reserve this expression for the interpretation given in [60]). For a recent

comprehensive overview of these methods, the readers are directed to [61]. The interpolation
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framework described above has been reinterpreted using interconnection of systems and by

relating moments with steady-state signals by [60]. This reinterpretation of the interconnection-

based moment matching methods has allowed to create a theory of model order reduction by

moment matching for general nonlinear systems. Compared with the classical interpolation

approach, the interconnection-based method proposed in [60] has the advantage of allowing easy

enforcement of some of the properties of the reduced order models for both linear and nonlinear

systems. For instance, the technique allows imposing a set of eigenvalues or the relative degree

of the reduced order model. The preservation of global stability for a class of nonlienar models

has been published in [62]. This technique has been further generalized to wide classes of

systems, e.g. linear and nonlinear time-delay systems [63], while a data-driven enhancement

of this method has been given in [64], [65]. The moment matching approach has also been

developed for DAEs, see [66], [67], [68], [69]; for stochastic systems, see [70], [71], [72]; for MIMO

linear system, see [73]; and for 2-D discrete system, see [74]. The “moments” that we have

mentioned above are related to the output via “direct” interconnection and are called “direct”

moments. [75] introduces the “swapped” moments for a class of single-input, single-output,

nonlinear systems, in terms of the evolution of the output of the “swapped” interconnection,

which is an extension of the linear arguments developed in [76], [77]. By considering together the

“direct” moment and the “swapped” moment, a so-called two-sided moment matching method for

linear systems is proposed in [78]. Some data-driven results through “swapped” interconnection

are available in [79] and then the extension to two-sided data-driven model reduction has been

provided in [80], [81]. Moreover, [82] looks at the effect of noise in data-driven model reduction

by moment matching. For further details, the readers are referred to [1].

Two other well-established approaches for model order reduction in fluids are Proper Orthogonal

Decomposition (POD) and balanced truncation, as discussed in [83]. These methods have

been integrated into a unified approach, known as balanced POD in [84], which also evaluates

the performance of these three methods using the linearized flow in a plane channel as an

example. [85] provides an insight into the modal decomposition/analysis techniques that are

extensively employed to investigate a variety of fluid flows, discussing their strengths and

weaknesses through several examples. [6] offers a comprehensive overview of some of the well-
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developed model order reduction techniques for linear systems and explores methods applicable

to nonlinear systems that describe flows. Various results have been proposed for addressing the

model order reduction problem in such systems, including proper orthogonal decomposition

(POD) [86], the trajectory piecewise-linear approach [87], and the discrete empirical interpolation

method [88].

In the frequency domain, quadratic-bilinear systems can be represented by a nonlinear input-

output mapping, which involves an infinite set of multivariate functions [89]. These functions, also

called generalized transfer functions of the subsystems, represent the interconnected components

within the system. Each subsystem contributes to the overall input-output behavior, and

their collective dynamics are captured by this nonlinear map. An initial approach to achieve

one-sided projection matching the first two transfer functions of a quadratic-bilinear system has

been discussed in [7]. This method has been enhanced in [8] by introducing a left projection

subspace matrix to ensure the interpolation of the first two subsystems more effectively. A

quadratic-bilinear DAE was approximated as a bilinear DAE using Carleman bilinearization

in [2], adopting an H2 optimal model order reduction strategy for deriving a reduced-order

system. An equivalent representation, simplifying the structure of the generalized transfer

functions and extending the idea to two-sided interpolation of higher subsystems, was introduced

in [90]. The application of this methodology to a specific class of quadratic-bilinear descriptor

systems, akin to Navier–Stokes type equations, is discussed in [91], while another interpolation

projection framework based on error bounds is proposed in [92]. These approaches preserve the

first two or higher multivariate transfer functions and their first derivatives in the reduced-order

models. Similar findings for multi-input multi-output (MIMO) quadratic-bilinear systems

employing tangential interpolation have been reported in [93]. Additionally, a data-driven

approach for quadratic-bilinear (QB) systems, extending the Loewner framework to linear and

bilinear systems, has been introduced in [94]. A novel reduction technique, capturing higher-

order information and leveraging a simplified structure of the multivariate transfer functions,

has been proposed recently in [95].

Meanwhile, time-delay systems (see the monographs [96–98]) naturally arise in real-world

21



scenarios since, as a matter of fact, every system presents delays to some degree. Consequently,

extensions of model order reduction techniques to time-delay systems have been intensively

studied in recent years. We mention a few, namely [99], [100], [101], but note that the literature

on model order reduction for quadratic-bilinear time-delay systems is scarce. A related work

is [102] which considered bilinear systems with a single delay on the linear term.

1.3 Thesis Outline

The organization of the thesis is as follows.

In Chapter 2 we review the notation and background material related to the interconnection-

based model order reduction method for general nonlinear systems. This includes discussions on

two-sided interconnection, data-driven implementation, and extensions to differential-algebraic

and time-delay systems. Unlike the extensive literature on interpolation/Krylov methods (also

known as moment matching), which are based on the linear notion of moments (i.e., linked to

the transfer function), the method introduced here is based on the nonlinear notion of moments

(i.e., based on the steady-state response).

In Chapter 3 an interconnection-based moment matching method for quadratic-bilinear systems

is developed. Our contribution lies in utilizing the special structure of quadratic-bilinear systems

to provide easily computable approximations of the nonlinear moment and reduced-order models

that preserve the quadratic-bilinear structure. This is not possible with the general nonlinear

framework which is based on the solutions of PDEs, which are difficult to compute, and cannot

be used to preserve the quadratic-bilinear structure.

In Chapter 4 we apply the interconnection-based method to Navier-Stokes type quadratic-bilinear

descriptor systems to address the model order reduction problem for incompressible flows. Based

on the model-based strategy, we then develop a data-driven algorithm to achieve reduced-order

models by moment matching, using input and output data. This category of descriptor systems

is directly formulated from the Navier–Stokes equations. We present three examples to illustrate

the results.
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In Chapter 5 the focus is on employing two-sided interconnection to simultaneously match the

direct moments and the swapped moments. We construct two distinct families of reduced-order

models: the first is based on results for general nonlinear systems, while the second is specially

designed to preserve the quadratic-bilinear structure. The resulting reduced-order models match

moments at 2-ν (distinct) interpolation points, effectively doubling the number of matching

conditions.

In Chapter 6 we present the extension of moment matching results to quadratic-bilinear

time-delay systems. Given the scarcity of the literature on model order reduction for such

systems, we demonstrate that the (nonlinear) moment of these systems can still be characterized

as the solution of an infinite-dimensional system of Sylvester-like equations, facilitating the

approximations for the moment and the associated reduced-order models.

In Chapter 7 a summary of the contributions in this thesis is stated and some important

directions for further research are given.

1.4 Publications

The interconnection-based moment matching method for quadratic-bilinear systems, given in

Chapter 3, is based on the conference paper [103]. The application of this method to Navier-

Stokes type quadratic-bilinear descriptor systems, including both the model-based and the

data-driven approach, given in Chapter 4, is based on journal paper under preparation [104].

The enhancement of the two-sided framework for quadratic-bilinear systems, given in Chapter

5, are based upon the conference paper [105]. The extension to quadratic-bilinear time-delay

systems, given in Chapter 6, is based upon the conference paper [106].
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Chapter 2

Preliminaries

In order to lay the foundation for the following chapters of the thesis, preliminary definitions

and results regarding nonlinear model order reduction by moment matching are reviewed.

The structure of this chapter is as follows. Section 2.1 introduces frequently used notation.

Section 2.2 revisits some foundational concepts associated with nonlinear model order reduction

by moment matching. In Section 2.3 we review data-driven estimation techniques. The

interconnection-based moment matching method for general nonlinear differential-algebraic

equations is discussed in Section 2.4, while Section 2.5 studies general nonlinear time-delay

systems. Section 2.6 discusses some properties of the Kronecker product and the solvability of

Sylvester equation that are essential in this thesis.

2.1 Notation

Standard notation is used throughout the thesis. This is briefly reviewed in what follows for the

reader’s benefit.

R and C denote the sets of real numbers and complex numbers respectively. R≥0 (R>0) denotes

the set of non-negative (positive) real numbers. C0 (C<0) denotes the set of complex numbers

with zero (negative) real part. The set of positive integers is denoted by Z>0. The symbol Iν
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and 0ν denotes the identity and zero matrix of dimension ν ∈ R, respectively. IA represents the

identity matrix with dimension max(m,n) for any matrix A ∈ Rn×m. The symbol ⊗ indicates

the Kronecker product and ⊕ indicates the Kronecker sum. A−1 indicates the inverse of the

matrix A and the superscript ⊤ denotes the transposition operator. For square matrices A and

B, diag(A,B) indicates a block diagonal matrix with A and B on the main diagonal. σ(A)

represents the set of all the eigenvalues of the matrix A. The operator vec(A) indicates the

vectorization of the matrix A ∈ Rn×m, which is the nm × 1 vector obtained by stacking the

columns of the matrix A one on top of the other. B(a,r) represents a ball centered at a of radius

r and λmin(A) represents the minimum eigenvalue of matrix A.

The subscript attached to a signal denotes the translation operator, e.g., xτ and uλ indicates

x(t − τ) and u(t − λ), respectively. Tx = {τi ∈ R≥0}, with τ0 = 0 and Tu = {λj ∈ R>0},

are sets of delays for states and inputs, respectively. Given a set of delays {τi}, the symbol

Rn
T = Rn

T ([−T, 0], IR
n), with T = maxi{τi}, indicates the set of continuous functions mapping

the interval [−T, 0] into IRn with the topology of uniform convergence. Given two sets X and Y

, X \ Y indicates the set of elements in X but not in Y . Given two functions, f : Y → Z and

g : X → Y , we denote with f ◦ g : X → Z the composite function (f ◦ g)(x) = f(g(x)) that

maps all x ∈ X to f(g(x)) ∈ Z.

2.2 Moment Matching for Nonlinear Input-affine Sys-

tems

Consider a nonlinear, minimal1, single-input, single-output (SISO), system described by the

equation

ẋ = f(x) + g(x)u, y = h(x), (2.1)

where x(t) ∈ Rn is the state, u(t) ∈ R is the input, y(t) ∈ R is the output, and f , g and h are

smooth mappings such that f(0) = 0, g(0) = 0, and h(0) = 0. Furthermore, we consider the

1See [107, Definition 2.12].
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Figure 2.1: Diagrammatic illustration of the direct (top), the swapped (middle) and the two-
sided (bottom) interconnections [1].

signal generator

ω̇ = s(ω), θ = l(ω), (2.2)

with ω(t) ∈ Rν , θ(t) ∈ R, s and l smooth mappings such that s(0) = 0 and l(0) = 0, and the

interconnection (with u = θ) between this generator and system (2.1), namely

ω̇ = s(ω), ẋ = f(x) + g(x)l(ω), y = h(x), (2.3)

as represented at the top of Fig 2.1.

Assumption 1. The partial differential equation

∂π

∂ω
s(ω) = f(π(ω)) + g(π(ω))l(ω) (2.4)

has a unique solution π.

Assumption 2. The signal generator (2.2) is observable, i.e. for any pair of initial conditions

ωa(0) and ωb(0), such that ωa(0) ̸= ωb(0), the corresponding output trajectories l(ωa(t)) and

l(ωb(t)) are such that l(ωa(t))− l(ωb(t)) ̸≡ 0.

The moment of system (2.1) related to the generator (2.2) is defined as follows.

Definition 1. Consider the system (2.1) and the signal generator (2.2). Suppose that As-

sumptions 1 and 2 hold. We call the mapping h ◦ π the (direct) moment of system (2.1) at

(s, l).
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The signal generator captures the requirement that one is interested in studying the behaviour

of the system (2.1) only in specific circumstances: a reduced-order model by moment matching

is a model that matches the steady-state output response (if exists) of the system for the same

class of inputs of interest. We now recall the definition of the “swapped moment”. Consider the

nonlinear filter

ϖ̇ = q(ϖ) + r(ϖ)η, (2.5)

with ϖ(t) ∈ Rν , η(t) ∈ R, q and r smooth mappings such that q(0) = 0 and r(0) = 0, and the

interconnection (with η = y) between this filter and system (2.1), namely

ẋ = f(x) + g(x)u, ϖ̇ = q(ϖ) + r(ϖ)h(x), (2.6)

as represented in the middle of Fig 2.1.

Assumption 3. The partial differential equation

∂v

∂x
f(x) + r(−v(x))h(x) + q(−v(x)) = 0 (2.7)

has a unique solution v.

Assumption 4. The filter (2.5) is observable.

The moment of system (2.1) related to the filter (2.5) is defined as follows.

Definition 2. Consider the system (2.1) and the filter (2.5). Suppose that Assumption 3 and 4

hold. We call the mapping ∂v
∂x
g the (swapped) moment of system (2.1) at (q, r).

Consider the reduced-order model described by

ξ̇ = ϕ(ξ) + δ(ξ)u, ψ = κ(ξ). (2.8)

where ξ(t) ∈ Rν , ψ(t) ∈ R, ν < n, ϕ(0) = 0, δ(0) = 0, and κ(0) = 0. System (2.8) matches the
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moment h ◦ π at (s, l), if ϕ, δ and κ satisfy

∂p

∂ω
s(ω) = ϕ(p(ω)) + δ(p(ω))l(ω) (2.9)

and

κ(p(ω)) = h(π(ω)) (2.10)

for all ω and some mapping p. These equations are satisfied by the selection ϕ(ξ) = s(ξ)−δ(ξ)l(ξ),

κ(ξ) = h(π(ξ)), with δ a free mapping2, for the mapping p(ω) = ω. Thus, the model

ξ̇ = s(ξ)− δ(ξ)l(ξ) + δ(ξ)u, ψ = h(π(ξ)), (2.11)

is a reduced-order model that matches the moment of system (2.1) at (s, l).

Moreover, this model matches also the moment ∂v
∂x
g at (q, r), if δ is such that

−q(−χ(ξ)) = ∂χ

∂ξ
ϕ(ξ) + r(−χ(ξ))κ(ξ) (2.12)

and [
∂χ

∂ω
δ(ω)

]
ξ=ω

=

[
∂v

∂x
g(x)

]
x=π(ω)

, (2.13)

for all ω and some mapping χ. This is achieved with the selection

δ(ξ) =

[(
∂v

∂x

∂π

∂ξ

)−1
∂v

∂x
g(x)

]
x=π(ξ)

, (2.14)

which gives χ(ξ) = v(π(ξ)). Thus, system (2.11) with (2.14) is a reduced-order model of

system (2.1) matching the moments at (s, l) and (q, r), simultaneously. Note that this model, in

addition to satisfying the matching conditions (2.10) and (2.13), also satisfies the additional

matching condition

χ(p(ω)) = v(π(ω)) (2.15)

for all ω.

2As long as the solution of (2.9) is unique.
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2.3 On-line Moment Estimation from Data

This Section is based on the results in [65].

In order to relate the moment of a system to the steady-state response of system (2.3), the

following assumption is needed.

Assumption 5. The zero equilibrium of system (2.1) is locally exponentially stable and the

signal generator (2.2) is neutrally stable3.

Note that if Assumptions 2 and 5 hold, then (2.4) has a solution π and Assumption 1 is not

explicitly required.

Theorem 1. Consider system (2.1) and the signal generator (2.2). Assume Assumptions 2 and

5 hold. Then the moment h ◦ π computed along a particular trajectory ω coincides with the

steady-state output response of system (2.3).

Note that given the exponential stability hypothesis on the system and Theorem 1, the equation

y(t) = h(π(ω(t))) + ι(t), (2.16)

where ι(t) is a transient term which decays to zero, holds. To what follows we need the following

assumption.

Assumption 6. The mapping h ◦ π belongs to the function space identified by the family of

continuous basis functions φi : Rν → R, with i = 1, · · ·K, where K ∈ Z>0, i.e. for any ω, there

exists constants γi ∈ R such that h(π(ω)) =
∑K

i=1 γiφi(ω).

