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The Vicsek simulation model of flocking together with its theoretical treatment by Toner and Tu in 1995
were two foundational cornerstones of active matter physics. However, despite the field’s tremendous
progress, the actual universality class (UC) governing the scaling behavior of Viscek’s “flocking” phase
remains elusive. Here, we use nonperturbative, functional renormalization group methods to analyze,
numerically and analytically, a simplified version of the Toner-Tu model, and uncover a novel UC with
scaling exponents that agree remarkably well with the values obtained in a recent simulation study by
Mahault et al. [Phys. Rev. Lett. 123, 218001 (2019)], in both two and three spatial dimensions. We therefore
believe that there is strong evidence that the UC uncovered here describes Vicsek’s flocking phase.
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Two papers in 1995 arguably led to the advent of active
matter physics, which has in many ways revolutionized
nonequilibrium, soft matter, and biological physics.
Reference [1] studied the order-disorder transition of an
active XY model in two dimensions (2D) using a simulation
model now commonly known as the Vicsek model. Inspired
by the existence of the ordered flocking phase, which is
forbidden in equilibrium systems by the Mermin-Wagner-
Hohenberg theorem, Toner and Tu introduced a set of
hydrodynamic equations of motion (EOM) for generic polar
active fluids in Ref. [2], now known as the Toner-Tu (TT)
model. Their renormalization group (RG) analysis of these
equations lead to nontrivial scaling behaviour associated to
this phase. Intriguingly, controversies soon emerged regard-
ing these two landmark studies: the critical order-disorder
transition, the focus of Ref. [1], was found to be preempted
by a discontinuous phase transition [3]; and the RG study
performed in Ref. [2] was found to be incomplete due to
neglected nonlinearities in the original analysis [4]. More
recently, an extensive simulation study [5] of Vicsek’s
flocking phase has provided estimates for the scaling
exponents that deviate significantly from the original
predictions of Ref. [2]. As a result, the question of what
universality class (UC) actually describes Vicsek’s flocking
phase remains open. Indeed, a solution has been widely
considered to be intractable using current RG methodology
due to its inherent complexity [4].

Here, we made a significant step forward in tackling
the above question using a functional renormalization
group (FRG) [6–14] analysis. Specifically, we introduce
a simplified model that reveals for the first time the crucial
impact of the compressibility of active fluids to the scaling
behavior in the flocking phase. The FRG analysis of our
model leads to a set of scaling relations that enable us to
solve for the three scaling exponents: the roughness
exponent (χ), dynamic exponent (z), and anisotropy
exponent (ζ), which characterize the UC of the flock-
ing phase.
Using the rescaling convention,

ðt; r⊥; x; δg; δρÞ → ðtezl; r⊥el; xeζl; δgeχl; δρeχlÞ; ð1Þ

where, without loss of generality, the flocking direction is
chosen to be along the x axis, these novel exponents are

χ ¼ 13ð1− dÞ
40

; z¼ 27þ 13d
40

; ζ ¼ 41− d
40

; ð2Þ

for d < 11=3 where d is the spatial dimension. Remarkably,
the values of these exponents agree very well with the
simulation results in both two and three dimensions (falling
within the given simulation errors, see Table I). Therefore,
we believe that the new UC uncovered here describes the
ordered phase of the Vicsek model.
Simplified Toner-Tu model—We start with the celebrated

TT EOM that describe generic compressible polar active
fluids, derived simply from considering the underlying
conservation law and symmetries of the system [2,4,15]:

∂tρþ∇ · g ¼ 0; ð3Þ
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∂tgþ λ1ðg ·∇Þgþ λ2gð∇ · gÞ þ λ3
2
∇ðjgj2Þ ¼ −Ug

þ μ1∇2gþ μ2∇ð∇ · gÞ þ μ3ðg ·∇Þ2g
−∇P1 − gðg · ∇ÞP2 þ h:o:t:þ fþQ; ð4Þ

where ρ is the mass density field and g is the momentum
density field. Note that instead of using the velocity density
field as one of the two hydrodynamic variables in the
original formulation [2,15], we have opted for the momen-
tum density field. The physics of course remains the same
but this choice has the virtue of simplifying the continuity
equation (3) by rendering it linear. In the EOM of g (4), all
coefficients are generic functions of ρ and jgj, and the
“flocking-inducing” term U is such that U < 0 if jgj < g0
while U > 0 if jgj > g0 for some mean momentum density
magnitude g0, thus leading to a nonzero preferred momen-
tum density. The “pressure” terms P1 and P2 are functions
of ρ:

