

Article

Comparative Analysis of the Irradiation with Medium Fluences of High-Energy Electrons and Pr Doping on the Fluctuation Conductivity of YBa2Cu3O7–^δ **Single Crystals**

George Khadzhai ¹ [,](https://orcid.org/0000-0002-1257-8702) Ioannis Goulatis ² , Alexander Chroneos 2,3,* [,](https://orcid.org/0000-0002-2558-495X) Alexander Feher ⁴ and Ruslan Vovk 1,5

- ¹ V.N. Karazin Kharkiv National University, Svoboda Sq. 4, 61022 Kharkiv, Ukraine; gkhadjai@gmail.com (G.K.); rvvovk2017@gmail.com (R.V.)
- ² Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece; yannislgoul@gmail.com
- ³ Department of Materials, Imperial College London, London SW7 2BP, UK
- ⁴ Centre of Low Temperature Physics, Faculty of Science, P.J. Safarik University, Park Angelinum 9, 041 54 Kosice, Slovakia; alexander.feher@upjs.sk
- ⁵ The Department of Mathematics and Physics, Ukrainian State University of Railway Transport, Feierbakh Sq. 7, 61050 Kharkiv, Ukraine
- ***** Correspondence: alexander.chroneos@imperial.ac.uk; Tel.: +30-6978775320

Abstract: Medium-fluence fast electron irradiation $(10^{19} \text{ e/cm}^2 \text{ to } 10^{20} \text{ e/cm}^2)$ or the changes in the praseodymium concentration in the range of $0.0 \le z \le 0.5$ on the excess conductivity of $YBa₂Cu₃O_{7–\delta}$ single crystals ware investigated. These can lead to a wider range of the temperature interval of excess conductivity which narrows the interval of linearity in the ab plane. At fluences $0 \le \Phi \le 6.5 \times 10^{19}$ e/cm², there was a threefold increase in the transverse coherence length ξ_c(0) with an increase in Φ of more than four times as the praseodymium concentration increased to $z \approx 0.42$. The two-dimensional–three-dimensional (2*D*–3*D*) crossover point shifted upward in temperature. Conversely, to irradiation with low fluences (Φ \leq 10 19 e/cm²) or low praseodymium doping (*z* ≤ 0.39), irradiation with medium fluences or high praseodymium doping led to a non-monotonic dependence of $\xi_c(0)$ on the irradiation fluence, with characteristic maxima at $\Phi \sim (7-8) \times 10^{19}$ e/cm² and $z \approx 0.42$, likely due to the suppression of the superconducting characteristics.

Keywords: YBa2Cu3O7–δ; fast electrons; excess conductivity; single crystals; electron irradiation

1. Introduction

The data obtained during the investigation of the impact of high-energy electron irradiation or praseodymium doping on the magnetoresistive characteristics of high-temperature superconducting cuprates (HTSCs) are important experimental material, the processing of which makes it possible to achieve success in determining the microscopic mechanism of superconductivity and improving the functional characteristics of existing HTSC compounds [\[1](#page-8-0)[–19\]](#page-8-1). Superconducting, high-temperature, single crystals are the technological basis of fundamental research aimed at establishing the mechanisms regarding the interaction of layered structures with radiation [\[16](#page-8-2)[,17](#page-8-3)[,20\]](#page-9-0).

Irradiation with high-energy electrons makes it possible to create radiation defects while at the same time retaining the composition of the material. These defects change the electrical resistance in both normal and superconducting states [\[16–](#page-8-2)[20\]](#page-9-0). Doping with praseodymium also has a similar effect on the resistance of $YBa₂Cu₃O_{7–\delta}$, which creates impurity defects [\[6](#page-8-4)[,10,](#page-8-5)[18,](#page-8-6)[19](#page-8-1)[,21–](#page-9-1)[23\]](#page-9-2) without changing the content of labile oxygen [\[24](#page-9-3)[,25\]](#page-9-4). Comparing the resistance of electron-irradiated YBa₂Cu₃O_{7–δ} with the resistance of Y_{1–z}Pr_zBa₂Cu₃O_{7–δ} will allow us to better understand the difference in the ensemble of defects in both cases, especially in the region of the superconducting transition.

Citation: Khadzhai, G.; Goulatis, I.; Chroneos, A.; Feher, A.; Vovk, R. Comparative Analysis of the Irradiation with Medium Fluences of High-Energy Electrons and Pr Doping on the Fluctuation Conductivity of YBa2Cu3O7–^δ Single Crystals. *Appl. Sci.* **2024**, *14*, 6536. [https://doi.org/](https://doi.org/10.3390/app14156536) [10.3390/app14156536](https://doi.org/10.3390/app14156536)

Academic Editors: Gerard Ghibaudo and Roberto Zivieri

Received: 5 June 2024 Revised: 10 July 2024 Accepted: 21 July 2024 Published: 26 July 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

Considering the prospect of using high-temperature superconductors as supersensitive sensors and electric current transmission lines with low energy losses operating in the region of liquid nitrogen's boiling temperature, the creation of a so-called "controlled" defect structure [\[9,](#page-8-7)[10,](#page-8-5)[15\]](#page-8-8) in a superconductor has important fundamental and practical significance.

Compounds of the YBa₂Cu₃O_{7– δ} system are among the most promising HTSC materials because of the following reasons: (a) these compounds have a fairly high superconducting transition temperature, Tc \approx 90 K (higher than the boiling point of liquid nitrogen); (b) single-crystalline samples of these compounds are relatively easy to grow, and their physical properties can be varied quite easily by modifying the oxygen concentration; and (c) they hold technological importance so they need to be stable under extreme external influences.

The partial replacement of yttrium with praseodymium allows, unlike rare-earth elements, for a change in the Tc from the maximum value to 0 (antiferromagnetic insulator) while maintaining the degree of oxygen content at the optimal level (praseodymium anomaly). Thus, the application of electron irradiation or praseodymium doping makes it possible to tune the critical and electrical transport properties of $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals in a wide range.