The assumption that the mapping to be approximated can be represented by a family of basis

functions is standard, see [109]. For some families of basis functions, e.g. radial basis functions,

there exist results of “universal” approximation, see [110]. Consider now the approximation

y(t) ≈
N∑
i=1

γ̃iφi(ω(t)) = Γ̃Ω(ω(t)), (2.17)

3See [108, Chapter 8] for the definition of neutral stability.
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where N ≤ K, Γ = [γ1 γ2 · · · γN ] and Ω(ω(t)) = [φ1(ω(t)) φ2(ω(t)) · · · φN(ω(t))]
⊤.

This approximation neglects the error e resulting by terminating the summation at N , namely

e(t) =
∑K

N+1 γiφi(ω(t)) and the transient error ι. Therefore we define Γ̃j in (2.17) as an

approximate on-line estimate of the matrix Γ computed at Tw
j , i.e. computed at the time tj

using the last w samples. Thus, we have the following

Theorem 2. Define the time-snapshots matrices Ũj ∈ Rw×N and Ỹj ∈ Rw with, w ≥ N , as

Ũj = [Ω(tj−w+1 · · · Ω(tj−1) Ω(tj)]
T (2.18)

and

Ỹj = [y(tj−w+1 · · · y(tj−1) y(tj)]
T . (2.19)

If Ũj is full column rank, then

vec(Γ̃j) = (ŨT
j Ũj)

−1ŨT
j Ỹj (2.20)

is an approximation of the estimate Γj.

To guarantee the convergence of the estimated moment, we introduce the following assumption.

Assumption 7. The initial condition ω(0) of the signal generator (2.2) is almost periodic4 and

all the solutions of the system are analytic. In addition, system (2.2) satisfies the excitation

rank condition5 at ω(0).

Theorem 3. Suppose Assumption 2, 5, 6 and 7 hold. Then

lim
t→∞

(h(π(ω(t)))− lim
N→K

Γ̃jΩ(ω(t))) = 0. (2.21)

Until now, we have exclusively focused on a single trajectory ω. Although this suffices in a

linear setting, where local properties extend globally, it might be limiting in nonlinear scenarios.

4See [111] for the definition of almost periodic point.
5See [111] for the definition of excitation rank condition.
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Therefore, it becomes necessary to extend the theorem by substituting the matrices Ũj and Ỹj

with the matrices

U = [Ũ1⊤
j Ũ2⊤

j · · · Ũ q⊤
j ],

Y = [Ỹ 1⊤
j Ỹ 2⊤

j · · · Ỹ q⊤
j ],

(2.22)

for q ≥ 1, with Ũ i
j and Ỹ i

j are the matrices defined by (2.18) and (2.19) sampled from different

signal generator initial condition ω(0) = ωi
0.

2.4 Moment Matching for General Nonlinear DAEs

Herein, we recall some preliminaries about this interconnection-based moment matching method

for general nonlinear DAEs as presented in [68].

Consider a nonlinear, SISO continuous-time descriptor system

Eẋ = f(x, u), y = h(x), (2.23)

where E ∈ Rn×n, and rank(E) = r < n with E = diag(I, 0). Note that x(t) ∈ Rn, u(t) ∈ R

and, y(t) ∈ Rm, and f : Rn × R → Rn and h : Rn → Rm are smooth mappings. Consider also a

signal generator described by the equations

ω̇ = s(ω), θ = l(ω), (2.24)

with ω(t) ∈ Rv, θ(t) ∈ R, s : Rv → Rv and l : Rv → R smooth mappings, and the interconnected

system

ω̇ = s(ω), Eẋ = f(x, l(ω)), y = h(x). (2.25)

Suppose that f(0, 0) = 0, s(0) = 0, l(0) = 0, h(0) = 0 and that the following standard

assumptions for DAEs hold.

Assumption 8. The initial condition x(0) is consistent, i.e., the initial value problem associated
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with (2.23) has at least one solution [112].

Assumption 9. The pair (E,A), with A = ∂f(x,0)
∂x

∣∣∣∣
x=0

, is strongly stable6.

Without loss of generality, we assume that the generator has been constructed with the following

properties.

Assumption 10. The signal generator (2.24) is observable and neutrally stable. Finally, ω(0)

is almost periodic and such that (2.24) satisfies the excitation rank condition at ω(0).

Lemma 1. Consider the system (2.23) and the signal generator (2.24). Suppose the Assumptions

8, 9 and 10 hold. Then, there is a sufficiently smooth mapping π, with π(0) = 0, locally defined

in a neighbourhood of ω(0), which solves the partial differential-algebraic equation (DAE)

E
∂π

∂ω
s(ω) = f(π(ω), l(ω)). (2.26)

In addition, for any sufficiently small x(0) and ω(0), the solution x(t), ω(t) of (2.25) exists, is

bounded for all t ≥ 0, and satisfies lim
t→∞

x(t)− π(ω(t)) = 0.

Remark 1. Observability and neutral stability of the generator (2.24) are the only conditions

(from Assumption 10) required to prove Lemma 1. However, we want to exclude some “patho-

logical” situations in which the components of the steady-state may be identically zero for

selected initial conditions ω(0) (e.g., we want to exclude the initial condition ω(0) ̸= 0). For this

reason, we require the excitability rank condition to be satisfied at an almost periodic ω(0). This

condition guarantees persistence of excitation of the signal u [111]. For an in-depth discussion

of the relation between this condition and the problem of model order reduction, see [113].

Definition 3. Consider the system (2.23) and the signal generator (2.24). Suppose Assumptions

8 holds. The mapping h ◦ π, with π solution to (2.26), is the moment of system (2.23) at (s, l).

The moment h ◦ π computed along a particular trajectory ω of system (2.24) coincides with

the steady-state response of the system (2.25) [68]. Thus, matching the moment of a system

6The pair (E,A) is strongly stable if for all λ̄ ∈ C such that det(λ̄E−A) = 0, λ̄ ∈ C<0 and deg(det(λ̄E−A)) =
r.
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captures the requirement that one is interested in studying the behavior of the system under

specific circumstances (e.g. when excited by specific frequencies of interest).

Consider then a model described by the equations

Ξξ̇ = φ(ξ, u), ψ = κ(ξ), (2.27)

where ξ(t) ∈ Rv, ψ(t) ∈ Rm, Ξ ∈ Rv×v has rank(Ξ) = r̄ ≤ r, with Ξ = diag(I, 0). Assuming

addition that φ : Rv × R → Rv and κ : Rv → Rm are smooth mappings.

Definition 4. System (2.27) is a model of system (2.23) at (s, l) if system (2.27) has the same

moment at (s, l) as system (2.23). Furthermore, system (2.27) is a reduced-order model of

system (2.23) at (s, l) if v < n.

Lemma 2. Consider system (2.23) and the signal generator 2.24. Suppose Assumptions 8, 9

and 10 hold. System (2.27) is a model of system (2.23) at (s, l) when the equation

Ξψ(p(ω), l(ω)) =
∂p

∂ω
s(ω) (2.28)

has a unique solution p and the equation

h(π(ω)) = κ(p(ω)), (2.29)

where π is the solution of (2.26) holds.

Note that selecting Ξ = Iv results in the reduced-order model that is no longer a descriptor

system. Thus in this case, the results in [107] could be directly applied.

2.5 Model Order Reduction for Nonlinear Time-Delay

Systems

In this section we recall the notion of moment matching for general nonlinear time-delay, systems

introduced in [101].
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Consider a nonlinear, SISO, continuous-time, time-delay system described by equations of the

form

ẋ = f(xτ0 , . . . ,xτζ , uλ0 , . . . , uλµ), y = h(x),

x(θ) = q(θ), −T ≤ θ ≤ 0,

(2.30)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, q ∈ Rn
T , τi ∈ Tx, with i = 0, . . . , ζ, λj ∈ Tu, with

j = 0, . . . , µ, and f and h smooth mappings. Consider in addition a signal generator described

by the equations

ω̇ = s(ω), θ = l(ω), (2.31)

with ω(t) ∈ Rν , θ(t) ∈ R, and s and l smooth mappings, and the interconnected system

ω̇ = s(ω),

ẋ = f(xτ0 , . . . , xτζ , l(ωλ0), . . . , l(ωλµ)),

y = h(x).

(2.32)

Suppose that f(0, . . . , 0, 0, . . . , 0) = 0, s(0) = 0, l(0) = 0, and h(0) = 0.

Assumption 11. There exists a unique mapping π, locally defined in a neighbourhood of ω = 0,

solving the partial differential equation

∂π

∂ω
s(ω) = f

(
π (ω̄τ0) , . . . , π (ω̄τς ) , l (ω̄λ0) , . . . , l

(
ω̄λµ

))
, (2.33)

in which ω̄τi = Φs
τi
(ω) and ω̄λj

= Φs
λj
(ω), with i = 0, . . . , ζ and j = 0, . . . , µ, are the flows of the

vector field s at −τi and −λj [114], respectively.

Assumption 12. The signal generator (2.31) is observable.

We are now in a position to define the moment for system (2.30).

Definition 5. Consider the system (2.30) and the signal generator (2.31). Suppose Assump-

tions 11 and 12 hold. Then, the mapping h ◦ π, with π the solution of (2.33), is the moment of

system (2.31) at (s, l).
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2.6 Kronecker Product and Sylvester Equation Basics

In the following chapters we consider power series representations which require the introduction

of the Kronecker product notation. For any matrix A, we define

A(i) = (A⊗ A · · · ⊗ A)︸ ︷︷ ︸
i−factors

, A[i] = (A⊕ A · · · ⊕ A)︸ ︷︷ ︸
i−factors

, (2.34)

for all i ≥ 2, with A(1) = A[1] = A and A(0) = A[0] = 1, i.e. A(0) and A[0] are scalars. Then, we

recall some properties of the Kronecker product. Let A,B,C and D be matrices of conformable

dimensions, then [115]

P1) (AB)⊗ (CD) = (A⊗ C)(B ⊗D),

P2) A⊕B = A⊗ IB + IA ⊗B, where A ∈ Rn×n and B ∈ Rm×m,

P3) Ab = A⊗ b whereas b is a scalar.

For any matrix A ∈ Rn×m, note that the standard Kronecker sum is defined for square matrix

and we define the Kronecker sum of same non-square matrices as follows

A⊕ A = A⊗ In + In ⊗ A

The following lemma is a modified version of the results in [116, Lemma 4.6].

Lemma 3. Let z ∈ Rq and M ∈ Rq×q.

(i) For k ≥ 1

∂z(k)

∂z
=
∂

k−factors︷ ︸︸ ︷
(z ⊗ · · · ⊗ z)

∂z
=

k∑
i=1

z(i−1) ⊗ Iz ⊗ z(k−i). (2.35)

(ii) For k ≥ 1

M [k] =
k∑

i=1

(I(i−1)
z ⊗M ⊗ I(k−i)

z ). (2.36)
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(iii) For k ≥ 1

∂z(k)

∂z
Mz =M [k]z(k). (2.37)

Proof. Equation (2.35) follows from the definition of the Kronecker product and an application

of the chain rule.

To prove that (2.36) holds, note that for k = 1, M [1] = M which satisfies (2.36) trivially.

Suppose that for k = j − 1, (2.36) holds. Then, when k = j,

M [j] =M [j−1] ⊕M

=

j−1∑
i=1

(I(i−1)
z ⊗M ⊗ I(j−i−1)

z )⊕M

=

j−1∑
i=1

(I(i−1)
z ⊗M ⊗ I(j−i−1)

z )⊗ Iz + I(j−1)
z ⊗M

=

j−1∑
i=1

(I(i−1)
z ⊗M ⊗ I(j−i)

z ) + I(j−1)
z ⊗M

=

j∑
i=1

(I(i−1)
z ⊗M ⊗ I(j−i)

z ).

That is, (2.36) holds for k ≥ 1 by induction. The condition (2.37) is demonstrated as follows

∂z(k)

∂z
Mz =

k∑
i=1

z(i−1) ⊗ Iz ⊗ z(k−i)Mz

=
k∑

i=1

z(i−1) ⊗ (Iz ⊗ z(k−i))(Mz ⊗ 1)

P1
=

k∑
i=1

z(i−1) ⊗ (Mz)⊗ z(k−i)

=
k∑

i=1

(I(i−1)
z z(i−1))⊗ (Mz)⊗ (I(k−i)

z z(k−i))

P1
=

k∑
i=1

(I(i−1)
z ⊗M ⊗ I(k−i)

z )z(k)

=M [k]z(k).

Note thatM has the same dimension as Iz and we have repeatedly used P1 during the proof.
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The Sylvester equation is a classic problem in linear algebra, formulated as:

AX −XB = C (2.38)

where A, B, and C are given matrices, and X is the matrix to be determined. Matrix A is

m×m, matrix B is n×n, and both matrices C and X are m×n. The existence of a solution to

the Sylvester equation depends significantly on the eigenvalues of matrices A and B. Specifically,

the equation has a unique solution for all C if and only if matrices A and B have no eigenvalues

in common:

σ(A) ∩ σ(B) = ∅ (2.39)

where σ(A) and σ(B) denote the eigenvalue sets of A and B, respectively. This condition

ensures that the equation can be rearranged and treated effectively as a linear system by using

the properties of the Kronecker product and vectorization [117]. Note that in the rest of paper,

we assume that this holds for all the Sylvester equation we solve.

37



Chapter 3

Interconnection-based Model Order

Reduction for Quadratic-bilinear

Systems Using Nonlinear Moments

The results presented in this chapter are based on [103], in which the problem of model order

reduction for quadratic-bilinear systems using the steady-state notion of moment has been

addressed. It is important to note that, unlike the extensive literature on moment matching for

quadratic-bilinear systems, which primarily relies on the linear notion of moment (i.e., linked

to the transfer function), our work distinguishes itself by focusing on the nonlinear notion of

moment (i.e., based on the steady state).

The structure of this chapter is as follows. Section 3.1 formulates the problem of model order

reduction for quadratic-bilinear systems and defines the concept of direct moment for these

systems. In Section 3.2, we introduce the first family of reduced-order models, which retains

the quadratic-bilinear form. Section 3.3 develops the second family of reduced-order models,

addressing enhancements in terms of stability properties and well-defined relative degree. Finally,

Section 3.4 presents a numerical example to demonstrate the results discussed in this chapter.
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3.1 Direct Moments for Quadratic-bilinear Systems

Consider a SISO quadratic-bilinear system described by the equations

ẋ = f(x, u) = Ax+H(x⊗ x) +Nxu+Bu,

y = h(x) = Cx,

(3.1)

with A ∈ Rn×n, N ∈ Rn×n, H ∈ Rn×n2
, B ∈ Rn, and C⊤ ∈ Rn. Consider a signal generator of

the form

ω̇ = s(ω) = Sω, θ = l(ω) = Lω, (3.2)

with S ∈ Rv×v and L⊤ ∈ Rv. Consider the interconnected system given by

ω̇ = Sω,

ẋ = Ax+H(x⊗ x) +NxLω +BLω,

y = Cx.

(3.3)

Note that for system (3.1) and the signal generator (3.2), Assumption 5 reduces to requiring

local exponential stability of the zero equilibrium of (3.1) and that the eigenvalues of S are

simple and belong to C0. We formulate these requirements in two Assumptions.

Assumption 13. The origin of the system (3.1) is locally exponentially stable.

Assumption 14. The signal generator (3.2) is observable and the eigenvalues of S are simple

and belong to C0.

We now present a result that provides a way of computing the nonlinear moment of (3.1).