P1 ¼
X
n≥1

κnðρ − ρ0Þn; P2 ¼
X
n≥1

νnðρ − ρ0Þn; ð5Þ

where ρ0 is the mean density, and the coefficients κn’s and
νn’s are themselves functions of jgj. Furthermore, “h.o.t.” in
Eq. (4) denotes higher order terms in spatial derivatives
(e.g., ∇4g, etc.) that are irrelevant to our discussion, and the
noise term f is Gaussian with vanishing mean and statistics:

hfiðr; tÞfjðr0; t0Þi ¼ 2Dδijδ
dþ1ðt − t0; r − r0Þ: ð6Þ

Finally, in addition to the usual terms, we have also
introduced the Lagrange multiplier Q in Eq. (4) to enforce
that the fluctuations in g along the flocking direction δgx
vanish (Simplification 1). This simplification is inspired by
the equilibrium OðNÞ model [21–23] and the incompress-
ible TT model [18,24], where the fluctuations δgx can be

neglected without affecting the UC of the Goldstone modes
since they are subleading in the hydrodynamic limit.
Specifically, introducing a similar simplification in the
OðNÞ model or the incompressible TT theory produces
exactly the same RG equations for the Goldstone mode as if
δgx had been simply neglected, i.e., the UC of the
Goldstone mode remains unchanged. However, we note
that this simplification does alter the physics of the
remaining modes. In the standard OðNÞ or incompressible
TT theory, the modulus of g becomes truly massive in the
hydrodynamic limit, while the δgx mode becomes soft to
compensate fluctuations of the Goldstone mode. In the
presence of the Lagrange multiplier, δgx ¼ 0 exactly and
can therefore not compensate these fluctuations. As a result,
the modulus jgj becomes a soft variable. Simplification 1 is
therefore distinct from a nonlinear sigma model constraint.
If one constrains the modulus jgj (as in the nonlinear sigma
model), the Goldstone modes have generically a more
complicated angular dependence [4]; while simplification
1 (employed here) produces a very simple angular depend-
ence, rendering the numerical solution of the FRG equations
achievable. In both cases, the linear scaling exponents are
the same and, judging by the nonlinear exponents obtained
using our approach (Table I), the nontrivial UC may also be
unchanged by our simplification 1.
Besides simplification 1, we will reduce the complexity

further by ignoring all nonlinearities in the TT EOM
involving the density field (Simplification 2), correspond-
ing to the limit of small density fluctuations. This sim-
plification is motivated by the successes in previous studies
of variants of the TT model where the density field is
neglected completely, thus rendering the model analytically
tractable [16–20]. However, as noted before, these previous
approaches are not sufficient to describe the scaling
exponents observed in simulations (see Table I). In con-
trast, the density and momentum fields are still coupled at
the linear level in our model, which, as we shall see, leads
to novel emergent hydrodynamic behavior.
Linear theory—In the flocking phase, the mean magni-

tude of the momentum field, g ¼ jgj, is nonzero and we are
interested in the fluctuating fields around this flocking
state:

δρ ¼ ρ − ρ0; δg ¼ g − g0x̂; ð7Þ

where hats denote normalized vectors. We now further
partition δg into three components that are more nat-
ural in our analysis: δg ¼ δgx þ δgL þ δgT , where
δgx ¼ x̂ðx̂ · δgÞ, δgL ¼ q̂⊥ðq̂⊥ · δgÞ, and q⊥ denotes
the wave vector (in spatially transformed Fourier space)
perpendicular to the x direction, i.e., q⊥ ¼ q − qxx̂ and
qx ¼ x̂ · q. Namely, the three components of δg corre-
spond to its component along the flocking direction, along
the direction of the wave vector (with the x-component

TABLE I. Comparison of the scaling exponents obtained here
[Eqs. (2)], from a simulation study of the Vicsek model [5], from
the Toner-Tu 1995 paper [2], and from dynamic renormalization
group analyses of two closely related models: the incompress-
ible TT model [16–18] and the Malthusian version of the TT
model [19,20].

