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Abstract

This thesis investigates the recovery of a spectrally sparse signal (SSS) from partially observed,

noisy data. Traditional compressed sensing methods encounter a basis mismatch issue due to

the finite discrete dictionary. To address this, recent literature introduces grid-free approaches

that exploit frequency sparsity in a continuous manner. Among these, the enhanced Hankel

matrix method stands out for its improved resolution. Moreover, the algorithm involves the

Hankel matrix as a whole, ensuring e�cient storage and computational processes. Despite these

advancements, the method shares a common drawback with Cadzow’s method: reconstruction

accuracy is compromised by the repeated elements in the Hankel structure. This issue is critical

in scenarios where precise signal reconstruction is essential. Additionally, these methods face

challenges in convergence speed, particularly when first-order methods are employed, as they

tend to converge slowly in cases of low sampling ratios or significant noise.

To address these issues in spectral compressed sensing, this thesis introduces a new nonconvex

optimization framework. This framework measures reconstruction error in the signal space rather

than in the lifted Hankel space and incorporates an adjustable Hankel constraint parameter

tailored to noise levels. To improve the slow convergence and recovery ability of standard

proximal gradient (PG) methods, three advanced PG-based algorithms are proposed: low-rank

projected proximal, Hankel projected proximal, and Hessian proximal gradient. These algo-

rithms are meticulously designed to utilize the intrinsic low-rank and Hankel structures of the

problem, enhancing computational e�ciency. This e�ciency is supported by a Julia package,

available at https://github.com/xiyao65/multiblockHankelMatrices.jl. Numerical simu-

lations demonstrate a significant improvement in both e�ciency and recovery accuracy. This

enhancement is particularly notable in scenarios with substantial noise or low sampling ratios,

underscoring the methods’ robustness and applicability for large-scale SSS recovery tasks.
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Nomenclature

Roman Symbols:

a scalar

a vector

A matrix

In⇥n n-by-n identity matrix

R, Rn
, Rm⇥n set of real numbers, vectors, and matrices

C, Cn
, Cm⇥n set of complex numbers, vectors, and matrices

aij, A(i, j) (i, j) entry of a matrix

kak
p

p-norm of a vector

kAk
p
, kAk

F
p-norm and Frobenius norm of a matrix

kAkT , kAkH transpose and conjugate transpose of a matrix

rank(A), trace(A) rank and trace of a matrix

vec(A) vectorization of a matrix

h·, ·i inner product

Calligraphic letters:

H Hankel operator

H⇤ adjoint operator of Hankel operator

H† Penrose Pseudoinverse operator of Hankel operator

P⌦ sampling operator corresponding to the index set ⌦

T truncated SVD operator
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I identity mapping

List of Abbreviations:

ANM Atomic Norm Minimization

CS Compressed Sensing

EMaC Enhanced Matrix Completion

FFT Fast Fourier Transform

FIHT Fast Iterative Hard Thresholding

HPG Hessian Proximal Gradient

HPPG Hankel Projected Proximal Gradient

ISTA Iterative Shrinkage-thresholding Algorithm

LPPG Low-rank Projected Proximal Gradient

MBH Multi-block Hankel

MLR Maximum Likelihood Estimation

MMV Multiple Measurement Vector

MRI Magnetic Resonance Imaging

NMR Nuclear Magnetic Resonance

NMSE Normalized Mean Squared Error

PGD Proximal Gradient Descent

PG Proximal Gradient

SCS Spectral Compressed Sensing

SDP Semidefinite Programming

SSS Spectrally Sparse Signal

SVD Singular Value Decomposition

SVT Singular Value Thresholding

Remark 1. To reduce notational clutter, the Hankel operation H(·) on X is shorthanded as
Hx := H(x) for all x 2 X . The same rule applies to P⌦(·), H⇤(·), etc.
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Chapter 1

Background and Contributions

1.1 Motivations and Objectives

A large class of practical applications involves signals that can be e↵ectively modeled or

approximated as a weighted superposition of several complex sinusoids, termed spectrally sparse

signals (SSSs). The characteristic feature of these signals is their spectral sparsity, indicated by a

limited number of spectral components. However, the data acquisition devices are often limited

by physical and hardware constraints, precluding full sampling with the desired resolution. It is

necessary to develop spectral compressed sensing (SCS) techniques [8, 9] for e�cient recovery

of undermined frequencies from a subset of regularly time-spaced samples. The SCS plays

a pivotal role in various fields. For example, in medical imaging, it contributes to enhanced

resolution and reduced scan times [10], while in radar imaging, SCS facilitates more accurate

object detection [11]. Similarly, in fluorescence microscopy [12], wireless communication channel

estimation [13], and time series prediction [14], the SSSs are widely used. Additionally, these

signals can exhibit damping, a decline in amplitude over time. This decay, represented as a sum

of damped complex sinusoids, is particularly evident in applications such as biological nuclear

magnetic resonance (NMR) spectroscopy [15] and linear recurrent time series [14]. The decaying

signal presents additional recovery challenges, such as increased sensing complexity and noise

sensitivity. Addressing these challenges is crucial, underscoring the importance of advancing

3



CHAPTER 1. BACKGROUND AND CONTRIBUTIONS

SCS techniques, a primary focus of this thesis.

In numerous scenarios, the successful recovery of an object is feasible with a sample count

significantly lower than its ambient dimension, due to the object’s sparse representation within

the transform domain. The foundational concept of sparse methods in compressed sensing (CS),

with historical roots extending to the previous century, was notably advanced by early works such

as Gorodnitsky and Rao [16]. Subsequent developments in CS, particularly through tractable

approaches utilizing convex surrogate methodologies [8, 17], have not been restricted by prior

model order knowledge and are recognized for their robustness against noise. The evolution of

CS has witnessed the advent of diverse algorithmic strategies based on finite discrete dictionaries.