Note that, despite intensive experimental studies of the influence of various kinds of external influences on electric transport in the YBa₂Cu₃O_{7-δ} system [\[1](#page-8-0)-10[,15](#page-8-8)-17,19-[24\]](#page-9-3), there is only a small amount of scientific work devoted to comparative studies of the influence of electron irradiation and Pr doping on the pseudogap and fluctuation conductivity anomalies. At the same time, according to contemporary ideas, it is these "unusual" physical phenomena observed in HTSC compounds in the non-superconducting state that are critical to understanding the microscopic nature of HTSC, which is presently not fully explained, in spite of more than three decades of systematical experimental work.

In previous studies [\[26\]](#page-9-5), we studied the impact of relatively low irradiation fluences from 1.4 to 8.8 \times 10¹⁸ e/cm², or of weak doping with praseodymium on the fluctuation conductivity (FC) and paraconductivity in $YBa_2Cu_3O_{7-\delta}$ single crystals with a stoichiometric composition. Here, we consider the effect of medium fluences (up to 100×10^{18} e/cm²) of irradiation with high-energy electrons or the effect of praseodymium impurities in a significant concentration range ($0.0 \le z \le 0.5$) on the fluctuation conductivity in $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals during the flow of a transport current in basic *ab*-plane.

2. Experimental Methods

The YBa₂Cu₃O_{7−δ} single crystals investigated in this study were grown by the melt solution method [\[1,](#page-8-0)[3,](#page-8-9)[5\]](#page-8-10). The crystals were subjected to an oxygen atmosphere at 430 \degree C for four days and this led to their saturation. The crystals contained twins, whose planes of which had a block structure. Resistivity measurements were taken with the standard 4-pin method. The measured crystal sizes were (1.5. . .2) \times (0.2. . .0.3) \times (0.01. . .0.02) mm³, where the third dimension was the c axis. To prepare crystals with partial replacement of Y by Pr, $Y_{1-z}P_{z}Ba_2Cu_3O_{7-\delta}$, Pr_5O_{11} was introduced to the initial mixture in the appropriate percentage.

The modes of growth and oxygen saturation of $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ crystals were the same as for undoped single crystals [\[5](#page-8-10)[,20\]](#page-9-0). Y_2O_3 , BaCO₃, CuO and Pr₅O₁₁ compounds were used in the crystal growth. A transport current of up to 10 mA passed through the largest sample size, where the typical distance of the potential contacts is 1 mm.

The grown single crystals exhibited characteristics of normal and superconducting states corresponding to a given oxygen and/or praseodymium content. The technological and experimental details for the synthesis of experimental samples, resistivity measurements and analysis of the transport properties were previously described [\[1](#page-8-0)[,3,](#page-8-9)[5,](#page-8-10)[19,](#page-8-1)[20\]](#page-9-0).

Electron irradiation with energies in the range of 0.5 to 2.5 MeV was employed at temperatures below 10 K. The irradiation fluence $\Phi = 10^{18}$ e/cm² by electrons with an energy of 2.5 MeV corresponded to a defect concentration averaged over all sublattices of 10^{-4} displacement per atom [\[26\]](#page-9-5). The measurement technique was the following: first, the temperature dependences of the resistivity of the sample were measured. The sample was the temperature dependences of the resistivity of the sample were measured. The sample was then cooled to 5 K and irradiated with electrons. The beam intensity was chosen such that the temperature of the sample during irradiation did not exceed 10 K. After irradiation, the sample was heated to a temperature of 300 K and, gradually lowering the temperature, the resistivity of the sample was measured. The same sample was successively irradiated the resistivity of the sample was measured. The same sample was successively irradiated at different fluences. To measure electrical resistance after irradiation in the temperature range of $4.2 < T < 300$ K, a specially designed helium cryostat was used. All electrical resistance measurements were carried out at a fixed temperature; temperature stability was about 5 mK. Temperature was measured with a platinum resistance thermometer.

3. Results and Discussion

In Figure 1a, the dependences $r_{ab}(T)$ obtained before and aft[er](#page-2-0) irradiation with fast electrons at fluences from 0 (curve 1) to 86.3×10^{18} e/cm² (curve 8) are shown. These dependencies were analyzed in previous work [27]. The electrical resistivity of $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals when the praseodymium content, z, changed from zero (curve 1) to $z = 0.5$ (curve 8) is shown in Figure 1b. As can be seen from Figure 1, in both cases, t[he](#page-2-0) curves are characterized by quasi-metallic behavior of electrical resistivity with a characteristic linear area of the dependence $\rho(T)$ at high temperatures. Both at maximum irradiation fluences and at maximum Pr content, the $ρ(T)$ curves acquired a characteristic S-shape, which indicates the appearance of a thermally activated region on the $p(T)$ dependences, which will be discussed in more detail below.

Figure 1. (a). Temperature dependencies $\rho_{ab}(T)$ of YBa₂Cu₃O_{7- δ} single crystals prior to and after irradiation with electrons at fluences 0, 13.1, 24.7, 38.9, 55.7, 68.1, 79.2 and 86.3 $\cdot 10^{18}$ e/cm²—curves 1–8, respectively. Inset: dependence of the critical temperature, Tc (squares), and electrical resistivity 1–8, respectively. Inset: dependence of the critical temperature, Tc (squares), and electrical resistivity r o, respectively, there are the temperature for properties for all samples. The context resistance of the man at room temperature, ρ(300 K) (circles), on fluence for all samples. (**b**). Temperature dependences r(T) of Y_{1–z}Pr_zBa₂Cu₃O_{7–δ} single crystals for z 0.0, 0.05, 0.19, 0.23, 0.34, 0.43, 0.48 and 0.50—curves 1–8, respectively. Inset: dependence of the critical temperature, Tc (red circles), and electrical resistivity at room temperature, ρ(300 K) (green circles), on the Pr concentration for all samples.

From Figure 1, it can be deduced that when the T dropped below T*, in the basal From Figure [1,](#page-2-0) it can be deduced that when the T dropped below T^{*}, in the basal plane, on the $\rho_{ab}(T)$ dependencies in the region of relatively high temperatures, an extended linear section was preserved even at for high irradiation fluences. Numerous theoretical models have been introduced to explain these dependences including the resonating valence band theory (RVB theory) [\[28\]](#page-9-7) and the nearly antiferromagnetic Fermi liquid (NAFL) model [\[29\]](#page-9-8).

