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Contextual quantummetrology
Check for updates

Jeongwoo Jae 1,2,5, Jiwon Lee1,5, M. S. Kim3, Kwang-Geol Lee 1 & Jinhyoung Lee 1,4

We demonstrate that the contextuality of measurement selection can enhance the precision of
quantum metrology with a simple linear optical experiment. Contextuality is a nonclassical property
known as a resource for various quantum information processing tasks. Recent studies show that
contextuality by anomalousweak values can be utilized to enhancemetrological precision, unraveling
the role of contextuality in quantum metrology. Our contextual quantum metrology (coQM) scheme
can elevate the precision of the optical polarimetry as much as 6 times the precision limit given by the
Quantum Fisher Information. We achieve the contextuality-enabled enhancement with two mutually
complementary measurements, whereas, in the conventional method, some optimal measurements
to achieve the precision limit are either theoretically challenging to find or experimentally infeasible to
realize. These results highlight that the contextuality ofmeasurement selection is applicable in practice
for quantum metrology.

Precision measurement has played a crucial role in the development of
natural science and engineering sincemeasurement is ameans for observing
nature.As a technology forprecisionmeasurement, quantummetrologyhas
recently drawn attention with a wide range of applications such as
microscopy1, imaging2,3, patterning4,5, gravitational wave detection6–8, and
timekeeping9,10. Quantum metrology enables measurements going beyond
the precision of the standard quantum limit which can be obtained from the
most-classical state in quantum physics. One of the resources for precision
enhancement is entanglement, a nonclassical property of quantum
states11–14. However, an entangled state can easily lose its property through
interaction with other objects, while the interaction is inevitable in
metrology. This makes it challenging to generate and manipulate an
entangled state. Due to the limitations, it is difficult in practice to attain the
entanglement-enabled enhancement of precision. If easy-to-implement
resources for metrology are found, the performance of quantummetrology
can be greatly enhanced, as well as its practicality. In this work, we
demonstrate that the contextuality of measurement selection15, another
nonclassical property, is an easy-to-implement resource for quantum
metrology.

Specifically, contextuality here refers to the dependency of
quantum systems on measurement context16. Unlike classical predic-
tions, quantum predictions for a given measurement can change
depending on whether another measurement is performed simulta-
neously or not. Bell–Kochen–Specker theorem first showed that
quantum physics is contextual17,18, and this has been experimentally
proved on various quantum systems19–22. Also, it has been revealed that
contextuality can be a resource for quantum information processing
tasks such as quantum key distribution23,24, universal quantum

computing25, quantum state discrimination26, and quantum machine
learning27,28. Recent studies show that contextuality caused by a post-
selection and weak measurement can be utilized to enhance metrolo-
gical precision29–31. These works have fueled research directions to
unravel the role of contextuality in quantum metrology.

To demonstrate the precision enhancement from the contextuality of
measurement selection, we propose amethod in quantummetrologywhich
we call contextual quantum metrology (coQM). Unlike conventional
quantummetrology, the coQMutilizes twomeasurement settings and their
contextuality. In our experiment, we adopt an optical polarimetry devised to
measure the concentration of sucrose solution32 and modify its scheme for
the coQM. Our experiment employs two polarization measurements in
mutually unbiased (or complementary) bases, and their selection context is
implemented by toggling a polarizing beam splitter ‘in’ and ‘out’ from its
optical path. Our setup is scalable in that the size of the experiment does not
increase along with the increase of the number of probe photons. Also, the
enhanced precision is attainable without error correction or mitigation
which requires overhead33,34. We finally show that the precision of coQM
can go beyond the precision limit of conventional quantum metrology35–37

by a factor of 1.4–6.0.

Results
Contextual quantummetrology
Figure 1 shows an experimental schematic for the coQM. Here, the coQM
estimates the concentration of sucrose solution by following four steps:
preparing a polarized single photon as a probe light (see “Methods”),
interacting the photon with the sucrose solution, measuring the polariza-
tion, and calculating an estimate via maximum likelihood estimator (MLE)
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using the operational quasiprobability which will be discussed later as in
Eq. (1). The photon interacts with the sucrose solution as it propagates
through the solution. Afterwards, the photon polarization rotates by angle
αcl, where α, c, and l are the specific rotation of the sucrose solution, the
concentration of the solution, and the traveling length of light in the solu-
tion, respectively32. We can decide the concentration by measuring the
polarization change for a given specific rotation and traveling length. All the
procedures here look similar to those of the conventional quantum
metrology38, but the measurement and the estimation are steps that dif-
ferentiate the coQM from the conventional approach.

