
Citation: Houghton, R.; Martinetti, A.;

Majumdar, A. A Framework for

Selecting and Assessing Wearable

Sensors Deployed in Safety Critical

Scenarios. Sensors 2024, 24, 4589.

https://doi.org/10.3390/s24144589

Academic Editor: Roozbeh Ghaffari

Received: 24 May 2024

Revised: 5 July 2024

Accepted: 8 July 2024

Published: 15 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

A Framework for Selecting and Assessing Wearable Sensors
Deployed in Safety Critical Scenarios
Robert Houghton 1,* , Alberto Martinetti 2 and Arnab Majumdar 1

1 Centre for Transport Studies, Imperial College London, London SW7 2AZ, UK
2 Design, Production and Management Department, University of Twente, 7522 NB Enschede, The Netherlands
* Correspondence: r.houghton18@imperial.ac.uk

Abstract: Wearable sensors for psychophysiological monitoring are becoming increasingly main-
stream in safety critical contexts. They offer a novel solution to capturing sub-optimal states and
can help identify when workers in safety critical environments are suffering from states such as
fatigue and stress. However, sensors can differ widely in their application, design, usability, and
measurement and there is a lack of guidance on what should be prioritized or considered when
selecting a sensor. The paper aims to highlight which concepts are important when creating or
selecting a device regarding the optimization of both measurement and usability. Additionally, the
paper discusses how design choices can enhance both the usability and measurement capabilities of
wearable sensors. The hopes are that this paper will provide researchers and practitioners in human
factors and related fields with a framework to help guide them in building and selecting wearable
sensors that are well suited for deployment in safety critical contexts.
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1. Introduction

Increasingly, the usage of wearable sensors is becoming commonplace both in every-
day life and for research. The rise of small, powerful and low-cost computing has brought
physiological sensing to the masses. Additionally, many researchers and companies now
rely upon wearable sensors to collect data to explore psychophysiological phenomena, such
as stress, fatigue and cognitive workload in safety critical contexts. An advantage wearable
sensors confer is that they enable large datasets to be collected due to their sampling fre-
quency and generally long battery life, and indeed they contribute to a major revolution in
big data revolution. This in turn enables previously unconsidered research questions to be
explored, which technical limitations on data collection in the past had rendered impossible
to study.

All the indications are that the number of wearables being developed and entering
the market is going to increase exponentially in the foreseeable future. Given this, there is
hence a need for a framework to assess these devices, especially those used in operational
and safety critical contexts such as aviation, rail, road, defense, construction, and energy.
Compounding this is that many researchers in the wearable space domain are focused
on machine learning, often reducing the role of the sensor as a means of data collection.
For such researchers, their sole concern is the model developed from the data, yet this
ignores how their model will perform under differing conditions if the sensor is deployed in
operational contexts, i.e., rugged conditions where movement, sweat, humidity, sand/dust
and vibration may all impact data quality [1]. Whilst context may alter the parameters
needed, e.g., working in air traffic control will likely result in a different sensor compared
to construction, to ignore the usability of the sensor seems egregious. However, there is
yet to be a single unified source of understanding of the usability factors related to the
successful adoption of sensors. Thus, there is a need for guidance, such that researchers
and organisations can select appropriate sensors that also are theoretically acceptable.
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A framework would be useful not only in assessing current devices on the market but
also guide designers and developers to create devices which maximize the principles of
measurement and usability, as well as provide design guidance. Currently, no framework
exists which is sufficiently comprehensive to evaluate current technology in its entirety as
well as to provide guidance in developing future devices. Hence this paper attempts to
outline a framework which is comprehensive enough to allow for a good level of evaluation.
In order to do this, the framework attempts to review parameters that are relevant to success,
i.e., usability and acceptability. At the outset, it is important to recognize that the purpose
of this paper is not to provide a systematic literature review, but rather to provide a succinct
summary of the different parameters needed to develop and assess wearable sensors for
psychophysiological monitoring in safety critical contexts.

1.1. Theoretical Background
1.1.1. Foundations of Wearables—Measurement and Usability

Wearable sensors offer both a convenient means and a novel methodology for measur-
ing psychophysiological phenomena, which until recently was not attainable. Constructs
such as stress fatigue and cognitive workload have a history of being detected through
psychophysiology [2,3]. Recently, researchers have managed to detect these phenomena
outside of the laboratory, such as stress in construction workers [4], fatigue in bus drivers [5],
and cognitive workload in surgeons [6]. However, for these devices to be accepted and
used in operational contexts, they need to be a valid and reliable measurement tool that can
capture and measure the required phenomena during operations. In addition, the device
needs to be user-friendly, promoting an enjoyable and purposeful user experience [7]. To
assess this, there is a need to consider differing aspects of the efficacy of the device as a
measurement tool across several different parameters, such as validity, both construct and
predictive reliability, sensitivity, selectivity, and generalizability [8]. Furthermore, usability
can be assessed by considering the ease of interface with the device, its robustness in the
presence of water and environmental extremes, as well as the size, weight and fit of the
device [9]. Assessing usability can be thought of with the question, “Can I still complete
my job whilst wearing this device and does the device not intrude on my job?”, e.g., the
device first of all does not prevent the operator from completing their job and, secondly, it
does not add a negative stimulus (in the form of a wearable sensor) that makes their job
harder. For example, certain wearable ECGs may be unsuitable for roofing work due to
impediments to the flexion of the human body.

Dinges and Mallis’s (1998) [10] seminal paper on the physiological monitoring of
fatigue outlines several measurement parameters, such as validity, reliability, sensitivity,
and specificity which must be considered for devices, such as EEGs, ECGs and eye track-
ers, before they can be considered a tool for measuring fatigue. While these parameters
were classified as scientific/engineering criteria by the authors in 1998, much of what
they discussed is relevant, not just for fatigue monitoring, but also for monitoring any
psychophysiological state in and outside of the laboratory environment. However, these
considerations or criteria as listed by [10] are of even greater importance when such devices
are intended for use in a safety critical context.

For example, to use devices that capture data in real-time for a machine learning
model so as to create an output would require that device to capture data that is valid and
reliable for a length of time, e.g., using a wearable ECG to capture real-time HRV data,
which is then filtered and analyzed in real-time to capture fatigue in long haul truck drivers.
If operators and organizations are reliant on devices to provide an additional safety net, if
these are not carefully selected and benchmarked for the specific use [11] then the device is
unsuitable for use. Thus, optimizing wearable sensors as a measurement tool is one of the
key tenets when designing or evaluating a sensor for both research and safety applications.

Ref. [10] also briefly consider usability in what they term “implementation criteria”:
how will the device be used, is the device unobtrusive, and what will it do, e.g., type of
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alarm? While this is commendable, understanding the usability of devices actually must
go beyond this in order to be meaningful to the user in achieving a goal or outcome [7].

To this end, ref. [12] suggest that researchers and designers need to understand why
people may engage or disengage with sensors in clinical applications. This sentiment,
though, can also be extended to other safety critical environments. For example, if a set of
mine workers are asked to wear a fatigue monitoring device because they work night shifts
and drive several hours to and from the mine site before and after their 8–10-h shift, and
many of them are reporting that tiredness is affecting their concentration, the hope is that
they would wear the device to obtain meaningful data.

However, if the device is complex to use, fits poorly and is uncomfortable, the workers
may stop wearing the device altogether [13]. Furthermore, the device should not just benefit
those interested, but the data and outputs should be formatted in such a way that they can
be used by researchers, designers and non-research users. For example, researchers may be
interested in signal quality, whereas the mine workers may want a simple output telling
them about different gradations of fatigue to make more positive changes to their sleep
schedule. Understanding why devices may elicit a negative or positive user experience is
important for long-term use and engagement.

1.1.2. Using Design to Augment Measurement and Usability

To truly create a device that scores highly on measurement and usability, there is also a
need to consider the design of the device. If measurement and usability are the two pillars
to creating a device that will excel in the field, then design is the mortar that holds the
pillars together and enriches both measurement and usability. Consider the below example.

A Holter monitor is worn on a belt or a lanyard around the neck, with electrodes
physically adhering to the chest for a certain length of time. This is a clinically validated
ECG, which is suitable for monitoring patients but is unsuitable for monitoring psychophys-
iological functioning amongst construction site workers. The Polar H10 is a commonly
used ECG device and is simply a combined sensing unit and set of electrodes embedded
in a simple chest strap. This is most likely to be a better choice for construction workers
because it is discrete and lacks any external wires, maximizing comfort without the risk of
the wires catching on any objects. Here, the physical design of the device, e.g., bulkiness,
external wires, electrode type and placement, infer that possible use cases for the devices are
optimized. This is an example of how design can enhance usability. The Polar H10 began
as an activity monitor before it saw a decent uptake from the academic community as a
good ECG to use to monitor HRV [14]. Many of the design choices made when developing
the H10, such as simplicity of use, low cost, and discreet nature, make it an excellent choice
for measuring HRV in both laboratory and field research. The polar H10 refers to the unit
itself, which is often paired with a Polar Pro strap to create the ECG monitoring device. It
switches on automatically after wetting the electrodes and being placed around the chest
to detect a heartbeat. The electrodes are embedded within the strap and make contact with
the body through a rubber silicone material. The absence of metal or conductive gel that
sticks to the body greatly reduces the chances of skin irritation. The flexibility of the strap
means that the H10 device can be fitted well and comfortably on the body, meaning it can
be worn without creating excessive interference in movements. Here, the design can be
seen as fulfilling two functions: (i) maximizing good measurement by having a flexible and
customizable electrode that will curve with the body keep contact over the chest muscles
and flex with respiration, (ii) by using a simple chest band and an automated start on the
device, the user can simply plug and play the device, obtaining instant heart rate data,
leading to high usability levels [14].

