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ABSTRACT

Superresolution Techniques and related Signal Subspace Algori-
thms have as their main objective the location of a number of emitting
sources using an array of sensors (e.g. antennas). However, these
techniques fail if some of the incident sighals are correlated, a situation
which arises in signal environments where smar{ jamming or multipath
propagation is present. Also, signal subspace algorithms need to have a
priori knowledge of the number of signals present in order to function
properly. The research reported on in this thesis is concerned with the
development of new techniques for overcoming the problems just
referred to.

Firstly, techniques for modelling the input signals in a general
environment have been developed, which take into account both
spherical wave propagation as well as the existence of multipath.

Then, a new algorithm called Adaptive Signal Parameter
Estimation and Classification Technique (ASPECT) is introduced
which, unlike eXisting Superresolution Techniques, provides correct
information concerning:

e the number of signals incident to the array,

o the direction of arrivals (azimuth and elevation angles),

e the relative powers and phases;
even in a correlated (coherent) signal environment. Its operation is
based mainly on mapping the array manifold on to an error surface and
then searching that surface for the solution.

The algorithm is examined both for plane and spherical wave



propagation, for different levels of noise and for both correlated and
uncorrelated sources with widely differing power levels. The results
obtained so far indicate that ASPECT correctly detects, resolves and
estimates the directions of incident signals and is robust with respect to
noise level.

Finally, the ideas of Signal Subspace Algorithms are extended to
steered vector array processing in order to provide weight vectors

e for complete interference cancellation

e which do not suffer from power inversion problems

e are susceptible to pointing errors and

e provide deep distinct nulls in the directions of interferences with

the abilityv to resolve two interferences located close together.

Simulation results support the theory, and a small modification of
ASPECT makes it appropriate for functioning in steered vector

adaptive arrays.
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Rimm Covariance matrix of the directional signals

Ree Data covariance matrix

Raun Noise covariance matrix
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P Projection operator
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E Matrix of eigenvectors

i Unity Matrix

K Matrix with columns wavenumber vectors

G each column of G has as elements the directional gains of

the array elements for a specific direction.
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k Wavenumber vector

ko Wavenumber vector which correspond to the steering
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o Slowness vector

Nt Set of all positive integers
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Norm of a vector (Euclidean norm)

Expectation operator

the ** element of the vector containing the eigenvalues of
a matrix

Azimuth angle

Elevation angle

Range

Performance criterion

Gradient vector

Hessian Matrix

An element of the gradient vector

An element of the Hessian Matrix

as subscript of r (that is r;) refers to the i*® emitting
source

as subscript of r (that is r;) refers to the ‘? array element
as subscript of the matrices S, G and K means differen-
tiation of each column of those matrices with respect to its
azimith angle

as subscript of the matrices S, G and K means differen-
tiation of each column of those matrices with respect to its

elevation angle

N.B.:

the term ‘*correlated sources” is considered to mean “fully
correlated sources”" throughout the thesis;

the term ‘“elevation angle" is redefined as (90° —elevation)
through out the simulation examples presented in the thesis.
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By distributing a number of sensors (transducing elements) in a 3-

dimensional cartesian space, an array is formed; the region over which
the éensors are distributed is called the aperture of the array. The
general array processing problem is the obtaining of information about
a signal environment from the waveforms received at the array elements
(Figure 1.1), where the signal environment consists of a number of
emitting sources plus noise. These emitting sources, in the case of radar-
based systems, are often targets which either reflect transmitted signals
(as in active radars) or emit their own signals, (as in passive radar). In
situations involving the use of sonar and seismic signals the problems
are essentially the same as those encountered in the case of radar.

An important topic in the array processing problem is concerned
with interference rejection. Since the emitting sources are distributed in
space the array can perform both spatial and temporal filtering in order
to optimize the reception of a signal from a desired source (desired
signal). This can be achieved by using an array-pattern-forming-

network (Figure 1.2a) so as to place relatively high gain in those

—16—



FIGURE—-1.1

ABRBAY PROCESSING PROBLEM

€ : denotes an array element

g : denotes an emitling source

. : denotes a reflecting surface

PROBLEM: USING A NUMBER OF SENSORS ESTIMATE SIGNAL ENVIRONMENT
IN THE PRESENCE OF NOISE
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directions and frequencies which contain the desired signal and at the
same time place nulls in the directions and frequencies of the remaining
unwanted (interfering) sources.

If the signal environment is known then the pattern-forming
network can be fixed and the array response pre-determined. However,
in practice the signal environment is often unknown and may vary with
time or change its structure (i.e. the turning on and off of certain
sources) and thus a very versatile scheme must be used which leads to
the concept of adaptive arrays. In adaptive arrays there is an adaptive
processor which controls the pattern-forming network according to some
performance criterion (Figure 1.25).

Another array processing problem is concerned with spatial
spectrum estimation and identification. With problems of this type, the
array detects the number of direétional signals present in the array
environment and estimates their parameters; such as location, power,
cross correlation etc. Classical spatial spectral estimation techniques are
based on the Fourier transform (Conventional Beamformer). The main
drawback of the Fourier methods is that they offer limited resolving
capabilities. Thus, in the last decade the so called High Resolution
Methods have been introduced, their main object being to improve the
resolving capabilities by using a model for the signals better than that
used by Fourier methods. These methods have given fresh impetus to
the array processing problem by dealing with the question of the
resolution of the arrays in such a way that there is elimination of the

effects of Signal-to- Noise-plus-Interference Ratio (SNIR) on resolution,
in contrast to the conventional methods where the resolution is limited

by noise.
Recently, the new class of processing techniques called High

Resolution Adaptive Array Processing [GAB-80}, {GAB-86}, [GA2-86]
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has been created by merging the objectives of both the above mentioned
classes. The new class relies heavily on Adaptive Array Techniques,
Modern Estimation Theory and Parallel Computer Processing. In
general, the aim of High Resolution Adaptive Array Processing is to
isolate one source and, in addition, to provide estimates of certain other
parameters such as the number of interferences present and their
directions etc. thus giving solutions to many physical problems arising
in radar, sonar, geophysics etc.

The research reported on in this thesis is concerned with some

important questions in this general area.

1.1. HISTORICAL PERSPECTIVES

Early work in array processing for .interference suppression was
carried out at the MIT Lincoln Laboratory in 1963 [ALL-63]). This work
was concerned with a non-adaptive interference canceller which could
handle one source at a time. The basic idea was to use a main antenna
to look at the desired signal and a second antenna to look at the
interference and then to subtract the output of the second antenna from
the main antenna, with a proper phasing being employed.

Although the term “adaptive arrays” was first introduced by Van Atta
in 1959, the first papers on adaptive arrays were probably those
published in 1964 in a special JEEE issue on Antenna and Propagation
1964. In 1966 the foundations of array processing and particularly

—~19—
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adaptive array processing were established in two papers: by Widrow
[WID-66] and Applebaum [APP-66]. The paper by Widrow introduced
a new approach for controlling the weights of an adaptive filter and the
paper by Applebaum presented a sidelobe canceller capable of handling
multiple jamming sources by using the concept of a correlation feedback
loop (known today as Applebaum’s loop), for maximizing the signal-to-
noise ratio (SNR). Applebaum’s sidelobe canceller does, however, need
prior knowledge of the signal directions and uses a high gain antenna as
the main channel. In general, in adaptive arrays, there is however no
need for prior knowledge of the directions of the sources, nor is there a
need for use of a high gain antenna. The sidelobe canceller approach is
thus not very general.

The first paper on General Adaplive Arrays was published the
following year (1967) by Widrow et al [WID-67] who applied the ideas
contained in his previous paper [WID-66] to develop an adaptive array
system. Widrow’s work was epoch making and it was based on the
minimization of the mean square error between the desired signal and
the array output. This approach has come to be known as the Least
Mean Square (LMS) algorithm. Applebaum’s loop and LMS algorithm
have two common points: both use the array covariance matrix in order
to derive their adaptive weights and both converge towards the same
steady state weight vector which is the WIENER-HOPF solution [HUD-
81], [MON-80].

An attractive alternative to the LMS algorithm was introduced in
1974 by Reed, Mallet and Brennan [REE-T4] which overcomes the
sensitivity of the LMS-type algorithm to eigenvalue spread. The Reed-
Mallet-Brennan approach has come to be known as the Sample Matrix

Inversion (SMI) algorithm. In the SMI algorithm the optimum weights
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are found by estimating the covariance matrix and then solving a linear
system of equations. Reference [MAR-86] provides a detailed set-review
of references in the area of adaptive arrays.

One of the main problems with conventional adaptive arrays is
related to their inability to resolve two sources which are positioned
close together. This is illustrated in Figure 1.3a, which shows
simulation results obtained with a linear array of 5 isotropic uniformly
distributed elements. This inability is imposed by the fact that the
resolution of adaptive arrays is limited by the SNR. This is demon-
strated in Figure 1.3b in conjunction with Figure 1.3a., which shows
that if SNR is 10dB then the array is unable to resolve the two signals
incident from directions 30° and 35° correspondingly (Figure 1.3a); with
a SNR of approximately 30dB (Figure 1.3b) the two sources of Figure
1.3a ‘c“an be resolved. The inability of an array to resolve sources that
are close together when noise is present gave rise to a new class of
techniques that have been used for the location of emitting sources
[MER-81]. These techniques are called High Resolution (or Super-
resolution) techniques (see for instance [SCH-86], [BUR-75], [CAP-69],
[JOH-82], [TUF-83], [HUD-85], [WAX-85], [ROY-86]). Two popular me-
thods belonging to this new class are the so called Maximum Likelihood
Method (MLM) which is based on the work of Capon [CAP-69] on
frequency-wavenumber analysis, and the Maximum Entropy Method
(MEM) of Burg [BUR-75]. Capon’s method is based on the minimiza-
tion of the output power subject to the constraint that the inner pro-
duct of the weight-vector and Source Position Vector is equal to 1. On
the other hand, Burg’s method is based on an iterative search technique
which maximizes the entropy subject to a number of constraints.

Perhaps the most important High Resolution Techniques cur-
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FIGURE — 1.3  :ADAPTIVE ARRAY RESOLUTION LIMITATION DUE TO SNR

RELATIVE POWER TABLE :
TOP GRAPH: .
desired signal 1.0 desired signal :1.0
Jammer No.1 (J1):1.0 Jammer No.1 (J1):1.0

Jammer No.2 (J2):1.0

Jammer No.2 (J2):1.0

Array Gain - dB

Array Gain — dB

H H i i

0 20 40 60 80 100 120 140 160 180

Azimuth Angle — degrees

Array Pattern for SNR=30dB

—80 i Coi i . l . . .
0 20 40 60 80 100 120 140 160 180

Azimuth Angle — degrees

@ : array element
z v &8 : desired source

I / me  jammer

—923—



rently being examined are the so called Signal Subspace techniques.
Aspects relating to techniques of this kind go back to 1795 when Baron
de Prony published his work on the fitting of superimposed exponentials
to data. The Signal Subspace approach was first introduced formally by
Schmidt 1981 [SCH-81] in narrow-band array processing problems and
rediscovered independently by Bienvenu and Kopp [BIE-81]. In 1983 Su
[SU-83] extended the Schmidt algorithm to the broadband case.
Pisarenko [PIS-73]) had solved the time series version counterpart
problem in a similar way to that of (but earlier than) Schmidst.

The Signal Subspace approach to high resolution involves two
main stages of processing. In the first stage a covariance matrix of the
data at the sensors of the array is formed and in the second stage an
eigenvector decomposition is performed (see for example MUSIC
algorithm [SCH-81), [SCH-86]). By the eigenvector decomposition, the

observation space is partitioned into two disjoint subspaces:

e the Signal Subspace (SS), with dimension equal to
the number of sources, spanned by the Source
Position Vectors (SPV);

e the Noise Subspace (NS), with dimension equal to
the number of sensors, minus the number of
sources.

Thus, every vector belonging to the NS is orthogonal to each SPV. The
signal subspace approach offers higher resolving power and less
ambiguity than other high resolution methods including the MLM
technique of Capon and the MEM method of Burg. This can be seen,
for example, in the comparative computer simulation studies carried

out by Johnson and Miner [JOH-86] where:

(i) the MLM was capable of resolving two sources
with 10° separation, provided the SNR was
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sufficiently high, but it was unable to do so for
sources with 5° separation;

(ii) the MEM produced no usable results and

(iii)the MUSIC algorithm (a signal subspace
technique) produced results in every considered
situation.

Thus, signal subspace techniques, which have been used mainly in
estimating the directions of emitting sources by employing a spatiél
array, offer asymptotically “infinite” resolving power capabilities, with
limitations imposed only by the limited observation time and the
inaccurate modelling of the medium [BIE-85].

Introductory, material for general high resolution estimation can be

- found in [KAY-88], [MRP-87].

1.2 PROBLEM FORMULATION

From the previous discussion it is obvious that the main interest
lies in two problems; these are illustrated briefly in Figure 1.4.

The first problem addressed in this thesis is concerned with the
source location problem and the use of Signal Subspace techniques.

It has been mentioned that high resolution methods and parti-
cularly Signal Subspace techniques can handle the source location
problem. This is true as long as the present signals are not correlated
(coherent). If some of the incident signals are correlated (coherent), then
all known existing signal subspace techniques fail. This is a serious

limitation since there are many situations in which signal correlation
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FIGURE—1.4

GENERAL PROBLEMS OF MAIN INTEREST
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exists. Two common examples are those where smart jamming exist
and multipath propagation is present. The nature of the failure of
existing techniques is illustrated in Figure 1.5 where a linear array of 5
isotropic elements is considered and three signals, two of which are
assumed correlated, are present. Figure 1.5, shows that although the
Signal Subspace algorithm (MuSIC) correctly indicates the location
(direction) of the uncorrelated source, it fails completely to indicate
even the existence of the two correlated sources.

In addition to their inability to operate with correlated signals,
signal subspace algorithms also require prior knowledge of the number
of signals present in order to be able to function correctly.

Thus, at this time much effort is being devoted to the question of
handling correlated (multipath) sources. In order to rectify this
’breakdown’ of high resolution and particularly signal subspace techni-
ques when signal correlation (or coherence) is involved, a number of
new techniques have been developed. The most significant of those new
techniques are based on the idea of subaperture sampling or spatial
smoothing discovered originally by Evans, Johnson and Sun [EVA-81]
and independently rediscovered and improved by Shan, Wax and
Kailath [SHA-85], [SH2-85]). The Spatial Smoothing technique is based
on defining a number of subarrays and for each subarray the covariance

matrix R; is formed. Then the average covariance matrix R is

estimated as follows:

R— 1
IR_—No. of suba'r'ra.ys'z Ri (1'1)
i

After this, the next stage in the process is to use the previously

developed MuSIC algorithm [SCH-86] to provide the location of the
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FIGURE — 1.5 (ASSUMING SOURCES S1and S2 ARE FULLY CORRELATED)
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sources. At this time, to the author’s knowledge, the Shan, Wax and
Kailath technique is the only significant method to have been published
which handles correlated sources. However, this method can only be
applied to linear arrays with uniformly spaced identical sensors. In
addition, it provides a reduction of array aperture which implies a
reduction in resolving power. Thus the Shan, Wax and Kailath
technique is not very satisfactory.

The research reported on in this thesis (see Chapter 3 and 4) is
concerned with new techniques which are applicable to general non-
linear arrays.

The research aims at the development of new techniques which
will have a dual function: to provide satisfactory results for the signal
environment where the existing superresolution techniques work and, in
addition, to overcome the problems of existing Signal Subspace
techniques just referred to above.

The general problem addressed in this thesis is concerned with
processing the output of an array of sensors for the general environment
in which

e there is an array of sensors with no helpful

symmetry to be obtained from the suitable
disposition of the sensors.

e the number of sources is a priori unknown
(although it is assumed that the number of such
sources is less than the number of elements in the
array),

e multipath (correlated) propagation may be

involved;
o there are unknown noise effects.

The general aims are to process the output of the array in order to

estimate parameters such as the number of signal sources, their
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locations, their power etc, in the presence of noise.

In Chapter 3 the theoretical framework of a newly developed
algorithm, called ASPECT, is set out. This algorithm is capable of
handling both correlated (coherent) and uncorrelated (uncoherent)
sources and is general in that it is applied to a general array geometry
(not just to linear array). The results of computer simulations of
applications of ASPECT algorithm are given in Chapter 4 and the
superiority of the results, which confirm the validity and generality of
ASPECT algorithm, is discussed.

The second problem addressed in this thesis (Problem 2, Figure
1.4) is concerned with observing a so-called “wanted” emitting source in
the presence of other “unwanted” (interfering) sources and noise. This is
a well known problem with a well-known solution, the so-called Wiener-
Hopf solution (e.g. see [HUD-81)). If the direction of the desired signal
is known, or can be measured, then the problem can be handled by
steered vector adaptive arrays. However, steered vector adaptive arrays
have a number of drawbacks, depending on the presence or otherwise of
the desired signal. Two main drawbacks of the steered vector adaptive
array approach are the power inversion problem and the problem due to
pointing errors. If the desired signal power at the input of the array
increases, this results in a reduction of the desired signal power at the
output of the array, which may result in its total cancellation. This is
known as the power inversion problem. On the other hand, pointing
errors occur when knowledge about the direction of the desired signal is
inaccurate. In addition steered vector arrays always allow interference
to pass at the output thus contaminating the desired signal.
Furthermore, they are incapable of providing information about the

directions of the unknown interferences. In Chapier 5 a new approach is
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adopted in which the concepts of signal subspace methods are extended

into conventional steered vector adaptive arrays in order:

e to analyze the behaviour of the array and highlight
the above problems; and
e to present a new algorithm capable of isolating a
desired signal in the presence of unknown
interferences and at the same time provide
i) complete interference cancellation and
ii) the interference locations.
The new algorithm although still susceptible to
pointing errors does not suffer from power inversion
problems.

The approach is different in important ways from that put forward
relatively recently by Citron and Kailath [CIT-84].
Following this a modification of the ASPECT algorithm is presented.
By this modification it is then possible to use the so-modified ASPECT
algorithm to obtain information relating to the direction of unknown
interferences even in correlated situations.

In Chapter 6 simulation results of the new algorithms are

presented showing that the proposed processor:

e provides the complete cancellation of unknown
interferences at the output of the array;

e provides complete information about the location
of interfering sources

e does not suffer from power inversion problems;

e offers less susceptibility to pointing errors. In the
case of the ASPECT algorithm, the pointing errors
are eliminated.

Some conclusions together with suggestions for further work are

presented in Chapler 7.

In Chapter 2, which follows, some essential notation is introduced

and the signals forming the input to the adaptive array are formulated.
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A general signal model, which takes into account both spherical wave
and multipath propagation, is developed and important aspects of the
structure of the covariance matrix are discussed. Following this, noise
models are formulated and the concepts of the array manifold and array
manifold dimensionality are introduced and defined. The material

presented-in Chapter 2 is used extensively in later chapters of the thesis.



In this chapter some basic material relating to array processing is
presented. This material is essential for the analysis given in the
chapters which follow. The mathematical formulation of the signal
environment is defined, from which the signal structure of the array can
be determined in terms of the geometrical configuration of the array for
both spherical wave and plane wave propagation. Finally, the
correlation functions, the noise quantities and the concepts of array

manifold and array manifold dimensionality are defined.

2.1 NOTATION : ENVIRONMENT STRUCTURE

In the following, both lower and upper case symbols are used to
represent scalars, underlined symbols are used to represent vectors, and
BOLDFACE symbols are used to represent matrices. The symbols T
and H when used as superscripts of vectors or matrices are used to

indicate transposition and complex conjugate transposition,respectively.
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The subscript & is used to indicate the ™ sensor of the array and this
sensor is considered to be positioned at a specific point, r;, in space.
The subscript i is used to indicate the i source which is considered to
be positioned at a point r; in space. A double subscript is taken to
represent the direction from the point specified by the first subscript to
the point specified from the second one; for instance the double
subscript of k;, indicates that the vector k has direction from the point
r; to the point rp.

The signal environment is assumed in general to be composed of
both directional and isotropic signal sources (non-directional). The

signal of directional sources are represented by:
m,(t) for i€[1,..., D] and i{,DENT (2.1)

where D is the number of sources. The structure of the signal of a
directional source can be considered to involve both amplitude and
phase modulation of a carrier. That is, the signal m;(t) emitting from

the i'® source can be considered to be:
m;(t) = A,(t).cos[ 2mfyt + h;(t) + a; ] (2.2)

where A;(t) and h;({) represent slowly varying signals that modulate
the amplitude and phase respectively of m,(t), while the combined
isotropic plus thermal noise at each sensor element of the array can be

modelled by:

n,(t) = By(t).cos[ 2mfyt + b;] (2.3)
kE[J, veey N], k,N€N+ , N isthe number of sensors
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In FEquations 2.2 and 2.3 the modulations A;(t), h;(t) and B,(t) are
assumed to be zero mean sample functions of independent, ergodic,
random processes. Since the noise terms nj(t) are considered to be
bandlimited white noises processes, B, has a Rayleigh distribution. In
addition the independent random variables a;,b;, are considered uni-

formly distributed on (0,27) and are included to ensure stationarity.