Theorem 4. Consider the system (3.1) and the signal generator (3.2), and suppose that

Assumptions 13 and 14 hold. Then there is a mapping

π(ω) =
∑
i≥1

Πiω
(i) (3.4)
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which formally solves the PDE

∂π

∂ω
Sω = Aπ(ω) +H(π(ω)⊗ π(ω)) +Nπ(ω)Lω +BLω, (3.5)

where Πi, i ≥ 1, solve the infinite-dimensional system of Sylvester like equations

Π1S = AΠ1 +BL,

Π2S
[2] = AΠ2 +H(Π1 ⊗ Π1) +N(Π1 ⊗ L),

ΠiS
[i] = AΠi +H(Π1 ⊗ Πi−1 +Π2 ⊗ Πi−2 + · · ·+Πi−1 ⊗ Π1) +N(Πi−1 ⊗ L),

(3.6)

for i ≥ 3.

Proof. Under Assumptions 13 and 14, equation (3.5) has a solution π [107]. Moreover, As-

sumptions 13 and 14 are also sufficient to guarantee that system (3.6) has a unique solution,

see [116, Lemma 4.13]. Consider the formal power series expansion of π, namely (3.4). Substi-

tuting (3.4) into (3.5) yields

∂(Π1ω+Π2(ω ⊗ ω)+· · · )
∂ω

Sω=A(Π1ω+Π2(ω ⊗ ω)+· · · )

+H(Π1ω+Π2(ω ⊗ ω)+· · · )⊗ (Π1ω +Π2(ω ⊗ ω) + · · · )

+N(Π1ω +Π2(ω ⊗ ω) + · · · )Lω +BLω.

(3.7)

The equations in (3.6) can be obtained by matching the powers of ω(i), i = 1, 2, · · · . In particular,

considering the linear terms in ω, it is easy to see that Π1 must satisfy the Sylvester equation

AΠ1 +BL = Π1S. (3.8)

Considering now the terms in ω ⊗ ω, we have that

AΠ2(ω ⊗ ω) +H(Π1ω)⊗ (Π1ω) +N(Π1ω)Lω =
∂(Π2(ω ⊗ ω))

∂ω
Sω. (3.9)
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Applying the properties P1) and P3), and condition (iii) of Lemma 3, yields

AΠ2(ω ⊗ ω) +H(Π1 ⊗ Π1)(ω ⊗ ω) +N(Π1 ⊗ L)(ω ⊗ ω)

= Π2
∂((ω ⊗ ω))

∂ω
Sω = Π2(S ⊕ S)(ω ⊗ ω),

(3.10)

and it follows that Π2 is the solution of the Sylvester-like equation

AΠ2 +H(Π1 ⊗ Π1) +N(Π1 ⊗ L) = Π2(S ⊕ S). (3.11)

Following the same reasoning, it can be shown that Πi, for i ≥ 3, are solutions of

AΠi +H (Π1 ⊗ Πi−1 +Π2 ⊗ Πi−2 + · · ·+Πi−1 ⊗ Π1) + (NΠi−1)⊗ L = ΠiS
[i]. (3.12)

Remark 2. Theorem 4 is inspired and follows a similar approach to the derivations in [116,

Chapter 4] for the problem of output regulation.

From a practical point of view, it is useful to define an approximate version of the (direct)

moment which uses a finite number of terms Πi, i = 1, 2, · · · , k.

Definition 6. We call Cπ̄k(ω) = C
k∑

i=1

Πiω
(i) the k-th approximate (direct) moment of system

(3.1) at (S, L).

Note that if the convergence radius of (3.4) is positive, then (3.4) is an exact solution of (3.5)

in power form and the k-th approximate moment of system (3.1) is such that

lim
k→∞

Cπ̄k(ω)− Cπ(ω) = 0. (3.13)
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3.2 A First family of reduced-order models

In this section, we introduce a family of reduced-order models which has the same quadratic-

bilinear form as the original system, namely

ξ̇ = Fξ +G(ξ ⊗ ξ) +Mξu+ Eu,

ψ =
∑
i≥1

Diξ
(i),

(3.14)

where F ∈ Rv×v, M ∈ Rv×v, G ∈ Rv×v2 , E ∈ Rv and D⊤
i ∈ Rvi . In the following statement we

give conditions on F , Πi, E and Di such that (3.14) is indeed a reduced-order model by moment

matching of (3.1).

Theorem 5. Consider the system (3.1), the signal generator (3.2), the model (3.14) and suppose

that Assumptions 13 and 14 hold. System (3.14) is a reduced-order model by moment matching

of system (3.1) at (S, L) if v < n and the following equations hold

CΠ1 = D1P(1,1),

CΠi = D1P(i,1)+D2P(i,2)+· · ·+Di−1P(i,i−1)+DiP(i,i),

(3.15)

for all i > 1, where

P(i,j) =

 Pi, j = 1,∑i−j+1
k=1 Pk ⊗ P(i−k,j−1), j ≥ 2,

(3.16)

for i ≥ 1, j ≤ i, and Pi are the solutions to the equations

P1S = FP1 + EL,

P2S
[2] = FP2 +G(P1 ⊗ P1) +M(P1 ⊗ L),

PiS
[i] = FPi +G(P1 ⊗ Pi−1 + P2 ⊗ Pi−2 + · · ·+ Pi−1 ⊗ P1) +M(Pi−1 ⊗ L),

(3.17)

for i ≥ 3.

Proof. To match the moment of the systems (3.14) and (3.1) at (S, L), there must exist a
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mapping p(·) solving

∂p(ω)

∂ω
Sω =Fp(ω) +G(p(ω)⊗ p(ω)) +Mp(ω)(Lω) + ELω. (3.18)

Similar to the proof of Theorem 4, considering the formal power series

p(ω) =
∑
i≥1

Piω
(i), (3.19)

yields the system of equations (3.17). Recall that p must also solve (2.10), which in this case

becomes

C
∑
i≥1

Πiω
(i) =

∑
i≥1

DiPiω
(i). (3.20)

This equation yields

CΠ1ω + CΠ2(ω ⊗ ω) + CΠ3(ω ⊗ ω ⊗ ω) + · · ·

= D1P1ω + (D1P2 +D2(P1 ⊗ P1))(ω ⊗ ω) + (D3P1 +D2(P1 ⊗ P2 + P2 ⊗ P1)

+D3(P1 ⊗ P1 ⊗ P1))(ω ⊗ ω ⊗ ω) + · · ·

= D1P(1,1)ω+(D1P(2,1)+D2P(2,2))(ω ⊗ ω) + (D3P(3,1) +D2P(3,2) +D3P(3,3))(ω ⊗ ω ⊗ ω) + · · · .

(3.21)

By matching the power of ω(i), the above implies that

CΠiω
(i) =(D1P(i,1) +D2P(i,2) + · · ·+Di−1P(i,i−1) +DiP(i,i))ω

(i) (3.22)

which provides (3.15). Here, P(i,j) represents the coefficient matrix of ω(i) corresponding to Dj.

Then, it is easy to verify that P(i,1) = Pi. Moreover, for 2 ≤ j ≤ i

P(i,j)ω
(i) = (P1ω)⊗ (P(i−1,j−1)ω

(i−1)) + · · ·+ (P(i−j+1)ω
(i−j+1))⊗ (P(j−1,j−1)ω

(j−1))

= (P1 ⊗ P(i−1,j−1) + P2 ⊗ P(i−2,j−1) + · · ·+ P(i−j+1) ⊗ P(j−1,j−1))ω
(i)

=

(
i−j+1∑
k=1

Pk ⊗ P(i−k,j−1)

)
ω(i),

(3.23)
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which yields (3.16). This completes the proof.

We now show that the equations in Theorem 5 can be simplified. In fact, note that selecting

P1 = Iv, yields

F = S − EL, (3.24)

and from equation (3.16), when i = j,

P(i,i) = Ivi (3.25)

for all i ≥ 1. Now select any G and M , and determine P(i,j) from (3.16) by solving (3.17). It

follows that the Di’s are determined by

D1 = CΠ1,

D2 = CΠ2 −D1P(2,1),

Di = CΠi −D1P(i,1) −D2P(i,2) + · · · −Di−1P(i,i−1),

(3.26)

for i ≥ 3. Then, a family of reduced-order models of system (3.1) that match the k-th

approximate moment is given by

ξ̇(t) = (S−EL)ξ(t)+G(ξ(t)⊗ ξ(t))+Mξ(t)u(t)+Eu(t),

ψ̄(t) =
k∑

i=1

Diξ
(i)(t),

(3.27)

where E, G and M are free parameters that can be used to impose additional properties on the

model and the Di’s are selected as in (3.26) (computed for the specific selection of E, G and M

from (3.16), (3.17), (3.24) and (3.25). For instance, in the next result we show how to ensure

that the origin of (3.27) is an asymptotically stable equilibrium.

Theorem 6. Let F = S − EL ∈ Rv×v and assume F + F⊤ is Hurwitz. Then there exist α and

R such that

(F + αI)⊤ + (F + αI) +R = 0, (3.28)
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with R a symmetric positive semidefinite matrix and α ∈ [0, η(F )), where η(F ) represents the

spectral abscissa of F . Then, ξ∗ = 0 is a locally asymptotically stable equilibrium of system

(3.27) of domain B(0,r̄), with r̄ =
λmin(R)
2∥G∥ + α

∥G∥ .

Proof. First, we define the candidate Lyapunov function V (ξ) = ξ⊤ξ which is positive definite.

Since F + F⊤ is Hurwitz, (3.28) follows trivially and

F⊤ + F = −R− 2αI. (3.29)

For ξ ∈ B(0,r̄)\{0}, this implies that

∥ξ∥ < λmin(R)

2∥G∥
+

α

∥G∥
≤ ξ⊤Rξ

ξ⊤ξ
· 1

2∥G∥
+

α

∥G∥
. (3.30)

Combining (3.29) and (3.30), we have

2ξ⊤G(ξ ⊗ ξ) ≤ 2∥G∥∥ξ∥3 < ξ⊤Rξ + 2αξ⊤ξ. (3.31)

Then, for ξ ∈ B(0,r)\{0}

V̇ (ξ) = ξ̇⊤ξ + ξ⊤ξ̇

= ξ⊤(F⊤ + F )ξ + (ξ ⊗ ξ)⊤G⊤ξ + ξ⊤G(ξ ⊗ ξ)

= −ξ⊤(R + 2αI)ξ + 2ξ⊤G(ξ ⊗ ξ) < 0,

(3.32)

and local asymptotic stability of the origin of the system (3.27) follows.

Theorem 6 implies that we can design the eigenvalues of F by selecting the matrix E to guarantee

that the reduced-order model inherits a certain property (i.e. local asymptotic stability of the

origin) of the original system. In addition, the region of stability of the reduced-order model

can be enlarged by selecting a matrix E that produces larger values of α and λmin(R), or by

selecting a matrix G with a small norm. The matrix M can then be used to assign some further

properties of the reduced-order model.
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3.3 A Second family of reduced-order models

The family of reduced-order models (3.27) that we have introduced in Section 3.2 has the same

structure as the original quadratic-bilinear system (3.1). However, the output mapping is quite

complicated. This causes some difficulties when we wish to assign the relative degree of the

reduced-order model. In fact, one can show that it is impossible to assign the relative degree of

models (3.27). To overcome this difficulty, we propose an alternative family of reduced-order

models.

Consider now a different class of reduced-order models of the form

ξ̇ =
∑
i≥1

Fiξ
(i) +

∑
i≥1

Miξ
(i)u+ Eu,

ψ = Dξ,

(3.33)

where Fi ∈ Rv×vi , Mi ∈ Rv×vi and D⊤ ∈ Rv. We now give conditions on Fi, Mi, E and D such

that (3.33) is a reduced-order model by moment matching of (3.1).

Theorem 7. Consider the system (3.1), the signal generator (3.2), the model (3.33) and suppose

Assumptions 13 and 14 hold. System (3.33) is a reduced model by moment matching of system

(3.1) at (S, L) if v < n and the following equations hold

CΠi = DPi, (3.34)

for all i ≥ 1, where the Pi’s solve the equations

P1S = F1P(1,1) + EL,

P2S
[2] = F1P(2,1) + F2P(2,2) + (M1P(1,1))⊗ L,

PiS
[i] = F1P(i,1) + F2P(i,2)+· · ·+FiP(i,i)+(M1P(i−1,1) +M2P(i−1,2) + · · ·+Mi−1P(i−1,i−1))⊗ L,

(3.35)

for i ≥ 3, where the P(i,j)’s are defined in (3.16).
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Proof. The proof follows steps similar to the proof of Theorem 5, hence it is omitted.

In the same way as we proceeded for the first family of reduced-order models, we now determine

a simplified parametrization. Let P1 = Iv. This yields

D = CΠ1 (3.36)

and, from equation (3.16), when i = j,

P(i,i) = Ivi , (3.37)

for all i ≥ 1. The other Pi, with i ≥ 1, are determined as full-rank solutions of (3.34). Thus,

F1 =S − EL,

F2 =P2S
[2] − (M1P(1,1))⊗ L− F1P(2,1),

Fi =PiS
[i] − F1P(i,1) − F2P(i,2) − · · · − Fi−1P(i,i−1)−

(M1P(i−1,1)+M2P(i−1,2)+· · ·+Mi−1P(i−1,i−1))⊗ L

(3.38)

for i ≥ 3.

By matching the k-th approximate moment of system (3.1) and system (3.33), a new class of

reduced-order models of system (3.1) can be obtained as

ξ̇(t) =
k∑

i=1

Fiξ
(i) +

k−1∑
i=1

Miξ
(i)u(t) + Eu(t),

ψ̄(t) = Dξ(t),

(3.39)

where the matrices Fi are selected as in (3.38) and D is chosen as in (3.36). Note that we still

have k free matrices Mi and E which can be used to assign some specific properties of the

reduced-order model.
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3.3.1 Asymptotic Stability

Consider the problem of achieving order reduction by moment matching with a reduced-order

model described by equations of the form (3.39), such that ξ∗ = 0 is a locally asymptotically

stable equilibrium point. A solution to this problem is provided in the following statement.

Theorem 8. Let F1 = S − EL ∈ Rv×v and assume F1 + F⊤
1 is Hurwitz. Then there exist α

and R such that

(F1 + αI)⊤ + (F1 + αI) +R = 0, (3.40)

with R a symmetric positive semidefinite matrix and α ∈ [0, η(F1)), where η(F1) represents the

spectral abscissa of F1. Then, ξ
∗ = 0 is a locally asymptotically stable equilibrium of system

(3.39) in the region B(0,r̄) with

r̄ = min

(
i

√
λmin(R)

2(k − 1)∥Fi+1∥
+

α

(k − 1)∥Fi+1∥

)
,

where i = 1, · · · , k − 1.

Proof. Define the candidate Lyapunov function V (ξ) = ξ⊤ξ, which is positive definite. According

to (3.40), we have

F⊤
1 + F1 = −R− 2αI. (3.41)

For ξ ∈ B(0,r̄)\{0}, this implies that

∥ξ∥i < λmin(R)

2(k − 1)∥Fi+1∥
+

α

(k − 1)∥Fi+1∥
≤ ξ⊤Rξ

ξ⊤ξ
· 1

2(k − 1)∥Fi+1∥
+

α

(k − 1)∥Fi+1∥
, (3.42)

where i = 1, · · · , k − 1.

Combining (3.41) and (3.42), we have

2ξ⊤Fi+1ξ
(i) ≤ 2∥Fi+1∥∥ξ∥i <

ξ⊤Rξ + 2αξ⊤ξ

k − 1
. (3.43)
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Then, for ξ ∈ B(0,r̄)\{0},

2ξ⊤F2(ξ ⊗ ξ) + 2ξ⊤F3(ξ ⊗ ξ ⊗ ξ) + · · ·+ 2ξ⊤Fkξ
(k−1)

< (k − 1)
ξ⊤Rξ + 2αξ⊤ξ

k − 1
= ξ⊤Rξ + 2αξ⊤ξ.