In the RVB theory, scattering in HTSC compounds occurs through the interaction of carriers (spinons and holons) [\[28\]](#page-9-7). Herewith, the T dependence of the electrical resistivity additionally to the linear T term introduces an additional term, proportional to $1/T$ [\[30\]](#page-9-9), in both cases, as in longitudinal and as in transverse electrical resistivity: the interaction of carriers (spinons and holons) $\mathcal{E}(\mathcal{S})$ and the T dependence of the T depende In the RVB theory, scattering in HTSC compounds occurs through the interaction of carriers $\mathcal{L} = \mathcal{L}$

the interaction of carriers (spinons and holons) \mathcal{R} . Here with, the T dependence of the T depen

 \mathcal{L}^2 model \mathcal{L}^2 , scattering in HTSC compounds of the RVB theory, scattering occurs through

$$
\rho(\mathbf{T}) = \mathbf{A}\mathbf{T}^{-1} + \mathbf{B}\mathbf{T} \tag{1}
$$

From Figure 2 (note: irradiation fluences up to $\leq\!\!70\times10^{18}$ cm⁻² or a low level of Pr doping, $z < 0.25$), it was observed that the dependences of the products $\rho_{ab}(T)$ T on T^2 become close to linear.

Figure 2. Temperature dependencies of electrical resistivity in ρ⋅Т–Т2 coordinates in the ab-plane. **Figure 2.** Temperature dependencies of electrical resistivity in ρ·T–T² coordinates in the ab-plane. The curves' numbering is consistent with Figure [1.](#page-2-0)

For medium and high fluences of $\Phi > 100 \times 10^{18}$ cm⁻² or in the case of medium and heavily Pr-doped samples $z \ge 0.25$, the experimental curves $\rho_c(T)$ could not sufficiently be described by the dependence from Equation (1). described by the dependence from Equation (1). Figure 3 shows the dependence $\frac{1}{2}$ shows the dependencies of the linearity parameters $\frac{1}{2}$

Figu[re](#page-3-1) 3 shows the dependencies of the linearity parameters A and B in Equation (1) from fluence (Φ) or praseodymium concentration (*z*). from fluence (Φ) or praseodymium concentration (*z*).

Figure 3. A and B linearity parameters [Equation (1)] dependencies from (a) fluence (Φ) and **Figure 3. Figure 3. C** $\frac{1}{2}$ **c** $\frac{1}{2}$

As inferred from the figure, the linearity of the $\rho(T)\cdot T$ – T^2 dependence was directly related to the defectiveness of the structure of the experimental samples, since both the (linear) parameters increased rapidly by increasing Φ or *z*, i.e., by increasing the concentration of irradiation and impurity defects.

From Figure [4,](#page-4-0) it could be concluded that increasing Φ led to a rapid decrease in the interval of linearity or shift toward high temperatures (measurements were carried out up to 300 K); regarding the increase in *z*, the situation was even more diverse, and namely, for the experimental measurements to 300 K), regarding the intrease in 2, the strainbox was over interesting the number, it concentration number 8 (of the experimental measurements) there was no linearity (up to 300 K), and the derivative decreased by increasing the temperature. That is, there was to 300 K), and the derivative decreased by increasing the temperature. That is, there was α contradiction such that by (with) increasing defectiveness, the parameters of the linear dependence itself showed a contradiction such that by (with) increasing defectiveness, the parameters of the linear α dependence $\rho(T)$ ·T–T² increased, but the linear dependence itself showed a tendency to disappear due to the narrowing of the interval of its existence.

tration of irradiation and impurity defects.

Figure 4. Interval of linearity as a function of Φ or z for the cases of irradiation with different fluences of electrons or changes in praseodymium concentration. Numbers 1−8 correspond to the numbers of electrons or changes in praseodymium concentration. Numbers 1−8 correspond to the numbers of the curves in Figure [1.](#page-2-0)

As noted above, there were noticeable differences in the evolution of resistivity As noted above, there were noticeable differences in the evolution of resistivity curves under irradiation or doping with praseodymium. [Fig](#page-2-0)ure 1 reveals that irradiation resulted in an anomalously strengthened (in comparison to the change in composition [\[1](#page-8-0)[,16,](#page-8-2)[22\]](#page-9-10)) decrease in T_c in YBa₂Cu₃O_{7–δ}. Nevertheless, the nature of the change in the electrical and superconducting properties of HTSC with a change i[n](#page-8-0) composition [\[1,2](#page-9-10)2] and under the action of irradiation was somewhat different. The primary difference was for $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals with $T_c < 85$ K, where as a rule, a change in the shape of the $\rho(T)$ curves was observed from metallic to the so-called "S-shaped" with a characteristic thermally activated deflectio[n](#page-8-0) [\[1,](#page-8-3)[17,1](#page-8-6)8] (*z* > 0.2, Figu[re](#page-2-0) 1b); during irradiation, a similar "S-shaped" shape of the $\rho(T)$ curves was observed for $T_c < 35$ K ($\Phi > 60$ e/cm², Figu[re](#page-2-0) 1a).

of dielectric inclusions under the influence of irradiation because of the redistribution of oxygen between the $O(4)$ and $O(5)$ positions and the formation of local regions with a tetragonal structure. \overline{a} and \overline{b} positions with a formation of local regions with a structure. A key reason for the strong decrease in T_c in irradiated samples was the appearance

With increased fluence, the T_c decreased from~92 to~24 K, and ρ_{ab} (300 K) increased from ρ~158 to 384 µOhm·cm, respectively, which is consistent with previous studies [\[26](#page-9-5)[,30\]](#page-9-9). Clearly similar effects were avoided when supplemented with praseodymium $[1,18]$ $[1,18]$. The dependencies of *T_c* and ρ (300 K) on Φ and *z* are shown in the insets in Figure 1a,b.

