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1. Main results

Let H be a separable Hilbert space and let V be a measurable function from R+ to the set of
bounded self-adjoint operators on H. Measurability of V means that the function x 7→ 〈V (x)h, h〉 is
measurable for each h ∈ H. We study the absolutely continuous spectrum of the Schrödinger operator

(1) H = − d2

dx2
+ αV, V ∗ = V,

acting in the space L2(R+,H). Here, α is a real parameter. We impose the condition

(2)

∫
R+

‖V (x)‖2dx <∞.

The domain of H consists of W 2
0 (R+,H)-functions. This class of functions can be viewed as the

countably infinite orthogonal sum of Sobolev spaces W 2
0 (R+). The generalized second derivatives of

W 2
0 (R+)-functions are square integrable and the functions themselves vanish at x = 0.

Definition. We say that an essential support of the absolutely continuous spectrum of the operator
H contains [0,∞), if the spectral projection Eα(Ω) of H corresponding to any Borel set Ω ⊂ [0,∞) is
different from zero Eα(Ω) 6= 0 as soon as the Lebesgue measure of Ω is positive.

Operators with square integrable potentials were studied by P. Deift and R. Killip [1] in the case
where H = C. The main result of [1] states that the absolutely continuous spectrum of the operator
−d2/dx2 + V covers the positive half-line [0,∞), if V ∈ L2(R+).

We consider the case where the space H is infinitely dimensional and give a different proof of the
following theorem by S. Denisov [4].

Theorem 1.1. Let V satisfy the condition (2). Then an essential support of the absolutely continuous
spectrum of the operator (1) contains [0,∞) for almost every α ∈ R.

Besides the article [4], one can also find a close discussion of similar operator families in the papers
[7] and [8]. In all mentioned publications, the properties of the absolutely continuous spectrum are

established for almost every value of the real parameter α. However, if ‖V (x)‖ ≤ C(1+ |x|)−2/3−δ with
δ > 0, then the absolutely continuous spectrum fills the positive half-line R+ for all α (see [5]). Instead
of using hyperbolic pencils considered in [4], we obtain Theorem 1.1 by an application of Lemma 2.1.
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2. Auxiliary lemma

Notations. Throughout the text, Re z and Im z denote the real and imaginary parts of a complex
number z. For a self-adjoint operator B = B∗ and a vector g of a Hilbert space the expression
((B − k − i0)−1g, g) is always understood as the limit(

(B − k − i0)−1g, g
)

= lim
ε→0

(
(B − k − iε)−1g, g

)
, ε > 0, k ∈ R.

The following simple statement plays a very important role in our proof.

Lemma 2.1. Let B be a self-adjoint operator in a separable Hilbert space H and let g ∈ H. Then the
function

η(k) := Im
(

(B − k − i0)−1g, g
)
≥ 0

is integrable over R. Moreover, ∫ ∞
−∞

η(k)dk ≤ π||g||2.

and ∫ ∞
−∞

η(k)

k2 + 1
dk ≤ π||(B2 + I)−1/2g||2.

Proof. Let EB(·) be the spectral measure of the operator B. Then(
(B − z)−1g, g

)
=

∫
R

(t− z)−1d
(
EB(−∞, t)g, g

)
, z ∈ C \ R.

Therefore, according to the Stieltjes-Perron inversion formula,

π−1η(k) =
d

dk

(
EB(−∞, k)g, g

)
, for almost every k ∈ R.

Consequently, for any nonnegative measurable function f on R,∫
R
f(k)η(k)dk ≤ π

∫
R
f(k)d

(
EB(−∞, k)g, g

)
= π

(
f(B)g, g

)
.

�

3. Entropy

Let µ be a nonegative finite Borel measure on the real line R. As any other measure it is decomposed
uniquely into a sum of three terms

µ = µpp + µac + µsc,

where the first term is pure point, the second term is absolutely continuous and the last term is a
continuous but singular measure on R. Obviously, µ(−∞, λ) is a monotone function of λ, therefore,
it is differentiable almost everywhere. In particular, the limit

µ′(λ) = lim
ε→0

µ(λ− ε, λ+ ε)

2ε

exists for almost every λ ∈ R. It is also clear that

µac(Ω) =

∫
Ω
µ′(λ) dλ, ∀Ω ⊂ R,

which means µ′ = µ′ac.
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Let Ω0 = {λ : µ′(λ) > 0} A measurable set Ω ⊂ R is called an essential support of µac, if the
Lebesgue measure of the symmetric difference

Ω04Ω :=
(

Ω0 \ Ω
)
∪
(

Ω \ Ω0

)
is zero. So, an essential support of µac coincides with the set where µ′ > 0 up to a set of measure zero.
As we see, the study of the essential support of the a.c. part of the measure µ is reduced to the study
of the set Ω0 = {λ : µ′(λ) > 0}. Let Ω be a measurable set. One of the ways to show that µ′(λ) > 0
for almost every λ ∈ Ω relies on the study of the quantity

SΩ(µ) :=

∫
Ω

logµ′(λ) dλ.