2.2 SPHERICAL WAVE MODELLING

Consider a source current (a time-varying current or charge)
located, as shown in Figure 2.1, in a spherical coordinate system,
producing an electromagnetic field. It is well known [KRA-81] that the
phasor field can be expressed by:

E=—1-V(V.4) —juA H= j(¥x A) (2.4)

is the electric field vector E=(Er,Ep, E,)
where is the magnetic field vector H=(H,,Hy,Hy,)

are constants (permeability and permitivity

respectively)

Thus, the electromagnetic field transmitted by a source has six
components. Depending on the nature of the source, some of the

components may be zero. For example, if the source is a dipole then the
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FIGURE—2.1

GEOMETRY FOR DETERMINING THE RATIATION FIELD AT r,
FROM A SOURCE-CURRENT LOCATED AT r;

Z )
4 distance field source current
point 1

(”L”,g,,(ﬁ,)

7~
/




electromagnetic field consists of only three components, E,,E, and Hy.
However, the antenna region can be partitioned into two well-known
sub-regions [KRA-81], namely the near and far field zones. Moreover,
since the near field does not contribute to the time average power flow
away from the emitting source it can be ignored. Thus, the only region
of interest is far field zone. By examining the six components of the
electromagnetic waves in the far field, it can be shown [NEF-81] that
E,,H, are both zero. This is true regardless of the nature of the
antenna being used.

Thus, the siz components in the far field can be summarized in general

terms as follows, for any antenna:

ET = 0 ‘HT = 0
: E,
. E

In the above equations 7 is a propagation constant and A, and A, will

always have the general form [NEF-81]:

ezp[—jkT (r; — 1]
”L‘ - J."k”

Ag = ?4% - Fo(0;1,8:x) - Ii(t—-”-ti_cl"k”) _
(2.6)

o T,
o iz — melly  ezp—ik” (r; — 1))
Ag = g - FylOips8i) - L(t—=—=7) - i — 7ol

In Fquation 2.6 above, I(t) represents the excitation current of the
transmitting antenna, k is the wave-number vector, or spatial

frequency, with k = o.w where ¢ is the slowness vector which shows the
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direction of propagation, c is the velocity of propagation while Fo,Fy
represent functions depending on the type of the transmitting antenna.
On the basis of the Fquation 2.5 it can be seen that only two of the six
components are of great significance; namely E, and E,. Therefore, a
point source located at the r; (i'"—source, say) which excites the
transmitting antenna with an excitation current I(?), produces at a
point r; an electric field E=FEy.ay+ E,.a, whose magnitude expressed in
a general form is as follows (regardless of the type of antenna being

used):

B = R0 - ho- Ll ol B @ sy
L — I

— 'w
where Fi(0:5,8:1)= le,u J Fo(0:0:0:1)° + Fy(0:1.8i1)°

Supposing, next, that there is a receiving element at point r, with

directional gain Gy(6;,¢;). Then the received signal due to i*"-source

will be:

oy = Gp(0;1,85k) - Fi(0,0i1) - [i(t—”&_czk”) . ”—

(2.8)
Consider now that the excitation current time function I(?) is equal to
the baseband modulation function m,(?) as given by Equation 2.2 of the

previous section. That is:
Ii(t) = m(1) (2.9)

Then equation 2.8 can be written as:
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T 9:‘ A :
Tp=my(1— b = “) Fi(0:k:6:x) - _kL“_k—?—k—) . Cfﬂp[—JﬁekT(l‘i — )]
lr; — zell
(2.10)
In Fquation 2.10 the subscript ix has been added to the wave-number

vector k in order to stress the fact that the direction of propagation is

fT‘O?Tl pOint = (Ilfill)gi)¢i) to pOint Iy = (||£k|l70k1¢k)

By shifting the time origin at the centre of the array the function m(%)

becomes:

mi(t_”Ii—cl”kll)___mi(t_*_”?"i“"”lc:i— Ek“).ezp[ j-ﬁiT-Ii] (2.11)

Thus Fquation 2.10 becomes:

Gk(gik’¢ik)

G T . . T
. €TD k‘ r.—1 k‘ Ty —T
” r; r ” []—z L —zk(—: —k)]

(2.12)

ze = mi(1=T; ) Fil0;1,9i) -

il = IIT — ol

w T, =
here fop=



2.3 REFLECTED SPHERICAL WAVE

Consider that the received signal is a result of a geometrical
situation such as that illustrated in Figure 2.2. Using the analysis of the
previous section it is easy to show that the signal received by an
element at point 1., is given by:

llri— l‘1i||+”£1._ el
Tperest = my(t— . ) - Fi(gili’¢il,-)

Mz g il =l

. efvP[—ﬂ‘ZIikT'(Qi —Ik)]
(2.13)

Note that if there is no reflection, then the above equation simplifies to
Equation 2.12 on the substitution of Ili for either 1, or r;.

By shifting the time origin at the centre of the array, the Equation 2.13
becomes:

lz:ll = |z — Zli”“”l"Ii-" el

Tpere st = My(14 c ) Fi(gili’¢i1i) '

Gk(elik“plik)
= o1+ el

erp[—ykf;i-(r,- —1) —jklfk-(zli —r)+ik T .r]
(2.14)

However, it is reasonable to express this equation with respect to the
baseband signal coming via the direct path, that is with respect to

m;(1— T;,,)- Then, Equation 2.14 implies:
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FIGURE—2.2

GEOMETRY FOR DETERMINING THE RATIATION PATTERN
WHEN REFLECTION IS INVOLVED

» N

/

& . denotes the k** array element
KXl : denotes the ** emitting source

l : denotes a reflecting surface



= I+, — ]l

Z et = M= Tig)- Fil(0,.0,) -

exp[—72k}) (r; =)~ Rk[ (1) ~1))- emplik T rtikl (5= 1))
(2.15)

The last equation is the exact equation for a reflected signal, received

by the 5" element of an array of sensors.

At the receiving elements the function F,-(Gili,qﬁili) is constant and it is

convenient to omit it. Thus, Equation 2.15 becomes

Te-refl T pili'exp[j'Apilik] - (=T )

' Gk(al,-k"ﬁlik)

”Tl ——T‘k” . ezpbﬁg'zlt—jﬁzk'(zlz _l']c)] » (2.16)

where Apil.k is the phase difference introduced by the il;k path while
3
P is the attenuation introduced by il; part of the i/;r path with:
3

[
Pili ™[z = I+, — ol

(2.17)

APilik=‘2ﬁ£i-(£i _ﬁi)_lc-l::k'(fli —r)+ Tk (n —lk)“.lﬁlq;k-fli
(2.18)
Now, the subscript refl in Equation 2.16 can be dropped since that
relation is so general as to include Fquation 2.12 as a special case. This
becomes clear by considering [;=i; then Apil.k:0 and pil_kzl. Thus,
FEquation 2.16 will be used as the model of i;cident directi‘onal signals

for spherical wave propagation.



2.4 SIGNAL STRUCTURE AT THE ARRAY

Consider an array of N sensors (elements) in which each element
has known directional characteristics and is located in a known, but
arbitrary, position. The array environment 1is considered to be
‘narrowband. This consideration is not essential but is made to simplify
notation and problem formulation. It should be noted that wideband
problems can be decomposed into a set of narrowband problems. |

~ Thus, consider that there are D narrowband stationary zero-mean
sources whose frequencies of emissions are centred at the frequency wy.
It is assumed also that there is additive noise present at all N elements
and that this noise is assumed to be an unknown, stationary, zero mean
random process, which may be correlated from sensor to sensor.

On the basis of the above analysis, the received signal at the kth

sensor at the time instant ¢ due to all transmitting sources and noise

can be expressed as:

D L
(1) = me (1) + ,ZI IE p,-ezpliBpy ). mi(t=T; ).
= — 1 1

Gk(glik’qslik)

LT LT
’ =l . - 2.19
A L A R PR ) (2.19)
Ii = i
with Ap;; =0 for all direct paths V1i[1,..,D]
Pir,p= 1

where, in the Equation 2.19, L; represents the number of paths from the

it* source to the x* sensor with:
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D
SN L,=M<N

=]

In the Egquation 2.20 M represents the

(2.20)

number of signals incident on the

array and M becomes equal to D if each of the signal sources arrives at

the array through only one path and,

otherwise D<M. Thus, the array

input signal-vector (N in dim) can be expressed in the following

compact form:

D I

where

=2 X

D,.S, + n(t)
. =,
i=1 |=; i Y

2() = [ 2,(8), 25 (), oy zy(2) 1T
n(t) = [[ nl(t)’ nZ(t)v b ) nN(t) ]]T
iS

= [, ,

1
Gl(gliz’d’liz)
”ﬁli —r4ll
G2(0) ¢y,5)

”Ili —Ts I l

. 67717[.7'»5211; -.7_'1‘_ —j»ﬁgl-(!_'[i —r;)]

.exp[j.ﬁg._r_'li—j.kgz.(zli —15)]

...........................

.........................

.........................

.'512, *e0y -SIL], 521) §227 "'7§DLD

(2.21)

.




If, however, the signals are narrowband, and the time of propagation

across the array is sufficiently small then

Pia=Pil = =Pun=Pi,
and Apili1:Apil-2:”":Apil-N :Apil..

This makes the diagonal matrix D L equivalent to a scalar; that is
DIi = pili'epr'Apil,-] . 77?;({,— T;,)4 (2.22)
Thus, Equation 2.21 can be expressed in the following convenient form:
z() =S .m() + ) ‘ - (2.23)
m()=[m,; (0,my (Dyesmp (Dimy, (D) e s mLD(i)]]T

with m (1) = pil‘.e:cp[j.Apz_I_]. m,(t—T;,)
| N.B.:the subscript (.)11_ refers 1o direct path of i*® source

where

3

Both FEquation 2.23 and Fquation 2.21 provide a model of a very

general array environment where:

(i) the array is a 3-dimensional non-uniform
antenna array;

(ii) spherical wave propagation is considered,;

(iii) the range as well as the direction of arrival
(azimuth-elevation angles) is involved;

(iv) the reception of signals through multipath
environment is taken into account.

(v) additive noise effects are included.
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In many applications in practice a simplified model is used by
ignoring the range of the source and approximating the spherical wave
propagation by plane waves. This simplified model is discussed in the

following section.

2.5 PLANE WAVE APPROXIMATION

A significant difference between a plane wave and a spherical wave
is that a plane wave suffers no attenuation (in a lossless medium)
whereas a spherical wave does because it expands over a larger and

larger region as it propagates. This is reflected by the term:

—L 2.24
o,z (224

in Equation 2.19. This term is known as the ;spherical spreading term,
where, for the direct path, I;=i. If, however, the array is located far

from the transmitted sources, or, equivalently, if

lzell < <llzy (225)

then the spherical spreading term both for direct and reflected paths

remains constant.
In addition, the direction of propagation from point I, to r; can
13

be considered under the above assumption as being parallel to the

— 46—



direction of the vector r; so
'&Ifk'zli = ﬁg.gli and
Gk(glik,qslzk) becomes Gk(01’¢1)

On the basis of the above discussion, it can be seen that Equation 2.19

can be simplified to the following form:

D L
(1) :i;1 I;J pili.ezp[j.Apili] . m;(1).
Gy(0p,8)) - expl—i by 7] + m(t)  (2.26)

Thus the array input signal-vector (N in dim) can be expressed in a

compact form as:
() =S . m(t) + 2} (2.27)

T
m(i):ﬁmll(i),m21(t),...,le(t),mlg(i), ey mLD(t)]]
with mli(t) = pili.ezp[j.Apili]. m; (1)
N.B.: the subscript (.)1’, refers to direct path
of i*" source

where s = [[_5_1], §12, - §1L’521’ _.522, ...,ﬁDLD]]

1

Gl(gl_#ﬁ],)- ezp[—j-fﬁ]i T-II],
Gz(el_:d’],)- exp[—j-ﬁli T-£2]7

= GN(91,~’¢1,-)'exp[_j'lc"iT'zN)]-
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The effects that the medium has had on the amplitude and phase
of the received signals, and also the effects that the transfer function of
the array elements themselves have had on the received signals are
contained within FEquation 2.27. The modelling represented by FEqua-
110n-2.27, has been used in the study and simulation reported on in this

thesis when considering the plane wave situation.

2.6 ARRAY COVARIANCE MATRIX

In this section, attention is focused on the array covariance
matrix, a knowledge of which is essential in array processing [BUR-82].
Under the assumption that the signals and noise are zero mean
processes, the terms covariance and correlation are equivalent; the zero
mean assumption is employed for simplicity. For an array of N elements
the (NxN) data covariance matrix of the array input signals z(?) is

defined as:
Roe= E[z(t).z()f]  with Ryee CVXN (2.28)
Using Egquation 2.27, which assumes plane wave approximation, or

Equation 2.23 for spherical wave propagation, the data covariance

matrix becomes:
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RZL’ZL’ = S.Rmm.SH + Rnn (2.29)

Ronm= Elm().m()"]  with Rypme CM*M (2.30)
1s the signal covariance matriz

Ron= Ela().a()?]  with Ryye VXN (2.31)
15 the additive noise covariance mairiz

In Equation 2.29 the noise is assumed uncorrelated from the directional
sources. In many cases in practice, the estimated covariance matrix,
instead of theeasemble average (given by Fquation 2.28), is used. In the
case in which ¢ observations (snapshots) are available the estimated

covariance matrix is given by:

- q
Rzz ILq oY a(tn).z(tn)? (2.32)

On the basis of the above definitions it is apparent that the matrix Ry,
contains all the geometrical information about the various sources with
respect to some reference point. The influence of the signal environment
on the structure [RUH-70] of the matrix is considerable. If, for example,
the number of signals, that is, the number of emitting sources, is less
than the number of sensors in the array, then the matrix S.Rmm.SH is
singular and its rank is equal to the number of emitting sources. If the
incident wavefronts are uncorrelated, or partially correlated, then the
matrix Ry,,, is non-singular and has a diagonal form for the
uncorrelated only case. However, if Ry, is singular this means that
some of, or all of, the incident wavefronts are fully correlated or

coherent and, except for the Shan-Wax-Kailath [SHA-85] algorithm
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which is restricted to linear arrays, all existing signal locations,
resolution and suppression algorithms fail in this situation. Figure 2.3

shows the most general structure of the matrix Ry, -

2.7 NOISE MODELLING

In the previous section the noise covariance matrix R,, was

defined. Consider that Ry, has the general form
Run=c.Npp (2.33)

where ¢ is a constant and Ny, is a NXN symmetric matrix. If the noise
is assumed isotropic and thermal noise uncorrelated from sensor to

sensor then
Npp =1 and  c=c? (2.34)

where o is the standard deviation of the noise and I the identity matrix.
This is a reasonable model of the noise effects as far as it relates to
thermal and isotropic noise.

In the case where there are non-isotropic noise effects and as long

as the distribution of the noise is known, that is

Nnn=known general Hermitian mairiz

and  c=unknown scalar (2.35)

then Nj, can be decomposed as follows:
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FIGURE—2.3

GENERAL STRUCTURE OF ARRAY DIRECTIONAL SIGNALS COVARIANCE MATRIX
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where D is the number of sources
LI is the number of paths for the i —th source

R” is the cross correlation between the signals
m () (amivingvia L, paths) and
m(t) (arriving via L] paths)
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Npp= C-Nd-NdH (2.36)

It is apparent then that by preprocessing the data covariance matrix of
the previous section (FEquation 2.28) with a known process Nd—l, the

result will be given by:
~ 3 -—-lH
Rz-x = Nd .sz.Nd (2-37)

Iﬁxr = g.Rmm-gﬂ -} C.n (2.38)
S=N;L.S (2.39)

where

On the basis of the above discussion it can be said that, by applying the
above pre-transformation, any algorithm, which assumes a noise (ther-
mal plus isotropic) which is uncorrelated from sensor to sensor, can be
easily extended to the more general noise environment in which there is
non-isotropic noise.

Thus, non-isotropic noise effects, which have a known
directionalily, can be handled. A typical non-isotropic noise (for more
examples see [HUD-81]) is one which is ellipsoidal in shape, indicating
that the noise strength is greater in some directions than others. If the
noise is non-isotropic and completely unknown then a very difficult
problem exists. In order to handle such a situation the theoretical
development of the main process should not be based on any
assumption with respect to the noise covariance matrix other than that
it is a Hermitian matrix. The assumption of thermal plus isolropic
uncorrelated noise will be used in this thesis. Questions relating to

unknown non-isotropic noise will be left for another time.
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2.8 ARRAY MANIFOLD

In this section the array manifold is defined and the array
ambiguity problem is considered in conjunction with those array
manifold dimensionality concepts which are useful for the remainder of

the thesis.

2.8.1 DEFINITION OF ARRAY MANIFOLD.

Consider an array of N sensors and form the Source Position
Vector S ('Sli in Fquation 2.27 - for plane waves) corresponding to the
direction (6,¢), where 6 is the azimuth and ¢ the elevation angle.
Rewrite S as 5(6,¢). Next, record the continuum of the vector 5(6,4) as
a function of #,¢. This continuum is a two-dimensional continuum lying
in a N dimensional space and is otherwise known as the array manifold.
In the case of spherical waves me;tioned earlier, the Source Position
Vector (—Sli in Equation 2.21) can be represented by S(||z]|,0,¢) i.e. it is
a function of range, azimuth and elevation, and in such a case the
manifold is a 3-dim. continuum in a N dimensional space. This array
manifold can be calculated and stored for a particular array only from
the knowledge of the locations and directional characteristics of array
elements. Thus, according to Schmidt [SCH-81] the array manifold
completely characterizes any array and provides a representation of the

real array into N-dimensional complex space.



2.8.2 ARRAY AMBIGUITIES

Source location ambiguity may arise whenever i) the array
manifold repeats itself or ii) a point on the array manifold can be
written as a linear combination of some other points. A simple
example as a help in visualizing case (ii) is when a ray from the origin
intersects the manifold at more than one point. A useful way of
measuring the degree of ambiguity is by means of manifold
dimensionality [SU-83]. Thus, consider that M is the largest number,
such that for every combination of M distinct directions their
corresponding Source Position Vector (SPV) can be a base of an M
dimensional subspace. Then M is defined as the dimensionality of the
array manifold. Once the array manifold, for a particular visible area,
has been calculated and stored the array manifold dimensionality can
be estimated and therefore becomes known for that particular array
design. The dimensionality reflects the maximum number of signals
which can be uniquely resolved by the array without any ambiguity
arising.

It is important to point out that the array does not present the same

resolution characteristics in the whole domain of directions.
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Superresolution Techniques and related Signal Subspace Algori-
thms provide correct information about the signal environment as long
as that environment does not involve any coherent signals. Howéver,
the use of these techniques in signal environments where smart jamming
or multipath propagation is present results in complete failure. Thus, if
we are looking for an algorithm which is able to work in a signal
environment with any degree of correlation (coherence), existing
superresolution techniques, as well adaptive array systems, are not
appropriate. In this chapter the theoretical framework of a new
adaptive algorithm called ASPECT (Adaptive Signal Parameter
Estimation and Classification Technique) is developed. This new
algorithm, unlike superresolution techniques, provides correct

information concerning:

e the number of signals incident to the array,
e the direction of arrivals (azimuth and elevation angles),
e the relative powers and phases.

The algorithm works independent of whether or not the signal are
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correlated and it is not restricted to linear arrays.
The main assumption is that the emitters can be considered as point
sources while no assumption is made as to whether the propagated wave

is spherical, or if it is a plane wave.

3.1 EIGENSTRUCTURE ANALYSIS

As mentiohed in Chapter 1, in recent years new array processing
techniques known as high resolution - signal subspace methods have
appeared. These methods are based on the eigenstructure of the sensor
covariance matrix [JOH-85], [BIE-83]. They have been used mainly in
estimating the direction of sources by employing a spatial array and
they involve two main stages: the first stage is to estimate the cova-
riance matrix of the data at the sensors of the array, and the second
stage is to perform an eigenstructure analysis ([WLK-66]) of this
matrix. As was mentioned in Chapter 1, using this information the ob-

servation space is partitioned, into the following two disjoint subspaces:

e the signal subspace with dimension equal to the
number of sources, spanned by the source position
vectors which correspond to the directions of
incident signals;

o the noise subspace which is the complement of the
signal subspace with respect to the observation
space.

In order to appreciate the problems involved in the use of this

decomposition, it is necessary to consider two situations with respect to
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signal environment. The first situation involves signal environments
where there are not correlated sources present and the second situation

is one in which correlated sources exist.

THE ABSENCE OF CORRELATED SIGNALS

In the case of uncorrelated sources the decomposition referred to
above can be performed correctiy only if the dimensionality of the
signal subspace is known. This dimensionality is equal to the number of
signals arriving at the array. Thus, any algorithm based on the signal
subspace approach assumes that the number of incident signals arriving
at the array is known a priori. In practice, this prior information can be
provided by a number of algorithms. A conventional approach is the so
called Bartlett-Lawley test [LAW-56]. This test, however, suffers from
the disadvantage of involving subjective decisions. Recently, Wax and
Kailath [WAX-84] [WAX-85] have proposed a new method based on
information theoretic criteria for model identiﬁcation. The criteria are
the Akaike (AIC) and Minimum-Description-Length criteria which
overcome the need for subjective decisions; Another work of interest in
this respect is the criterion proposed by Zhao el al [ZHA-87] called the
Efficient Detection Criterion, of which the Minimum-Description-
Length criterion is a special case.