(3.44)

Finally,

V̇ (ξ) = ξ̇⊤ξ + ξ⊤ξ̇

= ξ⊤(F⊤
1 + F1)ξ + 2ξ⊤F2(ξ ⊗ ξ) + 2ξ⊤F3(ξ ⊗ ξ ⊗ ξ) + · · ·+ 2ξ⊤Fkξ

(k−1)

= −ξ⊤(R + 2αI)ξ + ξ⊤(R + 2αI)ξ < 0

(3.45)

holds and local asymptotic stability of the origin follows.

3.3.2 Relative Degree

Consider the problem of selecting the free matrices Mi in system (3.39) such that the reduced

order model has a given relative degree r ≥ 1 at ξ̄ = 0.

Theorem 9. Let M0 = E, then system (3.39) has relative degree r ≥ 1, at ξ̄ if the following

equations hold for all i ∈ [0, k − 1]

DMi = 0,

D
i+1∑
j=1

F(1,j)M
[j]
i−j+1 = 0,

...

D
i+1∑
j=1

F(r−2,j)M
[j]
i−j+1 = 0,

(3.46)

and

D
k−1∑
l=0

l+1∑
j=1

F(r−1,j)M
[j]
l−j+1ξ̄

(l)
0 ̸= 0, (3.47)
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where

F(i,j) =


Fj, i = 1,
j∑

l=1

F(i−1,l)F
[l]
j+1−l, 2 ≤ i ≤ k − 1.

Proof. Consider a general nonlinear systems of the form

ẋ = f(x) + g(x)u,

y = h(x).

(3.48)

By definition, its relative degree is r at x̄ if

Lgh(x) = LgLfh(x) = · · · = LgL
r−2
f h(x) = 0, (3.49)

for all x in some neighborhood of x = x̄ and

LgL
r−1
f h(x̄) ̸= 0. (3.50)

For system (3.39), f(ξ) =
k∑

i=1

Fiξ
(i), g(ξ) =

k−1∑
i=0

Miξ
(i) (recall that M0ξ

(0) = E) and h(ξ) = Dξ.

By replacing these into (3.49) and (3.50), we obtain (3.46) and (3.47) directly by matching the

coefficients of the same powers of ξ(i), i = 0, 1, · · · , k − 1.

Note that, while for the second family we can assign the relative degree, the resulting system

dynamics is more complex than for the first family. In particular, the second family is a general

polynomial system, as opposed to a quadratic-bilinear system.

3.4 Simulation Results

We now illustrate the results of this section by means of a numerical example. Consider the

system (3.1) with n = 106, where A = diag(A1, A2, A3, A4), with
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A1 = diag(−1,−2, · · · ,−100), A2 =

−1 5

−5 −1

 ,

A3 =

 −1 10

−10 −1

 , A4 =

 −1 15

−15 −1

 ,
B⊤ = C =

[
1 1 0 · · · 0 1 1

]
and the remaining matrices H and N generated randomly.

We wish to obtain a reduced-order model of order v = 7. The signal generator (3.2) has been

selected with S = diag(0, S2, S3, S4), with S2 = A2 + I2, S3 = A3 + I2, S4 = A4 + I2, and

L =

[
1 1 0 1 0 1 0

]
. For both the first and the second family of reduced-order models,

the matrix E has been selected as

E⊤ =

[
84.4 4.7 32.8 −0.5 16.8 −2.6 10.8

]
,

so that the eigenvalues of F (F1 in the second family) is a subset of the spectrum of A. As we

do not have any other property to assign in this simulation, all the other free matrices in the

reduced-order models are randomly generated.

In the simulation, we obtain reduced-order models which matches the k-th approximate moment

for k = 1, 2 and 3. We plot the time histories of the outputs of the first family of reduced-order

models in Figure 3.1 and of the second family of reduced-order models in Figure 3.2. Both the

output response and the error between the reduced-order models and the original system are

displayed. The black (solid) line indicates the output of the original model, while the yellow

(dashed), blue (dotted) and red (dash-dotted) lines indicate the output of the reduced-order

model, when k = 1, 2 and 3, respectively.

As shown in the figures, both families of reduced-order models provide good approximations of

the output response. When the order of the approximate moment k increases, the accuracy of

the approximation improves as well, i.e. the error becomes smaller.
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(a) Time histories of the output of the original model (black/solid) and of the
reduced-order model when k =1 (yellow/dashed), k =2 (blue/dotted) and k =3
(red/dash-dotted).
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Figure 3.1: Output response of the first family of reduced-order models.
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Figure 3.2: Output response of the second family of reduced-order models.
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Chapter 4

Interconnection-based Model Order

Reduction for Navier-Stokes Type

Quadratic-bilinear Systems

In this chapter our focus is on addressing the model order reduction problem for single-input

Navier–Stokes type quadratic-bilinear systems [104]. These systems are directly formulated

from the Navier–Stokes equations, utilizing the vorticity-stream form [8]. Our primary objective

is to develop and apply interconnection-based moment matching methods specifically tailored

for the model order reduction of incompressible flows, demonstrating their effectiveness in fluid

scenarios.

The structure of this chapter is as follows. In Section 4.1 we define the nonlinear moments for

Navier-Stokes type quadratic-bilinear systems and provide both model-based and data-driven

implementations for computing these moments. Section 4.2 is dedicated to developing a family

of reduced-order models that emphasize stability. Finally, in Section 4.3 we demonstrate the

proposed methods on three applications: the 1D Burgers’ equation, the lid-driven cavity, and

the lid-driven polar cavity.
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4.1 Nonlinear moments for Navier-Stokes DAEs

In this section we provide methods to compute the nonlinear moments for a class of Navier-Stokes

DAEs. In Section 4.1.1 we present a model-based method, whereas in Section 4.1.2 we present a

data-driven method.

4.1.1 Model-based approach

Consider the Navier-Stokes type quadratic-bilinear DAEs (see [2]), with vorticity ϵ and stream

function ζ, described by the followings

ϵ̇ =A11ϵ+ A12ζ +H1(ϵ⊗ ζ) +H2(ζ ⊗ ζ) +N2ζu+B1u,

0 =ϵ+ A22ζ,

y =C2ζ, ϵ(0) = ζ(0) = 0,

(4.1)

where A11, A12, A22, N2 ∈ Rn×n, H1, H2 ∈ Rn×n2
, B1, C

⊤
2 ∈ Rn, ϵ and ζ ∈ Rn. u(t) ∈ R is the

external input and y(t) ∈ R is the output.

System (4.1) can be rewritten in the form

Eẋ(t) =Ax(t) +H(x(t)⊗ x(t)) +Nx(t)u(t) +Bu(t),

y(t) =Cx(t), x(0) = 0,

(4.2)

where x(t) = [ϵ ζ]⊤ ∈ R2n is the state vector, and

E =

 In 0

0 0

 , A =

 A11 A12

In A22

 , N =

 0 N2

0 0

 ∈ R2n×2n,

B = [B1 0]⊤ ∈ R2n, C⊤ = [0 C2]
⊤ ∈ R2n.

55



H ∈ R2n×4n2
is obtained as follows. H1 and H2 can be divided into n square matrices, namely

H1=

[
H11 H12 · · · H1n

]

H2=

[
H21 H22 · · · H2n

]
.

Then H =

 H̃1 H̃2

0n×n2 0n×n2

 where

H̃1=

[
0n H11 0n H12 · · · 0n H1n

]

and

H̃2=

[
0n H21 0n H22 · · · 0n H2n

]
.

Consider now a signal generator described by the equations

ω̇ = Sω, θ = Lω, (4.3)

with ω(t) ∈ Rν , and S ∈ Rν×ν and the interconnected system

ω̇ = Sω, Eẋ = Ax+H(x⊗ x) +Nxu+BLω,

y = Cx,

(4.4)

Note that for the signal generator (4.3), Assumption 10 reduces to its linear version, namely the

pair (S, L) is observable and the eigenvalues of S are simple and belong to C0. We now present

a result that provides a way of computing the nonlinear moment of (4.2) through this system

interconnection.

Theorem 10. Consider the system (4.2), the signal generator (4.3) and suppose that Assump-

tions 8, 9 and 10 hold. Then there is a mapping

π(ω) =
+∞∑
i=1

Πiω
(i). (4.5)
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which formally solves the partial differential equation

E
∂π

∂ω
Sω =Aπ(ω) +H(π(ω)⊗ π(ω)) +Nπ(ω)Lω +BLω, (4.6)

where the Πi’s solve the infinite-dimensional system of Sylvester-like equations

EΠ1S = AΠ1 +BL,

EΠ2S
[2] = AΠ2 +H(Π1 ⊗ Π1) +N(Π1 ⊗ L),

EΠiS
[i] = AΠi +H(Π1 ⊗ Πi−1 +Π2 ⊗ Πi−2

+ · · ·+Πi−1 ⊗ Π1) +N(Πi−1 ⊗ L),

(4.7)

for i ≥ 3.

Proof. By Assumptions 8, 9 and 10 and Lemma 1, equation (4.6) has a solution π defined

around ω = 0. Consider the formal power series expansion of π, namely (4.5). Substituting

(4.5) into (4.6) yields

E
∂(Π1ω+Π2(ω ⊗ ω) + · · · )

∂ω
Sω =A(Π1ω +Π2(ω ⊗ ω) + · · · )

+H(Π1ω +Π2(ω ⊗ ω)+· · · )⊗ (Π1ω +Π2(ω ⊗ ω) + · · · )

+N(Π1ω +Π2(ω ⊗ ω) + · · · )Lω +BLω.

(4.8)

The equations (4.7) can then be obtained by matching the powers of ω(i), i = 1, 2, · · · . In

particular, considering the linear terms in ω, it is easy to see that Π1 must satisfy the Sylvester-

like equation

EΠ1S = AΠ1 +BL. (4.9)

Considering now the terms in ω ⊗ ω, we have that

E
∂(Π2(ω ⊗ ω))

∂ω
Sω = AΠ2(ω ⊗ ω) +H(Π1ω)⊗ (Π1ω) +N(Π1ω)Lω. (4.10)
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Applying the properties P1) and P3), and condition (iii) of Lemma 3, yields

EΠ2
∂((ω ⊗ ω))

∂ω
Sω = EΠ2(S ⊕ S)(ω ⊗ ω)

=AΠ2(ω ⊗ ω) +H(Π1 ⊗ Π1)(ω ⊗ ω)

+N(Π1 ⊗ L)(ω ⊗ ω)

(4.11)

and it follows that Π2 is the solution of the Sylvester-like equation

EΠ2(S ⊕ S) = AΠ2 +H(Π1 ⊗ Π1) +N(Π1 ⊗ L). (4.12)

Following the same reasoning, it can be shown that Πi, for i ≥ 3, are solutions of

EΠiS
[i] = AΠi +H(Π1 ⊗ Πi−1 +Π2 ⊗ Πi−2 + · · ·+Πi−1 ⊗ Π1) + (NΠi−1)⊗ L. (4.13)

Remark 3. The conditions σ(S) ∈ C0 and σ(A) ∈ C<0 imply that equations (4.7) have unique

solution that can be computed by solving the linear equations

(S⊤ ⊗ E − Iν ⊗ A)vec(Π1) = vec(BL),

((S ⊕ S)⊤⊗E−Iν2 ⊗ A)vec(Π2) = vec
(
H(Π1 ⊗ Π1)+N(Π1 ⊗ L)

)
,

(S[i]⊤ ⊗ E − Iνi ⊗ A)vec(Πi) = vec
(
H(Π1⊗Πi−1+Π2⊗Πi−2+· · ·+Πi−1⊗Π1)+N(Πi−1⊗L)

)
,

(4.14)

for i ≥ 3 [118].

The matrices in system (4.2), derived from the discretization of the Navier-Stokes equations,

have special structures as shown above. We will demonstrate that, by exploiting the structure

of these matrices, together with the assumption that A22 is invertible (which holds in practice),

the equations in Theorem 10 can be simplified.
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Note, in fact, that rewriting the first equation of (4.7) with block matrices, we obtain

 In 0

0 0


 Π1a

Π1b

S=
 A11 A12

In A22


 Π1a

Π1b

+

 B1

0

L. (4.15)

Let Ap := A11 − A12A
−1
22 . This yields

Π1aS = ApΠ1a +B1L,

Π1b = −A−1
22 Π1a.

(4.16)

Similar to (4.15), defining

Q2 :=

 Q2a

Q2b

 = H(Π1 ⊗ Π1) +N(Π1 ⊗ L) and Π2 :=

 Π2a

Π2b


yields Q2b = 0 and

Π2aS
[2] = ApΠ2a +Q2a,

Π2b = −A−1
22 Π2a.

(4.17)

Following the same reasoning, define

Qi :=

 Qia

0

 = H(Π1 ⊗ Πi−1 +Π2 ⊗ Πi−2 + · · ·+Πi−1 ⊗ Π1) +N(Πi−1 ⊗ L), (4.18)

and note that Πi =

 Πia

Πib

 with Πib = −A−1
22 Πia and Πia the solution of

ΠiaS
[i] = ApΠia +Qia. (4.19)

Note that the resulting equations (4.19) are of dimensions reduced to half of those compared

with (4.7). Moreover, (4.19) falls into the form of a standard Sylvester equation which can be

solved directly with a variety of methods, e.g., the function Sylvester in MATLAB.
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Remark 4. The approach presented in Theorem 10 can be directly applied to systems with

multiple outputs (i.e. C2 ∈ Rm×n with m ≥ 1).

From a practical point of view, it is useful to define an approximate version of the moment

which uses a finite number of terms Πi, i = 1, 2, · · · , k.

Definition 7. We call Cπ̄k(ω) = C
k∑

i=1

Πiω
(i) the k-th approximate moment of system (4.2) at

(S, L).

Note that if the convergence radius of (4.5) is positive, then (4.5) is an exact solution of (4.6)

in power form and the k-th approximate moment of system (4.2) is such that

lim
k→∞

Cπ̄k(ω)− Cπ(ω) = 0. (4.20)

Remark 5. Finding the solutions to the nested Sylvester-like equations (4.7) (or (4.19)) is

generally a computationally demanding task: solving the first equation of (4.7) (or (4.19))

has complexity of O(ν3n3) and the complexity for the k-th equation grows as O(ν3kn3). The

dependence on n3 significantly degrades the applicability of this computation in some fluid

mechanics problems in which spacial discretization gives rise to a large number of ODEs (i.e.

an extremely large n).

As mentioned in Remark 5, the model-based approach hinges on the computation of the Πi’s

(up to a certain k) that results in major bottleneck in computation. Note, however, that to

construct the approximate moment in Definition 7, the information of the matrices Π1, . . . ,Πk

is not necessarily required as long as we know the vectors CΠ1, . . . , CΠk. Note that the size

of CΠi is smaller than the size of Πi by a factor of n. As a consequence these can be much

more efficiently estimated using a data-driven procedure which we introduce in the following

subsection.
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4.1.2 Data-driven Approach

We now propose a data-driven algorithm inspired by [65] for general nonlinear systems. Different

from the model-based approach introduced in the previous section, the data-driven approach

proposed here has the advantage of not requiring any other information from the system except

for the signal generator (which is selected by the user and, consequently, known) and the output

data.

Exploiting the power expansion developed in the previous section, we can write the output of

the system as

y(t) = Cπ(ω) + ι(t) =
+∞∑
i=1

CΠiω
(i) + ι(t), (4.21)

where ι is the transient error, which decays to zero at steady state. Consider the set of polynomial

basis function

Ω̄ := [ω ω(2) · · · ω(k) · · · ]⊤. (4.22)

The goal is to estimate the coefficients

Γ̄ := [CΠ1 CΠ2 · · · CΠi · · · ]. (4.23)

However, when i ≥ 2, we note that ω(i) contains duplicated terms (e.g. both ω1ω2 and ω2ω1

appears in ω(2)). Thus, without loss of generality, we can introduce the following vector which

contains all elements in ω(i) without repetition, see [116, Chapter 4]. For ω = [ω1, ω2, · · · , ων ]
⊤,

let ω{i} denotes the vector

ω{i} :=[ωi
1, ω

i−1
1 ω2, · · · , ωi−1

1 ων , ω
i−2
1 ω2

2, ω
i−2
1 ω2ω3, · · · , ωi−2

1 ω2ων , · · · , ωi
ν ]

⊤, (4.24)

which contains all monomials of order i. Note that ω(i) and ω{i} have νi and ν(ν+1)···(ν+i−1)
i(i−1)···1

(≤ νi) elements, respectively, and that there exists matrices Xi such that

ω{i} = Xiω
(i). (4.25)
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For example, when ν = 2,

ω(2) =



ω2
1

ω1ω2

ω2ω1

ω2
2


, ω{2} =


ω2
1

ω1ω2

ω2
2

, X2 =


1 0 0 0

0 1 0 0

0 0 0 1

 .