Due to Jenssen’s inequality, SΩ <∞ for sets of finite Lebesgue measure |Ω| <∞. So, the entropy in
this case can diverge only to the negative infinity.

But if
SΩ(µ) > −∞, while |Ω| <∞,

then
µ′(λ) > 0 a.e. on Ω.

Very often one can obtain an estimate for µ′ by an analytic function from below. In this case we
will use the following statement

Proposition 3.1. Let a function F (λ) 6= 0 be analytic in the neighborhood of an interval [a, b] ⊂ R.
Suppose that

(3) µ′(λ) > |F (λ)|2, for all λ ∈ Ω ⊂ [a, b].

Then

SΩ(µ) :=

∫
Ω

logµ′(λ) dλ ≥ C > −∞,

where the constant C = C([a, b], F ) depends on the interval [a, b] and the function F .

Proof. This proposition follows from the fact that zeros of analytic functions are isolated and have
finite multiplicities. �

In applications to Schrödinger operators, one often has an estimate of the form (3) for a sequence
of measures µn that converges to µ weakly

µn → µ weakly.

In this situation, one can still derive a certain information about the limit measure µ from the infor-
mation about µn.

Definition. Let ρ, ν be finite Borel measures on a compact Hausdorff space, X. We define the
entropy of ρ relative to ν by

(4) S(ρ|ν) =

{
−∞, if ρ is not ν−ac

−
∫
X log( dρdν )dρ, if ρ is ν−ac.

Theorem 3.1. (cf.[6]) The entropy S(ρ|ν) is jointly upper semi-continuous in ρ and ν with respect to
the weak topology. That is, if ρn → ρ and νn → ν as n→∞ weakly, then

S(ρ|ν) ≥ lim sup
n→∞

S(ρn|νn).
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Now, we will use this theorem in order to prove the following statement.

Proposition 3.2. Let a < b. Let F (λ) 6= 0 be a function analytic in the neighborhood of [a, b]. Let µn
be a sequence of finite nonnegative Borel measures on the real line R converging to µ weakly. Suppose
that

µ′n(λ) > |F (λ)|2, for all λ ∈ Ωn ⊂ [a, b],

where the measurable sets Ωn satisfy ∣∣∣[a, b] \ Ωn

∣∣∣ < b− a− ε.

Then µ′(λ) > 0 on a subset of [a, b] whose measure is not smaller than b− a− ε

Proof. Let us denote the characteristic function of the set Ωn by χn. Since L2-norms of χn are
uniformly bounded, this sequence of functions has a weakly convergent subsequence. Therefore without
loss of generality, one can assume that

χn → χ, weakly in L2(R).

This, of course, implies that the corresponding measures χndλ also converge weakly to χdλ. Even
though, R is not compact, we can still use Theorem 3.1 and show (see [7]) that∫

R
log
(µ′(λ)

χ(λ)

)
χ(λ) dλ ≥ lim sup

n→∞

∫
R

log
(µ′n(λ)

χn(λ)

)
χn(λ) dλ > −∞

Thus, we see that µ′ > 0 on the support of the function χ. However, we still need to know how big
this set is. For that purpose, we first observe that∫ b

a
χ(λ) dλ = lim

n→∞

∫
R
χn(λ) dλ ≥ b− a− ε.

On the other hand, it is easy to show that 0 ≤ χ ≤ 1. Therefore, the Lebesgue measure of the support
of the function χ is not smaller than b− a− ε. �

Since we deal with a family of operators depending on a parameter α, we also need a modification of
the previous statement, suitable in the case when measures depend on the parameter α as well. LetM
be the topological space whose elements are nonnegative Borel measures µ on R having the property
µ(R) = 1. We define the topology onM to be the one that is induced by the weak-∗ topology. Finally,
let M(R) be the class of continuous functions from R toM. We are ready to state the following result.