In themeasurement step, the coQMemploys twodifferent polarization
measurement settings A and B to utilize the contextuality of measurement
selection therefrom15. A measures the polarization in a specific basis
f∣Hi; ∣Vig and B does in a basis f∣Di; ∣Aig tilted 45° from the basis of A by
half-wave plate. (Note that the measurements are incompatible as their
observable operators σz and σx do not commute, [σz, σx] ≠ 0.) Our basic
setup is the measurement by B, and we consider a context of whether
measurementA is selected to be performed or not, prior to performing B. If
A is not selected, the measurement B only is performed, and probability is
given by p(b∣B) for a binary value b. If A is selected, the experimental setup
runs the consecutive measurement performing A first and B later. In this
case, probability is given by p(a, b∣A, B) for an outcomepair (a, b), where a is
a binary outcome ofA. Probabilities of B depend on whether an earlier A is
performed for incompatible measurements A and B. The probabilities of B
whenA is performed are unequal to those ofBwhenA is not performed, i.e.,
p(b∣A, B) ≠ p(b∣B), where the marginal p(b∣A, B) =∑ap(a, b∣A, B). We say
they are “contextual” in the context of measurement selection15. This is
reflected in the operational quasiprobabilityw(a, b) in (1).We note that the
term “contextual” or “contextuality” here is not derived from Spekkens’
contextuality16 or quantumcontextuality by theKochen–Specker theorem18.

(Wewill discuss that the contextuality ofmeasurement selection stems from
the incompatibility of measurements39,40.) Our metrology utilizes the con-
textuality to enhance the precision of the polarimetry.

In the experiment (Fig. 1), the context of selecting A is established by
toggling “in” the state of the polarizing beam splitter PBS1. Setting PBS1
“in”, the photon is consecutively measured by twomeasurementsA ofH/V
and B of D/A. Their outcome pairs (a, b) are identified by the clicks of the
APDsDab.WhenDab clicks, the outcome ofA is a, and the one of B is b.We
note that, as shown in Fig. 1, outcome a is determined by PBS1, while
outcome b is by the subsequent PBS2 or PBS3; specifically, PBS2 and PBS3
are located 170mm away from PBS1, much farther than the coherence
length of single-photon source Lc ≈ 0.052mm (see “Methods”). In this
regard, measurement A precedes B in time.

In the estimation step, we employ a statistical model, so-called
operational quasiprobability41,42, which is given by

wða; bÞ ¼ pða; bjA; BÞ þ 1
2

pðbjBÞ � pðbjA;BÞ� �
: ð1Þ

The context-free condition in our measurement setup is to assume that the
prediction of measurement B is invariant under the context of selecting
measurement A. This is called the condition of no-signaling in time,
represented by p(b∣B) = p(b∣A, B), ∀ b43. The crucial property of the
operational quasiprobability is that, for the context-free condition, w is
reduced to the probability by the consecutive measurement, w(a, b) = p(a,
b∣A, B), ∀ a, b. To the contrary, the quantum predictions violate the
condition in general, w(a, b) ≠ p(a, b∣A, B), and w(a, b) can even be
negative-valued41,42.

The conventional quantum metrology estimates a physical para-
meter θ with an estimator based on a conditional probability p(x∣θ) for a
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Fig. 1 |An experimental schematic for coQM.Our probe state is a polarization state
of a heralded single-photon source (see “Methods”). The probe polarization rotates
by angle αlc when it propagates through the sucrose solution, where α ≈ 34.1
deg ml dm−1 g−1 is the specific rotation of the sucrose solution, l = 0.1 dm is the
traveling length of light in the solution, and c g ml−1 is the concentration of the
solution. We estimate the concentration c by measuring the polarization change.
Here, we consider two measurement settings A and B, where A measures polar-
ization inH/V basis and B does in a D/A basis tilted 45° from the basis of A by half-
wave plate (HWP). For triggered events, the probabilities of the polarization bases
are determined from relative counts of four avalanche photodiodes (APDs), D00,