Using the vector ω{i} defined above, the approximation problem can be rewritten compactly as

y(t) ≈ Cπ̄k(ω) =
k∑

i=1

C̃Πiω
(i) =

k∑
i=1

Z̃iXiω
(i) =

k∑
i=1

Z̃iω
{i} = Γ̃kΩ̃k, (4.26)

where Γ̃k = [Z̃1 Z̃2 · · · Z̃k] and Ω̃k = [ω ω{2} · · · ω{k}]⊤. This approximation neglects

the error e resulting by terminating the summation at k, namely e(t) =
∑

i>k CΠiω
(i), and the

transient error ι. In this way, we define Γ̃k
j as an on-line estimate of the coefficient matrix Γ̃k

(in (4.26)) using samples collected from time instants Tw
j , namely computed at the time tj using

the last w samples. The computation is given by the following result.

Theorem 11. Define the time-snapshots matrices Ũj ∈ Rw×N and Ỹj ∈ Rw with, w ≥ N , as

Ũj := [Ωk(tj−w+1) · · · Ωk(tj−1) Ωk(tj)]
⊤ (4.27)

and

Ỹj := [y(tj−w+1) · · · y(tj−1) y(tj)]
⊤. (4.28)

If Ũj is full column rank, then

vec(Γ̃k
j ) = (Ũ⊤

j Ũj)
−1Ũ⊤

j Ỹj, (4.29)

and the estimation C̃Πi are given as

C̃Πi = Z̃iXi, (4.30)

for i = 1, 2, · · · , k.
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The convergence of the estimated moment is guaranteed by the next result.

Theorem 12. Suppose Assumptions 8, 9 and 10 hold. Then

lim
tj→∞

(
Cπ(ω)− lim

k→∞
(Γ̃k

j Ω̃
k)

)
= 0. (4.31)

Proof. By Theorem 10, the mapping π can be defined as a power series expansion of ω.

Assumption 10 guarantees that the approximation Γ̃k
j is well-defined for all j. The transient

error ι vanishes as t→ ∞ by Assumption 9, i.e. limtj→∞ Γ̃k
j = Γ̃k. Then, by (4.20) and (4.26),

limk→∞,tj→∞(Γ̃k
j Ω̃

k) converges to y, thus Cπ(ω).

Up to this point, what we have considered is only one trajectory ω of the signal generator. This

is restrictive in the nonlinear setting. Thus, in practice we can construct the new snapshots

matrices U and Y with multiple trajectories, namely

U = [Ũ1⊤
j Ũ2⊤

j · · · Ũ q⊤
j ]⊤,

Y = [Ỹ 1⊤
j Ỹ 2⊤

j · · · Ỹ q⊤
j ]⊤,

(4.32)

for q ≥ 1, with Ũ i
j and Ỹ

i
j the data matrices (defined in (4.27) and (4.28)) sampled from different

signal generator initial condition ω(0) = ωi
0.

An online implementation of the proposed data-driven approach is given in the following

Algorithm 1.

Remark 6. Obtaining the least-squares solution (4.29) constitutes the most costly operation

in this data-driven procedure. This step involves computing the pseudo-inverse of a w × N

matrix with w ≥ N , hence having complexity1 O(N3). As N is bounded by
∑k

i=1 ν
i, the

complexity is bounded by O(ν3k), which is significantly better than the complexity O(ν3kn3)

of the model-based approach (as discussed in Remark 5) since now the computational cost no

longer scales with the original problem size n, that could be extremely large in practice.

Remark 7. The data-driven method does not rely on the knowledge of the system matrices

E,A,N,B and C, and hence opens the possibility of exploiting directly the data from the

1This is the computational cost using the standard Gaussian elimination.
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Algorithm 1 On-Line Approximation of C̃Π1, · · · , C̃Πk

1: Input: the approximation order k; sufficiently large j ∈ Z; w ≥ N ; sufficiently small
tolerance eΓ; a proper q ∈ Z

2: construct matrix Ũj and Ỹj in (4.27) and (4.28)
3: construct U and Y in (4.32) by repeating step 2 for q times with different initial condition
ω(0)

4: if U⊤U is full rank then
5: compute Γ̃k

j solving (4.29)
6: else
7: increase w go to 2

8: if ∥Γ̃k
j − Γ̃k

j−1∥ > (tk − tk−1)eΓ then
9: j = j + 1 go to 2
10: else
11: obtain Γ̃k

j

12: obtain Z̃i from Γ̃k
j

13: Return: C̃Πi for i = 1, 2, · · · , k ▷ see (4.30)

original fluids model. In other words, one could possibly bypass the use of certain system

discretization techniques which are typically expensive per se.

4.2 A family of reduced-order models

We now introduce a family of reduced-order models which is in a quadratic-bilinear form, namely

in the form

ξ̇ = Fξ +G(ξ ⊗ ξ) +Mξu+Ru,

ψ =
∑
i≥1

Diξ
(i),

(4.33)

where F ∈ Rν×ν , M ∈ Rν×ν , G ∈ Rν×ν2 , R ∈ Rν and D⊤
i ∈ Rνi . In the following statement we

give conditions on F , Πi, R and Di such that (4.33) is indeed a reduced-order model by moment

matching of (4.2).

Theorem 13. Consider the system (4.2), the signal generator (4.3), the model (4.33) and

suppose that Assumption 8, 9 and 10 hold. System (4.33) is a reduced-order model by moment
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matching of system (4.2) at (S, L) if ν < n and the following equations hold

CΠ1 =D1P(1,1),

CΠi =D1P(i,1)+D2P(i,2)+· · ·+Di−1P(i,i−1)+DiP(i,i),

(4.34)

for all i > 1, where

P(i,j) =

 Pi, j = 1,∑i−j+1
k=1 Pk ⊗ P(i−k,j−1), j ≥ 2,

(4.35)

for i ≥ 1, j ≤ i, and Pi are the solutions to the equations

P1S = FP1 +RL,

P2S
[2] = FP2 +G(P1 ⊗ P1) +M(P1 ⊗ L),

PiS
[i] = FPi +G(P1 ⊗ Pi−1 + P2 ⊗ Pi−2 + · · ·+ Pi−1 ⊗ P1) +M(Pi−1 ⊗ L),

(4.36)

for i ≥ 3.

Proof. By Lemma 1, to match the moment of the systems (4.33) and (4.2) at (S, L), there must

exist a unique mapping p(·) solving

∂p(ω)

∂ω
Sω =Fp(ω) +G(p(ω)⊗ p(ω)) +Mp(ω)(Lω) +RLω. (4.37)

Similar to the proof of Theorem 1, considering the formal power series

p(ω) =
∑
i≥1

Piω
(i), (4.38)

yields the system of equations (4.36). Recall that p must also solve (2.29), which in this case

becomes

C
∑
i≥1

Πiω
(i) =

∑
i≥1

DiPiω
(i). (4.39)
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This equation yields

CΠ1ω + CΠ2(ω ⊗ ω) + CΠ3(ω ⊗ ω ⊗ ω) + · · ·

= D1P1ω + (D1P2 +D2(P1 ⊗ P1))(ω ⊗ ω)

+ (D3P1 +D2(P1 ⊗ P2 + P2 ⊗ P1)

+D3(P1 ⊗ P1 ⊗ P1))(ω ⊗ ω ⊗ ω) + · · ·

= D1P(1,1)ω + (D1P(2,1) +D2P(2,2))(ω ⊗ ω)

+ (D3P(3,1) +D2P(3,2) +D3P(3,3))(ω⊗ω⊗ω) + · · · .

(4.40)

By matching the power of ω(i), the above implies that

CΠiω
(i) =(D1P(i,1) +D2P(i,2) + · · ·

+Di−1P(i,i−1) +DiP(i,i))ω
(i),

(4.41)

which yields (4.34). Here, P(i,j) represents the coefficient matrix of ω(i) corresponding to Dj.

Then, it is easy to verify that P(i,1) = Pi. Moreover, for 2 ≤ j ≤ i,

P(i,j)ω
(i)=(P1ω)⊗ (P(i−1,j−1)ω

(i−1)) + (P2ω
(2))⊗ (P(i−2,j−1)ω

(i−2)) + · · ·

+ (P(i−j+1)ω
(i−j+1))⊗ (P(j−1,j−1)ω

(j−1))

=(P1 ⊗ P(i−1,j−1) + P2 ⊗ P(i−2,j−1)+· · ·+ P(i−j+1) ⊗ P(j−1,j−1))ω
(i)

=

(
i−j+1∑
k=1

Pk ⊗ P(i−k,j−1)

)
ω(i),

(4.42)

which yields (4.35). This completes the proof.

We now show that the reduced-order system (4.33) can be simplified. In fact, note that selecting

P1 = Iν , yields

F = S −RL, (4.43)

and from equation (4.35), when i = j,

P(i,i) = Iνi (4.44)
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for all i ≥ 1. Now select any G and M , and determine P(i,j) from (4.35) by solving (4.36).

It follows that the Di’s are determined by the model-based approach (data-driven approach,

respectively) as

D1 = CΠ1(C̃Π1),

D2 = CΠ2(C̃Π2)−D1P(2,1),

Di = CΠi(C̃Πi)−D1P(i,1) −D2P(i,2) + · · · −Di−1P(i,i−1),

(4.45)

for i ≥ 3. For data-driven approach, it suffers to replace CΠi with the estimation C̃Πi obtained

from Algorithm 1.

Then, a family of reduced-order models of system (4.2) that match the k-th approximate moment

is given by

ξ̇(t) = (S−RL)ξ(t)+G(ξ(t)⊗ ξ(t)) +Mξ(t)u(t)+Eu(t),

ψ̄(t) =
k∑

i=1

Diξ
(i)(t),

(4.46)

where R, G and M are free parameters that can be used to impose additional properties of the

model and the Di’s are selected as in (4.45) (computed for the specific selection of R, G and M

from (4.36) and (4.35)). Note that for the obtained reduced-order system, we can easily write it

back to the DAEs form by properly designing an invertible matrix F22 as we want. The stability

analysis is the same as Theorem 6.

4.3 Simulations

In this section, we first consider a one-dimension Burgers’ equation which is a general quadratic-

bilinear system and then apply it to models that describe fluid flows in two types of cavity: a

lid-driven (square) cavity flow and a lid-driven polar cavity flow. Both model-based approach

and data-driven approach are implemented. We examine the performance of the proposed

moment matching model reduction methods for Navier-Stokes type quadratic-bilinear systems
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by comparing the output response between the original system and the reduced-order model. A

comparison is given between the proposed method and the two-sided projection method in [8].

4.3.1 Burgers’ equation

The Burgers’ equation is a PDE that models many physical phenomena and provides the simplest

model for diffusive waves in fluid dynamics. It has been extensively used to numerically test

nonlinear model reduction techniques [119]. Consider the one-dimension Burgers’ equation of

the form

v
∂v(x, t)

∂x
+ γ

∂2v(x, t)

∂x2
=
∂v(x, t)

∂t
,

αv(0, t) + β
∂v(x, t)

∂x
|x=0 = u(t),

∂v(x, t)

∂x
|x=1 = 0,

(4.47)

with boundary condition v(x, 0) = v0(x). This set of equations describes the diffusive wave in a

one-dimensional space x ∈ Ω = [0, 1]. To the left boundary (x = 0), we implement the Dirichlet

boundary control with α = 1, β = 0 and γ = 0.1. The output of interest is the response of x at

the right boundary (x = 1).

We discretize the above PDE using the central difference method [120] which leads to a

quadratic-bilinear system of order 1500 of the form

v̇ = f(v, u) = Av +H(v ⊗ v) +Nvu+Bu. (4.48)

The primary purpose of the 1D Burgers’ equation is not to directly simulate a physical phe-

nomenon but to serve as a simplified model of the homogeneous incompressible Navier-Stokes

equation. It captures essential mathematical characteristics, including the nonlinear convection

term and the second-order derivative representing viscous forces [121]. The original intention

behind introducing the 1D Burgers’ equation was to facilitate a deeper understanding of the
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Figure 4.1: Simulation for 1D burgers’ equation

mathematical complexities present in the Navier-Stokes equation, especially under conditions of
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low viscosity (high Reynolds numbers).

The signal generator (4.3) has been selected as S = diag(5S0, 10S0, 15S0, 20S0), with S0 =

[0, 1;−1, 0], and L = [1, 0, 1, 0, 1, 0, 1, 0], which leads to a reduced-order model of order 8. We

select the eigenvalues of F randomly and guarantee stability by selecting the matrix R. Algorithm

1 has been applied with q = 20, eΓ = 10−6, and the initial conditions wi
0 randomly sampled

from the normal distribution N (0, 10−4). For both model-based and data-driven methods, we

have investigated the matching for 1-st, 2-nd and 3-rd approximate moments. For the two-sided

projection method, to ensure the same dimension of the reduced-order systems, we have only

considered the first two interpolation points to construct the projection matrix.

Figure 4.1 (a) (top) displays the time history of the output response obtained from the model-

based approach, while the associated absolute error is shown in Figure 4.1 (a) (bottom). The

black/solid line indicates the output response of the original model, while the yellow/dashed,

blue/dotted and red/dash-dotted lines indicate the output response of the reduced-order model

for k = 1, 2 and 3, respectively. We have also compared this interconncection -based method

with the two-sided projection method (purple/dash-dotted) in Figure 4.1(a). Figure 4.1(b)

dislpays the analogous quantities for the use of the data-driven approach.

While matching the 1-st approximate moment (k = 1) is still unsatisfactory, observe that

both the reduced-order models (obtained by the model-based and data-driven approaches)

provide a sufficiently good approximation as the steady-state responses almost coincide when

the 2-nd (k = 2) and 3-rd (k = 3) approximate moments are matched. When the order of the

approximate moment k increases, the accuracy of the approximation improves accordingly as the

error becomes smaller. For comparison, the two-sided projection method has better performance

at transient, whilst at steady-state it performs better than the case k = 1 but noticeably falls

behind for k = 2 and k = 3. It is worth mentioning that, as G and M are randomly selected,

these are free for the enforcement of some extra properties.
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4.3.2 Lid driven cavity

The lid-driven flow in a square cavity is a typical steady separated flow which has been examined

experimentally and numerically in detail [122, 123]. So far, some accurate numerical results are

available for this case over a certain range of Reynolds numbers. Therefore, it has also been

used to test numerical solutions of the Navier-Stokes equations [124].

The considered lid-driven cavity is shown in Figure 4.2. It has a square domain (x, y) ∈Ω =

[0, L] × [0, L] with the boundary that consists of three rigid walls and a moving top lid with

velocity U . This flow dynamics modelled by the Navier-Stokes equations using vorticity ϵ and

stream function ζ are given as

∂ϵ

∂t
= −u ∂ϵ

∂x
− v

∂ϵ

∂y
+

1

Re
∇2ϵ,

0 = ϵ+∇2ζ,

(4.49)

where Re is the Reynolds number and ∇2 is the Laplacian operator. u and v are the x and y

components of the velocity,

u =
∂ζ

∂y
, v = −∂ζ

∂x
(4.50)

A velocity profile utop = U(t) is imposed on the upper lid as the system input and the boundary

conditions are set to mixed Dirichlet and Neumann conditions. We collect the boundary

conditions and summarize them as follows

x = 0, 0 ≤ y ≤ L : u = v = 0, ζ = 0, ϵ = −∂
2ζ

∂x2
;

x = L, 0 ≤ y ≤ L : u = v = 0, ζ = 0, ϵ = −∂
2ζ

∂x2
;

y = 0, 0 ≤ x ≤ L : u = v = 0, ζ = 0, ϵ = −∂
2ζ

∂y2
;

y = 0, 0 ≤ x ≤ L : u = U, v = 0, ζ = 0, ϵ = −∂
2ζ

∂y2
.