2. Methodology and Paper Selection

To highlight relevant parameters related to wearable sensors, papers were identified
that had previously outlined parameters important for psychophysiological monitoring.
From this initial selection, a general list of parameters was generated. Whilst these papers
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highlighted parameters, not all parameters were necessarily concerned with the sensor
itself, but rather the management and integration of sensors once they are deployed.
Management and integration are important considerations, and users and researchers
interested in wearable sensors should not ignore the practicalities of what will occur once a
sensor has been deployed. However, such considerations are beyond the scope of this paper,
so any parameters deemed not to be core to the sensor as a sensing entity were removed.
Additionally, sometimes a parameter, e.g., toughness, was present in more than one paper,
so any repetitions were removed. Additionally, whilst papers that concern aspects such
as machine learning and model validation are interesting and related to wearable sensors,
they are slightly removed from the primary sensor eco-system, unless a sensor has onboard
processing capabilities. There is also extant literature and reviews on machine learning and
wearable sensors for safety critical contexts, such as [15,16].

2.1. Steps in Paper Identification

Since holistic papers that discuss the parameters that wearable sensors need for
safety critical contexts are rare, ref. [10] were used to generate the initial source list of
parameters. Ref. [10] list 16 parameters related to scientific, practical and legal criteria.
They consider both the sensor itself and other aspects, such as ethics and legality. They are
also constrained to fatigue measurement. The authors mainly took scientific and practical
criteria, reclassifying them through discussions into either measurement or usability. We
then searched for papers related to these constructs, such as what [10] call Robustness, or
toughness, with water tolerance being somewhat adjacent to toughness. This process was
carried out in an organic manner. See Figure 1 for a flow chart of paper selection.
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After searching for papers concerning all these aspects of wearable sensor selection
and development, a list of 22 key parameters was identified. Table 1 outlines the parameters
identified together with their source material. All parameters have been chosen due to
their contribution to the selection and use of wearable sensors in safety critical contexts.
These parameters are related directly to psychophysiological sensors, and most will also
extrapolate to wearable sensors in general, with only electrode type and diagnosticity
unique to psychophysiological wearable sensors. The list is not exhaustive but aims to
bring together most common fields related to wearables from some aspects, including
material science, electronics and electrical engineering, human factors and ergonomics,
user centered design, and computing.
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Table 1. Summary of all 22 selected parameters and the source of each parameter. All parameters
were selected from peer reviewed articles and relate to either measurement, usability or design.

Parameter Source

Measurement Principles
Sensitivity Dinges and Mallis [10]
Specificity Dinges and Mallis [10]
Validity Campbell and Fiske [17]
Reliability Dinges and Mallis [10]
Diagnosticity Boff et al. [18]
Generalizability Dinges and Mallis [10]

Usability Principles
Intrusiveness Izzetoglu et al. [8]
Weight/Size Kumari et al. [19]
Ease of use Dinges and Mallis [10]
Acceptance Dinges and Mallis [10]
Wireless communication/connectivity. Kumari et al. [19]
Individual Differences Khakurel et al. [20]
Wearability Gemperle [13]
Power Consumption Pantelopoulos and Bourbakis [21]

Design Parameters
Toughness (can the device withstand hard usage) Dinges and Mallis [10], Moti and Cain [22]
Water Tolerance Kumari et al. [19]
Interaction Method Khakurel et al. [20]
Onboard vs. secondary device processing Khakurel et al. [20]
Modularity Cerone et al. [23]
Type of Electrode Ramasamy and Balan [24]
Cleaning and Maintenance Islam et al. [25]
Sampling Rate Camm et al. [26]

2.2. Parameter Classification

Once the parameters were identified, they were subsequently classified based upon
a measurement, usability or design principle. The basis for this was how the parameters
related to the sensor. Whilst the type of electrode can influence measurement, this is a
design choice of the device, in contrast to validity. Users cannot pick and choose the types
of validity for their device, rather this is a property that exists inherently to measurement
science. In general, usability relates to parameters that do not concern measurement but are
neither specifically design choices, such as the degree of wearability, nor concern individual
differences that will impact the overall user experience of the device. Design refers to the
choices manufacturers make that can impact either usability or measurement, such as the
sampling rate or water tolerance. Sections 3.1–3.3 of the paper discuss the parameters of
measurement, usability and design and why they are important in device selection and
assessment in safety critical contexts.

3. Results

This section describes each parameter, and its importance to the assessment and
deployment of wearable sensors for psychophysiological monitoring in the field. Each pa-
rameter is listed under its classification, resulting in three sections: measurement, usability
and design.

3.1. Measurement Principles

When states such as fatigue, stress, and cognitive workload are measured, the hope
is that the device will both accurately measure what it attempts to measure, and that it
will be able to measure these states repeatedly. To assess the accuracy and consistency
of measurement, there are several scientific principles that need to be considered when
evaluating wearable devices.
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3.1.1. Sensitivity

At its core, sensitivity can be summed up with the question, “Does the device detect
the event we are trying to measure?” For example, can a device detect fatigue or no fatigue?
Another way to conceptualize this idea is to consider whether the device will miss a fatigue
event, and if this happens then the device can be said to lack sensitivity [27]. Further-
more, sensitivity has also been used to assess whether a device is sensitive to increases
or decreases in the phenomena the device is trying to measure. If a measure is sensitive
to mental workload, task demands would be expected to increase both the number of
items remembered, and the number of calculations required, or else add multiple time
pressures [28]. For example, ref. [29] found skin conductance and heart rate increased lin-
early with increases in driving difficulty, from low, medium, to high difficulties. Moreover,
ref. [30] found neuro-imaging sensors, such as ECG and fNIRS, to be superior to cardiac
and ocular sensors in detecting differences in workload across several wearable sensors.
Hence, devices need to demonstrate how to assess whether psychophysiological measures
are sensitive to increases in workload, with increases in task demands. Similar practices
can be used for stress and fatigue, with low, medium, and high stress or fatigue conditions.
Ref. [27] suggest that, in system evaluations, very fine granularity with respect to sensitivity
is very useful, as even small changes in interfaces can lead to disastrous outcomes.

3.1.2. Specificity

Specificity, whilst having some overlap with reliability, is concerned with the consis-
tency of correct measurement. Will a device accurately identify an individual as not fatigued
when they are indeed not fatigued? Hence, this relates to how often the device elicits a false
alarm within a proportion of operators or throughout an operator’s shift [7]. Specificity is
important as too many false alarms can reduce trust in the device and thereby cause de-
lays and disrupt working patterns (https://www.ukconstructionmedia.co.uk/case-study/
smartcap-validation-independent-assessment-from-universidad-de-chile/2, accessed on
14 October 2018). Having more liberal specificity levels can also have dire consequences.
An example of this can be seen from April 2016 when three fishermen drowned off the coast
of Scotland due to flooding in the interior of their trawler. Whilst the vessel had alarms to
alert the crew members to any flooding incident, excessive false alarms waking the crew
during sleep led them to deactivate the alarm (https://www.gov.uk/maib-reports/sinking-
of-vivier-creel-boat-louisa-with-loss-of-3-lives, accessed on 5 July 2024).

Specificity and sensitivity have a proportional relationship so, as one increases, the
other decreases and hence it is important to strike the correct balance [31]. Ideally, a device
should capture enough events stemming from the construct being measured, as well as
the level of the construct, whether it be workload, fatigue, or stress, in addition to being
sufficiently conservative regarding false alarms so that the operator’s work is not disrupted,
whilst preserving trust in the device.

3.1.3. Validity

Validity refers to the accurate measurement of phenomena, often referred to as con-
struct validity in the measurement literature and plays an important role in psychophysi-
ological measurements [32]. A device or measure is said to have good construct validity
if it is found to measure the actual phenomenon it claims to measure, such as fatigue,
rather than stress. Traditionally the assessment of construct validity would assess the level
of convergent and discriminant validity a measure or sensor has compared to similar or
related measures, such as comparing a wearable ECG to a traditional clinical ECG [17].

Convergent validity is the degree of correlation between measures of the same con-
struct. For example, if a workload questionnaire correlates highly with other prior well-
validated measures of workload, such as performance measures, self-reports, or psy-
chophysiological measures, it can be said to have good convergent validity. Discriminant
validity, also termed selectivity by [33], is the notion that a measure will only assess the
construct it claims to measure and no others. Ref. [33] quote, “The index must be sensitive

https://www.ukconstructionmedia.co.uk/case-study/smartcap-validation-independent-assessment-from-universidad-de-chile/2
https://www.ukconstructionmedia.co.uk/case-study/smartcap-validation-independent-assessment-from-universidad-de-chile/2
https://www.gov.uk/maib-reports/sinking-of-vivier-creel-boat-louisa-with-loss-of-3-lives
https://www.gov.uk/maib-reports/sinking-of-vivier-creel-boat-louisa-with-loss-of-3-lives
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only to differences in cognitive demands, not to changes in other variables such as physical
workload or emotional stress, not necessarily associated with mental workload” (p. 63).
For a measure to have discriminant validity, it should be relatively independent of other
constructs and not correlate too highly with measures of differing constructs. Whilst this is
relatively simple to carry out in self-report measures and scale validation, following the
guidelines outlined by [17] this is not so with psychophysiological measures.

Ref. [34] suggest that the assessment of wearable validity can take the form of compar-
ing the wearable to a current gold standard or referent device and outline three approaches.
Firstly, they note correlation approaches, such as leveraging correlations to assess agree-
ment between devices or signals. The second approach concerns statistics that describe
various error rates, such as mean absolute error (MAE) and mean squared error (MSE).
Finally, they describe using visual approaches such as Bland–Altman plots to visually
assess signal agreement and overlap. Ref. [34] further note that all validity approaches
have set limits as to what indicates validity, with scholars discordant as to what are the
best limits, e.g., should correlational approaches be >0.8 or 0.9? Additionally, correlation
approaches are criticized for suggesting that high correlations do not necessarily indicate
agreement, and visual approaches are open to subjectivity in interpretation to some degree.
It may be better to apply an approach at all levels as outlined by [35].