The most representative and powerful technique of the Signal
Subspace methods is the so-called MUSIC algorithm. This technique,
which was developed at Stanford University [SCH-81], [SCH-86], has
become very popular. The power of the MUSIC algorithm can be

demonstrated by a simple example, where there is a linear array of five



uniformly distributed sensors, in the presence of three uncorrelated
sources with azimuth angles of 30°, 135" and 90° respectively. Figure
3.2a shows that the directions of the signals are indicated by distinct
deep nulls. If now the second source approaches the first, that is, the
azimuth angles become 30°, 32° and 90° respectively then the MUSIC
still provides results as shown in Figure 3.2b. In this situation all other
previously known algorithms fail. A number of computer simulations
were performed in [JOH-86 ]. These showed that when comparing the
performance of high resolution methods, under a range of different
criteria, the MUSIC algorithm outperformed all other high-resolution
methods considered.

Signal-Subspace techniques are based mainly on the concept that
the eigenvector decomposition of the covariance matrix provides the
basis of the signal subspace while the rank(Rm—az.l) provides the
number of incident signals (see Appendiz 1). When correlated sources
are present, however, the approach fails. Neither the decomposition of
the covariance matrix nor the rank(RM——az.l) provide correct

information.
THE PRESENCE OF CORRELATED SIGNALS

-In order to provide some insights into the problem of handling

correlated sources, which according to Schmidt [SCH-81]

“... has been the most difficult to treat due to
the extreme sensitivity of almost all methods
to the high degree of temporal cross corre-
lation (ie. similarily) belween directional
signals”.

it is instructive to examine the structure of the matrix Ry, which was
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defined in Section 2.6. If we restrict ourselves to the assumption that
the signals present at the array environment come via only one path
then each ’square block’ on the matrix Ry, in Figure 2.3 has
dimension 1x1, which means that these ’squares blocks’ are scalars. If,
however, for some of the incident signals multipath propagation is
involved, then one or more of those ’squares’ takes the form of a
singular matrix rather than a scalar, and the methods referred to and
discussed above fail to operate. As a result of the signals correlation, the

matrix Ry, also becomes a singular matrix with rank:

1<rank(Rym) <M (3.2)

(with rank(Ry,m) =D=M when Ry, is non-singular)

In such a case any signal subspace algorithm (e.g. the MUSIC algorithm
[SCH-86]), which has to work in an environment which results in a
matrix Ry, with rank different from the number of incident signals M,
breaks down. The reason for this is that the eigenvectors of the
covariance matrix which belong to the noise subspace are not
orthogonal to signal subspace. In other words, the space which is
considered as the signal subspace by these algorithms is not the true
signal subspace, although the algorithms “think” that it is. The worst
case 1s, however, when rank(R;,;;)=1, which occurs when there is one
source coming via many paths, or when there are many sources, all of
which are correlated. The above mentioned problem is illustrated in
Figure 3.3 for a linear array of seven isotropic elements and for three
sources located at 30°,90° and 135°, where the three sources are
correlated.

It is important to note also that in a situation such as that



FIGURE —3.2 (MUSIC ALGORITHM FOR THREE FULLY CORRELATED SOURCES)
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illustrated in Figure 3.2, even the AIC and the Bartlett test will fail to
provide the correct number of signals present. The reason is that they
try to find the rank of the data covariance matrix by setting a threshold
to its eigenvalues. However, in the correlated situation this rank does
not correspond to the number of signals, as it is obvious from the
previous discussion.

Recently attempts have been made (see for example [FED-86],
[SHH-87], [DI-85], [SHA-85], [CAD-87] etc) to overcome these diffi-
culties and the most promising approach appears to be that of Shan,
Wax and Kailath [SHA-85], [SH2-85] which uses the concept of spatial
smoothing, or sub-aperture sampling, in order to restore the rank of the
covariance matrix so that it is equal the number of signals. The method
defines a number of subsets (sub-arrays) and for each subset a data
covariance matrix R, is formed. Then, the average covariance matrix R

is estimated as follows:

o 1
IR-"—No.of suba'r’rays'z R; (33)

2

After this the MuSIC can then be used to provide the locations of the
sources. This method of approach is at this time very popular and a
considerable amount of research effort is being done on the spatial
smoothing technique [CLE-85), [ATT-87], [WIL-87], [MAD-87], [WIL-
88]. This technique does however suffer from two main disadvantages.
The first one is that it reduces the effective aperture of the array and

the second that the method can only be applied to linear sensors arrays

with uniformly-spaced identical sensors.




3.2 THEORETICAL BASE

In this thesis a totally new alternative approach to that of Shan-
Kailath is that provided in the form of the ASPECT algorithm. This
algorithm measures up to the requirements contained in the general

statement of Schmidt

“The proper perspective is that the general
multiple emitter case includes the multipath
as a spectal case.”

ASPECT will be shown to provide a solution in the general case in
which the ’squares blocks’ of matrix Ry, in Figure 2.3 are matrices of
any dimension. One Lemma and three Theorems will now be developed
and they will be used as a theoretical basis of the ASPECT algorithm,
which is to be presented later in this chapter. In addition a second

Lemma, Lemma-2, will be presented without proof.

LEMMA 1.: Let F be any set of N-dimensional complex vectors where
any combination of M these vectors (M<N) are independent. Consider
two subsets of F : SDECNXD, ScCV*K with k>D.
If dim(L[Sp,S])<M and Sp.ap=S.a, where dim stands for ’dimension
of ..>, L[.] means ’the subspace spanned by ..., QDECD with (every
element of o, #0), a€ CX, then:

) L[SpICLls)

11) K-D elements of o are zero, and

it1) D oul of K columns of S are the D columns of Sp.
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PROOF :
The subspace L[S[),S] is the subspace generated by SDUS. That

is,

L[Sp,S] = L{Sp] + L[S] (3.4)
However
dim(L[Sp] + L[S]) = dim(L[Sp]) + dim(L[S])—dim(L[Sp][|L[S])
= D + Kk — dim(L[Sp]( |L[S]) (3.5)
<M |

D+K— dim(L[SD]ﬂL[S])<M in the last equation means that SDUS is
a basis of the subspace L[S[,S]. However,

But, because every element of «p is nonzero, the equation
Sp-ap—S.a=0 is satisfied only if L[S,JCL[S] (then S, =S.A =
S(R.ap—a)=0 which is valid for A.aj—a=0). This proves part(:) of
the LEMMA.

However, part(i) of LEMMA implies that L[Sp]C[L[S]. It is
apparent then that §p will belong to a D-dim subspace of L{S]
(L[S..), say)
That is,

L[S pl=(Sc] (3.6)
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Let
SD: HﬁDl’ §D2’ ........ N _;SDD]] (3-7)

and let us rearrange the columns of § and the corresponding elements
of o in such a way that: i) the subspace L[S] can be decomposed into
two complement subspaces as shown in Figure 3.3(a) and ii) the same

subspace L[S] can be decomposed as in Figure 3.3(b) .

Where S = [[—S—l’ -S—Z’ ........ 3 §D’ -S-D+l’ ....... y §I( ]] (3-8)
=S.a (3.10)

By partitioning the vector & into two subvectors, that is, g_Tz[[ _dT,gTﬂ

with de CD, e€ ck—=D FEquation 3.10 can be written as:
E=S.d+ Sepe (3.11)
It needs to be proved that :

d=op  Sa=S5, (312)

13
Il
| {==

However, because L[Sp]=L[S.;] implies that the columns of S, and the
columns of S.; are two different bases of the same subspace, it follows
that one basis can be written as a linear combination of the other; that

is:

Su=Sp-A  with AeCP*P (3.13)
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FIGURE—3.3
DECOMPOSITION OF THE SUBSPACE L[S] INTO TWO COMPLEMENTS SUBSPACES

a)
L[ Sczl = L[ SpiSpe s -SK]

dim{ L] S,]}=K-D

L[ Sc1]=L[ 84,8, J -s-D]
dim{L[ S,,]}=D

L S.1= L[ Spii:8pies Sl

dim{L] S,]}1=K-D

L[ SD]=L[ Spy 18pe s 'Sno]
, dim{L[ SD]}':D

Nots : L].] means 'spannedby ...’
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Then, Fquation 3.11 becomes:

i.e. E-:SD'—Q + Scz._g_ (3.14)
with b=A.d , be CP

In addition Eguation 3.9 can be rewritten as:

E=Sp.ap + Se.0 (3.15)
On subtracting Fquation 3.15 from Equations-3.14 it follows that:

0=Sp.(b~ap) + Scz-¢ (3.16)
which is true only if:

b=ap =0 (3.17)

This last equation proves part (ii) of the LEMMA.

However, because of $;=S,.A in conjunction with the fact that any
combination of D columns from both matrices $j, and S, are linearly
independent, the matrix A becomes the identity matrix.

Therefore

(3.18)

la.,
Il

IR

)

This proves part (iii) of the LEMMA.



LEMMA 2: Consider an FEuclidean space H, dim[H}=N and any
subspace h, dim[hl=M<N of H spanned by M independent veclors
ﬁl"""ﬁM' Then the projection of any vector z in H on to h is given by
P.z where P is the projection operator which maps each vector of H
onto h and which has the following
properties:

o P=V.(VEV)"LVH where V=[h ...,k o,

o P?=P i.e. P is idempotent,

e Pi-p

THEOREM 1. : The number of signals, incident at an array of N
sensors and arriving from different angles, is given by the number of
non-zero elements of the vector (SH.S)_I.SH.E at the solution of any

of the following minimezation problems

a) mﬂzn ¢ given §:trace(PS.QE_.PS.PE) (3.19)

b n £ given & = —1-) (3.20)

) min £ given ( m

¢) mﬂin £ given €= trace(QS.Pﬁ) (3.21)

with R2E 5 R . keNT ke[p,...M and
where:
. _E_ECN is etther one

the data covariance matriz, or any array input sample

* of the signal subspace eitgenvectors of

vector free of additive noise.

o ScCM*X has as columns K independent vectors belonging

to the array manifold .

% Excluding the case where all the SPVs are themselves orthogonal. This
special case is covered on page 76 by the Aspect function.
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° PS 15 the projection operator to the subspace spanned by
the columns of S, that is the ’range space of S
R(S);

. QE is the projection operator to the complement of the
subspace spanned by E, that is the ’null space of B
N(E);

° IPE s the projection operator to the subspace spanned by
L, that 1s the *range space of £ R(E);

e n integer greater or equal to 1

e ts the vector of location-parameters (Q_EZWK)

PROOF :
Because E belongs to the unknown signal subspace, it follows that it is
a linear éombination of the unknown D Source Position Vectors of the

true sources. This means that

where S, is the matrix whose columns are the D source position vectors
of the true sources. However,
a)
{=trace(Pg.Qp.Pe.Pp) =
=trace(Pg.Qp Pg EE") =
=trace(B" Pg.Qp.Ps.E )=
:_E_H.PS.Q_E.PS._E =
:g“.PS.Q_E.Q_EPS._E =
= w  where w=Qp.Pc.E (3.23)



The last equation shows that the cost function is a positive quantity
(square magnitude of a vector), so the global minimum is zero; this is
reached when the vector w becomes a zero vector. Then the vector E

belongs to the the range space of the columns of S, that is R(S). Thus
Pg.E= E which implies = E.Qp.B¥ =0

Let
a= (st~ lsf g (3.24)

By pre-multiplying both sides of Equation-3.24 by § =

s(sfs)~lsf g =

S.a =
Sa= PS._E =
S.a = E (3.25)

Thus, by combining last equation with Egquation 3.22:
E=Spap=Sc (3.26)

Equation 3.36 in conjunction with part(i) and part(i:) of LEMMA.1
implies that the K—dim vector @ has D non-zero elements.

However, if the assumptions of LEMMA .1 are not valid then
there is no guarantee that the solution of the minimization problem
Equation 3.19 is a unique solution. Theorem-3, which follows, deals
with the conditions under which the assumptions of LEMMA.1 are

valid.
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b) n
= —1 .
( ) Psﬁ) (3.27)

on multiplying both the numerator and the denominator by

< _le PS_E ) it follows that

n

E7
= é= ( A:E) (3.28)
EPgE

Now when the numerator is multiplied by _E‘__H £ no change takes place

since EH FE is equal to unity. Thus:

JE7Pg B ETE\" [ |E'PePg E. {E.E

In Equation 3.29 Lemma 2 has been used. On replacing PS._E by the

vector w in Equation 3.29, that is using
y_:PS_E_ (3.30)

Fquation 3.29 becomes

( &H.LU- 8
§= H

w

tqlbé

£ ) (3.31)

However, it is well known [GOL-83] that the angle between two

complex vectors w and E is given by

—71—



Thus, it is clear that

_ 1
¢ ( cos@.eq>>

However ¢ €R, therefore ® =0 which implies

E=sec"©

(3.32)

(3.33)

(3.34)

Thus, when FEgquation 3.20 cost function is minimized the angle © will

become zero indicating that the vector w and Z span the same one

dimensional space; in other words, the two vectors become identical.

This means

w=Ek
H e\—1¢H
S.(87.8)7'S".E = Sp.a,

S.Q = SD._CLD

where g:(SH.S)_l.SH.ﬁ

(3.35)

Equation 3.35 in conjunction with part(z) and part(si) of

LEMMA.1 implies that the X—dim vector o has D non-zero elements.

¢) proof similar to that of (a).
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THEOREM 2. : if (8",8%) is a solution to any one of the minimization
problems given by Equations 3.19, 3.20 or 3.21 of Theorem.l., then the
pair (Hz-,gbi) which is formed by the th elements of the vectors §*,¢* is
the DOA (Direction Of Arrivals) of an incident signal provided that the

it* element of the vector (SH.S)_l.SH.E is not zero;

PROOF :

Consider K initial directions (8,4) and let § be the matrix the columns
of which are the vectors belonging to the array manifold which
correspond to the K initial directions. Let L[S] be the subspace spanned
by the columns of S. Figure 3.4(a) illustrates the geometry involved.
Also, let w be the projection of £ on to L[S]. By projecting the vector w
on to the nullsubspace of E the vector (@) is formed as shown Figure
3.4(b). By minimizing the magnitude of (@), that is Equation 3.19 the
subspace L[S] is rotated so as to approach the range-subspace of E.
Figure 3.4(c) shows the final settled position of the L[S] at the end of
minimization Equation 3.19. Thus, at the solution (6*,8%), the vector E
belongs to the subspace spanned by the columns of S, that is E€ L[S];
this implies that E becomes identical to w and consequently E can be
written as a linear combination of the columns of § which are the K
vectors belonging to the array manifold and corresponding to the

solution (8*,4™), that is,

E:S.CY (336)

Similar results will be obtained by using Equations3.20, 3.21.
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FIGURE —-3.4
GEOMETRY INVOLVED IN ASPECT
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> N(e)

R(E) R(S)

b) N(S)

dim{ N(S)}=N-K
dim{ N(E) } =N-1
dim{ R(S)}=K

- dim{ R(E) }=1
> N(g)

R(S)

N(S)
N(E)
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Now,

E=S.0 = o=(57.5y 67 E (3.37)

and it has been proved in THEOREM.1. that o has D non-zero
elements. Thus, in order to prove the THEOREM-2 it is sufficient to

th

prove that the 7" column of § which corresponds to a non-zero

elements of & is equal to one column of Sp,. Proof of this is obtained by

using part(iii) of LEMMA .1.

THEOREM .3. : Theorem.l. and Theorem.2. have unique solutions as
long as the following condilion is satisfied:

the array manifold dimensionalily > K+D (3.38)

PROOF :
By assuming that the array manifold dimensionality is greater than
K+ D ensures that every combination of K+ D Source Position Vectors

are independent. In other words this ensures that

dim(L[S ,S]) <(array manifold dimensionality) (3.39)
thus validating the assumptions of LEMMA-1. The uniqueness of the
solution is then apparent.
However, Equation 3.38 is more restricted than is needed. For instance

from Equation 3.39 it follows that:

K+D— dim(L[SD]ﬂL[S]) < (array manifold dimensionality) (3.40)
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where the maximum value of dim(L[SD]ﬂL[S]) is equal to D. That
implies that the minimum value of the array manifold dimensionality is

equal to K.

ASPECT COST FUNCTIONS

In the cost function used in the Theorems given above there is one
eigenvector in use. This eigenvector should belong to the Signal
subspace. One such vector is the eigenvector which corresponds to the
maximum eigenvalue of the covariance matrix. This vector belongs to- ™
the signal subspace even if all the sources are correlated, or if there is
only one signal source and its signal arrives at the array having
travelled over a number of different paths (multipath propagation).

If there are a number of eigenvectors which obviously belong to the
signal subspace then this additional information can be taken into
account as well. This can be done by extending the cost functions given

by Egquation 3.19,3.20, and 3.21 in the following manner:

€:iTaCC(Ps.QE.Ps.PE)

_ 1
¢ H( E‘-HPS_E,-)

\--—1
E= trace(Qs.PE)

where E is the matrix which has as columns the eigenvectors belonging

to the Signal Subspace.



3.3 THE ASPECT ALGORITHM

ASPECT is a new algorithm for locating a number of sources

correlated or otherwise. This algorithm is not restricted to linear arrays

and is based on the Theorems given in the previous section. The

algorithm can be expressed as a number of steps appropriate for Single

Instruction Multiple Data Computer or for systolic array implemen-

tation as follows:

STEP-1:

STEP-2:

STEP-3:

STEP-4:

STEP-5:

form the data covariance matrix

estimate the eigenvectors E which corresponds to the
largest eigenvalues of the covariance matrix if there 1is
confidence that these eigenvectors belong to the signal
subspace.

estimate the Projection Operators of the subspace spanned
by the columns of E (that is Py )

choose K initial directions with K to be certainly greater
than, or equal, to the number of incident signals but less
than, or equal, to the array manifold dimensionality.

minimize one of the following cost function:

g=trace(Pg.Qp -Pg.Pp) (3.41)
- —1___|n 3.42
‘ H( «l_Ef’PS_E_’i) (3:42)
= trace(QS.PE) (3.43)

where E is the matrix which has as columns the eigen-

vectors belonging to the Signal Subspace.



5.z For instance for Equation 3.42:

1

2a.

2b.

2c.
2d.
2Ze.
2f.
2g.
2k.
21
2.
2k.

2l

2m.

form the matrices:
Ko=[ko.ko, -y kg] (3X K matrix)
(That is a vector expanding to a matrix)
L:&‘l,gz,....,fN]T (Nx3 matrix)
at time n update :
o =187 ,oF 1 (2kx1 vector)
K=[k;,k,, .., _/_C_K] (3% K matrix)
and also update the following sub-STEPS 2a to 2p
G, Gy, Gy, Gy, (NX K matrices)
Ky, Ky Kgg (NXK matrices)

U= —jL(K-K,) (NX K matrix)

U=ezp(U) U,=—3LK, U,=—5LK,
Up,=5. LKy,

S = 6xU G, = G,+xU Gy = G, xU

Sy = Gyt UyxS S, = G4+ Uy*S
Spp= GppxU+ U xG,+ Uy xS + UpxSy
Ag=(s7.5)7"

Bg=A¢.S7

a=Bg.E P=S.B

Q¢=1-Pg

c= diag(E# P& E)

A=[1,1,..,1] ¥ e

E=product of elements of h

for every ij where i,j€[1,..,M] estimate:

C,.=S;"B™  C,=S;'B”  C,,=5;;,B"
th

where the superscripts *i or ix above mean the i

column or row respectively of their matrix.



5.b:

5.d:

5.1

STEP-6:

— H _ H
— 1.Qe.C
QS 0;¢;

where =0 if i#; and l=-1 if i=;
n. M:[dz'ag(EH P .E),...,diag(EH Ps,, .E),
diag( E¥ Pg, .E),....,dz'ag(EH P

.E)]
20. M=—0.5%n+Mx[h, h,..., h]*T"

Sox

2p. ZETz sum the element of each column of M
V2¢= its elements are given by Fquation-A3.9 of
Appendix 3.
evaluate the direction of search dv=V2¢ 1. V¢
perform a line search across the direction —dw in order to
estimate a constant / ihdicating how far to move along the
current direction.
update v at time n+1 via: v 4=+ IVn
ni=n-1
check if a selected stop criterion 1s satisfied.
If not satisfied then goto STEP 5.4.2b
else goto STEP 6.
find the non zero elements of the vector (S¥ .S)_l.SH £
and accept
i)  the number of signals incident to the array, from
different direction of arrivals, to be the number of
those non-zero elements;
i)  the directions of arrival, to be the directions related to
the vectors which correspond to non-zero elements of

(SH.S)—I.SH._E_ where E is one of the columns of E.



N.B.: the operators * and implies element by element operations
(multiplication and division respectively).

The above algorithm as has been presented above is in a form
appropriate for VLSI implementation. Figure 3.5 gives an example of
the implementation for the SPVs and their derivatives in a block
diagram form. In addition, the Appendices 3 and 4 provide the basic
mathematical tools of ASPECT algorithm for the three cost functions
given by FEquations 3.41,3.42,3.43.

It is also important to point out that the process could be applied to
individual samples at the input of the array and then to average the
results of, say, every q samples in order to subtract the effects of noise
from the original samples. Also the STEP-1 and STEP-2 can be replaced
by one step which will estimate the Right Singular Vector which

corresponds to the largest singular value of a block of samples.