Spatial dimension (d) χ z ζ

d ¼ 2:

This letter −0.325 1.325 0.975
Vicsek simulation [5] −0.31ð2Þ 1.33(2) 0.95(2)
Incompressible [16,17] −0.23 1.1 0.67
TT 95 / Malthusian [2,19] −0.20 1.20 0.6

d ¼ 3:

This letter −0.65 1.65 0.95
Vicsek simulation [5] −0.62 1.77 1
TT 95 / incompressible [2,18] −0.60 1.60 0.8
Malthusian [20] −0.45ð2Þ 1.45(2) 0.73(1)
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subtracted), and along the direction perpendicular to both
wave vector and flocking direction. Note that simplifica-
tion 1 enforces that δgx ¼ 0 here.
We now analyze the scaling behavior of the ordered

phase at the linear level, i.e., by first truncating the TT
EOM to linear order in δρ, δgL, and δgT . The propagators
can be obtained by inverting the “dynamical matrix”
constructed from the linear TT EOM [25]:

Gðq̃Þ ¼ GLðq̃Þ þGTðq̃Þ; ð8Þ

GLðq̃Þ¼
−iωqPLðqÞ

−iωqð−iωqþ iλgqxþμxq2xþμL⊥q2⊥Þþκ1q2⊥
; ð9Þ

GTðq̃Þ ¼
PTðqÞ

−iωq þ iλgqx þ μxq2x þ μ⊥q2⊥
; ð10Þ

where we have defined q̃ ¼ ðωq;qÞ, q⊥ ¼ jq⊥j, and the
projectors PL;ijðqÞ ¼ q̂⊥;iq̂⊥;j and PT;ijðqÞ ¼ δij − x̂ix̂j−
q̂⊥;iq̂⊥;j. Further we have defined λg ¼ λ1g0, μ⊥ ¼ μ1,
μx ¼ μ1 þ μ3g20, and μ

L⊥ ¼ μ1 þ μ2, which are all evaluated
at δρ ¼ δg ¼ 0. Since δgx ¼ 0, G is perpendicular to x̂.
The equal-time correlation functions can now be

obtained in the usual way, giving,

hδgLðt; rÞδgLðt; 0Þi ¼ D
Z
q
e−iq·r

PLðqÞ
μxq2x þ μL⊥q2⊥

; ð11Þ

hδgTðt; rÞδgTðt; 0Þi ¼ D
Z
q
e−iq·r

PTðqÞ
μxq2x þ μ⊥q2⊥

; ð12Þ

hδρðt; rÞδρðt; 0Þi ¼ D
κ1

Z
q
e−iq·r

1

μxq2x þ μL⊥q2⊥
; ð13Þ

where
R
q ¼ R ddq=ð2πÞd. In particular, our linear anal-

ysis identifies the following scaling exponents χlinρ ¼ χlin ¼
ð2 − dÞ=2, zlin ¼ 2 and ζlin ¼ 1 which, as expected, are
identical to those in previous works [2,4,15].

Nonlinear analysis using FRG—Applying simplification
2 to eliminate all nonlinearities involving δρ, the only
nonlinearities left are terms involving the λ’s and U, which
become independent of δρ. The standard power counting
method (e.g., see [27]) shows that below d ¼ 4, the leading
order contributions of these nonlinearities (i.e., the λ’s,
which are no longer functions of δg, and U ¼ βjδgj2=2)
can modify the scaling behavior and thus have to be
incorporated into the analysis. RG methods provide a
systematic way to accomplish this task and we will use
here the functional version of the renormalization group
based on the exact Wetterich equation [7–9]:

∂kΓk ¼
1

2
Tr

��
Γð2Þ
k þ Rk

�
−1
∂kRk

�
; ð14Þ

where Γk is the wavelength (k) dependent effective average
action and Rk is a regulator that serves to control the length
scale (∼1=k) beyond which fluctuations are averaged over.
The exact flow equation (14) serves to interpolate between
the microscopic action ΓΛ (where all model details are
encoded) and the macroscopic effective average action Γ0,
from which the EOM for the averages of the fields can be
obtained. The trace is a sum over all degrees of freedom,
i.e., over all field indices, wave vectors, and frequencies,

and Γð2Þ
k is the matrix containing the second order func-

tional derivatives of Γk with respect to the fields. The
boundary conditions for Γk described above are enforced
by requiring that RΛ ∼∞ and R0 ¼ 0.
To proceed with our FRG analysis, we use the Martin-

Siggia-Rose-de Dominicis-Janssen formalism [14,28–30]
by introducing the response fields ḡ⊥ and ρ̄, to obtain a
scalar action ΓΛ that describes our theory at the micro-
scopic scale Λ. Making all microscopic couplings depen-
dent on k (not written explicitly), we obtain an ansatz for
the scale-dependent effective average action,

Γk½ḡ⊥;g⊥; ρ̄; ρ� ¼
Z
r̃

�
ρ̄½∂tρþ∇⊥ · g⊥� −Djḡ⊥j2 þ ḡ⊥ ·

�
γ∂tg⊥ þ λ1g0∂xg⊥ þ λ1ðg⊥ · ∇⊥Þg⊥ þ λ2g⊥ð∇⊥ · g⊥Þ

þ 1

2
λ3∇⊥ðjg⊥j2Þ þ

1

2
βjg⊥j2g⊥ − μ1∇2⊥g⊥ − μ1∂

2
xg⊥ − μ2∇⊥ð∇⊥ · g⊥Þ − μ3g20∂

2
xgþ κ1∇ρ

��
; ð15Þ

where we have defined g⊥ ¼ δgL þ δgT and
R
r̃ ¼

R
ddrdt.

We have also introduced the coefficient γ to allow for the
potential renormalization of the time-derivative term. Be-
cause of its linear structure, the “density sector” (propor-
tional to ρ̄) does not get renormalized [31,32], and therefore
its coefficients remain unity.

The last ingredient in the FRG formulation is the
regulator, which we choose to be [33],

Rkðq̃; p̃Þ ¼ Γð2Þ
k ðq̃; p̃Þ

�
1

Θϵðq⊥ − kÞ − 1

	
; ð16Þ
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where Θϵ is a smooth, nonzero function that approaches
the Heaviside function in the limit of ϵ → 0, which is to be
taken at the end of the calculation. Our choice of regulator
leads to the q⊥ integral in the graphical corrections to
become a trivial integral over a delta function. This is
numerically advantageous as we then only need to
evaluate the qx integral numerically, instead of having
to perform a two-dimensional integral. We further note
that since the regulator has the same structure as the
propagator, even though it is frequency dependent, cau-
sality is preserved [14].
RG fixed points—With the regulator and ansatz defined,

we can now deduce the flow equations, for which we rely
on computer algebra due to the complexity of the propa-
gators and interaction terms. Further details are given
in Ref. [25].
Integrating the flow equations numerically, we always

find a nontrivial stable fixed point. The associated scaling
exponents are shown in Fig. 1 (blue squares). For dimen-
sions 11=3≲ d < 4, the scaling exponents agree with those
obtained by Toner and Tu in Refs. [2,15]:

χTT ¼ 3− 2d
5

; zTT ¼ 2ðdþ 1Þ
5

; ζTT ¼ dþ 1

5
: ð17Þ

Intriguingly, below d ≈ 11=3, the values of the exponents
are found to agree with the new formula shown in Eq. (2),
until for d ≲ 2.4 when the RG flow seems to become
divergent. We hypothesize that the divergence is due to our
truncation or simplification of the scale-dependent average
action, as we reason that the density-dependent couplings
could become more important in lower dimensions and
potentially stabilize the RG flow.
We interpret our findings as follows. The flocking phase

of our simplified TT model is generically described by the
TT UC for 11=3 < d < 4. Below d < 11=3, a new stable
RG fixed point, with scaling behavior given by Eq. (2),
emerges. And comparing the values of the exponents

obtained using Eq. (2) to a recent simulation study [5]
(red stars in Fig. 1), we believe that the UC uncovered
here describes the ordered phase of the Vicsek model.
Schematics of the RG flows illustrating the stability
exchange between the TT UC and the UC described here
are shown in Fig. 2 in terms of the anomalous dimensions
η⊥ and ηx, defined as the graphical corrections of μ⊥ and μx,

∂l logμ⊥ ¼ z − 2þ η⊥; ð18Þ

∂l logμx ¼ z − 2ζ þ ηx: ð19Þ

Analytical treatment—We will now go beyond our
numerical FRG calculation by using an analytical approach,
whose advantage is threefold: (i) to obtain analytical
expressions of the scaling exponents (2) beyond relying

FIG. 1. Exponents, χ, z, and ζ, obtained from our analytical results (2) (unbroken blue line) and our numeric RG calculation (blue
squares) show good agreement with the simulation results of Vicsek’s flocking phase (red stars) [5]. For comparison, scaling exponents
of the incompressible TT model (green dotted line for d > 2 [18] and green diamond for d ¼ 2 [16,17]) and those of the Malthusian (or
infinitely compressible) TT model (yellow dashed lines for d > 2 [20], yellow circle for d ¼ 2 [19]) are also shown. Note that the results
from the Toner-Tu 1995 paper [2] coincide with the dotted green line and the yellow circle.

FIG. 2. Schematic flow diagram visualizing the locations and
stability of the Gaussian (yellow pentagon), the TT (blue square)
and the novel compressible fixed points (red circle) in the ðηx; η⊥Þ
plane for dimensions below d0c ¼ 11=3, in between d0c and
dc ¼ 4, and above dc. The flow diagrams in the physical
dimensions 2 and 3 are topologically equivalent to the left
diagram at d ¼ 3.5. η⊥ and ηx are the graphical corrections of
μ⊥ and μx, respectively (18), (19). The black lines are the fixed
point trajectories as d is increased. The gray flow lines are
fictitious and serve to illustrate the stability of the fixed points, as
verified by our numerical FRG calculation.
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on fitting the numerical results; (ii) to understand why the
values of the exponents seem to be quantitatively accurate in
d ¼ 2, 3, as compared to simulations, even with drastic
truncations or approximations adopted, and (iii) to verify the
exchange of stability between the TT UC and our new UC
at d ≈ 11=3.
To make analytical progress, we start by noting that

within the linear theory, the “compressibility” term
κ1∇⊥δρ and the advective term λg∂xδg≡ λ1g0∂xδg are
expected to diverge as k → 0, on account of their scaling
dimensions based on both linear and nonlinear analyses.
We can therefore approximate the flow equations by
assuming the divergence of these terms (or more specifi-
cally their dimensionless versions: κ̄1 ¼ κ1γ=μ2⊥k2 and
λ̄g ¼ λg=

ffiffiffiffiffiffiffiffiffiffi
μ⊥μx

p
k) [25]. Taking this limit, some of the

graphical corrections (for λ1, D, and λg) vanish, while
others (λ2, λ3, μ⊥, and μL⊥) become finite and completely
independent of κ̄1 and λ̄g [25].
Unexpectedly, different behavior is observed for the

graphical corrections of μx,

ηx ¼
2D

2ðd − 2Þμx
∂
2

∂q2x

Z
h̃
PT;ijðqÞVimkðq;hÞGmaðh̃Þ

×Ganð−h̃ÞVlnjðq − h;−hÞGklðq̃ − h̃Þδðh⊥ − kÞ
����
q̃¼0

≡ Fxðλ̄1; λ̄2; λ̄3; ḡ0; κ̄1Þ; ð20Þ

where
R
h̃ d

dhdωh=ð2πÞðdþ1Þ and Vimk is the three-point
momentum density vertex and the λ̄’s are the dimensionless
versions of the λ’s (shown in Ref. [25]). First, contrary to the
other corrections, the limit of large κ̄1 and λ̄g does not
commute with the integral over hx in Eq. (20). If the limit is
performed before the integral, one would incorrectly con-
clude that this correction vanishes. Evaluated in the correct
order however, we find via numerical evaluation of Eq. (20)
that, as both κ̄1 and λ̄g diverge, and λ̄1, λ̄2 and λ̄3 approach a
fixed point value (marked by an asterisk), the function Fx
behaves asymptotically as