Ref. [35] suggest that validity should be assessed on signal, parameter and event levels.
The signal level is the most like-for-like comparison and essentially assesses whether two
or more devices generate the same volume of raw data. Parameter level refers to whether
devices produce similar parameters, such as HR and SCL. Finally, event level refers to both
devices registering the same sensitivity to an event, such as a stimulus or similar change,
over time in response to fatigue or stress (See Section 3.1.1 Sensitivity). Ref. [35] aim to
develop a standardized test procedure and, whilst this cannot be described in detail in this
paper, it offers a useful method to assess the validity of devices, with signal, parameter
and event all critical to the real time assessment of psychophysiology in safety critical
environments. The authors would argue that event is the most important factor in this
method; however, if one device detects fatigue better than another, independent of signal
overall or parameter estimation, then surely that is the most appropriate.

3.1.4. Reliability

Reliability is often paired with validity and refers to whether a device or measure is
consistent in its measurement [10]. Whilst reliability has been a central theme of research
for many years, it is especially important regarding human factors, as measures which
are unreliable can have dangerous consequences. For example, an unreliable measure of
fatigue or workload could lead operators to work in sub-optimal conditions which then
compromises their attention, communication and decision making. One common way to
assess the reliability of a device is test–retest reliability, in which multiple trials of a device
are conducted to assess the level of correlation between trials.

Ref. [36] notes that, whilst test–retest correlation is a good measure of reliability, care
must be paid when comparing a small sub-group of a larger sample. Ref. [36] states
that the test–retest correlation is sensitive to the heterogeneity of the data gathered. For
example, when looking at a small sub-set, the data may appear to have no correlation at all;
however, as the sample size increases, so too does the linearity, increasing the strength of the
correlation between the trials. Ref. [35] suggests using the standard error of measurement or
typical error, which is the within subject standard deviation, a statistic which captures how
much variation one subject displays between trials, e.g., the standard deviation between
scores from a fatigue monitoring device across two working weeks. Ref. [35] states that
the typical error is the most important reliability measure for researchers as it “affects the
precision of estimates of change in the variable of experimental studies” (p. 2). There are
also other measures of reliability, such as the limit of agreement, which is represented by a
range in which 95% of the individuals scores will lie. The problem with limits of agreement,
however, is that the range is dependent on the degrees of freedom and sample size. Hence,
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a study using eight participants only has seven degrees of freedom, which leads to limits of
agreement at 79%, rather than 95%. This, however, is not an issue of typical error, as typical
error calculations are independent of the sample size.

Other issues of reliability may stem from the nature of the devices or the environment
itself. First, many wearable devices measure electrical signals stemming from the brain
or muscles. Traditionally lab-based devices have been notoriously affected by electrical
artifacts, which mask the pattern of electrical activity being investigated. This may be
compounded by the nature of work using wearable devices, e.g., the life-band devices
developed by Smartcap are susceptible to movement artifacts by jaw movements from
chewing gum. Similarly [37] note similarities with electro-ocular grams, which are suscep-
tible to extraneous head and eye movement artifacts. These issues can be overcome ideally
through design, such as in-ear EEG being far more resistant to movement artifacts than
scalp-based measures, or by the removal of electro-signals all together. Additionally, re-
searchers can rely on classification algorithms to extract, clean, and classify data adequately.
Furthermore, differing or extreme environments may affect the reliability of measurement.
For example, the percentage of eye closure (PERCLOS) measures, whilst providing some
degree of fatigue measurement, are not always reliable due to data missing at several points
due to either the driver’s eyes moving out of the required field of view to perform checks
on accelerometer or mirrors, or ambient light conditions becoming too bright or too low for
the camera to accurately assess the percentage of eye closure [38].

These issues can be combated through taking a broader approach in the design phase.
For example, ref. [39] developed a wearable eye-based sensor to detect fatigue based on
blink information rather than percentage eye closure, which was reliable both in- and
outdoors, as well under differing light conditions throughout the day. Ref. [39] further note
that the device was designed and evaluated in terms of device shifting round the eyes and
user mobility, as these are often not considered in fatigue detection research. Thus, devel-
opers and researchers should consider whether a device will also be reliable in ambulatory
settings, which may cause movements in the device. Whilst wearable eye-based devices
have been used extensively in transport research [39], there may be other contexts, such
as search and rescue, enclosed firefighting, mining, and construction and maintenance,
in which they can provide in-depth and granular detail. In these scenarios, whether an
eye-based device is in a perfect condition for measurement will not be (correctly) at the
forefront of the operator’s mind. Thus, future devices, if not being developed specifically
for stationary contexts, should consider ways to preserve reliability in ambulatory con-
texts. There is, however, yet to be any research assessing eye-based wearables in more
extreme occupations.

In conclusion, it is paramount that reliability is assessed accurately, as without a
high level of consistent measurement, wearable devices are unlikely to provide useful
information, and instead cause more stress and loss of time in ascertaining the accuracy of
data collected. Furthermore, developers and researchers should consider how the reliability
of devices can be preserved across a multitude of different contexts.

3.1.5. Diagnosticity

According to [18] and subsequently [33] and [8] diagnosticity is a unique metric
which applies to mental workload assessment. Diagnosticity refers to a device’s ability
to detect changes in workload and the reasons for the changes. Ref. [28] suggest that
diagnosticity refers to whether a device can differentiate between workload sub-sets, such
as the degree of perceptual spatial and psychomotor demands impacting psychological
resources. They further argue that diagnosticity is of special importance due to the need
to combat performance decrements. If a device can offer insights into what part of the
task, environment or organizational contexts is causing sub-optimal performance, then
effective interventions can be put in place. This is certainly a necessary requirement
for measures of mental workload and both developers and researchers should strive to
maximize diagnosticity as much as possible. Whilst diagnosticity does not appear to



Sensors 2024, 24, 4589 9 of 30

have been discussed in relation to other cognitive states or phenomena, it is possible that
the principle could be useful in the design and development of future sensors, though
further research is needed to test this assumption. For example, there is no doubt that a
measure of fatigue based on drowsiness would suggest that a lack of sleep is the cause of
fatigue. However, this device fails to highlight the aspects of an operator’s lifestyle and
job that cause drowsiness, whereas a measure of mental workload can highlight the types
of workload being strained in the operator, e.g., time constraints, ambiguity, perceptual
overload, and maximum capacity of working memory.

3.1.6. Generalizability

Ref. [10] briefly mention the importance of generalizability, i.e., the notion that a device
will measure the same event in everyone. Generalizability can be framed conceptually as
well as operationally. Conceptual generalizability is whether the device will measure the
construct of fatigue, e.g., hypo-vigilance (lack of attention), identically in all individuals.
Operational generalizability, on the other hand, is whether a device can capture fatigue
through criteria, such as eye blinks, identically in all individuals. Whilst this is the ideal,
ref. [40] notes that it is often difficult to achieve ideal levels of generalizability due to
individual differences. For example, PPG performance drops as skin darkens [41] and is
impacted by damaged or sensitive skin, such as in those with burns, scars, eczema and the
elderly [42]. Here, the device’s data could potentially be compromised because the designer
has not considered all use cases or conducted rigorous user testing on various populations
who may use the device. Individuals working in safety critical environments are more at
risk of damaging the skin, thus PPG devices may need to be highly accurate in order to
work across all contexts. Additionally, ref. [43] note that designers should also consider
the users’ skin characteristics, such as scars, eczema, rashes and irritation, in relation to
comfort and wearability. Therefore, when selecting devices, it is important to be consider
whether the device will apply to the full spectrum of the user population.

3.2. Usability

While it is of paramount importance that devices are evaluated in accordance with the
scientific principles previously mentioned, an extremely strong device will lack usability if
it cannot be transferred from a test environment to the field. This section of the framework
will therefore discuss the usability features devices should adhere to.

3.2.1. Intrusiveness

Any wearable device should not intrude on the nature of the task [8], i.e., it should
not increase task demands or be a cause of distraction for the operator. Devices developed
to measure human cognition should always be designed to passively capture the current
state of the operator, with little if any input from the operator, as this input increases the
demands of the job. Furthermore, wearable sensors should be as transparent as possible,
e.g., integrated into hard hats, as well as designed in accordance with human physiology,
so that devices do not restrict movement [22]. Ref. [44] note that, even in laboratory studies,
some wearable sensors can be intrusive, causing discomfort and distraction due to poor
user experience. This is likely to be compounded in working environments, such as in
oil and gas, construction, transport maintenance, forestry and fire fighting, all sectors
which deviate considerably from laboratory or test conditions. For example, the user
experience of wearing a device should be optimized for possible extreme environments.
Moreover, ref. [45] identify several possible sources of intrusiveness in aviation, including
poor cable management and design, recalibration issues of signals, and discomfort caused
by head mounted eye trackers compared to stationary eye trackers. Ref. [46] suggest that
current EEG set ups based on the 10–20 electrode placement are unsuitable for daily fatigue
measurement use due to the annoyance from electrode placement, and sensors such as
wearable ECG offer better solutions due to requiring only a few electrodes on the chest.
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Intrusiveness is a potential risk when leveraging sensors for operational contexts, thus they
need to be closely matched to operator requirements and working conditions.

3.2.2. Size and Weight

When developing and evaluating wearables, researchers and developers should at-
tempt to make the devices as small as possible. Wearable devices need to be compact in
size to fit well onto the human body [19]. Furthermore, the size and design of the device
in terms of ergonomics should mean human movement is unrestricted [22]. Whilst valid
and reliable, some roofers in [47] noted that a wearable heart rate monitor on the chest was
uncomfortable and restricted appropriate flexion and extension of the trunk. Whilst there is
no formal guidance on what is too heavy for a wearable device, ref. [48] found participants
did not notice a wearable device attached to a belt of approximately 500 g for a total of
30 twenty metre laps, even though the device could be felt in a localized position. Very
recent devices, such as the Smarting EEG device, only weigh around 60 g. Furthermore [49]
developed a pair of glasses for fatigue detection that only weighed 30 g. Thus, if a localized
weight of 500 g is unnoticed over ambulant conditions, it is unlikely that wearables under
100 g will cause an intrusion or distraction. Wearable devices should not impact human
mobility, as this may have negative consequences in operators who work in environments
such as search and rescue, mining, and firefighting.