Proposition 3.3. Let a < b. Let F (λ) 6= 0 be a function analytic in the neighborhood of [a, b]. Let
µn(·, α) be a sequence of α-dependent families of finite nonegative Borel measures on R converging to
µ(·, α) weakly for every α ∈ R. Suppose the function α 7→ µn(·, α) belongs to M(R) for each n ∈ N.
Finally, assume that the derivative of µn with respect to dλ satisfies

µ′n(λ, α) > |F (λ)|2, for all (λ, α) ∈ Ωn ⊂ [a, b]× [α1, α2],

where the measurable sets Ωn obey∣∣∣[a, b]× [α1, α2] \ Ωn

∣∣∣ < (b− a)(α2 − α1)− ε.

Then µ′(λ, α) > 0 on a subset of [a, b]× [α1, α2] whose measure is not smaller than (b−a)(α2−α1)−ε.

The proof of this statement is a counterpart of the proof of the preceding proposition and it is left
to the reader as an exercise. A similar statement is proven in [7].

We conclude this section by a discussion of the following simple claim.



ABSOLUTELY CONTINUOUS SPECTRUM OF A TYPICAL OPERATOR 5

Proposition 3.4. Let a < b. Let F (λ) 6= 0 be a function analytic on a neighborhood of the interval
[a, b]. Let µ(·, α) be an α-dependent family of finite nonegative measures on R. Suppose that the
derivatives of µ with respect to the Lebesgue measure dλ satisfy the estimate

µ′(λ, α) ≥ |F (λ)|2(1−Ψ(λ, α)), where

∫ α2

α1

∫ b

a
|Ψ(λ, α)|dλdα < ε/2.

Then

µ′(λ, α) ≥ 1

2
|F (λ)|2, for all (λ, α) ∈ Ω,

where the measureable set Ω obeys

(5)
∣∣[a, b]× [α1, α2] \ Ω

∣∣ ≤ ε.
Proof. According to Chebyshev’s inequality,

Ψ(λ, α) ≤ 1/2

on a set satisfying the condition (5). �

4. The case of a compactly supported V

In this section, we assume that V belongs to the class V described below.

Definition. We say that a bounded measurable function V from R+ to the set of bounded self-
adjoint operators on H belongs to the class V if

1) there is a bounded interval [0, R] containing the support of V and such that V (x + R/2) is an
odd function of x:

(6) V (x+R/2) = −V (−x+R/2), ∀x ∈ [0, R/2].

2) the range of the operator V (x) is a finite dimensional subspace H0 ⊂ H which stays the same
when one changes x.

Our proof of Theorem 1.1 is based on the relation between the derivative of the spectral measure and
the so called scattering amplitude. Both objects should be introduced properly. While the spectral
measure can be defined for any self-adjoint operator, the scattering coefficient will be introduced only
for a Schrödinger operator. Let f be a square integrable function from R+ to H. It is very well known
that the quadratic form of the resolvent of H can be written as a Cauchy integral

((H − z)−1f, f) =

∫ ∞
−∞

dµ(t)

t− z
, Im z 6= 0.

The measure µ in this representation is called the spectral measure of H corresponding to the element
f .

Let us introduce the scattering amplitude. Since the support of the potential V is compact, there
exists an R, such that V (x) = 0 for x > R. Take any bounded compactly supported function f that
also vanishes for x > R. Then

(7)
[
(H − z)−1f

]
(x) = eik|x|Af (k), for x > R, k2 = z, Im k ≥ 0, Af (k) ∈ H.

Clearly, the relation

(8) µ′(λ) = π−1 lim
z→λ+i0

Im ((H − z)−1f, f) = π−1 lim
z→λ+i0

Im z||(H − z)−1f ||2

implies the formula

(9) πµ′(λ) =
√
λ‖Af (k)‖2, k2 = λ > 0.
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To prove (9), define χX to be the characteristic function of a set X ⊂ R+. Since the limit

lim
z→λ+i0

||χ[0,b](H − z)−1f ||2

(along the vertical directions) exists and is finite for each b > 0, we infer from (8) that

µ′(λ) = π−1 lim
z→λ+i0

Im z||χ[R,∞)(H − z)−1f ||2.

Now (9) follows by (7), since

||χ[R,∞)(H − z)−1f ||2 =
e−2Im kR

2Im k
‖Af (k)‖2, for Im k > 0.