As shown from Figure 1, below, for the characteristic temperature *T**, the dependencies for all $\rho_{ab}(T)$ curves were "rounded off", which may have been caused by the emergence of excess conductivity ∆σ*ab*. Lawrence and Doniach [\[13\]](#page-8-11) used the following relation for the fluctuation conductivity in the plane of layers in the immediate vicinity of the SC transition:

$$
\Delta \sigma_{ab} = \frac{e^2}{16\hbar d} \frac{1}{\sqrt{\left[\varepsilon(\varepsilon + r)\right]}} ,\tag{2}
$$

where *d* = 11.7 Å and is the interlayer distance [\[31\]](#page-9-11). $\frac{1}{31}$

transition:

$$
\varepsilon = \frac{T - Tc}{Tc} \ll 1; r = \frac{4\xi_c^2(0)}{d^2}.
$$
 (3)

Equation (1) describes a 2*D–3D* crossover that occurs in a certain temperature interval: when $\varepsilon \ll r \sigma_{ab}{}^{AL} \propto (\varepsilon r)^{-1/2}$ (3D mode), but at $\varepsilon >> r \sigma_{ab}{}^{AL} \propto \varepsilon^{-1}$ (2D mode). According to the theory [\[12\]](#page-8-12), the *2D–3D* crossover should happen when the theory [12], the *2D–3D* crossover should happen when

$$
T_0 = T_c \{1 + 2[\xi_c(0)/d]^2\},\tag{4}
$$

where it is assumed that $\alpha = 1/2$, i.e., the following:

$$
\xi_c(0) = (d/2)\varepsilon_0^{1/2}.\tag{5}
$$

Having determined the value of ε_0 and applying the literature data on the dependence of T_c and interplanar spacing on δ [\[31\]](#page-9-11), it was feasible to calculate the value ξ_c(0).

In Figure 5 are shown the $\Delta\sigma_{ab}(T)$ dependencies in $\ln\Delta\sigma(\ln \varepsilon)$ coordinates for different *r* values, experimentally derived from the following relation: Δσ*abexp*(*T*) = 1/ρexp(*T*) − 1/ρ*nab*(*T*), (6)

$$
\Delta \sigma_{abexp}(T) = 1/\rho_{exp}(T) - 1/\rho_{nab}(T), \qquad (6)
$$

before and after irradiation. With a temperature range between T_c and $\leq 1.1 T_c$ (depending upon the oxygen concentration), these dependencies were adequately approximated by straight lines with a slope angle of $\alpha_1 \approx -0.5$, thus indicating a three-dimensional character of fluctuation superconductivity in this temperature regime. by increasing the T, the rate of decrease in $\Delta \sigma$ increased significantly ($\alpha_2 \approx -1$). This is an indication of a change in the dimensionality of fluctuation conductivity (FC). This change corresponds to a 2D-3D crossover. Notably, in previous studies of the FC in YBa₂Cu₃O_{7- δ} HTSC systems of various compositions using the Kouvel–Fisher method [\[4](#page-8-13)[,6](#page-8-4)[,10\]](#page-8-5), a whole chain of crossovers was repeatedly recorded, and this was interpreted as a sequence of transitions of 1*D-2D*, 2*D-3D* and 3*D*–critical fluctuations and intermediate types between them.

Figure 5. (a). Dependencies $\ln\!\Delta\sigma(T)$ on $\ln\varepsilon$ for fluences 0 (circles) and 55.7×10^{18} e/cm² (squares) and **79.2** × 10¹⁸ e/cm² (inset (a)). The inset (b) shows the dependencies of ξ_c(0) on Φ. (**b**). Temperature dependencies of excess conductivity in the *ab*-plane for Y_{1−z}Pr_zBa₂Cu₃O_{7−δ} single crystals in ln∆σ-lnε coordinates. Inset (a) shows the dependence for $z = 0.48$. Inset (b) shows the dependencies of $\xi_c(0)$ on z. The curves' numbering is consistent with Figure [1.](#page-2-0)

Taking into account these results, we considered the following picture of superconducting pairing in HTSC. Fluctuation pairs, nucleated inside the CuO₂ planes at $T \leq T^*$,

led to an increase in *nsc*. Since at $T >> T_c$ the values of *nsc* and especially the $\xi_c(T)$ are very small, there is likely to be no interaction between the pairs. The corresponding electronic state of the fluctuation pairs can be considered as 0-D, which is not represented by the existing FC theories. At $T \leq T_{2D}$, fluctuation pairs begin to overlap, but still only within the CuO² planes, forming a 2*D* electronic state, which was described by the Mackie–Thompson regime (MT) contribution of the Hikami–Larkin (HL) theory [\[14\]](#page-8-14). At $T \leq T_{3D}$, the increasing ξ*c*(*T*) becomes greater than *d* and connects the conducting planes by paired tunnel interactions of Josephson type. Now, the fluctuation pairs interact through the whole volume of the superconductor and form a 3*D* electronic state, which is well described by the 3*D* contribution of the Aslamazov–Larkin (AL) theory [\[12\]](#page-8-12). In fact, only now is the system entirely ready to complete the transition to the superconducting state.

Note that for the ln∆s(lne) dependences obtained at maximum irradiation fluences (F = 7.92 and 8.63 \times 10¹⁹ e/cm²), a non-monotonic progression of the curves was observed, which may have indicated an additional crossover at temperatures $e \ge e_0$ with a sharp decrease in slope, α . This behavior was already observed previously in [\[8\]](#page-8-15) and may have indicated the possible presence of the so-called Mackie–Thompson (MT) regime of behavior of the temperature dependences of paraconductivity Δs in the system [\[14\]](#page-8-14).

In the 2*D* region, two-particle tunneling between layers is excluded, resulting in superconducting and the normal carriers being located directly in the planes of the leading layers. The dominant contribution to the FC in this regime is made by an additional contribution, justified by Mackie–Thompson [\[14\]](#page-8-14) and determined as a result of the interaction of the fluctuation pairs with the normal charge carriers. This contribution depends on the lifetime of fluctuation pairs and is determined by the processes of pairing for each specific sample. Importantly, the degree of heterogeneity of the sample structure has to be taken into account. According to [\[8\]](#page-8-15), for samples of a perfect structure:

$$
\sigma_{MT} = \frac{e^2}{8\hbar d(1 - \alpha/\delta)} \ln \left\{ \left(\frac{\delta}{\alpha}\right) \frac{1 + \alpha + (1 + 2\alpha)^{1/2}}{1 + \delta + (1 + 2\delta)^{1/2}} \right\} \varepsilon^{-1}
$$
(7)

Here,

$$
\alpha = 2[\xi_c(0)/d]^2 \varepsilon^{-1} \text{ and } \delta = 1.203(l/\xi_{ab}(0))(16/\pi\hbar)[\xi_c(0)/d]^2 k_b T \tau_{\phi}
$$
 (8)

are the communication and depairing parameters, respectively. Here, *l* is the mean free path, ξ_{ab} is the coherence length in the *ab*-plane and τ_{φ} is the existence time of fluctuation pairs. In the presence of inhomogeneities in the structure, the ∆σ(*T*) dependence is determined by the Lawrence–Doniach (LD) model [\[13\]](#page-8-11).