D01, D10, and D11. When polarizing beam splitter PBS1 is “out”, the measurement
setup corresponds to the Bmeasurement, and the counts onD00 and D01 determine
probabilities of ∣Di and ∣Ai, respectively. When the PBS1 is “in”, the measurement
setup corresponds to the consecutive measurement performing A first and B later,
and the counts ofD00, D01, D10, and D11 represent joint probabilities of ∣HDi, ∣HAi,
∣VDi, and ∣VAi, respectively. We combine measuring data to construct operational
quasiprobabiltiy (OQ) in Eq. (1), and an estimate is calculated with the maximum
likelihood estimator of OQ in Eq. (2). The coQM utilizes the context of selecting the
measurementA to enhance its precision. Experimental results in Fig. 2 demonstrate
the enhancement.
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data set fxigNs
i¼1 (see SupplementaryNote 1). In the coQM, the operational

quasiprobability plays a role in the conditional probability for the two
data sets xB ¼ fbigNs

i¼1 and xAB ¼ fðaj; bjÞgNs

j¼1
. In other words, the coQM

calculates an estimate of polarization �θ with a maximum likelihood
estimator given by

�θ s.t. ∂θlWðθjxB; xABÞ ¼ 0; ð2Þ

where lW(θ∣xB, xAB) is a log-likelihood function for w (see “Methods”). The
possible problem causedby this replacement is thatw can be negative unlike
the conditional probability, so that the log-likelihood function diverges.
However, we find thatw remains positive for some range of parameters.We
focus on the case for w to be applicable to the log-likelihood function
without the divergence problem. Finally, for an initial polarization θ0, we
derive the estimate of concentration �c from the polarization change
as �c ¼ ð�θ � θ0Þ=αl.

Contextuality-enabled enhancement of precision
Our goal is to demonstrate the outperformance of the coQM over con-
ventional quantum metrology. We employ the error of estimate Δθ, the
standarddeviation that the estimate differs from the actual value, to quantify
the performance of estimation. The smaller the error is, themore precise the
estimate is.

As a baseline of performance, we take the conventional quantum
metrology and its error given by quantum Fisher information (QFI) Fq,
Δθq ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
NsFq

p
, whereNs is the number of samples. This is known as the

lower bound of error in the conventionalmethod. In the coQM,we propose
contextual Fisher information (coFI) to quantify the performance of the
coQM,

Fco :¼
X
a;b

wða; bjθÞ ∂ logwða; bjθÞ
∂θ

� �2

: ð3Þ

In the asymptotic limit ofNs→∞, the error of the coQMΔθco approaches to
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
NsFco

p
(see Supplementary Note 2 for the asymptotic property and

estimator of coFI).
The coQM gains precision enhancement over the conventional

quantum metrology if

Δθco<
Δθqffiffiffi
2

p : ð4Þ

Our method uses the two data sets xB and xAB. If each data set collects Ns

samples, the total number of samples is 2Ns in ourmethod. Reduction factorffiffiffi
2

p
in the error by the conventional is introduced, assuming the conven-

tional take 2Ns samples (which is equivalent to comparing Fco to 2Fq).
We here suggest specific cases satisfying the criterion (4). Instead

of a theoretical proof, we briefly summarize the theory behind the
enhancement of precision by following arguments: For the non-
contextual model, the operational quasiprobability w(a, b∣θ) becomes
the joint probability of the consecutive measurement p(a, b∣A, B). In
this case, the coQM is reduced and equivalent to the conventional
quantum metrology using the consecutive measurement so that the
Δθco equals or larger than Δθq (see Supplementary Note 1). For the
contextual model, conversely, Δθco can be smaller than Δθq (see ref. 40
for rigorous discussions). Figure 2a shows simulation results of the
contextuality-enabled enhancement on the Bloch sphere.

We perform polarization estimation of θwith probe states prepared in
∣ψ
� ¼ cosðθ=2Þ∣Hi þ eiϕ sinðθ=2Þ∣Vi for 0.46π ≤ θ ≤ 0.55π and ϕ = 0.15π.

For the probe states, the operational quasiprobability is given by
wða; bjθÞ ¼ 1þ ð�1Þa cos θ þ ð�1Þb sin θ cos ϕ� �

=4. We draw Ns = 105

samples for each data set to construct the operational quasiprobability and
calculate an estimatewith the estimator (2). For polarization estimation of θ,
QFI Fq = 1, so the coQM gains the contextuality-enabled enhancement if

Δθco<Δθq=
ffiffiffi
2

p ¼ 1=
ffiffiffiffiffiffiffiffi
2Ns

p
≈ 2:24× 10�3. The errors of the coQM are

smaller than the error limit of the conventional quantummetrology for the
whole selected range of θ (Fig. 2b). The worst case in our results has
Δθco ≈ 1.53 × 10−3 around θ = π/2, and the best case has Δθco ≈ 3.7 × 10−4

around each end of the range of θ. This demonstrates that our method
elevates the precision of polarimetry by a factor of 1.4–6.0 from the limit of
conventional quantum metrology.