(4.51)

We apply the central difference method to (4.49) on the p× p unit square mesh with the nodes
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Figure 4.2: Lid-driven cavity [2].

ϵi,j and ζi,j inside the cavity, leading to the set of equations

dϵi,j
dt

=
ϵi+1,j + ϵi−1,j + ϵi,j+1 + ϵi,j−1 − 4ϵi,j

Re · h2

+
(ζi+1,j − ζi−1,j)(ϵi,j+1 − ϵi,j−1)− (ζi,j+1 − ζi,j−1)(ϵi+1,j − ϵi−1,j)

4h2
,

0 = ϵi,j +
ζi+1,j + ζi−1,j + ζi,j+1 + ζi,j−1 − 4ζi,j

h2
.

(4.52)

for 2 ≤ i ≤ p and 2 ≤ j ≤ p, with h = L
p
. The boundary condition can be rewritten as

i = 1, 2 ≤ j ≤ p : ζ1,j = 0, ϵ1,j = − 2

h2
ζ2,j;

i = p+ 1, 2 ≤ j ≤ p : ζp+1,j = 0, ϵp+1,j=− 2

h2
ζp,j;

j = 1, 2 ≤ i ≤ p : ζi,1 = 0, ϵi,1 = − 2

h2
ζi,2;

j = p+ 1, 2 ≤ i ≤ p : ζi,p+1 = 0,

ϵi,p+1 = − 2

h2
ζi,p −

2

h
U.

(4.53)

Let ϵ (ζ, respectively) be a vector that contains the elements ϵi,j (ζi,j , respectively) at all nodes.

Combining system (4.52) and the boundary conditions (4.53) yields a DAE quadratic-bilinear

system in the form of (4.1). The output of the system is the stream function at the centre of the
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Figure 4.3: Simulation for lid-driven cavity.

cavity. Let p = 31 and set the Reynolds number to 10. The discretized DAE quadratic-bilinear
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system has order 2(p− 1)2 = 1800. The reduced-order model is configured with a dimension

ν = 8, i.e., it utilizes 8 interpolation points. These points consist of 4 complex conjugates

pairs. The signal generator, represented by the matrices S and L, remains the setup described

in Section 4.3.1. The settings of the data-driven and two-sided projection approaches are the

same as in Section 4.3.1. All the other free matrices in the reduced-order models are randomly

selected as part of the original system matrices.

Figure 4.3 (a) (top) displays the time histories of the stream function at the centre point

obtained from the model-based approach, while the respective absolute error is shown in Figure

4.3 (a) (bottom). The black/solid line indicate the output response of the original model

,while the yellow/dashed, blue/dotted and red/dash-dotted lines indicate the output response

of the reduced-order models for k = 1, 2 and 3, respectively. We have also compared this

interconnection-based method with the two-sided projection method (purple/dash-dotted) in

Figure 4.3(a). Figure 4.3(b) displays the analogous quantities for the used data-driven approach.
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Figure 4.4: A visualization of the vorticities of the original model (a), the reduced-order model
(b) and of the respective error (c) at t = 8s in the cavity.
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It can be observed that both the model-based and the data-driven approaches result in reduced-

order models that well approximate the steady-state response of the original system, even with

k = 1. Compared with the two-sided projection method, our proposed approaches also present

competitive performance in terms of approximation error.

We plot the vorticity ϵ at each point by selecting C2 = In with the same input at time t = 8s

when k = 3. In Figure 4.4, we compare the response of the reduced-order model with that of

the original system and the errors are visualized in the cavity. The states of the reduced-order

model do not have any physical meaning and we also keep the possibility that we can select

some key points as the output instead of the full states to reduce the computational complexity.

For example, as in the lid-driven cavity we know the information that the top lid is moving,

we can focus more on the top half and reduce the output points at the bottom. Note that for

the obtained reduced-order system, we can easily write it back to the DAEs form by properly

designing an invertible matrix F22 without any change on the output response.

4.3.3 Lid driven polar cavity

As a third case study, we solve the lid-driven cavity flow in cylindrical (polar) coordinates [3].

The lid-driven polar cavity flow is another test case which has been frequently used to validate

numerical algorithms [125, 126]. Compared with the square cavity flow problem studied in

Section 4.3.2, due to the special geometry, it is more challenging to present a numerical scheme

for the flow in this polar cavity. The features of the flow in a lid-driven polar cavity have been

investigated in [127], both experimentally and numerically.

The schematic view of polar cavity geometry is shown in Figure 4.5 with r = 1, R = e and

θ = 1. We assume that the polar cavity is driven from the inside wall, such that the wall with

smaller radius is moving with a constant velocity and the other three walls are stationary. The

governing equations for a two-dimensional flow in terms of the stream function and the scalar
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Figure 4.5: Schematic view of polar cavity geometry [3].

vorticity field are given by

∂ϵ

∂t
= −1

r
(
∂ϵ

∂r

∂ζ

∂θ
− ∂ϵ

∂θ

∂ζ

∂r
) +

2

Re
∇2ϵ,

0 = ϵ+∇2ζ.

(4.54)

The factor r ∂
∂r

in the polar coordinate Laplacian is awkward to discretize and we theredore

introduce a change of variables r = r(ρ). We define the function

r = r(ρ) = eρ (4.55)

so that r ∂
∂r

= ∂
∂ρ

and we take as our boundary condition ρ = 0 when r = 1, corresponding to

points lying on the boundary of the circular cylinder. Then, the governing equations (4.54)

become

∂ϵ

∂t
= −e−2ρ(

∂ϵ

∂ρ

∂ζ

∂θ
− ∂ϵ

∂θ

∂ζ

∂ρ
) +

2

Re
e−2ρ(

∂2ϵ

∂ρ2
+
∂2ϵ

∂θ2
),

0 = ϵ+ e−2ρ(
∂2ζ

∂ρ2
+
∂2ζ

∂θ2
),

(4.56)
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Figure 4.6: Simulation for lid-polar cavity.
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By the central difference method, (4.56) has been transformed into

dϵi,j
dt

=
2e−2ρi

Re · h2
(ϵi+1,j + ϵi−1,j + ϵi,j+1 + ϵi,j−1 − 4ϵi,j)

+
e−2ρi

4h2
[(ζi+1,j−ζi−1,j)(ϵi,j+1−ϵi,j−1)−(ζi,j+1−ζi,j−1)(ϵi+1,j − ϵi−1,j)],

0 = ϵi,j +
ζi+1,j + ζi−1,j + ζi,j+1 + ζi,j−1 − 4ζi,j

h2e2ρi
,

(4.57)

for 2 ≤ i ≤ p and 2 ≤ j ≤ p. Here, h = 1
p
and ρi = (i− 1)h. The boundary conditions are given

as

i = 1, 2≤j≤p : ζ1,j=0, ϵ1,j = (1− 2

h
)u− 2ζ2,j

h2
;

i = p+ 1, 2 ≤ j ≤ p : ζp+1,j = 0, ϵp+1,j=−2ζp,j
h2

;

j = 1, 2 ≤ i ≤ p : ζi,1 = 0, ϵi,1=−e−2ρi
2ζi,2
h2

;

j = p+ 1, 2 ≤ i ≤ p : ζi,p+1 = 0, ϵi,p+1 = −e−2ρi
2ζi,p
h2

.

(4.58)

Similar to the lid-driven cavity, we obtain the DAE quadratic-bilinear system in the form of

(4.1) by combing system (4.57) and the boundary condition (4.58). We consider the original

DAE system with order 1800 and reduce it to a general quadratic-bilinear system of order 8.

The simulation settings remains as in Section 4.3.2.

Figure 4.6 illustrates similar results as those Figure 4.3 for the lid-driven polar cavity. The

reduced-order models provide good approximations of the output and the performance will be

better if the higher approximate moments are matched. Compared with the two-sided projection

method, we have similar accuracy at steady-state and some free parameters can be easily used

to enforce some additional properties. Note that for the obtained reduced-order system, it can

easily be written in DAEs form.
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Chapter 5

Two-sided Interconnection-Based Model

Order Reduction for Quadratic-Bilinear

Systems

In the preceding chapters, we have focused on what are termed “direct” moments, where the

signal generator is connected in front of the system. An alternative time-domain concept of

nonlinear moments, based on the swapped interconnection, was introduced in [75]. This concept

achieves matching on an arbitrary manifold that might lack practical significance. To address

this, we consider a two-sided interconnection approach, which promises to provide a manifold

at steady-state that aids in resolving the challenge of matching “swapped” moments. In this

chapter, we develop a two-sided method aimed at enhancing model order reduction through

moment matching for quadratic-bilinear systems. The resulting reduced-order models, of order

ν, match moments at 2-ν (distinct) interpolation points, effectively doubling the matched

conditions compared to those discussed in Chapter 3. The findings presented in this chapter

draw upon the foundational work in [105].

The structure of this chapter is as follows. Section 5.1 characterizes the swapped nonlinear

moment for quadratic-bilinear systems, leveraging the solution of a system of Sylvester-like

equations. Section 5.2 introduces two families of reduced-order models. Finally, Section 5.3
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demonstrates the applicability of these models through a numerical example based on the 1-D

Burgers’ equation.

5.1 Swapped Moments for Quadratic-Bilinear Systems

In this section we provide a characterization of “swapped” moment for quadratic-bilinear

systems.

Consider again system (3.1) together with the linear filter

ϖ̇ = q(ϖ) + r(ϖ)η = Qϖ +Rη. (5.1)

To define the swapped moments for system (3.1), we introduce the following assumption.

Assumption 15. The filter (5.1) is controllable and the eigenvalues of Q are simple and belong

to C0.

The following result provides a formula to compute the moment of system (3.1) at (Q,R).

Theorem 14. Consider the system (3.1) and the filter (5.1). Suppose that Assumptions 15 and

13 hold. Then the mapping

v(x) =
∑
i≥1

Υix
(i) (5.2)

formally solves the partial differential equation

Qv(x) =
∂v

∂x
(Ax+H(x⊗ x)) +RCx, (5.3)

where Υi, i ≥ 1, solve the Sylvester-like equations

QΥ1 = Υ1A+RC,

QΥ2 = Υ2(A⊕ A) + Υ1H,

QΥi = ΥiA
[i] +Υi−1H

[i−1],

(5.4)
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for i ≥ 3. Moreover, the (swapped) moment of system (3.1) at (Q,R) is given by
∑
i≥1

(ΥiB
[i] +

Υi−1N
[i−1])x(i−1) (with Υ0 = 0).

Proof. Consider the formal power series expansion (5.2) of v. Substituting (5.2) into (5.3) yields

Q(Υ1x+Υ2x
(2) + · · · ) = ∂(Υ1x+Υ2x

(2) + · · · )
∂x

(Ax+Hx(2)) +RCx. (5.5)

Then the equations in (5.4) are obtained by matching the powers of x(i). According to Defi-

nition 2, since g(x) = Nx + B, the swapped moment of system (3.1) is given by
∑
i≥1

(ΥiB
[i] +

Υi−1N
[i−1])x(i−1). To see this, note that, for instance,

∂Υ2(x⊗ x)

∂x
B = Υ2(x⊕ x)B = Υ2(B ⊕B)x = Υ2B

[2]x.

This completes the proof.

From a practical point of view, it is useful to define an approximate version of the moment

which uses a finite number of terms Υi, i = 1, 2, · · · , k.

Definition 8. We call

(
∂v

∂x
g

)
k

=
k∑

i=1

(ΥiB
[i] +Υi−1N

[i−1])x(i−1)

the k-th approximate (swapped) moment of system (3.1) at (Q,R).

Note that if the convergence radius of (5.2) is positive, then (5.2) is an exact solution of (5.3) in

power form and the k-th approximate moment of system (3.1) is such that

lim
k→∞

(
∂v

∂x
g

)
k

=
∂v

∂x
g. (5.6)
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5.2 Two sided moment matching for quadratic-bilinear

systems

As explained in detail in [1], for nonlinear systems the one-sided swapped moment matching loses

practical meaning: since the swapped moment is a function of the state. Therefore matching

between the full-order and the reduced-order models must be done on a manifold x = α(ξ), for

some arbitrary α. However, when the two-sided moment matching is considered, the mapping

α is uniquely characterized because both x and ξ are restricted at steady state on a manifold

induced by ω.

In this section, we construct two families of reduced-order models that achieve approximate

two-sided moment matching for quadratic-bilinear systems. The first family is a specialisation

of (2.11). We show that the drawback of this family is that it does not preserve the polynomial

structure of the system. This motivates us to introduce a second family which instead preserves

the quadratic-bilinear structure of the original system.

Note that in this chapter we mainly focus on matching the first two approximate moments to

design the reduced-order model for the following reasons. First, as shown in our simulations,

the approximation of moments is very accurate, i.e. the error of the output response between

the original system and the reduced-order model is less than 10−5. Moreover, as the original

system is in quadratic-bilinear form, we want to preserve this structure (especially in the second

family). Finally, in the computation of higher order approximate moments, the complexity

increases as well.

5.2.1 First family of reduced-order models

The first family of two-sided reduced-order models is a direct consequences of the results in

Section 2.2. Consider the system (2.11) written for the linear signal generator (3.2) with the
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moment at (S, L) written exploting the polynomial expansion (3.4), namely

ξ̇ = Sξ − δ(ξ)Lξ + δ(ξ)u,

ψ =
∑
i≥1

CΠiξ
(i),

(5.7)

where the Πi’s are defined as in (3.6). We know that this model matches the (direct) moment of

(3.1) at (S, L), and that if δ is selected as in (2.14), then the model also matches the (swapped)

moment of system (3.1) at (Q,R). Such a δ can be computed explicitly as shown in the next

result.

Theorem 15. Consider the system (3.1), the signal generator (3.2) and the filter (5.1). Suppose

Assumptions 13, 14 and 15 hold and that both (3.4) and (5.2) are convergent series. System (5.7)

with the selection

δ(ξ) := lim
j→∞

δj(ξ), (5.8)

where

δj(ξ) =

[(
∂v̄j
∂x

∂π̄j
∂ξ

)−1
∂v̄j
∂x

(Nx+B)

]v̄j(x)= j∑
i=1

Υix
(i)

x=π̄j(ξ)=
j∑

i=1
Πiξ(i)

, (5.9)

matches the moments of system (3.1) at (S, L) and (Q,R), simultaneously.

Proof. Now we recall that at steady state x = π(ω) and ξ = p(ω) = ω which leads to the

dynamic properties of two-sided interconnection

dss − ωss = v(π(ω)) = χ(ω). (5.10)

Then, according to equation (2.13), δ is designed to satisfy

[
∂v

∂x
(Nx+B)

]
x=π(ω)

=

[
∂χ

∂ξ
δ(ξ)

]
ξ=ω

, (5.11)

with χ(ξ) = v(π(ξ)) which gives

∂χ

∂ξ
=
∂v

∂x

∂π

∂ξ
. (5.12)
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By substituting (5.12) into (5.11), δ is derived as (2.14). When we use the j-th approximate

moment, the corresponding v and π are replaced by the approximation v̄j and π̄j, which

yields (5.9). The mapping χ satisfy (2.12) when we rewrite equation (2.12) at steady state and

combine equation (3.5) and (5.3), that is

∂χ

∂ξ
(Sξ − δ(ξ)Lξ) +RCπ(ω)−Qχ(ξ)

=
∂v

∂x

∂π

∂ω
Sω − ∂v

∂x
(Nπ(ω)+B)Lξ +RCπ(ω)−Qv(π(ω))

=
∂v

∂x
(Ax+Hx(2)) +RCx− ∂v

∂x
(Ax+Hx(2))−RCx

=0.

(5.13)

By Theorem 4, π̄j converges to π and, by Theorem 14, v̄j converges to v. Thus, δj approaches

(2.14) as j → ∞.

The advantage of writing δ as in Theorem 15 is that this provides formulas to compute an

approximation of the two-sided reduced-order model up to an arbitrary order of accuracy of the

power series expansions.

Example 1. For j = 1, we have

δ1(ξ) = (Υ1Π1)
−1Υ1(NΠ1ξ +B). (5.14)

Note that this expression involves a polynomial in ξ of order 1. Ignoring higher order terms

yields

δ1(ξ) = (Υ1Π1)
−1Υ1B, (5.15)

which is the δ of the linearised reduced-order model, see [78]. For j = 2, we have

δ2(ξ) =

[(
(Υ1 +Υ2x

[2])(Π1 +Π2ξ
[2])

)−1

(Υ1 +Υ2x
[2])(Nx+B)

]
x=Π1ξ+Π2ξ[2]

.

(5.16)

Note that this expression involves polynomials in ξ of order above 1. In general, δj involves
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polynomials in ξ of order above j. These higher-than-j-polynomials can be used or ignored (the

latter produces a coarser approximation). In both cases, as j → ∞, both expressions converge

to (2.14).

5.2.2 A Second Family of reduced-order models

In the previous section we have provided a family of reduced-order models of order ν that match

moments at σ(S) and σ(Q), simultaneously. However, the resulting model does not preserve

the quadratic-bilinear structure. Moreover, no free parameter is left in the resulting two-sided

reduced-order model and, thus, no further property can be imposed. In this section we propose

an alternative family of reduced-order models that preserve the polynomial structure of the

system and maintain some free parameters to be used for further design.

Consider a class of polynomial models described by the equations

ξ̇ = Fξ +G(ξ ⊗ ξ) +
∑
i≥1

Miξ
(i−1)u,

ψ =
∑
i≥1

Diξ
(i),

(5.17)

where Mi ∈ Rν×νi , while F , G and Di have the same size as the matrices in (3.14).

Consider the problem of matching only the 1-st approximate direct and swapped moments. This

problem is solved by the family of models described by

ξ̇ = Fξ +G(ξ ⊗ ξ) +M0u,

ψ = D1ξ,

(5.18)

where

F = S −M0L, M0 = (Υ1Π1)
−1Υ1B, D1 = CΠ1

and G free. Π1, Υ1 are defined by the first equations of (3.6) and (5.4), respectively. System (5.18)

describes a family of reduced-order models parameterised in G that match the 1-st approximate

direct and swapped moments. The parameter G can be used to enforce additional properties. If
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G = 0, then the resulting system is the standard two-sided linear(ised) reduced-order model by

moment matching, see [78] for more details.

Consider now the problem of matching the 2-nd approximate direct and swapped moments. For

this problem, we want to determine the parameters of

ξ̇ = Fξ +G(ξ ⊗ ξ) +M1ξu+M0u,

ψ = D1ξ +D2(ξ ⊗ ξ),

(5.19)

such that the given approximate matching is achieved. Note that system (5.19) has a quadratic-

bilinear dynamics with a quadratic output map. The problem is solved by the next result.

Theorem 16. Consider the system (3.1), the signal generator (3.2) and the filter (5.1). Suppose

that Assumptions 13, 14 and 15 hold. Then system (5.19) describes a family of reduced-

order models of system (3.1) that match the 2-nd approximate moments at σ(S) and σ(Q),

simultaneously, for the selection

F = S −M0L, M0 = (Υ1Π1)
−1Υ1B,

D1 = CΠ1, D2 = CΠ2 −D1P2

M1 = Y −1
1 [Z − Y2M

[2]
0 ]

(5.20)

where

Z = (Υ1N +Υ2B
[2])Π1, Y1 = Υ1Π1,

X = Υ1Π2 +Υ2Π
(2)
1 , Y2 = X − Y1P2,

(5.21)

and P2 is the unique solution of the Sylvester equation

P2(S
[2] −M

[2]
0 (Iν ⊗ L)) = FP2 +G+ Y −1

1 (Z −XM
[2]
0 )(Iν ⊗ L), (5.22)

while G is free, and Π1, Π2, Υ1, and Υ2 are given by (3.6) and (5.4), respectively, if and only if

σ(S) ∩ σ(S −M0L) = ∅ and σ(S[2] −M
[2]
0 (Iν ⊗ L)) ∩ σ(S −M0L) = ∅.

Proof. Using the notation for general nonlinear systems introduced in Section 2.2, to satisfy the
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direct moment matching condition (2.10) up to the second order, we need to solve

C(Π1ω +Π2ω
(2)) +O(ω(3)) =

D1(P1ω + P2ω
(2)) +D2(P1ω + P2ω

(2))(2) +O(ω(3))

where O(ω(3)) indicates terms of order higher than ω(2) that can be disregarded. The condition

above induces the equations

CΠ1 = D1P1

for ω and

CΠ2 = D1P2 +D2P
(2)
1

for ω(2). Recall from Section 3.2 that P1 is defined as the solution of

P1S = FP1 +M0L (5.23)

while P2 is defined as the solution of

P2S
[2] = FP2 +G+M1(P1 ⊗ L). (5.24)

Select P1 = Iν and F = S −M0L. This selection solves equation (5.23) and yields D1 = CΠ1

and D2 = CΠ2 −D1P2. These matrices, as expected, are the same as those given in Section 3.2

for the one-sided direct family of reduced-order models (3.14). Next, consider that according

to Section 2.2, two-sided moment matching requires that the condition (2.15) holds for all ω.

Similarly to v, let

χ(ξ) =
∑
i≥1

Yiξ
(i) (5.25)

be the formal power series expansion of χ. Then, condition (2.15) written for the 2-nd approxi-

mate moments yields

Υ1Π1ω + (Υ1Π2 +Υ2Π
(2)
1 )ω(2) =

Y1P1ω + (Y1P2 + Y2P
(2)
1 )ω(2)
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which gives the conditions

Υ1Π1 = Y1P1

for ω(1) and

Υ1Π2 +Υ2Π
(2)
1 = Y1P2 + Y2P

(2)
1

for ω(2). Thus, the selections Y1 = Υ1Π1 and Y2 = X − Y1P2 with X = Υ1Π2 + Υ2(Π1 ⊗ Π1)

solve the matching

v(π(ω)) = χ(p(ω))

up to second order. Finally, to satisfy the swapped moment matching condition (2.13) up to

second order, we have to satisfy

Υ1B + (Υ1B
[2] +Υ1N)Π1ω =

Y1M0 + (Y1M1 + Y2M
[2]
0 )ω.

This equation yields the conditions

Υ1B = Y1M0

for ω(1) and

(Υ2B
[2] +Υ1N)Π1 = Y1M1 + Y2M

[2]
0

for ω(2). Thus, the selections M0 = Y −1
1 (Υ1B) and M1 = Y −1

1 [Z − Y2M
[2]
0 ] with Z = (Υ1N +

Υ2B
[2])Π1 solve the matching condition

(
∂v

∂x
(Nx+B)

)
x=π(ω)

=

(
∂χ

∂ξ
(M1ξ +M0)

)
ξ=ω

, (5.26)

up to the 2-nd approximate moment. Substituting the matrices M1 and Y2 in (5.24), yields

(5.22). All quantities are now uniquely defined, as long as Iν is the unique solution of (5.23)

and (5.24) has a unique solution P2. This is the case if and only if σ(S) ∩ σ(S −M0L) = ∅ and

σ(S[2] −M
[2]
0 (Iν ⊗ L)) ∩ σ(S −M0L) = ∅, respectively. Finally, Y1 and Y2 obtained from the

88



selections above also satisfy the Sylvester equations

Y1F = QY1 −RD1

and

Y2F
[2] = QY2 − Y1G−RD2,

which arise from the PDE (2.12). The proof is now complete.

The family of reduced-order models given in Theorem 16 and parameterized in G has a quadratic

output map, while the full-order model (3.1) has a linear output map. If the quadratic output is

undesired, this can be removed setting D2 = 0 in (5.19) and using the parameter G to achieve

two-sided moment matching of the 2-nd approximate moment. In this way, what we obtain as

the reduced-order (5.19) has the same structure as the original system (3.1).

Corollary 16.1. Consider the system (3.1), the signal generator (3.2) and the filter (5.1).

Suppose Assumptions 13, 14 and 15 hold. Then system (5.19) is a family of reduced-order models

of system (3.1) that match the 2-nd approximate moments at σ(S) and σ(Q), simultaneously,

for the selection

F = S −M0L, M0 = (Υ1Π1)
−1Υ1B,

D1 = CΠ1, D2 = 0,

M1 = Y −1
1 [Z − Y2M

[2]
0 ], G = P2S

[2] −M1 ⊗ L− FP2,

(5.27)

where

Z = (Υ1N +Υ2B
[2])Π1, Y1 = Υ1Π1,

X = Υ1Π2 +Υ2Π
(2)
1 , Y2 = X − Y1P2,

(5.28)

P2 is the solution of the equation

CΠ2 = D1P2, (5.29)

and Π1, Π2, Υ1, and Υ2 are given by (3.6) and (5.4), respectively.
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5.3 Simulations Results for the 1D Burgers’ Equation

We illustrate the results of this section on the one-dimension Burgers’ equation discussed in

Section 4.3.1.

We consider the system (4.48) with order n = 100. The signal generator (3.2) and the

filter (5.1) have been selected as S = diag(0.7S0, 5S0, 33S0), Q = diag(34Q0, 70Q0, 90Q0), with

S0 = Q0 = [0, 1;−1, 0] and L = R⊤ = [1, 0, 1, 0, 1, 0]. This selection results in two-sided

reduced-order models of order ν = 6.

We have constructed both families of reduced-order models that match the first and second

approximate moment by using Theorems 15 and 16. Fig. 5.1 (a) (top) shows the time histories

of the output of the full-order model (blue/solid line) and of the output of the reduced-order

model from Theorem 15 when k = 1 (red/dashed line) and k = 2 (black/dotted line). Fig. 5.1

(a) (bottom) shows the respective absolute errors. Fig. 5.1 (b) (top) shows the time histories of

the 4-th component1 of ϖ for the full-order model (blue/solid) and for the reduced-order model

from Theorem 7 when k = 1 (red/dashed) and k = 2 (black/dotted). Fig. 5.1 (a) (bottom)

shows the respective absolute errors. Fig. 5.2 shows the same quantities for the family from

Theorem 16 with G randomly selected.

As shown in the figures, both reduced-order models provide good approximations of the steady-

state responses of interest. It is also clear that when we consider the matching of higher

approximate moments (compare the case k = 2 with the case k = 1), the accuracy of the

approximation improves, i.e. the error becomes smaller. Note that, while the two families

of reduced-order models have similar steady-state performances, simulations with the model

from Theorem 15 are several times slower than simulations with the model from Theorem 16,

indicating that in practice the second model is less complex.

1Note that this component is randomly selected and all other components have similar behaviour.
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(a) Top: time histories of the output of the full-order model (blue/solid) and
of the output of the reduced-order model when k = 1 (red/dashed), k = 2
(black/dotted). Bottom: respective absolute errors.
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(b) Top: time histories of the 4-th component of ϖ for the full-order model
(blue/solid) and for the reduced-order model when k = 1 (red/dashed), k = 2
(black/dotted). Bottom: respective absolute errors.

Figure 5.1: Simulations for the first family of reduced-order models.
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Figure 5.2: Simulations for the second family of reduced-order models.
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Chapter 6

Interconncection-based Model Order

Reduction for Quadratic-Bilinear

Time-Delay Systems

The results of this chapter are based on [106]. In this chapter we propose an enhanced method

that, exploiting the special structure of quadratic-bilinear systems, allows to easily compute

approximations of the nonlinear moment and obtain reduced-order models which preserve the

quadratic-bilinear time-delay structure.

The remainder of this chapter is organized as follows. Section 6.1 characterizes the nonlinear

moment for quadratic-bilinear time-delay systems by solving a system of Sylvester-like equations,

based on which a family of reduced-order models is presented in Section 6.2. In Section 6.3, the

results are demonstrated by via numerical example.
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6.1 Moments for Quadratic-Bilinear Systems with Delays

Consider the quadratic-bilinear, SISO, continuous-time, time-delay system described by the

equations

ẋ =
∑
τi∈Tx

Aixτi +
∑
τi∈Tx

Hi(xτi ⊗ xτi) +
∑
λj∈Tu

Bjuλj
+
∑
τi∈Tx

∑
λj∈Tu

Nijxτiuλj
,

y = Cx, x(θ) = q(θ), −T ≤ θ ≤ 0,

(6.1)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, q ∈ Rn
T , Ai ∈ Rn×n, Nij ∈ Rn×n, Hi ∈ Rn×n2

, Bj ∈ Rn,

C⊤ ∈ Rn.

Consider a linear signal generator (3.2). In the context of system (6.1) we can provide a series

of simple conditions that ensure that the mapping in Assumption 11 exists (in virtue of the

center manifold theory for time-delay systems, see [96]). In virtue of their simplicity, we replace

Assumption 11 with the following.

Assumption 16. The zero equilibrium of system (6.1) is locally exponentially stable and the

matrix S has simple eigenvalues with σ(S) ⊂ C0.

In addition, since the linear signal generator (3.2) is considered, Assumption 12 reduces to its

linear version.

Assumption 17. The pair (S, L) is observable.

We now present a result that allows computing the nonlinear moment of (6.1) by solving a series

of linear equations recursively.

Theorem 17. Consider the system (6.1) and the signal generator (3.2), and suppose that

Assumptions 16 and 17 hold. Then there is a mapping

π(ω) =
∑
k≥1

Πkω
(k) (6.2)
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which formally solves the partial differential equation

∂π

∂ω
Sω =

∑
τi∈Tx

Aiπ(ωτi) +
∑
τi∈Tx

Hi(π(ωτi)⊗ π(ωτi))

+
∑
λj∈Tu

BjLωλj
+
∑
τi∈Tx

∑
λj∈Tu

Nijπ(ωτi)Lωλj

(6.3)

where the Πk’s, k ≥ 1, are the solutions of the following system of Sylvester-like equations

Π1S =
∑
τi∈Tx

AiΠ1e
−Sτi +

∑
λj∈Tu

BjLe
−Sλj ,

Π2S
[2] =

∑
τi∈Tx

AiΠ2(e
−Sτi)(2)+

∑
τi∈Tx

Hi(Π1⊗Π1)(e
−Sτi)(2)

+
∑
τi∈Tx

∑
λj∈Tu

Nij(Π1 ⊗ L)(e−Sτi ⊗ e−Sλj),

ΠkS
[k] =

∑
τi∈Tx

AiΠk(e
−Sτi)(k) +

∑
τi∈Tx

Hi(Π1 ⊗ Πk−1

+Π2 ⊗ Πk−2 + · · ·+Πk−1 ⊗ Π1)(e
−Sτi)(k)

+
∑
τi∈Tx

∑
λj∈Tu

Nij(Πk−1⊗L)((e−Sτi)(k−1) ⊗ e−Sλj),

(6.4)

for k ≥ 3.

Proof. By Assumptions 16 and 17, equation (6.3) has a solution π [101]. Consider the formal

power series expansion of π, that is (6.2). Substituting (6.2) into (6.3) yields

∂(Π1ω+Π2(ω ⊗ ω)+· · · )
∂ω

Sω

=
∑
τi∈Tx

Ai(Π1e
−Sτiω+Π2(e

−Sτi)(2)(ω ⊗ ω)+· · · )

+
∑
τi∈Tx

Hi(Π1e
−Sτiω+Π2(e

−Sτi)(2)(ω ⊗ ω)+· · · )(2)

+
∑
τi∈Tx

∑
λj∈Tu

Nij(Π1e
−Sτiω+Π2(e

−Sτi)Le−Sλjω

+
∑
λj∈Tu

BjLe
−Sλjω.