The dependence of the coherence length $\xi_c(0)$ on the fluence of electron irradiation is shown in the inset (b) in Figure [5a](#page-5-0).

On the main panels and inserts (a) in Figure [5a](#page-5-0),b shows the dependencies of excess conductivity in the *ab*-plane in ln∆σ-lnε coordinates for YBa₂Cu₃O_{7–δ} (Figure [5a](#page-5-0) and insert (a)) and for $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ (Figure [5b](#page-5-0) and insert (a)). The dotted lines show the approximation of the experimental curves by straight lines with slopes $\alpha_1 \approx -0.5$ (3*D* regime) and $\alpha_2 \approx -1.0$ (2*D* regime). Arrows show 2*D*–3*D* crossover points.

Insets (b) show the values of $\xi_c(0)$, calculated using Equation (5) for different Φ or *z*. It can be seen that ξ_c(0) passes through a maximum at $\Phi_m \approx 80 \times 10^{18}$ e/cm² (Figure [5a](#page-5-0)) or $z_m \approx 0.43$ (Figure [5b](#page-5-0)).

Figure [6](#page-7-0) shows the dependencies of $\xi_c(0)$ on T_c for all investigated samples. Dark squares show the data obtained previously for $YBa₂Cu₃O_{7–\delta}$ film samples at different volumes of δ [\[8\]](#page-8-15). As is known from the general theory of superconductivity (Bogoliubov–de Gennes—BdG [\[32\]](#page-9-12)), the relationship between $\xi_c(0)$ and T_c in superconducting compounds obeys the following relation:

$$
\xi_0 \sim \hbar v_F / [\pi \Delta(0)],\tag{9}
$$

$$
\xi_c(0) = G/T_c \tag{10}
$$

where $G = 2K\hbar v_F/(5\pi k_B)$ and the proportionality coefficient is $K \approx 0.12$.

gles). Squares—data [\[8\]](#page-8-15) for YBa₂Cu₃O_{7–δ} films. **Figure 6.** Dependencies of $\xi_c(0)$ on T_c for YBa₂Cu₃O_{7-δ} (circles) and for Y_{1-z}Pr_zBa₂Cu₃O_{7-δ} (trian-

The dependence $\xi_c(0)$ as a function of T_c is shown in Figure [6](#page-7-0) with the red solid peratures and praseodymium concentrations, obey to a large degree the general theory of superconductivity. Qualitatively similar behavior of analogous dependencies was ob-
 $\frac{1}{2}$ for our order of $H_{\alpha/2}$ (energy and T_1 ₂ T_2 T_2 T_2 T_3 T_2 T_4 T_5 T_6 T_7 T_8 T_9 T_9 at $T_c \ge 0$. K and 35 K, respectively. Note that for the mixo(inc) dependences obtained at maximum irradiation fluences ($\sqrt{7} = 7.92$ and 8.63×10^{19} e/cm²), a non-monotonic progression of the curves was observed, which may have indicated an additional crossover at temperatures $ε ≥ ε₀$ with a sharp decrease in the slope, α. This behavior was already line, which indicates that the pairing mechanisms in HTSC films, in this range of temserved for YBa₂Cu₃O_{7–δ} (circles) and Y_{1–z}Pr_zBa₂Cu₃O_{7–δ} (triangles) single-crystal samples observed previously in [\[8\]](#page-8-15) and may indicate the possible presence of the so-called Mackie– Thompson (MT) regime of behavior of the temperature dependences of paraconductivity $\Delta \sigma$ in a system [\[14\]](#page-8-14). Structural and kinematic anisotropy in the system can play a particular role [\[33](#page-9-13)[–59\]](#page-10-0).

4. Conclusions

The presented data and their analysis allowed us to draw a general conclusion that for optimally oxygen-doped YBa₂Cu₃O_{7–δ} single crystals, irradiation with medium fluences of high-energy electrons or an increase in the degree of doping with praseodymium leads to similar changes in the temperature dependences of electrical resistivity, $\rho(T)$, in the ab plane. In particular, there is a significant expansion of the temperature interval of excess conductivity $\Delta \sigma(T)$ existence. In both cases, there is a multiple increase in the transverse coherence length $\xi_c(0)$ and the 2*D*–3*D* crossover point significantly shifts by temperature. It was for the first time established that, in contrast to the case of irradiation with small fluences of high-energy electrons ($\Phi \leq 10^{19}$ cm⁻²) or with praseodymium doping to concentrations $z \leq 0.39$, irradiation with medium fluences or praseodymium doping at higher concentrations leads to a non-monotonic dependence of the transverse coherence length $\xi_c(0)$ from the critical temperature T_c , with characteristic maxima at $\Phi \sim (7-8) \times 10^{19}$ e/cm⁻² or $z \approx 0.42$, which may be associated with a suppression of superconducting characteristics.