3.2.3. Ease of Use

For wearable devices to be useful for both researchers and users, they need to be easy
and simple to use. Both [8] and [10] note the importance of ease of use, with the latter
suggesting a device should be simple enough for everyone to use. Ref. [8] note that devices
should have a high degree of implementation, i.e., they should be easily integrated into a
current system, e.g., fatigue management plan, and organizations wishing to use wearable
devices should also consider any training needed to use the devices. Ease of use does
not apply simply to the devices themselves, but also the outputs they produce. Devices
should lead to simple and understandable outputs for everyone. For example, many fatigue
management devices, such as the Optalert Eagle (wearable infrared sensors embedded in a
pair of glasses), and the Life-band (wearable EEG device) by SmartCap, produce simple
scales which allow an individual to understand their current level of fatigue. Augmented
Reality (AR) devices which require interaction, for example the manipulation of a 3d OR
4d model, should use natural user interfaces [50], i.e., systems which use human behaviour
or gestures to manipulate information and systems. A common example of this is the zoom
function found on smart phones. This function works using two fingers, with increasing
proximity of two fingers zooming the lens, while decreasing the proximity between the
fingers zooms out. This is a very simple gesture and can be achieved with a single hand,
allowing ease of use.

Additionally, devices should be easily integrated into the current system, with set
up and calibration times kept to a minimum. As an example, the Optalert Eagle time
requires no set up or calibration, and an operator can wear the Eagle device and get instant
feedback on their level of fatigue. Other devices, such as the Tobii pro glasses 2, require
calibration, with more detailed information in the user guide section. Ideally, devices
should be “plug and play” in the app and device and be installed and ready to use without
further training or calibration. If calibration is required, it should be quick, generally
reliable, and simple. A device which requires greater than 15 min of calibration, multiple
attempts and several steps to achieve calibration is unlikely to be adopted by operators.
For example, for EEG calibration, ref. [51] recommend a calibration time of 30 s to occur
before and after recordings. This is a relatively short duration, which is not unreasonable at
the start of every day.

Developers and researchers should create and evaluate devices which are easy to use
in terms of interactions, outputs, and training and set up times. Devices should be simple
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enough to use so that individuals without any great level of technical knowledge can utilize
them effectively.

3.2.4. Acceptance

A key variable as to whether an organization wishes to adopt wearable devices is that
of acceptance. Acceptance refers to the degree operators will accept the device as a measure
of the chosen metric, e.g., workload, stress, or fatigue [8]. Acceptance may also simply
be viewed as whether the operators will use the technology [10]. A large barrier to the
acceptance of wearable technology relates to concerns about privacy. For example, ref. [52]
found that truckers are highly resistant to any sort of camera in the cabin, as trucking
is typically a private occupation, and truckers enjoy the privacy of their cabins. Similar
concerns were found amongst construction workers, who were resistant to having their
location monitored due to fears of idle times being discovered [53]. Furthermore ref. [54]
found that health professionals across a multitude of occupational settings, including
energy, oil and gas, academia, research, manufacturing, and food processing, cited their
greatest concern about employees’ adoption of wearable devices for health monitoring
was privacy. They did, however, state that they saw the potential for wearable devices
to improve health and safety in the workplace. When discussing the use of devices with
operators, it is crucial that confidentiality is preserved and outlined to be of the utmost
importance. Operators may be resistant due to fears of performance monitoring and the
use of wearable devices to assess salary expectations. Wearable devices, especially those
which measure physiological signals in the body, should never be used for performance
management in the sense of deciding what salary an operator should receive. Firstly,
whilst many devices provide decent evidence supporting their validity and reliability, the
information gained says nothing as to whether the individual is “good” or “bad”. Being
stressed or fatigued at work does not mean someone is bad or good at their job, and all
that is being confirmed is that a psychophysiological state is present within the operator,
which can affect their behaviour, resulting in negative outcomes such as an increased risk
of accidents. Wearable devices used in operational contexts should be used to improve
operator health and safety through either monitoring vitals or increasing awareness and
communication. They are unsuitable for any other context.

Furthermore, some operators may question the use of physiological monitoring to
assess psychological states as a valid method of fatigue monitoring. In such situations, it
is important to stress the benefits regarding health and safety such devices can have. It is
unlikely all operators are interested in the validity and reliability of devices to the same
extent as researchers. Hence, it is important to focus on how devices will improve their
health and safety and, by such means, overall job satisfaction and performance [9].

3.2.5. Wireless Communication/Connectivity

Wireless connectivity is important for wearable devices in order to transmit data or out-
puts accordingly. Ref. [19] state that wireless connectivity allows continuous monitoring of
human behaviour as well as removing any wires that may obstruct movement or make wearing
the device uncomfortable during ambulation Connectivity through Bluetooth or Wi-Fi offers
easy transmission of data to output devices. The advantage of Bluetooth and Wi-Fi as choice
of connectivity male them a widely used solution in many cases, especially in the western
hemisphere. For example, 84% of adults aged 16+ in the UK owned a smartphone, as of 2022
(Office of National Statistics, https://www.ons.gov.uk/aboutus/transparencyandgovernance/
freedomofinformationfoi/percentageofhomesandindividualswithtechnologicalequipmen, ac-
cessed on 5 July 2024). Wi-Fi and Bluetooth have become standard on any smartphone,
thus choosing these wireless protocols to transmit data means that outputs are accessible to
a large amount of people. Ref. [55] found Bluetooth connectivity to drew less power than
Wi-Fi connectivity, albeit the difference only being approximately 3%. However, it is likely
that Bluetooth connectivity will draw even less power with the introduction of low energy

https://www.ons.gov.uk/aboutus/transparencyandgovernance/freedomofinformationfoi/percentageofhomesandindividualswithtechnologicalequipmen
https://www.ons.gov.uk/aboutus/transparencyandgovernance/freedomofinformationfoi/percentageofhomesandindividualswithtechnologicalequipmen
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Bluetooth or Bluetooth 4.0 in 2010, with this requiring only half the power compared to
previous devices prior to 2010.

One of the issues with wearable devices stated by [19] and [21] is the issue of packet
loss and poor data transmission due to ambulatory movement when utilizing Wi-Fi and
Bluetooth connectivity. Movements, such as arm movements, as well as position, can affect
latency of data signals, causing them to become unreliable. For example, ref. [56] found that
a wearable EEG device stopped transmitting data when standing up or sitting down, due
to traffic overload, as well as signals fading during movement. The authors suggest using
a context aware medium access (CA–MAC) which can handle reflection, refraction, and
absorption of data by the human body during ambulatory contexts. CA–MAC improves
latency through dynamic scheduled-based and polling-based slot allocation. For a more
in-depth discussion of the architecture and challenges of wireless connectivity, please
see [56].

When developers and researchers are evaluating and developing wearable devices,
they should consider having data outputs through Bluetooth or Wi-Fi, given how common
these tools are. Furthermore, they should consider the reliability of data transmission
between the device and the output source, whether it be a smartphone, tablet, or monitor.
A device which stops producing reliable transmission during ambulatory conditions is
very limited in its applications, hence solutions such as CA–MAC should be considered in
the design phase.

3.2.6. Individual Differences

In their systematic review of usability issues for wearable sensors, ref. [20] highlight
the difficulty of creating universally good user experiences for all users. Often, designers
and developers must make considerations about the wearable interface itself, e.g., whether
it has a screen, the size and color of the font used, the button locations and size. Such
choices may result in usability issues due to the user’s background, such as age and the
presence of any disabilities [20]. Whilst universal guidelines and user-centered design can
be used to offset, for example, usability issues resulting from poor readability, ref. [57]
state that it is often impossible to create a device that is accessible to every population [20]
suggest, at all stages of the product’s life cycle, from inception to commercial release, that
usability testing should take place across specific demographics, age, gender and disability,
to track usability issues across the device’s development lifecycle. Additionally, designers
and developers could consider a modular approach in the wearable device to customize
and try and broaden usability for specific subgroups. For example, in the addition to an
LED based interface on color, duration and number of flashes to indicate when the device
is charging or recording, it is possible to embed either auditory notifications within the
device or a partner app to assist visually impaired users.

3.2.7. Wearability

Ref. [13] coined the term wearability as the relationship between the device and the
human form. The authors highlight the importance of wearability when designing digital
technologies and smart garments and recommend several design principles for developing
good wearability in products, including body placement, body fit, ease of movement, size,
and comfort aspects, such as materials flex and stretch and thermal comfort, as well as
aesthetics and long-term use.

Whilst [13] offer excellent guidance that sets the case for wearability, it is possible that
psychological factors also impact wearability. Ref. [13] suggest that devices should be worn
on the chest as opposed to the wrist, participants can prefer wearing devices on the wrist to
the chest, due to improved comfort, social acceptability, and wearability [58]. The comfort
scores and wearability between sensors were likely conflated to a certain extent due to
the types of chest mounted device. Two out of three of the chest mounted ECG devices
used disposable electrodes, whereas all the wrist-based devices used reusable electrodes.
Disposable electrodes are known to be painful to remove and to cause skin irritation over
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a period of time [59] thus it is to be expected that, due to the device selection, the chest
mounted ECG would score poorly in terms of comfort.

Interestingly, the third ECG device, the Polar H10 chest band, commonly used in
research and developed specifically to be worn during exercise, also scored poorly in
comfort ratings due to the band being tight round the chest, despite the Polar H10 using
flexible electrodes. This suggests that familiarity and user end-goals affect perceptions of
wearability and comfort. Ref. [60] suggests that social acceptability plays a large part in
how wearable people score devices. For example, wearing devices that are unflattering,
require unnatural, large and explicit gestures, as well as placing the sensor on non-neutral
locations (areas of the body associated with sex, pleasure and elimination of bodily waste)
all reduce the acceptability of the sensor. Ref. [60] identifies both the upper chest and wrists
to be good placements for wearable sensors, yet ref. [58] found people even the wearing
of chest mounted devices under clothing to be less socially acceptable than wrist worn
devices [61,62]. Furthermore, ref. [63] define wearability as “the degree to which sensory
stimuli generated by a worn object intrude into the wearer’s conscious attention, and we
suggest that this intrusion has cognitive consequences for the wearer” p. 302. [63] go
beyond [13] and directly link wearability to cognition and intrusiveness (discussed earlier),
in that wearable sensors should not intrude on a user to create negative cognition, such as
distraction, which is of even more importance when considering the application of sensors
in a safety critical environment. Ref. [63] highlight that wearability is comprised of comfort,
body schema and peri-personal space.

