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ABSTRACT 8 

Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of 9 

individual clouds to the globe. However, large uncertainty remains regarding the underlying 10 

mechanisms and importance of multiple effects across spatial and temporal scales. Here, we review 11 

the evidence and scientific consensus behind these effects, categorised into radiative effects via 12 

modification of radiative fluxes and the energy balance, and microphysical effects via modification of 13 

cloud droplets and ice crystals. Broad consensus and strong theoretical evidence exist that aerosol 14 

radiative effects (aerosol-radiation interactions (ARIs) and aerosol-cloud interactions (ACIs)) act as 15 

drivers of precipitation changes because global mean precipitation is constrained by energetics and 16 

surface evaporation. Likewise, aerosol radiative effects cause well-documented shifts of large-scale 17 

precipitation patterns, such as the Inter-Tropical Convergence Zone (ITCZ). The extent of aerosol 18 

effects on precipitation (APEs) at smaller scales is less clear. Although there is broad consensus and 19 

strong evidence that aerosol perturbations microphysically increase cloud droplet numbers and 20 

decrease droplet sizes, thereby slowing precipitation droplet formation, the overall aerosol effect on 21 

precipitation across scales remains highly uncertain. Global cloud resolving models (CRMs) provide 22 

opportunities to investigate mechanisms that are currently not well-represented in global climate 23 

models (GCMs) and to robustly connect local effects with larger scales. This will increase our 24 

confidence in predicted impacts of climate change. 25 

INTRODUCTION 26 

Less than three percent of water on Earth sustains life. Precipitation is the most important mechanism 27 

delivering fresh water from the atmosphere to the surface. Although climate change discussions are 28 

commonly framed in terms of global temperature change, precipitation changes significantly drive 29 

actual impacts of climate change on the planet1,2. 30 
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A substantial body of literature exists describing the impact of greenhouse gas (GHG) induced warming 31 

on precipitation, and the concepts are well understood2,3. In contrast, the uncertainty regarding 32 

aerosol (nano- to micrometre sized particles suspended in air of anthropogenic or natural origin) 33 

effects on precipitation (APEs) remains large. Many hypotheses describe APE based on radiative and 34 

cloud microphysical arguments. Some are included in current climate models, others are not (cf. 35 

Figure 1, Table 1). Large uncertainty remains regarding the underlying mechanisms and relative 36 

importance of proposed effects across spatial and temporal scales. 37 

This article builds on the results of an expert workshop held under the auspices of the Global Energy 38 

and Water cycle Exchanges (GEWEX) Aerosol Precipitation (GAP) initiative4. It critically reviews the 39 

current evidence and scientific consensus (in the authors’ view) for APEs and their proposed 40 

mechanisms. To facilitate this assessment, we categorise mechanisms according to their degree of 41 

scientific support: Category A: strong evidence / broad consensus; Category B: some evidence / limited 42 

consensus; Category C: hypothesised / no consensus.   43 
 44 

THE PHYSICAL MECHANISMS OF AEROSOL EFFECTS ON PRECIPITATION 45 

The physical drivers of APE can be categorised into i) radiative effects via modification of radiative 46 

fluxes and the energy balance, which occur due to aerosol scattering and absorption, and modification 47 

of cloud radiative properties by ii) microphysical effects via modification of cloud droplet and ice 48 

crystal number, size and morphology that can affect growth to precipitation-size particles, as well as 49 

latent heat from phase changes (enthalpy of vaporisation or fusion). All these effects can induce 50 

dynamical feedbacks across scales.  51 

In addition to this mechanistic (bottom up) view, conservation laws provide a complementary (top 52 

down) perspective: conservation of energy constrains global mean precipitation5-7, as changes in 53 

latent heat of condensation (L) associated with precipitation changes (dP) have to be compensated by 54 

opposite changes in net column integrated cooling (dQ) through adjustment of net surface or top-of-55 

atmosphere fluxes, and vice versa. At smaller spatial scales, net latent heating associated with 56 

precipitation changes can also be balanced through divergence of dry static energy5,8-10 (d(∇ ∙ 𝑢𝑠)) 57 

(column integrated, with u horizontal velocity, neglecting changes in energy and liquid or solid water 58 

storage and kinetic energy transport), as illustrated in Figure 2:  59 

 𝑳 𝐝𝑷 = 𝐝𝑸 + 𝐝(𝛁 ∙ 𝒖𝒔)   1 60 

Conservation of water provides additional constraints. In the global mean and for sufficiently long 61 

time-scales, precipitation P must be balanced by evaporation E so P-E=0. On smaller spatial scales, 62 

moisture (qv) flux convergence can compensate for imbalances in P-E so that: 63 

 𝐝𝑷 − 𝐝𝑬 = − 𝐝(𝛁 ∙ 𝒖𝒒𝒗)  2 64 

This implies the existence of breakdown scales of budgetary constraints on precipitation - a scale 65 

below which energy and water budget constraints on precipitation do not strictly apply due to efficient 66 

horizontal transport11. In the extra-tropics, this scale is expected to be related to the first baroclinic 67 