Author Contributions: Conceptualization, R.V.; methodology, G.K. and A.F.; software, G.K.; formal analysis, G.K.; resources, A.F.; writing—original draft preparation, R.V. and G.K.; writing—review and editing, R.V., G.K., A.C. and I.G.; supervision, A.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Acknowledgments: An open access fee was paid for by the Imperial College London Open Access Fund.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Vovk, R.V.; Solovyov, A.L. Electric transport and the pseudogap in the 1-2-3 HTSC system, under all-around compression (Review Article). *Low Temp. Phys.* **2018**, *44*, 111–153. [\[CrossRef\]](https://doi.org/10.1063/1.5020905)
- 2. Friedman, T.A.; Rice, J.P.; Giapintzakis, J.; Ginzberg, D.M. In-plane paraconductivity in a single crystal of superconducting YBa2Cu3O7−x. *Phys. Rev. B* **1989**, *39*, 4258–4266. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.39.4258)
- 3. Jorgensen, D.; Pes, S.; Lightfoot, P.; Shi, H.; Paulikas, A.P.; Veal, B.W. Time-dependent structural phenomena at room temperature in quenched YBa₂Cu₃O_{6.41}: Local oxygen ordering and superconductivity. *Phys. C* **1990**, 17, 571–578. [\[CrossRef\]](https://doi.org/10.1016/0921-4534(90)90676-6)
- 4. Mendonca Ferreira, L.; Pureur, P.; Borges, H.A.; Lejay, P. Effects of pressure on the fluctuation conductivity of YBa₂Cu₃O₇. *Phys*. *Rev. B* **2004**, *69*, 212505. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.69.212505)
- 5. Petrusenko, Y.T.; Neklyudov, I.M.; Sleptsov, A.N.; Yakovlev, V.F.; Bondarenko, A.V.; Obolensky, M.A. Recovery processes in YBa2Cu3O7−^x single crystals after low-temperature irradiation. *Phys. B Condens. Matter* **1991**, *169*, 711–712. [\[CrossRef\]](https://doi.org/10.1016/0921-4526(91)90401-Y)
- 6. Borges, H.A.; Continentino, M.A. Pressure study of the paraconductivity of high T_c superconductors. *Solid State Commun*. **1991**, *80*, 197–199. [\[CrossRef\]](https://doi.org/10.1016/0038-1098(91)90180-4)
- 7. Solovjov, A.L.; Omelchenko, L.V.; Vovk, R.V.; Dobrovolskiy, O.V.; Kamchatnaya, S.N.; Sergeyev, D.M. Peculiarities in the pseudogap behavior in optimally doped YBa2Cu3O7−*^δ* single crystals under pressure up to 1 GPa. *Curr. Appl. Phys.* **2016**, *16*, 931–938. [\[CrossRef\]](https://doi.org/10.1016/j.cap.2016.05.014)
- 8. Solovjov, A.L.; Habermeier, H.-U.; Haage, T. Fluctuation conductivity in YBa2Cu3O_{7-v} films with different oxygen content. I. Optimally and lightly doped YBCO films. *Low Temp. Phys.* **2002**, *28*, 17–24. [\[CrossRef\]](https://doi.org/10.1063/1.1449180)
- 9. Vovk, R.V.; Vovk, N.R.; Khadzhai, G.Y.; Goulatis, I.L.; Chroneos, A. Effect of high pressure on the electrical resistivity of optimally doped YBa2Cu3O7−*^δ* single crystals with unidirectional planar defects. *Phys. B Condes. Matter* **2013**, *422*, 33–35. [\[CrossRef\]](https://doi.org/10.1016/j.physb.2013.04.032)
- 10. Pan, V.M.; Svechnikov, V.L.; Solovjov, V.F. YBa₂Cu₃O_{7-delta} single-crystal microstructure related to transport critical current density. *Supercond. Sci. Technol.* **1992**, *5*, 707. [\[CrossRef\]](https://doi.org/10.1088/0953-2048/5/12/002)
- 11. Timusk, T.; Statt, B. The pseudogap in high-temperature superconductors: An experimental survey. *Rep. Prog. Phys.* **1999**, *62*, 61–122. [\[CrossRef\]](https://doi.org/10.1088/0034-4885/62/1/002)
- 12. Aslamazov, L.G.; Larkin, A.I. The influence of fluctuation pairing of electrons on the conductivity of normal metal. *Phys. Lett. A* **1968**, *26*, 238–239. [\[CrossRef\]](https://doi.org/10.1016/0375-9601(68)90623-3)
- 13. Lawrence, W.E.; Doniach, S. Theory of layer-structure superconductors. In Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, Japan, 4–10 September 1970; Kanda, E., Ed.; Keigaku: Tokyo, Japan, 1970; p. 361.
- 14. Bieri, J.B.; Maki, K.; Thompson, R.S. Nonlocal effect in magnetoconductivity of high-Tc superconductors. *Phys. Rev. B* **1991**, *44*, 4709–4711. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.44.4709) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/10000138)
- 15. Vovk, R.V.; Obolenskii, M.A.; Zavgorodniy, A.A.; Goulatis, I.L.; Chroneos, A.; Biletskiy, E.V. Resistive investigation of pseudogap state in non-stoichiometric ReBa2Cu3O7−*^δ* (Re = Y, Ho) single crystals with account for BCS–BEC crossover. *J. Alloys Compd.* **2009**, *485*, L21–L23. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2009.05.132)
- 16. Siegrist, T.; Sunshince, S.; Murphy, D.W.; Cava, R.J.; Zahurak, S.M. Crystal structure of the high-*Tc* superconductor Ba₂YCu₃O_{9−δ}. *Phys. Rev. B* **1987**, *35*, 7137–7139. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.35.7137) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/9940981)
- 17. Bondarenko, A.V.; Prodan, A.A.; Petrusenko, Y.T.; Borisenko, V.N.; Dworschak, F.; Dedek, U. Effect of electron irradiation on vortex dynamics in YBa2Cu3O7−*^δ* single crystals. *Phys. Rev. B* **2001**, *64*, 092513. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.64.092513)
- 18. Akhavan, M. The question of Pr in HTSC. *Phys. B Condes. Matter* **2002**, *321*, 265–282. [\[CrossRef\]](https://doi.org/10.1016/S0921-4526(02)00860-8)