According to [63] comfort is comprised of five components: pressure, texture, thermal
balance, moisture transport, and freedom of movement. A device that constricts due to
excess pressure is unlikely to be adopted by users. Texture is a phenomenon that is felt
dynamically. Unless the textile or material is very rough, the texture may resemble a
stroke, scratch or flutter, which may become painful over time due to rubbing, and can be
exacerbated through poor fit. Thermal balance relates to the degree to which a device’s
pressure and texture is experienced during hot and cold temperatures, as well as body heat.
This is closely linked with moisture transportation, the ability for the device or sensor to
modulate the feeling of wetness caused by sweat or external moisture. When a device is
wet, the texture and pressure will often change, thus increasing discomfort.

Freedom of movement is the degree to which a device or sensor prevents or impedes
natural body movement and locomotion. In general, most wearable sensors are designed
with this in mind, though excessive plastic or rigid materials may impede the wearer [63].
Hence researchers and designers should place some import on an assessment or judgement
of wearability when building and selecting devices as, without wearability, it is likely that
users will not wear devices for a sufficient duration, or at all, to obtain any meaningful
benefit, no matter how precise the sensor is.

3.2.8. Power Consumption

The most common power source for wearable devices is a battery. These will either be:

(i) a non-removal battery, as seen in devices such as the Life band EEG device or Hex-
oskin, which is charged by the universal serial bus or micro-universal series bus, or

(ii) AA or AAA batteries [64,65]).

Depending on the device, battery life can vary considerably, e.g., the Smarting EEG can
run up to five hours prior to charging, whereas the Hexoskin heart rate monitor can run up
to 30 h. Designers and researchers should look to maximize battery life as much as possible.
For example, whilst the Smarting device does offer considerable time for recording data,
five hours may be insufficient to capture the intended event, such as with fatigue during a
12-h shift. For example, designers and researchers should consider factors like ultralow
power blue tooth as a communication device, as communication systems consume the
most power [19]. Building micro-processing units using Advanced Reduced Instruction Set
Computing Machine Architecture (ARM) is a power efficient solution, as ARM units use
fewer transistors, registers, and circuits compared to more complex computer architecture
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used by companies like Intel and ATI [66,67]. Furthermore, micro-processing units using
ARM architecture are developed with short and regulated length code, which further
reduces power consumption. The computing carried out by these units is simple, compared
to the code present within an intel processor, which is extremely complex. Thus, [66,67] both
recommend ARM units in wearable devices to reduce power consumption and promote
battery life.

Developers should always strive for the longest battery life possible, as not only does
this improve the usability of the device but makes it a considerably more attractive solution
to buyers [19]. Using low energy engineering where possible in the device should help
achieve the longest use times possible. Another important consideration for developers
wishing to sell commercial devices is the type of battery to use. Often, wearable devices
favor a lithium-ion battery due to their small form and rechargeable nature, compared to
traditional alkaline batteries. In the future, developers and researchers may decide to use
motion-driven energy harvesters in place of batteries. These harvesters are micro-generators
which harvest energy from ambient temperature, human locomotion, and vibration [68,69]
Additionally, motion driven energy harvesters may also use piezoelectricity generation, in
which the force of mechanical stress, such as a ball bearing hitting plates due to movement,
stress or vibration, causes voltage to be created and harvested from the impact [70]. Thus,
motion-driven energy harvesters may prove a smart choice, as they increase the longevity
of the device and measurement phase, but also requires no charging or swapping batteries,
which would prove an attractive feature for many buyers. This would also mean no loss of
data due to practically unlimited continuous measurement.

3.3. Bridging the Gap—How Design Can Influence Measurement and Usability

Understanding how measurement and usability may impact the sensor’s performance
and user experience is important, but researchers and designers should also be aware
of how design can help improve measurement and usability, not just for the operators
themselves, but also for optimization of devices to be used outside of laboratory contexts,
such as in the field. When purchasing or developing a wearable sensor for physiological
measurement, there are several design principles to consider relating to interaction and user
experience, as well as hardware considerations, to improve usability and measurement [20].

3.3.1. Toughness

Wearable devices should be tough enough to withstand the rigor of everyday life.
When one uses a wearable device to assess the wellbeing of operators, often these devices
will be used over the course of shifts which can last anywhere between 6 and 12 h. The
Office of Rail Regulation notes that it iss critical to manage operators in safety critical
environments effectively, and reliable monitoring strategies are part of that. If a wearable
device cannot last more than a few months without degrading, it is likely that they will
not be perceived as useful due to the need to constantly buy new equipment. Ref. [10]
state that wearable devices should be able to cope with heavy usage. Whilst it may be
unrealistic to demand a device that lasts a decade, a wearable sensor which lasts several
years before degrading would certainly be reasonable. Ref. [22] suggest that developers
and researchers should consider the context the device will be utilized in to maximize their
durability regarding abrasion, impact, flexion, and humidity. In addition to the points
stated by Motti and Caine, devices used in environments where dust and sand are highly
present should be reinforced so that devices are not contaminated. Dust is a particular
worry for electronic devices, as dust present within electronic devices promotes absorption
of water molecules from the atmosphere, which leads to failure of electronic devices [71]. In
a similar manner, high levels of salt present in the air or water may also corrode electrodes
and metal components if the device is not appropriately sealed. This suggests that sensors
should be designed not just from a user centered approach, but also with environmental
contexts in mind. For example, the same sensor used in a construction environment is likely
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to have more demands on toughness than in a control room, regarding how the device is
sealed in relation to dust or sand.

Furthermore, ref. [72] suggest that textile components, including textile electrodes,
should be resistant to abrasion and washing. During use, textile components stretch, shear,
flex and rotate, and then suffer from soaking, rinsing, drying and spinning, as well exposure
to cleaning detergents. All of these processes can weaken textiles and have an adverse effect
on electrode impedance [72]. Thus, researchers, but more so practitioners and designers,
should consider both material type and electrode knit when trying to optimize toughness
in textile components. Ref. [73] comparing several differing textiles, stitched silver coated
yarn electrodes of various stitch patterns and seam lengths using a W6 model N1800 sewing
machine. Ref. [73] found that a stitch pattern of backstitch plus elastic blind stitch with a
seam distance of 3.0 (Machine specific units) showed excellent preservation of impedance
after 30 wash cycles and 1000 cycles on the Martindale abrasion test, compared to all other
stitch variants. Furthermore, the electrode, which was specifically designed to be low-cost
and easy to create, performed closely to that of an industrial electrode used as a baseline.
Ref. [25] echo Zaman’s sentiments, in that textile components should be machine washable,
resistant to stretching and abrasion and have sufficient durability to be worn on the body
without becoming damaged.

3.3.2. Water Tolerance

Devices need to have some degree of water tolerance, to either sweat or environmental
moisture from humidity or rain. Ref. [19] state that wearable devices should withstand
variation in environmental conditions in relation to temperature, moisture and water
droplets. This is important, as devices that require the control of variables like temperature
and moister to preserve accurate measurement are not suitable for all operational settings,
and may be restricted to enclosed settings, such as air traffic control. Ref. [74] note that
humidity and ambient temperature may affect accuracy of sensors, with some thought
needed towards the types of environment sensors will be used in. Ref. [25] suggest that
any textile electronics should be coated or have an interface layer that acts as a barrier
to prevent any water penetrating the electronics if they are not already waterproofed. If
a wearable device is only accurate or comfortable in moderate climates, such as the UK,
as opposed to warmer humid climates, such as central and northern south America and
southeast Asia, as well as being unsuitable for water-based work environments, then the
measurement potential and usability of the sensor becomes severely limited.

3.3.3. Interaction Methods and Feedback

Wearable sensors can vary both in how users interact with them (buttons vs. smart-
phones) as well as the types of feedback given, e.g., auditory, force, visual, etc. Ref. [20]
summarise that interaction methods should be closely matched to the user and, if needed,
even customised to users’ needs, e.g., setting the threshold for touch detection, ensuring
gestures are not unnatural, such as swiping around the head/face, and ensuring voice
interfaces work well for the intended context, such as not being influenced by accent or
external noise.

Users may also prefer using a smartphone interface due to increased iconography and
text size, familiarity with using their own smartphone’s touch interface, with improved
visualisations and clarity, over an interface located solely on the wearable sensor [20]. This
offers both benefits and challenges. For users who may have impaired vision, a smartphone
interface may be preferred due to the ease with which smartphone interfaces can be
customised regarding font size, font type, brightness, etc., and, if a user is already familiar
with a smartphone, then using the smartphone to interact with the device may create a
more positive and familiar experience than purely using the device itself. Furthermore,
smartphones can convey more information to the user, for example showing the word
‘recording’ versus a certain colour or flashing LED may offer more clarity and assurance to
the user that the device is recording. Here, the user does not need to learn the rules of the
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device’s interface, rather relying on what they already know, i.e., that the word ‘recording’
indicates data is being recorded, reducing the cognitive load and ambiguity for the user.
However, requiring a smartphone interface may limit users who do not have smartphones,
may not be allowed smartphones for any reason and, if it requires an actual smartphone, do
not always have their smartphone present for interaction. This then leads to the additional
need to ensure that the smartphone lasts for the recording session as, if the only way to
interact with the device is through a smartphone, one would then become conscious of the
smartphone battery being drained if it must continuously interface with the device.