Rossby radius of deformation (𝐿 =
𝑁𝐻

𝜋𝑓0
≈ 1000𝑘𝑚, where N is the Brunt–Väisälä frequency, H is the 68 

scale height, and f0 is the Coriolis parameter). This latitudinally dependent precipitation constraint on 69 

aerosol perturbations implies varying effects in the tropics and extra-tropics (Figure 3). Even for 70 

regional aerosol perturbations, energetic constraints apply to the global mean. Reductions in surface 71 

insolation and atmospheric heating by aerosol absorption decrease global mean precipitation in both 72 

simulations, with teleconnections in the tropical simulation.  73 

Evidence from climate models shows that localised aerosol absorption could affect tropical 74 

precipitation over thousands of kilometres12. Similar scale arguments apply to the moisture budget, 75 

with limitations on moisture convergence constraining the susceptibility of regional APEs13. The 76 

combination of energy and water budget constraints (smallest closure scale) yields a characteristic 77 

scale for regional precipitation responses11 of 3000 km to localized aerosol perturbations, similar to 78 

scales of weather systems14. 79 



It is important to note that this budgetary framework does not provide direct constraints on 80 

precipitation intensity distributions, despite constraints on its mean. APEs could invoke an additional 81 

feedback mechanism through the radiative effects of atmospheric humidity and clouds15. Combined, 82 

energy and moisture budget constraints can provide physical mechanisms underpinning the 83 

“buffering” of APEs16 in equilibrium conditions, which is also related to radiative convective 84 

equilibrium concepts17-19.  85 

APEs can be decomposed into adjustments due to instantaneous atmospheric net diabatic heating, 86 

including rapid adjustments of the vertical structure of water vapour, temperature and clouds (hours 87 

to days), and a slower response mediated by surface temperature changes 6,20,21 defined as 88 

“hydrological sensitivity”9,22. Due to difficulties in separating fast surface temperature changes (days 89 

to months) from rapid adjustments in climate models, these are commonly considered jointly20,21.  90 

Finally, both radiative and microphysical effects and associated changes to the regional energy 91 

balance can lead to dynamical effects and regional circulation changes with concomitant changes in 92 

precipitation23,24.  93 

We now discuss each potential mechanism underlying APEs and assess their evidence and scientific 94 

consensus.  95 

RADIATIVE EFFECTS 96 

i. SURFACE ENERGY BUDGET ARIs and ACIs modulate radiative surface fluxes and, consequently, sensible 97 

and latent heat fluxes. These effects generally reduce surface insolation, decreasing surface 98 

evaporation which has been linked to a “spin down” of the hydrological cycle25. This is corroborated 99 

by the observed precipitation response to ARIs following major volcanic eruptions, showing 100 

substantial decreases in precipitation over land and river discharge into ocean26,27. (Near-surface 101 

absorbing aerosol can enhance precipitation through diabatic heating, even when surface sensible 102 

heat fluxes are reduced28.) Energetically, the net-negative total ARIs29 reduce the global mean 103 

temperature, atmospheric water vapour, and associated long-wave emission, which is compensated 104 

by reductions in precipitation and associated latent heat: climate models show that negative aerosol 105 

radiative forcing masks almost all temperature-driven GHG effects on precipitation over land up to 106 

present (with GHG effects dominating the future)9,30,31. However, such radiative arguments cannot 107 

be decoupled from dynamical feedbacks, as shown below.  108 

That ARIs reduce global precipitation through changes in surface temperature and surface fluxes 109 

builds on our physical understanding of the energy budget, is supported by observational evidence32 110 

and reproduced by climate models. We assess this effect as Category A, supported by strong evidence 111 

and broad scientific consensus, although magnitudinal uncertainties remain.  112 

The following two mechanisms could be combined as aerosol absorption effects, but we retain the 113 

mechanistic separation prevailing in existing literature.  114 

ii. Atmospheric diabatic heating by aerosol absorption creates local energetic imbalances. To ensure 115 

energy conservation, this is compensated by reductions in latent heat release through precipitation, 116 

by rapid adjustments of net surface or top-of-atmosphere fluxes, or, on smaller scales or in the 117 

tropics11,33, through divergence of dry static energy8,34. The energetic framework provides a useful 118 

tool to diagnose APEs9,21,28,34,35 and can explain the contrasting behaviour of absorbing and non-119 

absorbing aerosols21,36.  120 

That diabatic heating of absorbing aerosol reduces global mean precipitation is consistent with our 121 

physical understanding of the energy budget, is reproduced by climate models but builds on limited 122 

observational evidence. We therefore assess this effect as Category A, supported by strong evidence 123 

and broad scientific consensus but with remaining magnitudinal uncertainties.  124 

iii. Semi-direct effects9,37-40 are rapid adjustments associated with aerosol absorption affecting the 125 

vertical temperature and humidity structure, with potential effects on clouds and precipitation. 126 