- 19. Solovjov, A.L.; Omelchenko, L.V.; Petrenko, E.V.; Vovk, R.V.; Khotkevych, V.V.; Chroneos, A. Peculiarities of pseudogap in Y0.95Pr0.05Ba2Cu3O7−^δ single crystals under pressure up to 1.7 GPa. *Sci. Rep.* **2019**, *9*, 20424. [\[CrossRef\]](https://doi.org/10.1038/s41598-019-55959-1)
- 20. Frishherz, M.C.; Kirk, M.A.; Zhang, G.P.; Weber, H.W. Transmission electron microscopy of defect cascades in YBa₂Cu₃O_{7−δ} produced by ion irradiation. *Philos. Mag. A* **1993**, *67*, 1347–1363. [\[CrossRef\]](https://doi.org/10.1080/01418619308225359)
- 21. Ashkenazi, J. A Theory for the High-*T c* Cuprates: Anomalous Normal-State and Spectroscopic Properties, Phase Diagram, and Pairing. *J. Supercond. Nov. Magn.* **2011**, *24*, 1281–1308. [\[CrossRef\]](https://doi.org/10.1007/s10948-010-0823-8)
- 22. Vovk, R.V.; Vovk, N.R.; Shekhovtsov, O.V.; Goulatis, I.L.; Chroneos, A. *c*-axis hopping conductivity in heavily Pr-doped YBCO single crystals. *Supercond. Sci. Technol.* **2013**, *26*, 085017. [\[CrossRef\]](https://doi.org/10.1088/0953-2048/26/8/085017)
- 23. Oduleye, O.O.; Penn, S.J.; Alford, N.M.; Lay, L.L.; Beales, T. Thermal cycling, critical current vs. strain, and finite element modelling of 1, 7, 19 and 37 filament Ag/Bi-Sr-Ca-Cu-O (BSCCO) tapes. *IEEE Trans. Appl. Supercond.* **1999**, *9*, 2621–2624. [\[CrossRef\]](https://doi.org/10.1109/77.785024)
- 24. Wang, Q.; Saunders, G.A.; Liu, H.J.; Acres, M.S.; Almond, D.P. Electrical resistance under pressure in textured Bi2Sr2CaCu2O_{8+v}: Enhancement of the energy gap and thermodynamic fluctuations. *Phys. Rev. B* **1997**, *55*, 8529–8543. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.55.8529)
- 25. Chroneos, A.I.; Goulatis, I.L.; Vovk, R.V. Atomic Scale Models for $RBa_2Cu_3O_{6,5}$ and $R_{1-x}Pr_{X}Ba_2Cu_3O_{6,5}$ Compounds (R=Y and Lanthanides). *Acta Chim. Slov.* **2007**, *54*, 179–184.
- 26. Chroneos, A.; Kolesnikov, D.D.; Taranova, I.A.; Matsepulin, A.V.; Vovk, R.V. Composition variation and electron irradiation effects on the fluctuation conductivity in Y1–*z*Pr*z*Ba2Cu3O7−^δ single crystals. *J. Mater. Sci. Mater. Electron.* **2020**, *31*, 19429–19436. [\[CrossRef\]](https://doi.org/10.1007/s10854-020-04476-3)
- 27. Khadzhai, G.Y.; Sklyar, V.V.; Vovk, R.V. Suppression of superconductivity in YBa2Cu3O7-δ single crystals upon irradiation with fast electrons. *Low Temp. Phys.* **2022**, *48*, 271–273. [\[CrossRef\]](https://doi.org/10.1063/10.0009548)
- 28. Anderson, P.W.; Zou, Z. "Normal" Tunneling and "Normal" Transport: Diagnostics for the Resonating-Valence-Bond State. *Phys. Rev. Lett.* **1988**, *60*, 132–135. [\[CrossRef\]](https://doi.org/10.1103/PhysRevLett.60.132)
- 29. Stojkovic, B.P.; Pines, D. Theory of the longitudinal and Hall conductivities of the cuprate superconductors. *Phys. Rev. B* **1997**, *55*, 8576–8595. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.55.8576)
- 30. Valles, J.M., Jr.; White, A.E.; Short, K.T.; Dynes, R.C.; Garno, J.P.; Levi, A.F.J.; Anzlowar, M.; Baldwin, K. Ion-beam-induced metal-insulator transition in YBa₂Cu₃O_{7−δ}: A mobility edge. *Phys. Rev. B* **1989**, 39, 11599–11602. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.39.11599) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/9947991)
- 31. Chryssikos, G.D.; Kamitsos, E.I.; Kapoutsis, J.A.; Patsis, A.P.; Psycharis, V.; Koufoudakis, A.; Mitros, C.; Kallias, G.; Gamari-Seale, E.; Niarchos, D. X-ray diffraction and infrared investigation of $RBa_2Cu_3O_7$ and $R_{0.5}Pr_{0.5}Ba_2Cu_3O_7$ compounds (R Y and lanthanides). *Phys. C Supercond.* **1995**, *254*, 44–62. [\[CrossRef\]](https://doi.org/10.1016/0921-4534(95)00553-6)
- 32. De Gennes, P.G. *Superconductivity of Metals and Alloys*; W.A. Benjamin, Inc.: New York, NY, USA; Amsterdam, The Netherlands, 1966.
- 33. Matthews, A.J.; Kavokin, K.V.; Usher, A.; Portnoi, M.E.; Zhu, M.; Gething, J.D.; Elliot, M.; Herrenden-Harker, W.G.; Phillips, K.; Ritchie, D.A.; et al. Temperature dependence of the breakdown of the quantum Hall effect studied by induced currents. *Phys. Rev. B* **2004**, *70*, 075317. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.70.075317)
- 34. Adamenko, I.N.; Nemchenko, K.E.; Tsyganok, V.I.; Chervanev, A.I. Interaction of quasiparticles and stationary states of superfluid solutions of helium isotopes. *Low Temp. Phys.* **1994**, *20*, 498–504.
- 35. Curran, P.G.; Khotkevych, V.V.; Bending, S.J.; Gibbs, A.S.; Lee, S.L.; Mackenzie, A.P. Vortex imaging and vortex lattice transitions in superconducting Sr2RuO⁴ single crystals. *Phys. Rev. B* **2011**, *84*, 104507. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.84.104507)
- 36. Randeria, M. Pre-pairing for condensation. *Nat. Phys.* **2010**, *6*, 561–562. [\[CrossRef\]](https://doi.org/10.1038/nphys1748)
- 37. Badoux, S.; Tabis, W.; Laliberte, F.; Grissonnanche, G.; Vignolle, B.; Vignolles, D.; Beard, J.; Bonn, D.A.; Hardy, W.N.; Liang, R.; et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. *Nature* **2016**, *531*, 210–214. [\[CrossRef\]](https://doi.org/10.1038/nature16983) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/26901870)