The remaining arguments in this paper will be devoted to a lower estimate of ‖Af (k)‖.

For our purposes, it is sufficient to assume that f is the product of the characteristic function of
the unit interval [0, 1] times a unit vector τ ∈ H. Traditionally, H is viewed as an operator obtained
by a perturbation of

H0 = − d2

dx2
.

In its turn, (H − z)−1 can be viewed as an operator obtained by a perturbation of (H0 − z)−1. The
theory of such perturbations is often based on the second resolvent identity

(10) (H − z)−1 = (H0 − z)−1 − (H − z)−1 αV (H0 − z)−1,

which turns out to be useful for our reasoning. As a consequence of (10), we obtain that

(11) Af (k) = F0(k)τ −Ag(k), z = k2 + i0, k > 0,

where g(x) = αV (H0 − z)−1f and the number F0(k) ∈ C is defined by

(12) (H0 − z)−1f = eik|x|F0(k)τ, for x > 1.

We will shortly show that, without loss of generality, one can assume that V (x)τ = 0 inside the unit
interval [0, 1]. In this case,

(13) g = F0(k)hk, where hk(x) = αeik|x|V τ.

According to (11),

2‖Af (k)‖2 ≥ |F0(k)|2 − 2‖Ag(k)‖2,
which can be written in the form

(14) 2πµ′(λ) ≥ |F0(k)|2
(√

λ− 2 Im
(

(H − z)−1hk, hk

))
, z = λ+ i0,

due to (9) and (13). Therefore, in order to establish the presence of the absolutely continuous spectrum,

we need to show that the quantity Im
(

(H − z)−1hk, hk

)
is small.

Let us define η setting

α2k−2η(k, α) :=
1

k
Im
(

(H − z)−1hk, hk

)
≥ 0, z = k2 + i0.

Obviously, η is positive for all real k 6= 0, because we agreed that z = k2 ± i0 if ±k > 0. This is very
convenient. Since η ≥ 0, we can conclude that η is small on a rather large set if the integral of this
function is small. That is why we will estimate

(15) J(V ) :=

∫ ∞
−∞

∫ ∞
−∞

η(k, α)

(α2 + k2)

|k| dkdα
(k2 + 1)

=

∫ ∞
−∞

∫ ∞
−∞

η(k, tk)

(k2 + 1)(t2 + 1)
dkdt.
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We will employ a couple of tricks, one of which is related to the involvment of an additional parameter
ε. Instead of dealing with the operator H, we will deal with H + εI where ε > 0 is small. We will
first obtain an integral estimate for the quantity

ηε(k, α) =
k

α2
Im
(

(H + ε− z)−1hk, hk

)
, z = k2 + i0.

Then, since

η(k, α) = lim
ε→0

ηε(k, α) a.e. on R× R,

we conclude by Fatou’s Lemma that

J(V ) ≤ lim inf
ε→0

∫ ∞
−∞

∫ ∞
−∞

ηε(k, α)

(α2 + k2)

|k| dkdα
(k2 + 1)

.

The second trick is to set α = kt and represent ηε in the form

(16) ηε(k, kt) = Im
(

(B + 1/k − i0)−1H−1/2
ε v, H−1/2

ε v
)

where v = V τ , Hε = −d2/dx2 + εI and B is the bounded selfadjoint operator defined by

B = H−1/2
ε

(
−2i

d

dx
+ tV

)
H−1/2
ε .

This operator is bounded, because H
−1/2
ε is a continuous mapping from L2(R+,H) to W 1

0 (R+,H),

while the middle factor (−2i ddx + tV ) is a continuous mapping from W 1
0 (R+,H) to L2(R+,H). Since

the quadratic form of the operator B is real, this operator is symmetric, and hence it is self-adjoint.
In order to justify (16) at least formally, one has to introduce the operator U of multiplication by

the function exp(ikx). Using this notation, we can represent ηε in the following form

ηε(k, tk) = kIm
(
U−1(H + ε− z)−1Uv, v

)
, z = k2 + i0.

Since we deal with a unitary equivalence of operators, we can employ the formula(
U−1(H + ε− z)−1Uv, v

)
=
(

(U−1HU + ε− z)−1v, v
)
, z = k2 + i0.

On the other hand, since H is a differential operator and U is an operator of multiplication, the
commutator [H,U ] := HU − UH can be easily found:

(17)
[
H,U

]
= kU

(
−2i

d

dx
+ k
) ∣∣∣

D(H)
on D(H).

Using the formula U−1HU = H + U−1[H,U ], we infer from (17) that

U−1HU + ε− z = Hε + k
(
−2i

d

dx
+ tV

)
= H1/2

ε (I + kB)H1/2
ε .

If k̃ belongs to the upper half plane then so does −1/k̃. Consequently,

(18) k
(
U−1(H + ε− z)−1Uv, v

)
=
(
H−1/2
ε (B + 1/k − i0)−1H−1/2

ε v, v
)
, z = k2 + i0.

In fact, (18) holds for Im k > 0 when U is not a unitary operator, but we only need it for k ∈ R.
Since B is a self-adjoint operator, π−1ηε(k, kt) coincides with the derivative of the spectral mea-

sure of the operator B corresponding to the element H
−1/2
ε v. According to Lemma 2.1, the latter

observation implies that ∫ ∞
−∞

ηε(k, kt)

(1 + k2)
dk ≤ π

(
(B2 + I)−1H−1/2

ε v,H−1/2
ε v

)
,



8 ARI LAPTEV AND OLEG SAFRONOV

which leads to

(19)

∫ ∞
−∞

ηε(k, kt)

(1 + k2)
dk ≤ π

(
B−1H−1/2

ε v,B−1H−1/2
ε v

)
= π||B−1H−1/2

ε v||2,

provided B is invertible. Our further arguments will be related to the estimate of the quantity in the
right hand side of (19). We will show now that B has an unbounded inverse having the property

(20) lim
ε→0
||B−1H−1/2

ε v||2 ≤
∫
R+

‖V (x)‖2dx, D(B−1) = Ran(B) ⊂W 1
0 (R+,H).

Our proof of (20) is based on the representation

(21) B−1H−1/2
ε v = H1/2

ε T−1v,

where T ⊂ T ∗ is the first order differential (symmetric) operator defined by

T = −2i
d

dx
+ tV, D(T ) = D(H1/2

ε ) = W 1
0 (R+,H).

As we will see, H
−1/2
ε is a one-to-one mapping of D(T−1) onto D(B−1), and (21) holds for all

v ∈ D(T−1). To establish (21), observe that the equality B = H
−1/2
ε TH

−1/2
ε leads to the rela-

tions Ran(B) ⊂ D(H
1/2
ε ) and H

1/2
ε B = TH

−1/2
ε . The latter of the two relations clearly implies (21)

provided T is invertible and v ∈ D(T−1).
On the other hand, one can establish invertibility of T by deriving an explicit formula for T−1

(which is also an unbounded operator). For that purpose we define U0 to be the unitary operator of
multiplication by the solution of the differential equation

d

dx
U0(x) =

it

2
U0(x)V (x), U0(0) = I.

The object on the right hand side is the composition of two operators in H. The solution of this
differential equation exists on all of R+ since the equation is linear and V ∈ V. Now we see that

T = −2iU−1
0

[ d
dx

]
U0, and T−1 =

i

2
U−1

0

[ d
dx

]−1
U0.

Since [ ddx ]−1 is just the simple integration with respect to x and d
dxU0τ = i

2 tU0V τ ,[
T−1v

]
(x) =

i

2
U−1

0 (x)

∫ x

0
U0(y)V (y)τdy =

1

t
U−1

0 (x)(U0(x)− I)τ =
1

t
(I − U−1

0 (x))τ.

(22)

Note that due to the condition (6), the function T−1v is compactly supported, which leaves no doubt

about the relation v ∈ D(T−1). Combining (21) with (22) and using the fact that ‖H1/2
ε u‖2 =

‖ ddxu‖
2 + ε‖u‖2 for all u ∈ D(H

1/2
ε ), we conclude that

(23) lim
ε→0
||B−1H−1/2

ε v||2 = lim
ε→0
||H1/2

ε T−1v||2 =

∫
R+

‖V (x)U−1
0 (x)τ‖2dx.

Thus, (20) is established. The relations (19), (20) lead to the inequality

J(V ) ≤ π2

∫
R+

‖V (x)‖2dx,

where the quantity J(V ) from (15). However, we can say more:
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Lemma 4.1. Let T > 0. Let V be a potential of the class V such that

(24) V (x)τ = 0, for all x < T.

Then

(25) J(V ) ≤ π2

∫ ∞
T
‖V (x)‖2dx.

Proof. If (24) holds, then U0(x)τ = τ for all x < T . Therefore, the right hand side of (23) can be
estimated as follows ∫

R+

‖V (x)U−1
0 (x)τ‖2dx ≤

∫ ∞
T
‖V (x)‖2dx.

�

5. Approximations of potentials and spectral measures

Proposition 5.1. Let T > 0. Let Ṽ be the potential

(26) Ṽ (x) = V (x)− 〈·, τ〉V (x)τ − 〈·, V (x)τ〉τ + 〈V (x)τ, τ〉〈·, τ〉τ, for all x < T,

and let

(27) Ṽ (x) = V (x), for all x > T.

Then

(28)
(
H − z

)−1
−
(
− d2

dx2
+ αṼ − z

)−1
∈ S1

is a trace class operator for any z with Im z > 0.

Proof. Using Hilbert’s identity, we obtain(
H − z

)−1
−
(
− d2

dx2
+ αṼ − z

)−1
= α

(
H − z

)−1
(Ṽ − V )

(
− d2

dx2
+ αṼ − z

)−1
.

Consequently, it is sufficient to prove that

Γ :=
(
− d2

dx2
− z
)−1

(Ṽ − V )
(
− d2

dx2
− z
)−1
∈ S1.

Observe now that Ṽ (x)− V (x) is a finite rank operator of the form

Ṽ (x)− V (x) = w1(x)〈·, e1(x)〉e1(x) + w2(x)〈·, e2(x)〉e2(x), ,

where wj ∈ L1(R+) are real valued compactly supported functions and ej(x) are unit vectors in H.

Since (− d2

dx2
− z)−1 is an integral operator whose integral kernel r(x, y) satisfies

sup
x

∫ ∞
0
|r(x, y)|2dy + sup

y

∫ ∞
0
|r(x, y)|2dx <∞,

the operators Gj(z) defined by[
Gj(z)u

]
(x) =

∫ ∞
0
|wj(x)|1/2〈r(x, y)u(y), ej(x)〉ejdy

are Hilbert-Schmidt operators. It remains to note that

Γ = G∗1(z̄)Ω1G1(z) +G∗2(z̄)Ω2G2(z)

where Ωj are bounded. �

According to Birman’s theorem (see [2],[3]), we can now state the following result.
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Proposition 5.2. Let Ṽ be defined as in (26). Then the absolutely continuous parts of the operators

H and − d2

dx2
+ αṼ are unitary equivalent.

Let δ > 0. The latter proposition allows one to assume that there is a T > 0 having the following
properties:

1) V (x)τ = 0 for all x < T .
2) the value of the integral

∫∞
T ‖V (x)‖2dx is smaller than δ.

If that is not true, we replace V by Ṽ defined by (26) for a sufficiently large T > 0.

Now we use the inequality (14) and employ Proposition 3.4 with

F (λ) = (2π)−1/2F0(
√
λ)λ1/4 and Ψ(λ) =

2Im((H − z)−1hk, hk)√
λ

.

According to Lemma 4.1, we obtain the following result.

Theorem 5.1. Let 0 < a < b < ∞, let 0 < α1 < α2 < ∞ and let T > 1. For any ε > 0 there is a
number δ > 0 such that for any potential V of the class V having the properties

1) V (x)τ = 0 for all x < T, and 2)

∫ ∞
T
‖V (x)‖2dx < δ,

the derivative µ′(λ) = µ′(λ, α) of the spectral measure satisfies the inequality

µ′(λ, α) ≥ (4π)−1|F0(
√
λ)|2λ1/2, for all (λ, α) ∈ Ω,

where the measurable set Ω obeys ∣∣[a, b]× [α1, α2] \ Ω
∣∣ ≤ ε.

The proof of the next statement is left to the reader as an exercise.

Proposition 5.3. Let V be a measurable operator-valued function obeying∫
R+

‖V (x)‖2dx <∞.

Assume that

(29) V (x)τ = 0, for all x < T,

where T > 0 is a fixed number. Then there is a sequence of compactly supported operator-valued
functions Vn ∈ V having the following three properties:

1)

Vn(x)τ = 0, for all x < T,

2)

(30)

∫ ∞
T
‖Vn(x)‖2dx ≤ 2

∫ ∞
T
‖V (x)‖2dx,

and
3)∫ K

0
‖
(
Vn(x)− V (x)

)
u(x)‖2dx→ 0, as n→∞, for any u ∈ L∞(R+,H) and any K > 0.