— Since the material presented in this chapter was developed and the thesis
was written and submitted a paper by Cadjow [CAD-88] has appeared in the
technical literature. This paper deals with the problem of located correlated
sources. The approach is, however, funtamentally different from that

14

developed in this thesis.
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4.1 INTRODUCTION

In this chapter the results of a series of computer simulations are
presented. The simulations were carried out in order to assess the
performance and limitations of ASPECT algorithm, under various
signal scenarios. The number of sources is considered to be less than the
array manifold dimensionality.

The ASPECT algorithm which is based on the Theorems
presented in the previous chapter has been coded in PASCAL and
MATLAB.

For the whole set of simulations it is assumed that the signal
environment involves three directional emitting sources in the presence
of non-directional noise. Since the number of sources is not a prior piece
of information to ASPECT, the algorithm will start with an assumed

number of sources, which will be four (say) for the whole set simulation.



At the end of its operational processing ASPECT should provide the
information as to the fact that the number of emitting sources is three
not four.

Series of tests were carried out assuming plane wave propagation
and then repeated for spherical wave propagation. In each of the two
series of tests the performance of ASPECT was considered with respect
to range of points. In the first tests the resolving power of ASPECT and
its robustness to noise is examined. Thus, two of the three sources (the
trial pair) are brought together with angle separations of

10°,5°,2° and 1° under various noise levels. In these tests it was assumed

that sources are uncorrelated and then correlated (coherent). Also it was
assumed that sources are of equal power. Tests were generalized and
repeated in order to determine the performance of ASPECT when

emitting sources of widely differing power levels are involved.

The array is assumed that has steered its main lobe toward the
direction (0°,957).

The whole set of simulations, concerning the planewave approxi-
mation situation, is performed under the same initial guesses of
ASPECT, which are chosen to be: four signals incident to the array
from the following four‘directions: (10°,20%), (7°,50%), (0°,95°) i.e the
steering vector direction, and (20°,165°). On the other hand, a self-
initialized ASPECT is used in the spherical-wave situation.

The computer simulations were carried out using an APRICOT

XEN-: 386/30 with 80387 co-processor and Cyber-855 main frame.
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4.2 ARRAY MODEL

For the whole set of simulations concerning planewave approxima-
tion, an array of eight isotropic elements was deployed with seven of the
eight elements are uniformly distributed on a semi-circle of radius
R:1.93’5\ located in the X-Y plane and the 8" element being located at
the point (:II:O,y:R,z:%). The situation is illustrated in Figure 4.1a. In
the case of spherical wave propagation a different array configuration
was deployed. This array has twelve elements. Eight of those elements
are located as in Figure 4.1a. The remaining four are located as shown
in Figure 4.1b.

As was mentioned above the array is assumed that has steered its

main lobe toward the direction (0°,95°).

4.3 PLANE WAVE SITUATION
4.3.1 Angular Resolution Tests With Uncorrelated Sources

Initial tests were performed in order to assess the performance of
ASPECT in resolving closely spaced incident signals. In every case the
incident signals are assumed to be three in number, of equal power and
uncorrelated. The noise is assumed to be thermal plus isotropic of power
—40dB. In each case the directions of incidence of third and first
signals are (10°,90°), and (0°,30") correspondingly. The second signal,

which together with the first signal constitute a trial pair, is located in
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FIGURE—4.1
ARRAY MODELS USED IN THE SIMULATIONS CARRIED OUT IN THIS CHAPTER

a) FOR PLANE WAVE PROPAGATION

b) FOR SPHERICAL WAVE PROPAGATION
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positions which provide 10°, 5°, 2° and 1° angle separation from the
direction of incidence of the first signal. Thus, the directions of the
second signal are chosen to be the following: (0°,40%), (0°,35°), (0°,32°),
(0°,31%).

The results of the simulations are shown in Figures 4.2-4.5. These
results show that ASPECT correctly and accurately resolves and
estimates the number and the directions of the incident signals for every
case. It is important to note the pattern of behavior of ASPECT with
regard to the detection of the signals. In Figure 4.2, for instance, Source
No.4 disappears after 7 iterations. Thus the algorithm ends with 3
sources having been correctly detected.

From Figures 4.2-4.5 it is also clear that the number of iterations
(keeping the same initial directions) increases as the angle separation of

the trial pair decreases.
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FIGURE — 4.4 (Uncorrelated Sources)
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4.3.2 Noise Effects

In this section the effect of omni-directional additive Gaussian
noise on the performance of the ASPECT is considered. The noise
power is brought up from —40dB to —20dB and —10dB. The array
environment described in the previous section remains unchanged. For
every power level the performance of ASPECT is assessed with respect
to space resolution, by repeating the whole set of tests of the Angular
Resolution section. The results are shown in Figures 4.6 to 4.13. By
.comparing the set of figures Figures 4.6-4.9 which correspond to —20dB
noise level with the set Figures 4.10-4.13 (that is for —10dB noise level)
it 1s concluded that these two sets are identical. In addition the above
two sets of figures are identical to Figures 4.2-4.5 (—40dB noise)
showing the robustness of ASPECT with respect to noise level.
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FIGURE—4.6
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FIGURE —4.7 (Uncorrelated Sources)
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FIGURE — 4.8 (Uncorrelated Sources)
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FIGURE—4.9

( 0.0, 30.0)
( 0.0, 31.0)
(10.0, 90.0)

(Uncorrelated Sources)

( 10.0, 20.0)
( 7.0,50.0)
( 0.0, 95.0)

(—0.0000, 30.0000)

( 0.0000, 31.0000)
( 10.0000, 90.0000)

(20.0,165.0)

ASPECT AZIMUTH

ASPECT ELEVATION
180 : : 30 , :
S A : :
160 - . a ’,\\
140 e ‘I' “|
e
SR o]0 | — ¢ i
@ P i
= 5 i
g 15 :
< 100 - © \
o g Ao
80 o Pmoh PSP S
g e} 10 ’K'!‘W S e
£ 8 ii
N 60| 3 A
< i\ i
. B s hedl e
40 Lo f}.\;:;:: ............................ ;\ -
~ 0 Fst Nyt
20 F A /X/
? Voo |
0 L i -5 L i i
0 5 10 15 0 5 10 15
No. of iterations No. of iterations
™3
}
. ,’ @ : array element
/ Y B :source
t !
1
— X

—95—

POWERTABLE :
Source No.1 :1.0
Source No.2 :1.0




FIGURE — 4.10 (Uncorrelated Sources)
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FIGURE — 4.1 1 (Uncorrelated Sources)
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FIGURE — 4.12 (Uncorrelated Sources)
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FIGURE — 4.1 3 (Uncorrelated Sources)
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4.3.3 Power Resolution

In this section ASPECT is tested in a signal environment where
there are present both sirong and weak signals. Consider that the noise
power is —40dB. Then, one of the trial pair, that is the second source,
is taken from 0dB down to —20dB, —40dB (i.e equal to noise power).
For each selected level the trial pair is located in positions which
provide 10°, 5°, 2° and 1° angle separation. The results are shown in:

o Figures 4.14-4.17 for —20dB trial pair differing power level and
e Figures 4.18-4.21 for —40dB (that is one source of the trial pair
has a power level equal to noisel).
These results show that ASPECT is able to resolve a trial pair with

widely differing power levels wihout any particular problem.
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FIGURE—4.14 (Uncorrelated Sources)

( 0.0, 30.0) ( 10.0, 20.0)
( 0.0, 40.0) (

(10.0, 90.0) (

( 0.0000, 30.0000)
7.0, 50.0) (

0.0000, 40.0000)

0.0, 95.0) ( 10.0000, $0.0000)

(20.0,165.0)

ASPECT AZIMUTH

180 : 30 : 5
160 R 20 - X
0 PR W ——— - i
140 !
n !
o : o 0 \
© 20k e £ “
o8 3 a_
s} ©  -10 b
I 100 . ; |
3 - e B A o —20 i
=} .,(.é “
g 80 - > !
3 % -30 ﬁ
60 i
—40 b
40 e _50 \"
20 ; ; 60 , |
0 5 10 15 0 5 10 15
No. of iterations No. of iterations
™3
1
,’ @ : aray element
Z / Y BN :source
/
!

—-101—-



FIGURE — 4.15 (Uncorrelated Sources)
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FIGURE — 4.16 (Uncorrelated Sources)
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FIGURE — 4.17 (Uncorrelated Sources)
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FIGURE — 4.1 8 (Uncorrelated Sources)
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FIGURE — 4.1 9 (Uncorrelated Sources)
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FIGURE — 4_20 (Uncorrelated Sources)
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FIGURE —4.21 (Uncorrelated Sources)
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4.3.4 Signal Correlation

So far simulations results heve been presented dealing with
uncorrelated signal situations. These results show that ASPECT can
adequately handle these signal environments which can be also handled
by the existing Signal Subspace Techniques (e.g. MUSIC). However,
this section is concerned with signal environments which involve
correlated (coherent) sources and it is well known that these
environments cannot be treated by the existing signal subspace
techniques (see Figure 3.2 for illustration of the failure of the MUSIC
algorithm).

The results of the previous sections indicate the robustness of
ASPECT with respect to noise power level. One of the questions which
this section is concerned with is to examine if that robustness to noise
power is maintained in correlated or coherent signal environments.
Thus, the simulations carried out in Sections 4.3.1 and 4.3.2 will be
reconsidered here, but this time with the trial pair to be fully
correlated. Firstly, the effects of angular resolution with noise levels
from —40dB up to —20dB and —10dB is considered for 10°, 5°, 2° and
1° angle separation in the trial pair. The effects of correlation on the
performance of ASPECT, for every signal environment referred to
above, are shown:

o in Figures 4.22-4.25 (for —40dB)

e in Figures 4.26-4.29 (for —20dB)

e in Figures 4.30-4.33 (for —10dB).

Figures 4.22 to 4.33 shows that ASPECT keeps its robustness properties
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with respect to noise level in fully correlated situations. However,
although it performs satisfactorily in almost every case, it loses
accuracy when two correlated sources are close together (see for example
Figures 4.25, 4.29 and 4.33).

Next, the effects of sources with widely differing power levels is
considered for 10°, 5°; 2% and 1° angle separation in the trial pair. The
performance of ASPECT when one of the trial pair is taken down from
0dB to —20dB, —40dB, with —40dB noise power, is illustated in

e Figures 4.34-4.37 (for —20dB) and

o Figures 4.38-4.41 (for —40dB, that is, equal to the noise level)
The results are satisfactory with the exception of the reduction of the
bearing accuracy when the array environment involves some signalé
which are close together and, at the same time with widely differing
power levels. This reduction of accuracy is slightly more significant than
it is in the uncorrelated situation. Figure 4.41 presents the worst case
where for signals directions (0°,30°) and (0°,31°) ASPECT provides the
directions (0.0000°,30.0042°) and (0.0076°,31.70277). However, in all the
cases the third independent source is estimated with accuracy.

Finally, it is important to point out that by comparing Figures 4.2-4.21
}(.uncorrela,ted situations) with Figures 4.22-4.41 (correlated situations)
it can be seen that the number of iterations increases when signal

correlation is involved.
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FIGURE — 4.22 (Sources No.1 and No.2 are correlated)
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FIGURE—4.23 (Sources No.1 and No.2 are correlated)
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FIGURE — 4.24 (Sources No.1 and No.2 are correlated)
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FIGURE — 4.25 (sources No.1 and No.2 are correlated)
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FIGURE — 4.26 (Sources No.1 and No.2 are correlated)
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Azimuth — degrees

FIGURE — 4.28 (sources No.1 and No.2 are correlated)
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FIGURE — 4.29 (Sources No.1 and No.2 are correlated)
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FIGURE—4.30 (Sources No.1 and No.2 are correlated)
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Azimuth - degrees

FIGURE — 4.31 (Sources No.1 and No.2 are correlated)
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FIGURE — 4.32 (Sources No.1 and No.2 are correlated)
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FIGURE — 4.33 (Sources No.1 and No.2 are correlated)
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FIGURE — 4.34 (Sources No.1 and No.2 are correlated)
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FIGURE — 4.35 (Sources No.1 and No.2 are correlated)
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FIGURE — 4.36 (Sources No.1 and No.2 are correlated)
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FIGURE — 4.37 (Sources No.1 and No.2 are correlated)
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FIGURE — 4.38 (sources No.1 and No.2 are correlated)
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FIGURE — 4.39 (Sources No.1 and No.2 are correlated)
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FIGURE—-4.40 (Sources No.1 and No.2 are corrslated)
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FIGURE — 4.41 (Sources No.1 and No.2 are correlated)-
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4.4. SPHERICAL WAVE PROPAGATION

The application of ASPECT in a spherical wave propagation
environment can be achieved by modelling the received signals. (and
particularly the Source Position Vectors) with FEgquaiion 2.16 and by
including the range as a variable of the cost function. This has been
done by using the array model specified in Figure 4.1b. Simulations
were performed for both uncorrelated and correlated cases. For every
considered case the signal environment is assumed to involve three
signals incident to the array from the following positions: (15°, 20°,
30’5\), (15°, variable, 453\-), and (10°, 90°, 65%) where the first element
of the above triplet represents the elevation angle, the second element
represents the azimuth angle and the third element represents the range
in half wave-lengths. The trial pair is formed by the first and second
sources where the azimuth angle of the second source is such that the
angle separation is 10°, 5°, 2°, 1°. Since it has already been established
from the previous simulations in the situations involving plane waves
that ASPECT is robust to noise level, the noise effects are not going to
be examined in the spherical wave situation. However, the effects of
presence of both “weak” and “strong” signals are examined for both
correlated and uncorrelated cases. Thus, Figures 4.42-4.45 illustrate the
results produced by ASPECT for uncorrelated sources of equal power
with noise level at —40dB. Figures 4.46-4.49 shows the ASPECT’s
performance when the trial pair is brought down from 0dB to —30dB.
For the correlated situation the noise level remains-at —40dB and the

trial pair is of equal power but fully correlated. The results are shown in
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Figures 4.50-4.53 indicating that ASPECT resolves and estimates the
positions of the sources with accuracy. When the trial pair is brought
down from 0dB to —30dB the algorithm provides the results given in
Figures 4.54-4.57. Figure 4.57 illustrates the lose of accuracy of the

estimates, when the trial pair is close together.
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FIGURE—4.42 (Uncorrelated Sources; Spherical Wave Propagation)
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FIGURE—4.43 (uncorrelated Sources; Spherical Wave propagation)
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FIGURE—-4.44
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FIGURE—-4.46

10.0, 100)
45.0, 100)
75.0, 100)
89.0, 100)

(Uncorrelated Sources. Power resolution: —30dB)

(15.0000,20.0000,30.0000)
(15.0000,30.0000,45.0000)

(10.0000,90.0000,65.0000)

ASPECT ALGORITHM

SPECT ALGORITHM
w 100 —== Af T @ 40
B 50w &
it - o 20 -
| 0 |
= )
g 9« 0 -#5 ,-'? e &%
- +
T :
® -100 rR AR o -20 —— '
0 5 10 15 20 0] 5 10 15 20
No. of iterations No. of iterations
) 0
S ASPECT ALGORITHM b ASPECT ANGLES
w <00 T T £ 102
o : 8o S
2 % > Wy :
o 150 E—— s R
® @ SN ]
13 100 o) TN
o & i i
E v
~ 50 s o @ \
1 g .
& 0 S @ 10-9
g 0 5 10 15 20 3 0 5 10 15 20
— w
No. of iterations No. of iterations
m 3 : I t
/ @ : array elemen
{ W :source
2 @@ v 2
K.a -
g
= — X
POWERTABLE :
Source No.1 :1.Q A
o0
ource No.3 :1.0

—137—

:0.0001



FIGURE —4.47 (uncorrelated Sources. Power resolution: —30dB)
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FIGURE—4.48 (Uncorrelated Sources. Power resolution: —30dB))
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FIGURE —4.49 (Uncorrelated Sources. Power resolution: —30dB)
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FIGURE —4.50 (Sources No.1 and No.2 are correlated)
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FIGURE —4.52 (Sources No.1 and No.2 are correlated)
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FIGURE —-4.53
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FIGURE —4.54  (Sources No.1 and No.2 are correlated. Power Resolution: —30dB)
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FIGURE —4.55 (Sources No.1 and No.2 are correlated. Power resolution: —30dB)
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FIGURE —4.56 (Sources No.1 and No.2 are correlated. Powsr Resolution: —30dB)
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FIGURE —4.57 (Sources No.1 and No.2 are correlated. Power resolution: —30dB)
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4.6 SPATIAL SMOOTHING

In this section an example of Spatial Smoothing Technique, as it
has proposed by Shan, Wax and Kailath [SHA-85], is presented and
compared with ASPECT. Since Shan’s technique operates only in a
linear array environment, an array of seven uniformly distributed
isotropic elemements is considered in the presence of three coherent
signals incident to the array from direction, originally, 40°, 90°, and
135" and then from directions 40°, 42° and 90°. The array elements were
spaced one half wavelength apart. The algorithm uses four subarrays,
with each subarray having four elements. The results are shown in
Figure 4.58 and 4.59 together with results for MUSIC algorithm for
those two set of incident signals. Figure 4.58 shows that when the
sources are well separated the Spatial Smoothing Technique restores the
rank of the matrix Ry,;; and provides unbiased estimates of the
locations of the emitting sources. However when these sources are close
together this restoration of the rank is not very good as that illustrated
by the eigenvalues provided in Figure 4.59. This leads to failure of
Spatial Smoothing Technique to detect and locate some of the incident.
Thus in the current example this technique fails to detect and estimate
the signal incident from 40° and 42° althought it detects and estimated
the location of the third one. In both the above mentioned figures, the
failure of MUSIC is illustrated clearly. Next ASPECT is tested for the
above two signal environments. Its behaviour is illustrated in Figures
4.61 and 4.62 showing that ASPECT outperforms to Spatial Smoothing

Technique in a linear array situation.
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FIGURE —4.58
MUSIC ALGORITHM and SPATIAL SMOOTHING TECHNIQUE
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FIGURE —-4.59

MUSIC ALGORITHM and SPATIAL SMOOTHING TECHNIQUE
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(Two of the sources are located close together)
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FIGURE —4.60 ASPECTFOR THREE FULLY CORRELATED SOURCES,
WELL SEPARATED IN SPACE
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FIGURE — 4.61 ASPECTFOR THREE FULLY CORRELATED SOURCES
(two of the sources are located close together)
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4.7 CONCLUSIONS

This ‘chapter reports on a number of computer simulation tests
that have been performed in order to assess the performance and
limitationé of the ASPECT algorithm presented in the previoﬁs chapter.
Examples of signal environments examined are concerned with i) a
number of uncorrelated emitting signal sources and ii) a mix of
correlated and uncorrelated emitting signal sources.

In the majority of tests which involve uncorrelated sources,
ASPECT correctly detects, resolves and estimates the directions of
imcident signals. However, when there are incident signals which are
iocated close together and at the same time of widelly differing power
levels then ASPECT detects the weak signal but loses accuracy when
estimating its direction. However, it provides accurate estimates of the
remaining sources.

In an environment involving correlated (coherent), sources
ASPECT maintains its immunity with respect to noise level. In
addition when there are weak and strong correlated signals present
ASPECT, although detecting these signals, seems to looses accuracy
when it estimates the direction of the weak signal. The loss of accuracy
is greater than in the uncorrelated case.

Summarising the results obtained so far, it can be said that this
precision is altered when

e the angle separation between sources is small,

e the sources are correlated,

e the sources are of widely differing power levels,
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e the observation time is small (see an example in Appendiz 4).
The problem is further complicated by the parallel existance of more
than one of the above cases.

The limitations imposed on the algorithm are as a result of two
factors:

1) by the accuracy of the estimated eigenvectors which anyway depends
on the conditioning of the covariance matrix and the multiplicity of
their roots, as well as by the particular eigenvector estimation
algorithm used, and

2) by the computer constant EPSILON, that is the smallest positive real
value number such that 1.04-EPSILON>1.0. Thus, it can be said that
the smaller the EPSILON is the higher space and signal-power resolution
obtainable.

The Performance of ASPECT is also affected by the afray
M'Tﬁanifold dimensionality, which is a function of the array geometry and
the characteristics of individual sensors in the array. This array
manifold dimensionality provides the condition under which the
solution of ASPECT with respect to a particular environment is unique;
it also provides the maximum number of signals which can be resolved
by the algorithm without any ambiguity problem.

It should also be noted that, the limitations of the optimization
method used for minimizing the ASPECT cost function influence the

rate of convergence of ASPECT.
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5.0 INTRODUCTION

The previous two chapters addressed the problem of locating a
number of emitting sources. This chapter is concerned with the problem
of isolating an emitting source in the presence of interference and noise
(see Figure-1.4 problem-2) and obtaining information about the
unknown interference environment. An array scheme capable of
isolating an emitting source is the so called steered veclor adaptive
array. In this array processing scheme, an array of N sensors operates in
a completely unknown interference environment. Its main function is
the adjustment of the array pattern so as to receive a signal coming
from a known direction, in the presence of M unknown interferences or
jammers (with N>M) which are spatially distributed in unknown
directions. Its aim is the reception of the desired signal and maximum
suppression of unwanted interferences (ideally to zero).