These effects are generally accompanied by corresponding surface flux changes (cf. ii). Elevated 127 

layers of absorbing aerosol can modify lower-tropospheric static stability and sub-tropical inversion 128 

strength39,41, suppressing boundary layer deepening and concomitant entrainment42. Although the 129 

focus has been on shallow clouds43, the impact on deep convection and associated precipitation has 130 



been demonstrated in CRMs, revealing a complex diurnal cycle44, and climate models28. However, 131 

most prior research focused on semi-direct effects of shallow clouds in the context radiative 132 

forcing43, not precipitation. Hence, the overall uncertainty remains large. 133 

Semi-direct effects of absorbing aerosol on the thermodynamic structure of the atmosphere are 134 

based on a sound physical foundation and have been well documented. However, the sign and 135 

magnitude of the effect on clouds and subsequently precipitation are sensitive to the vertical 136 

collocation of clouds and aerosols as well as the cloud regime. Some consistency exists across CRM 137 

studies, however, the observational evidence remains limited. We therefore assess this effect as 138 

Category B, backed up by physical conceptual models, modelling studies and limited observational 139 

evidence and some scientific consensus, even if the magnitude and sign of the impact on 140 

precipitation remain unclear.  141 

The following mechanisms iv) – vi) could be combined as aerosol effects on regional precipitation 142 

patterns but we retain the mechanistic separation prevailing in existing literature.  143 

iv. Changes in regional-scale precipitation and monsoon dynamics have been attributed to regional 144 

patterns in ARI-induced surface cooling and atmospheric heating, both locally and remotely 12,34,45-145 
49. The precipitation response can be attributed to a combination of the modulation of surface fluxes 146 

over land, hence of the thermal gradient between land and sea50,51, as well as aerosol absorption 147 

effects, driving thermally direct circulations12,52 and moisture convergence52 (linked to extreme 148 

precipitation 53,54), the sea breeze circulation55, and teleconnections56.  149 

Aerosol effects on regional scale precipitation and monsoon dynamics have been shown to affect 150 

precipitation patterns. This builds on climate model and CRM simulations and general physical 151 

understanding, with some observational evidence. However, uncertainties remain regarding the 152 

attribution of observed precipitation to aerosol effects and overall strength of the effects. We 153 

therefore assess this effect as Category B, backed by some evidence and limited scientific consensus.  154 

v.Aerosol radiative effects on sea surface temperature patterns (SSTs) have been linked to observed 155 

climatological trends57,58. Associated changes in multi-decadal SST variability59 have previously been 156 

linked to the Sahel drought60-63. In addition to the local effects on the SST distribution, aerosols may 157 

also affect ocean dynamics and thereby SSTs. For example, aerosol forcing was shown to strengthen 158 

the Atlantic Meridional Overturning Circulation (AMOC) thereby modulating SST patterns in the 159 

Atlantic Ocean64-67, and affecting the Northern Hemisphere climate and precipitation patterns63,68. 160 

SSTs also control hurricane activity61,69-71, providing a mechanism for potential aerosol effects on 161 

hurricanes72,73. Forcing trends associated with European sulfuremissions as aerosol precursor, have 162 

been linked to a pronounced North Atlantic “hurricane drought” from the 1960s through early 163 

1990s74 during which hurricane power dissipation, a measure of storm damage75, was strongly 164 

inversely correlated with European sulfur emissions. Much of the direct SST forcing was from 165 

Saharan mineral dust, which in turn was associated with reduced monsoonal flow resulting from 166 

high sulfate aerosol concentrations76.  167 

The SST mediated effect of aerosol on regional precipitation patterns and hurricane activity builds on 168 

climate model simulations and general physical understanding, with limited observational evidence.  169 

We therefore assess this effect as Category B, backed up by some evidence and limited scientific 170 

consensus.  171 

vi. Hemispheric asymmetry in aerosol radiative effects77  shifts the energy flux equator to where the 172 

column-integrated meridional energy flux vanishes78,79. The position of the energy flux equator is 173 

closely linked to the ITCZ position and associated precipitation. With anthropogenic aerosol 174 

predominantly located in the northern hemisphere, associated negative/positive aerosol radiative 175 

effects, e.g. from sulfate/black carbon, lead to a southward/northward ITCZ shift62,78-87. For sulfate, 176 

this is a slow (SST mediated) response, whereas for black carbon adjustments in response to 177 

absorption contribute88. Dynamical cloud feedbacks can further amplify the hemispheric 178 

asymmetry89 and ITCZ shifts can interact with local monsoon regimes90.  179 

The effect of hemispherically asymmetric aerosol radiative effects on the energy flux equator and 180 