Among these, iterative thresholding [18], subspace pursuit [19], and the CoSaMP algorithm [20]

are noteworthy. However, despite these advancements, CS continues to face a fundamental

limitation due to its reliance on sparse representation within a finite discrete dictionary. This

limitation becomes particularly pronounced in scenarios where actual parameters are aligned

with a continuous dictionary. The phenomenon of frequency leakage, a direct consequence of

this misalignment, arises when actual frequencies do not align with the predetermined grid.

This discrepancy poses notable challenges in accurately capturing the true essence of signals, as

explored in studies [21, 22].

The SCS for continuous frequencies marks a significant shift from traditional CS techniques [8]

by not constraining frequencies to a predetermined grid. The SCS problem is intrinsically

linked to line spectral estimation, or harmonic retrieval, which aims to extract the underlying

frequencies of an object from its full-time-domain samples. This methodology finds applications

across various signal processing domains, including radar localization systems [23], array imaging

systems [24], and wireless channel sensing [25, 26]. Accurate estimation of the time-domain

representation of an object enables the identification of underlying frequencies through harmonic

super-resolution techniques. The field of line spectral estimation has a rich history of research,

encompassing a wide range of approaches, as detailed in [27]. A prominent nonparametric

method in this context is the fast Fourier transform (FFT) [28]. However, the quest for higher

accuracy and resolution, driven by increasing computing power, has led to the development of

4



CHAPTER 1. BACKGROUND AND CONTRIBUTIONS

parametric methods like maximum likelihood estimation (MLE) in which the main di�culty

comes from the nonlinearity and nonconvexity concerning the frequency parameters. To address

these complexities, subspace-based methods such as MUSIC [29], Prony’s method [30], and the

matrix pencil approach [31] have been utilized. These techniques leverage the shift-invariance

characteristic of harmonic structures, where consecutive segments of time-domain samples reside

in the same subspace, regardless of the segment’s starting point. Nonetheless, these methods

face limitations in handling incomplete time-domain samples and often exhibit sensitivity to

noise and outliers [32], which poses significant challenges in practical applications.

In contrast, when faced with missing data, the task evolves into super-resolution CS [33, 34],

which is focused on the finest resolution of estimated parameters despite incomplete datasets.

This approach, by harnessing spectral sparsity, presents an optimization framework for signal

recovery that circumvents frequency discretization issues inherent in on-grid methods. The

groundbreaking works [33, 34] established a robust theoretical and algorithmic foundation,

introducing a convex optimization approach to handle continuous-valued frequencies. To date,

several convex, gridless sparse methods have also been developed, including atomic norm (or

equivalently total variation norm) methods [33,35–39], enhanced matrix completion (EMaC) [2],

and covariance fitting approaches [40–42]. These methods aim to optimize a structured low-rank

matrix explicitly or implicitly, with its low-rankness attributed to spectral sparsity. Specifically,

atomic norm and covariance fitting methods are associated with a low-rank positive semidefinite

(PSD) Toeplitz matrix, whereas EMaC is based on a low-rank Hankel matrix. In parallel, MLE

approaches [43,44] tackle frequency estimation in a nonconvex manner. Unfortunately, these

PSD and MLE methods are not feasible for large-scale CS due to their high computational

complexity [45]. Furthermore, extending these methods to recover damped exponential signals

remains an unresolved challenge in the field.

To adapt SCS to large-scale general SSSs, including damped and multi-dimensional signals, our

focus is on the EMaC approach for two main reasons: 1) EMaC leverages the Vandermonde

decomposition to extend the atomic set provided by atomic norm minimization [35], making

it applicable to damped signals [46]; 2) It formulates the reconstruction of SSSs as a low-rank

5
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matrix completion problem by arranging data into a multi-fold Hankel structure, enhancing

both storage and computational e�ciency. After recovering the corrupted and subsampled SSSs

in the time domain, which means the matrix approximation, the line spectral estimation [47]

methods can be applied to estimate the original frequencies and coe�cients. However, structured

low-rank approximation problems, such as those encountered in EMaC, are known to be NP-hard

global optimization challenges [48]. Specifically, the number of stationary points in Hankel

low-rank approximation problems increases polynomially with size n and exponentially with

rank r [49]. Inspired by low-rank completion techniques [50], EMaC addresses the Hankel

matrix completion problem via nuclear norm minimization, posing it as a convex problem with

recovery guarantees. This approach has gained popularity for large-scale problems, particularly

due to the computational e�ciency o↵ered by the compact Hankel structure, which supports

e�cient singular value decomposition (SVD) [51]. An alternative approach involves the Burer-

Monteiro heuristic [52, 53], where low-rank matrices are represented through a bilinear outer

product, circumventing explicit matrix SVD. Nevertheless, it is important to note that worst-case

analyses [45] indicate the potential failure of these convex optimizations even with a single

missing element. Furthermore, nuclear norm-based approaches generally necessitate the full

SVD of the enhanced matrix, which can be prohibitive for large-scale applications. Consequently,

various non-convex methods [14,54–58] employing hard rank constraints have been developed

to address low-rank Hankel matrix completion problems more directly.

