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Abstract: Photoresponsive drug delivery stands as a pivotal frontier in smart drug administration,
leveraging the non-invasive, stable, and finely tunable nature of light-triggered methodologies. The
generative pre-trained transformer (GPT) has been employed to generate molecular structures. In our
study, we harnessed GPT-2 on the QM7b dataset to refine a UV-GPT model with adapters, enabling
the generation of molecules responsive to UV light excitation. Utilizing the Coulomb matrix as a
molecular descriptor, we predicted the excitation wavelengths of these molecules. Furthermore, we
validated the excited state properties through quantum chemical simulations. Based on the results of
these calculations, we summarized some tips for chemical structures and integrated them into the
alignment of large-scale language models within the reinforcement learning from human feedback
(RLHF) framework. The synergy of these findings underscores the successful application of GPT
technology in this critical domain.

Keywords: drug delivery; photoresponsive molecule; GPT; TDDFT; RLHF

1. Introduction

Smart drug delivery systems, which have gained significant attention in pharma-
ceutical research, enhance patient health by ensuring targeted therapeutic delivery [1].
In recent decades, artificial intelligence (AI) has demonstrated its capability to address
complex challenges within pharmaceutical research, particularly in smart drug delivery,
from the observable to the micro-/nanoscale [2–4]. These advanced drug delivery systems
are designed to be self-regulating, responding to a range of stimuli associated with disease
pathology [5,6]. Light stands out as an external actuation method for therapeutic appli-
cations due to its non-invasive characteristics, stability in biological settings, adjustable
intensity, and unparalleled temporal and spatial precision [7–12].

It is widely used in smart delivery systems for various therapeutics, with different
wavelengths ranging from ultraviolet (UV, 100–400 nm) to visible (400–750 nm) and near-
infrared (NIR, 750–2000 nm) light eliciting different responses [13]. Short-wavelength
light, or UV light, has enough energy to alter chemical bonds and configurations, such as
breaking covalent bonds or changing cis–trans conformations, effectively triggering drug
delivery mechanisms [14,15]. Owing to these advantages, UV light is frequently used as a
stimulus in diverse research and applications [16,17].
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It is expected that deep learning will also be used in the solutions of more problems in
drug delivery, including the design of stimulus-responsive molecules [4,18]. The prediction
of temporal dynamics in drug delivery has been accomplished through the application of
convolutional neural networks and long short-term memory networks [19]. When deep
learning is used to solve molecular design problems in chemistry and materials, the lack
of specialized datasets often leads to task failure. Advancements in pre-training and fine-
tuning methods for large language models (LLMs) have facilitated the creation of chemical
molecules [20,21]. The potential utilization of the generative pre-trained transformer for
designing light-responsive molecules is significant, and there is currently limited research in
this specific domain.

Causal language models such as GPT, GPT-2, and GPT-3 are trained to calculate/predict
the probability of the occurrence of several words given all preceding words, making them
ideal for text generation [22–24]. After character-level RNNs and masked transformer
language models were used to capture Simplified Molecular Input Line Entry System
(SMILES) language patterns [21,25], Sanjar Adilov constructed a GPT-2-like language
model to learn SMILES representations and transfer knowledge to downstream molecu-
lar generative tasks [26]. In subsequent studies, GPT has attracted the attention of more
researchers [27,28]. Additionally, instruction tuning using human experience to enhance
large models has proven to be a highly effective method for improving the quality of
generated content. This approach includes the use of Direct Preference Optimization (DPO)
algorithms [29], Contrastive Preference Optimization (CPO) algorithms [30], and others.
Recently, researchers have also proposed Kahneman–Tversky Optimization (KTO) algo-
rithms to simplify dataset preparation for this purpose [31]. Our integration of GPT-2
with these techniques for applications in light-responsive drug delivery represents a very
promising and meaningful exploration.

The open-source dataset QM7b, provided by the Quantum Machine Project, encom-
passes a variety of physicochemical properties of molecules [32,33]. In order to ultimately
achieve the generation of light-responsive drug delivery molecules, these data were used to
fine-tune the pre-trained language model [33,34]. Among the physicochemical properties
in the dataset are the excitation energies of the molecules. Our UV-GPT inherits the trans-
former structure from GPT-2 and utilizes the tokenizer from SMILES-GPT, facilitating the
downstream generation of UV-responsive molecules. By integrating predictive modeling
and TDDFT calculations, we discovered that the fine-tuning UV-GPT model generates
molecules with UV photoresponsive properties. The molecules generated were positively
influenced by the pre-trained SMILES-GPT, as evidenced by the statistics on drug-like
properties and synthesizability. This evidence shows that our application of the combined
GPT and TDDFT calculations in designing stimulus-responsive molecules holds practical
value for drug delivery. Additionally, we explored various implementations of RLHF,
utilizing structural knowledge generated by computational chemistry as human feedback
to enhance the quality of the generated content. However, our current model does not fully
integrate the chemists’ extensive theoretical knowledge of chemistry.

2. Materials and Methods

Pre-trained language model and adapter tuning
We trained our model for 6 epochs on the SMILES strings of the QM7b datasets [32,33].

We used AdamW for optimization and cosine annealing for learning-rate scheduling. The
initial and final learning rates were set to 5 × 10−4 and 5 × 10−8, respectively. We kept the
default Adam hyperparameters and optimized the batch size (128) and maximum sequence
length (512).

Our SMILES tokenizer was pre-trained on SMILES-GPT. This transformer decoder
replicates GPT-2 except that during tokenization, it used the character-level byte-pair
encoding instead of byte-level encoding. We reserved 72 characters from the SMILES
alphabet as an initial vocabulary and supplemented the vocabulary with up to 1000 of the
most frequent merges. The model uses parameterized token and position embeddings,
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8 attention heads, and 4 attention blocks. With the embedding/hidden dimension of 512, it
has 13.4 M parameters.

Prediction model for excitation energy
The Coulomb matrix of the molecule was generated using DeepChem computation.

The training set and test set were divided in an 80:20 ratio. Implementation of Support
Vector Regression (SVR) with a quantum kernel was achieved with sklearn and qiskit,
while SVR with alternative kernels was implemented solely with sklearn.

Drug-likeness and evaluation metrics for generative molecules
Drug-likeness is a consideration when evaluating the generative molecules for pho-

toresponsive drug delivery. We utilized the quantitative estimate of drug-likeness (QED) as
a metric, as introduced in [35]. The QED metric yields a numerical score ranging from 0 to
1, where elevated scores correspond to an increased probability of drug-likeness.

The Synthetic Accessibility Score (SAscore) [36], used to assess the ease of synthesizing
drug-like molecules, rates molecules from 1 to 10 based on historical synthetic data and
molecular complexity. Fragment contributions and a complexity penalty form the basis,
derived from PubChem’s vast molecule database. Validation against expert chemists’
estimations showed strong agreement (r2 = 0.89). This method harnesses big data to
streamline and enhance the synthesis evaluation process in molecular design.

DFT and TDDFT simulation
Density functional theory (DFT) calculations were performed on the molecules using

ORCA 5.0.4 [37]. Optimization of molecules was performed at the PBE0/6 − 311G∗ level
of theory [38]. Time-dependent density functional theory (TDDFT) calculations were per-
formed at the PBE0/TZVP level [38,39]. The gas phase, water, and chlorobenzene solvents
were modeled using the implicit solvent polarizable continuum model (PCM) [40,41] with
Grimme’s D3 [42–44] dispersion corrections during optimization and TDDFT calculations.

RLHF
We utilized the transformer reinforcement learning package for reinforcement learning

with human feedback. In the fine-tuning process, we applied Direct Preference Opti-
mization (DPO), Contrastive Preference Optimization (CPO), and Kahneman–Tversky
Optimization (KTO) with the chemical knowledge datasets.

The default sigmoid loss was used in DPO, where the beta factor was set at 0.1.
Similarly, the loss type of CPO was sigmoid, and its beta factor was set at 0.1. The beta
factor in the KTO loss was set at 0.1, with a higher value meaning less divergence from the
initial policy. The desirable and undesirable losses of KTO are weighed by desirable weight
and undesirable weight, respectively. Both of them were set at 1.0.

The preference dataset used in DPO and CPO is a dictionary object with the keys
‘prompt’, ‘chosen’, and ‘rejected’. The binary signal dataset used in KTO is a dictionary
object with the keys ‘prompt’, ‘completion’, and ‘label’.

3. Results and Discussion
3.1. Generative Workflow for Photoresponsive Drug Delivery

Numerous studies have focused on utilizing AI-based databases to scale up, optimize,
and accelerate the development of nanocarrier drug delivery systems that are safe, effective,
and stable. Endogenous triggers like pH variations, hormone levels, enzymatic actions,
overexpression of biomarkers, glucose, or redox gradients are intrinsic to the body’s
disease state. These triggers can externally prompt or amplify drug release in affected
areas [6]. UV light’s high energy can modify chemical bonds, facilitating drug delivery
mechanisms. Its versatility makes UV a common stimulus in research and applications
for drug delivery. To design more effective UV-responsive drug delivery molecules, we
employed pre-trained language models, fine-tuned target molecule datasets, and used
machine learning predictive models of molecular excitation energies.

To date, no studies have established a methodology for applying GPT technology to
drug delivery molecules and validating its efficacy. Here, we opted for a transformer struc-
ture with adapter layers, specifically the GPT-2 model. Pre-trained on the PubChem dataset,
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this GPT-2 model aims to generate molecules with high drug-likeness and easy synthesis.
A SMILES tokenizer was developed by Sanjar Adilov, based on atomic dictionaries and
linked characters. The linked characters of molecular SMILES provide information about
chemical bonds and molecular configurations. The SMILES tokenizer also incorporates
Multi-Layer Perceptron (MLP) and attention mechanism networks. Our goal is to adapt a
pre-trained GPT for generating effective photoresponsive molecules using adapter layers.
Once this workflow is proven to work, we can integrate various pre-trained language mod-
els through Hugging Face. This workflow for generating stimulus-responsive molecules
via a pre-trained language model is shown in Figure 1.

Figure 1. The workflow for generating UV light-responsive molecules. This workflow includes an
LLM model based on GPT-2, a SMILES tokenizer, pre-training on PubChem datasets, fine-tuning
on UV molecule datasets, and a screening model incorporating the Coulomb matrix descriptor.
Molecules excited by ultraviolet light have the potential to become stimuli-responsive materials
in drug delivery systems. The dark-green areas represent the pre-trained transformer. The indigo
areas represent the pre-training of GPT-2 combined with the SMILES tokenizer on the PubChem
dataset. The orange-yellow areas indicate that a new adapter was fine-tuned using the ultraviolet
light-excited molecule dataset on the pre-trained GPT-2. The orange-red areas show the prediction
model, trained on the QM7b dataset and Coulomb matrix features, which predicts the properties of
molecules generated by the fine-tuned GPT-2.

The QM7b dataset provides excitation energies for molecules, which were utilized
as input for fine-tuning our UV-GPT and training our screening model. This open-source
dataset also includes the Coulomb matrix and physicochemical properties of molecules.
Prof. Alexandre Tkatchenko’s group shared the SMILES of molecules with us [32,33],
which are crucial for our adapter training and serve as the foundation of our workflow.
Our generative pre-trained transformer for UV light-responsive drug delivery (UVGPT)
utilized training datasets containing molecules with excitation energies ranging from 4.13
to 12.41 eV. Understanding the differences in the properties of various molecules based on
chemical bonds, atomic potentials, and molecular conformations is a direct manifestation of
the quantitative structure–activity relationship (QSAR) of molecules. Experienced chemical
researchers can design molecules with specific properties based on their intuition. Our
UVGPT learns the QSAR of UV light-responsive molecules from training datasets.
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3.2. Screening the Generative Molecules

After training our UVGPT on UV light-responsive molecules, a total of one thousand
molecules were generated by the model. Among these, 443 possessed valid chemical
structures processed with RDKit. Dylan M. Anstine and Olexandr Isayev [45] reviewed
generative methods in chemical sciences and proposed evaluation metrics. The methods
for calculating drug-likeness and SAscore, as outlined in their publications [45], were
employed in our research. QED estimated the drug-likeness of molecules using a machine
learning model trained on a dataset of drug-like compounds. Higher QED values suggest an
increased likelihood of drug-likeness. Similarly, the Synthetic Accessibility Score calculation
methods aimed to systematically assess the ease of synthesizing drug-like molecules, aiding
in prioritizing compounds for molecular design.

In the following workflow, we evaluated the excitation energy, drug-likeness, and
SAscore of these molecules, as illustrated in Figure 2. We utilized the Coulomb matrix of
molecules as the molecular descriptor in our prediction model. Support Vector Regression
(SVR) served as the predictive machine learning model. We methodically compared various
sets of parameters for SVR, encompassing different kernels (rbf, sigmoid, and quantum),
regularization parameters (from 0.01 to 80), and kernel coefficients (auto, scale, 0.8, 0.84,
and 2.3). Based on the Mean Squared Error (MSE) of both the training and test sets, our
predictive model selected the rbf kernel, a regularization parameter of 80, and a kernel
coefficient of 0.84. Prior to utilizing SVR for predicting the excitation energies of generative
molecules, we employed DeepChem to compute the Coulomb matrix of these generative
molecules. The results are shown in Figure 2a.

Figure 2. The excitation energy (a), drug-likeness (b), and SAscore (c) of generative molecules. These
molecules were generated by GPT-2, fine-tuned on the ultraviolet light-excited molecule dataset.
The excitation energy data in (a) are from predictions made by an SVM model. (b) Shows the
distribution of the drug-likeness scores of the molecules, obtained from DeepChem’s calculation of
the quantitative estimate of drug-likeness (QED) values. (c) presents the synthetic accessibility scores
of the molecules, calculated using RDKit, with higher values indicating that the molecules are easier
to synthesize.

When analyzing the density distribution plots of excitation energies depicted in
Figure 2a, we observe a range spanning from 5 to 11 eV, with the majority concentrated
between 8 and 9 eV. This distribution closely aligns with that of the training samples,
indicating UVGPT’s success in learning the QSAR from molecular data and facilitating
molecular design.

To refine the assessment of molecule excitation energies via precise TDDFT quantum
chemical calculations, we conducted additional screening of the molecules. Given that
drug delivery molecules, while not directly engaged in target binding at the lesion site,
still exert direct effects on the human body, drug-like characteristics are equally crucial for
the generated molecules. The parameter-tuned UVGPT inherited the pre-trained model’s
performance on PubChem, and the distribution calculated using the QED method is
illustrated in Figure 2b.

Based on the QED ranking, we identified the nine molecules with the highest degree of
drug-like properties, and their corresponding SMILES representations and QED values are
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shown in Figure 3. These nine molecules exhibited QED values ranging from 0.528 to 0.57.
Notably, the molecule with the SMILES notation OC1CC1OC(C)C demonstrated the highest
degree of drug-like properties and was absent from the PubChem database. Additionally,
the compound (1S,2S)-2-methylcyclopropan-1-ol in PubChem shared similarities with
OC1CC1OC(C)C. Both findings further contribute to the evidence demonstrating the
effectiveness of UVGPT.

Figure 3. The QED values and SMILES representations of nine selected molecules generated
by UVGPT.

Similarly, based on the density distribution results of the SAscore in Figure 2c, we
identified eight recommended molecules after filtering out mediocre results. The SAscore
values of these eight molecules ranged from 5.47 to 5.92. Notably, the molecule with the
SMILES notation C=CC=NSN=C achieved an SAscore value of 5.537, indicating its status as
a conjugated alkene. Additionally, the molecule with the SMILES notation CC(C(Cl)N)S=N
also achieved an SAscore value of 5.537, classifying it as a cumulene. These are shown in
Figure 4.

Figure 4. The SAscore values and SMILES representations of eight selected molecules generated
by UVGPT.

3.3. Quantum Chemical Calculations

To enhance our understanding and validate the outcomes generated by UVGPT, we
conducted quantum chemical simulations to compute the physicochemical properties of
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the screened molecules, focusing primarily on their excitation energies. Additionally, we
assessed the rationality and stability of the molecular structures within the chemical context.

To validate the excited state properties, vertical excitation by DFT calculations were
performed. As shown in Table 1, nearly all (16/17) generated molecules contained het-
eroatoms, including oxygen, sulfur, chlorine, and especially nitrogen, suggesting potential
for biological applications. Six molecules were saturated with a first excited energy greater
than 6.199 eV (putative corresponding maximum absorption peak wavelength < 200 nm).
Seven molecules exhibited a maximum absorption peak wavelength between 200 nm and
400 nm. The remaining five molecules were in the visible and near-infrared bands. Enhance-
ments in the generalization of predictive models could contribute to increased efficiency in
our smart workflow.

Table 1. Molecular structures and first excitation energies converted to wavelengths in the gas phase,
water, and organic solvents.

Molecular SMILES
First Excitation Energy Converted to Wavelengths

Gas Phase Water Organic Solvents

CCC(N)CC 190 178 181

OC1CC1OC(C)C 191 177 180

CCC(N)C(C)C 193 182 185

CC(CN)C(C) 193 181 184

CC(C)C(C)CN 197 187 190

CCC(N)CCO 199 181 185

COCC1CCN1 201 189 192

CNC=CCC 231 219 222

CC(C(Cl)N)S=N 226 305 218

C1=C=C=N1 235 235 235

NCCCC1SC1 251 246 247

C=CC=NSN=C 286 288 291

C=C=C=NN=C 468 445 451

CC1CC=C=C1 492 696 605

CC1C=C=NC1 631 644 648

CC1NC(C)=C=C1 733 481 529

CC1=NC=C=N1 749 736 739

Moreover, as discussed earlier, the molecule with the SMILES notation OC1CC1OC(C)C
is significant for drug application. Unfortunately, this molecule exhibits far-ultraviolet
absorption and is unlikely to be used in drug delivery applications. Additionally, we
did not find useful analogs in the databases. Therefore, we propose that modifying the
isopropyl group by introducing double bonds (e.g., aldehyde, nitro, etc.) could decrease
the excitation energy, potentially making it suitable for photoresponsive molecules with
special drug applications.

It is widely recognized that conjugated alkenes are more stable than cumulenes.
The cumulene molecule generated by UVGPT does not conform to an optimal structure
within the bounds of established chemical knowledge. For example, the molecule with
the SMILES notation CC1NC(C)=C=C1 (cumulene) lies several kcal/mol higher in Gibbs
energy compared to its isomer. Addressing this issue requires incorporating additional
chemists’ intuition and improving the quality of the datasets utilized.
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Additionally, the conjugated alkene with the SMILES notation C=CC=NSN=C exhibits
ultraviolet absorption properties. Its ability to undergo photochemical reactions upon UV
light exposure renders it potentially useful in drug delivery applications.

3.4. Fine-Tuning with Human Feedback

By combining the results of our quantum chemical simulations shown in Table 1
with the molecular structures shown in Figures 3 and 4, we have leveraged our chemical
knowledge to establish three structural criteria for identifying molecules with longer
excitation wavelengths:

• The molecule has a polyatomic ring structure.
• The atomic ring structure contains more than one unsaturated chemical bond.
• The ring structure includes non-carbon atoms, such as nitrogen (N), sulfur (S), oxygen

(O), etc.

We filtered the molecular data according to these three criteria, resulting in 121 molecules
that meet a weakened criterion and 251 molecules that do not meet the criteria at all. The
weakened criterion means satisfying at least two of the three conditions.

As shown in Figure 5, the KTO instruction fine-tuning relies on a binary signal dataset
labeled based on human experience. We labeled 121 molecules that meet the weakened
criterion as ‘True’ and those that do not meet the criteria at all as ‘False’, resulting in a
binary signal dataset of 372 entries. Additionally, the DPO and CPO algorithms rely on
a preference dataset, which consists of 121 molecules for the recommended samples and
another set for the rejected data. As noted by the proposer of the KTO algorithm, the
training set for KTO is much easier to obtain under these conditions. Our findings in our
application were consistent with this.

Figure 5. Instruction tuning with chemical datasets. The details of the pre-trained GPT-2 model are
provided, including the implementation process of RLHF, which involves KTO, DPO, and CPO. The
characteristics of the binary signal dataset and the preference dataset are also shown. In the training and
fine-tuning of the GPT-2 Peft model, the parameters in the orange-yellow area were used for training,
while the parameters of the other layers retained their pre-trained values. The KTO algorithm used
the binary signal dataset, while both DPO and CPO used the preference dataset. Refer to the Methods
section for descriptions of the binary signal and preference datasets. Labels in the binary signal dataset
are assigned by experts to the molecules as either True or False. In the preference dataset, experts select
recommended molecules and identify unreasonable molecules as restricted.

We further introduced a low-rank adapter based on the pre-trained GPT-2 to imple-
ment the fine-tuned model, aiming to make the generated molecular content more aligned



Pharmaceutics 2024, 16, 1014 9 of 11

with chemical experience and intuition. The structure of the fine-tuning model is shown in
Figure 5, in which we updated the parameters of the adapter within the RLHF framework.
The training parameters were primarily sourced from the relevant functional layers of the
GPT-2 attention mechanism. Additionally, we fine-tuned the GPT-2-based model using
KTO, DPO, and CPO trainers, respectively. We then counted the number of molecules in the
generated content that satisfied the aforementioned weakened condition, with the results
shown in Table 2. It was found that CPO produced a higher total number and proportion
of valid molecular data. Although the dichotomous dataset for the KTO algorithm is more
readily available, the quality of its generated content was significantly inferior to that
produced by the other models in our scenario. Nonetheless, we recognize the potential of
these three types of trainers, along with additional RLHF algorithms, for developing more
effective language models for our task.

Table 2. Analysis of the generated content from the RLHF fine-tuned model

RLHF Trainer
Number of Molecules Satisfying Different Conditions

At Least Two Judgments Ratio of Two Judgments

KTO 16 21.05%

DPO 124 35.13%

CPO 131 43.96%

4. Future Work

Previous studies have highlighted the limitations of UV-responsive materials for in
vivo applications, citing concerns like potential cellular photodamage and inadequate
penetration [10]. In subsequent investigations, researchers have turned their attention
to visible and near-infrared light-responsive molecular materials [11,46]. However, the
development of molecules utilizing LLM modeling for this purpose remains hindered
by the absence of high-quality datasets. We aim to tackle this challenge to enhance the
applicability and credibility of our workflow for medical clinical applications.

The remarkable success of the generative pre-trained transformer in various applica-
tions has garnered significant attention from both academia and industry. Communities
like AdapterHub and Hugging Face have amassed numerous open-source pre-trained
transformer structures, facilitating the design of light-responsive molecules for drug de-
livery systems. This diversity of molecular generation tools and content enhances the
applicability of these technologies. Moreover, these advancements can seamlessly integrate
into the workflows discussed in this paper.

While our current models are proficient in inheriting properties from training datasets,
they have yet to reach a level of innovative insight that could rival human chemists. There
is a need to further explore methods for refining the model parameters using additional
knowledge and more effective techniques. Reinforcement learning from human feedback
(RLHF) methods provide an exciting opportunity to incorporate more theoretical chemical
knowledge into generating high-quality molecular content. To achieve this goal, we need
to invest further efforts into designing the entire algorithmic framework of the generative
pre-trained transformer (GPT) from scratch.
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