- 38. Kordyuk, A.A. Pseudogap from ARPES experiment: Three gaps in cuprates and topological superconductivity (Review Article). *Low Temp. Phys.* **2015**, *41*, 319–341. [\[CrossRef\]](https://doi.org/10.1063/1.4919371)
- 39. Solovjov, A.L. Chapter 7: Pseudogap and local pairs in high-Tc superconductors. In *Superconductors—Materials, Properties and Applications*; Gabovich, A.M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 137–170.
- 40. He, R.-H.; Hashimoto, M.; Karapetyan, H.; Koralek, J.D.; Hinton, J.P.; Testaud, J.P.; Nathan, V.; Yoshida, Y.; Yao, H.; Tanaka, K.; et al. From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions. *Science* **2011**, *331*, 1579–1583. [\[CrossRef\]](https://doi.org/10.1126/science.1198415) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/21436447)
- 41. Anderson, P.W. *The Theory of Superconductivity in the High Cuprates*; Princeton University Press: Princeton, NJ, USA, 1997; p. 446.
- 42. Emery, V.J.; Kivelson, S.A. Importance of phase fluctuations in superconductors with small superfluid density. *Nature* **1995**, *374*, 434–437. [\[CrossRef\]](https://doi.org/10.1038/374434a0)
- 43. Corson, J.; Mallozzi, R.; Orenstein, J.; Eckstein, J.N.; Bozovic, I. Vanishing of phase coherence in underdoped Bi₂Sr₂CaCu₂O_{8+δ}. *Nature* **1999**, *398*, 221–223. [\[CrossRef\]](https://doi.org/10.1038/18402)
- 44. Varma, C.M. Theory of the pseudogap state of the cuprates. *Phys. Rev. B* **2006**, *73*, 155113. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.73.155113)
- 45. Cava, R.J. Structural Chemistry and the Local Charge Picture of Copper Oxide Superconductors. *Science* **1990**, *247*, 656–662. [\[CrossRef\]](https://doi.org/10.1126/science.247.4943.656) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/17771881)
- 46. Chen, Q.; Kosztin, I.; Janko, B.; Levin, K. Pairing Fluctuation Theory of Superconducting Properties in Underdoped to Overdoped Cuprates. *Phys. Rev. Lett.* **1998**, *81*, 4708–4711. [\[CrossRef\]](https://doi.org/10.1103/PhysRevLett.81.4708)
- 47. Efetov, K.; Meier, H.; Pépin, C. Pseudogap state near a quantum critical point. *Nat. Phys.* **2013**, *9*, 442–446. [\[CrossRef\]](https://doi.org/10.1038/nphys2641)
- 48. Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. *Rev. Mod. Phys.* **1998**, *70*, 1039. [\[CrossRef\]](https://doi.org/10.1103/RevModPhys.70.1039)
- 49. Suzuki, M.; Watanabe, T. Discriminating the Superconducting Gap from the Pseudogap in Bi2Sr2CaCu2O8+*^δ* by Interlayer Tunneling Spectroscopy. *Phys. Rev. Lett.* **2000**, *85*, 4787–4790. [\[CrossRef\]](https://doi.org/10.1103/PhysRevLett.85.4787) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/11082652)
- 50. Habermeier, H.-U. In Proceedings of the ESF International Workshop on Superconductivity in Reduced Dimensions, Sulzburg, Austria, May 2010; p. 33.
- 51. Birgineau, R.J.; Shirane, G. Neutron Scattering Studies of Structural and Magnetic Excitations in Lamellar Copper Oxides. A Review. In *Physical Properties of High Temperature Superconductors I*; Ginsberg, D.M., Ed.; World Scientific: Singapore, 1989; pp. 152–212.
- 52. Gawalek, W.; Schueppel, W.; Hergt, R.; Andra, W.; Fischer, K.; Gornert, P. High critical currents in peritectically grown YBa2Cu3O7-x single crystals. *Supercond. Sci. Technol.* **1992**, *5*, S407–S410. [\[CrossRef\]](https://doi.org/10.1088/0953-2048/5/1S/094)
- 53. Ando, Y.; Komiya, S.; Segawa, K.; Ono, S.; Kurita, Y. Electronic Phase Diagram of High-*Tc* Cuprate Superconductors from a Mapping of the In-Plane Resistivity Curvature. *Phys. Rev. Lett.* **2004**, *93*, 267001. [\[CrossRef\]](https://doi.org/10.1103/PhysRevLett.93.267001)
- 54. Fehrenbacher, R.; Rice, T.M. Unusual electronic structure of PrBa₂Cu₃O₇. *Phys. Rev. Lett.* **1993**, 70, 3471–3474. [\[CrossRef\]](https://doi.org/10.1103/PhysRevLett.70.3471)
- 55. Liechtenstein, A.I.; Mazin, I.I. Quantitative model for the superconductivity suppression in R1-xPrxBa₂Cu₃O₇ with different rare earths. *Phys. Rev. Lett.* **1995**, *74*, 1000–1003. [\[CrossRef\]](https://doi.org/10.1103/PhysRevLett.74.1000)
- 56. Chu, C.W.; Hor, P.H.; Meng, R.L.; Gao, L.; Huang, A.J.; Wang, Y.Q. Evidence for superconductivity above 40 K in the La-Ba-Cu-O compound system. *Phys. Rev. Lett.* **1988**, *58*, 405–407. [\[CrossRef\]](https://doi.org/10.1103/PhysRevLett.58.405)
- 57. Loktev, V.M. Particularities of Superconductivity in 2D Metals: Transition from Cooper Pairing to the Local One. *Low Temp. Phys.* **1996**, *22*, 488–491.
- 58. Gusynin, P.; Loktev, V.M.; Sharapov, S.G. Phase diagram of a 2D metal system with a variable number of carriers. *Sov. ZETF Let.* **1997**, *65*, 182. [\[CrossRef\]](https://doi.org/10.1134/1.567308)
- 59. Kondo, T.; Hamaya, Y.; Palczewski, A.D.; Takeuchi, T.; Wen, J.S.; Xu, Z.J.; Gu, G.; Schmalian, J.; Kaminski, A. Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates. *Nat. Phys.* **2011**, *7*, 21–25. [\[CrossRef\]](https://doi.org/10.1038/nphys1851)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.