While EMaC-based algorithms are capable of handling general SSSs, they encounter two primary

limitations. First, the convergence to critical points remains challenging despite the use of

truncated SVD to reduce computational complexity. This di�culty arises from both the number

of iterations and the computation complexity per iteration. The Cadzow’s algorithm [14,54]

employs alternating projections between Hankel matrices and low-rank matrices. An attempt to

achieve quadratic convergence through an additional Newton-type step [59], based on common

regularity intersection conditions [60, 61] of Cadzow’s algorithm, has been hindered by high

computational costs. Acceleration methods inspired by Riemannian optimization [62] and

direct optimization on component matrices [55, 56] have been explored, with fast iterative hard

thresholding (FIHT) [57] and projected gradient descent (PGD) [56] showing e�ciency and
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convergence guarantees. However, these algorithms often exhibit slow convergence, particularly

in cases of low sampling or high noise levels. Second, EMaC-based algorithms demonstrate

sensitivity to noise. This issue stems from the formulation of the objective SSS in enhanced

matrix norm, either implicitly or explicitly, rather than in its intrinsic vector form. Such a

formulation leads to a biased weighted norm due to repeated elements in the induced Hankel

matrix [14, 58, 63,64], complicating the accurate recovery of signals in noisy environments.

To summarize, the application of enhanced low-rank Hankel matrix approximation in the context

of large-scale, multi-dimensional, and possibly damped SSS recovery encounters three primary

challenges:

1. Biased Norm: The presence of a biased weighted norm in the induced Hankel matrix

leads to amplified bias in signal estimation, particularly in scenarios with large noise levels

and signal sizes.

2. Computational Complexity per Iteration: There are significant computational costs

involved in solving the structured low-rank approximation problem or accelerating the

convergence speed. This computational challenge becomes more pronounced as signal size

increases, leading to increased processing time and resource requirements.

3. Slow Convergence: The convergence speed is often hindered by the condition number

of the Hessian matrix associated with the quadratic terms in the objective function. This

condition number is influenced by the signal size and sampling ratio, contributing to slower

convergence rates.

1.2 Original Contributions and Outline of the Thesis

To address the challenges previously identified in the recovery of SSSs, this thesis introduces

fast proximal gradient-based approaches, utilizing the low-rank Hankel matrix structure and an

unweighted norm to enhance signal recovery performance. The main contributions of this thesis

are summarized as follows:
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1. E�cient Implementations: The Hankel structure is crucial for fast computations. To

utilize this, a Hankel matrix package has been developed in Julia, a high-level, high-

performance dynamic programming language for numerical computing. This package

includes essential functions such as compact Hankel matrix construction, fast matrix-

vector multiplications, truncated SVD, and the adjoint operator of Hankel mapping

on low-rank matrices. It supports e�cient implementation of the proposed algorithms

and is extendable to multilevel Hankel matrices. The package is available at https:

//github.com/xiyao65/multiblockHankelMatrices.jl.

2. Accurate Formulations: Our approach aligns more accurately with the original problem

model in two key aspects. Unlike conventional Hankel-based algorithms that represent the

SSS in an enhanced matrix form, our method utilizes a vector form representation, thereby

reducing bias from di↵erent weights induced by the Hankel operator [14, 58]. Addition-

ally, we incorporate a Hankel enforcement parameter in our unconstrained optimization

framework to adapt to various noise levels, enhancing reconstruction accuracy in noisy

environments.

3. Fast and Convergent Proximal Gradient (PG) Algorithms for Di↵erent Scenar-

ios: This thesis introduces three distinct PG-based algorithms that converge toward critical

points without the need for initialization constraints, demonstrating exceptional recovery

capabilities in a nonconvex setting. These include the low-rank projected proximal gradient

(LPPG), Hankel projected proximal gradient (HPPG), and Hessian proximal gradient

(HPG) algorithms. The standard PG approach [6], ensures a monotonically decreasing

function with a fixed step size related to the length of signal. However, it often su↵ers from

slow convergence, particularly in challenging scenarios characterized by large-scale and

outliers. To mitigate this slow issue, the LPPG algorithm has been developed to accelerate

convergence with a larger decrease in the objective function, thereby enhancing both the

speed and accuracy of reconstruction. Additionally, the HPPG algorithm is specifically

designed for low sampling situations, enabling improved reconstruction accuracy and faster

convergence by utilizing larger step sizes through the exploitation of the Hankel structure.

Lastly, the HPG algorithm is introduced to further expedite convergence by leveraging the
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Hessian matrix of the quadratic terms in the objective function. This second-order method

is particularly robust against large condition numbers of the Hessian matrix, which are

influenced by the Hankel enforcement parameter, signal size, and sampling ratio, making it

highly e↵ective in complex recovery tasks. All these three algorithms exploit the low-rank

Hankel structure, thereby enhancing computational e�ciency.

The remainder of this thesis is divided into the following three main parts:

1. Background: In Chapter 2, a review of the field of SSS recovery is provided. This

chapter covers two typical traditional gridless SCS methods, atomic norm minimization

and enhanced matrix completion approaches. It also delves into formulations related

to low-rank Hankelization and critically assesses the limitations of existing algorithms,

setting the stage for the introduction of novel methodologies.

2. Methodologies: This section elaborates on the implementation and e�cacy of the

proposed algorithms.

• Chapter 3 is dedicated to the fast computations of multi-block Hankel matrices, a

foundational aspect for the e�cient implementation of our algorithms.

• Chapter 4 introduces the LPPG method, tailored to tackle the challenges of large-scale

data and significant noise in SSS recovery. This chapter serves as the foundation for

the SSS recovery problem via the PG-based methods, detailing components such as

the optimization framework’s objective function, a modified PG method for consistent

step sizes, and a convergence analysis of the nonconvex PG-based algorithm.