However, this array techmique is willing to compromise on
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interference suppression and allow some interference to pass at the
output of the array (contaminating the desired signal) in order to
obtain maximization of the signal-to-noise ratio. That is, it does not
provide complete suppression of unwanted interferences. In addition, the
direction of arrival (DOA) of the desired signal should be known a
priori as accurately as possible since the pointing errors affect
significantly the performance of the array. Furthermore, the larger the
power of the desired signal at the input of the array is the smaller the
power of the desired signal is provided at the output of the array. This
is known as the power inversion problem- (see for example [APP-76],
[AP2-76]) and it may result in desired-signal cancellation.

A partial solution to the above mentioned problems, is given by
the modified Applebaum loop [GUP-84]. This is based on the idea of
filtering the desired signal. Thus, by forming a covariance matrix which
does not include the desired signal one can make a new adaptive array
which is more robust to pointing errors and overcomes the drawback of
power inversion mentioned above.

All the same, the performance of adaptive arrays is significantly
degraded as the number of jammers increases, with deteriorated results
when some of them are close together or when they are located at less
than half the array beam-width away from the desired signal. Thus, the
performance of adaptive arrays is governed by the geometry involved in
the array and signal environment, as well as by the powers of the
directional sources.

All the above mensioned problems in conjunction with the
resolving power limitations of conventional adaptive array techniques
make this array scheme incapable of handling many real world

problems.
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In this chapter it will be shown how the concepts of signal
subspace methods can be extended into conventional steered vector
adaptive arrays in order

e to analyse their behavior and highlight the problems mentioned

above;

e to present a new algorithm capable of receiving a desired signal

in the preéence of unknown non-coherent interferences and,

which at the same time, is:

e capable of providing completely interference
cancellation

e capable of locating the positions of interfering
sources .

o less susceptible to pointing errors and without
the disadvantage of power inversion problems.

Then, the ASPECT algorithm will be slightly modified in order to
provide a weight vector capable for achieving the above aims even if

fully correlated (coherent) signals are involved.

5.1 ARRAY - PROCESSING MODELS

When dealing with broadband signals the array processor can
usually be represented by a transfer function as shown in Figure 5.la.
However, the transfer function is not generally suitable for adaptive
processing and, therefore, discrete time approximations for this model
can be established using tapped delay line (TDL) filters (Figure 5.1b),
where each of the tap weights can be considered to be adjustable. The

TDL, when it is used for narrowband applications, can be reduced to a
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FIGURE —5.1
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narrowband TDL model which ideally can be represented by a single
time delay per channel. This single time delay per channel can then be
approximated by a complex weight in each channel and this last model
is known as the single complex weight model (Figure 5.1c).

Finally, in many array applications the direction of arrival of the
desired signal is known or can be measured. In such a case, the time
delays needed to align the desired signal terms in each channel can be
computed and this function can be modelled by a spatial correctfon
filter as shown in Figure 5.1d. In the following sections, the single
complex weight model (with or without spatial correction filter) is
going to be used.

In the following two sections the basic concepts necessary to
analyse the behaviour of an array, such as array output and arfay
pattern, will be discussed. Since these parameters are well known [HUD-

81] the discussion will be kept brief.

5.2 ARRAY OQUTPUT

Consider the array as shown in Figure 5.2 at some time #. At this
time, the output y(f) of the array will be the contribution of all the
z, (1) ’s weighted by the complex coefficients, wy|k=1,2,3,..N.

That is,

N
y()=2. w.z(?) (5.1)
k=1
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FIGURE—5.2

ARRAY PROCESSING MODEL USED IN THIS CHAPTER
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or in more compact form:
y(H)=2(t) w

1 2()=[z,(2), z5()y-rzy ()]
;(1) is given by equation 2.26
| w=[w,, w,, .., Wy ]]T

Now the average output power from the array is given by:

P, =E v I=Ely() ¥ y(1)]
=E w” o(t).2() u]

: H
e Py =w Rpz w

(5.2)

(5.3)

If the incident signals are uncorrelated, then the output from the

array can be expressed as the sum of powers of the separate sources,

that is,

Poutzpd'-out + PJ—o'ut + Pn—out

where P

J-ou

:Z P, where i=[1,...,M]

n-ou

Equation 5.4 can also be written as follows:

. H
Pd_out:deszred output power =w Rddy

P out= noise output power :_@HRnnLu_

(5.4)

t:total jammer oulpul power :wHRJJQ

Powt = QHRddlu- + QHRJJQ + wiR,w (5.5)
e
M
- H 2 H o2 2 H
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If the output signal to noise plus interference ratio (SNIR) is
defined as the ratio of the wanted signal power to the total unwanted
power then:

H H 2
w R, w Pr(w’S))
_ dd—  _ d\—= =4
SNIR .., =

(5.7)

H M

=1

In the next section the useful concept of array pattern will be

presented.

5.3 ARRAY PATTERN

Array pattern is defined as the output obtained from the array as
a unity power emitting source is moved around in space. Figure 5.3
shows the magnitude of an array pattern for a linear array with all
weights equal to one. It is clear from this figure that the array pattern
has a number of lobes [MA-74]. The largest one is called the main lobe,
while the remaining lobes are known as sidelobes. The main lobe is
generally steered towards the direction of a desired source. As has been
mentioned in Chapter 2, the direction of propagation is represented
generally by a vector called the slowness vector and symbolized by g.

Ideally, the beamformer should permit the passage of signals
propagated with the slowness vector a; and, at the same time, reject all

the other existing signals.
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Let the main beam of the array be steered towards a;. Then the delays

at each sensor of the array are given by:

for k=1,2,3,...,N (5.8)
is the delay at &'™ sensor element with
respect to the centre of the array,

where vector representing the location of the

k% sensor element with respect 1o the

centre of the array,

represents the number of sensors.

Suppose the incident signal is a plane of unity power propagating in a

different direction a then:

z,(H)=exp] juw(t—a’r, | (5.9)

However, the beamformer output y(f) is formed by a weighted version

of the received signal

y(1) :gﬁ:l w2, (1— T},) (5.10)

T
7

N ] T
=5 w.expf jw(i+ay ry—a
k=1
=3 w.ezp]—jk—ky)" 1] . exp] jw 1]
k—1

= g(k—ko)-ezpljw 1]

N
where g(k)= Y wy.ezp —jﬁT_tk]]: array pattern (5.11)
k=1
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Fquation 5.11 shows that the array pattern is essentially the Fourier
Transform of the weighting function wy, taking into account the
position r; of the sensors of the array.
The term g(k—k,) indicates that the array has steered its main lobe in
a direction parallel to _gO:k_wO, thus attenuating any plane wave
travelling in direction g:‘% different from g,. The objective of adaptive
arrays located in an environment of spatially distributed emitters can
be said to be the adjustment of the array pattern in such a way as to
receive a desired directional signal attenuating the remaining signals as
much as possible.

A more general equation for the array pattern can obtained when
employing the concepts presented in Chapter 2, and in particular from
the use of Fgquation 2.18. If this is done then, in compact form, the

array pattern can be represented as follows:

9(k;)=w" S, (5.12)
where S; ts the vector §l~ of Equation 2.18.

Figure 5.4 shows the magnitude of a planar array with all the weights

equal to unity.
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54 OPTIMUM SOLUTIONS AND PROBLEMS OF STEERED
VECTOR ADAPTIVE ARRAYS

Without loss of generality, the assumption that the incident
signals are narrowband is employed in this chapter. This assumption
leads to the array model shown Figure 5.2 with N sensors located in a
known geometry. In such a case, the task of the adaptive processor is
the selection of appropriate complex weights w (we o ) in order to
receive the desired signal as well as possible according to some
performance criteria and, at the same time, to suppress any interfering
source as much as possible. It is important to note here that the
different performance measures converge towards the same steady state
solution, which is known as Wiener-Hopf solution [HUD-81], [MON-80].
For instance, in order to obtain maximum SNIR at the output of a
steered vector adaptive array the optimum steady state weights should

be given by the Wiener-Hopf vector:

Wopt =(data covariance matriz) ~ .(steering vector) (5.13)
where, as has been shown in previous sections, the covariance matrix is
given by Fquation 2.21 and where the steered vector adaptive arrays use
as their steering vector the known SPV of the desired signal. That is

Us = q.8; where q=scalar (5.14)

However, the major drawbacks associated with the use of Equation 5.13

are:
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1. the power inversion of the desired signal, which
results in the cancellation of the desired signal
when it has high power;

2. the degraded performance of the array when
pointing errors occur ;

3. The reduction of the output SNIR when the
number of interferences increases;

4. the passage of interferences to the output of the
array when (i) their power is compared to noise
(i.e. low power) (i:) they have high power but
are located close together in space (iii) the
angular separation between some of them and
the beam direction is small. Then an
immediate consequence is the drop of the
SNIR . 4.

The modified Applebaum adaptive array [GUP-84] overcomes the
first drawback and is robust in respect of the second. This improvement
on performance in the modified Applebaum process is achieved by using
a filter to remm}e the desired signal from the construction of the

covariance matrix so that:
o1
Wopt = Rn+J.U5 5.15

Let us call Equation 5.15 the “modified” Wiener-Hopf. Although
Equations 5.13 and 5.15 appear to be completely different, this is not in
fact the case. It can be shown [MON-80] that they differ only by a
scalar factor and, therefore, these two weights offer identical maximum
SNIR even though they have a number of different effects on the
process.

However, both Equations 5.13 and 5.15 always allow interference
to pass at the output of an array of sensors, thus contaminating the

desired signal, as will be shown analytically in the next section. For this
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reason, the weight-vectors provided by these equations are not
appropriate for complete interference cancellation. The aim of the next
section will be concentrated on highlighting the above problems by
using stgnal subspace techniques instead of conventional techniques. The
considerations of the following section result in a new algorithm which

extends the signal subspace concepts to steered vector adaptive arrays.

5.5 SOLUTIONS FOR COMPLETE INTERF. CANCELLATION

Consider a N-dimensional observation space H of the data ,
covariance matrix Ry, and let §d,_5_'1, ..... Syrw be elements of this
space. As was mentioned in a previous chapter, this space can be
decomposed into two subspaces: the signal subspace Hg with

dim{Hg]=M+1 and the noise subspace Hy, with dim[Hy]=N-M-1

H; 1s spanned by ﬁd,ﬁl,....,ﬁM
or equivalently by the M+1 eigenvectors of
Rzz which correspond to ils M+1 largest
eigenvalues (i.e colums of E;)

H,, is spanned by remaining N-M-1 eigenvectors

of Rz (i.e colums of En)

It is clear (see Figure 5.5) that the noise subspace Hjp is the
complement of the signal subspace Hg i.e. H=Hg@®Hy; where ® means
direct sum.

Thus, consider the eigen-decomposition of Rzz, that is:
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FIGURE-5.5

DECOMPOSITION OF THE SUBSPACE SPANNED BY THE COLUMNS OF
DATA COVARIANCE MATRIX WHEN THE DESIRED SIGNAL IS PRESENT

belong to the same subspace
(SIGNAL SUBSPACE - Hg)

(NOISE SUBSPACE - HN)

L[ Vst Ymee, 7 |!N—1]
(dim=N-M-1)

Note : L[] means 'spanned by ..."

—171-



Rzz = ( E E,,) : Y ( E, En)” (5.16)

L. -

where E; is an Nx(M+1) matrix, E, an NX(N-M-1) matrix, | an NxN

matrix;
and _ _
1 T
Y L
N (5.17)
Jl o o
L i
—M+1—
——— N —_———

Thus, the decomposition shown in Figure 5.5 has been performed.
The optimum vector, as this results from FEquations 5.13 and 5.16, is

given by:

.4

n

This can be rewritten in the following form:

M+1 .4

wopy= ), hPp Us+ Qe{g (5.19)
i=1 st n

l.=the " diagonal element of(l).,+0'2.l)"1

where E,=the " column of E,

P, =Projection operator of the subspace spanned by £,

—St

Thus, by using last equation the optimum Wiener-Hopf solution can be
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redefined as:

Consider the vectors which result from the projection
of the steered vector on to each eigenveclor of the
data covariance matriz and weighted by the
corresponding eigenvalue. The summation of those
vectors provides the Wiener- Hopf soluiion.

By using Eguation-5.6, the output power can be expressed as:

M
H 2 H 2 2 H
Poys = Pd'(l”-opt Sp° + X Pz"(—z-H-Opt 5)° +o Lopt Lopt

=1
= Pd—O’ui + PJ"OUt + Pn-O'ui 5.20
where
— H 2 g\ —1 H 2
Pd.oui“‘Pd°{_Qs -Es.(D,—l-o .|) E, ._s_d} (5.21)
S H 2 —1 H 2
P rout=2 i {07 Eo(Doto?h) EA 5 (5.22)
Pn_out:az._UsH.Es.<D,+02.I)—2.E,H._U_3 o 2.0, B Us
(5.23)

7

In the absence of any jamming signals P Jout="" In addition D, and I
become scalars and equal to P d and 1 respectively. Then the output

power is given by:

s g .S,0°  , UsPg Us

=P, . 5.24)
oul d HPd + 0,2]}2 +0o [Pd + 0_2]2 (

pP
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where the first term in the last equation is the desired signal (P dout)
at the output of the array, while the second term is the the oﬁtput noise

(P out) @nd where
_U_S:q.ﬁd, g=scalar

In addition E; (which in this case is a vector) and S g belong to the

same subspace (a line); which means that

Therefore

y-4
H_U-S -'S.d]] 2 . 2 _QSH_QS

ol =8 =8 5.26
[[Pd—}-oz]]z_r [Pd+02]2 (5.26)

Pout = Pd'

From the last equation it is clear that desired output power is degraded
with increased desired signal power Pd at the input of the array (i.e.
power inversion). In addition, the output SNR becomes:

P P
SNR —Udi-(ﬁdH-ﬁd) = SNR, lI$,I’= sz—./v 5.27

out™—

which is the maximum SNR.
However, in the presence of pointing errors, Es and S J do not belong
to the same one dimensional subspace and Egquation 5.25 is not valid;

That is,

Pg -S,#5, (5.28)

—174—



and Fquations-5.26 and 5.27 are not true. In this case, the output power
of the desired signal in Fquation 5.24 decreases. This, in conjunction
with the fact that all the terms which have the “delete line” in
Equations 5.18 5.19 and 5.23 are not zero (and so they contribute more
noise terms at the output of the array), may result in serious
undesirable effects on the output SNR.

It is clear from FEquation 5.22 that when the interference sources
are present the contribution of the '" interference to the output of the
array 1is given by:

P = P {QSH.ES.(DS+0—2.u)"1.EsH.§,.}2 (5.29)
Therefore it follows that the performance of the system will deteriorate
as the number of interferences increases so that there are more terms of
the form shown in Fquation 5.29 which contribute to the output.

Let us next examine, in a similar fashion to the above discussion,
the MODIFIED WIENER-HOPF equation (FEquation 5.15).

In this case the decomposition of the observation space H is as shown in

Figure 5.6 where

Hg is spanned by Si,.....Sy; or equivalently by
the M eigenvectors of R, ; which
correspond to its M largest eigenvalues (i.e.
columns of Eg)

H, is spanned by remaining N-M eigenveclors

of R,y

Thus, by decomposing R, , ;, like the decomposition of Equation 5.16,
it is implied that
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FIGURE-5.6

DECOMPOSITION OF THE SPACE SPANNED BY THE COLUMNS OF
DATA COVARIANCE MATRIX WHEN THE DESIRED SIGNAL IS NOT PRESENT
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D, O

Ry, =( E En). 0 o +o (EE) (530

but in this case E,, D, and E, are different from those of Equation 5.16
and the dimensionalities are NxM, MXM and NX(N-M), respectively,
while o is the variance of the noise the same in both cases.

The optimum weight will be given by a similar equation to that of

Equation 5.18. That is,
Wopt= Ee (Dt o 1) TLEH Uy 4072 PE U (5.31)
where now the term 0—2-PEn-lls #0.

Following the same analysis as with Wiener-Hopf, the output powers

for the desired signal, interferences and noise will be:

Py =Py {QSH.ES.(DS+02.I)_1.E3H.§d }2 (5.32)
P J_out:}ﬁfp,.. { U .E,.(D,+az.l)—1.E,H .Q,.}2 (5.33)
i=1 -

— —2 o H
Pr =02 U Eo(Dit o )T LB U+ o T2 P U
(5.34)

And, in the absence of any interferences, the output powers are given

by:
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P

__d H 2
Py =3 (Ug .PEn.gd) (5.35)
PJ-out:O (5.36)

—2
Poowi= 0 *UsPg Us (5.37)

However, because now E, spans the whole observation space, this
means that the projection operator applied to any vector belonging to

that space leaves it unchanged, that is

PEn'_U.S:_Qs (5.39)
Therefore Hg
Us™ 3 sl 2
Po= Pyl ——72——]] 2 4 ol -—;4 (5.40)
and

SNIR,,,,=SNR

out™

P P
H d
_fg.(_gd S = SNR, .|I8,II’= N~ (5.41)

It is obvious from Fquaiton 5.40 that now the desired output at the
output of the array is proportional to that at the input, so the power
inversion problem is not present.

In addition, in this case, Fquaiion 5.38 is always true, even if
pointing errors occur, in contrast to Equation 5.25 which is not valid in
the case of pointing errors and which is the cause of the reduction of the
SNIR at the output of the array. Thus, the “modified” Wiener-Hopf
out-performs to the “full” Wiener-Hopf.

On the basis of the above discussion it is clear that the optimum
weights for maximization of SNIR always allows interferences to pass to

the output of the array.
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The question is how can the interference contribution be
eliminated from the output of the array i.e. how can complete
cancellation of interferences be achieved. An appropriate solution for
complete interference cancellation which is less susceptible to pointing
errors and does not suffer from power inversion problems could be

provided by the following Theorem.

THEOREM 4. :

a) The eigenvector corresponding to the mazimum eigenvalue of the
rank-1 matriz y)_.yH where w 1is the projection of the optimum
Wiener-Hopf solutions Rzz'Us or R;_I_IJ.QS on to the subspace
spanned by the eigenvectors corresponding to the minimum

etgenvalue of the matriz

N
. . : H H
Rm—m&n{zl l—i—lezgi(l}?m—ezgmin(Rm).l—a.ﬁd.ﬁd )|} S48
1=
eig; 70 (5.42)
provides a weight-vector appropriate for complete cancellation of
unknown wnterferences.

b) the process maintains the ouilput noise power equal to that at the

imnput.

PROOF :

By minimizing the function:

m&n{i 1+|ez’g,-(Rm-ez'gm,-n(Rm).l—a._.S_'d.ﬁg)l} (5.43)
i=1

e1g; 70
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the power of the desired signal becomes known. Thus, Equation 5.42 is
the data covariance matrix where the desired signal effects have been
removed.

Let w.

Winterf.cancel be the eigenvector which corresponds to the maximum

eigenvalue of z__u._zp_H. Then

=e1 max(_'zg.wH)

l—ufinterf. cancel

w

w

P, Lopt

H
\Jl"-opt'PEn’PEn'—wopt

P w
— —En"opl (5.44)

H
J';Opt'PEn"‘lQOPt

Cousider the observation space H dim[H)=N of the covariance matrix
R, ; which is decomposed as shown in Figure 5.6. Now the subspace
Hj spanned by S,,...,S;; is also spanned by the M eigenvectors of R, , ;
corresponding to its M largest eigenvalues while the remaining N-M
eigenvectors span the subspace Hj‘L.

Let PEn be the projection operator of the subspace Hj'L which is
spanned by £ ., i=M+1,...,N eigen-vectors of Rn+J'

Then, the projection of the optimum Wiener-Hopf solution given by

FEquation 5.15 on to the noise subspace is given by:
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PE Wop = PEn.{E,.(D,+az.l)_1.E,H.L]s +a_2.PEn._[_]3}
_ 1 :
=3 ‘PEn'PEn’QS (using Lemma-2)

= —5Pg,-Ls (5.45)

Equation 5.45 in conjunction with FEguation 5.44, and the idempotent
property of projection operator PEn:PEn'PEn (Lemma-2) gives:

Pg .Us
winte'rf. cancel = 5
\J_UJ P .U
n

(5.46)

The output jammer power of the array using as weighting vector, the

vector given by Equation 5.46, will be:

p _ Y g2
J-out — .21 i'(-wintcrf. canccl'-—i)
=

Sl (e 5y
=N A
However,
PEn‘ﬁizg (5.47)
Therefore, _
P out=0 (5.48)

This proves part(a) of the Theorem. Part(b) can be proved by using
Equation 5.6. Then,

2 H _ —_
Pn—out =0 -Winterf cancelWinterf cancel —
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=¢ (5.49)

It can easily be proved (using Theorem 2.12 in [LIN-78]) that
—%ntcﬁ.canceleﬂj given by Fquation-5.27 is the best approximation to

Now, by using Theorem 4, Fquation 5.6 becomes:

H
P Py 8,7 PE .S) + ol (5.50)

out —

Thus, the signal-to-noise power ratio at the array output will be:

out o2 =

SNR fd—sHP S 5.51
d TE,2d (6.51)

However, the angle between the H d and Hj“[‘ subspaces is

.]s Ap_ .S
cosf = e HE" d (5.52)
\J—S-d oF

Therefore, Equation 5.51 is equivalent to:

P .
SNR do (5,7.5,).cos %6 (5.53)

out o2

where O=angle belween Ha’ and HJ‘L subspaces

In the absence of interferences, E, spans the whole observation space;
which implies that cosf=1 and the provided SNR  , is equivalent to

modified Wiener-Hopf SNR  , (see Equation 5.41).
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Fquation 5.53 shows that if there i1s an interference very close to the
desired signal direction then #-90°, which implies that the output SNR
deteriorates seriously. However, this undesirable property is not
restricted to the proposed processor. The Wiener-Hopf processor (and all
other known processes) also suffers from this restriction when
interferences are located close to the desired signal direction.