(6.5)

The equations in (6.4) can be obtained by matching the powers of ω(k), k = 1, 2, · · · . In particular,
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considering the linear terms in ω, it is easy to see that Π1 must satisfy the Sylvester-like equation

Π1S =
∑
τi∈Tx

AiΠ1e
−Sτi +

∑
λj∈Tu

BjLe
−Sλj . (6.6)

Considering now the terms in ω ⊗ ω, we have that

∂(Π2(ω ⊗ ω))

∂ω
Sω =

∑
τi∈Tx

AiΠ2(e
−Sτiω ⊗ e−Sτiω)+

∑
τi∈Tx

Hi(Π1e
−Sτiω)⊗ (Π1e

−Sτiω)+

∑
τi∈Tx

∑
λj∈Tu

Nij(Π1e
−Sτiω)Le−Sλjω.

(6.7)

Applying the properties P1) and P3), and condition (iii) of Lemma 3, it follows that Π2 is the

solution of the Sylvester-like equation

Π2S
[2]=

∑
τi∈Tx

AiΠ2(e
−Sτi)(2)+

∑
τi∈Tx

Hi(Π1⊗Π1)(e
−Sτi)(2)

+
∑
τi∈Tx

∑
λj∈Tu

Nij(Π1 ⊗ L)(e−Sτi ⊗ e−Sλj).

(6.8)

Following the same reasoning, it can be shown that Πk, for k ≥ 3, are solutions of (6.4).

Based on Definition 5, the moment of this kind of system at (S, L) can be obtained as
∑
k≥1

CΠkω
(k).

Remark 8. It is possible that the original system has a time-delay output mapping, i.e.,

y =
∑

τi∈Tx
Cixτi . In this case, the moment can be generalized as

∑
k≥1

∑
τi∈Tx

CiΠk

(
e−Sτi

)(k)
ω(k). This

follows trivially from

∑
τi∈Tx

Ciπ(ωτi) =
∑
τi∈Tx

Ci

∑
k≥1

Πkω
(k)
τi

=
∑
τi∈Tx

Ci

∑
k≥1

Πk

(
e−Sτi

)(k)
ω(k)

=
∑
k≥1

∑
τi∈Tx

CiΠk

(
e−Sτi

)(k)
ω(k).

(6.9)

In order to simplify the discussion, we consider delay-free output mapping in the rest of the
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thesis.

From a practical point of view, it is useful to define an approximate version of the moment

which uses a finite number of terms Πk, k = 1, 2, · · · ,m.

Definition 9. We call
m∑
k=1

CΠkω
(k) the m-th approximate moment of system (6.1) at (S, L),

with the following asymptotic property for all ω

lim
m→∞

m∑
k=1

CΠkω
(k) − Cπ(ω) = 0. (6.10)

6.2 A Family of Reduced-Order Models

In this section a family of reduced-order models is introduced to match the k-th approximate

moment of system (6.1). We guarantee that the reduced-order model is a quadratic-bilinear

time-delay system with a nonlinear delay-free output mapping, namely it is described by the

equations

ξ̇ =
∑
χi∈Tξ

Fiξχi
+
∑
χi∈Tξ

Gi(ξχi
⊗ ξχi

) +
∑
γj∈Tū

Ejuγj +
∑
χi∈Tx

∑
γj∈Tū

Mijξχi
uγj ,

ψ =
∑
k≥1

Dkξ
(k)

(6.11)

where Fi ∈ Rv×v, Mij ∈ Rv×v, Gi ∈ Rv×v2 , Ej ∈ Rv, D⊤
k ∈ Rvk ,and Tξ = {χi ∈ R≥0}, with

χ0 = 0 and Tū = {γj ∈ R>0} are sets of delays for states and inputs, respectively. In the

following statement we give conditions on Fi, Πk, Ej and Dk such that (6.11) is indeed a

reduced-order model by moment matching of (6.1).

Definition 10. System (6.11) is a reduced-order model by moment matching of system (6.1) at

(S, L) if it has the same moments at (S, L).

Lemma 4. Consider the system (6.1), the signal generator (3.2), the model (6.11) and suppose

that Assumptions 16 and 17 hold. System (6.11) is a reduced-order model by moment matching
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of system (6.1) at (S, L) if v < n and the equations

CΠ1e
−Sτi = D1P(1,1),

CΠk(e
−Sτi)(k) = D1P(k,1)+D2P(k,2)+· · ·

+Dk−1P(k,k−1)+DkP(k,k),

(6.12)

for all k > 1, hold, where

P(i,j) =

 Pi, j = 1,∑i−j+1
k=1 Pk ⊗ P(i−k,j−1), j ≥ 2,

(6.13)

for i ≥ 1, j ≤ i and Pk are the solutions to the equations

P1S =
∑
χi∈Tξ

FiP1e
−Sχi +

∑
γj∈Tū

EjLe
−Sγj ,

P2S
[2]=

∑
χi∈Tξ

FiP2(e
−Sχi)(2)+

∑
χi∈Tξ

Gi(P1⊗P1)(e
−Sχi)(2)

+
∑
χi∈Tξ

∑
γj∈Tū

Mij(P1 ⊗ L)(e−Sχi ⊗ e−Sγj),

PkS
[k] =

∑
χi∈Tξ

FiPk(e
−Sχi)(k) +

∑
χi∈Tξ

Gi(P1 ⊗ Pk−1

+ P2 ⊗ Pk−2 + · · · + Pk−1 ⊗ P1)(e
−Sχi)(k)

+
∑
χi∈Tξ

∑
γj∈Tū

Mij(Pk−1⊗L)((e−Sχi)(k−1) ⊗ e−Sγj),

(6.14)

for k ≥ 3.

Proof. Applying Theorem 17 to system (6.11), the moment of the systems (6.11) at (S, L) is

characterized by a mapping p solving

∂p(ω)

∂ω
Sω =

∑
χi∈Tξ

Fip(ωχi
) +

∑
χi∈Tξ

Gi(p(ωχi
)⊗ p(ωχi

))

+
∑
γj∈Tū

EjLωγj +
∑
χi∈Tξ

∑
γj∈Tū

Mijp(ωχi
)Lωγj .

(6.15)
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Considering the formal power series

p(ω) =
∑
k≥1

Pkω
(k), (6.16)

yields the system of equations (6.14). Recall that p must also solve the moment matching

condition, namely

C
∑
k≥1

Πkω
(k) =

∑
j≥1

Dj

∑
k≥1

Pkω
(k). (6.17)

This equation yields

CΠ1ω + CΠ2(ω ⊗ ω) + CΠ3(ω ⊗ ω ⊗ ω) + · · ·

= D1P1ω + (D1P2 +D2(P1 ⊗ P1))(ω ⊗ ω) + (D3P1 +D2(P1 ⊗ P2 + P2 ⊗ P1)

+D3(P1 ⊗ P1 ⊗ P1))(ω ⊗ ω ⊗ ω) + · · ·

= D1P(1,1)ω + (D1P(2,1) +D2P(2,2))(ω ⊗ ω)

+ (D3P(3,1) +D2P(3,2) +D3P(3,3))(ω ⊗ ω ⊗ ω) + · · · .

(6.18)

By matching the power of ω(k), the above implies that

CΠkω
(k) = (D1P(k,1) +D2P(k,2) + · · ·+Dk−1P(k,k−1) +DkP(k,k))ω

(k) (6.19)

which provides (6.12). Here, P(i,j) represents the coefficient matrix of ω(i) corresponding to Dj.

Then, it is easy to verify that P(i,1) = Pi. Moreover, for 2 ≤ j ≤ i

P(i,j)ω
(i) = (P1ω)⊗ (P(i−1,j−1)ω

(i−1))

+ (P2ω
(2))⊗ (P(i−2,j−1)ω

(i−2)) + · · ·

+ (P(i−j+1)ω
(i−j+1))⊗ (P(j−1,j−1)ω

(j−1))

= (P1 ⊗ P(i−1,j−1) + P2 ⊗ P(i−2,j−1) + · · ·

+ P(i−j+1) ⊗ P(j−1,j−1))ω
(i)

=

(
i−j+1∑
k=1

Pk ⊗ P(i−k,j−1)

)
ω(i),

(6.20)
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which yields (6.13). This completes the proof.

We can now use some of the free parameters of the model to satisfy the conditions in Lemma 4.

Theorem 18. Consider the system (6.1) and the signal generator (3.2), and suppose that

Assumptions 16 and 17 hold. Then

ξ̇ = F0ξ +
∑

χi∈Tξ\{0}

Fiξχi
+
∑
χi∈Tξ

Gi(ξχi
⊗ ξχi

)

+
∑
γj∈Tū

Ejuγj +
∑
χi∈Tx

∑
γj∈Tū

Mijξχi
uγj ,

ψ̄(t) =
n∑

k=1

Dkξ
(k)(t),

(6.21)

where

F0 = S −
∑
γj∈Tū

EjLe
−Sγj−

∑
χi∈Tξ\{0}

Fie
−Sχi , (6.22)

and

D1 = CΠ1,

D2 = CΠ2 −D1P(2,1),

Dk = CΠk −D1P(k,1) −D2P(k,2) + · · ·

−Dk−1P(k,k−1),

(6.23)

for k ≥ 3, is a family of reduced-order models of system (6.1) at (S, L) that match the m-th

approximate moment.

Proof. In order to match the n-th approximate moment, we only consider π and p with n terms

and select P1 = Iv. Then from equation (6.13), when i = j,

P(i,i) = Ivi (6.24)

for all i ≥ 1. The proposed model still has several free parameters, i.e. Fi (i ≥ 1), Ej, Gi, Mij,

Tξ and Tū, which can be used to enforce additional properties of the model such as stability.

100



F0 is determined by (6.22) directly from equation (6.14) and the Dk’s are selected as in (6.23)

(computed for the specific selection of Fi, Ej , Gi and Mij from (6.13), (6.14), (6.22) and (6.24)).

According to Lemma 3, system (6.21) is a reduced-order model of (6.1) by moment matching.

Remark 9. Selecting Tξ = {0} and Tū = {0} results in a reduced-order model without time

delays and this model coincides with the one presented in Section 3.2. However, by eliminating

delays, the infinite-dimensional system is reduced to a finite-dimensional system, which could

impact some of the specific dynamic properties of the model. For instance, delays do not always

pose a negative effect to stability [128].

6.3 Numerical Example

We illustrate the results of this chaper by means of a numerical example. Consider the system

(6.1) with order n = 56 and sets of delays Tx = {0, 0.01} and Tu = {0.01, 0.001}, where

A0 = diag(Aa, Ab, Ac, Ad) and A1 = diag(Ae, Ab, Ac, Ad), with

Aa = diag(−1,−3, · · · ,−99),

Ae = diag(−2,−4, · · · ,−100),

Ab =

−1 5

−5 −1

 , Ac =

 −1 10

−10 −1

 , Ad =

 −1 15

−15 −1

 .

B⊤
0 = B⊤

1 = C =

[
1 1 · · · 1 1 0 1 0 1 0

]
and the remaining matrices H0, H1, N0, N1, N2 and N3 are generated randomly using the

MATLAB command rand such that the system are stable [96]. The signal generator (3.2)

is selected as S = diag(0, Sb, Sc, Sd), with Sb = Ab + I2, Sc = Ac + I2, Sd = Ad + I2, and

L =

[
1 1 0 1 0 1 0

]
, resulting in a reduced-order model with ν = 7.

The free parametrizations E0 and E1 are determined by assigning the eigenvalues of F0 and F1

as certain subsets of the spectrum of A0. We select the same delay sets as in the original system
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Figure 6.1: Time histories of the output of the original model (black/solid) and the output
of the reduced-order model when k = 1 (yellow/dashed), k = 2 (blue/dotted), and k = 3
(red/dash-dotted).
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Figure 6.2: Time histories of the errors between the output of the original and the output
of the reduced-order model when k = 1 (yellow/dashed), k = 2 (blue/dotted), and k = 3
(red/dash-dotted).
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to preserve the time-delay structure. All the other free parameters in the reduced-order models

are randomly generated since we do not have any other property to enforce.

We have computed the reduced-order models which match the k-th approximate moment for

k = 1, k = 2, and k = 3, respectively. Fig. 6.1 displays the time histories of the outputs of the

reduced-order models and of the original system, together with a zoom-in plot of the peak part

of the steady-state responses. The time histories of the absolute error between the output of

the reduced-order models and the output of the original system are reported in Fig. 6.2. The

black/solid line represents the output of the original model, while the yellow/dashed, blue/dotted

and red/dash-dotted lines denotes the reduced-order model with k = 1, 2 and 3, respectively.

As demonstrated by the figures, the reduced-order model provides good steady-state approxi-

mations of the output response. Note that a higher order k of the approximate moment for

reduced-order models yields a higher approximation accuracy.
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Chapter 7

Conclusions and Future Work

7.1 Original Contributions

The interconnection-based moment matching method has been developed with the primary

objective to solve the model order reduction problem for imcompressible flows. By exploiting

the solution of a system of Sylvester-like equations we have defined the direct nonlinear moment

using a power series representation for quadratic-bilinear systems. Two families of reduced-order

models have been proposed with some free parameters. We have also solved the problem of

enforcing stability and a prescribed relative degree on the reduced-order models using available

parameters. Applications to Naiver-Stokes type descriptor systems are given together with three

examples in fluid field. The swapped moments have been defined in the same way via a power

series representation. Considering together the “direct” moment and the “swapped” moment,

we have proposed two families of reduced-order models that achieve two-sided approximate

moment matching. The extension to quadratic-bilinear time-delay systems has been derived.

The original contributions of this Thesis can be classified as follows.

• Differently from the wide literature about the interpolation/Krylov methods (also called

moment matching) of quadratic-bilinear systems, which are based on the linear notion of

moment (i.e. linked to the transfer function), this work is based on the nonlinear notion
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of moment (i.e. based on the steady-state response). We compute and exploit is the

nonlinear moment without any reference to any type of generalized transfer functions. The

reduced-order model we have constructed has a special structure and some free parameters

that can be easily exploited to preserve additional properties of the model (e.g. stability).

In addition, we can propose both model-based and a data-driven implementations, the

latter being computationally faster.

• The proposed interconnection-based method has some advantages with respect to the

general nonlinear moment matching framework presented in [60] and related papers:

exploiting the structure of the class of systems under study, we have proposed an explicit

way of approximating the solution of the invariance partial differential equation defining

the nonlinear moment.

• With respect to [75], in which two-sided reduced-order models for general nonlinear

systems were given, the two-sided approach we have developed gives easy to compute

approximations of the nonlinear (swapped) moment and reduced-order models that preserve

the quadratic-bilinear structure.

7.2 Future Work

There are some further research directions to be investigated by exploiting the results of this

thesis. First, of great importance is the completion of the data-driven approach. While the

thesis focuses solely on the direct case, future efforts could extend to examining swapped

interconnections. Such exploration would enable the data-driven formulation of the two-sided

approach developed in Chapter 5, potentially decreasing computational complexity.

Another research path worth pursuing involves advancing two-sided moment matching techniques

for quadratic-bilinear time-delay systems, building upon the insights provided in Chapters 5

and 6. The research on this area is scarce. What we aim to do is to refine and extend the

methodologies discussed in these chapters, offering a more comprehensive approach to handling

the complexities associated with these types of systems.
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Finally, while the focus of this thesis is primarily on systems with a single input, an intriguing

area for future research involves extending these concepts to multiple inputs and multiple outputs

(MIMO) systems. Such an exploration could lead to significant advancements, particularly in

fields such as power systems, where the complexity and scale of the systems involved necessitate

sophisticated modelling strategies.
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