• In Chapter 5, the HPPG approach is presented. This method addresses the computa-

tional complexities identified in LPPG and is specifically optimized for low-samplingng

scenarios to enhance reconstruction accuracy and speed up convergence.

• Chapter 6 discusses the HPG, a second-order method designed to improve convergence

rates while ensuring accurate reconstruction. This method is particularly e↵ective

for reconstructing SSSs from heavily noisy data and with uncertain model orders.
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3. Conclusions: Chapter 7 concludes the thesis, providing a comparative evaluation of the

three proposed algorithms. This chapter highlights their distinct advantages and explores

potential directions for future research in the field.

These proposed PG-based approaches systematically address the challenges in SSS recovery,

o↵ering innovative solutions and advancing the field.

1.3 Publications

The content of this thesis mainly included three published work and one submitted journal

work.

Yao, Xi, and Wei Dai. “A Projected Proximal Gradient Method for E�cient Recovery of

Spectrally Sparse Signals.” 2023 31st European Signal Processing Conference (EUSIPCO).

IEEE, 2023. (Related to Chapter 4).

Yao, Xi, and Wei Dai. “A Preconditioned Hessian Proximal Algorithm for Spectral Compressed

Sensing.” 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP). IEEE, 2023. (Related to Chapter 6).

Yao, Xi, and Wei Dai. “Accelerated Recovery of Spectrally Sparse Signals Via Modified Proximal

Gradient in Hankel Space.” 2024 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2024.(Related to Chapter 5).

Yao, X., Wei, D. “A Low-rank Projected Proximal Gradient Method for Spectral Compressed

Sensing.” arXiv:2405.07739. (Related to Chapter 4).
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Chapter 2

Preliminaries

In this chapter, we review various aspects of super-resolution SCS and the signal model related

to SCS. The chapter is structured as follows:

1. Background on Super-resolution CS: Section 2.1 delves into the foundational concepts

of super-resolution and the spectrally sparse signal model, providing a detailed background

for the subsequent discussion.

2. Fundamental Approaches to Gridless SCS:

• Section 2.2 discusses the atomic norm minimization (ANM) approach, detailing its

principles and applications in the context of super-resolution of SCS.

• Section 2.3 focuses on the enhanced Hankel matrix completion approach, outlining

its methodology and advantages.

3. Nonconvex Nonsmooth Hankelization Formulation: Section 2.4 presents the non-

convex nonsmooth Hankelization formulation via the lifting technique, a critical component

of our proposed approach to SCS.

4. Motivations Behind Our Algorithms: In Section 2.5, we explain the underlying

motivations and the theoretical underpinnings that drive the development of our algorithms.
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5. Advantages of Proximal Gradient Based Methodologies: Finally, Section 2.6

summarizes the key advantages and distinctive features of our proximal gradient (PG)

based methodologies, highlighting their contributions to the field of SCS.

This chapter aims to provide a thorough understanding of the current state of super-resolution

of SCS techniques and to articulate the rationale and benefits of the novel approaches developed

in this thesis.

2.1 Super-resolution and Signal Model

2.1.1 Gridless Spectral Compressed Sensing

In a variety of sensing applications, the signal under study is typically formulated as a linear

combination of either translated or modulated versions of a standard model, like a point

spread function (PSF). A major challenge here is to accurately estimate parameters related to

translation or modulation—such as delays, positions, or Doppler shifts—from data that is often

noisy. The resolution capability of signals captured by sensing or imaging devices is inherently

linked to the limitations of these devices.

In contrast, the resolution required for accurate parameter estimation often surpasses what

is achievable with conventional sensing or imaging methods, presenting a challenge known as

“super-resolution”. In the work [33], the notion super-resolution was first introduced to describe

the ability of resolving the true parameters with infinite precision [65]. The development of

super-resolution algorithms has been a prominent pursuit within the field of signal processing,

particularly pertinent when dealing with fully sampled data, and has a rich history of significant

contributions [27]. One of the earliest techniques, dating back to 1795, is de Prony’s root-

finding method [30], which has undergone numerous enhancements over time, particularly in

noise management [66]. Since the 1980s, the evolution of subspace methods like MUSIC [29],

ESPRIT [67], and matrix pencil [31] marked significant advancements in the field. These
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algorithms possess the capability for super-resolution, meaning they can discern parameters at a

finer resolution, especially in conditions of low noise. However, despite their advanced resolution

capabilities, these methods are highly sensitive to noise and outliers, and their performance is

significantly degraded in the presence of missing data.

The highlighted limitations in traditional super-resolution methods called for the development

of super-resolution CS techniques based on convex relaxations [2,33,35]. These approaches have

shown to match the performance of harmonic super-resolution methods while also displaying

increased resilience against factors like noise, missing data, and outliers. A significant advantage

of these methods is that they avoid the need for discretizing delays over a finite grid, overcoming

a frequent constraint of conventional CS approaches [21, 68]. Once the the original data is

recovered the harmonic super-resolution methods could be adopted easily. Consequently, this

thesis centers on gridless super-resolution approaches of reconstruction, which are becoming

increasingly prominent in fields such as signal processing, applied mathematics, and optimization.

The appeal of convex optimization, integral to these approaches, stems from its tractability and

solid theoretical foundation. This optimization technique stands out for several reasons: Firstly,

it is underpinned by strong theoretical guarantees, assuring its e�cacy even in environments with

noisy or corrupt data. Secondly, its flexible nature permits the integration of prior knowledge

into the convex program, thereby widening its applicability well beyond that of traditional

methods. Lastly, recent progress in large-scale convex optimization has led to the creation of

e�cient computational solvers, significantly enhancing the practicality of these methods for

real-world application scenarios.