ITCZ position builds on a robust theoretical foundation79, agrees with observational evidence83,91 and 181 



is reliably reproduced by GCMs. We therefore assess this effect as Category A, backed up by strong 182 

evidence and broad scientific consensus.  183 

MICROPHYSICAL EFFECTS 184 

vii. CCN mediated effects on stratiform liquid clouds, including stratocumulus: enhanced loading of 185 

CCN (hygroscopic or wettable aerosols of sufficient size to facilitate droplet growth) can increase 186 

cloud droplet numbers and, at constant liquid water content, lead to smaller droplets. This effect 187 

saturates for high aerosol concentrations92 and/or low updraft velocities due to the depletion of 188 

supersaturation by condensation. This pathway can slow droplet growth to the threshold size for 189 

precipitation93-96, thereby supressing precipitation efficiency; this mechanism can also apply to warm 190 

phase of stratiform mixed-phase clouds97. The reduced removal of cloud water by precipitation has 191 

been hypothesized to increase cloud liquid water path (LWP) and lifetime95. There is clear 192 

observational evidence of an increase in cloud droplet numbers and associated decrease in droplet 193 

radii due to aerosol perturbations from aircraft data98, ship-track observations99-103 and satellite 194 

remote sensing104-106. This is reproduced in CRMs and qualitatively in climate models105,107. Analysis 195 

of satellite-retrieved CloudSat108 radar reflectivity and MODIS109 effective radius data provides 196 

observational evidence for droplet size dependence of precipitation onset, with enhanced (low) 197 

drizzle rates above effective radii of 15 (10) m. Combined with the documented impact of CCN on 198 

effective radii, this indicates warm rain susceptibility to CCN perturbations110. These observations 199 

are limited to liquid-top shallow clouds, which represent a small fraction of global mean 200 

precipitation111. The observational evidence for an increase in liquid water paths via precipitation 201 

suppression due to increased aerosol concentrations is still disputed and cloud-regime 202 

dependent101,112-114. Many climate models simulatestrong LWP responses to aerosol 203 

perturbations112,115, likely because their simplified representations of warm rain formation 204 

(“autoconversion”) have built-in power-law dependences on cloud droplet number but lack small-205 

scale feedbacks, such droplet size effects on evaporation and associated cloud entrainment 206 

feedbacks16,116,117. This uncertainty propagates into climate model assessments of APEs.  207 

CCN mediated effects on stratiform liquid cloud, including stratocumulus, have been shown to 208 

increase droplet numbers and suppress warm rain formation. This is consistent with warm rain 209 

formation theory, supported by observational evidence from space-born cloud radars and 210 

reproduced by high-resolution CRMs. The expected effect is reduced light rain occurrence, possibly 211 

compensated by increasing occurrence of stronger rain events. However, the overall impact on large-212 

scale precipitation remains unclear. We therefore assess this effect as Category B, backed up by some 213 

evidence and limited scientific consensus.  214 

The following mechanisms viii) and ix) could be combined as aerosol effects on convection but we 215 

retain the mechanistic separation by cloud phase prevailing in existing literature.  216 

viii. CCN mediated effects on shallow convection: for shallow (liquid) convective clouds, an aerosol 217 

mediated increase in cloud droplet numbers has several effects: associated smaller droplet radii 218 

enhance evaporation that increases the buoyancy gradient at the cloud edge, creating vorticity and 219 

increasing associated entrainment/detrainment116, which results in a reduction of cloud size, liquid 220 

water path, buoyancy and precipitation. At the same time, suppression of rain production via the 221 

droplet number effect on autoconversion can produce enhanced condensation and latent heat 222 

release due to larger numbers of remaining cloud droplets and associated increase in surface area, 223 

often referred to as “warm phase or condensational invigoration”118-120. It can also enhance cloud-224 

top detrainment; subsequent evaporative cooling can destabilize the environment121. Both 225 

mechanisms could generate deeper clouds122 with potentially enhanced precipitation. The net effect 226 

on mean precipitation could therefore be small16,17 or even positive, depending on environmental 227 

conditions: high-resolution large-eddy simulations demonstrate a non-monotonic precipitation 228 

response with increases at low aerosol concentrations up to an optimal aerosol concentration, 229 

followed by a precipitation decrease118-120,123-125. For larger spatio-temporal scales, idealised 230 

simulations of shallow convection approach a radiative-convective equilibrium state17. Although the 231 

transient behaviour approaching equilibrium responds to increasing cloud droplet number 232 



concentrations through deepening and delays precipitation onset126, in the equilibrium state 233 

associated decreases in relative humidity and faster evaporation of small clouds compensates for 234 

much of the radiative effects with broader intensity precipitation distributions19. The overall effect 235 

depends on the relative importance of transient and equilibrium states17,93,127 with recent evidence 236 

highlighting limitations of idealised simulations that unrealistically favour equilibrium states128. 237 