The interaction method is an important consideration for how easily one’s goals when
using the device can be matched. For example, both the Empatica E4 and Equivital EQ-
02 require buttons on the devices themselves to be pressed to mark timestamps. This
feature works well in contexts such as exercise, but for the monitoring of safety critical
environments, and especially experimental work, it would be better if an experimenter
could timestamp the data without having to place the burden on the participant. One
device that has removed this burden, but maintains device interaction with the wearer, is
the Astroskin device. Rather than press a small rubber button, the wearer simple strikes
the Astroskin processing twice, a movement akin to patting one’s own chest; the device
then vibrates to indicate to the wearer that the timestamp has been marked. Here, the
Astroskin leverages haptics to make the interface simple and easy to use. There is no need
to look at the device and focus attention away from the task. The feedback is a vibration
rather than some visual indicator, which also preserves attention, and works in the same
way regardless of light levels. Certain LED colours, such as orange and yellow, may be
hard to see in certain bright lights, and using a smartphone intrudes on the task at hand
for timestamping purposes, which results in a final benefit of improving safety through
reducing the physical and visual burden on users in trying to timestamp data.

3.3.4. Onboard Processing vs. Secondary Device Processing

Ref. [20] state that wearable sensors should try and limit their reliance on using
smartphones and apps to stream and collect data. They state that secondary devices
create increased stress and workload when interacting with wearables, resulting in a more
negative user experience to that of devices that do not require additional devices to save,
stream or see the data. For most consumers, this is the ideal and, in normal everyday
settings, having a singular device is likely to be the preferred choice compared to having a
secondary device. However, there is an argument to suggest that in some contexts, such
as online and real time data processing and analysis, allowing the data to be exported or
streamed to a secondary device in real time is advantageous. Running models to identify
psychophysiological states is often computationally intensive, but these models can run
on current smartphones. For example, ref. [75] developed a fatigue detection system for
drivers which combined a wearable EEG and a smartphone running classification models.
Refs. [76,77] state that leverage machine learning models in real time is a computationally
demanding process. Whilst the gathering and storage of initial datasets could be saved on
the primary device, it is likely that sensors cannot be as discrete and meet requirements
regarding comfort whilst possessing enough processing units to run the model in enough
time to meet the users’ goals, either from a CPU, GPU, Field Processing Gate Arrays or
Application Specific Processing Units [77]. By shifting the burden of cleaning, analyzing
and outputting data from desired models to mobile devices, the sensing unit itself can
be optimized regarding hardware, battery life, comfort and fit, in that by removing some
functionality from the sensor itself, its potential as a sensor can be maximized.

Furthermore, many researchers like to visualize the data before it is collected to assess
whether the signals they capture are as noiseless as possible. Many sensors do not have
screens, thus using a secondary device to stream and visualize the data can be useful to
check data quality before collection occurs. The Astroskin is a good example of this. The
Astroskin device carries out all the data recording and processing, whilst one can use a
smartphone app to view the data, akin to a window.
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Using an additional secondary device to store and capture data can present risks. There
may be software issues as well as issues with connectivity and latency [20]. Furthermore,
if the secondary device runs out of battery or crashes, then the model itself will not run,
which may result in safety issues if the user is relying on the system beyond experimental
contexts. This could be avoided depending on the type of secondary processing device. If
the device is a laptop or computer embedded into the environment and plugged into a
power source, it is likely that battery issues will not be a problem. If the secondary device is
a smartphone, then users may be cautious about just how long the two devices can be used
together without the battery running out, as the smartphone would require to constantly
receive, analyze and output data, which is likely to be a large drain on the battery. An
alternative is to compress the models to run on very computationally weak devices, like
Arduinos and the Raspberry Pi [78].

If the wearable sensor has the bandwidth in the design to accommodate a processing
unit onboard at a reasonable cost [79] without compromising how the sensor fits on the
body, data quality and long term comfort [20,43], then this is what designers or developers
should strive for; however, if additional processing is needed or would provide a more cost-
effective solution, then designers and developers should consider leveraging a secondary
device to handle the burden of the processing needs.

3.3.5. Modularity

Modularity, i.e., to be able to change, remove or replace parts of the device or sensor,
should be a consideration for both designers and researchers. Ref. [23] suggest sensors
that can be placed on multiple body locations, e.g., in their case, EMG devices should be
modular in that different electrode types can be optimised to body locations. A similar
application could also be applied to, e.g., a PPG device that can be worn on the wrist, or, if
that is not possible, worn on the forehead.

A further example comes from Plux Biosignals (https://www.pluxbiosignals.com/,
accessed on 23 May 2024), which offers several different sensor kits, ranging from proto-
typing and experimentation to higher grade research kits. The Bitalino range is relatively
cheap, and many different sensors can be connected to a singular processing unit, such
as ECG, PPG, EDA, EMG and, EEG. This offers flexibility in what signals researchers can
collect, and they may want to collect data using some or all of the sensors, depending
on the research question. This creates a cost-effective solution in which researchers only
need one central processing unit to actually sample and collect the data, and purchase an
array of sensors, rather than purchasing several different devices. This also means that the
device is simpler to repair, rather than having to send back an entire device, and if one
can diagnose the offending piece of the modular sensor, the broken or problematic piece
can simply be replaced. In a similar vein, any future new sensors can be simply integrated
into the processing board the researcher already owns, rather than having to purchase an
entirely new device if they wish to collect new signals of interest [80].

Furthermore, designers of devices should consider allowing for some flexibility in
device placement and where it interfaces on the body. For example, one could have a
singular processing unit, which slips into a smart shirt that is worn to measure ECG, and
the processing unit can then be placed on the leg through a strap, which measures EMG of
the upper leg muscles, and finally can be integrated into an EEG cap to be the processing
unit for an EEG system.

By affording some modularity across devices, different types of research paradigms
can be assessed, as well as the usability of the device improved. Consider a final example:
individuals may differ on where heart rate data is collected from, the two most common
locations being the wrist as a PPG device or a chest mounted ECG. Imagine a singular
device that can be ongoingly augmented to collect data that is of equal or very similar
quality, but placed on an area of the body dependent on user preference or need.

Ref. [20] also note that, by allowing modularity in device aesthetics, users can change
the look and feel to meet their needs. Devices like Fitbit currently offer this, where users

https://www.pluxbiosignals.com/
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can change case colors and wrist strap designs. Whilst this would be desirable, it is possible
that operators in safety critical environments may not place as much stock on how a
device looks compared to consumers, who want devices to fit seamlessly with their own
outfits and aesthetic. Whilst there is very little research exploring modularity in sensors,
ref. [80] suggest that having modularity in wearable sensors for medical assessments
improves versatility and assists with maintenance and assembly. This sentiment also
applies towards more extreme environments, like offshore wind. Whilst one would not
expect operators to carry around spare sensor parts, having a stock of additional electrodes
or a PPG/ECG/EDA device could be easily interchanged when necessary or when needed
depending on environmental demands.

Modularity is not an easy design consideration to integrate, as most sensors require
complex holistic systems to achieve reliability, a good level of signal cleanliness and us-
ability. However, both designers and researchers should, where possible, try and integrate
some level of modularity, when this offers value both to themselves and their users.

3.3.6. Type of Electrode

Beyond light sensors, like PPG, most current commercial devices rely on electrodes as
the measurement medium. Ref. [24] distinguish between the three main electrode types,
traditional wet gel electrodes, dry electrodes and textile electrodes. However, each has
their own advantages and drawbacks, thus researchers and designers may wish to spend
some time investigating which is best for their purposes regarding measurement quality
and overall usability for operators across various environments.

Traditionally, electrophysiological devices, like ECG, EDA and EEG, rely on wet gel
electrodes to collect data. These electrodes work by placing conductive gel between the
skin and the electrode; however, this process can be messy and is not practical for everyday
use in consumer or occupational contexts. Furthermore, the electrodes are typically made
up of silver/silver chloride (Ag/AgCl), which, whilst offering a stable signal and low skin
to electrode impedance, can often be uncomfortable and after several hours can irritate
skin (An et al. 2019 [59]). Thus, there is a movement towards researching textile and dry
electrodes. These are more suitable for wearable sensors as they offer long term comfort, do
not rely on conductive gel, tend not to irritate the skin and do not require preparation. The
downside of these electrodes is that they often lack the same signal stability as Ag/AgCl
electrodes, though recently several studies have identified manufacturing advancements in
electrode design that have brought them close to Ag/AgCl.

Textile Electrodes

Textile electrodes tend to be either a combination of textiles and metallurgic materials
with metals woven into the fabrics themselves, or fabric and textiles coated with a metallur-
gic compound [59]. The other type of dry electrode that exists are electrodes that require no
conductive gel in the case of EDA and ECG, typically a small spiked or pin type electrode
that has direct contact with the skin with regards to EEG [81]. Currently, there is also a rise
in what are known as non-contact electrodes. Non-contact electrodes are electrodes directly
attached to the circuit board, then covered with a solder mask to reduce noise and artifacts
in the signal [82].

In their recent review of textile electrodes, ref. [83] suggest that textile electrodes need
to be flexible, comfortable and not irritate the skin, have a good signal quality, be washable
and be durable, so that repeated use and washes do not degrade the material and signal
over time. They also suggest that the textiles should be easy to use, and not require any
specialist training to set up. They outline that these are the necessary parameters needed for
a textile electrode to be successful. The author would also expand this to the application to
safety critical operations, in that humidity, dust, vibration, excess movement and operations
do not degrade any aspects of the textile electrodes. This also applies to temperature, sweat
and breathability. A textile electrode that creates issues around odour, thermal discomfort,
itchiness, etc., is likely to intrude on the user, which is especially dangerous for the operator.
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Therefore, any device needs to be assessed against these criteria, if textile electrodes are the
method used in the sensor.

Dry Electrodes

In a similar vein to textile electrodes, dry electrodes offer the potential to collect
data over several hours without the need to reapply conductive gel as seen with wet
electrodes. There has been a relatively large movement in the EEG community to develop
dry electrodes to improve set up time, comfort and longitudinal [82]. Additionally, dry
electrodes have the ability to bring electrophysiological measurements to the consumer
market [84]. Thus, it is of interest for researchers and designers to consider the challenges
associated with leveraging dry electrodes, despite the benefits.

Ref. [84] compared three EEG electrode types: passive wet, active wet, and active
dry. They assessed each type’s ability to produce a usable EEG signal during an auditory
oddball task and to detect the P3 ERP response. Results from 300 randomly selected trials
showed that active dry electrodes had significantly more noise than passive wet and active
wet electrodes. All electrodes detected the P3 ERP response at about 380 ms after stimulus
onset, but active dry electrodes had the noisiest signal. Further analysis revealed that
active dry electrodes required significantly more trials (500 standard to 125 target) to reach
statistical significance compared to both wet electrode types, which needed fewer trials
(125 standard to 35 target). Mathewson et al. concluded that, while active dry electrodes
can detect the P3 ERP response, they generate more noise and need more trials for the same
statistical power as wet electrodes.

To further improve dry electrodes, ref. [85] suggest the use of nanomaterials to con-
struct electrodes, because they have greater flexibility than current dry electrodes, resulting
in increased skin-to-electrode contact due to the ability to fit the uneven and curvilinear
surface of the body, and with reduced motion artifacts because of this. Ref. [85] highlight
in their review how carbon nanotubes, also known as CNTs, can perform equally as well
as traditional wet gelled electrodes for ECG measurements. Additionally, they describe
a study where a CNT ECG patch was worn for 7 straight days and showed no signs of
dermal irritation or toxicity to the skin. Similar findings were observed with graphene clad
electrodes in that they produce an almost identical ECG waveform to that of wet gelled
electrodes [85].

They conclude that dry electrodes based on nanomaterials offer a promising solution
to improving longitudinal signal stability and removing motion artifacts, if manufacturing
and developing these electrodes is relatively simple and cost effective. CNTs, however, may
only be effective for ECG electrodes, as opposed to EEG electrodes. In their review of dry
electrodes for EEG measurement, ref. [86] point out that, whilst CNTs have potential in the
manufacturing of electrodes, currently they can only be used in the form of microneedle
arrays. Microneedles are tiny pins that do not penetrate the epidermis and are not felt by
the individual, and thus are technically classed as non-invasive. Due to the lack of skin
contact from microneedle arrays, they require high pressure to create and maintain good
impedance, thus are not particularly comfortable for the wearer.

CNT has the potential to be toxic to humans and can only be manufactured to a very
short length due to their mechanical properties, thus are not suitable for individuals with
long/thick hair as they cannot penetrate the scalp appropriately [86]. Whilst nanomaterials
appear to offer a good solution for long term comfortable electrodes, not all designs are
equal and thus they should be tested in various formats, e.g., patch vs. microneedles,
to ensure they are being utilized in the correct way. Both [85,86] note that nanomaterial
electrodes are an emerging topic in physiological research, so it is likely that in a few
years they will become even more prevalent and, if manufacturing processes can be cost
effective [87], they will drastically improve both research and consumer grade electrodes.
Ref. [88] demonstrate the possible benefits of nanomaterial electrodes leveraged in the
correct way. Silver ink was printed onto polyethylene terephthalate (PET) substrate to
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create a flexible dry electrode. The dry electrode produced a better ECG signal than that of
over gelled wet electrodes and showed fewer motion artifacts during ambulation.

Researchers and designers have many parameters consider, such as the material,
location pressure and size of dry electrodes and, whilst they are starting to be used in some
commercial devices, such as the Empatica E4, with success, there are still questions to be
asked about their signal-to-noise ratio due to, at times, poor skin to electrode connectivity.
However, recently nanomaterials appear to offer a solution in that they can fit the body
to a much better degree, enabling measurement as good as or even possibly better than
traditional wet gelled electrodes. Novel methods, such as the magneto-cardiogram [89]
and ballisto-cardiography [90] will hopefully offer alternatives to electrodes and associated
issues as they mature.

3.3.7. Cleaning and Maintenance

Wearable sensors over time will experience bacteria and dirt building up. This can
impact both the measurement of the device, e.g., degrading/scuffed electrodes, as well
as usability, e.g., comfort. Thus, they need to be easily cleaned and maintained [25]. The
ability for textiles and textile electrodes to be washed again and again and not degrade after
multiple wash cycles is defined as washability [72]. Ref. [73] suggests that clothing-based
sensors should be machine washable without degradation from electrical impedance and
the fit of the garment, even stating that this should be a mandatory consideration due
to the fact that sweat corrodes electrodes when they are worn frequently. In addition
to silver coated yarn, ref. [91] found that carbon nanotube threads, which behave in a
manner allowing them to be sewn, did not have signal degradation after several wash
cycles. Refs. [73,91] demonstrate that it is possible to create washable textile electrodes that
do not degrade with wash cycles. Washability should be strived for, as researchers and
designers no longer have to be responsible for manually cleaning the electrodes, rather
they can just be placed into the washing machine, which has the added benefit of saving
time. More generally speaking, all wearable sensors should be easy to clean, e.g., it should
not be difficult to clean any electrolyte gel from electrodes. For example, the Easycap
EEG (https://www.easycap.de/, access date 21 October 2019) recording cap is made up of
textile and metal components, all of which, except the connector, which is used to connect
the cap to the processing device, can be submerged in water and scrubbed easily with a
toothbrush. Many wrist-worn devices, which use straps, can be wiped down and cleaned
easily. Some even boast designs where the screen/processing unit can be removed from
the strap entirely, which allows a new strap to be placed, and the device to be cleaned to an
extremely granular level.

This goes hand in hand with maintenance. Devices should be simple to clean and easy
to maintain. As previously mentioned, modular devices assist in maintenance in that they
can be broken down into their components to clean, as well as improving maintenance
of the parts. Most devices, however, are not designed to be maintained by the user, but
rather must be sent back to the company to be fixed. There are some exceptions to this,
however. The Empatica E4 does not have integrated electrodes, but they are popped onto
the device, meaning that, if the electrodes become corroded, then can be easily replaced.
Additionally, companies, like BITaliano and Open BCI, offer products where the user does
the assembly themselves, which would allow someone of little knowledge with some
guidance to possibly repair the units/components, since the entire processing board is not
contained within a housing unit. For example, take the Open BCI Ganglion board; some
of the pins on the back of the ganglion boards, which connect to the cap or electrodes,
could become bent out of place if a user is not careful in disconnecting the recording cap or
electrodes; before the user has to send the board back, or purchase a new board, they could
bend the pins back and see if that fixes the issue.

https://www.easycap.de/
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3.3.8. Sampling Rate

Sampling rate refers to how many times per second a frequency is sampled, e.g., a
60 hz sampling rate would mean that each second of the recorded signal would contain
60 samples per second. When selecting a device to measure physiological phenomena,
one should consider the time series of such phenomena, as well as the expected saliency
of the phenomena, e.g., are we measuring two extremes, or several states that only differ
gradually? Asking this question will help infer what type of sampling rate the device
should have. Sampling rate is important, as a high sampling rate is more robust and is more
effective in frequency-based analyses [92,93]. Ref. [26] suggest that the minimum sampling
rate should be 100 hz, ideally between 250 and 500 hz. The author also suggests obtaining
a sampling rate as high as possible in order to have the best chance to catch temporally
sensitive events if that is a requirement of one’s research, e.g., regular changes in stress or
cognitive workload may require a higher sampling rate than slow discrete changes.

There has been some research examining both the minimum sampling rate needed to
catch physiological phenomena, as well as comparing wearable sensors to that of “gold
standard” laboratory equipment, in order to assess whether lower sampling rates are
sufficient in capturing enough reliable data to perform analyses. Ref. [94] compared 5-min
samples of HRV data from a 64 hz PPG wrist-worn heart rate monitor to a 1000 hz ECG,
with 56 participants. They assessed whether 10 HRV parameters derived from the data were
significantly different between the ECG signal sampled at 1000 hz, the PPG signal sampled
at 64 hz, and as several down-sampled PPG signals going down to a minimum 6.4 hz.

They found that, at 64 hz, the PPG signal and ECG signal were relatively similar, with
only RMSSD and PNN50%, two commonly derived HRV parameters, being significantly
different at 64 hz compared to all other HRV parameters. They suggest that, if researchers
wish to use RMSSD and PNN50% parameters, they should select an HR sensor with a
sampling rate greater than 64 hz, or the sensor is likely to be sufficient. Furthermore, they
found that, when the PPG data was down0sampled, the minimum sampling rate with
which one could obtain reliable data was 21 hz; however, the more likely number is 32 hz,
as 21 hz differed on all but two HRV parameters compared to the ECG, where 32 hz only
differed on 5 out of the 10 HRV parameters.

It is worth noting that even 32 hz differed on both RMSSD and PNN50% compared to
the 1000 hz EEG, with only SDNN not being significantly different. Thus, from [94] findings,
the author would suggest that even 32 hz is not likely enough to capture a sufficiently good
quality signal when researchers are trying to measure psychophysiological phenomena,
such as stress, fatigue and cognitive workload, as many HRV parameters, such as RMSDD,
SDNN, and even PNN50%, have been identified as measures of the above-mentioned
phenomena [95,96]).

Ref. [97] found similar findings to [94] when they assessed waveform features of the
PPG signal at 240 hz, and down-sampled at various intervals to 10 hz. They found that,
at 60 hz, the waveform was reliably similar to that of data sampled at 240 hz, suggesting
that 60 hz is the minimum PPG sampling rate to be used in commercial applications. One
caveat about [3] work is that it was specifically focused on waveforms for commercial
applications in healthcare, thus their examination of minimum sampling rate to preserve
PPG waveform is in the context of assessing disorders, such as arterial stiffness, cardiac
output and vascular ageing. These metrics are likely to be nowhere near as time sensitive
as psychophysiological constructs, like cognitive workload and stress, as well as temporal
aspects of state fatigue. Therefore, their findings should be taken with slight caution, as
PPG waveform may be altered due to activities related to the measurement of stress, fatigue
or cognitive workload if additional signals or physical activity are required to measure the
aforementioned phenomena [98].