2.1.2 Notation

In this text, vectors and matrices are represented by bold lowercase and uppercase letters,

respectively, such as x for vectors and X for matrices. The transpose and Hermitian of a matrix

X are denoted as XT and X
H, respectively. The symbols kxk2 and kXkF indicate the l2 norm

of a vector and the Frobenius norm of a matrix, respectively. The diagonal matrix formed
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from the vector x is represented as diag(x). It is important to note that a Hankel matrix is

characterized by having constant skew diagonals.

Consider H as the linear operator that maps a vector x = [x0, x1, · · · , xn�1]T 2 Cn to a Hankel

matrix in Cp⇥q, where p+ q = n+ 1 and p � q. The element of the enhanced Hankel matrix by

the Hankel operator Hx[i, j] corresponds to xi+j:

X
e = Hx =

2

66666664

x0 x1 . . . xq�1

x1 x2 . . . xq

...
...

xp�1 xp . . . xn�1

3

77777775

2 Cp⇥q
, (2.1)

with indexing starting from 0.

DenoteH⇤ as the adjoint operator ofH, a linear operator mapping p⇥q matrices to n-dimensional

vectors. For any matrix X
e 2 Cp⇥q, H⇤

X
e aggregates the elements of Xe along skew diagonals:

�P
i+j=a

X
e[i, j]

 n�1

a=0
. Consequently, W := H⇤H forms a diagonal matrix equivalent to diag(w),

with w = [1, . . . , q � 1, q, · · · , q| {z }
p�q+1

, q � 1, . . . , 1]T. Additionally, the left inverse operator of H,

denoted as H†, retrieves x from matrix space, defined as H† = W�1H⇤. Let ⌦ ⇢ {1, . . . , n}

denote the set of indices corresponding to the observed entries with |⌦| = m  n. Let P⌦ be

the associated sampling operator of the original signal x, i.e., P⌦x =
P

k2⌦hx, ekiek, where ek

be the k-th canonical basis of Cn. Therefore, the P⌦ is a projection operator. The sampling

rate is then Sp = m/n  1.

2.1.3 The Spectrally Sparse Signal Model

Many applications involve smooth or modulated signals that can be represented as a combination

of r sinusoidal components.We consider an order-r SSS x 2 Cn (with r ⌧ n), representing a
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superposition of complex sinusoids:

x =
rX

k=1

dky(fk, ⌧k; n), (2.2)

where dk 2 C is the complex amplitude, and y(fk, ⌧k; n) := [1, ei2⇡fk�⌧k , . . . , e
(i2⇡fk�⌧k)(n�1)]T 2

Cn represents the kth spectral component with normalized frequency fk 2 [0, 1) and damping

factor ⌧k [56]. The SSS model is a widely used model in the field of super-resolution. It is a

generalization version of the sparse signal model, which is a fundamental concept in CS. The

sparse signal model is based on the premise that the signal of interest can be represented as a

linear combination of a few atoms from a dictionary. The SSS model extends this concept by

considering a signal that is sparse across a continuous spectrum. The applicability of this model

is broad, spanning various domains such as speech processing, power system monitoring, and

computing imaging. Additionally, it plays a crucial role in the estimation of direction-of-arrival

in uniform/sparse linear arrays, an area that has received considerable attention in the spectrum

analysis literature [27].

Remark 2. In the case of multidimensional SSS, represented as X =
P

k
dky(f1,k, ⌧1,k; n1) �

· · · � y(fd,k, ⌧d,k; nd) 2 Cn1⇥···⇥nd where � denotes the outer product, a multilevel Hankel matrix

is required.

Another Model of Super-resolution, Equivalent to the Line Spectrum Estimation

To be more precise, we initiate our discussion by delving into a fundamental and widely

applicable super-resolution model as introduced in [1]. This model encapsulates the convolution

of a sequence of point sources PSF that is limited in resolution, as illustrated in Figure 2.1.

Consider the formulation of a spike signal x(t), which is defined as follows:

x(t) =
rX

k=1

dk�̂(t� fk). (2.3)
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In this expression, r signifies the total number of spikes. The terms dk 2 C and fk
1 2 [0, 1)

represent the complex amplitude and the delay of the k-th spike, respectively. The symbol �̂,

also known as the unit impulse, is a generalized function or distribution across the real numbers.

It is characterized by being zero everywhere except at zero and having its integral over the

entire real line equal to one. This model of a spike signal is versatile and can represent a

variety of physical phenomena, ranging from the timing of neuronal firings to the localization of

fluorescence molecules.

The PSF, denoted as g(t), is subject to bandwidth limitations imposed by the Rayleigh Limit.

The Fourier transform of the PSF, represented as G(f), satisfies the condition G(f) = 0 for

|f | > B

2 , where B is the defined bandwidth and is greater than zero. The convolution of the

spike signal x(t) with the PSF g(t), which is further a↵ected by additive noise "(t), can be

mathematically expressed as follows:

y(t) = x(t) ⇤ g(t) + "(t) =
rX

k=1

dkg(t� fk) + "(t), (2.4)

where ⇤ denotes the convolution operation. This equation characterizes the resultant signal y(t)

as a combination of the convolved spike signal with the PSF and the noise component "(t).

Figure 2.1: An illustration of the mathematical model of super-resolution. The spike signal
x(t) is convolved with a PSF g(t), leading to degradation of its resolution, which is further
exacerbated by an additive noise "(t), producing an output signal y(t) [1].