However, contrasting environmental factors, such as boundary layer development or humidity, can 238 

influence the overall effects123,129.  239 

CCN mediated effects on shallow convection have been shown to increase droplet numbers and slow 240 

warm-phase precipitation formation. This is based on high-resolution CRMs and observational 241 

evidence. It is important to note that convection parameterisations in most GCMs do not represent 242 

any microphysical aerosol effects on convection. The overall effect on precipitation is less certain. We 243 

assess this effect as Category B, backed up by some evidence and limited scientific consensus.  244 

ix. CCN mediated effects on deep convection:  for deep (liquid & ice phase) convective clouds, 245 

“convective invigoration” is widely discussed, generally referring to enhanced aerosol levels causing 246 

stronger updrafts or higher clouds and an associated increase in precipitation93,98,130-136. Several 247 

hypotheses about underlying mechanisms exist. Often overlooked, these share a common starting 248 

point with shallow convection in the liquid base of clouds: the suppression of warm rain formation 249 

from reduced autoconversion with enhanced CCN in the lower, liquid part of the cloud137,138, with an 250 

associated reduction in droplet size and resulting entrainment/detrainment feedbacks. Subsequent 251 

invigoration hypotheses include: enhanced condensation and associated latent heat release (“warm 252 

phase invigoration”, c.f. viii)118,119,139,140; enhanced evaporation and downdraft formation affecting 253 

cold pool strength and surface convergence141,142; delay of warm-phase precipitation increasing the 254 

amount of cloud water reaching the freezing level, enhancing the release of latent heat of 255 

freezing93,98,132 although the importance of this (“cold phase invigoration”) is disputed143; the 256 

hypothesis that depletion of cloud water through precipitation in low aerosol environments could 257 

generate high supersaturations and subsequent activation of small aerosol particles into cloud 258 

droplets, enhancing condensation and (warm phase) latent heat release144 –  a hypothesis shown to 259 

be inconsistent with a limited set of observations145; and that enhanced CCN levels increase 260 

environmental humidity through clouds mixing more condensed water into the surrounding air, 261 

preconditioning the environment for invigorated convection146. The latter result is likely a 262 

consequence of idealised equilibrium simulations as it is not observed in realistic simulations across 263 

a wide range of environmental conditions147. Feedbacks between convective clouds and their 264 

thermodynamic environment may modulate or buffer APEs. Overall, the strength and relative 265 

importance of mechanisms underlying convective invigoration are disputed 143 – it is sensitive to 266 

uncertain microphysical effects148,149 and strongly dependent on environmental regimes49,130,141,150-267 
152. In addition, the excess buoyancy associated with the respective mechanisms can be partially 268 

offset by negative buoyancy associated with condensate loading153,154, with the net effect dependent 269 

on condensate offloading through precipitation. The role of condensate loading has been explored 270 

through theoretical calculations that show the potential of aerosol-induced invigoration is 271 

significantly limited for cold-based storms, and that aerosol-induced cold-phase processes weaken, 272 

rather than strengthen the updrafts in warm-based storms (referred to as aerosol enervation)155. 273 

The first systematic multi-model assessment of these competing aerosol effects on deep convective 274 

updrafts154 has been performed as part of a deep convection case study137 over Houston, USA, under 275 

the umbrella of the Aerosol, Cloud, Precipitation, and Climate initiative (Figure 4). This 276 

intercomparison revealed updraft increases by 5%-15% in the mid-storm regions (4-7 km above 277 

ground) with increased CCN, primarily driven by enhanced condensation, with waning and mixed 278 

difference in levels above. Condensate loading contributions are generally limited. Despite this 279 

apparent invigoration, 6 of 7 models produce precipitation decreases (of -10% to -80%), highlighting 280 

the complexity of  precipitation responses to aerosol perturbations. There are indications that 281 

microphysical effects strengthen deep and weaken shallow clouds in convective cloud fields, thereby 282 

broadening the precipitation intensity distribution18,44. Observations and modelling suggest a non-283 



monotonic effect, with precipitation peaking at an optimal aerosol concentration156,157. It should be 284 

re-iterated that even high-resolution CRM simulations of aerosol effects on deep convection remain 285 

subject to large uncertainty, particularly with mixed-phase and ice-cloud microphysics, affecting the 286 

simulated base states as well as their response to aerosol perturbations137,148,158 (Figure 4). Few 287 

current climate models include aerosol aware convection parameterisations and their early results 288 

indicate limited aerosol effects on convective precipitation on the global scale159,160. However, the 289 

associated uncertainties remain large, providing challenges for the next generation of cloud 290 

resolving climate models.  291 

CCN mediated effects on deep convection consistently show increased droplet numbers and reduced 292 

warm rain formation in the lower parts of the cloud. This builds on a robust theoretical foundation, 293 

is supported by limited observations and is consistently reproduced by CRMs. The propagation of 294 

these perturbations through the mixed- and ice-phase microphysics of clouds remains uncertain 295 

across models, with limited observational constraints. Severalhypotheses exist on associated changes 296 

in buoyancies leading to invigoration, with models consistently simulating an increase in latent 297 

heating of condensation due to the increased surface area of enhanced droplet numbers. However, 298 

their importance remains highly uncertain. The overall effect on aggregated precipitation remains 299 

highly uncertain. We therefore assess this effect as Category C, backed up by plausible hypotheses, 300 

but with limited evidence and limited scientific consensus.  301 

x. INP mediated effects on clouds are likely to be significant, but still highly uncertain, given the 302 

unknown proportion of cloud ice between -38°C and 0°C that forms by INP-induced heterogeneous 303 

freezing or remains supercooled. Clouds glaciate below approximately -38C, where droplets freeze 304 

homogeneously. Increased concentrations of INPs (generally solid or crystalline aerosols which 305 

provide a surface onto which water molecules are likely to adsorb, bond and form ice-like 306 

aggregates) have been proposed to enhance the glaciation of clouds97,161,162 with an associated 307 

increase in precipitation efficiency and reduction of cloud lifetime163. Low INP concentrations in 308 

remote marine environments consistently inhibit precipitation164. However, the complexity of 309 

microphysical pathways in mixed- and ice-phase clouds is significant149 with potential compensating 310 

pathways buffering the response, leading to low precipitation susceptibility165. Modification of 311 

precipitation through controlled INP emissions (“cloud seeding”) has been extensively attempted in 312 

the weather modification community, with demonstrated impact on cloud microphysical 313 

processes166; however, limited evidence exists for its effectiveness in terms of large-scale 314 

precipitation modulation167,168. The role of INPs is further complicated by secondary ice production 315 

processes that are ill-constrained but can lead to rapid cloud glaciation169.  316 

INP mediated effects have been shown to affect cloud phase and microphysics. A number of 317 

hypotheses exist on subsequent effects on precipitation. However, there is no complete theoretical 318 

framework, and evidence from modelling and observations is limited. We therefore assess this effect 319 

as Category C, backed up by plausible hypotheses, but only limited evidence and limited scientific 320 

consensus.  321 

It is important to re-iterate that occurrence and strength, and spatiotemporal extent, of radiative and 322 

microphysical APEs are modulated by environmental conditions49,142,150,170,171 as well as energy/water 323 

budget constraints11,33,36,  which complicates their detectability. Also, the potential exists for 324 

compensation between individual mechanisms, buffering the overall precipitation response16.  325 

DETECTABILITY AND ATTRIBUTION OF PRECIPITATION CHANGES  326 

In-situ observations provide the most detailed insights into processes underlying APEs and are 327 

invaluable for the development and evaluation of theories and models. However, due to the 328 

inhomogeneous and intermittent nature of precipitation it is generally impossible to measure areal 329 

average precipitation reliably. Representation errors172 are likely to exceed the expected magnitude 330 

of aerosol effects.  331 

Statistical analysis of satellite-retrieved aerosol radiative properties and precipitation shows higher 332 

precipitation rates with higher aerosol optical depth134 with potentially non-monotonic behaviour173. 333 



Confounding factors (as aerosol extinction, cloud and precipitation are controlled by common factors, 334 

such as relative humidity174, and precipitation is the predominant aerosol sink175) complicate the 335 

interpretation. More fundamentally, remotely sensed aerosol properties are not always 336 

representative of the relevant aerosol perturbations176 and statistical analyses rely on assumptions of 337 

spatial representativeness of not co-located retrievals177,178. However, satellites provide the only 338 

source for global observational constraints and the abundance of data permits robust statistical 339 

relationships. When environmental conditions are controlled for179, the apparent increase in 340 

precipitation with aerosol extinction is significantly reduced, although a positive relationship remains 341 

for cloud regimes179-181 with tops colder than 0C, suggesting a role of ice processes180. Furthermore, 342 

satellite data provide constraints on microphysical processes: TRMM and CloudSat observations show 343 

a systematic shift in the relationship between rain drop size distribution and liquid water path with 344 

enhanced aerosol concentrations off the coast of Asia182.  345 

Situations with well-characterised aerosol perturbations can serve as analogues for APEs183. Aerosols 346 

emitted from point sources, such as ships, volcanoes, industrial sites, or cities, can cause distinct tracks 347 

in clouds that can be analysed from satellite data101,184,185, even when invisible186. The analysis of cloud 348 