It is important to point out that the minimization problem
presented by Fquation 5.42 has a global minimum which is positive
(and equal to the power of the desired signal) if the desired signal is
present, and zero if it is absent. This is illustrated in Figure 5.7 for a
signal environment where the desired signal of power 0.7 is present and

then for the same environment when 1t is absent.
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FIGURE-5.7

COST FUNCTION VARIATION GIVEN BY EQUATION 5.43
FOR THE ARRAY ENVIRONMENT PROVIDED AT THE BOTTOM OF THE PAGE

(a linear array of 5 isotropic elements is used)
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5.7 PROPOSED ALGORITHM

The proposed algorithm can be presented as a series of steps as

follows:

STEP-1:
STEP-2:

STEP-3:

STEP-4:

STEP-5:

STEP-6:

STEP-7:

Estimate the data covariance matrix

Find the minimum eigenvalue of this matrix

Estimate the following matrix:

Ru—m&'n{Z l—l—e.z'gi(Rm—- ez'gmin(RM).l—a._.Sd.ﬁg)}.ﬁd.ﬁg
eig; 70

Perform eigen-decomposition of the matrix estimated in

step-3:

Find the projection operator of the space spanned by the

eigenvectors corresponding to the minimum eigenvalue of

the decomposition performed in the previous step.

Apply the above operator to the steering vector. This gives

a new vector. Divide this vector by its magnitude. This

provides the w.

—interf.cancel”

Weight the inputs of the array with w,

nierf.cancel

The minimization problem involved in STEP-3 can be performed using

any line search method technique. In the previous section (Figure 5.7)

this was performed using simplex Nelder and Mead minimization

technique [WAL-75] with accuracy equal to epsilon of the computer.
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5.8 ASPECT-WEIGHT-VECTOR

Equation-5.46 in the previous section, provides a weight-vector
appropriate for complete interference cancellation, but only when the
interference sources are uncorrelated with the desired signal.

It is not difficult to see, however, that when some interferences are
correlated with each other, rather than with the desired signal, then
the use of Egquation 5.46 will suppress them completely. However it
does not provide deep nulls to each of the correlated interference
locations. Instead, Equation-5.46 provides one null in a location which
results from a linear combination of interference locations.

The limitations of FEguation-5.46 can be overcofne by using
ASPECT. The ASPECT algorithm can provide a weight-vector which
works even in a fully correlated signal environment. The reason is that
ASPECT provides the necessary information with respect to
interference subspace and this is independent of any correlation
between sources. In addition, this vector does not suffer from power
inversion problems or pointing errors therefore there is no need for
filtering the desired.:signal effects when forming the covariance matrix.
Of course the weight-vector should be orthogonal to the interference
subspace Hj and, by looking at Figure-5.5, it is not difficult to find a
vector which is orthogonal to both interference and noise subspace (see
Figure-5.8).

In order to provide a weight-vector for complete interference cancel-

lation the following step (as STEP-5a.2c.1) should be added to the

ASPECT algorithm.
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..........

5a.2¢c

5a.2c.1 ® let S:[_.Sd,Sin] where ~'Sd is the column of

5a.2d

$ which is closer to the steering direction.
e estimate the projection operator Qi'rf
e estimate the weight-vector LU-ASPECT:C-I‘Qirf'—Sd

e multiply input of the array by w,eppor

H
o update P¢=1—Q,, —w,sppoT-WaspECT
where ¢ = ﬁdH-Q;Tf-ﬁd

Q;,j=Projection operator to the subspace H]‘L
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FIGURE—-5.8

ASPECT WEIGHT —VECTOR

belong to the same subspace
(SIGNAL SUBSPACE - Hg )
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L[S, 8, 5,1 ASPECT
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6.1 COMPUTER EXPERIMENTS

In order to demonstrate the performance of the Winterf.cancel and
W, eppcr Processor, a set of computer simulations was carried out
using an APRICOT XEN-i 386/30 with 80387 co-processor, and for
illustration purposes, a uniform linear array of five isotropic elements
with interelement spacing of%‘ was used.
The signal environment was synthesized as follows:

o the desired signal was located at 90° degrees and was set to
have unity power;

o three jammers were assumed present: the first fixed at 30°, the
second at 60° and the third at 100°. All three were taken to
have unity power;

e thermal and isotropic noise was assumed present at each
element. Two power levels namely 0.001 (—30dB) and then 0.1
(—10dB) were considered.

The performance of the W, e,f concer PTOCESSOr Was also compared with
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that of the Wiener-Hopf (given by FEgquation 5.15). The results are

shown in TABLE-1 indicating that indeed the w.

=interf.cancel processor

does cancel the unknown interferences completely. Thus, the array
pattern which is shown in Figure 6.1 presents very deep nulls at the
locations of the unknown interferences while it provides a free way to
the desired signal. By considering that each deep null provides the
location of an interference, it can be seen that these deep nulls are easily
distinguishable from the rest of the nulls of the array pattern and they
provide unbiased estimates of the unknown interference locations while
the remaining nulls correspond to pseudo interferences. The same points
are illustrated in Figure 6.2 where the noise level has been increased
from —30 to —10dB.

A criterion for comparing algorithms is with respect to the output
SNIR. Thus, in the above simulation studies the output SNIR is
examined for two processors:

e the processor based on Fquation 5.46,

e a Wiener-Hopf processor, based on Equation 5.15.

The results of the examination are shown in Figure 6.3 (for noise at
—30dB), and in Figure 6.4 (for noise at —10dB) where the third
interference is with variable location (0°,180°). It can be concluded from
Figures 6.3 and 6.4 that the output SNIR of the Winterf.cancel PTOCESSOT
for most of the directions, is almost identical to that of the Wiener-
Hopf processor which provides the optimum SNIR.

Let next consider the more complicated situation where the first
interference has been moved close to the second, that is, their directions
are now assumed to be at 60° and 62° azimuth angles say. Figure-6.5
(for noise at —30dB), and Figure 6.6 (for noise at —10dB) show the

results and illustrate the above points once again. However, these
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TABLE-1

WIENER PROCESSOR

LOCATION I/P I/P(dB) O/P(dB)
desired (0,90) 1 0 67.376
interf-1 (0,30) 1 0 -30.320
interf-2 (0,60) 1 0 -24.659
interf-3 (0,100) 1 0 -28.414
noise — 0.001 -30 33.687
SNIR — 0.33322 -4.7727 33.688
SNR — -10000 30 33.689

EQUATION-5.46 PROCESSOR

LOCATION /P O/P(dB)
desired (0,90) 1 3.6870
interf-1 (0,30) 1 -315.62
interf-2 (0,60) 1 -313.37
interf-3 (0,100) 1 -310.73
noise —_ 0.001 -30
SNIR — 0.33322 33.687
SNR — 10000 33.687
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FIGURE-6.1

ARRAY PATTERNS for EQUATION -5.46 and WIENER - HOPF PROCESSORS
(UNCORRELATED SIGNALS with NOISE LEVEL at —30dB)

(Alinear array of 5 isotropic uniformly distributed elements is used)

directions: desired signal at 90 —degrees;
jammers at 30,60 and 100 degrees;

Array Pattern
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FIGURE-6.2

ARRAY PATTERNS for EQUATION-5.46 and WIENER — HOPF PROCESSORS
(UNCORRELATED SIGNALS with NOISE LEVEL at —10dB)

(Alinear array of § isotropic uniformly distributed elements is used)

directions: desired signal at 90 —degrees;
jammers at 30,60 and 100 degrees;

Array Pattern
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FIGURE-6.3

OUTPUT SNIR versus AZIMUTH ANGLE FOR EQUATION —5.46 and WIENER — HOPF PROCESSOR
when JAMMER N0.3 IS MOVED FROM 0 to 180 DEGREES
with noise level at —30dB

(Alinear array of & isotropic uniformly distributed elements is used)
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FIGURE—-6.4

OUTPUT SNIR versus AZIMUTH ANGLE FOR EQUATION —5.46 and WIENER —HOPF PROCESSOR

when JAMMER NO.3 IS MOVED FROM 0 to 180 DEGREES
with noise level at —10dB

(Alinear array of 5 isotropic uniformly distributed elements is used)

Jammer—No.1l: 30-degrees; Jammer—No.2: 60—degrees; Jammer No.3: variable
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FIGURE-6.5

ARRAY PATTERNS for EQUATION-5.46 and WIENER ~HOPF PROCESSORS
(UNCORRELATED SIGNALS with NOISE LEVEL at -30dB)

(Alinear array of 5 isotropic uniformly distributed elements is used)

directions: desired signal at 90 —degrees;
jammers at 60,62 and 100 degrees;

Array Pattern

100 , : g . ‘ , ‘
50 e D — I
: \\\ ’/I El:. \\ll
0 i : |
N \r |
m
© =50 : ; .
1
g
s —100 -
&
>
©
E —~150F} ]
¢
—~200 | : B
N | I I :Wiener—~Processor
—250 v ; — :Equ.5.4-6~ProceE;ssor
~300 A E ) E §
0 20 40 60 80 100 120 140 160 180
Azimuth Angle — degrees
interelement spacing=0.5 wave —lengths
@  represents an array element
z v Xy :represents desired source
t ’ B : represents a jammer
< - X

POWERTABLE.:

desired signal:1.0
Jammer No.1 :1.0
Jammer No.2 :1.0
Jammer No.3 :1.0

—196—



Array Gain -~ dB

FIGURE-6.6

ARRAY PATTERNS for EQUATION-5.46 and WIENER - HOPF PROCESSORS
(UNCORRELATED SIGNALS with NOISE LEVEL at —10dB)

(Alinear array of 5 isotropic uniformly distributed elements is used)

directions: desired signal at 90 —degrees;
jammers at 60,62 and 100 degrees;

Array Pattern
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figures also show an additional interesting characteristic. That is, the
resolving power of the Winterf.cancel Processor as compared with that of
the Wiener-Hopf. By using the Wiener-Hopf processor it is not possible
to distinquish the two interfering sources whereas it is with the
processor based on w; , erf.cancel” The corresponding results with respect
to SNIR are shown in Figures 6.7 and 6.8

It is also of interest to compare the proposed processor with that
of Citron ahd Kailath processor [CIT-84]. The Citron-Kailath processor
also uses the ideas of high resolution techniques in order to provide the
appropriate weight. However, their technique is based on subtracting
signals between adjacent sensors and the transformation applied means
effectively a reduction in the dimensionality of the observation space by
one. Figure 6.9 shows that the proposed processor based on FEgquation
5.46 is significantly superior to that of Citron-Kailath with respect to:

e output SNIR and

e that a jammer has to be closer to the direction of the

desired source before it leads to a deterioration in
system performance.

This superiority increases as the number of present interference
increases. In addition comparison has been made with respect to
pointing error effects in the Wiener-Hopf (“modified” and “full”
version), Wi serfe.cancel and Citron-Kailath processor. Figure 6.10 and
Figure 6.11 (for —30db and —10db noise power respectively) show
that the proposed processor is more susceptible to pointing errors than
the “modified” Wiener-Hopf solution, but is superior to both the
Citron-Kailath and “full” Wiener-Hopf processors. It is important to
note the Citron-Kailath behavior to pointing errors when the noise is

—10dB; it is obviously inferior even to the “full” Wiener-Hopf
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processor.
It is important to point out that in an environment where there
are no interfering sources present, that is, the only source present is the
desired directional signal, the Citron-Kailath processor provides zero
weight vector and so there is complete signal nulling and the output
SNR becomes zero. This is a disturbing asymptotic result. The proposed

weight w. however, overcomes this problem and it provides a

W interf.cancel?
solution which is equivalent to Wiener-Hopf solution. That is, the
weight vector is co-linear with the steered vector. Figure 6.12 presents
the results for one such situation.

Next, consider the ASPECT algorithm with the modification
presented in the Secfion 5.8. and examine the behaviour of the
ASPECT weight processor in a situation involving uncorrelated sources.
Table-2 and Figures 6.13 show the reéults. The situation is considered
in which two interferences are correlated (Figure 6.14) and then the
situation where these two interfering sources are both fully correlated
with the desired signal (see Figures 6.15). ASPECT even in this situa-
tion provides satisfactory results. Figure 6.16 illustrates the behavior of

Wiener processor and FEquation 5.46 for the same environment. The

superiority of ASPECT is clear by comparing the last two figures.
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OUTPUT SNIR - dB

FIGURE—-6.7

OUTPUT SNIR versus AZIMUTH ANGLE FOR EQUATION — 5,46 and WIENER — HOPF PROCESSOR
when JAMMER No.3 IS MOVED FROM 0 to 180 DEGREES.

with noise level at —30dB

(Alinear array of § isotropic uniformly distributed elements is used)
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FIGURE-6.8

OUTPUT SNIR versus AZIMUTH ANGLE FOR EQUATION — 5.46 and WIENER — HOPF PROCESSOR
when JAMMER No.3 IS MOVED FROM 0 to 180 DEGREES.

with noise level at — 10dB

(Alinear array of 5 isotropic uniformly distriburted elements is used)

Jammer—No.1: 62—-degrees; Jammer—No.2: 60~degrees; Jammer No.3: variable
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OUTPUT SNIR - dB

FIGURE-6.9

1. WIENER — HOPF PROCESSOR
OUTPUT SNIR versus AZIMUTH ANGLE FOR: | o EQUATION —5.46 PROCESSOR and

3. CITRON — KAILATH PROCESSOR
when JAMMER No.3 IS MOVED FROM 0 to 180 DEGREES. Noise level at — 10dB.

(Alinear array of 5 isotropic uniformly distributed elsments is used)

Jammer—~No.1: 62—degrees; Jammer—No.2: 60—degrees; Jamnmer No.3: variable
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FIGURE-6.10

OUTPUT SNIR when POINTING ERRORS OCCUR with DESIRED SIGNAL at 90 - DEGREES

OUTPUT SNIR - dB

1. modified WIENER — HOPF PROCESSOR
2, EQUATION -5.46 PROCESSOR

FOR:
3. CITRON —KAILATH PROCESSOR and

4. full WIENER —HOPF PROCESSOR

(Alinear array of 5 isotropic uniformly distributed elements is used)

Noise level at — 30dB.

Jammer—No.1: 30-degrees; Jammer—No.2: 60—degrees; Steered vector:variable
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OUTPUT SNIR - dB

FIGURE—6.11

OUTPUT SNIR when POINTING ERRORS OCCUR with DESIRED SIGNAL at 90 —- DEGREES
1. modified WIENER —HOPF PROCESSOR

Jammer—No.1: 30-degrees; Jammer~No.2: 60—degrees; Steered vector:variable

FOR:

2. EQUATION ~5.46 PROCESSOR
3. CITRON - KAILATH PROCESSOR and

' 4. full WIENER — HOPF PROCESSOR
(Alinear array of 5 isotropic uniformly distributed elements is used)

Noise level at — 10dB.
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FIGURE-6.12

SIGNAL ENVIRONMENT WITH NO INTERFERENCE PRESENT
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TABLE-2

ASPECT-WEIGHT PROCESSOR

LOCATION /P 1/P(dB) o/pP O/P(dB)
desired (0,90) 1 0 6.8739 8.3720
interf-1 (0,40) 1 0 0.0000 -348.4475
interf-2 (0,50) 1 0 0.0000 -347.2566
noise — 0.1 -10 0.1 -10
SNIR — 0.4762 -3.2222 68.7386 18.3720
SNR —_ 10 10 68.7386 18.3720

—206-~




— iterations

FIGURE-6.13
ASPECT - WEIGHT - VECTOR FOR UNCORRELATED SOURCES

one desired source in the presence of two interfering sources

initial interf. directions :(0,15),(0,65),(0,165)
initial pointing direction:(0,95)

final interf. directions  :(0,40),(0,50)

final pointing direction :(0,90)
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— iterations

FIGURE—6.14

ASPECT —WEIGHT — VECTOR FOR TWO FULLY CORRELATED INTERFERING SOURCES
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— jterations

FIGURE—-6.15

ASPECT —WEIGHT - VECTOR FOR DESIRED SIGNAL FULLY CORRELATED WITHTWO
INTERFERING SOURCES

one desired source in the presence of two interfering sources
initial interf, directions :(0,15),(0,65),(0,165)
initial pointing direction:(0,95)
final interf. directions  :(0,40),(0,50)
final pointing direction :(0,80)

St

J1 INITIAL

INITIAL Jg
NITIAL
J3INITIAL

R 5 ////////
V0 ’/4 TN
7 //////// /// // ///////// .
. /7, h ’” ’//,//////f/f,/fz/ ////// /2{// %7 /{////j/'/
//;/¢7//////////,,/ 7 ////4/ i /,/ /,l/

/////7;9/ //// 7 / // 77 /f,/ /,’/’//’//Z///;/ ,/,'4/

7 S ///,,,,,, /‘f/////// /‘,1 4/////7////// 2 ////////,f//,

5/ . ’,’/,’,4,0'0 i % 255//5’/’//”/

L o ; / 7 AN T

A, S 7 i ’/////I/ "ll);j

- v f/’/’!!/ ’f’ . .
0 ///////,, L 5
. ¢///// s A
S 0 257 ’
i b e s /
275 ’/’ 2, i 2 ///’/’”/////// ’//”
f/////////// ’«//1,/ ), /4// 7 //////5// /// ,{,/,;////// /';// %
20 i Y
//// LA T /’ s
I/////////I/////////

""TII”'

INITIAL INITIAL INITIAL

contour plot

30 T
or : 4
2 K}
10
0 20 40 60 100 120 140 160 180
Jo azimuth ani degrees
FINAL TeinaL

@ : denotes an array element
Z Y E :denotes a source
f interelement spacing =0.5 wave lengths

/.

» X

POWERTABLE :
Source S1 :1.0

Interfer. J1:1.0 & o rrel.
Interfer J2:1.0

—209—



FIGURE—-6.16
WIENER PROCESSOR AND EQU. 5.46 PROCESSOR

FOR DESIRED SIGNAL FULLY CORRELATED WITH TWO INTERFERING SOURCES

one desired source in the presence of two interfering sources

initial interf. directions :(0,15),(0,65),(0,165)
initial pointing dirsction:(0,95)

final interf. directions  :(0,40),(0,50)

final pointing direction :(0,90)
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6.2 CONCLUBING REMARKS

On the basis of the above discussion, it can be seen that the

proposed processor accomplishes the following tasks:

provides complete interference cancellation with the output of
the array composed from the desired signai and therrnal- noise;
provides the number of interferences which exist in the array
environment;

provides unbiased estimates of the directions of the arrivals of
the interferences thus, if desired, allowing the steering of the
main lobe to one of these interferences which then may become
the next desired signal;

can be implemented easily -as the eigendecomposition is
nowadays feasible with, for example, wavefront VLSI array
processors [e.g. KUN-85];

provides reduced subsceptibility to pointing errors and noise
level;

does not suffer from power inversion problem;

provides the best approximation of the Wiener-Hopf soluti_qns
in the complement of the subspace spanned by the interfefences
in the case of absence of interferences, instead of providing
complete signal nulling, provides solution equivalent to Wiener-
Hopf optimum solutions.

The process is independent of the presence of the desired signal

effects.

The above are achieved in some cases at the expense of slight reduction

in SNIR.
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7.1 SUMMARY OF CONTRIBUTIONS

Existing Signal Subspace algorithms which are designed to locate
signals need to have a priori knowledge of the number of signals
present, in order to estimate their directions of arrival. These
algorithms- - fail if some of the incident signals are fully correlated
(coherent). Also, algorithms used to estimate the number of signals fail
when correlated signals are involved.

The first part of the research reported on in this thesis has been
devoted to the study of new approaches for overcoming the problem
just referred to. This has been done by developing a new algorithm
called ASPECT which detects the number of signals and estimates their
directions with the detection and estimation being carried out in
parallel. This algorithm works for both correlated and uncorrelated
situations and its operation is based mainly on mapping the array
manifold on to an error surface and then searching that surface for a
minimum. The new algorithm has been presented (see Section-3.3) in a
form which is appropriate for VLSI implementation or for imple-

mentation which can be carried out using a parallel computer (for
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instance DAP-ICL, that is an SIMD machine). Important points and
facts relating to ASPECT have been summarized in the three Theorems
contained in the Section 3.2. Computer simulation results (C’ﬁapter-4)
have supported the theory and have shown the limitations of ASPECT.
Summarising, it can be said that the precision of the results provided
by ASPECT is altered when

e the angle separation between sources is small,

e the sources are correlated,

e the sources are of widely differing power levels,

e the observation time is small.

The problem is further complicated by the parallel existence of more
than one of the above cases.

In addition, the limitations of the optimization method used for
minimizing the ASPECT cost function influence the rate of convergence
of ASPECT.