3.4. Example Checklist

Whilst the framework offers the knowledge on how to select and assess a sensor,
what would be a reasonable methodology? We propose a check list, which scores evidence
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against each parameter. This allows various checklists to be created, which can be used
to easily compare different devices. See the appendices for the checklists and scoring
instructions (Appendix A).

The checklist is normalized to give a score out of 100. Moreover, the checklist could be
weighted desired, depending on operator need and data available. For example, the authors
recently completed some survey work assessing the framework parameters in the energy
industry. Respondents suggested validity, reliability, acceptance, cleaning and maintenance,
and toughness as clear favorites. Therefore, one could weight these five parameters as
more important than the rest if applying the sensor to operators in the energy industry. See
the appendix for an example checklist. The authors suggest using the checklist ideally in a
trial environment, which is backed up by peer reviewed literature, operational evidence
and user manual information. In the absence of trials, relevant parties should complete the
checklist in relation to industry standards/literature. The checklist is scored on a 0–5 Likert
scale, which allows parameters that are not relevant or measured in the present context to
be scored as 0. Below is an image of example data (Figure 2), randomly generated for the
purpose of the paper, which shows two spider charts overlapping, comparing an ECG and
a PPG for fatigue measurement. Higher scores indicate good performance on the parameter,
e.g., a score of 5 indicates excellent validity. For many devices, one may prefer faceted bar
plots or spider charts, as overlaying more than three devices may degrade readability.
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4. Discussion

While we have attempted to classify the parameters to the best of our ability to the
correct domain, we nevertheless acknowledge that arguments can be made to move some
parameters from usability to design and vice versa. The usability and design domains
have some degree of subjectivity as to whether they are truly principles of usability or
principles of design. Measurement principles are easier to classify, and these parameters
directly relate to how competently a sensor performs as a measurement tool, of course, in
the context of the design choices, as has been discussed. Figure 3 shows the final framework
and serves as the first attempt at a baseline for the assessment and selection of wearable
sensors for psychophysiological monitoring. Our hope is that, in future, other fields and
researchers can assist in building this framework, e.g., by evaluating different materials in
relation to toughness.
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arrows indicate that sensors may be iterated through some or all of these parameters before a
final version is deemed suitable for its context. Usability and measurement may interact with one
another through iteration, with different priorities being focused upon, dependent on user needs
and user feedback.

Different contexts may lead to different parameters being prioritized over others.
The overall goal of this paper is to create a framework that is sufficiently broad such that
interested parties can gain an appreciation of measurement and usability and thereby
understand how to review and assess these in their own research and development. Fur-
thermore, this paper aims to help the reader understand how measurement and usability
may be optimized through conscious design choices. Whilst it is hard to comment on the
degree of importance of each parameter, in the writing of this paper, we would suggest
usability is the crux as to whether people will adopt sensors in the long term. This is
suggested by [20] and has been shown empirically amongst operators [99].

4.1. Study Limitations

The paper has several limitations. There is no empirical data to help support the
inclusion of parameters. Whilst many parameters do stem from empirical studies, it would
be useful to understand how operators perceive these parameters, and to which they impose
most importance. This would differ based on many different variables, such as age, industry
and perceptions of technology. In a similar vein, the paper does not include any case studies.
These are often useful and can add clarity and context without being as theoretically
complex as empirical studies. Finally, the paper only captures a static moment in time.
The development of new and better wearable sensors is increasing exponentially, e.g.,
ref. [89] developed a Magnetocardiography (MCG) Wearable Sensor which does not rely
on electrodes; thus the electrode type parameter would then become obsolete. The paper is
written to be device agnostic, however, and there is merit in further examining parameters
related to types of specific devices, e.g., ECG. Currently most psychophysiology devices
rely on electrically-based measurements, with the exception of some eye trackers. However,
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recently there has been an increase in developing accurate and discreet PPG, fNIRS and
even the development of the aforementioned MCG, which do not rely on electrodes at all.
However, each of these devices has its own set of measurement complexities. Thus, there
are likely to be device-specific parameters that we have not addressed but would be useful
when considering the selection and development of such devices.

4.2. Future Directions

While this paper attempts to consolidate the literature from multiple relevant fields to
create a holistic framework that can guide others, there is also room for further development.
A similar review that is device-specific would be useful in highlighting nuances that are not
device agnostic. Additionally, the inclusion of empirical research in a similar review would
assist in supporting veracity, and that the parameters in question are valid and of concern
to operators. Finally, a systematic literature review could help reveal possible parameters
that may not have been discovered in our search, as well as understand which parameters
may be most popular or occur frequently in the literature. Additionally, seeing practical
applications of the checklist would help validate its use.

5. Conclusions

Wearable psychophysiological devices are more readily available than ever before
due to advances in engineering, computing, and ergonomic design. With ever increasing
numbers of devices available on the market, there is a need for a framework to guide
the development and selection of these devices. This need becomes even more relevant
when the aim is for the sensor to be used to measure some sub-optimal state amongst
operators to improve safety. The authors hope that the proposed checklist offers a tool
which researchers, safety managers and ergonomists can use and adapt to ensure that
they are selecting the best possible device, underpinned by a sufficiently broad theoretical
framework that aims to maximize deployment.
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Appendix A

Example of potential checklist to deploy the framework in operational contexts.

Checklist and Scoring

Appendix A show examples of two checklists used to score two different devices, an
ECG and a PPG. For ease of use and clarity, both checklists are identical with four parame-
ters (Individual Differences, Water Tolerance, Onboard vs. secondary device processing,
and Modularity) removed as, for this example, they were not relevant. However, one may
include all 22 parameters and often this will likely be the case. However, there may also
be occasions where devices differ slightly in the number of relevant parameters relevant,
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which is why all checklists should be normalized on a 100-point scale and then scored
appropriately. The formula for this is:

Total Score =
(

Sum o f Scores
Maximum possible score

)
× 100

So the formula for both our checklists would be the sum of scores divided by 90, as
we only have 18 parameters (18 × 5 = 90). This value is then multiplied by 100, resulting in
the total score.

Total Score =
(

Sum o f Scores
90

)
× 100

For the ECG, the total score would be 88, as the sum of scores = 80.

88 =

(
80
90

)
× 100

Appendix B

Device Name Device Function Device Type Construct
HR Monitor #12 Cardiac ECG (chest) Fatigue

Parameter Assessment method Score
Measurement Principles

Sensitivity Sensitive to three levels of fatigue 0 1 2 3 4 5⃝
Specificity False alarm rate < 5% 0 1 2 3⃝ 4 5

Validity Cross Correlation > 0.8 0 1 2 3 4 5⃝
Reliability Show test retest reliability 0 1 2 3 4 5⃝

Diagnosticity Identifies source of fatigue 0 1 2⃝ 3 4 5
Generalizability ECG not affected by skin quality 0 1 2 3 4⃝ 5

Usability Principles
Intrusiveness No distractions from device? 0 1 2 3 4 5⃝
Weight/Size Device is a good weight/size 0 1 2 3 4⃝ 5
Ease of use No issues taking device on/off 0 1 2 3 4 5⃝
Acceptance Operators feel the device is fair and transparent? 0 1 2 3 4 5⃝

Wireless communication/connectivity Device didn’t disconnect more than 1 time? 0 1 2 3 4 5⃝
Individual Differences N/A 0

Wearability Device didn’t cause discomfort? 0 1 2 3 4⃝ 5
Power Consumption Battery didn’t die on shift? 0 1 2 3 4 5⃝

Design Parameters
Toughness Device didn’t break? 0 1 2 3 4 5⃝

Water Tolerance N/A 0
Interaction Method Touch screen worked well? 0 1 2 3 4⃝ 5

Onboard vs. secondary device processing N/A 0
Modularity N/A 0

Type of electrode Textile electrode 0 1 2 3 4 5⃝
Cleaning and maintenance Device machine washable? 0 1 2 3 4⃝ 5

Sampling rate Above 64 hz? 0 1 2 3 4 5⃝
Total Score Parameter score = 88



Sensors 2024, 24, 4589 26 of 30

Appendix C

Device Name Device Function Device Type Construct
HR Monitor #23 Cardiac PPG (Wrist) Fatigue

Parameter Assessment method Score
Measurement Principles

Sensitivity Sensitive to three levels of fatigue 0 1 2 3⃝ 4 5
Specificity False alarm rate <5% 0 1⃝ 2 3 4 5

Validity Cross Correlation >.8 0 1 2 3⃝ 4 5
Reliability Show test retest reliability 0 1⃝ 2 3 4 5

Diagnosticity Identifies source of fatigue 0 1 2 3⃝ 4 5
Generalizability PPG not affected by skin quality 0 1 2 3 4 5⃝

Usability Principles
Intrusiveness No distractions from device? 0 1 2⃝ 3 4 5
Weight/Size Device is a good weight/size 0 1 2 3 4 5⃝
Ease of use No issues taking device on/off 0 1⃝ 2 3 4 5
Acceptance Operators feel the device is fair and transparent? 0 1⃝ 2 3 4 5

Wireless communication/connectivity Device didn’t disconnect more than 1 time? 0 1⃝ 2 3 4 5
Individual Differences N/A 0

Wearability Device didn’t cause discomfort? 0 1 2⃝ 3 4 5
Power Consumption Battery didn’t die on shift? 0 1 2 3⃝ 4 5

Design Parameters
Toughness Device didn’t break? 0 1 2 3 4 5⃝

Water Tolerance N/A 0
Interaction Method Touch screen worked well? 0 1 2⃝ 3 4 5

Onboard vs. secondary device processing N/A 0
Modularity N/A 0

Type of electrode Textile electrode 0 1⃝ 2 3 4 5
Cleaning and maintenance Device machine washable? 0 1 2 3 4 5⃝

Sampling rate Above 64 hz? 0 1⃝ 2 3 4 5
Total Score Parameter score = 50
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