droplet size in ship-track data shows a consistent effective radius reduction in the track99,113, 349 

consistent with observed effective radii reductions in response to SO2 emissions from a degassing 350 

volcano187. In general, cloud droplet effective radius is expected to be positively correlated with 351 

precipitation formation through warm rain formation188. However, the precipitation in ship-tracks 352 

reveals a differentiated response across cloud regimes113. Satellite observations of lightning 353 

enhancement over shipping lanes189 also provide strong indications of aerosol effects on convective 354 

microphysics and potential aerosol-driven mesoscale circulations, although APEs itself remain more 355 

elusive190 and contributions from dynamical factors cannot be ruled out. 356 

The difficulty remains to consistently reconcile observations with modelling data: any shift in the 357 

precipitation intensity distribution also implies a shift in the fraction of rain detectable from radar or 358 

microwave data191. Also, the formation of detectable perturbations in clouds is limited to a sub-set of 359 

environmental conditions102,186 with overall limited precipitation amounts, thereby limiting the global 360 

representativeness of such observations.  361 

On larger scales, observational uncertainty and low signal-to-noise ratios complicate the attribution 362 

of observed changes of regional APEs192. Detection and attribution techniques193 use GCMs to 363 

estimate spatio-temporal response patterns (“fingerprints”) of precipitation to aerosol perturbations, 364 

which then can be compared to observed precipitation changes. However, observational and 365 

modelling uncertainties still obscure unambiguous evidence of such fingerprints of aerosol on regional 366 

scale precipitation194-196. 367 

CONCLUSIONS 368 

This article reviews the evidence and scientific consensus for APEs and the underlying set of physical 369 

mechanisms. Broad consensus and strong theoretical evidence exists that because global mean 370 

precipitation is constrained by conservation of energy6 and water11,13 as well as surface evaporation25, 371 

aerosol radiative effects act as direct drivers of precipitation changes8. Likewise, aerosol radiative 372 

effects cause well-documented shifts of large-scale precipitation patterns, such as the ITCZ. The extent 373 

to which APEs are i) applicable to smaller scales and ii) driven or buffered by compensating 374 

microphysical and dynamical mechanisms and budgetary constraints is less clear. Despite broad 375 

consensus and strong evidence that suitable aerosols increase cloud droplet numbers and reduce 376 

warm rain formation efficiencies across cloud regimes, the overall aerosol effect on cloud 377 

microphysics and dynamics, as well as the subsequent impact on local, regional and global 378 

precipitation, is less constrained. Air-pollution control measures will reduce aerosol levels in the 379 

future, with an expected reversal of aerosol effects on regional precipitation patterns197.  380 

Research on APEs has been limited by the fact that: locally to regionally, precipitation is controlled by 381 

complex non-linear interactions with multiple microphysical, radiative and dynamical feedbacks; the 382 

expected aerosol-induced change in precipitation is potentially smaller than the internal variability198 383 



and uncertainty in current observations; current observations can only constrain some of the 384 

processes involved – satellite retrievals are often limited to proxies of the parameters involved and in-385 

situ measurements are limited, in particular in convective updrafts; isolating causal effects of aerosol 386 

on precipitation in the presence of multiple confounding variables remains challenging – it is easier to 387 

identify a strong “effect” than to prove that it is the consequence of confounding; and finally, because 388 

the representation of clouds in current climate models is inadequate to represent key microphysical 389 

processes and, importantly, the coupling between microphysics and cloud dynamics. Consequently, 390 

significant uncertainty remains, limiting our ability to quantify and predict past and future 391 

precipitation changes.  392 

It should be emphasised that, in terms of local impacts on humans and ecosystems, absolute 393 

precipitation changes are likely to be less important than relative precipitation changes in the mean 394 

and in the frequency of occurrence of extremes. To illustrate this point, the absolute precipitation 395 

changes over the Sahel region simulated by the CMIP6 multi-model intercomparison seem negligible 396 

– but constitute ~ 40% of the local precipitation (Figure 1). Likewise, local impacts may be dominated 397 

by regional shifts of precipitation patterns rather than precipitation process changes. These aspects 398 

have not been given sufficient attention.  399 

NEW FRONTIERS 400 

Out of ten mechanisms reviewed, only three have been assessed to be supported by strong evidence 401 

and broad consensus and two primarily based on hypotheses without consensus (Table 1). Future 402 

research should define critical tests for numerical models based on observations, in particular of 403 

convective updraft microphysics and thermodynamics, including observational simulators for 404 

comparability. Active remote sensing and systematic in-situ observations199,200, including from un-405 

crewed aerial vehicles, will provide novel constraints on particularly uncertain mixed-phase cloud 406 

microphysics and dynamics. Advanced geostationary satellites and cube-sat fleets will allow 407 

monitoring the full cloud life cycle. Idealised aqua-planet33,201 or radiative convective equilibrium 408 

simulations18,202, such as the GAP Radiative Convective Equilibrium aerosol perturbation model 409 

intercomparison140, connect evidence from local scale effects to regional and global precipitation. The 410 

availability of global CRMs203 and digital twin Earths204 provides significant opportunities to overcome 411 

our reliance on climate models with parameterised local-scale processes and inadequate 412 

microphysics, that currently do not represent three of the ten mechanisms reviewed here (Table 1). 413 