Finally, the concepts of signal subspace methods have been
extended to beamformer problem (Chapter-5) in order to analyse the
behavior of an array and, in addition, to present two new weight-vector
processors (see Theorem-4 in Section 5.5 and modified ASPECT in
Section 5.8) which are capable of receiving a desired signal in the
presence of unknown interferences and, at the same time, to provide:

o complete interference cancellation (that is, effectively zero

interference at the output of the array)

e information about the interference locations
offering less susceptibility to pointing errors and free of power inversion
problems. It is important to point out that in the case of ASPECT the
pointing errors are completely eliminated and it can handle situations

where the desired signal and interferences are fully correlated. In
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addition, the situation where the interferences are turning off, the
proposed processors become identical to the Weiner-Hopf solution.
Computer simulation results presented in Chapter-6 highlight the above
points, supporting the theory.

7.2 SUGGESTIONS FOR FURTHER RESEARCH

The research presented in this thesis can be extended by studying

some of the following points:

e ASPECT performance depends on a minimization problem.
Minimization using neuron-like networks is currently an active
research area (e.g. [RUM-86], [RAS-87]). The integration of
ASPECT with neuron-like networks for handling the source
location and parameter estimation problem would be an intere-
sting area of investigation.

e The application of signal subspace techniques and in particular
ASPECT concepts to dynamic tracking in micro cell mobile
communication systems might be of great research value.

e Futher work can be done in connection with the calculus of the
array manifold. Work in this area might reveal more insights
with respect to resolution, ambiguity and location problem.

e Techniques which take advantages of the correlation between
desired source and interference (instead of cancelling the
interference) may improve the system performance.

e Investigation of the effects of various norm metrics on ASPECT

and the selection of the most optimum one is also an interesting
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research topic.

Extensions of ASPECT to the cases where the sources are inside
" the volume of the array is also an interesting problem.

The development of new techniques (and propably extending
the ASPECT algorithm) for handling signal environments
where the number of sources is greater than the number of
sensors is also important for both source location and
beamformer array processing.

Signal Subspace algorithms are mainly based on the knowledge
and process of the covariance matrix. However, the triple
correlation “knows” more about the signal environment than
does the covariance matrix [LOH-84]. The use of triple
correlation may provide new techniques for the source location
and estimation problem.

High-Resolution techiques cannot compete with the speed of
fast algorithms (not even with a conventional DFT). The direct
updates of the various steps of ASPECT when a rank-1
modification of the covariance matrix is involved, is an

interesting extension of the work presented in this thesis.
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High-Resolution in array processing is taken to be the ability to
distinguish the effects of two equal power sources located close together.
Although the resolving power of an array can usually be improved by
increasing the aperture of the array, this is not, in general, acceptable
and an alternative for a given array aperture is to use High-Resolution
or Superresolution Techniques.

Signal Subspace approache to high resolution involves two main
stages of processing. In the first stage a covariance matrix of the data at
the sensors of the array is formed and in the second stage an
eigenvector decomposition is performed.

When the number of emitters is smaller than the number of
sensors, the determinant of the covariance matrix is equal to zero in the
absence of non-directional sources. This is due to the fact that the

presence of an emitter increases the rank of the covariance matrix by

one.Thus
Tank(Ra:a:)-:M (Al.l)

If, however, in addition to the directional sources there are also non-
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directional sources present then the last equation is not quite true. The

covariance matrix then is given by:
2
szZRSZ’g‘*'O' .I (A1.2)

In that case Ryz has full rank (that is rank(Rzz)=N) and the following

relationship is valid:
rank(lRm;—crz.ﬂ>:M (A1.3)

However, since the presence of noise affects only the diagonal terms of

the Rsz'g covariance that means that

eig;(Rez)=eig;(Ry; )+o” (A1.4)

therefore

eigmin(RZ‘Z‘):Eigmin(stg)+02 (AL.5)

Now since eig,;,(R . )=0 with multiplicity N—M that means

s1g
¢igmin(Raz)=0" (AL6)

with multiplicity N— M also.
Therefore M can be determined by the eigenvalues of the covariance

matrix and more specifically by the multiplicity of its minimum

eigenvalue:
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M=N—(multiplicity of min-eigenvalue) (A1.7)
Now let us consider that the eigendecom‘position has been performed:

(2rA1)  (Z2,2q) e (EMa/\M) (Y_M+1,’\M+1) (lNa)\N) (A1.8)

where (v;,);) represents the i*" eigenvector and eigenvalue of Ryz. Let
M2A> e 2A > A =L =Ay=0? (AL.9)

Then
Raz-2;=2;.3
(Ry;, +o’D.2i=A;.2;

_ 2

stg

It is now clear from FEgquation-Al.9 in conjunction with Equation-A1.10
that the eigenvectors corresponding to the minimum eigenvalue of the

R, will satisfy:

Rsig.gizg Vi€[M+1,...,N]
i.e. Rsig'vnoise: (A1.11)
where vnoise:[ﬂMH’“"’ uy]

That means that these eigenvectors will be orthogonal to the subspace
spanned by the columns of R sig’ and because that subspace includes the
SPVs corresponding to the directional sources, then, these eigenvectors
will be orthogonal to them too.

Thus, for instance, by forming the functional:
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A0)= S6)7.v.v¥ 5(6) (A1.12)

the well known as MuSIC algorithm is established.

Thus, for a linear array where the only parameter of interest is the
azimuth angle, the above equation is evaluated for all SPV correspon-
ding to angles from 0° to 180° and the directions where that equation
becomes zero are the directions of the incident signals (see for instance
Figure-3.1). A better reformulation of the Signal Subspace approach is
to see the source locations as the intersection of the signal subspace with

the set of all possible SPVs (array manifold).
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In Chapter 4 the performance of ASPECT algorithm was

examined via computer simulations studies by using the theoretical (or
known) covariance matrix. In this appendix attention is directed to the
effects of finite averaging on the performance of ASPECT. In that case
the covariance matrix is formed by using Equation 2.32 which has been
presented in Section 2.6.
In order to do this the array model described in the Section 4.2 and
illustrated in Figure 4.1a is used once again. Two signal environments
are considered involving three incident signals where the first and the
second signal constitute a trial pair. The trial pair is located in
positions which provide 10° (for the first environment) and 5° (for the
second environment) angle separation. Thus the directions of the signals
are chosen as follows:

(15°,20°), (15°,30°), (107,90°) - first situation

(15°,20%), (15°,25%), (10°,90°) - second situation
In both situations the trial pair is fully correlated and the observation
time is considered to be 250 sample instances. The results are shown in
Figures A2.1 and A2.2. In addition Figures A2.3 and A2.4 illustrate the
resuits when the theoretical instead of sample covariance matrix is used.
By comparing the above figures it can be concluded that the precision
on the estimation of the angles of plane waves incident to an array of

sensors is altered when the number of samples (observation time) used
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to form the covariance matrix is small. This becomes more serious (see
Figure A2.2) when the small observation time is combined with
environments involving fully correlated sources which are located close
together.

Appendiz 5 illustrates the method used in order to simulate the sample
covariance matrix, while Appendiz-6 presents in a simplified step-form
an example of the results provided by ASPECT MATLAB program for

both theoretical and sampled covariance matrices.

—230--



FIGURE—-A2_1 (Sources No.1 and No.2 are correlated. 250 snapshots)
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This Appendix serves to give the Hessian Matrices and the

gradient vectors of Fquaiion 3.41, 3.42 and 3.43. These equations are

repeated below as follows:

€y = trace{PS.QE.PS.PE}

D
E42=H§k

k=1

€4 = trace{QS.PE}

where ||

(A3.1)

= (43.2)
1

hk-':SCC@k: '—7{'—“—'
Efl PoE,

©,= the angle between E, and
its projection onto the
subspace spanned by the

columns of S.

(A3.3)

By considering Equation-A3.1, its gradient vector with respect to the
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parameter p;, that is V.£,,, is given by:

Vp‘ié‘ll:irace{PS(pi)'QE'PS.PE+ PS.QE.PS(})‘).PE}

(A3.4)
oPg

where PS(pi): ~6—I;—i—

By taking the first derivative of Equation-A3.4 with respect to a

second parameter g ; then:

Vgiquﬁztrace{ PS(piqj)'QE'PS'PE +
+ PS(pi)'QEPS(q]-)‘PE +
+PsQEPs,  PE } (A3.5)

v P 8*Pg
where S(Pﬂj)— 6p,—6qj

On the other hand the elements of the gradient vector of the
scalar function £, in Equation-A3.2 with respect to the parameter p;,

that Vp.€,, is given by:
n pH nt2
Vo €p=— 5 E§ 'PS(pi)‘Ek'hk (A3.6)

If p=¢ then the last equation provides the i** element of the gradient:
vector V&, while if p=¢ then it provides the (i+K)** element of V¢,,
where i€[1,...,K], i€N+ .

By taking the first derivative of the Equation A3.6 with respect to

a second parameter ¢; then:
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2 _ 17 n+2 n
Vias€e== § B Pg, BT — LR P BURLV L,

V,.6..V,.€
—n pH n+2  nf2 Y PiSEV5k
P,q]Ek"' 2° -Ek 'PS(pz ) Ek h - T gk

(A3.7)
It is not difficult to prove then that the elements of the gradient vector

of the cost function £,, are given by:

D D D v
Vpif42:Z {Vp,-fk- I1 51}2542- Z (A3.8)
: E=1 11;11 E=1

while the elements of the Hessian Matrix of the cost function are given

by:

pq,542—2{vp 05k _ﬁ & +vpi£k'§:(vq]'63~ 1ﬁ1 & )}
k=1 o g I j
1F£k
;0;€ Vs
o £ L)
sk

Ex Vp,fk V‘ij‘l? _vpifk V‘IjEk
=Caz kZ_:I{ Ee  Caz & & }
(A3.9)

Finally, the elements of the gradient vector of the scalar cost
function given by Egquation-A3.3 with respect to the parameter p;, that

V€43, are given by:

Vpi£43:—tTaCC{PS(pi).PE} (A3.10)
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and by taking the first derivative of the last equation with respect to a

second parameter ¢ ; then:

V?,iqjﬁ‘,s:—trace{PS(piqj).PE} (A3.11)

Since the gradient vector of any of the three cost functions has the

following form:

where £ 1s any one of €45, €49 0T E43;

therefore if p=¢ then FEquations A3.4, A3.8 and A3.10 provide the ith
element of the gradient vector V¢ while if p=¢ these equations give the
(i+K)** element of V¢, where i€[1,..., K], ieNT.

In addition the Hessian matrix has the following form:

(A3.12)

-
0°¢ 8%¢

89? 892691 ................

o’ 0%

801692 69% ................
sz 82€ 62£ ..........
- o 601601{ 69269[{ .................

d%¢

Doy, T e e

ot 9% o 9%

8018"’1\ ao2a¢1& ........ 6016¢1{ 8¢la¢1{ ........
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This gives the necessary hint that Fquations-A3.7, A3.9 and A3.11
provide the elements of Hessian Matrix V¢ as follows:
o if p=6 and ¢=¢ then they provide the (i,5)** element,
e if p=¢ and ¢=¢ then they provide the (z’,j—}-]()th element, while
e if p=¢ and ¢=¢ then they provide the (i+k,j+k)'" element
of the Hessian matrix where i,j€ i€[1,....K], i€[1,...,i]-
N.B.:
e for plane wave approzimation p,q=6 or ¢ , for i=[1,..,K], and
§=[1yeeyi)-
o for spherical wave propagation p,g=6 or ¢ or r, for i=[1,.,K]

and j=[1,..,i]
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In this Appendix the first and second derivatives of the Source
Position Matrix and its Projection Operator with respect to a source
location parameter are presented for planewave approximation and

spherical wave propagation.

PLANEWAVE APPROXIMATION

The k" element of a SPV for plane wave approximation is given by:

ﬁz(k) U h

;. = Gyp.e G,=k"" sensors characteristics

v=—j.(k~ko) - 1 (A4.1)

However, the first and second derivatives of the phase parameter U are

given by:

_OU__ T
o000 ey (442)
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T

—j.k o1 ifi=j
U, = —
(Piq]') 8;7,-6(1]- { (A43)
0 0 2 if i
where  gi=k o and & (A4.4)

6P,'a<1j:_&i(1’iqj)

Therefore the first and second derivatives of the ‘" element of the SPV

S; will be:

) (x)
6?»% Gk(pz) e’ + U( ) SS ) (A4.5)
075"
Boe = Crlosa® T YayCe(eyt T
+ u(p.q‘).g,(.") +u(p_).v,,,.§‘f’°) (44.6)

SPHERICAL WAVE PROPAGATION

The k*”* element of a SPV for spherical wave propagation is given by:

k -
_5_’5 ) G,=k'" sensors characteristics
. (A4.7)
2 Z.R-._E- - I T
U:\'R, ——L 7‘.’ + Iy Ty

However, the first and second derivative of the phase parameter U are

given by:
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_ QU _ i) ‘ (A4.8)

. T
= (A4.9)
T
i 7 M B (Y VR
mu v (A4.10)
0 if iFj

Y)Yy Utry)
R,

ifi=j
i v (44.11)
0 if igj
2
7 ____—U(R,) 1f i=4
v (A4.12)
0 ifiFtj

Therefore the first and second derivatives of the ¥* element of the SPV

S; will be:

U(pi).(5+j.7r)._s_‘,(’“) (A4.13)

6§§k)__ Gk(p;) -jw (U+ Up-R;)
9, U ¢ -

3
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(!) @ in ‘R,
ai;—gi = MR (U, R’)—U(R.)'(c%+jvr)~§,(-k)+jm§,(-k)

, (A4.14)

k
LY Culpsag) an(orvnr) o) Cile) mUrUeR)

0p;0q; u U2
_ TR O (O MM (AR O
U(Piqi).(U—H?r)‘ﬁi N v? 2
—U(pi).(5+j7r).vqi§§") (44.15)

PROJECTION OPERATORS

The derivatives of Projection Operator of the space spanned by
the SPVs, for both shperical wave propagation and plane wave propaga-

tion, can be presented as follows:

P=s.(s.s)" 1. (A4.16)
Q=i—P (A4.17)
B=(s%.s)"1.sH (A4.18)

Let Tp,= gs . That means
Py

TP,':‘ [Q7"'7.Qa—g%7gr"79] (A4.19)

t

that is NXK matrix with all but the i*” columns zeros. Then the first

and second derivatives of projection operator P are given by
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Pp,=Mp,+MF, where Mp,=Q.T,,.B (44.20)
and

Ppio;=Mpg M5y, where My = —P, . T, .B—M,. T, B
+Mp ML —1Q.T . B

(A4.21)

i9j

where {I=0 if i#;
I=-1 if i=j
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In order to generate one sample-vector of an arbitrary signal-plus-
noise field with covariance matrix a given NXN‘ complex Hermitian
matrix it is necessary [BRE-76]

1. to find the eigen-decomposition of that matrix. That is

R=EDE™! (A5.1)
where E NXN complex matrix with columns the eigenvectors
E-l=gX
D a diagonal matrix (eigenvalues)

2. to generate N random variables which form the vector z each
having independent gaussian quadrature components of zero
mean and variance 0.5. This can be done as follows:

a. generate two independent random variables z;, and 7,
which are uniformly distributed on the interval [0,..,1};
b. pass the first or;;a through a filter with transfer function
\In . Then, at the output of that filter, there is a
random variable of Rayleigh distribution r;
c. pass the Rayleigh random variable r; through a second
filter with tranfer function ezpﬂjzwz2i]]. This provide a
gaussian random variable z;.

d. repeat steps 2a to 2c¢ N times in parallel, that is for
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i€[1,...,N]. Then a random N-dim vector z is formed.
3. to pass the z vector through a filter with transfer function

E.D°° the result will be a sample vector z. That is
z= E.D%® 2 (A5.2)

This random vector z provides samples of the arbitrary complex
covariance matrix Rzz. A block diagram of this simulation

method is shown in Figure-A5.1.

TEST:
E[z.z"] = E[E. D> 2./, D*S.EH )=
= E. D%°. Fz.27]. D*S.Ef =
— E. DO-S.I. DO.S.EH:
— ED. Ef =

- RZ‘Z‘
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FIGURE—AS5.1

GENERATING A RANDOM VECTOR VARIABLE FOR A GIVEN COVARIANCE MATRIX

T

pd|
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POSITION OF ARRAY SENSORS

z y z . in haolf-wavelengths
sensor No.1 : -1.9319 0.0000 0.0000 =r
sensor No.2 : -1.6730 0.9659 0.0000 =TI,
sensor No.3 : -0.9659 1.6730 0.0000 =73
sensor No.4 :  0.0000  1.9319  0.0000 =r,
sensor No.5 :  0.9659 1.6730 0.0000 =715
sensor No.6 : 1.6730 0.9659 0.0000 =715
sensor No.7 : 1.9319 0.0000 0.0000 =1y
sensor No.8 :  0.0000 1.9319 1.0000 =rg

LOCATIONS OF SOURCES

elevation  azimuth

o g
source No.l 15.000 20.000
source No.2 15.000 30.000
source No.3 10.000 90.000 .

INCIDENT SIGNALS CORRELATION MATRIX - Ry,

( 1.0000, 0.0000) ( 1.0000, 0.0000) ( 0.0000, 0.0000)
( 1.0000, 0.0000) ( 1.0000, 0.0000) ( 0.0000, 0.0000)
( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 1.0000, 0.0800)

NOISE POWER - o%:( 0.0001, 0.0000)

COVARIANCE MATRIX Ry,

Ist row: (4.8165¢+000 4.8545¢-017) (2.9011¢+000 -2.9849¢+4000) (4.3311e4000 -4.3336¢-001) (-1.2830e+000
3.1771e4000) (3.7226¢+000 -1.5914¢+000) (-3.0867e+000 2.1538¢4000) (2.7942e4000 -2.1715¢+000) (-2.9474¢+000
1.1398¢+000)

2nd row: (2.9011¢+000 2.9849¢+000) (4.3394e4+000 4.3395¢-017) (3.1601e+000 2.5038e+000) (-2.3380e+000
4.7932-002) (4.0413¢+000 1.8744¢4000) (-2.2781¢+000 -1.4419¢+000) (4.0786e+000 1.1602e+000) (-1.4035¢+000 -
1.7858¢+000)

3rd row: (4.3311e+000 4.3336¢-001) (3.1601e+000 -2.5038e+000) (4.0503¢4000 -4.6621¢-017) (-1.4022¢+000
2.2896e+000) (3.8577e+000 -9.8416e-001) (-2.7104e4000 1.2445¢+000) (3.1882e+4000 -1.5348¢+000) (-2.4124¢+000
3.9640e-001)

4th row: (-1.2830¢+000 -3.1771¢+000) (-2.3380e+000 -4.7932¢-002) (-1.4022¢4000 -2.2896e+000) (4.2020¢+000 -
4.4588¢-017) (-2.3580¢+000 -5.7282¢-001) (3.9336e+000 2.3343e4000) (-2.6681¢-+000 6.5073e-001) (3.0553¢+000
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2.8448¢+000)

Sth row: (3.7226¢4000 1.5914¢+000) (4.0413¢+000 -1.8744¢4000) (3.8577¢+000 9.8416e-001) (-2.3580e+000
5.7282¢-001) (4.6663¢+000 -5.2204¢-G17) (-2.6799¢+000 -9.0950¢-001) (4.5491¢+000 -6.9250e-001) (-1.9314¢+000 -
1.5644¢+000)

6th row: (-3.0867¢+000 -2.1538¢+000) (-2.2781e+000 1.4419¢+000) (-2.7104¢+000 -1,2445¢+000) (3.9336¢+000 -
2.3343e+000) (-2.6799¢+000 9.0950¢-001) (4.9922¢+000 2.7105e-020) (-2.2861¢+000 2.2203e+000) (4.4485¢+000
9.9105e-001)

Tth row: (2.7942e+000 2.1715¢4000) (4.0786e+000 -1.1602e4000) (3.1882e+000 1.5348e+4000) (-2.6681e+4000 -
6.5073¢-001) (4.5491e+000 6.9250e-001) (-2.2861e4000 -2.2203¢+000) (4.8165¢+000 -4.8545¢-017) (-1.3393e+000 -
2.6513¢4000)

8th row: (-2.9474e-£000 -1.1398¢+000) (-1.4035¢+000 1.7858¢+000) (-2.4124e+000 -3.9640e-001) (3.0553e+000 -
2.8448¢+000) (-1.9314e+000 1.5644e4000) (4.4485¢+000 -9.9105¢-001) (-1.3393¢4000 2.6513¢+000) (4.2020e+000
2.6780e-017)

EIGENVALUES
1.0000e-004 1.0000e-004 1.0000e-004 1.0000e-004 +.0000e-004 1.0000e-004
7.7127¢+000 2.8372e+001