Fxðλ̄1; λ̄2; λ̄3; λ̄g; κ̄1Þ → F̄x

 
λ̄�1; λ̄

�
2; λ̄

�
3;
λ̄13g
κ̄71

!
; ð21Þ

where asterisks denote fixed point values and F̄x has
the asymptotic properties, F̄xðλ̄1; λ̄2; λ̄3; 0Þ ¼ 0 and
limx→∞ F̄xðλ̄1; λ̄2; λ̄3; xÞ ¼ ∞ [25]. The flow equations
therefore only allow a fixed point for two possible scenarios.
Either κ̄1 tends to infinity fast enough such that λ̄13g ≪ κ̄71, in
which case Fx ¼ ηx ¼ 0 and the TT UC is recovered, or κ̄1
and λ̄g diverge in such a way that the ratio λ̄13g =κ̄71 approaches
a constant value, leading to the new UC uncovered here.
Specifically, since neither λ̄g nor κ̄1 receive any graphical

corrections in this limit, using the standard rescaling, we can
write down an effective flow equation for λ̄κ ¼ λ̄13g =κ̄71:

∂lλ̄κ ¼ ½13ðz − ζÞ − 7ð2z − 2Þ�λ̄κ; ð22Þ

with precisely two fixed points: either λ̄κ ¼ 0 or λ̄κ ¼ const.
In the latter case, the exponents have to fulfill the hyper-
scaling relation

13ðz − ζÞ − 7ð2z − 2Þ ¼ 0: ð23Þ

Together with the scaling relations from the vanishing
graphical corrections for λ1 and D (also obtained in
Refs. [2,15]):

∂l log λ̄1 ¼ z − 1þ χ ¼ 0; ð24Þ

∂l logD ¼ z − 2χ − ζ − ðd − 1Þ ¼ 0; ð25Þ

we can determine the analytical expressions of the expo-
nents in Eq. (2). Further, our calculation here applies below
d ∼ 2.4, thus potentially enabling us to extrapolate our
numerical FRG results to d ¼ 2.
Since the exponents are determined by the various

scaling relations and therefore independent of the exact
locations of the fixed points, we believe them to be robust
against approximations. Indeed, exact exponents have
been claimed for diverse systems based on scaling rela-
tions [2,18,24,34–37]. Further testing the exactness of the
exponents (2), via simulation or numerical FRG methods,
will thus be of great interest.
Finally, we can support the scenario regarding the

exchange of stabilities between the TT UC and our novel
UC (Fig. 2) by expanding Eq. (22) around the TT fixed
point at λ̄κ ¼ 0,

∂lδλκ ¼ ð11 − 3dÞδλκ; ð26Þ

which clearly becomes unstable below d < d0c ¼ 11=3.
Further supporting evidence is that the exponents of both
the TT UC (17) and our UC (2) coincide at d ¼ 11=3, as
expected from such an exchange of fixed point stabilities.
Summary and outlook—The Vicsek model together with

the Toner-Tu theoretical formulation of polar active fluids
helped propel active matter physics into a well-known
discipline of physics today, and along the way inspired
diverse variations of flocking models that are found to
correspond to many novel UCs [18–20,37–45]. Ironically,
the UC that governs Vicsek’s original flocking phase has
remained unknown, perhaps until now. Besides potentially
explaining the universal flocking behavior of the Vicsek
model, our nonperturbative, FRG calculation may also
refute the recent questioning of the stability of the flocking
phase [46,47] in d ¼ 2, 3, at least when the active systems
are deep enough in the ordered phase.
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Looking forward, the RG has traditionally been perceived
as merely a conceptual way to elucidating the underlying
physics [48]; in contrast, our work shows that RG meth-
odology can quantify physical properties accurately, thus
demonstrating the power of the RG not readily appreciated.
Indeed, FRG methodology has already been used in several
other disciplines of physics to provide quantitatively accu-
rate predictions of both universal and nonuniversal quan-
tities [13]. We believe that similar developments in active
matter physics will be very fruitful.

Note added—Recently, two other papers have appeared
addressing the universality class of the Vicsek model,
yielding scaling exponents similar to but distinct from
ours [49,50]. In Ref. [49] the mass density as a hydro-
dynamic variable is neglected and graphical corrections of
the nonlinear terms are assumed to vanish, which we
believe to be unjustified assumptions. The results of
Ref. [50] are based on the assumption that all nonlinearities
of the EOMmust be total derivatives which we also believe
is unjustified (see also footnote [29] of Ref. [51]).
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