We estimate sucrose solutions of three different concentrations c = 0.1,
0.3, and 0.5 gml−1. We prepare the probe state with initial parameters
θ0 = 0.5π andϕ = 0.15π. For each concentration,we repeat the estimation 10
times. The results (Fig. 2d) show that the errors of estimates by the coQM,
Δcco, are smaller than the minimum error by the conventional quantum
metrology ( ≈ 5.9 × 10−2); For c = 0.1, 0.3 and 0.5 gml−1, the mean errors
are ≈ 3.7 × 10−2, ≈ 3.3 × 10−2, and ≈ 2.8 × 10−2, respectively. This illustrates
that the coQM exceeds the conventional quantum metrology by a wide
margin.

These results illustrate the precision enhancement with the two
incompatible measurements in the simple linear optical setup, whereas the
conventional quantum estimation method requires identifying an optimal
measurement, which may often be experimentally challenging to imple-
ment in practice. We remark that the contextuality of measurement selec-
tion is an easy-to-implement resource to enhance the precision of optical
polarimetry.

Discussion
The contextuality of measurement selection stems from the incompatibility
of quantum measurements39. In the scenario of the consecutive measure-
ment, if the two measurements A and B commute, the consecutive mea-
surement is de facto a single measurement; the probabilities p(b∣B) and
p(b∣A, B) are equal, and theprediction forB is noncontextual.Otherwise, the
prediction for measurement B depends on whether performing the first
measurement A is contextual except for a case when the initial state is
prepared in an eigenstate of A. Thus, measurement incompatibility is
necessary for the contextuality of measurement selection. We experimen-
tally verify that the measurements A and B are incompatible by testing
complementarity44 (see “Methods”).

The noncommutation of observable operators defines the incompat-
ibility among measurements, represented by projection-valued measures
(PVM),whichwe assume in thepresentwork.Thenotionof incompatibility
needs to be generalized if the representation of measurement is generalized
to positive operator-valued measure (POVM). This generalization is
required, for example, if one considers an open quantum system in a noisy
environment. Non-joint measurability (non-JM) is one of the
generalizations39. The non-JMplays an important role in a contextuality45,46,
as does the noncommutativity47. In fact, non-JM and the contextuality of
measurement selection are also closely related as the negativity of opera-
tional quasiprobability is the necessary and sufficient condition for non-
JM40,48.

Recently, there were studies in a similar vein to the present work49,50,
showing that noncommutativity can be a resource for quantummetrology.
However, their schemes employ a post-selection to discard unwanted
measurement outcomes, so there is a tradeoff between success probability
and Fisher information; success probability becomes small if Fisher infor-
mation is large51. Quantum post-selected metrology, such as weak value
amplification methods, share this matter52,53. On the contrary, our method
utilizes all of the measurement outcomes for the estimation41,42, implying
that the coQM is free from such tradeoff.

This work demonstrates that utilizing the contextuality of measure-
ment selection can enhance the precision of measurement. The experiment
attains precision beyond the limit of conventional quantum metrology36,37.
The coQM has advantages over the conventional method (see Supple-
mentary Note 1): it can enhance the precision without optimizing the
measurements if they are incompatible, and it works even without any
entangled state of a probe that has been regarded as difficult to generate and
manipulate. We use the heralded single-photon source to clearly show the
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performance of coQM per unit particle of probe. We expect that a multi-
photon source can also be adopted for the coQM with similar settings of
measurements15. Our method is expected to be applicable to a quantum
sensor54 if the context ofmeasurement selection can be implementedwithin
the sensor’s system. In addition, the approaches employed to demonstrate
the contextuality-enabled enhancements can be utilized to characterize
quantum devices (see Supplementary Note 3), which is a fundamental task
required to implement quantum technologies.