EIGENVECTORS

1st row: (-8.3139e-002 1.1657e-012) (-1.8391e-002 1.4306¢-012) (-2.1216¢-002 -1.3916¢-013) (5.1488¢-002 -1.6129¢-
012) (5.6204¢-002 7.2233¢-013) (8.7189¢-001 3.4531e-013) (-2.7866e-001 -7.1052¢-017) (3.8555¢-001 -1.0787¢-017)
2nd row: (2.4537e-001 5.1855e-001) (-1.4177e-001 -2.1336¢-002) (1.6979¢-001 -4.5021e-002) (-4.6575¢-001 -1.0150¢-
001) (3.7578¢-001 4.8399¢-002) (-1.5774e-001 -4.9176¢-002) (-2.9341¢-001 8.9002¢-002) (2.0756e-001 2.9036e-001)
3rd row: (-3.0242e-001 -3.5722¢-001) (-1.1100e-001 1.6307¢-001) (-5.0286¢-001 -1.8032¢-001) (-2.8937e-001 -3.5708e-
002) (-1.2206¢-001 2.9517¢-001) (-2.5637¢-001 -4.8897¢-002) (-2.6995¢-001 8.8309¢-002) (3.4290e-001 5.6967¢-002)
4th rou: (1.1823¢-001 -1.4194e-001) (1.6440¢-001 8.6791e-003) (7.7155¢-002 -3.7662¢-001) (3.9154e-001 -1.0158e-
001) (4.8590c-001 3.2630e-001) (-7.2449¢-002 1.2464e-001) (-3.7165¢-001 1.4505¢-001) (-1.9031e-001 -2.6194¢-001)
5th row: (-1.4550e-001 -3.1797¢-001) (4.7368¢-001 -3.2491e-001) (4.3929e-001 2.4344¢-001) (1.6050¢-002 -7.9651¢-
002) (-6:5810¢-002 -9.3094¢-002) (-1.7935¢-001 -1.8888e-002) (-1.6743¢-001 2.8356¢-001) (3.0742¢-001 2.0120e-001)
6th vow: (3.1110e-001 1.5908¢-001) (1.8395¢-001 -3.3244¢-001) (-2.1911¢-001 5.1406¢-002) (-2.2793¢-001 -1.3495¢-
002) (-4.9500e-001 2.1453e-001) (1.3604e-001 1.5508e-001) (-2.6780e-001 3.0781e-001) (-3.3480e-001 -1.3642¢-001)
7th row: (6.3771¢-002 3.0783e-001) (-2.7009¢-001 6.3798¢-002) (-1.5788¢-001 5.9839¢-002) (6.5493e-001 -7.7180¢-
002) (-2.4249¢-001 -4.3984¢-002) (-1.5798¢-001 3.7694¢-002) (-7.9566¢-002 3.6923e-001) (2.3981e-001 2.7106e-001)
8th vour (-2.2335¢-001 -1.3313e-001) (-3.3926¢-001 4.9668¢-001) (4.4973e-001 4.3113e-002) (-1.5902e-001 -5.0760e-
002) (-1.8314¢-001 -1.0182¢-001) (56.7066e-002 1.3288¢-001) (-2.3964¢-001 3.3691¢-001) (-3.1653-001 -3.8004¢-002)

E matriz

(-2.7866e-001 -7.1052¢-01 7) (3.8555e-001 -1.0787e-01 7)
(-2.9341e-001 8.9002¢-002) (2.0756e-001 2.90358-001)
(-2.6995e-001 8.8309¢-002) (3.4290e-001 5.6967¢-002)
(-3.7165e-001 1.4505¢-001) (-1.9031e-001 -2.6194e-001)
(-1.6743e-001 2.8356¢-001) (3.07428-001 2.01206-001)
(-2.6780e-001 3.0781¢-001) (-3.3480¢-001 -1.3642¢-001)
(-7.9566¢-002 3.6923¢-001) (2.3981e-001 2. 7106e-001)
(-2.3964¢-001 3.36916-001) (-3.16'536-001 -3.8004¢-002)

minimization of Kquaiion 3.42

1 cost:1.57588613015542e+000 angles:3.4613e+001 3.955de+001

0.0000e+000
0.0000e+000
0.0000e+000
0.0000e+000

5.0000e+000
5.0000e+001
1.0000e-+002
1.6500e+002

(-5.4005¢-002 -2.9671¢-002)
( 1.1560¢-001 -2.9291¢-002)
(-1.9534¢-001 1.8979¢-001)
( 3.7461e-002 6.2749¢-002)
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2 €081:1.05217380322443e+000

4.4494e+4-000
1.1359e+001
2.6844e+001
-6.7828¢+001

1.7732e+001
3.6362e+001
9.2202¢+001
1.5479¢-+002

3 cost:1.00773379652949e+000

1.6472e+001
2.0405¢e+001
1.7239¢+001
-5.5228e+001

1.7480e+001
3.0023e+001
8.9834e+001
1.4729¢+002

4 cost:1.00680448044605¢e+000

1.7934e+001
2.0088¢e+001
1.6623e+001
-6.2749e+001

1.8501e+001
3.0391e+001
8.9998e-+001
-1.7188e+002

5 cost:1.00005739432137e+000

1.3915e+001
1.5835e+001
1.0366e+001
-7.7722e+4001

2.0572e4+001
2.9819¢+001
9.0083e+001
-1.5294¢+002

6 . cost:1.00003930997895¢e+000

1.4668e-+001
1.5787e-+001
1.0160e+001
-7.6436e+001

2.2518e+001
3.2053e+001
9.0031e+001
8.2865¢e+4001

7 cost:1.00000532538827e+000

1.5254e+001
1.4457e+001
1.0036e+001
-6.4207e+001

2.1860e+001
3.2471e+001
8.9998¢+001
8.8325¢+001

8 cost:1.00000205919905¢+000

1.5269e+001
1.4744¢e+001
1.0012e+001
-5.3792e+001

2.1277e+001
3.1726e+001
9.0000e+001
8.35682e+001

9 cost: 1.00000042320060e+000

1.5227e+001
1.4753e+001
1.0001e+001
-4.9227e+001

2.0430e+001
3.0612e+001
9.0001e+001
8.6627e+001

10 cost:1.00000006075084¢-+000

1.5061e+001
1.4981e+001
1.0000e+001
-4.9651e+001

2.0158e+001
3.0152e+001
9.0000e+001
8.7108e+001

angles:1.6491e¢400! 7.6119¢+000
(7.3333e-002 -3.8854¢-002)
(3.6165¢-002 -1.0114e-002)
(-2.4636e-001 2.7894e-001)
(-2.0046e-002 5.3753¢-002)

angles:5.7822e4000 4.1323e+000
(5.2409¢-002 -2.1671e-002)
(2.6192e-002 2.6586¢-002)
(-2.8565¢-001 2.2282¢-001)
(-1.4536¢-002 9.0618e-004)

angles:4.7357¢+000 4.6954e+000
(7.7658¢-002 -1.2487e-002)
(1.0839¢-002 1.2044e-003)
(-2.8700e-001 2.2292e-001)
(1.8230e-002 1.4310e-002)

angles:4.4109e-001 4.2692e-001
(4.55836-002 3.4677¢-003)
(3.8439¢-002 3.0710e-003)
(-2.9358¢-001 2.0567e-001)
(1.7772e-003 1.2968¢-003)

angles:2.1131e-001 4.6199¢-001
(6.1301¢-002 8.7464e-003)
(2.3284¢-002 -3.1735¢-004)
(-2.9304¢-001 2.0480e-001)
(-6.6023¢-004 -2.5506¢-004)

angles:4.3183¢-002 1.8193e-001
(5.8127¢-002 6.7096¢-003)
(2.6317e-002 2.2947e-003)
(-2.9287¢-001 2.0481e-001)
(2.04298-004 -1.83706-004)

angle:2.5981e-002 1.1334¢-001
(5.3567e-002 5.6403¢-003)
(3.0963¢-002 3.2019¢-003)
(-2.9285¢-001 2.0479¢-001)
(2.6336¢-004 1.2530e-004)

angle:1.0614e-002 5.1632¢-002
(4.6296¢-002 4.5918¢-003)
(3.8164¢-002 4.2192¢-003)
(-2.9290e-001 2.0487e-001)
(3.3772e-005 1.7641e-004)

angle:3.7629e-003 1.9614e-002
(4.3463¢-002 4.5589¢-003)
(4.1003e-002 4.2653e-003)
(-2.93026-001 2.0486'6-001)
(3.5194¢-005 3.6929¢-005)
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11 cost:1.00000000341802e+000

1.5022e-+001
1.4982e+001
1.0000e+001
9.9990e+003

2.0024e+001
3.0051e+001
9.0000e+001
9.5990e+003

12 co0st:1.00000000000499¢e+000

1.5000e+001
1.5000e+001
1.0000e+001
9.9990e+003

1.9999e-+001
2.89899¢+001
9.0000e+001
9.9990e+003

13 ¢cosi:1.00000000000000e+000

1.5000e-+001
1.5000e+001
1.0000e+001
9.9990e+003

FINAL RESULT

2.0000e+001
3.0000e+001
9.0000e+001
9.9990e+003

cost:1.00000000000000e+000

angle:1.0255¢-003 4.6249¢-003
(4.2544¢-002 4.3976¢-003)
(4.1931¢-002 4.4328¢-003)
(-2.9303¢-001 2.0489¢-001)
(0.0000e4000 0.0000e+000)

angle:3.9881¢e-005 1.7645¢-004
(4.2232¢-002 4.4194¢-003)
(4.2242¢-002 4.4203¢-003)
(-2.9305¢e-001 2.04883-001)
(0.0000e+000 0.0000e+000)

angle:1.0000e-009 8.5377¢-007
(4.2237e-002 4.4199¢-003)
(4.2237e-002 4.4199e-003)
(-2.9305¢-001 2.0488¢-001)
(0.0000e+000 0.0000e+000)

angle:1.0000e-009 8.5377¢-007

«—SOURCE No.1
+—~SOURCE No.2

1.5000e+001
1.5000e+001

2.0000e+001
3.0000e+001

1.0000+001 9.0000e+001 +—SOURCE No.3
I |
¢ 0

SAMPLE COVARIANCE MATRIX - No. of Samples = 250

Ist row: (4.8288e+000 0.0000e+000) (2.9190e4000 -2.9707e4000) (4.3436¢+000 -4.2511¢-001) (-1.2493¢+000
3.1818¢+000) (3.7280e+000 -1.5644e+000) (-3.0576e+-000 2.1743e4000) (2.7943e+000 -2.1360¢+000) (-2.9208¢+000
1.1652e4000)
2nd row: (2.9190e+000 2.9707¢+000) (4.3101e+000 -4.2327¢-020) (3.1607e4+000 2.4936e+4000) (-2.3222¢4000
1.1902¢-001) (4.0023¢+000 1.8566¢+000) (-2.3002e+000 -1.3660e4000) (4.0188¢+000 1.1404e4-000) (-1.4396e+000 -
1.7173e+000)
3rd row: (4.3436e+000 4.2511e-001) (3.1607e+000 -2.4936e4000) (4.0574¢+000 -6.5355e-021) (-1.3681¢+000
2.3151e+000) (3.8461e+000 -9.7099¢-001) (-2.6916e+000 1.2857e+000) (3.1661¢+000 -1.5148¢4000) (-2.4009¢+000
4.3931e-001)
4th row: (-1.2493e4000 -3.1818¢+000) (-2.3222¢+000 -1.1902¢-001) (-1.3681e+000 -2.3151e+000) (4.1269¢+000
1.2571e-019) (-2.3016¢+000 -6.4050¢-001) (3.8590e4+000 2.2956¢+000) (-2.6059¢+000 5.6434¢-001) (2.9923¢4000
2.7881e+000)
5th row: (3.7280e+000 1.5644¢+000) (4.0023¢+000 -1.8566¢4000) (3.8461e+000 9.7099¢-001) (-2.3016¢+000
6.4050¢-001) (4.6068¢+000 -1.6463e-020) (-2.6612e4000 -8.1513¢-001) (4.4665¢+000 -6.8311e-001) (-1.9329¢+4000 -
1.4700¢+000)
6th row: (-3.0576e+000 -2.1743¢+000) (-2.3002¢+000 1.3660e+000) (-2.6916¢+000 -1.2857¢+000) (3.8590e+000 -
2.2956e4000) (-2.6612¢+000 8.1513e-001) (4.8984e+000 -1.5668e-020) (-2.2712e+000 2.1043¢+000) (4.3568¢+000
9.6761e-001)
7th row: (2.7943¢+4000 2.1360e+000) (4.0188e4000 -1.1404e4+000) (3.1661e+000 1.5148¢4000) (-2.6059¢+000 -
5.6434¢-001) (4.4665¢4000 6.8311e-001) (-2.2712¢+000 -2.1043¢+000) (4.7058¢+000 1.3662¢-019) (-1.3503¢+000 -
2.5367¢-+000)
8th row: (-2.9208e+000 -1.1652¢4000) (-1.4396¢+000 1.7173e4+000) (-2.4009¢+000 -4.3931¢-001) (2.9923¢+000 -
2.7881¢+000) (-1.9329¢+000 1.4700c+000) (4.3568¢4-000 -9.6761e-001) (-1.3503¢+000 2.5367¢+000) (4.1069¢+000
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1.9558e-020)

EIGENVALUES

9.4718e-005 9.7093e-005 9.8938e-005 1.0158¢-004 1.0505¢-004 1.0689¢-004
7.5547e+000  2.8086e+001

EIGENVECTORS

Ist row: (2.0793e-001 3.4103¢-012) (5.9083e-001 3.0033¢-012) (-4.3704¢-002 -2.2333¢-012) (5.9285e-002 5.8492¢-
013) (-5.1670e-001 2.3977¢-013) (3.3008¢-001 6.4600e-013) (-2.7280e-001 -4.9537¢-018) (3.8976¢-001 -2.4904e-017)
2nd row: (-5.3310e-001 -3.2847¢-001) (-6.3026e-002 -8.4990¢-002) (3.4832e-001 -2.1863¢-001) (-2.5700e-001 -3.4453¢-
001) (-9.0785¢-002 -6.2763¢-002) (-9.1424¢-002 2.9718¢-002) (-2.9024e-001 9.3416e-002) (2.1201¢-001 2.8897¢-001)
3rd row: (-5.0928¢-002 2.4689¢-001) (-5.3528¢-001 -2.0139¢-001) ( 7.4949¢-002 3.8493¢-001) (4.4406e-001 6.0596e-
002) (-1.6817e-001 -7.4535¢-002) (2.8715¢-002 1.3637¢-001) (-2.6464¢-001 8.9154¢-002) (3.4698e-001 5.5620¢-002)
4th row: (1.7452¢-001 5.2658e-002) (2.9431¢-002 -1.9498¢-001) (1.9014e-001 2.3774e-001) (-4.4191¢-001 3.2947e-
002) (2.9134¢-001 -2.6545¢-001) (3.0647¢-001 3.5431e-001) (-3.7456e-001 1.4105¢-001) (-1.8464¢-001 -2.6411¢-001)
5th row: (3.2895¢-001 -1.2261e-001) (6.7948¢-002 2.1532¢-001) (1.7168e-001 1.8380e-001) (-2.1924e-001 3.8743e-
001) (1.6604¢-001 1.4399¢-001) (-5.0728¢-001 -1.2365¢-001) (-1.6275¢-001 2.8658¢-001) (3.0992¢-001 1.9686¢-001)
6th row: (-4.0824e-002 -3.1008¢-001) (-1.3449¢-001 2.0788¢-001) (-5.1538e-001 5.6108¢-002) (-1.4669¢-002 -3.4415¢-
002) (-3.8780¢-001 -6.5886¢-004) (-2.4120e-001 2.5504e-001) (-2.7280e-001 3.0568¢-001) (-3.3068¢-001 -1.4108¢-001)
7th row: (1.2335¢-001 -1.4078e-001) (-1.6032¢-002 3.3232e-002) (-4.5389¢-001 -1.6095¢-001) (1.7919¢-001 -2.2697e-
001) (5.1249¢-001 -8.0827¢-002) (3.1368¢-001 -8.2734¢-002) (-7.5887¢-002 3.7331e-001) (2.4098¢-001 2.6541e-001)
8th row: (-2.1453e-001 4.0717e-001) (4.0013e-001 -3.1067¢-003) (1.3377e-001 2.5753¢-002) (3.3862e-001 -1.2900e-
001) (1.1186¢-001 -2.2645¢-001) (-2.8170e-001 -2.4997¢-001) (-2.4444e-001 3.3629¢-001) (-3.1284¢-001 -4.3130e-002)

E  matriz

(-2.7280e-001 -4.9537¢-018) (3.8976¢-001 -2.4904¢-017)
(-2.9024¢-001 9.3416¢-002) (2.1201e-001 2.8897e-001)
(-2.6464e-001 8.91546-002) (3.46986-001 5.56'203-002)
(-3.7456¢-001 1.4105¢-001) (-1.8464¢-001 -2.6411e-001)
(-1.6275e-001 2.8658e-001) (3.0992¢-001 1.9686e-001)
(-2.7280e-001 3.0568¢-001) (-3.3068¢-001 -1.4108¢-001)
(-7.5887¢-002 3.7331e-001) (2.4098e-001 2.6541e-001)
(-2.4444e-001 3.3629¢-001) (-3.1284¢-001 -4.3130e-002)

minimization of Equation 3.42

1 cost:1.57531307068895e+000 angle:3.4865e+001 3.9316e+001
0.0000e+000 5.0000e+000 (-5.1135¢-002 -3.1193e-002)
0.0000e-+000 5.0000e+001 (1.1585¢-001 -2.6924e-002)
0.0000e+000 1.0000e+002 (-1.9463e-001 1.9090e-001)
0.0000e+000 1.6500e-+002 (3.7250e-002 6.2095e-002)

2 cost:1.04574106559480e+000 angle:1.5631e+001 7.0216e+000
4.7101¢+000 1.8064e+001 (7.9500e-002 -3.9348e-002)
1.1602¢+001 3.5938¢-+001 (3.2368¢-002 -6.8600e-003)
2.6256e+001 9.1922e+001 (-2.5149¢-001 2.7689¢-001)
-6.9226e+001 1.5459e+002 (-1.7624e-002 5.3211¢-002)
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3 cost:1.00642814777630e+000

1.6312e+001
1.8814e+001
1.7231e+001
-6.4480e+001

1.6823e+001
2.9894e+001
8.9736e+001
1.5379¢+002

4 cost:1.00024640319875e+000

1.4705e+001
1.4524e+001
1.1391e+001
-7.4240e+001

1.9875¢+001
2.9331e+001
9.0211e+001
-1.5512e+002

5 cost:1.00000414640989%e+000

1.4988e+001
1.4859e+001
1.0134e+001
-8.2512e+001

1.9385¢+001
2.9570e+001
8.9966e+001
-1.4960e+002

6 cos1:1.00000029675989¢e+000

1.5087e+001
1.4912e4001
1.0033e+001
-8.8034e+001

2.0041e+001
2.9993e+001
8.9997¢+001
2.9895e+001

7 cost:1.00000000613061e+000

1.4999e+001
1.5000e+001
1.0004e+001
9.9990e+003

2.0018¢+001
3.0006e+001
8.9999e+001
9.8990e+003

8 co5t:1.00000000581389¢-+000

1.5000e+001
1.4999e+001
1.0003e+001
9.9990e+003

1.9994e+001
2.9991e+001
8.9999¢+001
9.9990e+003

9 cost:1.00000000543223e+000

1.5000e+001
1.5000e+001
1.0001e+001
9.9990e+003

FINAL RESULT

1.9996e-+001
2.9993e+001
8.9999¢+001
9.9990e+003

cost:1.00000000543223e+000

1.5000e+001
1.5000e+001
1.0001e+001

T
¢

1.9996e+001
2.9993e+001
8.9999e+001

|
¢

angle:5.4558e+000 3.5002e+4000
(6.0756¢-002 -1.80948-002)
(3.0876e-002 1.8210e-002)
(-2.8835¢-001 2.2656¢-001)
(-9.7853e-003 1.6821 e-002)

angle:1.1581e4+000 5.2558¢-001
(5.0547¢-002 -6.9185¢-004)
(3.8137¢-002 3.3668¢-003)
{-2.9385¢-001 2.0798e-001)
(6.3671¢-003 4.3138¢-003)

angle:1.1883e-001 1.1447e-001
(4.0747¢-002 3.6089¢-003)
(4.8047¢-002 7.8469¢-003)
(-2.9283e-001 2.0511e-001)
(3.3485¢-004 1.93133-004)

angle:1.6438¢-002 4.0966¢-002
(4.5036e-002 5.4932¢-003)
(4.4389¢-002 5.7707¢-003)
(-2.9271e-001 2.0482e-001)
(-6.8203¢-006 1.0878¢-004)

angle:5.1731e-003 3.6730e-003
(4.4881e-002 5.5995¢-003)
(4.4651¢-002 5.6961e-003)
(-2.9269¢-001 2.0478e-001)
(0.0000e+000 0.0000e+000)

angle:5.8840e-003 1.8842¢-003
(4.4727¢-002 5.5781¢-003)
(4.48205-002 5. 71363-003)
(-2.9269¢-001 2'04788-001)
(0.0000e+000 0.000081"000)

angle:5.7408¢-003 1.6460e-003
(4.4742¢-002 5.5875¢-003)
(4.4809¢-002 5.7027¢-003)
(-2.9269¢-001 2.0478¢-001)
(0.0000e+000 0.0000¢+000)

angle:5.7408e-003 1.6460¢-003
—SOURCE No.1
«—SOURCE No.2
«—SOURCE No.3

N.B.: 9.999¢+003 mcans that this direction has been eliminated as pscudo direction
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