However, even CRMs have large uncertainties in cloud microphysical processes that can obscure 414 

aerosol effects148 and remain to be systematically constrained by observations. The shift to global 415 

CRMs, which will be a focus of the GAP initiative4, will also allow for robust quantification of the 416 

connection between local ACIs and large-scale dynamical feedbacks and teleconnections. 417 
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TABLES & FIGURES 918 

 919 

Table 1: Assessment of the effect of increasing aerosol on precipitation. Microphysical and radiative pathways are 920 
distinguished in the second column. Columns 3 and 4 indicate the expected effect on mean precipitation or the intensity 921 
distribution; column 5 indicates whether the effect is included in current generation (CMIP6) climate models. The scientific 922 
consensus (A strong evidence / broad consensus; B some evidence / limited consensus; C hypothesised / no consensus) is 923 
summarized in column 6.  924 

Physical driver of aerosol effect 

on precipitation 

Pathway Effect on 

mean 

Effect on intensity 

distribution 

Included in CMIP6 

climate models 

Scientific 

consensus 

(i) Surface energy budget Radiative Decrease Uncertain  Yes A 

(ii) Diabatic heating Radiative Decrease Uncertain  Yes A 

(iii) Semi-direct effects Radiative Uncertain Uncertain Yes B 

(iv) Regional scale and monsoon 

dynamics 

Radiative Regional 

shifts 

Uncertain Yes B 

(v) Sea surface temperature 

patterns 

Radiative Regional 

shifts 

Uncertain Yes B 

(vi) Hemispheric asymmetry Radiative Regional 

shifts 

Neutral Yes A 

(vii) CCN effects on stratiform 

liquid clouds 

Microphysical Neutral Uncertain Yes 

(significant uncertainties) 

B 

(viii) CCN effects on shallow 

convection 

Microphysical Uncertain Broaden No B 

(ix) CCN effects on deep 

convection 

Microphysical Uncertain Broaden No C 

(x) INP effects Microphysical Uncertain Uncertain No 

(in most models) 

C 

 925 

  926 



 927 

 928 
Figure 1: Climate model simulated a) relative and c) absolute precipitation changes [%] due to anthropogenic aerosol from the coupled 929 
model intercomparison project phase 6 (CMIP6)

 

Detection and Attribution Model Intercomparison Project (DAMIP205, difference between 930 
last 30 years of present-day DAMIP hist-aer minus pre-industrial picontrol control simulations) and the corresponding multi-model standard 931 
deviations b), d), respectively. Note the significant differences between relative (a) and absolute (b) precipitation changes , highlighted in 932 
the box over northern Africa and the Middle-East.  933 
 934 
 935 

 936 

 937 

 938 

 939 
Figure 2: Illustration of mechanisms of aerosol effects on precipitation and their constraints from an energy (red) and water (blue) budget 940 
perspective. Radiative and microphysical effects are mediated by variations in Aerosol Optical Depth (AOD), Aerosol Absorption Optical 941 
Depth (AAOD) and Cloud Condensation Nuclei (CCN) as well as Ice Nucleating Particles (INP), respectively.  942 
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 945 
Figure 3: Idealised aqua-planet ICON206 general circulation model simulations of changes of precipitation and the atmospheric energy 946 
balance in response to idealised circular absorbing aerosol radiative plumes (of 10° size and identical aerosol radiative properties with peak 947 
aerosol optical depth of 2.4 and single scattering albedo of 0.8)33. Top row: plume located on the equator. Bottom row: plume located at 948 
40°N. dQR:  atmospheric radiative cooling; LdP: latent heat associated with precipitation change dP ; dQSH: sensible surface heat flux; 𝐝(𝛁 ∙949 
𝒖𝒔): divergence of dry static‐energy.  950 

 951 

 952 

 953 

 954 
Figure 4: Cloud-resolving model intercomparison of CCN mediated effects on deep convection from the Aerosol, Clouds, Precipitation and 955 
Climate deep convection study137,154: fractional mass process rates for tracked deep convective systems for low and high CCN conditions as 956 
a function of height. Results for each model, named in the top row, are shown for low and high CCN conditions in individual columns. The 957 
size of the pies is scaled logarithmically by the largest mass production rate of the model. Significant differences in the model base state and 958 
the response to cloud condensation nuclei perturbations illustrate associated large uncertainties.  959 
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