By sampling the Fourier transform of the aforementioned equation at specific frequencies,

denoted as ` = �bB2 c, . . . , 0, . . . , b
B

2 c, we can obtain the corresponding measurements. These

1
We use fk here to match the notation in the SSS model.
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measurements are mathematically expressed as:

Y` = G` ·X` + E` = G` ·
 

rX

k=1

dke
�i2⇡`fk

!
+ E`, (2.5)

where Y` represents the measured signal at frequency `. In this equation, G` and X` denote

the Fourier transforms of the PSF g(t) and the spike signal x(t) at frequency `, respectively,

while E` symbolizes the noise component in the frequency domain. The expression e↵ectively

captures the relationship between the observed signal, the PSF, the spike signal, and the noise

in the frequency domain. The total count of samples captured in this model is denoted as

n = 2bB2 c + 1, which approximately equals B. This approximation helps in simplifying the

analysis. Subsequently, Equation (2.5) can be reformulated in a vectorized format as follows:

y = diag(g)x+ ", (2.6)

where y = [Y`] represents the vector of measured signals, g = [G`] corresponds to the Fourier

transforms of the PSF, x = [X`] signifies the spike signal in the frequency domain, and " = [E`]

is the noise vector. A crucial aspect of the super-resolution problem is the accurate estimation of

the set {dk, fk}rk=1 from the observed data y, without prior knowledge of the number of spikes,

r. The Rayleigh limit, inversely proportional to the bandwidth B, is approximately equivalent

to 1/n, establishing a relationship between the resolution limit and the number of samples.

When the PSF g(t) is known, Equation (2.5) can undergo “equalization” by multiplying both

sides with the inverse of G`, provided that G` values are nonzero. This operation yields a

transformed observation s = [G�1
`
Y`], which can be related to the spike signal x as follows:

s = x+ "e, (2.7)

where "e denotes the transformed additive noise.

For analytical convenience, we remap the index ` from �bB/2c, . . . , bB/2c to 0, . . . , n� 1. The
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spike signal x is then expressed as a summation of complex sinusoids:

x =
rX

k=1

dka(fk), (2.8)

where a(f) 2 Cn is defined as:

a(f) =
⇥
1, ei2⇡f , . . . , ei2⇡(n�1)f

⇤T
, f 2 [0, 1). (2.9)

This vector a(f) = y(fk, 0; n) encapsulates the frequency components of the signal, o↵ering a

compact and e�cient representation for the analysis in the frequency domain.

Remarkably, the simplified model depicted in Equation (2.7) aligns with the classical problem

of line spectrum estimation. This estimation problem involves deducing a mixture of sinusoids,

characterized by frequencies fk 2 [0, 1), from equi-spaced time samples {0, . . . , n � 1} of the

signal xls(t) =
P

r

k=1 dke
i2⇡fkt. This model’s versatility and foundational nature underscore its

importance in the field of signal processing.

2.2 Atomic Norm Minimization

In the simplest case, where noise is absent, the concept of super-resolution can be framed as the

task of inferring the continuous-time spike signal, x(t), as defined in Equation (2.3), from its

discrete-time moment measurements, denoted as x in Equation (2.8). The relationship between

these measurements can be represented as follows:

x =

Z 1

0

a(f) dx(t) (2.10)

In this context, x(t) is perceived as a continuous spectrum representation of x, outlined by the

dictionary A0 as specified in Equation 2.11:

A0 = {a(f) : f 2 [0, 1)}. (2.11)
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The moment curve described here forms a one-dimensional manifold within Cn. It is well-

acknowledged that the convex hull of A0 within Cn can be characterized using a series of linear

matrix inequalities, as detailed in [69]. This characterization is notably linked to the concept

of positivity in Hermitian Toeplitz matrices. The inherent properties of the moment curve are

fundamental in various domains, including control and signal processing [70,71]. This aspect

is instrumental in developing a super-resolution theory based on ANM, providing a robust

theoretical foundation for resolving signals at a resolution beyond conventional limits.

While di↵erent instances of x(t) can yield the same measurement vector x, enforcing a sparsity

constraint—specifically, limiting the number of spikes in x(t)—facilitates a unique representation.

Notably, the representation in (2.8) is unique if r  bnc

2 and the support set F = {fk}rk=1 contains

distinct elements.

In order to apply the ANM framework e↵ectively to super-resolution problems, it is crucial to

define the atomic set accurately. Given that the complex amplitudes dk can vary in phase, we

introduce an atomic set to encompass this variability:

A = {a(f,�) : f 2 [0, 1),� 2 [0, 2⇡)}, (2.12)

where a(f,�) = e
i�
⇥
1, ei2⇡f , . . . , ei2⇡(n�1)f

⇤T
, Here, the set of atoms serves as the fundamental

building blocks for the signal x, akin to how canonical basis vectors are for sparse signals

and unit-norm rank one matrices are for low-rank matrices. In sparse recovery and matrix

completion, the unit balls of sparsity-enforcing norms, such as the `1 norm and nuclear norm,

correspond exactly to the convex hulls of their respective building blocks. Similarly, we define

an atomic norm k · kA by associating its unit ball with the convex hull of A:

kxkA := inf{t > 0 : x 2 t · conv(A)} (2.13)

= inf
dk�0,�k2[0,2⇡),fk2[0,1)

(
X

k

dk : x =
X

k

dka(fk,�k)

)
.

Essentially, the atomic norm k · kA promotes sparsity in A because signals involving fewer atoms

correspond to low-dimensional facets of conv(A). This concept of leveraging atomic norms for
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general sparsity enforcement was first proposed and explored in [36]. As A is centrally symmetric

around the origin, it induces an atomic norm over Cn, as outlined in equations (2.13).

Interestingly, minimizing the atomic norm of x aligns with minimizing the total variation of

x(t) [33], represented as:

min kx(t)kTV s.t. x =

Z 1

0

a(t) dx(t). (2.14)

Both the atomic norm and total variation perspectives are widely adopted in contemporary

literature.

Remarkably, the atomic norm admits an equivalent semidefinite program (SDP) characterization.

This equivalence arises due to the Carathéodory-Fejér-Pisarenko decomposition [72] and its

extension to include phases [35]:

kxkA = inf
u2Cn

8
><

>:
1

2n
Tr(toep(u)) +

1

2
t :

2

64
toep(u) x

x
H

t

3

75 ⌫ 0, t > 0,u 2 Cn

9
>=

>;
, (2.15)

where toep(u) represents the Hermitian Toeplitz matrix2 with its first column being u.

In contrast to its abstract form in (2.13), the reformulation in (2.15) o↵ers a tractable method

to compute the atomic norm kxkA, achievable using standard convex solvers [73]. Employing

the Vandermonde decomposition of toep(u), i.e., toep(u) =
P

r
0

k=1 |d0k|a(f 0

k
)a(f 0

k
)H , allows for

the identification of the support F̂ = {f 0

k
} of x’s atomic representation, as well as the atomic

norm kxkA =
P

r
0

k=1 |d0k|. The computation of the Vandermonde decomposition of the Toeplitz

matrix can be e�ciently performed via the Lanczos method [74], requiring O(n2) operations.

Moreover, the Lagrange dual problem associated with the ANM in (2.15) o↵ers several advan-

tages:

1. The dual problem can also be reformulated into an SDP;

2
A Toeplitz matrix is characterized by constant descending diagonals from left to right.
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2. The support set of the atomic decomposition can be deduced from the solution of the dual

problem.

In this discourse, we have examined the application of ANM in the super-resolution of line

spectra. Central to our discussion is the critical issue of the tightness of the convex relaxation

method employed in ANM. Specifically, our objective is to identify the precise conditions under

which the estimated support F̂ accurately coincides with the true support F of the signal x.

Such alignment is imperative not only for the support sets but also for the atomic decompositions.

In other words, we aim to ensure that the representation x =
P

r
0

k=1 d
0

k
a(⌧ 0

k
) aligns with the most

sparse form x =
P

r

k=1 dka(⌧k) within the atomic set A.

This aspect is vital as it underpins the e↵ectiveness of ANM in yielding a representation that

is not only accurate but also the sparsest possible within the given atomic framework. The

clarification of such conditions would mark a significant advance in our understanding and

application of super-resolution techniques, particularly in contexts where precision and sparsity

are of paramount importance.

2.2.1 Exact Recovery Guarantees

The investigation of conditions conducive to exact recovery has been extensive, particularly

in the realm of `1 norm minimization, which is relevant when the atomic set A is finite. In

such scenarios, performance guarantees are often linked to the structural characteristics of the

set. These characteristics are typically defined in terms of concepts such as the Restricted

Isometry Property (RIP) [75] or distinct incoherence properties [76]. However, challenges arise

when dealing with a continuous dictionary, such as A. In these cases, the e↵ectiveness of these

properties diminishes. This reduction in e�cacy is due to the increasing correlation between

atoms a(⌧ ) and a(⌧ + �) as their separation � becomes smaller, resulting in significantly reduced

RIP or coherence levels.

A significant finding in this area [33] is the possibility of deterministically establishing a valid
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certificate for su�ciently large n, depending upon the fulfillment of the separation condition.

This finding is notable for its independence from the spikes’ complex amplitudes and does not

necessitate relying on any stochastic characteristics of the signal. It suggests that under certain

well-defined conditions, exact recovery is feasible, thereby providing a robust foundation for the

application of atomic norm minimization in super-resolution tasks.

2.2.2 The Noisy Cases

In practical scenarios, the presence of noise inevitably distorts observational data, rendering

it impossible for any estimator to perfectly reconstruct the spike signal x(t). This reality

necessitates a careful consideration of the robustness of estimates produced by atomic norm

minimization techniques in noisy environments. When faced with additive noise in the observed

signal s, as characterized in Equation (2.7), a viable strategy involves seeking an x that lies

close to s while having a minimal atomic norm [37]:

min
x

1

2
kx� sk22 + �kxkA, (2.16)

where � > 0 is a parameter that strikes a balance between fidelity to the observed data and

the magnitude of the atomic norm. The choice of this parameter is less clear [37, 40, 77]. This

method, known as “atomic norm denoising”, is an adaptation of the principles underlying the

well-established LASSO technique [78].

Despite the computational feasibility of the SDP framework, its complexity can become quite

demanding in high-dimensional settings. To mitigate this, the Alternating Direction Method of

Multipliers (ADMM) [79], as employed in [1], o↵ers significant improvements in computational

speed. ADMM functions by breaking down the augmented Lagrangian of an optimization

problem into separate, manageable subproblems. Each iteration of the algorithm involves

localized minimization of these subproblems, while maintaining compliance with the overall

constraints. The iterative process continues until the discrepancies in both the primal and dual

solutions are reduced below a set threshold. Typically, the computation is executed with a
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complexity of O(n3) per iteration, rendering it a more e�cient alternative for high-dimensional

problems.

2.2.3 Spectral Compressed Sensing

The ANM is also applicable to the SCS problem, which is a generalization of the frequency

estimation problem. The SCS problem is defined as follows: given a set of indices ⌦ =

{!1, . . . ,!m} for the known entries of x, the challenge is to reconstruct x from s := P⌦x 2 Cn.

The P⌦x is the projection of x onto the subspace of arrays that vanish outside ⌦. It can be

formulated as a convex optimization problem:

min
x

kxkA s.t. P⌦x = s, (2.17)

Specifically, when only m entries of x 2 Cn are observed uniformly at random, there exists a high

probability of perfectly recovering x. This recovery is feasible using m = O(log2 n+ r log r log n)

measurements, provided x adheres to the separation condition and the coe�cients dk’s have

random signs [35][Theorem II.3].

2.3 Multi-block Hankel Matrices Involved Algorithms

While the atomic norm provides a viable approach to exploit sparsity in continuous domains, it

has several drawbacks that limit its applicability in certain scenarios:

1. The atomic norm approach fails to accommodate the damping factor in the signal model,

a feature crucial in numerous applications such as NMR [80]. Modeling NMR data as

multidimensional damped sinusoids is both a natural reflection of the physical behavior of

nuclear spins in a magnetic field and a practical approach to analytically describing and

analyzing the complex decaying signals generated in di↵erent types of NMR experiments.

2. The matrix involved in atomic norm minimization is not a specific structured form (Hankel
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or Toeplitz) although partially included, which can not apply e�cient computational

strategies. In cases of large data sizes, the unstructured matrix required for atomic norm

minimization becomes challenging to manage.

3. Extending the atomic norm minimization framework to multi-dimensional cases is not

straightforward, as indicated in [1, 2]. However,the problem of estimating multidimen-

sional frequencies emerges in multiple applications such as array processing, radar, sonar,

astronomy, and medical imaging [39]. For example in the seismic data processing, a level-4

Toeplitz matrix is formed which depends on four spatial dimensions [81].

Fortunately, the recent advancements in Enhanced Matrix Completion (EMaC) [2] o↵er a

promising alternative. EMaC leverages the multi-fold Hankel structure to exploit both the shift-

invariance property of harmonic structures and the spectral sparsity of signals. By organizing

data samples into a multi-block Hankel matrix, the rank of this matrix is e↵ectively constrained

by the signal’s spectral sparsity. This approach not only addresses the limitations of the atomic

norm minimization in handling damping factors and large-scale data but also provides a more

straightforward pathway to extending the methodology to multi-dimensional signal processing

scenarios.

To facilitate understanding, let us consider the two-dimensional frequency models as an example

to elucidate the concept of the multi-block Hankel matrix and the related algorithms. Imaging

a signal X(t) that is composed of two-dimensional complex sinusoids. This signal incorporates

r distinct frequencies fk 2 [0, 1)2 and corresponding damping factors ⌧k for each 1  k  r.

Consequently, a two-dimensional spectrally sparse array x 2 Cn1⇥n2 can be formulated as:

X =
rX

k=1

dky(f1k, ⌧1k; n1) � y(f2k, ⌧2k; n2) 2 Cn1⇥n2 , (2.18)

where dk 2 C are complex amplitudes, and y(fk, ⌧k; n) := [1, ei2⇡fk�⌧k , . . . , e
(i2⇡fk�⌧k)(n�1)]T 2 Cn

(n1 + n2 = n+ 1). The array F k = (f1k, f2k) 2 [0, 1)2 denotes the normalized frequencies with

respect to the Nyquist frequency of X(t), and ⌧1k, ⌧2k � 0 are the damping factors, respectively.

Given a set of indices ⌦ = {(!1,!2) 2 [n1]⇥ [n2]} that correspond to the known entries of x,
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the challenge lies in reconstructing X from its partial observations S = P⌦X 2 Cn1⇥n2 .

This two-dimensional framework extends the traditional SCS approach to accommodate complex,

multi-dimensional signals and their sparse representations, thereby enabling more e�cient and

accurate reconstruction in various applications.

2.3.1 2-D Vandermonde Decomposition

Each element xm,n of the matrix X (0  m < n1, 0  n < n2) can be represented as follows:

xm,n = X(m,n) =
rX

k=1

dky
m

1ky
n

2k, (2.19)

where, for each index k (ranging from 1 to r):

y1k := exp(i2⇡f1k � ⌧1k) and y2k := exp(i2⇡f2k � ⌧2k), (2.20)

correspond to the pairs of frequencies {fk = (f1k, f2k)|1  k  r}. Consequently, the matrix X

can be decomposed as

X = Y 1DY
T

2 , (2.21)

where the matrices Y 1, Y 2, and D are defined respectively as:

Y 1 =

2

66666664

1 1 · · · 1

y1 y2 · · · yr

...
...

. . .
...

y
n1�1
1 y

n1�1
2 · · · y

n1�1
r

3

77777775

, Y 2 =

2

66666664

1 1 · · · 1

y1 y2 · · · yr

...
...

. . .
...

y
n2�1
1 y

n2�1
2 · · · y

n2�1
r

3

77777775

,

and

D = diag[d1, d2, · · · , dr].

This decomposition ofX, as expressed in Equation (2.21), is often referred to as the Vandermonde

decomposition. It provides a structured and compact representation of the 2-D signal, facilitating
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e�cient computational approaches for signal reconstruction and analysis.

Inspired by the advancements in matrix completion (MC) [50], it is natural to consider the

application of low-rank MC algorithms, particularly when the rank r is small. The potential

for perfect recovery of X from partial measurements becomes viable when X exhibits a low

rank, specifically if r ