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ABSTRACT 

Superresolution Techniques and related Signal Subspace Algori-

thms have as their main objective the location of a number of emitting 

sources using an array of sensors (e.g. antennas). However, these 

techniques fail if some of the incident signals are correlated, a situation 

which arises in signal environments where smart jamming or multipath 

propagation is present. Also, signal subspace algorithms need to have a 

priori knowledge of the number of signals present in order to function 

properly. The research reported on in this thesis is concerned with the 

development of new techniques for overcoming the problems just 

referred to. 

Firstly, techniques for modelling the input signals in a general 

environment have been developed, which take into account both 

spherical wave propagation as well as the existence of multipath. 

Then, a new algorithm called Adaptive Signal Parameter 

Estimation and Classification Technique (ASPECT) is introduced 

which, unlike existing Superresolution Techniques, provides correct 

information concerning: 

• the number of signals incident to the array, 

• the direction of arrivals (azimuth and elevation angles), 

• the relative powers and phases; 

even in a correlated (coherent) signal environment. Its operation is 

based mainly on mapping the array manifold on to an error surface and 

then searching that surface for the solution. 

The algorithm is examined both for plane and spherical wave 
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propagation, for different levels of noise and for both correlated and 

uncorrelated sources with widely differing power levels. The results 

obtained so far indicate that ASPECT correctly detects, resolves and 

estimates the directions of incident signals and is robust with respect to 

noise level. 

Finally, the ideas of Signal Subspace Algorithms are extended to 

steered vector array processing in order to provide weight vectors 

• for complete interference cancellation 

• which do not suffer from power inversion problems 

• are susceptible to pointing errors and 

• provide deep distinct nulls in the directions of interferences with 

the ability to resolve two interferences located close together. 

Simulation results support the theory, and a small modification of 

ASPECT makes it appropriate for functioning in steered vector 

adaptive arrays. 
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CHAPTER 1 

INTRODUCTION 

By distributing a number of sensors (transducing elements) in a 3-

dimensional cartesian space, an array is formed; the region over which 

the sensors are distributed is called the aperture of the array. The 

general array processing problem is the obtaining of information about 

a signal environment from the waveforms received at the array elements 

{Figure 1.1), where the signal environment consists of a number of 

emitting sources plus noise. These emitting sources, in the case of radar-

based systems, are often targets which either reflect transmitted signals 

(as in active radars) or emit their own signals, (cis in passive radar). In 

situations involving the use of sonar and seismic signals the problems 

are essentially the same as those encountered in the case of radar. 

An important topic in the array processing problem is concerned 

with interference rejection. Since the emitting sources are distributed in 

space the array can perform both spatial and temporal filtering in order 

to optimize the reception of a signal from a desired source (desired 

signal). This can be achieved by using an array-pattern-forming-

network {Figure 1.2a) so as to place relatively high gain in those 
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FIGURE-1.1 

ARRAY PROCESSING PROBLEM 

T 

: denotes an array element 

: denotes an emitting source 

: denotes a reflecting surface 

PROBLEM: USING A NUMBER OF SENSORS ESTIMATE SIGNAL ENVIRONMENT 

IN THE PRESENCE OF NOISE 
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directions and frequencies which contain the desired signal and at the 

same time place nulls in the directions and frequencies of the remaining 

unwanted (interfering) sources. 

If the signal environment is known then the pattern-forming 

network can be fixed and the array response pre-determined. However, 

in practice the signal environment is often unknown and may vary with 

time or change its structure (i.e. the turning on and off of certain 

sources) and thus a very versatile scheme must be used which leads to 

the concept of adaptive arrays. In adaptive arrays there is an adaptive 

processor which controls the pattern-forming network according to some 

performance criterion [Figure 1.26). 

Another array processing problem is concerned with spatial 

spectrum estimation and identification. With problems of this type, the 

array detects the number of directional signals present in the array 

environment and estimates their parameters; such as location, power, 

cross correlation etc. Classical spatial spectral estimation techniques are 

based on the Fourier transform (Conventional Beamformer). The main 

drawback of the Fourier methods is that they offer limited resolving 

capabilities. Thus, in the last decade the so called High Resolution 

Methods have been introduced, their main object being to improve the 

resolving capabilities by using a model for the signals better than that 

used by Fourier methods. These methods have given fresh impetus to 

the array processing problem by dealing with the question of the 

resolution of the arrays in such a way that there is elimination of the 

effects of Signal-to-Noise-plus-Interference Ratio (SNIR) on resolution, 

in contrast to the conventional methods where the resolution is limited 

by noise. 

Recently, the new class of processing techniques called High 

Resolution Adaptive Array Processing [GAB-80], [GAB-86], [GA2-86] 
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has been created by merging the objectives of both the above mentioned 

classes. The new class relies heavily on Adaptive Array Techniques, 

Modern Estimation Theory and Parallel Computer Processing. In 

general, the aim of High Resolution Adaptive Array Processing is to 

isolate one source and, in addition, to provide estimates of certain other 

parameters such as the number of interferences present and their 

directions etc. thus giving solutions to many physical problems arising 

in radar, sonar, geophysics etc. 

The research reported on in this thesis is concerned with some 

important questions in this general area. 

1.1. HIOSTOIRDCAL PERSPECTIVES 

Early work in array processing for interference suppression was 

carried out at the MIT Lincoln Laboratory in 1963 [ALL-63]. This work 

was concerned with a non-adaptive interference canceller which could 

handle one source at a time. The basic idea was to use a main antenna 

to look at the desired signal and a second antenna to look at the 

interference and then to subtract the output of the second antenna from 

the main antenna, with a proper phasing being employed. 

Although the term ^''adaptive arrays" was first introduced by Van Atta 

in 1959, the first papers on adaptive arrays were probably those 

published in 1964 in a special IEEE issue on Antenna and Propagation 

1964. In 1966 the foundations of array processing and particularly 
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adaptive array processing were established in two papers: by Widrow 

[WID-66] and Applebaum [APP-66]. The paper by Widrow introduced 

a new approach for controlling the weights of an adaptive filter and the 

paper by Applebaum presented a sidelobe canceller capable of handling 

multiple jamming sources by using the concept of a correlation feedback 

loop (known today as Applebaum^s loop), for maximizing the signal-to-

noise ratio (SNR). Applebaum's sidelobe canceller does, however, need 

prior knowledge of the signal directions and uses a high gain antenna as 

the main channel. In general, in adaptive arrays, there is however no 

need for prior knowledge of the directions of the sources, nor is there a 

need for use of a high gain antenna. The sidelobe canceller approach is 

thus not very general. 

The first paper on General Adaptive Arrays was published the 

following year (1967) by Widrow et al [WID-67] who applied the ideas 

contained in his previous paper [WID-66] to develop an adaptive array 

system. Widrow's work was epoch making and it was based on the 

minimization of the mean square error between the desired signal and 

the array output. This approach has come to be known as the Least 

Mean Square (LMS) algorithm. Applebaum's loop and LMS algorithm 

have two common points: both use the array covariance matrix in order 

to derive their adaptive weights and both converge towards the same 

steady state weight vector which is the WIENER-HOPF solution [HUD-

81], [MON-80]. 

An attractive alternative to the LMS algorithm was introduced in 

1974 by Reed, Mallet and Brennan [REE-74] which overcomes the 

sensitivity of the LMS-type algorithm to eigenvalue spread. The Reed-

Mallet-Brennan approach has come to be known as the Sample Matrix 

Inversion (SMI) algorithm. In the SMI algorithm the optimum weights 
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are found by estimating the covariance matrix and then solving a linear 

system of equations. Reference [MAR-86] provides a detailed set-review 

of references in the area of adaptive arrays. 

One of the main problems with conventional adaptive arrays is 

related to their inability to resolve two sources which are positioned 

close together. This is illustrated in Figure 1.3a, which shows 

simulation results obtained with a linear array of 5 isotropic uniformly 

distributed elements. This inability is imposed by the fact that the 

resolution of adaptive arrays is limited by the SNR. This is demon-

strated in Figure 1.36 in conjunction with Figure 1.3a., which shows 

that if SNR is lOdB then the array is unable to resolve the two signals 

incident from directions 30° and 35° correspondingly (Figure 1.3a); with 

a SNR of approximately 30dB {Figure 1.36) the two sources of Figure 

1.3 a can be resolved. The inability of an array to resolve sources that 

are close together when noise is present gave rise to a new class of 

techniques that have been used for the location of emitting sources 

[MER-81]. These techniques are called High Resolution (or Super-

resolution) techniques (see for instance [SCH-86], [BUR-75], [CAP-69], 

[JOH-82], [TUF-83], [HUD-85], [WAX-85], [ROY-86]). Two popular me-

thods belonging to this new class are the so called Maximum Likelihood 

Method (MLM) which is based on the work of Capon [CAP-69] on 

frequency-wavenumber analysis, and the Maximum Entropy Method 

(MEM) of Burg [BUR-75]. Capon's method is based on the minimiza-

tion of the output power subject to the constraint that the inner pro-

duct of the weight-vector and Source Position Vector is equal to 1. On 

the other hand. Burg's method is based on an iterative search technique 

which maximizes the entropy subject to a number of constraints. 

Perhaps the most important High Resolution Techniques cur-
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FIGURE-1.3 : ADAPTIVE ARRAY RESOLUTION LIMITATION DUE TO SNR 
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rently being examined are the so called Signal Subspace techniques. 

Aspects relating to techniques of this kind go back to 1795 when Baron 

de Prony published his work on the fitting of superimposed exponentials 

to data. The Signal Subspace approach was first introduced formally by 

Schmidt 1981 [SCH-81] in narrow-band array processing problems and 

rediscovered independently by Bienvenu and Kopp [BIE-81]. In 1983 Su 

[SU-83] extended the Schmidt algorithm to the broadband case. 

Pisarenko [PIS-73] had solved the time series version counterpart 

problem in a similar way to that of (but earlier than) Schmidt. 

The Signal Subspace approach to high resolution involves two 

main stages of processing. In the first stage a covariance matrix of the 

data at the sensors of the array is formed and in the second stage an 

eigenvector decomposition is performed (see for example MUSIC 

algorithm [SCH-81], [SCH-86]). By the eigenvector decomposition, the 

observation space is partitioned into two disjoint subspaces: 

• the Signal Subspace (SS), with dimension equal to 
the number of sources, spanned by the Source 
Position Vectors (SPV); 

• the Noise Subspace (NS), with dimension equal to 
the number of sensors, minus the number of 
sources. 

Thus, every vector belonging to the NS is orthogonal to each SPV. The 

signal subspace approach offers higher resolving power and less 

ambiguity than other high resolution methods including the MLM 

technique of Capon and the MEM method of Burg. This can be seen, 

for example, in the comparative computer simulation studies carried 

out by Johnson and Miner [JOH-86] where; 

(:) the MLM was capable of resolving two sources 
with 10° separation, provided the SNR was 
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sufficiently high, but it was unable to do so for 
sources with 5° separation; 

(ii) the MEM produced no usable results and 
(lit) the MUSIC algorithm (a signal subspace 

technique) produced results in every considered 
situation. 

Thus, signal subspace techniques, which have been used mainly in 

estimating the directions of emitting sources by employing a spatial 

array, offer asymptotically "infinite" resolving power capabilities, with 

limitations imposed only by the limited observation time and the 

inaccurate modelling of the medium [BIE-85]. 

Introductory, material for general high resolution estimation can be 

found in [KAY-88], [MRP-87]. 

1.2 PROBLEM FORMULATBON 

From the previous discussion it is obvious that the main interest 

lies in two problems; these are illustrated briefly in Figure 1.4. 

The first problem addressed in this thesis is concerned with the 

source location problem and the use of Signal Subspace techniques. 

It has been mentioned that high resolution methods and parti-

cularly Signal Subspace techniques can handle the source location 

problem. This is true as long as the present signals are not correlated 

(coherent). If some of the incident signals are correlated (coherent), then 

all known existing signal subspace techniques fail. This is a serious 

limitation since there are many situations in which signal correlation 
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FIGURE-1.4 
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exists. Two common examples are those where smart jamming exist 

and muHipaih propagation is present. The nature of the failure of 

existing techniques is illustrated in Figure 1.5 where a linear array of 5 

isotropic elements is considered and three signals, two of which are 

assumed correlated, are present. Figure 1.5, shows that although the 

Signal Subspace algorithm (MuSIC) correctly indicates the location 

(direction) of the uncorrelated source, it fails completely to indicate 

even the existence of the two correlated sources. 

In addition to their inability to operate with correlated signals, 

signal subspace algorithms also require prior knowledge of the number 

of signals present in order to be able to function correctly. 

Thus, at this time much effort is being devoted to the question of 

handling correlated (multipath) sources. In order to rectify this 

'breakdown' of high resolution and particularly signal subspace techni-

ques when signal correlation (or coherence) is involved, a number of 

new techniques have been developed. The most significant of those new 

techniques are based on the idea of subaperture sampling or spatial 

smoothing discovered originally by Evans, Johnson and Sun [EVA-81] 

and independently rediscovered and improved by Shan, Wax and 

Kailath [SHA-85], [SH2-85]. The Spatial Smoothing technique is based 

on defining a number of subarrays and for each subarray the covariance 

matrix is formed. Then the average covariance matrix R is 

estimated as follows: 

^ No. of subarrays'^^ 
i 

After this, the next stage in the process is to use the previously 

developed MuSIC algorithm [SCH-86] to provide the location of the 
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FIGURE —1.5 (ASSUMING SOURCES S1 and 82 ARE FULLY CORRELATED) 
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sources. At this time, to the author's knowledge, the Shan, Wax and 

Kailath technique is the only significant method to have been published 

which handles correlated sources. However, this method can only be 

applied to linear arrays with uniformly spaced identical sensors. In 

addition, it provides a reduction of array aperture which implies a 

reduction in resolving power. Thus the Shan, Wax and Kailath 

technique is not very satisfactory. 

The research reported on in this thesis (see Chapter 3 and 4) is 

concerned with new techniques which are applicable to general non-

linear arrays. 

The research aims at the development of new techniques which 

will have a dual function: to provide satisfactory results for the signal 

environment where the existing superresolution techniques work and, in 

addition, to overcome the problems of existing Signal Subspace 

techniques just referred to above. 

The general problem addressed in this thesis is concerned with 

processing the output of an array of sensors for the general environment 

in which 

• there is an array of sensors with no helpful 
symmetry to be obtained from the suitable 
disposition of the sensors. 

• the number of sources is a priori unknown 
(although it is assumed that the number of such 
sources is less than the number of elements in the 
array), 

• multipath (correlated) propagation may be 
involved; 

• there are unknown noise effects. 

The general aims are to process the output of the array in order to 

estimate parameters such as the number of signal sources, their 
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locations, their power etc, in the presence of noise. 

In Chapter 3 the theoretical framework of a newly developed 

algorithm, called ASPECT, is set out. This algorithm is capable of 

handling both correlated (coherent) and uncorrelated (uncoherent) 

sources and is general in that it is applied to a general array geometry 

(not just to linear array). The results of computer simulations of 

applications of ASPECT algorithm are given in Chapter 4 and the 

superiority of the results, which confirm the validity and generality of 

ASPECT algorithm, is discussed. 

The second problem addressed in this thesis (Problem 2, Figure 

1.4) is concerned with observing a so-called wanted^'' emitting source in 

the presence of other "unwanted" (interfering) sources and noise. This is 

a well known problem with a well-known solution, the so-called Wiener-

Hopf solution (e.g. see [HUD-81]). If the direction of the desired signal 

is known, or can be measured, then the problem can be handled by 

steered vector adaptive arrays. However, steered vector adaptive arrays 

have a number of drawbacks, depending on the presence or otherwise of 

the desired signal. Two main drawbacks of the steered vector adaptive 

array approach are the power inversion problem and the problem due to 

pointing errors. If the desired signal power at the input of the array 

increases, this results in a reduction of the desired signal power at the 

output of the array, which may result in its total cancellation. This is 

known as the power inversion problem. On the other hand, pointing 

errors occur when knowledge about the direction of the desired signal is 

inaccurate. In addition steered vector arrays always allow interference 

to pass at the output thus contaminating the desired signal. 

Furthermore, they are incapable of providing information about the 

directions of the unknown interferences. In Chapter 5 a new approach is 
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adopted in which the concepts of signal subspace methods are extended 

into conventional steered vector adaptive arrays in order: 

• to analyze the behaviour of the array and highlight 
the above problems; and 

• to present a new algorithm capable of isolating a 
desired signal in the presence of unknown 
interferences and at the same time provide 

i) complete interference cancellation and 
ii) the interference locations. 

The new algorithm although still susceptible to 
pointing errors does not suffer from power inversion 
problems. 

The approach is different in important ways from that put forward 

relatively recently by Citron and Kailath [CIT-84]. 

Following this a modification of the ASPECT algorithm is presented. 

By this modification it is then possible to use the so-modified ASPECT 

algorithm to obtain information relating to the direction of unknown 

interferences even in correlated situations. 

In Chapter 6 simulation results of the new algorithms are 

presented showing that the proposed processor: 

• provides the complete cancellation of unknown 
interferences at the output of the array; 

• provides complete information about the location 
of interfering sources 

• does not suffer from power inversion problems; 
• offers less susceptibility to pointing errors. In the 

case of the ASPECT algorithm, the pointing errors 
are eliminated. 

Some conclusions together with suggestions for further work are 

presented in Chapter 7. 

In Chapter 2, which follows, some essential notation is introduced 

and the signals forming the input to the adaptive array are formulated. 
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A general signal model, which takes into account both spherical wave 

and multipath propagation, is developed and important aspects of the 

structure of the covariance matrix are discussed. Following this, noise 

models are formulated and the concepts of the array manifold and array 

manifold dimensionality are introduced and defined. The material 

presented in Chapter 2 is used extensively in later chapters of the thesis. 
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CHAPTER 2 

FORMULATION OF ARRAY INPUT 
SIGNALS 

In this chapter some basic material relating to array processing is 

presented. This material is essential for the analysis given in the 

chapters which follow. The mathematical formulation of the signal 

environment is defined, from which the signal structure of the array can 

be determined in terms of the geometrical configuration of the array for 

both spherical wave and plane wave propagation. Finally, the 

correlation functions, the noise quantities and the concepts of array 

manifold and array manifold dimensionality are defined. 

2.1 NOTATION : ENVIRONMENT STRUCTURE 

In the following, both lower and upper case symbols are used to 

represent scalars, underlined symbols are used to represent vectors, and 

BOLDFACE symbols are used to represent matrices. The symbols T 

and H when used as superscripts of vectors or matrices are used to 

indicate transposition and complex conjugate transposition,respectively. 
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The subscript k is used to indicate the sensor of the array and this 

sensor is considered to be positioned at a specific point, in space. 

The subscript » is used to indicate the source which is considered to 

be positioned at a point ^ in space. A double subscript is taken to 

represent the direction from the point specified by the first subscript to 

the point specified from the second one; for instance the double 

subscript of indicates that the vector k has direction from the point 

fj- to the point if.. 

The signal environment is assumed in general to be composed of 

both directional and isotropic signal sources (non-directional). The 

signal of directional sources are represented by: 

m^(t) for . D] and i^DQ.K'^ (2.1) 

where D is the number of sources. The structure of the signal of a 

directional source can be considered to involve both amplitude and 

phase modulation of a carrier. That is, the signal m-(t) emitting from 

the source can be considered to be: 

- A-(t).cos[ 2TTfot + hi(t) + a,- ] (2.2) 

where / i ;( t) and h-{i) represent slowly varying signals that modulate 

the amplitude and phase respectively of m^(f), while the combined 

isotropic plus thermal noise at each sensor element of the array can be 

modelled by: 

nf.(t) = B^(t).cosl 2Trfot + b j (2.3) 

ikG[i, ..., A^], k,N^K'^ , N ia the number of sensors 
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In Equations 2.2 and 2.3 the modulations A^(t), hi(t) and are 

assumed to be zero mean sample functions of independent, ergodic, 

random processes. Since the noise terms n,^(t) are considered to be 

bandlimited white noises processes, B). has a Rayleigh distribution. In 

addition the independent random variables are considered uni-

formly distributed on (0,2%) and are included to ensure stationarity. 

2.2 SPHEiRflCAL WAVE MODELLING 

Consider a source current (a time-varying current or charge) 

located, as shown in Figure 2.1, in a spherical coordinate system, 

producing an electromagnetic field. It is well known [KRA-81] that the 

phasor field can be expressed by: 

E = 
jufie 

- V ( V . X ) - j i ^ A J = 4 ( V . x 4 ) 

where 

^ is the electric field vector _E—{Er,Eg,E^) 

^ is the magnetic field vector 

H,e are constants (permeability and permiiivity 

respectively) 

(2,4) 

Thus, the electromagnetic field transmitted by a source has six 

components. Depending on the nature of the source, some of the 

components may be zero. For example, if the source is a dipole then the 
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FIGURE-2.1 

GEOMETRY FOR DETERMINING THE RATIATION FIELD AT ij, 

FROM A SOURCE-CURRENT LOCATED AT r, 

source current 

1(11, 

distance field 
point 

/ J 
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electromagnetic field consists of only three components, and 

However, the antenna region can be partitioned into two well-known 

sub-regions [KRA-81], namely the near and far field zones. Moreover, 

since the near field does not contribute to the time average power flow 

away from the emitting source it can be ignored. Thus, the only region 

of interest is far field zone. By examining the six components of the 

electromagnetic waves in the far field, it can be shown [NEF-81] that 

Ej-^Hr are both zero. This is true regardless of the nature of the 

antenna being used. 

Thus, the six components in the far field can be summarized in general 

terms as follows, for any antenna: 

Er = 0 Hf = 0 

Eg = —juAg Hg = ^ (2.5) 

In the above equations 77 is a propagation constant and Ag and A^ will 

always have the general form [NEF-81]: 

If,- - Lk\ 

J. \ l b - a l k - a,)] 

(2.6) 

I s - a I 

In Equation 2.6 above, /,•(/) represents the excitation current of the 

transmitting antenna, k is the wave-number vector, or spatial 

frequency, with k — g_.u where _a is the slowness vector which shows the 
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direction of propagation, c is the velocity of propagation while Fg,F^ 

represent functions depending on the type of the transmitting antenna. 

On the basis of the Equaiion 2.5 it can be seen that only two of the six 

components are of great significance; namely Eg and E^. Therefore, a 

point source located at the (/^—source, say) which excites the 

transmitting antenna with an excitation current produces at a 

point Tf. an electric field + E^.a^ whose magnitude expressed in 

a general form is as follows (regardless of the type of antenna being 

used): 

IIJII = - a ) l 
r- — T l 

(2.7) 

wAere 
4.TT ' ^ 

Supposing, next, that there is a receiving element at point with 

directional gain G f . { d T h e n the received signal due to ''-source 

will be: 

(2.8) 

Consider now that the excitation current time function /,•(<) is equal to 

the baseband modulation function Tn {̂i) as given by Equaiion 2.2 of the 

previous section. That is: 

W ) = "•;(') (2.9) 

Then equation 2.8 can be written as: 
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11̂—1 —t 11 
(2.10) 

In Equation 2.10 the subscript ik has been added to the wave-number 

vector k in order to stress the fact that the direction of propagation is 

from point r- = to point 

By shifting the time origin at the centre of the array the function m{t) 

becomes: 

Thus Equation 2.10 becomes: 

^k = J . Li-3 kIk{Li-Lk)] 

(&12) 
||r,. 

where T: = 
^ok 

r , - | | - | | £ , - - f t I 
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2.3 (REFLECTED SPHEIROCAL WAVE 

Consider that the received signal is a result of a geometrical 

situation such as that illustrated in Figure 2.2. Using the analysis of the 

previous section it is easy to show that the signal received by an 

element at point is given by: 

l l i i - i:/. 11 + I I I / . - lit 11 
^k-rejl — ' C ' ) ' 

exp[-jk^ J.{rI - r j ] 
I f , - 1 ^ . 1 1 + 11 - I t I I 

(&13) 

Note that if there is no reflection, then the above equation simplifies to 

Equation 2.12 on the substitution o f r , for either or r^. 
i 

By shifting the time origin at the centre of the array, the Equation 2.13 

becomes: 

i l z j | - l m - ItII 
''k-refl = ^i(i+ d ) • • 

l.-k^ r ..J" , . .,T I \ • U T 

l a - r , j | + | | r , - 3 7 J i • - s i 
% (2.14) 

However, it is reasonable to express this equation with respect to the 

baseband signal coming via the direct path, that is with respect to 

Tn-{t—T- ^). Then, Equation 2.14 implies: 

- 4 0 -



FIGURE-2.2 

GEOMETRY FOR DETERMINING THE RATIATION PATTERN 

WHEN REFLECTION IS INVOLVED 

# : denotes 

m, ; denotes 

& : denotes 

A . 
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Ijfcl 

.exp[-j2k.^^.{ri -rj.)-j2kJ^^.{rj^ - f t ) ] - ezp[;.i .^.r.+;l%.(r(-r^^)] 

(2.15) 

The last equation is the exact equation for a reflected signal, received 

by the element of an array of sensors. 

At the receiving elements the function F - { d ) is constant and it is 
t (,• 11 j 

convenient to omit it. Thus, Equation 2.15 becomes 

i-refl = 
^k-

Ik'^l^ r T 
I I r , - a l l • - & ) ] (2-16) 

i 

where is the phase difference introduced by the il̂ k path while 

P̂ Y.k attenuation introduced by tl,- part of the i7,-fc path with: 

I k / . - ftII 

^ P i l . k ~ ~ i ) ~-hk'(-/. ) + - ^ « ^ ~ ^ k ) — A/^jt•!/. 

(218) 

Now, the subscript refl in Equation 2.16 can be dropped since that 

relation is so general as to include Equation 2.12 as a special case. This 

becomes clear by considering /,=t; then and Thus, 

Equation 2.16 will be used as the model of incident directional signals 

for spherical wave propagation. 
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2.4 SiGNAL STRUCTURE AT THE ARRAY 

Consider an array of N sensors (elements) in which each element 

has known directional characteristics and is located in a known, but 

arbitrary, position. The array environment is considered to be 

narrowband. This consideration is not essential but is made to simplify 

notation and problem formulation. It should be noted that wideband 

problems can be decomposed into a set of narrowband problems. 

Thus, consider that there are D narrowband stationary zero-mean 

sources whose frequencies of emissions are centred at the frequency Wq. 

It is assumed also that there is additive noise present at all N elements 

and that this noise is assumed to be an unknown, stationary, zero mean 

random process, which may be correlated from sensor to sensor. 

On the basis of the above analysis, the received signal at the 

sensor at the time instant i due to all transmitting sources and noise 

can be expressed as: 

+ E E ^ ). 
i=l 1=1 : : 

. expljkj.ri - jk^ J . { r ^ - f t ) ] (2-19) 
ILi -LkW 'i 'i 'i 

wUh Ap-j_f.=0 for all direct paths Vi[i,..,D] 

Pihk= ^ 

where, in the Equation 2.19, i,- represents the number of paths from the 

source to the k̂ ^ sensor with: 
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D 
E Li = M < N 

i = l 
(2.20) 

In the Equaiion 2.20 M represents the number of signals incident on the 

array and M becomes equal to D if each of the signal sources arrives at 

the array through only one path and, otherwise D<M. Thus, the array 

input signal-vector {n in dim) can be expressed in the following 

compact form: 

= E E D/ - i / + 
i-i 1=1 h 

(2.21) 

where 

x{i) = [ rX<), Xg (i), x^{t) 

~ I I 

•e^vb-ki-Li-j-kh-KLi - f j ] 

D 

4 = 

V-l.-Zil 

r . , r . , r , 
exp\j.k^_ •£/. -J-ki,2• {Lj, -L2)] 

\Li-r2\ 

J. • lT ( \i 
_ r I •rrJ-kipfizj-rj^)] I f / . -Zwl 

= diag 

JiliN 
expU-^p.^^] . m , . ( < - r . ^ ^ ) 

- 4 4 -



If, however, the signals are narrowband, and the time of propagation 

across the array is sufficiently small then 

and ='^P,-V 

This makes the diagonal matrix equivalent to a scalar; that is 

D 
* t 

(2.22) 

Thus, Equation 2.21 can be expressed in the following convenient form: 

x{t) = S . m{t) + n{t) (2.23) 

where 

m{t)=lmj^{t),rn2^{i),...,m^^{i),mj^{t), .... , 

with m^y) = p.^_.ex])\j./^ip.^]. %»,(<-T,-J 

N.B.-.the subscript {.)j_ refers to direct path of source 

Both Equation 2.23 and Equation 2.21 provide a model of a very 

general array environment where: 

(i) the array is a 3-dimensional non-uniform 
antenna array; 

(ii) spherical wave propagation is considered; 
(iii) the range as well as the direction of arrival 

(azimuth-elevation angles) is involved; 
(iv) the reception of signals through multipath 

environment is taken into account. 
(v) additive noise effects are included. 
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In many applications in practice a simplified model is used by 

ignoring the range of the source and approximating the spherical wave 

propagation by plane waves. This simplified model is discussed in the 

following section. 

2.5 PLANE WAVE APPIROXOMATDON 

A significant difference between a plane wave and a spherical wave 

is that a plane wave suffers no attenuation (in a lossless medium) 

whereas a spherical wave does because it expands over a larger and 

larger region as it propagates. This is reflected by the term: 

(2.24) 
14 

in Equation 2.19. This term is known as the spherical spreading term, 

where, for the direct path, /J=j. If, however, the array is located far 

from the transmitted sources, or, equivalently, if 

la i l«l l£,JI (2-26) 

then the spherical spreading term both for direct and reflected paths 

remains constant. 

In addition, the direction of propagation from point r, to rf. can 
't 

be considered under the above assumption as being parallel to the 
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direction of the vector Vj so 

- v - ' i 
and 

tecomea 

On the basis of the above discussion, it can be seen that Equation 2.19 

can be simplified to the following form: 

D 
Hii ) = 'Z E Pj/.-exp[j'.Ap.^J . 

• ^xp [ - j kJ.Tj.] + nf.{t) (2.26) 

Thus the array input signal-vector {N in dim) can be expressed in a 

compact form as: 

x{i) - S . m{t) + n{t) (2.27) 

where 

with (<) = p.j .explj.Ap.j). m,-(;i) 

N.B.: the subscript (.)j, refers to direct path 

of source 

S = S.1^1 •••1 B.1 ̂  ) ^2^, S_2^i 
'D 

G;(0, ).txp[-jX 

Gzidj ,<f>i).exp[-j.k, .r^j, 

Giv (^ / J • ^ -Ln )] 
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The effects that the medium has had on the amplitude and phase 

of the received signals, and also the effects that the transfer function of 

the array elements themselves have had on the received signals are 

contained within Equation 2.27. The modelling represented by Equa-

iion-2.21, has been used in the study and simulation reported on in this 

thesis when considering the plane wave situation. 

2.6 ARRAY COVAROANCE MATROX 

In this section, attention is focused on the array covariance 

matrix, a knowledge of which is essential in array processing [BUR-82]. 

Under the assumption that the signals and noise are zero mean 

processes, the terms covariance and correlation are equivalent; the zero 

mean assumption is employed for simplicity. For an array of N elements 

the (NXN) data covariance matrix of the array input signals x(t) is 

defined as: 

^ x x = RrzG (2.28) 

Using Equation 2.27, which assumes plane wave approximation, or 

Equation 2.23 for spherical wave propagation, the data covariance 

matrix becomes: 
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Rxx — S.Rjfijji.S^ + Hjin (2.29) 

^ m m = wHhRmm^ (2.30) 

where gj is the signal covariance matrix 

*:%% = J5:jl(f).%(i)'B'] %,%<& RniiE (2X11) 

is the additive noise covariance matrix 

In Equation 2.29 the noise is assumed uncorrelated from the directional 

sources. In many cases in practice, the estimated covariance matrix, 

instead of theeasemble average (given by Equation 2.28), is used. In the 

case in which q observations (snapshots) are available the estimated 

covariance matrix is given by: 

^ (2.32) 
^ n=i 

On the basis of the above definitions it is apparent that the matrix 

contains all the geometrical information about the various sources with 

respect to some reference point. The influence of the signal environment 

on the structure [RUH-70] of the matrix is considerable. If, for example, 

the number of signals, that is, the number of emitting sources, is less 

than the number of sensors in the array, then the matrix is 

singular and its rank is equal to the number of emitting sources. If the 

incident wavefronts are uncorrelated, or partially correlated, then the 

matrix R^nm is non-singular and has a diagonal form for the 

uncorrelated only case. However, if Rjnm is singular this means that 

some of, or all of, the incident wavefronts are fully correlated or 

coherent and, except for the Shan-Wax-Kailath [SHA-85] algorithm 
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which is restricted to linear arrays, all existing signal locations, 

resolution and suppression algorithms fail in this situation. Figure 2.3 

shows the most general structure of the matrix Rrnm-

2.7 NOOSE MODELLDNG 

In the previous section the noise covariance matrix was 

defined. Consider that R^^ has the general form 

(2.33) 

where c is a constant and is a NxN symmetric matrix. If the noise 

is assumed isotropic and thermal noise uncorrelated from sensor to 

sensor then 

and c—a^ (2.34) 

where a is the standard deviation of the noise and I the identity matrix. 

This is a reasonable model of the noise effects as far as it relates to 

thermal and isotropic noise. 

In the case where there are non-isotropic noise effects and as long 

as the distribution of the noise is known, that is 

^^yi = known general Hermitian matrix 

and c=unknown scalar (2.35) 

then Ntjji can be decomposed as follows: 
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FIGURE-2.3 

GENERAL STRUCTURE OF ARRAY DIRECTIONAL SIGNALS COVARIANCE MATRIX 

M 

L. 

Lv 

R n R i 2 RID 

R22 

Rqi RO2 Roo 

M 

-X-

where D is the number of sources 

L, is the number of paths for the i - th source 

p is the cross correlation between the signals 
'' m ,(t) (arriving via L, paths) and 

mj(t) (arriving via L j paths) 
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N n n = (2.36) 

It is apparent then that by preprocessing the data covariance matrix of 

the previous section {Equaiion 2.28) with a known process the 

result will be given by: 

^ (2.37) 

where ^xx — 4" c.B (2.38) 

S = N J - \ S (2.39) 

On the basis of the above discussion it can be said that, by applying the 

above pre-transformation, any algorithm, which assumes a noise (ther-

mal plus isotropic) which is uncorrelated from sensor to sensor, can be 

easily extended to the more general noise environment in which there is 

non-isotropic noise. 

Thus, non-isotropic noise effects, which have a known 

direcUonaliiy, can be handled. A typical non-isotropic noise (for more 

examples see [HUD-81]) is one which is ellipsoidal in shape, indicating 

that the noise strength is greater in some directions than others. If the 

noise is non-isotropic and completely unknown then a very difficult 

problem exists. In order to handle such a situation the theoretical 

development of the main process should not be based on any 

assumption with respect to the noise covariance matrix other than that 

it is a Hermitian matrix. The assumption of ihermal plus isotropic 

uncorrelaied noise will be used in this thesis. Questions relating to 

unknown non-isotropic noise will be left for another time. 
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2.8 ARRAY MANOFOLD 

In this section the array manifold is defined and the array 

ambiguity problem is considered in conjunction with those array 

manifold dimensionality concepts which are useful for the remainder of 

the thesis. 

2.8.1 DEFINITION OF ARRAY MANIFOLD. 

Consider an array of N sensors and form the Source Position 

Vector 5 (5> in Equation 2.27 - for plane waves) corresponding to the 
i 

direction (^,^), where 9 is the azimuth and (f) the elevation angle. 

Rewrite 5 as jg(^,<^). Next, record the continuum of the vector ^(9,<f)) as 

a function of 9,(j). This continuum is a two-dimensional continuum lying 

in a, N dimensional space and is otherwise known as the array manifold. 

In the case of spherical waves mentioned earlier, the Source Position 

Vector in Equation 2.21) can be represented by 5(||r||,0,(/i) i.e. it is 
i 

a function of range, azimuth and elevation, and in such a case the 

manifold is a 3-dim. continuum in a # dimensional space. This array 

manifold can be calculated and stored for a particular array only from 

the knowledge of the locations and directional characteristics of array 

elements. Thus, according to Schmidt [SCH-81] the array manifold 

completely characterizes any array and provides a representation of the 

real array into //-dimensional complex space. 
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2.8.2 ARRAY AMBIGUITIES 

Source location ambiguity may arise whenever i) the array 

manifold repeats itself or ii) a point on the array manifold can be 

written as a linear combination of some other points. A simple 

example as a help in visualizing case (ii) is when a ray from the origin 

intersects the manifold at more than one point. A useful way of 

measuring the degree of ambiguity is by means of manifold 

dimensionality [SU-83]. Thus, consider that M is the largest number, 

such that for every combination of M distinct directions their 

corresponding Source Position Vector {SPV) can be a base of an M 

dimensional subspace. Then M is defined as the dimensionality of the 

array manifold. Once the array manifold, for a particular visible area, 

has been calculated and stored the array manifold dimensionality can 

be estimated and therefore becomes known for that particular array 

design. The dimensionality reflects the maximum number of signals 

which can be uniquely resolved by the array without any ambiguity 

arising. 

It is important to point out that the array does not present the same 

resolution characteristics in the whole domain of directions. 
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CHAPTER 3 

Adaptive Signal Parameter Estimation and ClassiScsatwiP: 
"Fochmqiie 

(ASPECT) 

Superresolution Techniques and related Signal Subspace Algori-

thms provide correct information about the signal environment as long 

as that environment does not involve any coherent signals. However, 

the use of these techniques in signal environments where smart jamming 

or multipath propagation is present results in complete failure. Thus, if 

we are looking for an algorithm which is able to work in a signal 

environment with any degree of correlation (coherence), existing 

superresolution techniques, as well adaptive array systems, are not 

appropriate. In this chapter the theoretical framework of a new 

adaptive algorithm called ASPECT (Adaptive Signal Parameter 

Estimation and Classification Technique) is developed. This new 

algorithm, unlike superresolution techniques, provides correct 

information concerning: 

• the number of signals incident to the array, 
• the direction of arrivals (azimuth and elevation angles), 
• the relative powers and phases. 

The algorithm works independent of whether or not the signal are 
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correlated and it is not restricted to linear arrays. 

The main assumption is that the emitters can be considered as point 

sources while no assumption is made as to whether the propagated wave 

is spherical, or if it is a plane wave. 

3.1 EOGENSTRUCTURE ANALYSDS 

As mentioned in Chapter 1, in recent years new array processing 

techniques known as high resolution - signal subspace methods have 

appeared. These methods are based on the eigenstructure of the sensor 

covariahce matrix [JOH-85], [BIE-83]. They have been used mainly in 

estimating the direction of sources by employing a spatial array and 

they involve two main stages: the first stage is to estimate the cova-

riance matrix of the data at the sensors of the array, and the second 

stage is to perform an eigenstructure analysis ([WLK-66]) of this 

matrix. As was mentioned in Chapter 1, using this information the ob-

servation space is partitioned, into the following two disjoint subspaces: 

• the signal subspace with dimension equal to the 
number of sources, spanned by the source position 
vectors which correspond to the directions of 
incident signals; 

• the noise subspace which is the complement of the 
signal subspace with respect to the observation 
space. 

In order to appreciate the problems involved in the use of this 

decomposition, it is necessary to consider two situations with respect to 
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signal environment. The first situation involves signal environments 

where there are not correlated sources present and the second situation 

is one in which correlated sources exist. 

THE ABSENCE OF CORRELATED SIGNALS 

In the case of uncorrelated sources the decomposition referred to 

above can be performed correctly only if the dimensionality of the 

signal subspace is known. This dimensionality is equal to the number of 

signals arriving at the array. Thus, any algorithm based on the signal 

subspace approach assumes that the number of incident signals arriving 

at the array is known a priori. In practice, this prior information can be 

provided by a number of algorithms. A conventional approach is the so 

called Bartleii-Lawley test [LAW-56]. This test, however, suffers from 

the disadvantage of involving subjective decisions. Recently, Wax and 

Kailath [WAX-84] [WAX-85] have proposed a new method based on 

information theoretic criteria for model identification. The criteria are 

the Akaike (AIC) and Minimum-Description-Lengih criteria which 

overcome the need for subjective decisions; Another work of interest in 

this respect is the criterion proposed by Zhao el al [ZHA-87] called the 

Efficient Detection Criterion, of which the Minimum-Description-

Length criterion is a special case. 

The most representative and powerful technique of the Signal 

Subspace methods is the so-called MUSIC algorithm. This technique, 

which was developed at Stanford University [SCH-81], [SCH-86], has 

become very popular. The power of the MUSIC algorithm can be 

demonstrated by a simple example, where there is a linear array of five 
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uniformly distributed sensors, in the presence of three uncorrelated 

sources with azimuth angles of 30°, 135° and 90° respectively. Figure 

3.2a shows that the directions of the signals are indicated by distinct 

deep nulls. If now the second source approaches the first, that is, the 

azimuth angles become 30°, 32° and 90° respectively then the MUSIC 

still provides results as shown in Figure 3.26. In this situation all other 

previously known algorithms fail. A number of computer simulations 

were performed in [JOH-86 ]. These showed that when comparing the 

performance of high resolution methods, under a range of different 

criteria, the MUSIC algorithm outperformed all other high-resolution 

methods considered. 

Signal-Subspace techniques are based mainly on the concept that 

the eigenvector decomposition of the covariance matrix provides the 

basis of the signal subspace while the rank{1^xx — o- .1) provides the 

number of incident signals (see Appendix 1). When correlated sources 

are present, however, the approach fails. Neither the decomposition of 

the covariance matrix nor the rank{Rxx — o' .1) provide correct 

information. 

THE PRESENCE OF CORRELATED SIGNALS 

In order to provide some insights into the problem of handling 

correlated sources, which according to Schmidt [SCH-81] 

"... has been the most difficult io treat due to 
the extreme sensitivity of almost all methods 
to the high degree of temporal cross corre-
lation {i.e. similarity) between directional 
signals". 

it is instructive to examine the structure of the matrix Rmmi which was 
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FIGURE-3.1 

MUSIC ALGORITHM FOR THREE UNCORRELATED SOURCES 

niRFCTIONS FOR THE TOP GRAPH: 

source No. 1 : 90-degrees 

source No. 1 : 30-degrees 

source No. 1 : 135-degrees 

DIRECTIONS FOR THE BOTTOM GRAPH: 

source No.1 : 90-degrees 

source No. 1 ; 30-degrees 

source No.1; 32-degrees 
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defined in Section 2.6. If we restrict ourselves to the assumption that 

the signals present at the array environment come via only one path 

then each ''square block' on the matrix in Figure 2.3 has 

dimension i x i , which means that these ''squares blocks' are scalars. If, 

however, for some of the incident signals multipath propagation is 

involved, then one or more of those 'squares' takes the form of a 

singular matrix rather than a scalar, and the methods referred to and 

discussed above fail to operate. As a result of the signals correlation, the 

matrix a l̂so becomes a singular matrix with rank: 

1 < ra7z^(R^j72) (3.2) 

{with RANK{RjYijji) =D=M when Rmm non-singular) 

In such a case any signal subspace algorithm (e.g. the MUSIC algorithm 

[SCH-86]), which has to work in an environment which results in a 

matrix Rrnm with rank different from the number of incident signals M, 

breaks down. The reason for this is that the eigenvectors of the 

covariance matrix which belong to the noise subspace are not 

orthogonal to signal subspace. In other words, the space which is 

considered as the signal subspace by these algorithms is not the true 

signal subspace, although the algorithms "think" that it is. The worst 

case is, however, when rank(Rmm)—^i which occurs when there is one 

source coming via many paths, or when there are many sources, all of 

which are correlated. The above mentioned problem is illustrated in 

Figure 3.3 for a linear array of seven isotropic elements and for three 

sources located at 30°,90° and 135°, where the three sources are 

correlated. 

It is important to note also that in a situation such as that 
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FIGURE —3.2 (MUSIC ALGORITHM FOR THREE FULLY CORRELATED SOURCES) 

TRUE directions estimated 
directions by MUSIC 

source No.1(St) ( 0.0, 30.0) failure 

source No,2(S2) ( 0.0, 90.0) failure 

source No.3(S3') ( 0.0, 135.0) failure 

MUSIC ALGORITHM 

m 
X) 

W) 

u 
ctf 

40 60 80 100 120 

az imuth angle - degrees 

180 

denotes an an"ay element 
denotes a source 

POWER TABLE: 
Source No.1 :1.0 
Source No.2 :1.0 
Source No.3 :1.0 
Noise :0.001 
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illustrated in Figure 3.2, even the AIC and the Bartlett test will fail to 

provide the correct number of signals present. The reason is that they 

try to find the rank of the data covariance matrix by setting a threshold 

to its eigenvalues. However, in the correlated situation this rank does 

not correspond to the number of signals, as it is obvious from the 

previous discussion. 

Recently at tempts have been made (see for example [FED-86], 

[SHH-87], [DI-85], [SHA-85], [CAD-87] etc) to overcome these diffi-

culties and the most promising approach appears to be that of Shan, 

Wax and Kailath [SHA-85], [SH2-85] which uses the concept of spatial 

smoothing, or sub-aperture sampling, in order to restore the rank of the 

covariance matrix so that it is equal the number of signals. The method 

defines a number of subsets (sub-arrays) and for each subset a data 

covariance matrix is formed. Then, the average covariance matrix R 

is estimated as follows: 

No.of }uharrays-Yl 

After this the MuSIC can then be used to provide the locations of the 

sources. This method of approach is at this time very popular and a 

considerable amount of research effort is being done on the spatial 

smoothing technique [CLE-85], [ATT-87], [WIL-87], [MAD-87], [WIL-

88]. This technique does however suffer from two main disadvantages. 

The first one is that it reduces the effective aperture of the array and 

the second that the method can only be applied to linear sensors arrays 

with uniformly-spaced identical sensors. 
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3.2 THEOIRETIICAL BASE 

In this thesis a totally new alternative approach to that of Shan-

Kailath is that provided in the form of the ASPECT algorithm. This 

algorithm measures up to the requirements contained in the general 

statement of Schmidt 

"TAe proper perspective is thai the general 
multiple emitter case includes the multipath 
as a special case.'" 

ASPECT will be shown to provide a solution in the general case in 

which the 'squares blocks' of matrix Rrnm Figure 2.3 are matrices of 

any dimension. One Lemma and three Theorems will now be developed 

and they will be used as a theoretical basis of the ASPECT algorithm, 

which is to be presented later in this chapter. In addition a second 

Lemma, Lemma-2, will be presented without proof. 

LEMMA 1.: Lei F he any set of N-dimensional complex vectors where 

any combination of M these vectors {M<N) are independent. Consider 

two subsets ofF : SEC^^^ with K>D. 

If dim(L[Sj^,S])<M and where dim stands for 'dimension 

of ...', jC[.] means 'the subspace spanned by ...', o^£)GC^ with {every 

element C^, then: 

i) i [S^]CL [S] 

a) K-D elements of are zero, and 

Hi) D out of K columns of S are the D columns o f S j y . 
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P R O O F : 

The subspace i [S^,S] is the subspace generated by That 

is, 

L[S^,S] = % ] + L[S] (3.4) 

However 

dim{L[Sj^] + L[S]) = dim{L[Sjj]) + c?im(Z[S]) —f/2m(X[S£)]p|Z[S]) 

= d + k — dim(i[Sj5]P|i[S]) (3.5) 

<m 

c?2m(i[S£)]|^i[S])<M in the last equation means that S £ ) [ j s is 

a basis of the subspace jC[S^,S]. However, 

=> 7 2l =0. 

But, because every element of is nonzero, the equation 

is satisfied only if i[S£)]~Ci[S] (then Sj^ =S.f l => 

which is valid for ^ = 0 ) . This proves part( i) of 

the LEMMA. 

However, part(t) of LEMMA implies that i[S£,]C[i[S]. It is 

apparent then that Sj^ will belong to a D-dim subspace of L[S] 

(4Sci] , say) 

That is, 

(3'6) 
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Let 

^d— H ' — ( 3 . 7 ) 

and let us rearrange the columns of S and the corresponding elements 

of in such a way that: i) the subspace Z[S] can be decomposed into 

two complement subspaces as shown in Figure 3.3(a) and ,,) the same 

subspace X[S] can be decomposed as in Figure 3.3(6) . 

where ^ — E ^1' ^2) 5 ^d+v ' S (3-8) 

Let ^ (3.9) 

= S . ^ (3.10) 

By partitioning the vector ^ into two subvectors, that is, ^ ^ = [ [ 

with CP, ^ Equation 3.10 can be written cis: 

M. — ^ci-A + ^c2'J£ (3.11) 

It needs to be proved that : 

1 = 0 d-aj^ ^ci = ^d (3.12) 

However, because implies that the columns of Sj^ and the 

columns of S d are two different bases of the same subspace, it follows 

that one basis can be written as a linear combination of the other; that 

is: 

Sci=S^.A with (3.13) 
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FIGURE-3 .3 
DECOMPOSITION OF THE SUBSPACE L [ S ] INTO TWO COMPLEMENTS SUBSPACES 

a) 

b) 

^ 2 ] 1^0+2 • '^KI 

d im{ L[ } = K - D 

L[ ^ 2 ] — L[ 1^0+2' '>^KI 

d'm{ L[ S J } = K-D 

L[ S^J — L[ S, , Sgi ,Sd ] 

dim{L[ } = D 

r I I 

L[ S p ] L[ '^D2 ' '^DoJ 

d i m { L [ S J } = D 

Note : L [ . ] means 'spanned by ..." 
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Then, Equation 3.11 becomes: 

i.e. E=Sjj.b + Sc2-e (3.14) 

with cP 

In addition Equation 3.9 can be rewritten as: 

E-Sj^.ajy + Sc2-0 (3.15) 

On subtracting Equation 3.15 from Equations-Z.IA it follows that: 

0 = S ^ . ( 6 - a ^ ) + Sc2.e (3.16) 

which is true only if: 

e=0 (3.17) 

This last equation proves part (it) of the LEMMA. 

However, because of in conjunction with the fact that any 

combination of D columns from both matrices and are linearly 

independent, the matrix A becomes the identity matrix. 

Therefore 

A = (3.18) 

This proves part (tit) of the LEMMA. 
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2: Consider an Euclidean space H, dim.[S\=N and any 

subs-pace h, dim[li\=M<N of H spanned by M independent vectors 

kif—ih-M' projection of any vector x in H on to h is given by 

P.x where P is the projection operator which maps each vector of H 

onto h and which has the following 

properties: 

• P = V.(V^V;~^V^ where V=[A 

• i.e. P is idempoieni, 

. = P 

THEOIREMl 1. ; The number of signals, incident at an array of N 

sensors and arriving from different angles, is given by the number of 

non-zero elements of the vector at the solution of any 

of the following minimization problems 

a) mm ^ given ^=trace{P^.Q^.P^.P(3.19) 

b) min ^ given ^ ) (3.20) 
2. 

N ̂ P g E / 

where: 

c) mm ^ given t r a c e ( Q ^ . P ( 3 . 2 1 ) 

with 31^^ hi 5R , J{e[D,....,N] and 

_EE is either one^ of the signal subspace eigenvectors of 

the data covariance matrix, or any array input sample 

vector free of additive noise. 

Qg columns K independent vectors belonging 

to the array manifold . 

"Ar Excluding the case where all the SPVs are themselves orthogonal. This 

special case is covered on page 76 by the Aspect function. 
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• Pg 25 the projection operator to the subspace spanned by 

the columns of S, thai is the ^range space of S' 

je(S); 

• Qg is the projection operator to the complement of the 

subspace spanned by thai is the ^null space of 

• is the projection operator to the subspace spanned by 

that is the Wange space of W R{^; 

• n integer greater or equal to 1 

• 2 zs the vector of location-parameters 

P R O O F : 

Because ^ belongs to the unknown signal subspace, it follows that it is 

a linear combination of the unknown D Source Position Vectors of the 

true sources. This means that 

(3.22) 

where is the matrix whose columns are the D source position vectors 

of the true sources. However, 

a) 

(^=:irace(Pg.Q^.Pg.P^) = 

= : ^ r o c e ( P g . Q ^ . P g . & ^ ) = 

= t r a c e ( _ ^ . p ) = 

= : ^ ^ . P g . Q ^ . P g . ^ = 

= _ ^ . P g . Q ^ . Q ^ P g . ^ — 

w where t ^ Q ^ . P g . j F (3.23) 
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The last equation shows that the cost function is a positive quantity 

(square magnitude of a vector), so the global minimum is zero; this is 

reached when the vector w becomes a zero vector. Then the vector ^ 

belongs to the the range space of the columns of S, that is ?R(S). Thus 

K which implies 

Lei 

a = z { S ^ S ) ~ ' ^ . s " . E (3.24) 

By pre-multiplying both sides of Equation-3.24 by S => 

S.a= S.{S^.S)~'^.S^.E => 

S.^ = P g . ^ => 

S.a = E (3.25) 

Thus, by combining last equation with Equation 3.22: 

M - ^d-^D (3.26) 

Equation 3.36 in conjunction with part(i) and part(it) of LEMMA. 1 

implies that the A'—dim vector ^ has D non-zero elements. 

However, if the assumptions of LEMMA .1 are not valid then 

there is no guarantee that the solution of the minimization problem 

Equation 3.19 is a unique solution. Theorem-3, which follows, deals 

with the conditions under which the assumptions of LEMMA. 1 are 

valid. 
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b) 

1 (3.27) 

on multiplying both the numerator and the denominator by 

E ^ P ^ E 1 it follows that 

A 
(3.28) 

Now when the numerator is multiplied by ^ J E no change takes place 

since ^ J E is equal to unity. Thus: 

^ p g e. " J . \ M ^ . e \ 

j f p ^ e 
(3.29) 

In Equation 3.29 Lemma 2 has been used. On replacing Pg-M by the 

vector w in Equation 3.29, that is using 

w=p^e (3.30) 

Equation 3.29 becomes 

II 
Nw w. ^ e".e 

(3.31) 

However, it is well known [GOL-83] that the angle between two 

complex vectors w and ^ is given by 
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$ _ w^e 
= I ~ ~i ^ (3.32) 

^vtw. 

Thus, it is clear that 

cosG.e^ 
(3.33) 

However i^GR, therefore 0 = 0 which implies 

^=zsec"0 (3.34) 

Thus, when Equation 3.20 cost function is minimized the angle 0 will 

become zero indicating that the vector w and ^ span the same one 

dimensional space; in other words, the two vectors become identical. 

This means 

w—m. => 

^s- - ^d-^d ^ 

S . ( S ^ . S ) - ' S ^ . £ = Sp.Qo =» 

S.a : (3.35) 

where a = { S ^ . E 

Equation 3.35 in conjunction with part(i) and part(n) of 

LEMMA. 1 implies that the /(—dim vector a has D non-zero elements. 

c) proof similar to that of (a). 
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2. : is a solution to any one of the minimization 

problems given by Equations 3.19, 3.20 or 3.21 of Theorem.!., then the 

pair (9^,(1)^) which is formed by the i^^ elements of the vectors is 

the DOA [Direction Of Arrivals) of an incident signal provided that the 

element of the vector (S^.S)~^.S^.^ is not zero; 

P R O O F : 

Consider K initial directions and let S be the matrix the columns 

of which are the vectors belonging to the array manifold which 

correspond to the K initial directions. Let L[S] be the subspace spanned 

by the columns of S. Figure 3.4(a) illustrates the geometry involved. 

Also, let w be the projection of ^ on to L[S]. By projecting the vector w 

on to the null-subspace of ^ the vector (w) is formed as shown Figure 

3.4(6). By minimizing the magnitude of (w), that is Equation 3.19 the 

subspace L[S] is rotated so as to approach the range-subspace of K 

Figure 3.4(c) shows the final settled position of the i[S] at the end of 

minimization Equation 3.19. Thus, at the solution (£*,^*), the vector JE 

belongs to the subspace spanned by the columns of S, that is 

this implies that ^ becomes identical to and consequently _E can be 

written as a linear combination of the columns of S which are the K 

vectors belonging to the array manifold and corresponding to the 

solution (^*,^*), that is, 

S . Q r (3.36) 

Similar results will be obtained by using Equaiions3.20, 3.21. 
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FIGURE-3 .4 
GEOMETRY INVOLVED IN ASPECT 

a) N(S) 

R(£) 
R(S) 

N(£) 

b) 

E 

R(£) 

N(£) 

dim{ N(S)} = N - K 

dim{ N(£) } = N - 1 

dim{ R(S)} = K 

dim{ R(E) } = 1 

R(S) 

c) 

m ) 

R(S) 
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Now, 

E=S.^=^^={S" .Sy-.S" .E (3.37) 

and it has been proved in THEOREM.1. that ja has D non-zero 

elements. Thus, in order to prove the THEOREM-2 it is sufficient to 

prove that the column of S which corresponds to a non-zero 

elements of ^ is equal to one column of Sjy. Proof of this is obtained by 

using part(iii) of LEMMA .1. 

H 

.3. : Theorem.l. and Theorem.2. have unique solutions as 

long as the following condition is satisfied: 

the array manifold dimensionality > K+D (3.38) 

P R O O F : 

By assuming that the array manifold dimensionality is greater than 

K-\-D ensures that every combination of K+D Source Position Vectors 

are independent. In other words this ensures that 

dim{L[SjQ,S])<{array manifold dimensionality) (3.39) 

thus validating the assumptions of LEMMA-1. The uniqueness of the 

solution is then apparent. 

However, Equation 3.38 is more restricted than is needed. For instance 

from Equation 3.39 it follows that: 

A'-f C—c/zm(I[S£,][^L[S])<(arraj^ manifold dimensionality) (3.40) 
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where the maximum value of (/i7n(i[S£,]P|L[S]) is equal to D. That 

implies that the minimum value of the array manifold dimensionality is 

equal to K. 

ASPECT COST FUNCTIONS 

In the cost function used in the Theorems given above there is one 

eigenvector in use. This eigenvector should belong to the Signal 

subspace. One such vector is the eigenvector which corresponds to the 

maximum eigenvalue of the covariance matrix. This vector belongs to 

the signal subspace even if all the sources are correlated, or if there is 

only one signal source and its signal arrives at the array having 

travelled over a number of different paths (multipath propagation). 

If there are a number of eigenvectors which obviously belong to the 

signal subspace then this additional information can be taken into 

account as well. This can be done by extending the cost functions given 

by Equation 3.19,3.20, and 3.21 in the following manner: 

^_irace(Pg.Q£-.Pg.P g-) 

6= trace(Qg.P|^) 

where E is the matrix which has cis columns the eigenvectors belonging 

to the Signal Subspace. 
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3.3 THE ASPECT ALGORITHM 

ASPECT is a new algorithm for locating a number of sources 

correlated or otherwise. This algorithm is not restricted to linear arrays 

and is based on the Theorems given in the previous section. The 

algorithm can be expressed as a number of steps appropriate for Single 

Instruction Multiple Data Computer or for systolic array implemen-

tation as follows: 

STEP-l: form the data covariance matrix 

STEP-T. estimate the eigenvectors E which corresponds to the 

largest eigenvalues of the covariance matrix if there is 

confidence that these eigenvectors belong to the signal 

subspace. 

STEP-3-. estimate the Projection Operators of the subspace spanned 

by the columns of E (that is Pg- ) 

STEP-4: choose K initial directions with K to be certainly greater 

than, or equal, to the number of incident signals but less 

than, or equal, to the array manifold dimensionality. 

STEPS: minimize one of the following cost function: 

^=i race{P^ .Q^.P^ .P^) (3.41) 

1 V (= n I ' r (3-42) 
\ 

trace(Qg.P^) (3.43) 

where E is the matrix which has as columns the eigen-

vectors belonging to the Signal Subspace. 
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5.a: For instance for Equaiion 3.42: 

1 form the matrices: 

—[Ao)Ao; .Ao] (3x/<r matrix) 

( T h a t is a vector expanding to a matr ix) 

L=[ri,r2,....,ryy]^ (NxS matrix) 

2. at time n update : 

3in — I ]] (2KX 1 vector) 

( 3 x / f matrix) 

and also update the following suh-STEPS 2a to 2p 

2a. G, Gg, G^, Gg^ (NXK matrices) 

Kg, K^, Kg^ {NxK matrices) 

U = — j . L . ( K — K g ) {NXK matr ix) 

2b. \)=exp{\S) Ug=—y.L.Kg U^=— 

2c. S = G*U Gg = Gg*U G^ = G_̂ *U 

2d. Sg = Gg+ Ug*S S ^ = G^ + L^*S 

2e. Sg^= G g ^ * U + U ^ * G g + t l g ^ * S + U g * S ^ 

2f. A g = ( S ^ . S ) - ^ 

2g. Bg=Ag.S^ 

2h. a= I8g._^ Pg=:S Bg 

2i. Qg=:l Pg 

2]. c= diag{E^.P^.E) 

2k. 

21. ^ = p r o d u c t of elements of h 

2m. for every ij where j,ye[i,..,M] estimate: 

C , = S r . B ' * C ^ = S ; \ B ' * 

where the superscripts *» or j * above mean the 

column or row respectively of their matrix. 
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= Qg Cg. = Qg C^. 

^sei = 

- /.Qg.Cg.^^ 

where 1=0 if izjLj and l=-l if i=j 

2n. K 4 = [ J%OG^E^.PGG . E ) , . . . , J * O G ^ E ^ . P G ^ . E ) , 

dias(eh.p e), Aa/(EJ.P5^^^.E)] 

2o. MI=: —0.5*n*M*[]l, h,..., h] 

2p. V f sum the element of each column of M 

_ V ^ ^ = its elements are given by Equaiion-A3.9 of 

Appendix 3. 

S.6: evaluate the direction of search dv=V^^~^. V£ 

5.c: perform a line search across the direction —d^ in order to 

estimate a constant / indicating how far to move along the 

current direction. 

S.i: update j; at time n + i via: 2lri + l + /-Vn 

5.e: n: = n + l 

5.f. check if a selected stop criterion is satisfied. 

If not satisfied then goto STEP 5.a.2h 

else goto STEP 6. 

STEP-6: find the non zero elements of the vector ( S ^ . S ) ^ \ S ^ . _ ^ 

and accept 

z) the number of signals incident to the array, from 

different direction of arrivals, to be the number of 

those non-zero elements; 

n) the directions of arrival, to be the directions related to 

the vectors which correspond to non-zero elements of 

( S ^ . S ) ~ ^ . S ^ . ^ where _E is one of the columns of E 
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N.B.: the operators * and -/(-implies element by element operations 

(multiplication and division respectively). 

The above algorithm as has been presented above is in a form 

appropriate for VLSI implementation. Figure 3.5 gives an example of 

the implementation for the SPVs and their derivatives in a block 

diagram form. In addition, the Appendices 3 and 4 provide the basic 

mathematical tools of ASPECT algorithm for the three cost functions 

given by Equations 3.41,3.42,3.43. 

It is also important to point out that the process could be applied to 

individual samples at the input of the array and then to average the 

results of, say, every q samples in order to subtract the effects of noise 

from the original samples. Also the STEP-l and STEP-2 can be replaced 

by one step which will estimate the Right Singular Vector which 

corresponds to the largest singular value of a block of samples. 

— Since the material presented in this chapter was developed and the thesis 

was written and submitted a paper by Cadjow [CAD-88] has appeared in the 

technical literature. This paper deals with the problem of located correlated 

sources. The approach is, however, funtamentally different from that 

developed in this thesis. 
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BLOCK DIAGRAM OF PART OF ASPECT 
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ASPECT - COST - FUNCTION 



CHAPTER 4 

COMPUTER SIMULATION STUDIES 
••liiiiiiilillBl 

ASPECT ALGORITHM 

4.1 

In this chapter the results of a series of computer simulations are 

presented. The simulations were carried out in order to assess the 

performance and limitations of ASPECT algorithm, under various 

signal scenarios. The number of sources is considered to be less than the 

array manifold dimensionality. 

The ASPECT algorithm which is based on the Theorems 

presented in the previous chapter has been coded in PASCAL and 

MATLAB. 

For the whole set of simulations it is assumed that the signal 

environment involves three directional emitting sources in the presence 

of non-directional noise. Since the number of sources is not a prior piece 

of information to ASPECT, the algorithm will start with an assumed 

number of sources, which will be four (say) for the whole set simulation. 
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At the end of its operational processing ASPECT should provide the 

information as to the fact that the number of emitting sources is three 

not four. 

Series of tests were carried out assuming plane wave propagation 

and then repeated for spherical wave propagation. In each of the two 

series of tests the performance of ASPECT was considered with respect 

to range of points. In the first tests the resolving power of ASPECT and 

its robustness to noise is examined. Thus, two of the three sources (the 

trial pair) are brought together with angle separations of 

10°,5°,2° and 1° under various noise levels. In these tests it was assumed 

that sources are uncorrelated and then correlated (coherent). Also it Wcis 

assumed that sources are of equal power. Tests were generalized and 

repeated in order to determine the performance of ASPECT when 

emitting sources of widely differing power levels are involved. 

The array is assumed that has steered its main lobe toward the 

direction (0°,95°). 

The whole set of simulations, concerning the planewave approxi-

mation situation, is performed under the same initial guesses of 

ASPECT, which are chosen to be: four signals incident to the array 

from the following four directions: (10°,20°), (7°,50°), (0°,95°) i.e the 

steering vector direction, and (20°,165°). On the other hand, a self-

initialized ASPECT is used in the spherical-wave situation. 

The computer simulations were carried out using an APRICOT 

XEN-? 386/30 with 80387 co-processor and Cyber-855 main frame. 
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4.2 M M R MODEL 

For the whole set of simulations concerning planewave approxima-

tion, an array of eight isotropic elements was deployed with seven of the 

eight elements are uniformly distributed on a semi-circle of radius 

/?=1.93j located in the X-Y plane and the 8*^ element being located at 

the point {x=0,y=R,z=^). The situation is illustrated in Figure 4.1a. In 

the case of spherical wave propagation a different array configuration 

was deployed. This array has twelve elements. Eight of those elements 

are located as in Figure 4.1a. The remaining four are located as shown 

in Figure 4.16. 

As was mentioned above the array is assumed that has steered its 

main lobe toward the direction (0°,95°). 

4.3 PLANE WAVE SDTUATDON 

4.3.1 Angular Resolution Tests With Uncorrelated Sources 

Initial tests were performed in order to assess the performance of 

ASPECT in resolving closely spaced incident signals. In every case the 

incident signals are assumed to be three in number, of equal power and 

uncorrelated. The noise is assumed to be thermal plus isotropic of power 

— 40dB. In each case the directions of incidence of third and first 

signals are (10°,90°), and (0°,30°) correspondingly. The second signal, 

which together with the first signal constitute a trial pair, is located in 

-84-



FIGURE-4.1 
ARRAY MODELS USED IN THE SIMULATIONS CARRIED OUT IN THIS CHAPTER 

a) FOR PLANE WAVE PROPAGATION 

• X 

b ) FOR SPHERICAL WAVE PROPAGATION 

• X 
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positions which provide 10°, 5°, 2° and 1° angle separation from the 

direciion of incidence of the first signal. Thus, the directions of the 

second signal are chosen to be the following: (0°,40°), (0%35°), (0°,32°), 

(0°,3r). 

The results of the simulations are shown in Figures 4.2-4.5. These 

results show that ASPECT correctly and accurately resolves and 

estimates the number and the directions of the incident signals for every 

case. It is important to note the pattern of behavior of ASPECT with 

regard to the detection of the signals. In Figure 4.2, for instance. Source 

No.4 disappears after 7 iterations. Thus the algorithm ends with 3 

sources having been correctly detected. 

From Figures 4.2-4.5 it is also clear that the number of iterations 

(keeping the same initial directions) increases as the angle separation of 

the trial pair decreases. 
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FIGURE — 4 .2 (Uncorrelated Sources) 
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FIGURE — 4 .3 (Uncorrelated Sources) 

TRUE 
directions 

INfFiAt 
directions 

directions estimated 
h ^ A m m r -

source No.t 

source No.2 

source Mo.3 

source No.4 

( 0.0, 30.0) 

( 0.0, 35.0) 

(10.0, 90.0) 

( 10.0, 20.0) 

( 7.0, 50.0) 

( 0.0, 95.0) 

(20.0,165.0) 

( 0.0000, 30.0000) 

( 0.0000, 35.0000) 

( 10.0000, 90.0000) 

to 

0! u 
0 

X ) 

1 

5 
0 

N 
C 

cost;1 .OOQOOOOQOOOOQQe + OQd 

ASPECT AZIMUTH ASPECT ELEVATION 
180 

160 

140 

120 

100 

80 

60 

40 -

20 

Ttr - ^ • 

03 0) q) k, 1x0 
<u 
13 

a 
o 
ctf > 
4) 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

- 1 0 

-T\ 
/ 

*"—Hr- —iK -

5 10 

No. of i t erat ions 

15 0 5 10 

No. of i terat ions 

: array element 
: source 

15 

POWER TABLE: 
Source No.1 :1.0 
Source No.2 :1.0 
Source NoJ :1.Q 

:0.0001i? 



FIGURE — 4.4 (Uncorrelated Sources) 
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FIGURE — 4 .5 (Uncorrelated Sources) 
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4.3.2 Noise Effects 

In this section the effect of omni-directional additive Gaussian 

noise on the performance of the ASPECT is considered. The noise 

power is brought up from — 40dB to — 20dB and — lOdB. The array 

environment described in the previous section remains unchanged. For 

every power level the performance of ASPECT is assessed with respect 

to space resolution, by repeating the whole set of tests of the Angular 

Resolution section. The results are shown in Figures 4.6 to 4.13. By 

comparing the set of figures Figures 4.6-4.9 which correspond to — 20dB 

noise level with the set Figures 4.10-4.13 (that is for — lOdB noise level) 

it is concluded that these two sets are identical. In addition the above 

two sets of figures are identical to Figures 4.2-4.5 (—40dB noise) 

showing the robustness of ASPECT with respect to noise level. 
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FIGURE — 4.6 (Uncorrelated Sources) 
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FIGURE — 4 .7 (Uncorrelated Sources) 
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FIGURE —4.8 (Uncorrelated Sources) 
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FIGURE — 4 .9 (Uncorrelated Sources) 
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FIGURE — 4.10 (Uncorrelated Sources) 
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F I G U R E — 4 . 1 1 (Uncorrelated Sources) 
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FIGURE — 4.12 (Uncorrelated Sources) 
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F I G U R E — 4 . 1 3 (Uncoirelated Sources) 
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4.3.3 Power Resolution 

In this section ASPECT is tested in a signal environment where 

there are present both strong and weak signals. Consider that the noise 

power is —40dB. Then, one of the trial pair, that is the second source, 

is taken from OdB down to —20dB, —40dB (i.e equal to noise power). 

For each selected level the trial pair is located in positions which 

provide 10°, 5°, 2° and 1° angle separation. The results are shown in: 

• Figures 4.14-4.17 for — 20dB trial pair differing power level and 

• Figures 4.18-4.21 for —40dB (that is one source of the trial pair 

has a power level equal to noisel). 

These results show that ASPECT is able to resolve a trial pair with 

widely differing power levels wihout any particular problem. 
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FIGURE — 4.14 (Uncorrelated Sources) 
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F I G U R E — 4 . 1 5 (Uncorrelated Sources) 
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FIGURE — 4.1 6 (Uncorrelated Sources) 
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FIGURE — 4.17 (Uncorrelated Sources) 
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FIGURE — 4.18 (Uncorrelated Sources) 
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FIGURE — 4.1 9 (Uncorrelated Sources) 
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FIGURE — 4.20 (Uncorrelated Sources) 
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FIGURE — 4.21 (Uncorrelated Sources) 
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4.3.4 Signal Correlation 

So far simulations results heve been presented dealing with 

uncorrelated signal situations. These results show that ASPECT can 

adequately handle these signal environments which can be also handled 

by the existing Signal Subspace Techniques (e.g. MUSIC). However, 

this section is concerned with signal environments which involve 

correlated (coherent) sources and it is well known that these 

environments cannot be treated by the existing signal subspace 

techniques (see Figure 3.2 for illustration of the failure of the MUSIC 

algorithm). 

The results of the previous sections indicate the robustness of 

ASPECT with respect to noise power level. One of the questions which 

this section is concerned with is to examine if that robustness to noise 

power is maintained in correlated or coherent signal environments. 

Thus, the simulations carried out in Sections 4.3.1 and 4.3.2 will be 

reconsidered here, but this time with the trial pair to be fully 

correlated. Firstly, the effects of angular resolution with noise levels 

from —40dB up to —20dB and — lOdB is considered for 10°, 5°, 2° and 

1° angle separation in the trial pair. The effects of correlation on the 

performance of ASPECT, for every signal environment referred to 

above, are shown: 

• in Figures 4.22-4.25 (for —40dB) 

• in Figures 4.26-4.29 (for — 20dB) 

• in Figures 4:.3Q-4.ZS (for — lOdB). 

Figures 4.22 to 4.33 shows that ASPECT keeps its robustness properties 

- 1 0 9 



with respect to noise level in fully correlated situations. However, 

although it performs satisfactorily in almost every case, it loses 

accuracy when two correlated sources are close together (see for example 

Figures 4.25, 4.29 and 4.33). 

Next, the effects of sources with widely differing power levels is 

considered for 10°, 5°, 2° and V angle separation in the trial pair. The 

performance of ASPECT when one of the trial pair is taken down from 

OdB to —20dB, —40dB, with —40dB noise power, is illustated in 

• Figures 4.34-4.37 (for —20dB) and 

• Figures 4.38-4.41 (for —40dB, that is, equal to the noise level) 

The results are satisfactory with the exception of the reduction of the 

bearing accuracy when the array environment involves some signals 

which are close together and, at the same time with widely differing 

power levels. This reduction of accuracy is slightly more significant than 

it is in the uncorrelated situation. Figure 4.41 presents the worst case 

where for signals directions (0°,30°) and (0°,3r) ASPECT provides the 

directions (0.0000°,30.0042°) and (0.0076°,31.7027°). However, in all the 

cases the third independent source is estimated with accuracy. 

Finally, it is important to point out that by comparing Figures 4.2-4.21 

(uncorrelated situations) with Figures 4.22-4.41 (correlated situations) 

it can be seen that the number of iterations increases when signal 

correlation is involved. 
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FIGURE — 4.22 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.23 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.24 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.25 (Sources No.1 and No.2 are correlated) 
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FIGURE —4.26 (Sources No.1 and No.2 are correlated) 
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FIGURE —4.27 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.28 (Sources No.1 and No.2 are correlated) 

TRUE 
directions 

INITIAL 
directions 

directions estimated 

source No.1 

source No.2 

source No.3 

source No,4 

( 0.0, 30.0) 

( 0.0, 32.0) 

(10.0, 90.0) 

( 10.0, 20.0) 

( 7.0, 50.0) 

( 0.0, 95.0) 

(20.0,165.0) 

( - 0 . 0 0 0 0 , 30.0000) 

( 0.0000, 32.0000) 

( 10.0000, 90.0000) 

a 

s 
N < 

ASPECT AZIMUTH ASPECT ELEVATION 
180 

160 

140 

Ui Q) 
% 120 
bO 0) T) 

100 

80 

60 

40 

20 / 

0) Q) 
u bO 
t:? 

d o 

> 
<v 
w 

20 

15 

10 

- 5 

- 1 0 

n : 
I 

i 
1 

10 20 

No. of i terat ions 

30 10 20 

No. of i terations 

: array element 
source 

30 

POWER TABLE: 
Source No.1 :1.0 
Source No.2 :1.0 
Source No.3 :1.0 

'0 01 

- 1 1 7 -



FIGURE — 4.29 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.30 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.31 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.32 (Sources No,1 and No.2 are correlated) 
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FIGURE —4.33 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.34 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.35 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.36 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.37 (Sources No.1 and No.2 are correlated) 
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FIGURE —4.38 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.39 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.40 (Sources No.1 and No.2 are correlated) 
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FIGURE — 4.41 (Sources No.1 and No.2 are correlated) 
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4.4. SPHERICAL WAVE PROPAGATION 

The application of ASPECT in a spherical wave propagation 

environment can be achieved by modelling the received signals (and 

particularly the Source Position Vectors) with Equation 2.16 and by 

including the range as a variable of the cost funciion. This has been 

done by using the array model specified in Figure 4.16. Simulations 

were performed for both uncorrelated and correlated cases. For every 

considered case the signal environment is assumed to involve three 

signals incident to the array from the following positions: (15°, 20°, 

30^), (15°, variable, 45^), and (10°, 90°, 65^) where the first element 

of the above triplet represents the elevation angle, the second element 

represents the azimuth angle and the third element represents the range 

in half wave-lengths. The trial pair is formed by the first and second 

sources where the azimuth angle of the second source is such that the 

angle separation is 10°, 5°, 2°, 1°. Since it has already been established 

from the previous simulations in the situations involving plane waves 

that ASPECT is robust to noise level, the noise effects are not going to 

be examined in the spherical wave situation. However, the effects of 

presence of both "weak" and "strong" signals are examined for both 

correlated and uncorrelated cases. Thus, Figures 4.42-4.45 illustrate the 

results produced by ASPECT for uncorrelated sources of equal power 

with noise level at —40dB. Figures 4.46-4.49 shows the ASPECT'S 

performance when the trial pair is brought down from OdB to —30dB. 

For the correlated situation the noise level remains' at —40dB and the 

trial pair is of equal power but fully correlated. The results are shown in 
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Figures 4.50-4.53 indicating that ASPECT resolves and estimates the 

positions of the sources with accuracy. When the trial pair is brought 

down from OdB to — 30dB the algorithm provides the results given in 

Figures 4.54-4.57. Figure 4.57 illustrates the lose of accuracy of the 

estimates, when the trial pair is close together. 
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FIGURE — 4.42 (Uncorrelated Sources; Spherical Wave Propagation) 
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FIGURE — 4.43 (Uncorrelated Sources; Spherical Wave propagation) 
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FIGURE — 4.44 (Uncorrelated Sources; Spherical Wave Propagation) 

m m 
direction? 

INITIAL 
direction? W W E G T 

source No.1 

source No.2 

source No.3 

source No.4 

(15.0, 20.0, 30.0) 

(15.0. 22.0, 45.0) 

(10.0, 90.0, 65.0) 

(0.0. 11.0, 100) 

(0.0, 45.0, 100) 

(0.0. 74.0, 100) 

(0.0, 96.0. 100) 

(15 .0000,20 .0000,30 .0000) 

(15 .0000,22 .0000,45 .0000) 

(10 .0000,90 .0000,65 .0000) 

0) Q) Q) u W) 
'd 
I 

a 
N (6 

c6st;1,OOOOqpODOOOdq06 +odo 

100 

50 

ASPECT ALGORITHM 

4-) bf) 200 
C 
Q) O > 150 
flj 
1 

S-H 
100 

cS 

1 
bO 

Q) 0 bg 0 
a 
0 
U 

tD 0) o k bO D T) 

C 
O 
+3 ctf > 
0) 

20 

15 

10 

5 

0 

ASPECT ALGORITHM 

10 20 

No. of i terat ions 

ASPECT ALGORITHM 

30 0 10 20 

^ / \ / 
; A 

/ i / i 

\ 
I 

\ :.'.r 

102 

10 20 

No. of i terations 

30 

<u v u 
bO a) 
"d 
m . 
ID 

'3) 
ctf 
[n 0) o ctf 
m 10-9 

No. of i terations 

ASPECT ANGLES 

0 
03 

10 20 

No. of i terations 

: array element 
: source 

h \ 
; 

I v 

30 

30 

POWER TABLE: 
Source No.1 :1.0 
Source No.2 :1.0 
Source No.3 :1.0 
"Noise =0.0001 

- 1 3 5 -



-9ST-

WOO'O 
O'l: C'ON e o j n o g 
OT- Z ON eoJnos 
O'l.: l-'oiM 90Jnos 
:3iaVia3MOd 

X ^ 

eojnos: 
}U0UJ9|9 ABJJB : 

suopBaa-jT JO -ON 

OS 0 2 OT 
i-GT » 

Ot 

sTioT'̂ ieaa';! jo ô q 
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n m 
% 
o 

< 
<D 
A 

y 

p N 

0 
? 
I 

o-
(D 

o q 

(D 
C/I 

(0000 s g ' o o o o OG'OOOO OL) 

(0000 St̂ 'OOOO kZ'OOOO SL) 

(0000 OG'OOOO"OZ'OOOO 91.) 

(001 '0>6 '0 0) 

(001- 'O fri '0 0) 

(OOL 'O'Sfr '0 0) 

(001- 'O'ZV '0 0) 

(0 S9 '0 06 '0 Ok) 

(0'9fr '0 1-2 '0 SI-) 

(0 oe '0 02 '0 9I-) 

f QN aajnos # 

C'ON aojnos 

g'ojN ooinos g 

. - • 
p 9 t e u i ! i $ a s u o i ) s a a j p 

S U O l p d J i p 

TVLUNI 
s u o t p a i i p 

a n w i 

(uoi^eGedoJci 9AH/w [Boueqds ! s 9 0 j n o s p9}Bi9JJooun) — 3 U n 9 l d 



FIGURE — 4.46 (Uncorrelated Sources. Power resolution:-30dB) 
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FIGURE — 4.47 (Uncorrelated Sources. Power resolution:-30dB) 
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FIGURE — 4.48 (Uncorrelated Sources. Power resolution: -30dB)) 
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FIGURE —4.49 (Uncorrelated Sources. Power resolution: -30dB) 
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FIGURE — 4.50 (Sources No.1 and No.2 are correlated) 
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FIGURE —4.51 (Sources No.1 and No.2 are correlated) 

directions directJOns 
source No.1 

source No.2 

source No.3 

source No,4 

(15.0, 20.0, 30.0) 

(15.0, 25.0, 45.0) 

(10.0, 90.0, 65.0) 

(0.0, 16.0. 100) 

(0.0, 45.0, 100) 

(0.0, 96.0, 100) 

(0.0, 169.0, 100 

(15.0000,20.0000,30.0000) 

(15.0000,25.0000,45.0000) 

(10.0000,90.0000.65.0000) 

K 0) 
W) 0) 

4-) 

200 

100 

ASPECT ALGORITHM 

- 1 0 0 

CQst;1 .OOOOOOODOOOOOOe + 000 

0) O k tU) Q> 'd 

a 
o 
4̂  
(6 > 
Q) 

100 ASPECT ALGORITHM 

4-) 
bO d 0) 

I 
4-, 
12 

(U 
be d 
co k 

No. of i terat ions 

ASPECT ALGORITHM 

No. of i terat ions 

(0 Q) 
% 102 
bC 
0 

•S 
CO. 

Q) 
% 
§ 
1 01 4) O 05 A 
n 
XI 0 
n 

10-9 

No. of i terations 

ASPECT ANGLES 

No. of i terations 

|j : array element 

• :source 

POWER TABLE: 
Source No.1 :1.0 
Source No.2 :1.0 
Source No.3 :1.0 

142-



FIGURE — 4.52 (Sources No.1 and No.2 are correlated) 
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F I G U R E — 4 . 5 3 (Sources No.1 and No.2 are correlated) 
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FIGURE —4.54 (Sources No.1 and No.2 are correlated. Power Resolution: -30dB) 

TRUE INITIAL 

source No.1 

source No.2 

source No.3 

source No.4 

(15.0, 20.0, 30.0) 

(15.0, 30.0, 45.0) 

(10.0, 90.0, 65.0) 

(0.0, 14.0, 100) 

(0.0, 45.0, 100) 

(0.0, 95.0, 100) 

(0.0, 169.0,100) 

(15.0000,30.0000,45.0000) 

(15.0000,20.0000,30.0000) 

(10.0000,90.0000,65.0000) 

«t:1.0(,OOOOODOOO' 

o; o; 
k a 

5 
0 

m 
xi 
" m 

a 
D 
> 
(C 

a 
X! 

Q) 
ri cd k 

200 

150 

100 

50 

0 

ASPECT ALGORITHM 
1 

\ 

i 

cn q> 
(V 

W o 
T) 

f3 o 
cS > 
d) 

40 

20 

- 2 0 

200 

150 

100 

50 

0 

0 20 40 60 

No. of i terat ions 

ASPECT ALGORITHM 

80 20 40 60 

No. of i terations 

ASPECT ANGLES 

M n 

- -

0 20 40 60 

No. of i terat ions 

80 20 40 60 

No. of i terat ions 

p : array element 
• :source 

ASPECT ALGORITHM 

t ~ T 
j 

80 

m 10-7 

POWER TABLE: 
Source No.1 ;1.0 

Noise :0.0001 

-145-



FIGURE — 4.55 (Sources No.1 and No.2 are correlated. Power resolution: -30dB) 
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FIGURE — 4.56 (Sources No.1 and No.2 are correlated. Power Resolution: -30dB) 
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FIGURE — 4.57 (Sources No.1 and No.2 are correlated. Power resolution: -30dB) 
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4.6 SPATDAL SMOOTHING 

In this section an example of Spatial Smoothing Technique, as it 

has proposed by Shan, Wax and Kailath [SHA-85], is presented and 

compared with ASPECT. Since Shan's technique operates only in a 

linear array environment, an array of seven uniformly distributed 

isotropic elemements is considered in the presence of three coherent 

signals incident to the array from direction, originally, 40°, 90°, and 

135° and then from directions 40°, 42° and 90°. The array elements were 

spaced one half wavelength apart . The algorithm uses four subarrays, 

with each subarray having four elements. The results are shown in 

Figure 4.58 and 4.59 together with results for MUSIC algorithm for 

those two set of incident signals. Figure 4.58 shows that when the 

sources are well separated the Spatial Smoothing Technique restores the 

rank of the matr ix Rmm a.nd provides unbiased estimates of the 

locations of the emitting sources. However when these sources are close 

together this restoration of the rank is not very good as that illustrated 

by the eigenvalues provided in Figure 4.59. This leads to failure of 

Spatial Smoothing Technique to detect and locate some of the incident. 

Thus in the current example this technique fails to detect and estimate 

the signal incident from 40° and 42° althought it detects and estimated 

the location of the third one. In both the above mentioned figures, the 

failure of MUSIC is illustrated clearly. Next ASPECT is tested for the 

above two signal environments. Its behaviour is illustrated in Figures 

4.61 and 4.62 showing that ASPECT outperforms to Spatial Smoothing 

Technique in a linear array situation. 
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FIGURE-4.58 
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FIGURE-4.59 
MUSIC ALGORITHM and SPATIAL SMOOTHING TECHNIQUE 

FOR THREE FULLY CORRELATED SOURCES 
(Two of the sources are located close together) 
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FIGURE—4.60 ASPECT FOR THREE FULLY CORRELATED SOURCES. 
WELL SEPARATED IN SPACE 
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FIGURE —4.61 ASPECT FOR THREE FULLY CORRELATED SOURCES 
(two of the sources are located close together) 
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4.7 

This chapter reports on a number of computer simulation tests 

that have been performed in order to assess the performance and 

limitations of the ASPECT algorithm presented in the previous chapter. 

Examples of signal environments examined are concerned with i) a 

number of uncorrelated emitting signal sources and i») a mix of 

correlated and uncorrelated emitting signal sources. 

In the majority of tests which involve uncorrelated sources, 

ASPECT correctly detects, resolves and estimates the directions of 

incident signals. However, when there are incident signals which are 

located close together and at the same time of widelly differing power 

levels then ASPECT detects the weak signal but loses accuracy when 

estimating its direction. However, it provides accurate estimates of the 

remaining sources. 

In an environment involving correlated (coherent), sources 

ASPECT maintains its immunity with respect to noise level. In 

addition when there are weak and strong correlated signals present 

ASPECT, although detecting these signals, seems to looses accuracy 

when it estimates the direction of the weak signal. The loss of accuracy 

is greater than in the uncorrelated case. 

Summarising the results obtained so far, it can be said that this 

precision is altered when 

• the angle separation between sources is small, 

• the sources are correlated, 

• the sources are of widely differing power levels. 
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• the observation time is small (see an example in Appendix 4). 

The problem is further complicated by the parallel existance of more 

than one of the above cases. 

The limitations imposed on the algorithm are as a result of two 

factors: 

1) by the accuracy of the estimated eigenvectors which anyway depends 

on the conditioning of the covariance matrix and the multiplicity of 

their roots, as well as by the particular eigenvector estimation 

algorithm used, and 

2) by the computer constant EPSILON, that is the smallest positive real 

value number such that l.O+EPSILON>l.O. Thus, it can be said that 

the smaller the EPSILON is the higher space and signal-power resolution 

obtainable. 

The Performance of ASPECT is also affected by the array 

manifold dimensionality, which is a function of the array geometry and 

the characteristics of individual sensors in the array. This array 

manifold dimensionality provides the condition under which the 

solution of A S P E C T with respect to a particular environment is unique; 

it also provides the maximum number of signals which can be resolved 

by the algorithm without any ambiguity problem. 

It should also be noted that , the limitations of the optimization 

method used for minimizing the ASPECT cost function influence the 

rate of convergence of ASPECT. 
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CHAPTER 5 

STEERED VECTOR ADAPTIVE ARRAY 
PROCESSING 

5.0 ONTIRODUCTIION 

The previous two chapters addressed the problem of locating a 

number of emitt ing sources. This chapter is concerned with the problem 

of isolating an emitting source in the presence of interference and noise 

(see Figure-IA problem-2) and obtaining information about the 

unknown interference environment. An array scheme capable of 

isolating an emitting source is the so called steered vector adaptive 

array. In this array processing scheme, an array of N sensors operates in 

a completely unknown interference environment. Its main function is 

the adjustment of the array pattern so as to receive a signal coming 

from a known direction, in the presence of M unknown interferences or 

jammers (with N>M) which are spatially distributed in unknown 

directions. Its aim is the reception of the desired signal and maximum 

suppression of unwanted interferences (ideally to zero). 

However, this array technique is willing to compromise on 
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interference suppression and allow some interference to pass at the 

output of the array (contaminating the desired signal) in order to 

obtain maximization of the signal-to-noise ratio. That is, it does not 

provide complete suppression of unwanted interferences. In addition, the 

direction of arrival (DOA) of the desired signal should be known a 

priori as accurately as possible since the pointing errors affect 

significantly the performance of the array. Furthermore, the larger the 

power of the desired signal at the input of the array is the smaller the 

power of the desired signal is provided at the output of the array. This 

is known as the power inversion problem- (see for example [APP-76], 

[AP2-76]) and it may result in desired-signal cancellation. 

A partial solution to the above mentioned problems, is given by 

the modified Applebaum loop [GUP-84]. This is based on the idea of 

filtering the desired signal. Thus, by forming a covariance matrix which 

does not include the desired signal one can make a new adaptive array 

which is more robust to pointing errors and overcomes the drawback of 

power inversion mentioned above. 

All the same, the performance of adaptive arrays is significantly 

degraded as the number of jammers increases, with deteriorated results 

when some of them are close together or when they are located at less 

than half the array beam-width away from the desired signal. Thus, the 

performance of adaptive arrays is governed by the geometry involved in 

the array and signal environment, as well as by the powers of the 

directional sources. 

All the above mensioned problems in conjunction with the 

resolving power limitations of conventional adaptive array techniques 

make this array scheme incapable of handling many real world 

problems. 
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In this chapter it will be shown how the concepts of signal 

subspace methods can be extended into conventional steered vector 

adaptive arrays in order 

• to analyse their behavior and highlight the problems mentioned 

above; 

• to present a new algorithm capable of receiving a desired signal 

in the presence of unknown non-coherent interferences and, 

which at the same time, is: 

• capable of providing completely interference 
cancellation 

• capable of locating the positions of interfering 
sources 

• less susceptible to pointing errors and without 
the disadvantage of power inversion problems. 

Then, the ASPECT algorithm will be slightly modified in order to 

provide a weight vector capable for achieving the above aims even if 

fully correlated (coherent) signals are involved. 

5.1 m U H Y - PROCESSING MODELS 

When dealing with broadband signals the array processor can 

usually be represented by a transfer function as shown in Figure 5.1a. 

However, the transfer function is not generally suitable for adaptive 

processing and, therefore, discrete time approximations for this model 

can be established using tapped delay line (TDL) filters [Figure 5.16), 

where each of the tap weights can be considered to be adjustable. The 

TDL, when it is used for narrowband applications, can be reduced to a 
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FIGURE-5.1 
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narrowband TDL model which ideally can be represented by a single 

time delay per channel. This single time delay per channel can then be 

approximated by a complex weight in each channel and this last model 

is known as the single complex weight model [Figure 5.1c). 

Finally, in many array applications the direction of arrival of the 

desired signal is known or can be measured. In such a case, the time 

delays needed to align the desired signal terms in each channel can be 

computed and this function can be modelled by a spatial correction 

filter as shown in Figure 5.1c?. In the following sections, the single 

complex weight model (with or without spatial correction filter) is 

going to be used. 

In the following two sections the basic concepts necessary to 

analyse the behaviour of an array, such as array output and array 

pattern, will be discussed. Since these parameters are well known [HUD-

81] the discussion will be kept brief. 

5.2 ARRAY O U T P U T 

Consider the array as shown in Figure 5.2 at some time t At this 

time, the output y{i) of the array will be the contribution of all the 

x^.{t) 's weighted by the complex coefficients, %|t=i,2,3,..#. 

Tha t is. 

fc=l 

- 1 6 0 -



FIGURE-5.2 

ARRAY PROCESSING MODEL USED IN THIS CHAPTER 
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or in more compact form: 

y{i)=x{{)" w 

where i z,(<) is given by equation 2 . 2 6 

hpivi, f2> "n 

(6.2) 

Now the average output power from the array is given by: 

P o u t = 4 ll!/(i)in=-E(!/(<)''!/(«)] 

= 4 id 

I.e. ^out —2^^^xx M (5.3) 

If the incident signals are uncorrelated, then the output from the 

array can be expressed as the sum of powers of the separate sources, 

that is, 

^out ^d-out ^J-oui ^n-out (5.4) 

where 

P^ ^^_^=desired output power 

P t o t a l jammer output power =w^ItjjW 

P,- where 

^n-out~ output power =w^RjijiW 

Equation 5.4 can also be written as follows: 

pnni = + m"" ̂ j j m h, 
out 

i.e. 

dd 

pout = + t p r ^ " ^ y + 
]=1 

..H c \2 , „„H 

+ 2£^^nnM (5.5) 

(5.6) 
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If the output signal to noise plus interference ratio (SNIR) is 

defined as the ratio of the wanted signal power to the total unwanted 

power then: 

i=i 

In the next section the useful concept of array pattern will be 

presented. 

5.3 ARRAY P A T T E R N 

Array pat tern is defined as the output obtained from the array as 

a unity power emitt ing source is moved around in space. Figure 5.3 

shows the magnitude of an array pattern for a linear array with all 

weights equal to one. It is clear from this figure that the array pattern 

has a number of lobes [MA-74]. The largest one is called the main lobe, 

while the remaining lobes are known as sidelobes. The main lobe is 

generally steered towards the direction of a desired source. As has been 

mentioned in Chapter 2, the direction of propagation is represented 

generally by a vector called the slowness vector and symbolized by _a. 

Ideally, the beamformer should permit the passage of signals 

propagated with the slowness vector ^ and, at the same time, reject all 

the other existing signals. 

- 1 6 3 -



FIGURE-5.3 

Arrgy Pattern of a linear ar r^ of 5 isotropic unrfomily distributed elements 
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Let the main beam of the array be steered towards Then the delays 

at each sensor of the array are given by: 

tk=- 'm lk 

where 

t , 

•Lk 

N 

f o r fc=i,2,3,...,Ar ( 5 . 8 ) 

is ihe delay ai fc"* sensor element with 

respect to ihe centre of the array, 

vector representing the location of ihe 

sensor element with respect to the 

centre of the array, 

represents the number of sensors. 

Suppose the incident signal is a plane of unity power propagating in a 

different direction a then: 

xk{t)=expl juj{t~a Zk I (5.9) 

However, the beamformer output y{t) is formed by a weighted version 

of the received signal 

N 
y{i) (5.10) 

A:=l 

N 
= E M ^ + M L k - ^ Zk E 

6=1 

N 
= g Wk-expl-jik-ka) r j . expl ;w i} 

k=l 

N 
where g{^= £ w^.expl -jk^Lkl^ array pattern (5.11) 

i t = i 
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Equation 5.11 shows that the array pattern is essentially the Fourier 

Transform of the weighting function taking into account the 

position of the sensors of the array. 

The term indicates that the array has steered its main lobe in 
k 

a direction parallel to thus attenuating any plane wave 
k . 

travelling in direction different from j^ . The objective of adaptive 

arrays located in an environment of spatially distributed emitters can 

be said to be the adjustment of the array pattern in such a way eis to 

receive a desired directional signal attenuating the remaining signals as 

much as possible. 

A more general equation for the array pattern can obtained when 

employing the concepts presented in Chapter 2, and in particular from 

the use of Equation 2.18. If this is done then, in compact form, the 

array pattern can be represented as follows: 

3 i i , ) = s ^ & (5.12) 

where is the vector^, of Equation 2.18. 

Figure 5.4 shows the magnitude of a planar array with all the weights 

equal to unity. 
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FIGURE-5.4 

Array Pattern of a planar array of 15 (5x3) isotropic elements 
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5.4 OPTDMUM SOLUTIONS AND PROBLEMS OF STEERED 

VECTOR ADAPTOVE ARRAYS 

Without loss of generality, the assumption that the incident 

signals are narrowband is employed in this chapter. This assumption 

leads to the array model shown Figure 5.2 with N sensors located in a 

known geometry. In such a case, the task of the adaptive processor is 

the selection of appropriate complex weights w (tuG C^) in order to 

receive the desired signal as well as possible according to some 

performance criteria and, at the same time, to suppress any interfering 

source as much as possible. It is important to note here that the 

different performance measures converge towards the same steady state 

solution, which is known as Wiener-Hopf solution [HUD-81], [MON-80]. 

For instance, in order to obtain maximum SNIR at the output of a 

steered vector adaptive array the optimum steady state weights should 

be given by the Wiener-Hopf vector: 

={daia covariance matrix)~^.{steering vector) (5.13) 

where, as has been shown in previous sections, the covariance matrix is 

given by Equation 2.21 and where the steered vector adaptive arrays use 

as their steering vector the known SPV of the desired signal. That is 

Us — where q=scalar (5.14) 

However, the major drawbacks associated with the use of Equation 5.13 

are: 
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1. the power inversion of the desired signal, which 
results in the cancellation of the desired signal 
when it has high power; 

2. the degraded performance of the array when 
pointing errors occur ; 

3. The reduction of the output SNIR when the 
number of interferences increases; 

4. the passage of interferences to the output of the 
array when (*) their power is compared to noise 
(i.e. low power) (a) they have high power but 
are located close together in space (m) the 
angular separation between some of them and 
the beam direction is small. Then an 
immediate consequence is the drop of the 

The modified Applebaum adaptive array [GUP-84] overcomes the 

first drawback and is robust in respect of the second. This improvement 

on performance in the modified Applebaum process is achieved by using 

a filter to remove the desired signal from the construction of the 

covariance matrix so that: 

—opi ~ 

Let us call Equation 5.15 the "modified" Wiener-Hopf. Although 

Equations 5.13 and 5.15 appear to be completely different, this is not in 

fact the case. I t can be shown [MON-80] that they differ only by a 

scalar factor and, therefore, these two weights offer identical maximum 

SNIR even though they have a number of different effects on the 

process. 

However, both Equations 5.13 and 5.15 always allow interference 

to pass at the output of an array of sensors, thus contaminating the 

desired signal, as wil l be shown analytically in the next section. For this 
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reason, the weight-vectors provided by these equations are not 

appropriate for complete interference cancellation. The aim of the next 

section wil l be concentrated on highlighting the above problems by 

using signal subspace techniques instead of conventional techniques. The 

considerations of the following section result in a new algorithm which 

extends the signal subspace concepts to steered vector adaptive arrays. 

5.5 SOLUTllONS FOR COMPLETE ONTERF. CANCELLATDON 

Consider a W-dimensional observation space H of the data 

CO variance matrix and let elements of this 

space. As was mentioned in a previous chapter, this space can be 

decomposed into two subspaces: the signal subspace Eg with 

dim[B.s]:=M+i and the noise subspace with dim[Rn]=N~M-i 

Eg is spanned by 
or equivalenily by the M+l eigenvectors of 
Rxr which correspond to its M+l largest 
eigenvalues {i.e colums o/Ej) 

E^ is spanned by remaimng N-M-i eigenvectors 
ofRxx (z.e colums of'En) 

It is clear (see Figure 5.5) that the noise subspace Ej^ is the 

complement of the signal subspace Eg i.e. E=:Eg@E;i; where © means 

direct sum. 

Thus, consider the eigen-decomposition of Rrx, that is: 
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F I G U R E - 5 . 5 

D E C O M P O S I T I O N OF THE SUBSPACE SPANNED BY THE COLUMNS OF 
DATA COVARIANCE MATRIX WHEN THE DESIRED SIGNAL IS PRESENT 

L [ , Vg , ] 

(dim = M) 

L I S „ S „ . S „ ] 
(dim = M) 

belong to the same subspace 

(SIGNAL SUBSPACE - Hg ) 

(NOISESUBSPACE - H^) 

L [ ^+1 > ^+2 I i^N—ll 
(dim = N — M — 1) 

(dim = 1) 

Note : L [ . ] means 'spanned by ..." 
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u XX = ^ Ea E n j . 
D, O 

O O 
+ a^\ .( E, E „ ) ^ (5.16) 

where E, is an Nx(M+l) matrix, En an Nx(N-M-l) matrix, I an NxN 

matrix; 

and 

T 
1 

N 

T 
M+1 

i 
D, 

O 

O 

O 
(5.17) 

Thus, the decomposition shown in Figure 5.5 has been performed. 

The optimum vector, as this results from Equations 5.13 and 5.16, is 

given by: 

This can be rewritten in the following form: 

(5.18) 

M+l 

w opt' 23 + 
i = i 

a ~ ^ ' ^ U s 
ILn 

(5.19) 

where 

l^—the i"* diagonal element o/^Da + cr^.l^ ^ 

E^^.=the column ofE, 

^Projection operator of the subspace spanned by 

Thus, by using last equation the optimum Wiener-Hopf solution can be 
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redefined as: 

Consider the vectors which result from the projection 
of the steered vector on to each eigenvector of the 
data covariance matrix and weighted by the 
corresponding eigenvalue. The summation of those 
vectors provides the Wiener-Hopf solution. 

By using Equation-b.6, the output power can be expressed as: 

Po.i = Pd-(Mc,pt"£d) ' + t ' + "'-Mo/nLoft 
Z=1 

^d-out ^J-out ^n-out 

where 

+ y (5.21) 

Pj.„nt = 'E/<- { £ s ' ' - E - . ( D . + < r ^ l ) - ' . E , ^ . £ } = (5.22) 

-n 
(5.23) 

In the absence of any jamming signals P a d d i t i o n D, and I 

become scalars and equal to and 1 respectively. Then the output 

power is given by: 
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where the first term in the last equation is the desired signal 

at the output of the array, while the second term is the the output noise 

Ue=a.S J. q=scalar 

In addition E, (which in this case is a vector) and belong to the 

same subspace (a line); which means that 

P ^ ^ . S j = S j (5.25) 

Therefore 

From the last equation it is clear that desired output power is degraded 

with increased desired signal power f ^ at the input of the array (i.e. 

power inversion). In addition, the output SNR becomes: 

5.27 

which is the maximum SNR. 

However, in the presence of pointing errors, Ej and do not belong 

to the same one dimensional subspace and Equation 5.25 is not valid; 

That is, 

(5.28) 
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and Equations-5.2Q and 5.27 are not true. In this case, the output power 

of the desired signal in Equation 5.24 decreases. This, in conjunction 

with the fact that all the terms which have the "delete line" in 

Equations 5.18 5.19 and 5.23 are not zero (and so they contribute more 

noise terms at the output of the array), may result in serious 

undesirable effects on the output SNR. 

I t is clear from Equation 5.22 that when the interference sources 

are present the contribution of the interference to the output of the 

array is given by: 

Pi- + (8.29) 

Therefore it follows that the performance of the system will deteriorate 

as the number of interferences increases so that there are more terms of 

the form shown in Equation 5.29 which contribute to the output. 

Let us next examine, in a similar fashion to the above discussion, 

the MODIFIED WIENER-HOPF equation {Equation 5.15). 

In this case the decomposition of the observation space H is as shown in 

Figure 5.6 where 

Hg is spanned by 5i,....,5^ or equivalently by 

the M eigenvectors of ^n+J which 
correspond to its M largest eigenvalues (i.e. 

columns of Eg) 

is spanned by remaining N-M eigenvectors 

«/ ^n+J 

Thus, by decomposing R^_|_ j , like the decomposition of Equation 5.16, 

it is implied that 
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FIGURE-5.6 

DECOMPOSITION OF THE SPACE SPANNED BY THE COLUMNS OF 
DATA COVARIANCE MATRIX WHEN THE DESIRED SIGNAL IS NOT PRESENT 

C 5 ) 
L [ . Va . 

(dim = M) 

Vĵ +1 , ̂ +Z I i^NJ 
(dim = N - M) 

W s . ] 
(dim = 1) 

Note : L [ . ] means 'spanned by ..." 
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R n-\-J ( E. En) 

D, O 

O O 
+ cr^.l ( E, E n ) ^ (5.30) 

but in this case E3, Dj and En are different from those of Equaiion 5.16 

and the dimensionalities are NXM, MXM and Nx(N-M), respectively, 

while a is the variance of the noise the same in both cases. 

The optimum weight wil l be given by a similar equation to that of 

Equation 5.18. That is, 

w opt (5.31) 

where now the term <7 ^.Pr- .Ug^^O. 

Following the same analysis as with Wiener-Hopf, the output powers 

for the desired signal, interferences and noise will be: 

''i-out=Pd- { + y (6.32) 

P j . o u t = ' E ' ' ' - (5.33) 

.Es.(l)s + a \ l ^ - \ E s ^ .U^ + <r-^.Us^ .P^^.Us 

1 = 1 

^n-out~^ 

(5.34) 

And, in the absence of any interferences, the output powers are given 

by: 
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(5.36) 

(5.36) 

^ n - o u i - ^ ^-Jls-P^^-Jls (5.37) 

However, because now En spans the whole observation space, this 

means that the projection operator applied to any vector belonging to 

that space leaves it unchanged, that is 

^En-d~^d (5 38) 

P£^-ILs=ILS (5.39) 

Therefore 

and 

Poui= -Prf-I (5 40) 

^ . ( S / . S j ) = S N R , J \ S ^ r = . (5.41) 

It is obvious from Equation 5.40 that now the desired output at the 

output of the array is proportional to that at the input, so the power 

inversion problem is not present. 

In addition, in this case. Equation 5.38 is always true, even if 

pointing errors occur, in contrast to Equation 5.25 which is not valid in 

the case of pointing errors and which is the cause of the reduction of the 

SNIR at the output of the array. Thus, the "modified" Wiener-Hopf 

out-performs to the "full" Wiener-Hopf. 

On the basis of the above discussion it is clear that the optimum 

weights for maximization of SNIR always allows interferences to pass to 

the output of the array. 
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The question is how can the interference contribution be 

eliminated from the output of the array i.e. how can complete 

cancellation of interferences be achieved. An appropriate solution for 

complete interference cancellation which is less susceptible to pointing 

errors and does not suffer from power inversion problems could be 

provided by the following Theorem. 

THEOREM 4. : 

a) The eigenvector corresponding to the maximum eigenvalue of the 

rank-1 matrix where w is the projection of the optimum 

Wiener-Hopf solutions R^x^Jls or on to the subspace 

spanned by the eigenvectors corresponding to the minimum 

eigenvalue of the matrix 

eig^^^o (5.42) 

provides a weight-vector appropriate for complete cancellation of 

unknown interferences. 

b) the process maintains the output noise power equal to thai at the 

input. 

PROOF: 

By minimizing the function: 

eigi^o 
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the power of the desired signal becomes known. Thus, Equation 5.42 is 

the data covariance matrix where the desired signal effects have been 

removed. 

Let Minierf. cancel eigenvector which corresponds to the maximum 

eigenvalue of w.w^. Then 

^nierf. cancel —£M.Tnax{w,W^) 

W 

iw .W 

^En-opi 

^^pV^En^En-Opt 

^En-opi 

—opf^En'—Opi 

(5.44) 

Consider the observation space H dim[£[l=N of the covariance matrix 

J which is decomposed as shown in Figure 5.6. Now the subspace 

Hj spanned by is also spanned by the iW eigenvectors of 

corresponding to its M largest eigenvalues while the remaining N-M 

eigenvectors span the subspace H-"^. 
^ I 

Let P|p be the projection operator of the subspace H. which is 
t - n J 

spanned by E^-, i=M+i,...,Ar eigen-vectors of 

Then, the projection of the optimum Wiener-Hopf solution given by 

Equation 5.15 on to the noise subspace is given by: 
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_ 1 
~ 

_ 1 
" cr̂  

{using Lemma-2) 

(5.45) 

Equation 5.45 in conjunction with Equaiion 5.44, and the idempotent 

property of projection operator Pr- =P|c P r (Lemma-2) gives: 
t n Ln tin 

inierf. cancel 

N 

(5.46) 

The output jammer power of the array using as weighting vector, the 

vector given by Equaiion 5.46, will be: 

^ ..H o \2 
^j-oui ^i'^-^nter}. cancel'—i) 

1=1 

En 

However, 

Therefore, 

f (5.48) 

This proves part(a) of the Theorem. Part(b) can be proved by using 

Equaiion 5.6. Then, 

2 H 
^n-out ^ '^nterf cancel'^nterf cancel' 
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_ 
IIs''.Pe„US 

(5.49) 

It can easily be proved (using Theorem 2.12 in [LIN-78]) that 

^inierf.cancel given by Equaiion-5.27 is the best approximation to 

Now, by using Theorem 4, Equation 5.6 becomes: 

P o u i = P i - h " - ^ E „ - h + (5.60) 

Thus, the signal-to-noise power ratio at the array output will be: 

Sf'Roni = % • (5-61) 

However, the angle between the and subspaces is 

C O S 0 : 

A -^d 

(5.52) 

Therefore, Equaiion 5.51 is equivalent to: 

S ^ ^ c u t = (6,53) 

where 9=angle between and subspaces 

In the absence of interferences, En spans the whole observation space; 

which implies that cos0=l and the provided is equivalent to 

modified Wiener-Hopf (see Equaiion 5.41). 
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Equaiion 5.53 shows that if there is an interference very close to the 

desired signal direction then ^-+90°, which implies that the output SNR 

deteriorates seriously. However, this undesirable property is not 

restricted to the proposed processor. The Wiener-Hopf processor (and all 

other known processes) also suffers from this restriction when 

interferences are located close to the desired signal direction. 

It is important to point out that the minimization problem 

presented by Equation 5.42 has a global minimum which is positive 

(and equal to the power of the desired signal) if the desired signal is 

present, and zero if it is absent. This is illustrated in Figure 5.7 for a 

signal environment where the desired signal of power 0.7 is present and 

then for the same environment when it is absent. 
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FIGURE-5.7 
COST FUNCTION VARIATION GIVEN BY EQUATION 5.43 

FOR THE ARRAY ENVIRONMENT PROVIDED AT THE BOTTOM OF THE PAGE 

(a linear array of 5 isotropic elements is used) 
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5.7 PROPOSED ALGOROTHM 

The proposed algorithm can be presented as a series of steps as 

follows: 

STEP-i: Estimate the data covariance matrix 

STEP-2: Find the minimum eigenvalue of this matrix 

STEP-3: Estimate the following matrix: 

* 

tig. ^ 0 

STEP-4: Perform eigen-decomposition of the matrix estimated in 

step-3: 

STEPS: Find the projection operator of the space spanned by the 

eigenvectors corresponding to the minimum eigenvalue of 

the decomposition performed in the previous step. 

STEPS: Apply the above operator to the steering vector. This gives 

a new vector. Divide this vector by its magnitude. This 

provides the 

STEP-7: Weight the inputs of the array with cancel 

The minimization problem involved in STEP-3 can be performed using 

any line search method technique. In the previous section {Figure 5.7) 

this was performed using simplex Nelder and Mead minimization 

technique [WAL-75] with accuracy equal to epsilon of the computer. 
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5.8 ASPECT-WEIGHT-VECTOIR 

Equaiion-bAQ in the previous section, provides a weight-vector 

appropriate for complete interference cancellation, but only when the 

interference sources are uncorrelated with the desired signal. 

I t is not difficult to see, however, that when some interferences are 

correlated with each other, rather than with the desired signal, then 

the use of Equation 5.46 will suppress them completely. However i t 

does not provide deep nulls to each of the correlated interference 

locations. Instead, Equaiion-bAQ provides one null in a location which 

results from a linear combination of interference locations. 

The limitations of Equaiion-bAQ can be overcome by using 

ASPECT. The ASPECT algorithm can provide a weight-vector which 

works even in a fully correlated signal environment. The reason is that 

ASPECT provides the necessary information with respect to 

interference subspace and this is independent of any correlation 

between sources. In addition, this vector does not suffer from power 

inversion problems or pointing errors therefore there is no need for 

filtering the desired signal effects when forming the covariance matrix. 

Of course the weight-vector should be orthogonal to the interference 

subspace Hj and, by looking at Figure-b.5, it is not difficult to find a 

vector which is orthogonal to both interference and noise subspace (see 

Figure-b.8). 

In order to provide a weight-vector for complete interference cancel-

lation the following step (as STEP-5a.2c.l) should be added to the 

ASPECT algorithm. 
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5a.2c 

5a.2c.i • let S=[_5^,SjYy] where 5^ is the column of 

S which is closer to the steering direction. 

• estimate the projection operator 

• estimate the weight-vector WaspECT~^ 

• multiply input of the array by wASPECT 

• update — Qtvy —MaspECT-^ASPECT 

where c — \ 

Q-^j—Projection operator to the subspace Hj~ 

5a.2d 
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FIGURE-5.8 

ASPECT WEIGHT-VECTOR 

l - [ ^1, ^2, . 1 
(dim = M) 

belong to the same subspace 

(SIGNAL SUBSPACE - Hg ) 

w 
^ASPECT 

L [ S , I 
(dim = 1) 

(NOISE SUBSPACE - H ^ ) 

Note : L [ . ] means 'spanned by ..." 
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CHAPTER 6 

STEERED VECTOR ADAPTIVE ARRAY 
COMPUTER SIMULATIONS 

6.1 COMPUTER EXPEKDMENTS 

In order to demonstrate the performance of the ^interf.cancel 

—ASPECT 
processor, a set of computer simulations was carried out 

using an APRICOT XEN-i 386/30 with 80387 co-processor, and for 

illustration purposes, a uniform linear array of five isotropic elements 

with interelement spacing of j was used. 

The signal environment was synthesized as follows: 

• the desired signal was located at 90 degrees and was set to 

have unity power; 

• three jammers were assumed present: the first fixed at 30°, the 

second at 60° and the third at 100°. Al l three were taken to 

have unity power; 

• thermal and isotropic noise was assumed present at each 

element. Two power levels namely 0.001 (—30dB) and then 0.1 

( —lOdB) were considered. 

The performance of the w^riUrf.cancd processor was also compared with 
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that of the Wiener-Hopf (given by Equation 5.15). The results are 

shown in TABLE-i indicating that indeed the cancel processor 

does cancel the unknown interferences completely. Thus, the array 

pattern which is shown in Figure 6.1 presents very deep nulls at the 

locations of the unknown interferences while it provides a free way to 

the desired signal. By considering that each deep null provides the 

location of an interference, it can be seen that these deep nulls are easily 

distinguishable from the rest of the nulls of the array pattern and they 

provide unbiased estimates of the unknown interference locations while 

the remaining nulls correspond to pseudo interferences. The same points 

are illustrated in Figure 6.2 where the noise level has been increased 

from —30 to — lOdB. 

A criterion for comparing algorithms is with respect to the output 

SNIR. Thus, in the above simulation studies the output SNIR is 

examined for two processors: 

• the processor based on Equation 5.46, 

• a Wiener-Hopf processor, based on Equation 5.15. 

The results of the examination are shown in Figure 6.3 (for noise at 

— 30dB), and in Figure 6.4 (for noise at — lOdB) where the third 

interference is with variable location (0 ,180°). It can be concluded from 

Figures 6.3 and 6.4 that the output SNIR of the ULinterf.cancel Processor 

for most of the directions, is almost identical to that of the Wiener-

Hopf processor which provides the optimum SNIR. 

Let next consider the more complicated situation where the first 

interference has been moved close to the second, that is, their directions 

are now assumed to be at 60° and 62 azimuth angles say. Figure-Q.5 

(for noise at -30dB) , and Figure 6.6 (for noise at - lOdB) show the 

results and illustrate the above points once again. However, these 
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T A B L E ! 

WIENER PROCESSOR 

L O C A T I O N I / P l /P (dB) O / P 0 / P ( d B ) 

desired (0,90) 1 0 5.4652x10^ 67.376 

interf-1 (0.30) 1 0 9.2907x10"^ -30.320 

interf-2 (0.60) 1 0 3.4203X10'^ -24.659 

interf-3 (0,100) 1 0 5.1982x10"^ -28.414 

noise — 0.001 -30 2.3372x10^ 33.687 

SNIR — 0.33322 -4.7727 2.3378x10^ 33.688 

SNR — 10000 30 2.3383x10^ 33.689 

EQUATION-5.46 PROCESSOR 

L O C A T I O N I / I ' l /P (dB) O / P 0 / P ( d B ) 

desired (0,90) 1 0 2.3372 3.6870 

interf-1 (0,30) 1 0 2.7417x10"^^ -315.62 

interf-2 (0,60) 1 0 4.6026x10'^^ -313.37 

interf-3 (0,100) 1 0 8.4568x10"^^ -310.73 

noise — 0.001 -30 1.0000x10"^ -30 

SNIR — 0.33322 -4.7727 2.3372x10^ 33.687 

SNR 10000 30 2.3372X10^ 33.687 
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FIGURE-6.1 
ARRAY PATTERNS for EQUATION-5.46 and WIENER-HOPF PROCESSORS 

(UNCORRELATED SIGNALS with NOISE LEVEL at -30dB) 

(A linear array of 5 isotropic uniformly distributed elements is used) 

directions: desired signal at 90-degrees; 
jammers at 30,60 and 100 degrees; 

ICQ 
Array Pattern 

Wiener 
Equ.5 

—Processor 
- P r o c e s s o r 

60 80 100 120 

Azimuth Angle - degrees 

140 160 180 

interelement spacing = 0.5 wave-lengths 
I P : represents an array element 
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FIGURE-6.2 
ARRAY PATTERNS for EQUATION-5.46 and WIENER-HOPF PROCESSORS 

(UNCORRELATED SIGNALS with NOISE LEVEL at -10dB) 

(A linear array of 5 isotropic uniformly distributed elements is used) 

directions: desired signal at 90-degrees; 
jammers at 30,60 and 100 degrees; 
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FIGURE-6.3 

OUTPUT SNIR versus AZIMUTH ANGLE FOR EQUATION - 5.46 and WIENER - HOPF PROCESSOR 
when JAMMER N0.3 IS MOVED FROM 0 to 180 DEGREES 

with noise level at - 30dB 

(A linear array of 5 isotropic uniformly distributed elements is used) 
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FIGURE-6.4 

OUTPUT SNIR versus AZIMUTH ANGLE FOR EQUATION -5.46 and WIENER - HOPF PROCESSOR 
when JAMMER N0.3 IS MOVED FROM 0 to 180 DEGREES 

with noise level at -10dB 

(A linear array of 5 isotropic uniformly distributed elements is used) 

Jammer No.l: 30—degrees; Jammer—No,2: 60—degrees; Jammer No.3: variable 
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nGURE-6.5 
ARRAY PATTERNS for EQUATION-5.46 and WIENER-HOPF PROCESSORS 

(UNCORRELATED SIGNALS with NOISE LEVEL at -30dB) 

(A linear array of 5 isotropic uniformly distributed elements is used) 

directions: desired signal at 90-degrees; 
jammers at 60,62 and 100 degrees; 
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FIGURE-6.6 
ARRAY PATTERNS for EQUATION-5.46 and WIENER-HOPF PROCESSORS 

(UNCORRELATED SIGNALS with NOISE LEVEL at - l O d B ) 

(A linear array of 6 isotropic uniformly distributed elements is used) 

directions: desired signal at 90-degrees; 
jammers at 60,62 and 100 degrees; 
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figures also show an additional interesting characteristic. That is, the 

resolving power of the Minierj.cancel processor as compared with that of 

the Wiener-Hopf. By using the Wiener-Hopf processor it is not possible 

to distinquish the two interfering sources whereas it is with the 

processor based on 2^linterf.cancd' The corresponding results with respect 

to SNIR are shown in Figures 6.7 and 6.8 

I t is also of interest to compare the proposed processor with that 

of Citron and Kailath processor [CIT-84]. The Citron-Kailath processor 

also uses the ideas of high resolution techniques in order to provide the 

appropriate weight. However, their technique is based on subtracting 

signals between adjacent sensors and the transformation applied means 

effectively a reduction in the dimensionality of the observation space by 

one. Figure 6.9 shows that the proposed processor based on Equation 

5.46 is significantly superior to that of Citron-Kailath with respect to: 

• output SNIR and 

• that a jammer has to ^ closer to the direction of the 

desired source before it leads to a deterioration in 

system performance. 

This superiority increases as the number of present interference 

increases. In addition comparison has been made with respect to 

pointing error effects in the Wiener-Hopf ("modified" and "full" 

version), w- , , , and Citron-Kailath processor. Figure 6.10 and 
/' —intsrfe.cancel 

Figure 6.11 (for —30db and — lOdb noise power respectively) show 

that the proposed processor is more susceptible to pointing errors than 

the "modified" Wiener-Hopf solution, but is superior to both the 

Citron-Kailath and "full" Wiener-Hopf processors. I t is important to 

note the Citron-Kailath behavior to pointing errors when the noise is 

- l O d B ; it is obviously inferior even to the "full" Wiener-Hopf 
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processor. 

I t is important to point out that in an environment where there 

are no interfering sources present, that is, the only source present is the 

desired directional signal, the Citron-Kailath processor provides zero 

weight vector and so there is complete signal nulling and the output 

SNR becomes zero. This is a disturbing asymptotic result. The proposed 

weight canceP however, overcomes this problem and it provides a 

solution which is equivalent to Wiener-Hopf solution. That is, the 

weight vector is co-linear with the steered vector. Figure 6.12 presents 

the results for one such situation. 

Next, consider the ASPECT algorithm with the modification 

presented in the Section 5.8. and examine the behaviour of the 

ASPECT weight processor in a situation involving uncorrelated sources. 

Table-2 and Figures 6.13 show the results. The situation is considered 

in which two interferences are correlated (Figure 6.14) and then the 

situation where these two interfering sources are both fully correlated 

with the desired signal (see Figures 6.15). ASPECT even in this situa-

tion provides satisfactory results. Figure 6.16 illustrates the behavior of 

Wiener processor and Equation 5.46 for the same environment. The 

superiority of ASPECT is clear by comparing the last two figures. 
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FIGURE-6.7 

OUTPUT SNIP versus AZIMUTH ANGLE FOR EQUATION - 5.46 and WIENER - HOPF PROCESSOR 
when JAMMER No.3 IS MOVED FROM 0 to 180 DEGREES. 

with noise level at — 30dB 

(A linear array of 5 isotropic uniformly distributed elements is used) 
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FIGURE-6.8 

OUTPUT SNIR versus AZIMUTH ANGLE FOR EQUATION - 5.46 and WIENER - HOPF PROCESSOR 
when JAMMER No.3 IS MOVED FROM 0 to 180 DEGREES. 

with noise level at — 10dB 

(A linear array of 5 isotropic uniformly distriburted elements is used) 
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FIGURE-6.9 

r^i n-Di rr oKt.n 1. WIENER - HOPF PROCESSOR 
OUTPUT SNIR versus AZIMUTH ANGLE FOR: 2. EQUATION - 5.46 PROCESSOR and 

3. CFTRON - KAILATH PROCESSOR 

when JAMMER No.3 IS MOVED FROM 0 to 180 DEGREES. Noise leVel at — 10dB. 

(A linear array of 5 isotropic uniformly distributed elements is used) 
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FIGURE-6.10 

OUTPUT SNIR when POINTING ERRORS OCCUR with DESIRED SIGNAL at 90 - DEGREES 

1. modified WIENER - HOPF PROCESSOR 
FOR; 2. EQUATION - 5 . 4 6 PROCESSOR 

3. CITRON-KAILATH PROCESSOR and 
4. full WIENER - HOPF PROCESSOR 

(A linear array of 5 isotropic uniformly distributed elements Is used) 

Noise level at -30dB. 
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FIGURE-6.11 

OUTPUT SNIR when POINTING ERRORS OCCUR with DESIRED SIGNAL at 90 - DEGREES 

1. modified WIENER-HOPF PROCESSOR 
FOR: 2. EQUATION-5.46 PROCESSOR 

3. CITRON - KAILATH PROCESSOR and 
4. full WIENER-HOPF PROCESSOR 

(A linear array of 5 isotropic uniformly distributed elements is used) 

Noise level at -10dB. 
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FIGURE-6.12 
SIGNAL ENVIRONMENT WITH NO INTERFERENCE PRESENT 
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TABLE-2 

ASPECT-WEIGHT PROCESSOR 

L O C A T I O N I / P l / P ( d B ) O / P 0 / P ( d B ) 

desired (0 ,90 ) 1 0 6.8739 8 .3720 

interf-1 (0 ,40 ) 1 0 0.0000 -348 .4475 

interf-2 (0 ,50 ) 1 0 0.0000 -347 .2566 

noise — 0.1 -10 0 .1 - 1 0 

SNIR — 0.4762 -3 .2222 68.7386 18.3720 

SNR 10 10 68.7386 18.3720 
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FIGURE-6.13 
ASPECT-WEIGHT-VECTOR FOR UNCORRELATED SOURCES 

one desired source in the presence of two interfering sources 
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initial pointing direction: (0,95) 
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FIGURE-6.14 
ASPECT-WEIGHT-VECTOR FOR TWO FULLY CORRELATED INTERFERING SOURCES 

one desired source in the presence of two interfering sources 

initial Interf. directions :(0,15),(0,65),(0,165) 

initial pointing direction:(0,95) 
final interf. directions ;(0,40),(0,50) 

final pointing direction :(0,90) 
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FIGURE-6.15 
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FIGURE-6.16 
WIENER PROCESSOR AND EQU. 5.46 PROCESSOR 

FOR DESIRED SIGNAL FULLY CORRELATED WITH TWO INTERFERING SOURCES 

one desired source in the presence of two interfering sources 

initial interf. directions :(0,15),(0,65),(0,165) 
initial pointing direction:(0,95) 
final interf. directions ;(0,40),(0,50) 

final pointing direction :(0,90) 

Array Pat tern 
4 0 

3 0 

2 0 

1 0 

pa 
Id 
1 

0 

c 

ctf - 1 0 
O 

% 
CO 
(h 

-20 
! - ( 

<3 

- 3 0 

- 4 0 

- 5 0 

- 6 0 

: Wiener f -Processor 

: E q u . o . 4 6 - P r o c e s s o r 

60 80 100 120 

Azimuth Angle - degrees 

180 

( 0 : denotes an array element 

• • : denotes a source 

interelement spacing = 0.5 wave lengths 

POWER TABLE: 
Source S1 :1.0 

Interfer. J1 = 1 0 ^ correl . 
Interfer. J2 :1.0 
'Noise, 

- 2 1 0 -



6.2 CONCLUDING REMARKS 

On the basis of the above discussion, it can be seen that the 

proposed processor accomplishes the following tasks: 

• provides complete interference cancellation with the output of 

the array composed from the desired signal and thermal noise; 

• provides the number of interferences which exist in the array 

environment; 

• provides unbiased estimates of the directions of the arrivals of 

the interferences thus, if desired, allowing the steering of the 

main lobe to one of these interferences which then may become 

the next desired signal; 

• can be implemented easily as the eigendecomposition is 

nowadays feasible with, for example, wavefront VLSI array 

processors [e.g. KUN-85]; 

• provides reduced subsceptibility to pointing errors and noise 

level; 

• does not suffer from power inversion problem; 

• provides the best approximation of the Wiener-Hopf solutions 

in the complement of the subspace spanned by the interferences 

• in the case of absence of interferences, instead of providing 

complete signal nulling, provides solution equivalent to Wiener-

Hopf optimum solutions. 

• The process is independent of the presence of the desired signal 

effects. 

The above are achieved in some cases at the expense of slight reduction 

in SNIR. 
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CHAPTER 7 

SUMMARY and CONCLUSIONS 

7.1 SUMMARY OF CONTIRDBUTDONS 

Existing Signal Subspace algorithms which are designed to locate 

signals need to have a priori knowledge of the number of signals 

present, in order to estimate their directions of arrival. These 

algorithms' fail if some of the incident signals are fully correlated 

(coherent). Also, algorithms used to estimate the number of signals fail 

when correlated signals are involved. 

The first part of the research reported on in this thesis has been 

devoted to the study of new approaches for overcoming the problem 

just referred to. This has been done by developing a new algorithm 

called ASPECT which detects the number of signals and estimates their 

directions with the detection and estimation being carried out in 

parallel. This algorithm works for both correlated and uncorrelated 

situations and its operation is based mainly on mapping the array 

manifold on to an error surface and then searching that surface for a 

minimum. The new algorithm has been presented (see Section-Z.Z) in a 

form which is appropriate for VLSI implementation or for imple-

mentation which can be carried out using a parallel computer (for 
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instance DAP-ICL, that is an SIMD machine). Important points and 

facts relating to ASPECT have been summarized in the three Theorems 

contained in the Section 3.2. Computer simulation results (Chapier-4) 

have supported the theory and have shown the limitations of ASPECT. 

Summarising, it can be said that the precision of the results provided 

by ASPECT is altered when 

• the angle separation between sources is small, 

• the sources are correlated, 

• the sources are of widely differing power levels, 

• the observation time is small. 

The problem is further complicated by the parallel existence of more 

than one of the above cases. 

In addition, the limitations of the optimization method used for 

minimizing the ASPECT cost function influence the rate of convergence 

of ASPECT. 

Finally, the concepts of signal subspace methods have been 

extended to beamformer problem (Chapter-5) in order to analyse the 

behavior of an array and, in addition, to present two new weight-vector 

processors (see Theorem-4 in Section 5.5 and modified ASPECT in 

Section 5.8) which are capable of receiving a desired signal in the 

presence of unknown interferences and, at the same time, to provide: 

• complete interference cancellation (that is, effectively zero 

interference at the output of the array) 

• information about the interference locations 

offering less susceptibility to pointing errors and free of power inversion 

problems. It is important to point out that in the case of ASPECT the 

pointing errors are completely eliminated and it can handle situations 

where the desired signal and interferences are fully correlated. In 
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addition, the situation where the interferences are turning off, the 

proposed processors become identical to the Weiner-Hopf solution. 

Computer simulation results presented in Chapter-Q highlight the above 

points, supporting the theory. 

7.2 SUGGESTDONS FOR FURTHER RESEARCH 

The research presented in this thesis can be extended by studying 

some of the following points; 

• ASPECT performance depends on a minimization problem. 

Minimization using neuron-like networks is currently an active 

research area (e.g. [RUM-86], [RAS-87]). The integration of 

ASPECT with neuron-like networks for handling the source 

location and parameter estimation problem would be an intere-

sting area of investigation. 

• The application of signal subspace techniques and in particular 

ASPECT concepts to dynamic tracking in micro cell mobile 

communication systems might be of great research value. 

• Futher work can be done in connection with the calculus of the 

array manifold. Work in this area might reveal more insights 

with respect to resolution, ambiguity and location problem. 

• Techniques which take advantages of the correlation between 

desired source and interference (instead of cancelling the 

interference) may improve the system performance. 

• Investigation of the effects of various norm metrics on ASPECT 

and the selection of the most optimum one is also an interesting 
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research topic. 

Extensions of ASPECT to the cases where the sources are inside 

the volume of the array is also an interesting problem. 

The development of new techniques (and propably extending 

the ASPECT algorithm) for handling signal environments 

where the number of sources is greater than the number of 

sensors is also important for both source location and 

beamformer array processing. 

Signal Subspace algorithms are mainly based on the knowledge 

and process of the covariance matrix. However, the triple 

correlation "A;noios" more about the signal environment than 

does the covariance matrix [LOH-84]. The use of triple 

correlation may provide new techniques for the source location 

and estimation problem. 

High-Resolution techiques cannot compete with the speed of 

fast algorithms (not even with a conventional DFT). The direct 

updates of the various steps of ASPECT when a rank-1 

modification of the covariance matrix is involved, is an 

interesting extension of the work presented in this thesis. 
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APPENDIX! 
FRAMEWORK OF SIGNAL SUBSPACE 

APPROACHES 

High-Resolution in array processing is taken to be the ability to 

distinguish the effects of two equal power sources located close together. 

Although the resolving power of an array can usually be improved by 

increasing the aperture of the array, this is not, in general, acceptable 

and an alternative for a given array aperture is to use High-Resolution 

or Superresolution Techniques. 

Signal Subspace approache to high resolution involves two main 

stages of processing. In the first stage a covariance matrix of the data at 

the sensors of the array is formed and in the second stage an 

eigenvector decomposition is performed. 

When the number of emitters is smaller than the number of 

sensors, the determinant of the covariance matrix is equal to zero in the 

absence of non-directional sources. This is due to the fact that the 

presence of an emitter increases the rank of the covariance matrix by 

one.Thus 

rank{Rxx) = M 

If, however, in addition to the directional sources there are also non-
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directional sources present then the last equation is not quite true. The 

covariance matrix then is given by: 

+ {A\.2) 

In that case heus full rank (that is rank{Rxx)=N) and the following 

relationship is valid: 

r a n k { ^ x x ~ ^ ' ^ — ^ (^41.3) 

However, since the presence of noise affects only the diagonal terms of 

the R • covariance that means that 
sig 

therefore 

(Al.5) 

Now since with multiplicity N—M that means 

Gi<7min(Rrr)=o- (.41.6) 

with multiplicity #— M also. 

Therefore M can be determined by the eigenvalues of the covariance 

matrix and more specifically by the multiplicity of its minimum 

eigenvalue: 
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M—N—(muHipticUy of min-eigenvalue) (^1.7) 

Now let us consider that the eigendecomposition has been performed: 

(^2,-^2) ^—M+V^m+I) 

where (Wj-,A,) represents the eigenvector and eigenvalue of Rxx- Let 

^M+ i~ (j41.9) 

Then 

It is now clear from Equation-Al.9 in conjunction with Equation-Al.10 

that the eigenvectors corresponding to the minimum eigenvalue of the 

IRari wil l satisfy: 

K » . y V „ „ . . , = o (41-11) 

V„oise=b!M+J>-- -SwI 

That means that these eigenvectors will be orthogonal to the subspace 

spanned by the columns of and because that subspace includes the 

SPVs corresponding to the directional sources, then, these eigenvectors 

wil l be orthogonal to them too. 

Thus, for instance, by forming the functional: 
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J{9)= Sief.\.\".S{9) {A1.12) 

the well known as MuSIC algorithm is established. 

Thus, for a linear array where the only parameter of interest is the 

azimuth angle, the above equation is evaluated for all SPV correspon-

ding to angles from 0° to 180° and the directions where that equation 

becomes zero are the directions of the incident signals (see for instance 

Figure-?).!). A better reformulation of the Signal Subspace approach is 

to see the source locations as the intersection of the signal subspace with 

the set of all possible SPVs (array manifold). 
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APPENDIX-2 
FINITE AVERAGING EFFECTS 

ON ASPECT 

In Chapter 4 the performance of ASPECT algorithm was 

examined via computer simulations studies by using the theoretical (or 

known) covariance matrix. In this appendix attention is directed to the 

effects of finite averaging on the performance of ASPECT. In that case 

the covariance matrix is formed by using Equation 2.32 which has been 

presented in Section 2.6. 

In order to do this the array model described in the Section 4.2 and 

illustrated in Figure 4.1a is used once again. Two signal environments 

are considered involving three incident signals where the first and the 

second signal constitute a trial pair. The trial pair is located in 

positions which provide 10° (for the first environment) and 5 (for the 

second environment) angle separation. Thus the directions of the signals 

are chosen as follows: 

(15°,20°), (15°,30°), (10°,90°) - first situation 

(15°,20°), (15°,25°), (10°,90°) - second situation 

In both situations the trial pair is fully correlated and the observation 

time is considered to be 250 sample instances. The results are shown in 

Figures A2.1 and /12.2. In addition Figures A2.3 and >12.4 illustrate the 

results when the theoretical instead of sample covariance matrix is used. 

By comparing the above figures it can be concluded that the precision 

on the estimation of the angles of plane waves incident to an array of 

sensors is altered when the number of samples (observation time) used 
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to form the covariance matrix is small. This becomes more serious (see 

Figure A2.2) when the small observation time is combined with 

environments involving fully correlated sources which are located close 

together. 

Appendix 5 illustrates the method used in order to simulate the sample 

covariance matrix, while Appendix-Q presents in a simplified step-form 

an example of the results provided by ASPECT MATLAB program for 

both theoretical and sampled covariance matrices. 
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FIGURE — A2.1 (Sources No.1 and No.2 are correlated. 250 snapshots) 
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FIGURE A2,2(Sources No.1 and No.2 are correlated. 250 snapshots) 

" ; 

TRUE 
directions 

INITIAL 
directions 

source No.1 

source No.2 

source No.3 

source No.4 

( 15.0, 20.0) 

( 15.0, 25.0) 

( 10.0, 90.0) 

( 0.0, 5.0) 

( 0.0, 50.0) 

( 0.0, 100.0) 

( 0.0, 165.0) 

(14.9975, 19.9783) 

(15.0014, 24.9842) 

( 9.9980, 89.9998) 

% 
0) 
T) 
£ Q) O CO 
U, 
u Q) 
Pn 

1.6 

1.4 

1.2 

1 

0.8 

ASPECT PERFORMANCE INDEX ASPECT ALGORITHM 

w a u 103 

Q) 

0) 
bO 100 
< 

CO 0) o 
(6 
CU 
OT 10-3 
mO 

10-3 
g 
CO 

0 10 20 

No. of iterations 

ASPECT ANGLES 

30 

- ' 
1— 

- \ )l 

-

; 

CO Q) Q) 
U 
w 
Q) 
T) 
d 
o 
'-4J 
(6 > 
O 
« - 5 0 

10 20 

No. of iterations 

ASPECT ALGORITHM 

10 20 

No. of iterations 

30 0 10 20 

No. of iterations 

: denotes an array element 

: denotes a source 

30 

POWER TABLE; 
Source No.1 : 1 . 0 ^ coral. 
Source No.2 
Source No.3 :1.0 

Jo1sf& 1^0001 

-232-



FIGURE — A2.3 (Sources No.1 and No.2 are correlated) 
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FIGURE — A2_4(Sources No.1 and No.2 are correlated) 

TRUE 
directions 

i N r r i A L 
directions 

directions estimated 
by ASPECT 

source No.i 

source No.2 

source No.3 

source No.4 

( 15.0, 20.0) 

( 15.0, 25.0) 

( 10.0, 90.0) 

( 0.0, 6.0) 

( 0.0, 50.0) 

( 0.0, 100.0) 

( 0.0, 165.0) 

(15.0000,20.0000) 

(15.0000,25.0000) 

(10.0000,90.0000) 

cost:1.qOQOOOOOOOdOQOe ̂ OOO 

X o 

a 
0) 
o 
of 
6 u o 
4-( k 0) 
Ph 

1.6 

1.4 

1.2 

1 

0.8 

ASPECT PERFORMANCE INDEX 
200 

Q) 
Q> 
bg 150 
Q) 

T) 

1 100 
f3 

6 50 
N 
<3 0 

ASPECT ALGORITHM 

i ; 
1 L._ 1 

1 
; * • » 

: 
/ \ / 1 

CO 
o; 
% 102 
W) 
0) 
T) 
CO 

0 
% 

1 
tn 0) o 
0 
A 
01 

r3 
cn 

0 10 20 

No. of iterations 

ASPECT ANGLES 

30 

10 - 9 

5 
20 

0 

- 2 0 

- 4 0 

M - 6 0 

10 20 

No. of iterations 

ASPECT ALGORITHM 

30 

co 0 Q) U bO Q) 'd-
1 
0 o 

> 
0) v 

10 20 

No. of iterations 

30 0 10 20 30 

No. of iterations 

; denotes an an-ay element 
: denotes a source 

#1 
POWER TABLE; 
Source No.1 :1.0ts. 
Source No.2 
Source No.3 :1.0 
Noise 

-234 -



APPENDIXES 
GRADIENT and HESSIAN OF THE COST 

FUNCTIONS GIVEN BY 
EQUATION-3.41. 3.42,3.43 

This Appendix serves to give the Hessian Matrices and the 

gradient vectors of Equation 3.41, 3.42 and 3.43. These equations are 

repeated below as follows: 

(41 = trace^Pg.Qj^.Pg.Pj^j 

D 

( 4 2 = n 
k = l 

where 

(43 = t race^Qg.Pgj 

(A3.1) 

{A3.2) 

hj.=secQf.= 

©).= the angle between ^ and 

its projection onto the 

subspace spanned by the 

columns of S. 

(A3.3) 

By considering Equaiion-AZ.l, its gradient vector with respect to the 
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parameter p^, that is is given by: 

(A3.4) 
aPq 

where P^. . = 
Xpi ) dpi 

By taking the first derivative of Equation-A^A with respect to a 

second parameter gj then: 

^PiqjUi=irace^ Ps(p(gj)'%'^S''^E + 

+ ^ S ( p , ) ' % ' ' ' s ( , y ) ' ^ E + 

+ ^s-^E-^Sipig^y^E } 

8^Pc 
where P* dpidqj 

On the other hand the elements of the gradient vector of the 

scalar function in Equation-AZ.2 with respect to the parameter p,-, 

that is given by: 

i - {A3.6) 

I f p=B then the last equation provides the element of the gradient 

vector while if p=^ then it provides the (i+A')" ' element of 

where . 

By taking the first derivative of the Equation v43.6 with respect to 

a second parameter gj then: 
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(A3.7) 

I t is not difficult to prove then that the elements of the gradient vector 

of the cost function <̂43 are given by: 

v , , . ( 4 2 = f ; n ( , }= (42. E ^ (A3.8) 
t=:l ' — 1 k = l 

l^k 

while the elements of the Hessian Matrix of the cost function are given 

by: 

v ? „ , . f « = E { ft ( , n « , ) } 
jb = i ^ 1 i = i^ ' — 1 

i^k s^k 

l^k 

— j ) 

_ , Y f A Y l i i i ] _ Y f A I 
f t + f t ' f42 f t ' f t ; 

M3.9) 

Finally, the elements of the gradient vector of the scalar cost 

function given by Equation-AZ.3 with respect to the parameter p,-, that 

Vp.f43, are given by: 

Vp^f43=-^race^Pg^^ y P g j (A3.10) 
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and by taking the first derivative of the last equation with respect to a 

second parameter then: 

y P g j (A3.11) 

Since the gradient vector of any of the three cost functions has the 

following form: 

V f — f — — 1^ M 3 12') 

where ^ is any one of ^42 or ^43; 

therefore if p=5 then Equaiions >13.4, v43.8 and ^43.10 provide the »"* 

element of the gradient vector while if p=4> these equations give the 

element of _V^, where 

In addition the Hessian matrix has the following form: 

de\ d'l>j(ddi 

dBide^ del 

d9id9j( de^dej^ 

d0id4>i 

5^1(90;̂ ' de2d<t>j^ dB^d(t>j^ d<t>id(i>j^ 
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This gives the necessary hint that Equations-AS.7, AS.9 and y l3 . l l 

provide the elements of Hessian Matrix as follows: 

• if p—9 and q=e then they provide the element, 

• if p=e and g—</> then they provide the element, while 

• if p=<t> and q=(i> then they provide the element 

of the Hessian matrix where i , ;E ..•,»']]• 

N.B.: 

• for plane wave approximation p,q—6 or 4> , for j = [ i , a n d 

j — [ i,.., i]. 

• for spherical wave propagation p,q—e or 4> or r, for i=[i,..,K] 

and i=[ i , . . , j ] 
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APPENDIX-4 

SOURCE POSITION VECTORS, 
THEIR PROJECTION OPERATORS 

and THEIR DERIVATIVES 

In this Appendix the first and second derivatives of the Source 

Position Matrix and its Projection Operator with respect to a source 

location parameter are presented for planewave approximation and 

spherical wave propagation. 

PL ANEW A VE APPROXIMATION 

The element of a SPVior plane wave approximation is given by: 

sensors characteristics 

.T U——j-{ki'~]£o) • Ik (j44.1) 

However, the first and second derivatives of the phase parameter U are 

given by: 

- 2 4 0 -



where 

^ _ 
{pilj) dpjdqj 

''-KpiuY^ 

=k 
dpidqj i{Pi9j) 

(X4.3) 

(^4.4) 

Therefore the first and second derivatives of the element of the SPV 

Si wil l be: 

as) 
(*) 

dp; 
(^4.5) 

q2 C(^) 
. r'" = G , ye^ + U( yG ( ye^ + 
opiOgj KPi^i) (.?»} ^b»v 

n(t) i") 

SPHERICAL WAVE PROPAGATION 

The element of a SPV for spherical wave propagation is given by: 

- u-^ 
G^=k^^ sensors characteristics 

U=\ R 2 • Ik , „T 

(^4.7) 

TT Ik 'Ik 

However, the first and second derivative of the phase parameter U are 

given by: 
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du 
dpi TTt/ 

(9 [ / _ I TT'—i • —k 

c: 

f W (Pj) (Rj) 
d^u _ ] V 

1 

H 
{ d^u I U TT 

if i = j 

i f i ^ j 

if i = j 

i f i ^ j 

(A4.8) 

(A4.9) 

(>14.10) 

(^4.11) 

(A4.12) 

Therefore the first and second derivatives of the fc"" element of the SPV 

Si wil l be: 

_dS 
dp 
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(^4.14) 

^*(p,?i) -j^(U+UQ-Ri) %iy^k{pi) -j7r(U+Uo-Ri) 

' - cf ' 

~ ^(p .)-(^+-?"^)-^9i-Si ^ M4.15) 

PROJECTION OPERATORS 

The derivatives of Projection Operator of the space spanned by 

the SPVs, for both shperical wave propagation and plane wave propaga-

tion, can be presented as follows: 

P=S.{S^.S)-\S" (A4.U) 

Q=B-P (^4.17) 

B=(S^ .S)~^S^ (>14.18) 

Let Tp .=: y . That means 
api 

gQ 
Tp.= [0 , . . . , 0 , -^ ,0 , . . , 0 ] M4.19) 

that is NxK matrix with all but the i"* columns zeros. Then the first 

and second derivatives of projection operator P are given by 
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and 

where Mp^=Q.Tpj..B (^44.20) 

^ p i i j ~ ^ p 0 0 j where —Pp^-.Tp^-.B—Mp^-.Tj^.B 

+ Mpj..M^. —/.Q.Tp^.5^..B 

(^4.21) 

where 1=0 if i ^ j 

l=-l if i=j 
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APPENDIX-5 
SIMULATION METHOD OF 

SAMPLE COVARIANCE MATRIX 

In order to generate one sample-vector of an arbitrary signal-plus-

noise field with covariance matrix a given NxN complex Hermitian 

matrix it is necessary [BRE-76] 

1. to find the eigen-decomposition of that matrix. That is 

R = E.D.E"^ (A5.1) 

where E jVx# complex matrix with columns the eigenvectors 

E ~ ^ = E^ 

D a diagonal matrix (eigenvalues) 

2. to generate N random variables which form the vector ^ each 

having independent gaussian quadrature components of zero 

mean and variance 0.5. This can be done as follows: 

a. generate two independent random variables x^. and X2. 

which are uniformly distributed on the interval [0,..,!]; 

b. pass the first one through a filter with transfer function 

4/n . Then, at the output of that filter, there is a 

random variable of Rayleigh distribution r̂ -; 

c. pass the Rayleigh random variable r,- through a second 

filter with tranfer function erp|[;27rr2^I|. This provide a 

gaussian random variable z,-. 

d. repeat steps 2a to 2c N times in parallel, that is for 
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Then a random N-dim vector z is formed. 

3. to pass the z vector through a filter with transfer function 

E.D°"^ the result wil l be a sample vector x. That is 

^ E.D"-^z (A5.2) 

This random vector x provides samples of the arbitrary complex 

covariance matrix A block diagram of this simulation 

method is shown in Figure-Ab.l. 

TEST: 

E\x.x"] = £1[E. 

= E. D ° - ^ E ^ = 

= E. D ° - ^ E ^ = 

= E D E ^ = 

— 
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FIGURE-A5.1 

GENERATING A RANDOM VECTOR VARIABLE FOR A GIVEN COVARIANCE MATRIX 

RANDOM NUMBER GENERATOR 

X 
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APPENOIX-6 
NUMERICAL RESULTS OF 

AN ASPECT-EXAMPLE 

POSITION OF ARRAY SENSORS 

X y z in half-

sensor No.l : -1.9319 0.0000 0.0000 - r i 

sensor No.2 : -1.6730 0.9659 0.0000 =£2 
sensor No.3 : -0.9659 1.6730 0.0000 =13 
sensor No.4 : 0.0000 1.9319 0.0000 =£4 
sensor No. 5 : 0.9859 1.6730 0.0000 =15 

sensor No.6 : 1.6730 0.9659 0.0000 =16 

sensor No. 7 : 1.9319 0.0000 0.0000 =L7 

sensor No.8 : 0.0000 1.9319 1.0000 =I8 

LOCATIONS OF SOURCES 

k i. 
source No.} IS.000 2.0.000 

source No.2 15.000 30.000 

source No.3 10.000 90.000 . 

INCIDENT SIGNALS CORRELATION MATRIX - R. 

( 1.0000, 0.0000) 

( 1.0000, 0.0000) 

( 0.0000, 0.0000) 

( 1.0000, 0.0000) 

( 1.0000, 0.0000) 

( 0.0000, 0.0000) 

( 0.0000, 

( 0.0000, 

( 1.0000, 

0.0000) 

0.0000) 

0.0000) 

NOISE POWER - cr^;( 0.0001, 0.0000) 

COVARIANCE MATRIX R XX 

1st row: (4.8165e+000 4.8545e-017) (2.9011e+000 

3.1771e+000) (3.7226e+000 -1.5S14e+000) (-3.0867e+000 

1.1398e+000) 

2nd row: (2.9011e+000 2.9849e + 000) (4.3394e+000 

4.7932S-002) (4.0413e+0D0 ].8744e + 000) (-2.2781t+000 -

1.7858e+000) 

3rd row: (4.3311e+000 4.3336e-001) (3.1601t+000 -

2.2896e+000) (3.8577e + 000 -9.8416t-001) (-2.7104e+000 

3.9640e-001) 

4th row: (-1.2830e+000 -3.1771e + 000) (-2.3380e + 000 -4. 

4.4588e-017) (-2.3580e+000 - 5.7282e-001) (3.9336e + 000 

2.9849t+000) (4.331U+000 •4.3336e-00l) (-l.2830e+000 

2.1538e+000) (2.7942e+000 -2.1 715e+000) (-2.9474e+000 

4.3395e-017) (3.1601e+000 2.5038e+000) (-2.3380e + 000 

•1.44l9e+000) (4.0786e+000 1.1602e+000) (-1.4035e+000 -

•2.5038e+000) (4.0503t+000 -4.6621 e-01 7) (-1.4022e-h000 

l.2445e+000) (3.I882e-l-000 -1.5348e-hOOO) (-2.4124e+000 

7932e-002) (-1.4022t-i-000 -2.28966+000) (4.20206 + 000 -

2.3343e+000) (-2.6681 e + 000 6.5073e-00I) (3.0553e + 000 
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2.8448e+000) 

Sth row: (3.7226e+000 I.59I4e+000) (4.0413e+000 -1.8744e-hOOO) (3.8577e+000 9.84l6t-00l) (-2.3580ti-000 

5.7282t-001) (4.6663e+000 -5.2204e-Cl 7) (-2.6799t+000 -9.0950e-001) (4.S491e-h000 -6.9250e-001) (-l.9314e+000 • 

l.5644e+000) 

6th row: (-3.0867e+000 -2.15386+000) (-2.2781t+000 1.4419e+000) (-2.7l04e+000 -1.244Se+000) (3.9336t-hOOO -

2.33436-1-000) (-2.6799e-h000 9.0950e-00l) (4.9922e+000 2.7105e-020) (-2.2861 e-hOOO 2.2203e-l-000) (4.4485e+000 

9.9105e-001) 

7th row: (2.7942e+000 2.1715e+000) (4.0786e+000 -1.1602e+000) (3.1882e+000 I.5348e+000) (-2.6681e+000 -

6.50 73e-001) (4.5491 e-hOOO 6.9250e-001) (-2.286Ie+000 -2.2203e+000) (4.8165t+000 -4.85456-017) (-1.3393e+000 -

2.6513e+000) 

Sth row: (-2.9474e-!-000 -1.1398e-f000) (-l.403Se+000 1.7858e+000) (-2.4124e+000 -3.9640e-001) (3.05S3e+000 -

2.8448e-h000) (-I.9314e + 000 1.5644e-f-000) (4.448Se-i-000 -9.9105e-001) (-1.3393e+0Q0 2.65I3e+000) (4.2020t + 000 

2.6780e-0l7) 

EIGENVALUES 

l.OOOOe-004 l.OOOOe-004 l.OOOOe-004 l.OOOOe-004 -l-.0000e-004 I.OOOOe-004 

7.7127t+000 2.83 72e+001 

EIGENVECTORS 

Ist row: (-8.31396-002 1.1657e-012) (-1.83916-002 1.43066-012) (-2.12I6e-002 -1.3916e-013) (5.1488e-002 -1.6l29e-

012) (5.6204e-002 7.2233e-013) (S.7189e-001 3.4531e-013) (-2.7866e-001 -7.10526-017) (3.8555e-001 -1.07S7e-0I7) 

2nd row: (2.45 3 76-001 5.18556-001) (-1.4 1 776-001 -2.1336e-002) (1.6979e-001 -4.50216-002) (-4.65756-001 -l.OlSOe-

001) (3.7578e-001 4.8399e-002) (-1.57746-001 -4.91766-002) (-2.93416-001 8.9002e-002) (2.0756e-001 2.90366-001) 

3rd row: (-3.02426-001 -3.57226-001) (-1.11006-001 1.630 7e-001) (-5.02866-001 -1.80326-001) (-2.89376-001 -3.570Se-

002) (-1.22066-001 2.95176-001) (-2.56376-001 -4.88976-002) (-2.69956-001 8.83096-002) (3.42906-001 5.69676-002) 

4th row: (I.1823e-001 -1.41946-001) (1.64406-001 8.6791e-003) (7.7155e-002 -3.7662e-00l) (3.9154e-00I -1.01586-

001) (4.85906-001 3.26306-001) (-7.24496-002 1.24646-001) (-3.7165e-001 1.4505e-001) (-1.90316-001 -2.61946-001) 

Sth row: (-1.45506-001 -3.1797e-001) (4.73686-001 -3.24916-001) (4.3929e-001 2.4344e-001) (1.60506-002 -7.96516-

002) (-6.58106-002 - 9.30946-002) (-1.79356-001 -1.88886-002) (-1.6743e-001 2.8356e-001) (3.07426-001 2.01206-001) 

6th row: (3.1110e-001 1.59086-001) (1.83956-001 -3.3244e-00l) (-2.19116-001 5.1406e-002) (-2.27936-001 -1.34956-

002) (-4.95006-001 2.1453e-001) (1.36046-001 1.55086-001) (-2.6780e-001 3.0781e-001) (-3.34806-001 -1.3642e-00l) 

7th row: (6.377Ie-002 3.0783e-00l) (-2.70096-001 6.37986-002) (-1.57886-001 5.9839e-002) (6.5493e-001 -7.71806-

002) (-2.42496-001 -4.39846-002) (-1.57986-001 3.7694e-002) (-7.9566e-002 3.89236-001) (2.3981e-001 2.71066-001) 

Sth row: (-2.2335e-001 -1.33136-001) (-3.3926e-001 4.96686-001) (4.49 736-001 4.3113e-002) (-1.5902e-001 -5.0760e-

002) (-1.83146-001 -1.01826-001) (6.7066e-002 1.32886-001) (-2.39646-001 3.36916-001) (-3.16536-001 -3.80046-002) 

E matrix 

(-2.7866e-001 -7.1052e-017) (3.8555e-001 -1.0 78 76-01 7) 

(-2.93416-001 8.90026-002) (2.07566-001 2.90366-001) 

(-2.69956-001 8.8309e-002) (3.4290e-001 5.6967e-002) 

(-3.71656-001 1.45056-001) (-1.90316-001 -2.6194e-001) 

(-1.67436-001 2.83566-001) (3.07426-001 2.0l20e-00l) 

(-2.67806-001 3.0781e-001) (-3.34806-001 -1.3642e-00l) 

(-7.95666-002 3.69236-001) (2.39816-001 2.7l06e-00l) 

(-2.39646-001 3.36916-001) (-3.16536-001 -3.80046-002) 

minimization of Equation 3.42 

1 cost:l.575886130155426 + 000 angt6s:3.46136+00I 3.9SS4e-f-001 

0.00006+000 5.00006+000 (-5.40056-002 -2.9671e-002) 

O.OOOOe+000 5.0000e+001 ( l.I560e-001 -2.9291t-002) 

O.OOOOe+000 1.00006+002 (-1.95346-001 1.8979e-001) 

O.OOOOe+000 1.65006 + 002 ( 3.74616-002 6.27496-002) 
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2 cosl:t.05217380322443t+000 

4.4494e+000 l.7732e+001 

l.I359e+001 3.6362t+00l 

2.6844e+001 9.2202e+001 

-6.7928t+001 l.5479e+002 

angles:!.6491 e+OOI 7.6119e+000 

(7.3333e-002 -3.8854e-002) 

(3.6I65e-002 -1.0ll4e-002) 

(-2.4636e-001 2.7894e-00l) 

(-2.0046e-002 5.3753e-002) 

3 cost:1.00773379652949e+000 

I.64 72e+001 1.7490e+001 

2.04056+001 3.0023e+001 

1.7239e+001 8.9834e+001 

-5.5228e+001 1.4729e+002 

a.ngles:5.7822e+000 4.1323e+000 

(5.2409e-002 -2.I67Ie-002) 

(2.6192e-002 2.6586e-002) 

(-2.8565e-00I 2.2282e-00l) 

(-1.4536e-002 9.06I8e-004) 

4 cosi:l.006804480446056+000 

1.7934e+001 l.850le+001 

2.0088t+001 3.039le + 00l 

1.6623e+001 8.9998e+001 

-6.2749e+001 -1.7I88e+002 

angles:4.735 7e+000 4.6954e+000 

(7.7658t-002 -1.2487e-002) 

(1.0839e-002 1.2044e-003) 

(•2.8700t-001 2.2292t-001) 

(I.8230e-002 l.4310e-002) 

5 cost:1.00005 739432l37e+000 

1.39156+001 2.0572e+001 

1.5835e+001 2.9819e+001 

1.0366e+001 9.0083e+00I 

-7.7722e+001 -1.5294e+002 

angles:4.4109e-001 4.2692e-00I 

(4.5583e-002 3.4677e-003) 

(3.8439e-002 3.0710e-003) 

(-2.9358e-001 2.0567t-001) 

(1.7772e-003 I.2968e-003) 

6 cost:1.0000393099 7895e+000 

1.4668e+001 2.2518e+00I 

1.5787e+001 3.2053e+00I 

l.0180e+001 9.00316+001 

-7.6436e+001 8.28656+001 

angles:2.113Ie-001 4.6199e-001 

(6.13016-002 8.7464e-003) 

(2.32846-002 -3.1735e-004) 

(-2.93046-001 2.04806-001) 

(-6.60236-004 -2.55066-004) 

7 cost:l.000005325388276+000 

1.52546+001 2.1860e+001 

1.44 5 76 + 001 3.24 716 + 001 

1.00366+001 8.99986+001 

-6.42076+001 8.8325e+001 

angl6s:4.3183e-002 1.8193e-001 

(5.81276-002 6.70966-003) 

(2.63176-002 2.2947e-003) 

(-2.92876-001 2.0481e-00I) 

(2.04296-004 -1.83 70e-004) 

8 cost:l.000002059199056+000 

I.5269e+001 2.1277e+001 

1.47446+001 3.17266+001 

1.00126+001 9.00006+001 

-5.37926 + 001 8.35826 + 001 

a.ngle:2.59816-002 1.1334e-001 

(5.35076-002 5.6403e-003) 

(3.09636-002 3.20196-003) 

(-2.92 8 56-001 2.04 796-001) 

(2.63366-004 1.25306-004) 

9 cost: 1.000000423200606 + 000 

1.52276+001 2.04306 + 001 

1.4 7536 + 00 1 3.06126 + 001 

l.OOOle+001 9.00016+001 

-4.92276 + 001 8.6627e+00I 

angl6:l.06146-002 5.16326-002 

(4.62966-002 4.59186-003) 

(3.81646-002 4.21926-003) 

(-2.92 906-001 2.04 8 76-001) 

(3.37726-005 1.7641e-004) 

10 cosi:l.000000060750846+000 

1.50616+001 2.01586+001 

1.49816+001 3.01526+001 

1.00006+001 9.00006+001 

-4.96516+001 8.7108e+001 

a.ngle:3.7629e-003 1.9614e-002 

(4.34636-002 4.5S89e-003) 

(4.10036-002 4.26536-003) 

(-2.93026-001 2.04866-001) 

(3.51946-005 3.69296-005) 
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II cost:I.00000000341802e + 000 

1.5022t+001 2.0024e + 00I 

I.4982e+001 3.0051e+001 

l.OOOOe+001 9.0000e+001 

9.9990e+003 9.9990t + 003 

angle:!.0255e-003 4.6249e-003 

(4.2544e-002 4.3976e-003) 

(4.l93lt-002 4.4328e-003) 

(-2.9303e-00I 2.0489t-001) 

(O.OOOOt+000 O.OOOOt+000) 

12 co3t:I.00000000000499e+000 

1.5000e+001 1.99996+001 

1.5000e+001 2.9999e+001 

l.OOOOe+001 9.0000e+001 

9.9990e+003 9.9990e+003 

angle:3.9881e-005 1.7645e-004 

(4.2232e-002 4.4194e-003) 

(4.2242e-002 4.4203e-003) 

(-2.9305e-001 2.0488e-00l) 

(O.OOOOe+000 O.OOOOe+000) 

13 cosUl.OOOOOOOOOOOOOOe+OOO 

1.5000e+00I 2.0000e+00I 

!.5000e+001 3.0000e+001 

l.OOOOe+001 9.0000e+001 

9.9990e+003 9.9990e+003 

angle:!.OOOOe-009 8.5377e-007 

(4.2237e-002 4.4!99e-003) 

(4.2237e-002 4.4!99e-003) 

(-2.9305e-001 2.0488e-00i) 

(O.OOOOe+000 O.OOOOe+000) 

FINAL RESULT 

cosUl.OOOOOOOOOOOOOOe+OOO 

1.5000e+001 2.0000e+001 

1.5000e+001 3.0000e + 001 

1.0000+001 9.0000e+001 

T T 
<j> 9 

angle:!.OOOOe-009 8.5377e-007 

SO URGE No. I 

SOURCE No.2 

*—SOURCE No.3 

SAMPLE COVARIANCE MATRIX - No. of Samples = 250 

1st row; (4.8288e+000 O.OOOOe+000) (2.9190e+000 -2.9707e+000) (4.3436e+000 -4.2SIle-OOI) (-1.2493e+000 

3.1818e+000) (3.7280e+000 -1.5644e+000) (-3.0576e+00 0 2.1743e+000) (2.7943e+000 -2.1360e+000) (-2.9208e+000 

l.!652e+000) 

2nd row: (2.9190e + 000 2.9707e+000) (4.310!e+000 -4.2327e-020) (3.1607e+000 2.4936e+000) (-2.3222e+000 

1.1902e-001) (4.0023e+000 1.8566e + 000) (-2.3002e + 000 -1.3660e+000) (4.0I88e+000 1.1404e+000) (-1.4396e + 000 -

1.7173e+000) 

Sri row: (4.3436e+000 4.2511e-00l) (3.1607e+000 -2.4936e+000) (4.0574e + 000 -6.5355e-021) (-1.3681 e+000 

2.3151e + 000) (3.8461e+000 -9.7099e-001) (-2.691Be + 000 1.2S57e+000) (3.I661e + 000 -1.5148e+000) (-2.4009e + 000 

4.3931 e-001) 

4th row: (-1.2493e + 000 -3.1818e + 000) (-2.3222e+000 -l.I902e-00l) (-I.3681e + 000 -2.3l5Ie + 000) (4.1269e + 000 

I.2571e-0I9) (-2.3016e+000 -6.40S0e-001) (3.8590e+000 2.2956e+000) (-2.6059e+000 5.6434e-00I) (2.9923t+000 

2.7881e+000) 

Sth row: (3.7280e + 000 1.5644e + 000) (4.0023e + 000 -1.8566e + 000) (3.8461e + 000 9.7099e-00I) (-2.3016e + 000 

6.4050e-00!) (4.6068e + 000 -1.6463e-020) (-2.6612e+000 -8.1513e-001) (4.4665e + 000 -6.8311 e-OOl) (-1.9329e + 000 -

1.4700e + 000) 

6th row: (-3.05 76e+0 00 - 2.1743e+000) (-2.3002e+000 1.3660e+000) (-2.69l6e+000 -I.2857e + 000) (3.8590e + 000 -

2.2956e + 000) (-2.6612e + 000 8.15I3e-00l) (4.8984e+000 -1.5668e-020) (-2.2712e+000 2.I043e + 000) (4.3568e + 000 

9.6761e-001) 

7th row: (2.7943e+000 2.!360e+000) (4.0188e+000 -1 .l404e+000) (3.1661e + 000 !.5I48e+000) (-2.6059e + 000 -

5.6434e-001) (4.4665e+000 6.8311 e-001) (-2.27!2e+000 -2.1043e+000) (4.7058e + 000 1.3662e-019) (-1.3503e + 000 -

2.5367e+000) 

Sth row: (-2.9208e+000 -l.l652e+000) (-1.4396e + 000 I.7I73e+000) (-2.4009e + 000 -4.3931e-001) (2.9923e+000 -

2.7881 e+000) (-1.9329e+000 1.4700e+000) (4.3568t+000 -9.676le-001) (-!.3503e+000 2.5367e + 000) (4.1069e + 000 
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I.9558e-020) 

EIGENVALUES 

9.4718e-005 

7.5547e+000 

9.7093e-005 

2.8086e+00I 

9.8938e-005 I.0158e-004 I.0505e-004 I.0689e-004 

EIGENVECTORS 

1st row: (2.0793e 

013) (-5.1670e-001 

2nd row: (-5.331 Oe 

001) (-9.07856-002 

3rd row: (-5.09286-

002) (-1.681 7e-001 

4th row: (1.74526-

002) (2.91346-001 

5th row: (3.28956-

001) (1.66046-001 

6th row: (-4.08246-

002) (-3.87806-001 

7th row: (1.23356 

001) (5.12496-001 

8th row: (-2.1453e-

001) (1.11866-001 

001 3.41036-

2.39776-013) 

-001 -3.28476 

-6.27636-002) 

002 2.46896-

-7.45356-002) 

001 5.2658e-

-2.65456-001) 

001 -1.22616 

1.43996-001) 

002 -3.10086-

• 6.58866-004) 

•001 -1.40786-

-8.0827e-002) 

001 4.071 76-

-2.26456-001) 

012) (5.90836 

(3.3008e-001 

•001) (-6.30266 

(-9.14246-002 

001) (-5.35286. 

(2.87156-002 

002) (2.94316 

(3.064 76-001 

001) (6.794 86-

(-5.07286-001 • 

001) (-1.34496-

(-2.41206-001 

001) (-1.60326-

(3.1368e-001 -

001) (4.00136-

(-2.81 706-001 -

001 3.00336 

6.46006-013) 

-002 -8.49906 

2.97186-002) 

001 -2.01396-

1.363 76-001) 

-002 -1.94986-

3.54316-001) 

002 2.15326-

•1.23656-001) 

001 2.07886-

2.55046-001) 

002 3.32326 

8.27346-002) 

•001 -3.106 76-

2.49 9 76-001) 

012) (-4.37046-002 - 2. 

(-2.72806-001 -4.95376 

-002) (3.48326-001 -2. 

(-2.90246-001 9.34166 

001) ( 7.49496-002 3 

(-2.64646-001 8.91546 

•001) (1.90146-001 2 

(-3.745 66-001 1.4 1 056 

•001) (1.71686-001 1 

(-1.62756-001 2.86586 

•001) (-5.15386-001 5. 

(-2.72806-001 3.05686 

-002) (-4.53896-001 -1. 

(-7.58876-002 3.73316 

003) (1.3377e-001 2. 

(-2.44446-001 3.36296 

23336-012) (5. 

018) (3.89766-

.18636-001) (-2. 

-002) (2.12016-

84936-001) (4. 

-002) (3.46986-

37746-001) (-4. 

-001) (-1.84646-

83806-001) (-2. 

-001) (3.09926-

61086-002) (-1. 

•001) (-3.30686-

60956-001) (1. 

•001) (2.40986-

57536-002) (3. 

•001) (-3.12846-

92856-002 5.8492e-

001 -2.49046-017) 

5700e-001 -3.44536-

00 1 2.88 9 76-001) 

44066-001 6.05966-

001 5.56206-002) 

41 916-00 1 3.29 4 76-

001 -2.64116-001) 

19246-001 3.8743e-

001 1.96866-001) 

46696-002 -3.4415e-

001 -1.41086-001) 

79196-001 -2.2897e-

001 2.65416-001) 

38626-001 -1.29006-

001 -4.31306-002) 

E matrix 

(-2. 72806-001 

(-2.90246-001 

(-2.64646-001 

(-3.74566-001 

(-1.62756-001 

(-2.72806-001 

(-7.58876-002 

(-2.44446-001 

• 4.95376 

9.34166 

8.91546 

1.41056-

2.86586-

3.05686-

3. 7331 e-

3.36296^ 

•018) (3. 

002) (2. 

002) (3. 

001) (-1. 

001) (3. 

001) (-3. 

001) (2. 

001) (-3. 

89766-001 

12016-001 

4698e-00I 

84646-001 

09926-001 

30686-001 

40986-001 

12846-001 

-2.49046-017) 

2.88976-001) 

5.56206-002) 

-2.64116-001) 

1.96866-001) 

-1.41086-001) 

2.65416-001) 

-4.31306-002) 

minimization of Equation 3.42 

I cosUl.5753130 70688956 + 000 

0.00006-f-000 S.OOOOe+OOO 

O.OOOOe-t-000 5.00006-1-001 

O.OOOOe-f-OOO l.OOOOe-i-002 

O.OOOOe-j-000 1.65006 + 002 

angl6:3.48656+001 3.9316e+001 

(-5.11356-002 -3.11936-002) 

(1.15856-001 -2.69246-002) 

(-1.94636-001 1.90906-001) 

(3.72506-002 6.20956-002) 

2 cost:l.045741065594806+000 

4.71016+000 1.80646+001 

1.1602e+001 3.59386+001 

2.62566+001 9.19226+001 

-6.92266+001 1.54596+002 

angle:l.55316+001 7.0216e+000 

(7.95006-002 -3.93486-002) 

(3.23686-002 -6.86006-003) 

(-2.51496-001 2.76896-001) 

(-1.76246-002 5.32116-002) 

- 2 5 2 -



3 cost: 1.00642814777630e+000 

1.63l2e+001 l.6823e+00l 

1.88l4e+00l 2.9894t+001 

1.7231e + 001 8.9736e+001 

-6.44S0e+00l 1.53 79e+002 

anglt:5.4558e+000 3.5002e+000 

(6.0756e-002 -1.8094e-002) 

(3.0876e-002 I.8210e-002) 

(-2.88356-001 2.26566-001) 

(-9.78536-003 l.682lt-002) 

4 cost:l.000246403198756+000 

1.47056 + 001 1.98 756 + 001 

1.45246+001 2.93316+001 

1.13916+001 9.02116+001 

-7.42406+001 -1.55126+002 

angle:l.15816+000 S.2SS8e-001 

(5.05476-002 -6.91856-004) 

(3.81376-002 3.36686-003) 

(-2.93856-001 2.07986-001) 

(6.36716-003 4.31386-003) 

5 cosi:1.000004146409896+000 

1.49886 + 001 1.93856+001 

1.48596 + 001 2.95706+001 

1.01346 + 001 8.9966e + 001 

-8.25126 + 001 -1.49606+002 

angl6:1.1883e-00I 1.1447e-001 

(4.07476-002 3.60896-003) 

(4.80476-002 7.8469e-003) 

(-2.92836-001 2.05116-001) 

(3.34856-004 1.93136-004) 

6 cost:l.000000296759896 + 000 

1.5 0 8 76 + 00 1 2.0 04 1 6 + 001 

1.49126+001 2.99936 + 001 

1.00 336 + 001 8.99 9 76 + 001 

-8.80346+001 2.98956 + 001 

<Lngl6:l.64386-002 4.0966e-002 

(4.50366-002 5.49326-003) 

(4.43896-002 5.7707e-003) 

(-2.92716-001 2.04826-001) 

(-6.82036-006 1.08786-004) 

7 co3t:l.000000006130616+000 

1.49996+001 2.00186+001 

1.50006+001 3.00066 + 001 

1.00046+001 8.99996+001 

9.99906 + 003 9.99906+003 

angl6:5.173l6-003 3.6730e-003 

(4.48816-002 5.59956-003) 

(4.46516-002 5.69616-003) 

(-2.92696-001 2.04786-001) 

(0.00006+000 O.OOOOe+000) 

8 cost;l.000000005813896+000 

1.50006+001 1.99946 + 001 

1.49996+001 2.99916+001 

1.00036+001 8.99996+001 

9.99906 + 003 9.99906+003 

angl6:5.88406-003 1.88426-003 

(4.47276-002 5.57816-003) 

(4.48206-002 5.71366-003) 

(-2.92696-001 2.04786-001) 

(0.00006+000 0.00006+000) 

9 cost:l.000000005432236+000 

1.50006+001 1.99966+001 

1.50006+001 2.99936 + 001 

1.00016+001 8.99996+001 

9.99906+003 9.99906+003 

anglt:5.7408e-003 1.6460e-003 

(4.47426-002 5.58 756-003) 

(4.48096-002 5.702 76-003) 

(-2.92696-001 2.04 786-001) 

(O.OOOOe+000 0.00006+000) 

FINAL RESULT 

cost: 1.000000005432236+000 

1.50006+001 1.99966+001 

1.50006+001 2.99936+001 

1.00016+001 8.99996+001 

T r 

angl6:5.7408e-003 1.64606-003 

SOURCE No.I 

<—SOURCE No.2 

<—SOURCE No.3 

N.B.: 9.999e+003 means that this direction has been eliminated as psendo direction 

-253-


