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Has generative artificial intelligence
solved inverse materials design?
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PROGRESS AND POTENTIAL

Computer simulations serve as a

powerful tool for investigating the

relationship between the

composition, structure, and

properties of materials. Early

approaches simplified the many-

body interactions inherent in real

systems into tractable functional

forms, solvable either manually or

with calculators. High-

performance computing ushered

in an era where numerical methods

could tackle increasingly complex

equations, with density functional

theory becoming a dominant first-

principles technique for materials

modeling. Now, artificial

intelligence (AI) provides new

opportunities for statistical

descriptions of many types of

materials drawn from the large

volume of data that have been

produced. Building on the use of

machine learning surrogate

models that enable rapid property

predictions for materials,

generative AI can enable

researchers to actively propose

entirely new structures or

compounds that may exhibit

desired characteristics. In this

perspective, we introduce some of

the central concepts underpinning

generative AI, with a focus on its

application to inorganic crystals.

The aim is for materials scientists

to grasp the terminology, how

these techniques work, what

models are available, and

opportunities for using generative

AI in materials research.
SUMMARY

The directed design and discovery of compounds with pre-deter-
mined properties is a long-standing challenge in materials research.
We provide a perspective on progress toward achieving this goal
using generative models for chemical compositions and crystal
structures based on a set of powerful statistical techniques drawn
from the artificial intelligence community. We introduce the central
concepts underpinning generative models of crystalline materials.
Coverage is provided of early implementations for inorganic crys-
tals based on generative adversarial networks and variational au-
toencoders through to ongoing progress involving autoregressive
and diffusion models. The influence of the choice of chemical repre-
sentation and the generative architecture is discussed, along with
metrics for quantifying the quality of the hypothetical compounds
produced. While further developments are required to enable real-
istic predictions drawn from richer structure and property datasets,
generative artificial intelligence is already proving to be comple-
mentary to traditional materials design strategies.

INTRODUCTION

The most common workflows in materials modeling are based on the structure /

property paradigm.1 Such a mapping can be achieved with an appropriate property

calculator. This may involve a numerical solution to a quantum mechanical expres-

sion (e.g., Kohn-Sham equations),2 the use of an analytical interatomic force field

(e.g., Buckingham potential),3 or the training of a surrogate machine learning model

(e.g., crystal graph convolutional neural network [CGCNN]).4

In a traditional high-throughput screening approach, a pool of candidate materials

(spool) is filtered by a series of hand-built criteria. The aim is to identify the optimal

target configurations (starget ), whose properties exceed a certain threshold Ptarget .

A high-throughput screening process is illustrated in Figure 1. While this approach

has proved successful for diverse application areas, from thermoelectrics to batte-

ries,5 it is often limited to a particular set of crystal structures and/or chemical com-

positions. The identified targets are a subset of the input pool of candidate com-

pounds, i.e., starget4spool.

The inverse approach involves mapping from property / structure.6 Rather than

starting with a known set of material structures and predicting their properties,

the process begins by articulating a desired set of properties (constraints) and

seeks to identify the corresponding molecular or extended crystal structures that

satisfy them. This change in direction widens the chemical search space but also

increases the complexity of the problem, prompting the development and adop-

tion of new computational techniques and methodologies. Recent advances in
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Figure 1. Comparison of traditional high-throughput screening and generative AI approaches

The inset images were generated using a text-to-image AI model.10 The configuration, energy, and

properties of materials are indicated by s, E, and P, respectively.
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materials datasets and machine learning have been instrumental in making the in-

verse design of materials feasible. Generative techniques, which leverage probabi-

listic models to create novel data, have become popular in the artificial intelligence

(AI) community for solving inverse problems across various domains such as natural

language processing, audio, image synthesis,7 and recent advances in video

generation.8

Due to their potential for targeted molecular and materials design, generative

techniques have been described as ‘‘among the greatest opportunities available

in modern chemical research.’’9 Actively explored generative models and

outstanding challenges for molecular generative research are reviewed in Anstine

and Isayev.9 As rapid progress is being made in the development and usage of

generative techniques for crystalline inorganic materials, the purpose of this

perspective is to introduce the key concepts, advantages, and limitations of these

applications. In particular, we delve into some early implementations, summarize

emerging trends in recent implementations, and highlight new directions for

exploration.

HOW DO GENERATIVE MODELS WORK?

The first generative models involved a combination of three processes to learn and

synthesize materials data: encoding, decoding, and generation.

(1) Encoding is the process of transforming the configuration (s) of a material

into a different representation. The input (training) data are in the form of

a numerical tensor that may encompass the chemical composition, crystal

structure, and relevant physical properties of each system. Encoding com-

presses the input data into lower dimensions, referred to as a latent or

feature space (Z ).

Z = f ðsÞ (Equation 1)
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For crystalline materials, the standard configuration s is defined by the atom

types or chemical composition (A), lattice vectors of the unit cell (L), and the

atomic coordinates within a 3-dimensional (3D) Euclidean space (X). The func-

tion f for transforming these representations into the latent space has no fixed

form and is learned through a deep learning architecture such as a geometric

graph neural network (GNN).11

(2) Decoding is the inverse process of encoding. It involves transforming the en-

coded or latent representation back into the original data space using a

learned function (f 0). The decoder network in generative models is respon-

sible for this reconstruction. When decoded successfully, the composition,

structure, and properties of the generated material can be obtained.

s0 = f 0ðZÞ (Equation 2)

The unavoidable losses that occur by encoding and decoding result in noise

(reconstruction error) that can cause issues such as spurious changes in sym-

metry or stoichiometry. These losses sometimes lead to the generation of

invalid structures (e.g., missing atoms), worsened by errors in sampling that

undermine the fidelity and reliability of the sampled compounds.

(3) Generation is the creative process where novel compounds are produced.

This goal is achieved by sampling from a probability distribution in the

learned latent space. For example, the likelihood of finding atoms at

different positions within a unit cell can be described as a probability distri-

bution. The novel instances produced ðssampledÞ) should share characteristics

with the training data, which may have been a set of structures with their

corresponding labeled energies and properties, i.e., ðs;E;PÞtrain in Figure 1.

The effective sampling of new configurations from the joint probability

distribution is crucial for creating diverse and realistic samples, contributing

to the ability of a model to produce chemically sensible and original

outputs.

ssampled � pðZÞ (Equation 3)

Recent advancements in generative models now incorporate a broader array of

techniques, including the direct sampling of materials from noise and respond-

ing to user text prompts. Four generative architectures that have been applied

to inorganic crystals, illustrated in Figure 2, are (1) variational autoencoders

(VAEs) that combine an encoder to a continuous learned latent space with a

decoder to generate samples by drawing from the probability distribution; (2)

generative adversarial networks (GANs) based on a generator model for syn-

thetic data (e.g., sampled structures), which tries to fool a discriminator model

that distinguishes between real and synthetic data; (3) diffusion models that

generate sampled materials through a series of iterative stochastic transforma-

tions applied to an initial (noisy) data distribution; and (4) autoregressive

models, including transformer-based large language models (LLMs) that sam-

ple the conditional probability distribution of a sequence, leveraging the

captured data dependencies to sequentially generate hypothetical com-

pounds.
HOW IS INVERSE MATERIALS DESIGN ADDRESSED?

Analogs to the three processes outlined above can be found in traditional materials

modeling approaches. For example, crystal structure prediction aims to minimize

the energy of a chemical system with respect to the global configuration of atoms.

Genetic algorithms can be used for this purpose, where the structure of a chemical
Matter 7, 2355–2367, July 3, 2024 2357



Figure 2. Illustration of generative model architectures

Four models that can be tailored for materials design and discovery ranging from the sampling of

latent space in a VAE to text sequence modification in an autoregressor. Each model involves a

distinct deep learning approach that can generate new materials. An ideal model will combine fast

sampling of structures and properties with high quality and diversity.
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system is encoded as a string of 1s and 0s.12 These aremutated to generate (explore)

new configurations and decoded back into a standard structure representation. A

common use for this type of algorithm is to efficiently identify the global minimum

configuration:

starget = min
s

½EðsÞ�hmin
Z

½EðZÞ� (Equation 4)

with equivalent solutions being found for optimization in real space or latent space.

Similarly, property optimization can be performed by iteratively adjusting the

configuration of the system toward a target property or weighted set of properties

(Ptarget) across the multi-objective Pareto front, e.g.,

starget = min
Z

��PðZÞ � Ptarget

�� (Equation 5)

which has been used for finding cases as diverse as direct band-gap polymorphs of

Si13 to perovskite structured crystals suitable for water splitting.14
2358 Matter 7, 2355–2367, July 3, 2024
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Standard high-throughput materials screening and design techniques can require

thousands of individual calculations to identify target compounds within limited

chemical spaces. In contrast, a modern generative approach may directly produce

a solution that is sampled from the learned latent space and conditioned to satisfy

particular thermodynamic and property objectives:

ssampled � p
�
Z jEtarget; Ptarget

�
(Equation 6)

This conditional probability distribution represents the probability of a compound

being drawn from Z given specific characteristics such as target energy and elec-

tronic properties. Of course, there is no free lunch in terms of the required compu-

tational cost. The hidden overhead for generative models is in the training and

testing, which requires a diverse dataset to define the initial distribution of com-

pounds and a significant computing resource for parameterizing complex models.

The first obstacle is being alleviated by an increasing volume of high-quality mate-

rials data available in public datasets,15,16 whereas the second is being addressed

with national public CPU supercomputers being augmented with GPU capabilities,

driven by the growing importance and utility of deep learning approaches.
EVOLUTION OF GENERATIVE MODELS FOR MATERIALS

Dozens of generative models have been reported for materials, which involve some

aspects of composition, structure and/or property sampling. A selection of pub-

lished models for inorganic crystals is listed in Table 1. These involve different com-

binations of structure representation and generation architecture. Open-source

code repositories are available for the majority of these models, which has sup-

ported rapid progress and collaboration in the field. However, we note that the

documentation may be limited, and several codes are not actively developed and

may not run with the latest compilers or deep learning libraries.
Structure representation and encoding

One aspect that can distinguish between models is the choice of crystal structure

representation. CRYSTALGAN, reported in 2018,17 was based on a standard crystallo-

graphic representation of a 333 matrix describing the x, y, and z components of the

a, b, and c lattice vectors of the unit cell (L), in addition to fractional coordinates (X)

for atom types (A). While convenient, this numerical representation lacks invariance

with respect to relevant symmetry operations, i.e., the feature values representing a

given structure are changed by unit cell translations, rotations, and atomic permuta-

tions.34 This is also true for the IMATGEN model, published in 2019,19 which repre-

sents the unit cell of a crystal using voxels (a 3D grid with a spacing of 0.23 Å). While

there are data augmentation tricks to alleviate the lack of invariance (e.g., training

data containing shuffled atomic positions, as well as translated and rotated versions

of unit cells), this approach does not solve the problem of representing crystal ma-

terials effectively.

Alternatively, it is more rigorous and efficient to encode the structures in a way that

respects the relevant functional symmetry from the outset, such as a crystal graph.34

GNNs stand out in this regard, offering a solution by abstracting information from

the standard crystallographic representation while ensuring invariance to key trans-

formations such as permutations, translations, and rotations. For crystalline mate-

rials, it is also important to consider periodic boundary conditions that describe

the repeating nature of the unit cells. The multi-graph representation, introduced

by CGCNN4 provided an important step by representing atoms as nodes and the

connections (or distances) between neighboring atoms as edges, considering finite
Matter 7, 2355–2367, July 3, 2024 2359



Table 1. Selection of generative models developed for crystalline inorganic materials

Model Structure representation Generation architecture License Reference

CRYSTALGANa coordinates generative adversarial network (GAN) GPL Nouira et al.17

Hoffmann et al.b voxels variational autoencoder (VAE) MIT Hoffmann et al.18

IMATGEN
c voxels VAE – Noh et al.19

CCCGANd coordinates GAN – Kim et al.20

ICSG3De voxels VAE MIT Court et al.21

CCDCGANf voxels GAN – Long et al.22

CUBICGANg coordinates GAN MIT Zhao et al.23

FTCPh coordinates and
structure factors

VAE Apache Ren et al.24

CDVAEi coordinates VAE + diffusion MIT Xie et al.25

CRYSTALLMj crystallographic information file autoregressive transformers (ATs) MIT Antuneset al.26

XYZTRANSFORMER
k crystallographic information file ATs – Flam-Shepherdet al.27

CRYSTENS
l coordinates GAN, diffusion MIT Alverson et al.28

DIFFCSPm coordinates diffusion MIT Jiao et al.29

MATTERGEN
n coordinates diffusion – Zeni et al.30

WYCRYST
o Wyckoff site matrix VAE – Zhu et al.31

UNIMAT
p coordinate embedded periodic table diffusion – Yang et al.32

CRYSTAL-LLMq coordinates ATs CC-BY-NC Gruver et al.33

The chronological list is not comprehensive but covers relevant early models and some major recent developments.
ahttps://github.com/asmanouira/CrystalGAN.
bhttps://github.com/hoffmannjordan/Encoding-Decoding-3D-Crystals.
chttps://github.com/kaist-amsg/imatgen.
dhttps://github.com/kaist-amsg/Composition-Conditioned-Crystal-GAN.
ehttps://github.com/by256/icsg3d.
fhttps://github.com/TengLong1993/CCDCGAN-for-single-system.
ghttps://github.com/MilesZhao/CubicGAN.
hhttps://github.com/PV-Lab/FTCP.
ihttps://github.com/txie-93/cdvae.
jhttps://github.com/lantunes/CrystaLLM.
khttps://github.com/danielflamshep/xyztransformer.
lhttps://github.com/michaeldalverson/CrysTens.
mhttps://github.com/jiaor17/DiffCSP.
nNone yet.
ohttps://github.com/RaymondZhurm/WyCryst.
pNone yet.
qhttps://github.com/facebookresearch/crystal-text-llm.
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cutoffs beyond the contents of an isolated unit cell. Crystal Diffusion Variational Au-

toencoder (CDVAE), reported in 2022,25 then combined invariant encoding ofA, L,

and X with an SE(3)-equivariant GNN. This choice ensures that the model leverages

physical symmetries, leading to a richer representation and transformation of struc-

ture, while also requiring fewer data.

Foundational generation architecture

Drawing from developments in the generative AI field, the underlying model archi-

tectures have also evolved in the materials domain. The first models were based on

GANs and VAEs.

GANs operate through the dynamic interplay between a generator and a discrimi-

nator that is trained to distinguish between real and fakematerial data. The adversarial

process fosters a continuous enhancement of the generator’s capability as it learns to

approximate the distribution of the materials in the training set. In 2018, CRYSTALGAN

leveraged GANs to design ternary A-B-H compositions, generating 3D coordinates

(X) and lattice vectors (L). This model applied cross-domain learning to sample

ternary materials from binary compounds. Composition Conditioned Crystal GAN
2360 Matter 7, 2355–2367, July 3, 2024

https://github.com/asmanouira/CrystalGAN
https://github.com/hoffmannjordan/Encoding-Decoding-3D-Crystals
https://github.com/kaist-amsg/imatgen
https://github.com/kaist-amsg/Composition-Conditioned-Crystal-GAN
https://github.com/by256/icsg3d
https://github.com/TengLong1993/CCDCGAN-for-single-system
https://github.com/MilesZhao/CubicGAN
https://github.com/PV-Lab/FTCP
https://github.com/txie-93/cdvae
https://github.com/lantunes/CrystaLLM
https://github.com/danielflamshep/xyztransformer
https://github.com/michaeldalverson/CrysTens
https://github.com/jiaor17/DiffCSP
https://github.com/RaymondZhurm/WyCryst
https://github.com/facebookresearch/crystal-text-llm


ll
OPEN ACCESSPerspective
(CCCGAN), published in 2020,20 employed compositionembedding vectors as inputs

for generating composition-conditioned crystals with GANs. Constrained Crystals

Deep Convolutional GAN (CCDCGAN), published in 2021,22 created a 3D voxel rep-

resentation of materials built on a deep convolutional GAN. However, this approach

faced challenges such as the need for post-processing requirements and memory-

intensive input data representation. Additionally, CUBICGAN, published in 2021,23 in-

tegrated spacegroup information into the trainingofGANs for thegeneration of novel

prototype materials within the cubic crystal system.

GANs implicitly learn the data distribution using a generator and a discriminator,

while VAEs explicitly model the data distribution by mapping it onto known distribu-

tions with an encoder and a decoder. VAEs combine an encoder that maps the struc-

ture representation into latent space and a decoder that reconstructs them. The

training of VAEs involves optimizing a loss function composed of two terms: recon-

struction loss and regularization loss. Reconstruction measures the fidelity with

which the decoder can reconstruct the input data from their latent representation.

Regularization encourages the latent space to adhere to a specified distribution,

typically Gaussian. This regularization should facilitate the generation of new data

points (compounds) that are variations of the input data by promoting a well-struc-

tured latent space that supports effective sampling and interpolation. IMATGEN lever-

aged a VAE architecture to generate voxel representations of crystal materials.19 The

model first compresses the 3D image representation of crystal structures. The

decoder is trained not only on the standard VAE loss but also to classify their stability

based on the labeled formation energy. These objectives, in principle, allow the

model to navigate materials space more effectively, guiding it toward thermody-

namically stable compounds.

Fourier Transformed Crystal Properties (FTCP), published in 2022,24 combined a

VAE architecture with an invertible crystallographic representation. FTCP inte-

grates both real-space and reciprocal-space features drawn from crystallography.

However, the representation scheme does not satisfy crystal invariances, and prac-

tically, the model suffers from heavy reconstruction losses, leading to frequent

invalid structures where the geometry is wrong or subsequent structural relaxation

fails.24,25 WYCRYST, reported in 2023,31 introduced a Wyckoff site matrix that in-

cludes the occupancy of each of the Wyckoff positions in the unit cell. This invert-

ible representation is encoded in a VAE based on a convolutional neural network

and demonstrates lower reconstruction losses and higher structure validity than

FTCP. The discretized description of atomic positions may be most appropriate

for high-symmetry prototype crystal structures that avoid high internal degrees

of freedom.

Both VAEs and GANs have been widely used for materials generation but have

known limitations. The adversarial training process inherent in GANs is often unsta-

ble, which has led to extensions of the ‘‘vanilla flavor’’ with modified loss functions

such as the Wasserstein (Earth-Mover’s) distance or a least squares loss. One study

on the generation of chemical compositions within the elpasolite (double

perovskite) structure type compared both architectures and showed that the

VAE model showed slightly higher precision and was easier to train than a Wasser-

stein GAN.35 A common problem with early generative models is pathologies that

can ignore data variations (VAEs) or produce indistinguishable outputs (GANs).36

Such issues that limit the diversity of the generated data have motivated the

development of new architectures, as well as alternative generative modeling

strategies.37
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Diffusion era

In materials science, first-order phase transitions (e.g., solid/liquid) are discontin-

uous and disruptive, whereas second-order transitions (e.g., between certain mag-

netic configurations) are continuous and reversible. There is an analogy here: the un-

derlying data transformations in GANs and VAEs can be seen as a first order process,

while diffusion models reformulate data generation into a smoother, second-order

process.

Diffusion models are based on a step-by-step data transformation that aids model

training.38 They operate through a forward process that incrementally adds noise

to an original data point (compound) across multiple steps, converting it into pure

noise, and a reverse process that reconstructs new data samples (compounds)

from this noisy state. This strategy has been discussed in the context of symmetry

breaking in statistical physics.39

CDVAE, published in 2022,25 integrates a diffusion model within VAEs, specifically

replacing the decoder of VAE with a noise conditional score network (NCSN).40

This model is trained on stable materials, enabling the sampling of new material

structures by gradually removing noise through Langevin dynamics, starting from

noisy data and guiding the reconstruction toward stable configurations.

DIFFCSP, reported in 2023,29 showcased the capability of diffusion models for crys-

tal generation. By jointly applying a diffusion process with lattice vectors (L) and

fractional coordinates (X), the model can better capture the geometry of crystals,

ensuring that the generated structures adhere to physical and chemical expecta-

tions. This approach is distinct from CDVAE, which first predicts L and then up-

dates X.

MATTERGEN, reported in 2023,30 demonstrated that diffusion models can flexibly

adapt to generate materials with desired requirements such as composition, sym-

metry, and mechanical properties using a classifier-free guidance algorithm.41 To

pre-train MATTERGEN, a large dataset was constructed of approximately 1 million

unique bulk crystal structures sourced from multiple databases. This dataset em-

powers the learned distributions and the generation of stable and varied materials.

Notably, the approach adopted by MATTERGEN allows for the generation of materials

that meet multiple property constraints simultaneously by employing further fine-

tuning.

Another diffusion model, UNIMAT, was reported in 2023.32 It used a novel represen-

tation scheme that stores traditional crystal coordinates at the corresponding

element entry in the periodic table, i.e., including an explicit index of chemical

groups and periods. This choice leads to a sparse tensor representation where a

null value of �1 indicates the absence of an atom type in a given material. Data

augmentation is used to account for the lack of crystal invariance in this representa-

tion. Conditional diffusion is again performed using the classifier-free guidance

introduced by Ho and Salimans.41

The effectiveness of diffusion models for materials generation has been demon-

strated in several comparative studies. For example, the learned distribution of crys-

tal structure parameters was much better for a diffusion model based on CRYSTENS

compared to both a regular GAN and a Wasserstein GAN.28 Similarly, in the ZEODIFF

generator for zeolitic materials, diffusion greatly outperforms a GAN in terms of the

structure validity of the sampled compounds.42
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Language of materials

Autoregressive models generate data sequentially, conditioning each prediction on

previous outputs. Autoregressive LLMs have emerged as a popular and powerful

branch of AI. Their natural language processing capabilities can be leveraged for

materials science in several ways, such as data extraction43 and problem solving.44

They also present an alternative avenue for materials generation. Compared to

recurrent neural networks, autoregressive models based on the transformer archi-

tecture excel in capturing long-range dependencies.45 Despite the complex nature

of the models and the substantial training data they require, there have been suc-

cessful attempts to generate materials in text format.

One application is the generation of text files. CRYSTALLM and XYZTRANSFORMER, both

reported in 2023,26,27 employ GPT-type models, predominantly the decoder part of

transformer architectures, trained to explicitly generate crystallographic information

files (CIFs), among other file formats. To overcome the inherent lack of invariance in

the text files when encoding crystal structure information, data augmentation tech-

niques involving randomly rotated structures were utilized.

Instead of training a model from scratch, CRYSTAL-LLM, reported in 2024,33 fine-tuned

LLAMA-2.46 This approach not only streamlined the process but also showcased

high performance in sampling inorganic compounds, surpassing the first wave of

diffusion-based models such as CDVAE in targeting low-energy configurations.

Furthermore, the potential of leveraging text prompts for conditionally generating

crystals was highlighted, underscoring the adaptability of autoregressive models.
TURING TEST FOR MATERIALS GENERATION

Materials scientists are trained to understand the relationship between composition,

structure, and properties. This includes knowing when a certain chemical composi-

tion will be synthetically accessible, a crystal structure is implausible, or a physical

property may be unrealistic. It could be argued that there is an inherent bias in

howmaterials scientists think, informed by empirical rules and heuristics. A statistical

approach including non-linear correlations that are difficult to distil into simple

teachable principles may produce highly performant unexpected solutions, espe-

cially when trained on diverse datasets.

The true utility of generativematerials models will be realized when they can perform

as well as or better than human experts. In the spirit of the Turing test, the goal could

be achieved when AI-generated materials are indistinguishable from human-de-

signed ones or are clearly made by machines because of their exceptional structures

and/or properties. This is a high bar to achieve. Even traditional knowledge-led

computational materials design is sometimes criticized for predictions that are

obvious (trivial variants of known systems) or erroneous (compounds that are unsta-

ble or fail to exhibit the predicted structure/properties), e.g., as discussed recently in

the context of autonomous materials synthesis47 and computational materials dis-

covery.48 Of course, full autonomy is not essential, and generative models may still

play a valuable role in providing novel suggestions while keepingmaterials scientists

and complementary computational search strategies ‘‘in the loop.’’

To illustrate a simple use case for a generative model, we consider the inorganic

compound Sb5S4Cl2. It is a chemically plausible hypothetical composition for which

crystal structures have previously been proposed based on data mining (substitution

into known structures) and an evolutionary global search using high-performance
Matter 7, 2355–2367, July 3, 2024 2363



Figure 3. Candidate crystal structures for the inorganic compound Sn5S4Cl2
Three locally stable polymorphs were found by substitution into known prototypes,49 global

optimization using an evolutionary algorithm,49 and a generative LLM for crystals, CRYSTALLM.26 The

total energies, calculated using the MACE-MP universal force field,50 are compared.
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computing.49 Those two crystal structures are compared to one generated by

CRYSTALLM in Figure 3. The generated structure is chemically reasonable at first

glance but, among the three distinct Sn(II) sites, is a rather improbable linear Cl–

Sn–Cl environment. As a result, the calculated total energy of this structure is signif-

icantly higher than for the other candidates. This comparison is based on a single

stochastic sample from the generative model, which has not been conditioned to

target low-energy structures.

Beyond structure generation, models can also be trained to target compounds with

specific chemistry, symmetry, or properties. Two of the inorganic crystals sampled

by MATTERGEN include K3AlCl6, which contains elements in their standard oxidation

states, and NaNiIO6, which features a more exotic Ni4+ cation and the orthoperio-

date (IO 5�
6 ) polyanion. Crystals for both compositions have been reported experi-

mentally.51,52 Interestingly, by targeting compounds with a high bulk modulus,

Re3B2C is predicted as a target layered material with no previous literature reports.

One restriction is that current models are constrained to ordered crystals with small

unit cells owing to the nature of the training data and limitations in the model

complexity.

Practically, the field could benefit from a consistent set of metrics for assessing

generative performance. For vision-based models, a range of metrics has been

used to assess the diversity and quality of generated images, such as the inception

score (IS) and the Fréchet inception distance (FID), contributing significantly to the

field’s advancement.53 In the context of crystal structures, metrics such as the validity

of generated compositions (ensuring atomic arrangements free from overlaps) and

the similarity between generated materials and known materials are employed.25

Additionally, the novelty (or uniqueness) can be quantitatively assessed using an

approach such as the ‘‘StructureMatcher’’ function in PYMATGEN,54 which compares

atomic arrangement based on the reduced chemical formula and space group.30

Such metrics are being combined in MATBENCH-GENMETRICS.55

While the total energy from first-principles calculations is a useful quantity, the inter-

nal energy of a material is a poor indicator of thermodynamic stability or practical

synthesizability in the lab, which involves free energies and chemical kinetics and

depends on the choice of processing route.56,57 As interest grows in metastable

crystals (kinetically stabilized local solutions), the internal energy will not be sufficient

to distinguish poor from promising candidate compounds.
2364 Matter 7, 2355–2367, July 3, 2024
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It will be important to develop and incorporate more comprehensive metrics for

generated materials that encapsulate not only the structural fidelity, novelty, and di-

versity but also synthetic routes to realize them. As these methods mature and

become more accessible with increasing computer power, blind tests could be

developed mirroring those held in the crystal structure prediction community.58
OUTLOOK

Generative models offer a route to navigate high-dimensional, non-linear, material

spaces that are incomprehensible to human scientists. Progress in the development

of generative models of materials has been rapid over the past 6 years and is accel-

erating. At first glance, the underlying statistical techniques appear to depart from

traditional materials modeling techniques. However, digging deeper shows similar-

ities and analogies in the approaches. The choice of how chemistry is represented to

construct effective probability distributions in these deep learning models is critical

to their success.

One challenge for generative AI is interpretability and the extraction of physical prin-

ciples. These are large and complex models that can involve millions of parameters

and can be used as a black-box approach to make predictions. However, the under-

lying learned probability distributions contain fundamental composition-structure-

property relationships that enable the material design. These can be explored and

visualized in different ways to help scientists extend existing physical principles

and perhaps to develop new ones.

While predictions of bulk crystal structures and properties have been the focus of the

first wave of generative models for materials, they are not limited to this purpose.

The sampling of probability distributions may be appropriate for many other combi-

natorial tasks that are difficult to solve using standard approaches. For example,

recent studies reported using generative diffusionmodels to sample reconstructions

for oxide formation on (111) surfaces of Ag59 and to design porous zeolitic mate-

rials.42 Another study trained a GAN to sample multi-component alloy composi-

tions, directing the experimental synthesis of Al5Co8Cu35Fe19Ni23V11
60 which would

be intractable for standard high-throughput approaches. A similar strategy was re-

ported to generate compositionally complex bulk metallic glasses61 and the pro-

cessing parameters to control thin-film microstructure.62

There is no barrier to further extending these techniques to other problems where

multiple configurations must be accessed. Examples include how the structure

and composition of an electrode evolves during the charging cycle of a battery or

how the microstructure of a solid catalyst changes during a multi-step reaction cycle.

Generative approaches can also be combined with optimization techniques such as

Bayesian optimization or reinforcement learning to develop powerful workflows, as

demonstrated for small-molecule design.63 We may be at the proof-of-concept

stage where sensible solutions are an achievement rather than predictions that are

truly novel or exciting to a materials scientist. There is hope, however, for future

generations.
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