Methods
Heralded single photons
We generate the heralded single photon as follows. High energy pump
photons (p = 405.7 nm) from a continuous wave (CW) single mode laser
(TOPMODE405,TOPTICA)are sent to a periodically poledKTP (PPKTP)
crystal. PPKTP splits the input photons into photon pairs (signal and idler
photons) through the type-II spontaneous parametric down-conversion

(SPDC) process. The polarizations of signal and idler photons are ortho-
gonal to each other so that a polarizing beam splitter (PBS) can separate
them into two different optical paths. The idler photon is sent to an ava-
lanche photodiode (APD) for triggering. The signal photon is sent to one of
the fourAPDs (SPCM-QC4, Perkin Elmer). If the triggerAPD is clicked, we
count clicks on the four APDs.We control the count rate of the triggerAPD
to be 2 × 105 cps to sufficiently suppress multi-photon events, i.e.,
∣SPDCi≈∣00i þ ϵ∣11i for ϵ≪ 1. The click signals are post-processed by a
field programmable gate array (FPGA) with a time bin size of 25 ns. The
wavelengthλ andbandwidthΔλof the single-photon source are 810 nmand
2 nm, respectively. The coherence length is given by Lc = λ2/
2πΔλ ≈ 0.052mm.

Input state preparation
We prepare an initial probe state by using a series of three wave plates
(Fig. 1), one half-wave plate (HWP), and two quarter-wave plates (QWP).

Fig. 2 | Simulation and experiment results of the coQM. a Landscape of error ratio
of our Δθco to the conventional Δθq=

ffiffiffi
2

p
, R :¼ log10ð

ffiffiffi
2

p
Δθco=ΔθqÞ, on the Bloch

sphere of a probe state ∣ψ
� ¼ cosðθ=2Þ∣Hi þ eiϕ sinðθ=2Þ∣Vi, obtained by Monte-

Carlo (MC) simulation. The coQM gains the contextuality-enabled enhancement if
R < 0. The operational quasiprobability (OQ) is negative in the white regions.
b Experiment results of θ estimation. We prepare the probe states, ∣ψ

�
s, by selecting

149 equiangular points from range 0.46π ≤ θ ≤ 0.55π for a fixed ϕ = 0.15π. For each
probe state ∣ψ

�
, we conduct θ estimation by drawing 105 samples (Ns = 105).

Experiments (blue circles) assert that the coQM errors Δθco are smaller than the
minimum error in the conventional quantum metrology (cvQM) Δθq=

ffiffiffi
2

p ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2NsFq

p
(dashed line), where quantum Fisher information Fq = 1. The red solid

line is the theoretical prediction, assuming the ideal optical setup. We characterize
the actual experimental setup by applying a systematic error model and use the

resultant model parameters to make the theoretical prediction (blue solid line) (see
Supplementary Note 3). c Sample-size dependency of estimation error Δθ. In the
experiment, we prepare a probe state with θ = 0.5π and ϕ = 0.1π. For small sample
sizes, OQ can be negative by statistical fluctuation, which occasionally leads to
estimation failures. For Ns = 102, the failure rate is 88%, whereas the failure rate
becomes significantly low for larger sample sizes and it is negligible for Ns ≥ 7 × 103.
d We estimate concentrations c = 0.1, 0.3, and 0.5 g ml−1 with a probe state ∣ψ

�
prepared with θ0 = 0.5π and ϕ = 0.15π. We draw Ns = 105 samples to estimate each
concentration and repeat each estimation 10 times. The error of concentration Δc
comes from that of polarization Δθ by Δc = Δθ/αl. The error bar at each individual
point represents Δcco. The green error bar in each concentration represents the
minimum error by the cvQM, Δcq=

ffiffiffi
2

p
.
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After passing QWP1, HWP, and QWP2 sequentially, a horizontally polar-
ized state ∣Hi becomes an initial state

∣ψ
�
in ¼ QWP2

π
4

� �
HWP p

� �
QWP1 q

� �
∣Hi

¼ ei �2pþqþπ=4ð Þ cos π
4 � q
� �

ei 4p�2q�π
2ð Þ sin π

4 � q
� �

 !
;

ð5Þ

where p(q) is the angle of the fast axis of the half (quarter)-wave plate
from the horizontal axis. The q value of QWP2 is fixed at π/4. By
adjusting the control parameters p and q to satisfy θ = π/2− 2q
and ϕ = 4p− 2q− π/2, we finally obtain the parameterized
state ∣ψ

�
in ¼ cosðθ=2Þ∣Hi þ eiϕ sinðθ=2Þ∣Vi.