Another statement, that we are going to use, deals with the spectral measures of operators whose
potentials Vn approximate the function V .
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Proposition 5.4. Let V ∈ L2(R+,H) and Vn ∈ L2(R+,H) obey (30) for some T > 0. Let µn and
µ be the spectral measures of the operators Hn and H with potentials αVn and αV , correspondingly.
Assume that∫ K

0
‖
(
Vn(x)− V (x)

)
u(x)‖2dx→ 0, as n→∞, for any u ∈ L∞(R+,H) and any K > 0.

Then

µn → µ weakly, as n→∞, for all α ∈ R.

The proof of this proposition is rather standard. First observe that the set of finite linear combina-

tions of functions of the form φz(t) = Im
(

1/(t − z)
)

with Imz > 0 is dense in the space of functions

that are continuous on R and decay at infinity. Consequently, it suffices to show that∫
R
φz(t)dµn(t)→

∫
R
φz(t)dµ(t), as n→∞

for each z ∈ C+. According to the definition of the measures µn and µ, that is the same as showing
that

Im
(

(Hn − z)−1f, f
)
→ Im

(
(H − z)−1f, f

)
, as n→∞.

The latter follows from the identity(
(Hn − z)−1f, f

)
−
(

(H − z)−1f, f
)

=
(

(Hn − z)−1(V − Vn)(H − z)−1f, f
)
,

since the condition (H − z)−1f ∈W 1
0 (R+,H) implies that ‖(V − Vn)(H − z)−1f‖ → 0 as n→∞.

�

According to Proposition 3.2, the assertion below follows from Theorem 5.1 combined with Propo-
sitions 5.3 and 5.4.

Theorem 5.2. Let 0 < a < b < ∞, let 0 < α1 < α2 < ∞ and let T > 1. For any ε > 0 there is a
number δ > 0 such that for any potential V ∈ L2(R+,H) having the properties

1) V (x)τ = 0 for all x < T, and 2)

∫ ∞
T
‖V (x)‖2dx < δ,

the derivative µ′(λ) = µ′(λ, α) of the spectral measure is positive

(31) µ′(λ, α) > 0, for all (λ, α) ∈ Ω,

where the measurable set Ω obeys ∣∣[a, b]× [α1, α2] \ Ω
∣∣ ≤ ε.

Let Eα(·) be the operator-valued spectral measure of H. Let also

Ωα = {λ ∈ [a, b] : (λ, α) ∈ Ω}

be the cross-section of Ω. One can conclude from the inequality (31) that, for any measurable subset
X ⊂ [a, b], the condition Eα(X) = 0 implies the relation∣∣Ωα ∩X

∣∣ = 0.

Using the unitary equivalence claimed by Proposition 5.2, we obtain

Theorem 5.3. Let 0 < a < b < ∞, let 0 < α1 < α2 < ∞. Assume that V ∈ L2(R+,H). Then for
any ε > 0, there is a measurable set Ω(ε) ⊂ [a, b]× [α1, α2] obeying∣∣[a, b]× [α1, α2] \ Ω(ε)

∣∣ ≤ ε,
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such that, for any Borel set X ⊂ [a, b] and the cross-section Ωα(ε) defined by

Ωα(ε) = {λ ∈ [a, b] : (λ, α) ∈ Ω(ε)},
the condition Eα(X) = 0 implies the equality∣∣Ωα(ε) ∩X

∣∣ = 0.

Take now a monotonically decreasing sequence εn converging to 0, as n→∞, and set

Ω̃ =

∞⋃
n=1

Ω(εn).

Obviously, Ω̃ is a subset of full measure in [a, b]× [α1, α2]. Consequently,

Ω̃α = {λ ∈ [a, b] : (λ, α) ∈ Ω̃}
is a subset of full measure in [a, b] for almost every α ∈ [α1, α2].

Take now an arbitrary Borel subset X ⊂ [a, b]. If |X ∩ Ω̃α| > 0 then there is an integer number n
for which ∣∣Ωα(εn) ∩X

∣∣ > 0.

The latter condition implies that Eα(X) 6= 0. Thus, the essential support of the absolutely continuous
spectrum of H contains the interval [a, b] for all α such that

(32) |Ω̃α| = b− a.
It remains to note that (32) holds for almost every α ∈ [α1, α2].

This completes the proof of Theorem 1.1
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