Test of complementarity
The measurements A ¼ fÂag and B ¼ fB̂bg are incompatible as their
observable operators σx and σz do not commute, i.e., [σx, σz] ≠ 0. These
incompatible measurements are also said mutually complementary44:

TrÂaB̂b ¼
1
2
; 8a; b: ð6Þ

In our experiment, we test the complementarity through the probability ofB
after measuring A, p(b∣a)≔ p(a, b∣A, B)/p(a∣A, B). For the data used in Fig.
2b, the average of probability p(b∣a) is given by p(0∣0) = 0.4919,
p(1∣0) = 0.5081, p(0∣1) = 0.4979, and p(1∣1) = 0.5021 with the
error 2.4 × 10−3.

Maximum likelihood estimator using operational
quasiprobability
Maximum likelihood estimation is a method to find a parameter of a
probabilitymodelwhich best describes observeddata. Thismethod assumes
a likelihood functionof themodel, andmaximizes the function to determine
themost likely value in the parameter space as an estimate. In this work, we
take theoperational quasiprobability as themodel dependingon thephase θ.

For the two data sets xB and xAB, we define the log-likelihood function
as

lWðθjxB; xABÞ :¼
1
Ns

X1
a;b¼0

NWða; bÞ logwða; bjθÞ; ð7Þ

where NWða; bÞ ¼ NABða; bÞ þ NBðbÞ � NABðbÞ
� �

=2. NB(b) is the num-
ber of counts for outcomeb in the data set xB, andNAB(a, b) is the number of
counts for outcome pair (a, b) in the data set xAB.NAB(b) is obtained by the
marginal number of counts asNAB(b) =∑aNAB(a, b). For a small number of
samples,Nw(a, b) can be negative by statisticalfluctuations.We testwhether
the number count NW is positive, and neglect cases where the count is
negative. For small sample sizes, the OQ countNW(a, b) can be negative by
statistical fluctuation, which occasionally leads to estimation failures. The
experiment results in Fig. 2c show that the failure rate becomes significantly
low for larger sample sizes, and it is negligible for Ns ≥ 7 × 103.

In a broader sense, the coQM proposes an approach of integrating the
two different ensembles for single-parameter estimation. To show that our
estimator �θ is unbiased and error of the estimate achieves Cramér–Rao
bound55,56, we propose a theory that describes the operational quasiprob-
ability as an ensemble mixture model (see Supplementary Note 2).

Data availability
The data generated from the optical experiment are available from the
authors upon reasonable request.

Code availability
The codes for the simulation of the optical experiment and the error analysis
are available from the authors upon reasonable request.

Received: 18 December 2023; Accepted: 21 June 2024;

References
1. Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy.

Nature 594, 201–206 (2021).
2. Treps, N. et al. Surpassing the standard quantum limit for optical

imaging using nonclassical multimode light. Phys. Rev. Lett. 88,
203601 (2002).

3. Brida, G., Genovese,M. & RuoBerchera, I. Experimental realization of
sub-shot-noise quantum imaging. Nat. Photonics 4, 227–230 (2010).

4. Boto, A. N. et al. Quantum interferometric optical lithography:
exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett.
85, 2733–2736 (2000).

5. Parniak, M. et al. Beating the Rayleigh limit using two-photon
interference. Phys. Rev. Lett. 121, 250503 (2018).

6. Abramovici, A. et al. Ligo: the laser interferometer gravitational-wave
observatory. Science 256, 325–333 (1992).

7. Collaboration, T. L. S. A gravitational wave observatory operating
beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011).

8. Aasi, J. et al. Enhanced sensitivity of the ligo gravitational wave
detector by using squeezed states of light. Nat. Photonics 7,
613–619 (2013).

9. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced
positioning and clock synchronization. Nature 412, 417–419 (2001).

10. Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock
transition. Nature 588, 414–418 (2020).

11. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced
measurements: beating the standard quantum limit. Science 306,
1330–1336 (2004).

12. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys.
Rev. Lett. 96, 010401 (2006).

13. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum
metrology. Nat. Photonics 5, 222 (2011).

14. Tan, K. C. & Jeong, H. Nonclassical light and metrological power: an
introductory review. AVS Quantum Sci. 1, 014701 (2019).

15. Ryu, J. et al. Optical experiment to test negative probability in context
of quantum-measurement selection. Sci. Rep. 9, 19021 (2019).

16. Spekkens, R. W. Contextuality for preparations, transformations, and
unsharp measurements. Phys. Rev. A 71, 052108 (2005).

17. Bell, J. S. On the Einstein-Podolsky-Rosen paradox. Physics 1,
195–200 (1964).

18. Kochen, S. & Specker, E. P. The problem of hidden variables in
quantum mechanics. J. Math. Mech. 17, 59–87 (1967).

19. Hasegawa, Y., Loidl, R., Badurek, G., Baron,M. &Rauch, H. Quantum
contextuality in a single-neutron optical experiment. Phys. Rev. Lett.
97, 230401 (2006).

20. Kirchmair, G. et al. State-independent experimental test of quantum
contextuality. Nature 460, 494–497 (2009).

21. Jerger, M. et al. Contextuality without nonlocality in a
superconducting quantum system. Nat. Commun. 7, 12930 (2016).

22. Zhang, A. et al. Experimental test of contextuality in quantum and
classical systems. Phys. Rev. Lett. 122, 080401 (2019).

23. Acín, A. et al. Device-independent security of quantum cryptography
against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

24. Reichardt, B. W., Unger, F. & Vazirani, U. Classical command of
quantum systems. Nature 496, 456–460 (2013).

25. Howard, M., Wallman, J., Veitch, V. & Emerson, J. Contextuality
supplies the ‘magic’ for quantum computation. Nature 510,
351–355 (2014).

26. Schmid, D. & Spekkens, R. W. Contextual advantage for state
discrimination. Phys. Rev. X 8, 011015 (2018).

27. Gao, X., Anschuetz, E. R., Wang, S.-T., Cirac, J. I. & Lukin, M. D.
Enhancing generative models via quantum correlations. Phys. Rev. X
12, 021037 (2022).

https://doi.org/10.1038/s41534-024-00862-5 Article

npj Quantum Information |           (2024) 10:68 5



28. Anschuetz, E. R., Hu, H.-Y., Huang, J.-L. & Gao, X. Interpretable
quantum advantage in neural sequence learning. PRX Quantum 4,
020338 (2023).

29. Pusey, M. F. Anomalous weak values are proofs of contextuality.
Phys. Rev. Lett. 113, 200401 (2014).

30. Kunjwal, R., Lostaglio, M. & Pusey, M. F. Anomalousweak values and
contextuality: robustness, tightness, and imaginary parts. Phys. Rev.
A 100, 042116 (2019).

31. Arvidsson-Shukur, D. R. M., McConnell, A. G. & Yunger Halpern, N.
Nonclassical advantage in metrology established via quantum
simulations of hypothetical closed timelike curves. Phys. Rev. Lett.
131, 150202 (2023).

32. Yoon, S.-J., Lee, J.-S., Rockstuhl, C., Lee, C. & Lee, K.-G.
Experimental quantum polarimetry using heralded single photons.
Metrologia 57, 045008 (2020).

33. Zhou, S., Zhang, M., Preskill, J. & Jiang, L. Achieving the Heisenberg
limit in quantum metrology using quantum error correction. Nat.
Commun. 9, 78 (2018).

34. Maciejewski, F. B., Zimborás, Z. & Oszmaniec, M. Mitigation of
readout noise in near-term quantum devices by classical post-
processing based on detector tomography. Quantum 4, 257 (2020).

35. Helstrom, C. W. Quantum detection and estimation theory. J. Stat.
Phys. 1, 231–252 (1969).

36. Holevo, A. S. Probabilistic and Statistical Aspects of Quantum Theory
(North-Holland, Amsterdam, 1982).

37. Braunstein, S. L. & Caves, C.M. Statistical distance and the geometry
of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994).

38. Liu, J., Yuan, H., Lu, X.-M. & Wang, X. Quantum fisher information
matrix and multiparameter estimation. J. Phys. A 53, 023001 (2019).

39. Busch, P. Unsharp reality and joint measurements for spin
observables. Phys. Rev. D 33, 2253–2261 (1986).

40. Jae, J., Lee, J., Lee, K.-G., Kim, M. S. & Lee, J. Metrological power of
incompatible measurements. Preprint at arXiv https://doi.org/10.
48550/arXiv.2311.11785 (2023).

41. Ryu, J., Lim, J., Hong, S. & Lee, J. Operational quasiprobabilities for
qudits. Phys. Rev. A 88, 052123 (2013).

42. Jae, J., Ryu, J. & Lee, J. Operational quasiprobabilities for continuous
variables. Phys. Rev. A 96, 042121 (2017).

43. Leggett, A. J. & Garg, A. Quantum mechanics versus macroscopic
realism: is the flux there when nobody looks? Phys. Rev. Lett. 54,
857–860 (1985).

44. Lee, J., Kim, M. S. & Brukner, icv Operationally invariant measure of
the distance between quantum states by complementary
measurements. Phys. Rev. Lett. 91, 087902 (2003).

45. Tavakoli, A. & Uola, R. Measurement incompatibility and steering are
necessary and sufficient for operational contextuality.Phys. Rev. Res.
2, 013011 (2020).

46. Gühne, O., Haapasalo, E., Kraft, T., Pellonpää, J.-P. & Uola, R.
Colloquium: incompatible measurements in quantum information
science. Rev. Mod. Phys. 95, 011003 (2023).

47. Budroni, C., Cabello, A., Gühne, O., Kleinmann, M. & Larsson, J.-A.
Kochen-specker contextuality. Rev. Mod. Phys. 94, 045007 (2022).

48. Jae, J., Baek, K., Ryu, J. & Lee, J. Necessary and sufficient condition
for joint measurability. Phys. Rev. A 100, 032113 (2019).

49. Arvidsson-Shukur, D. R.M. et al. Quantumadvantage in postselected
metrology. Nat. Commun. 11, 3775 (2020).

50. Lupu-Gladstein, N. et al. Negative quasiprobabilities enhance phase
estimation in quantum-optics experiment. Phys. Rev. Lett. 128,
220504 (2022).

51. Combes, J., Ferrie, C., Jiang, Z. & Caves, C. M. Quantum limits on
postselected, probabilistic quantum metrology. Phys. Rev. A 89,
052117 (2014).

52. Ferrie, C. & Combes, J. Weak value amplification is suboptimal for
estimation and detection. Phys. Rev. Lett. 112, 040406 (2014).

53. Knee, G. C. & Gauger, E. M.When amplificationwith weak values fails
to suppress technical noise. Phys. Rev. X 4, 011032 (2014).

54. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev.
Mod. Phys. 89, 035002 (2017).

55. Cramér, H.Mathematical Methods Of Statistics (Princeton University
Press, 1946).

56. Rao, C. R. Information and the Accuracy Attainable in the Estimation of
Statistical Parameters. In Breakthroughs in Statistics. (Springer Series in
Statistics (Perspectives in Statistics). Springer, New York, NY, 1992).

Acknowledgements
MSK acknowledges the EPSRC grants (EP/T00097X/1 and EP/Y0047542/
1), KIST Open Research Programme, and AppQInfo MSCA ITN from the
European Union Horizon 2020. KGL was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) (No. 2023M3K5A109481312) and the Institute of
Information and Communications Technology Planning & Evaluation (IITP)
grant fundedby theKoreangovernment (MSIT) (No.2022-0-01026). J.L.was
supportedby theNationalResearchFoundationofKorea (NRF)grant funded
by the Korea government (MSIT) (No. 2022M3E4A1077369), and Quantum
Simulator Development Project for Materials Innovation(NRF-
2023M3K5A1092818) through the National Research Foundation of
Korea(NRF) funded by the Korean government (Ministry of Science and
ICT(MSIT)).

Author contributions
Jeongwoo Jae, M. S. Kim, and Jinhyoung Lee contributed to the theoretical
formulation of contextual quantum metrology. Jiwon Lee and Kwang-Geol
Lee conducted the optical experiments and the data analysis. All authors
contributed to discussions in this work. Jeongwoo Jae wrote the paper with
the assistance of other authors. Jeongwoo Jae and Jiwon Lee contributed
equally to this work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41534-024-00862-5.

Correspondence and requests for materials should be addressed to
Kwang-Geol Lee or Jinhyoung Lee.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41534-024-00862-5 Article

npj Quantum Information |           (2024) 10:68 6

https://doi.org/10.48550/arXiv.2311.11785
https://doi.org/10.48550/arXiv.2311.11785
https://doi.org/10.48550/arXiv.2311.11785
https://doi.org/10.1038/s41534-024-00862-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Contextual quantum metrology
	Results
	Contextual quantum metrology
	Contextuality-enabled enhancement of precision

	Discussion
	Methods
	Heralded single photons
	Input state preparation
	Test of complementarity
	Maximum likelihood estimator using operational quasiprobability

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




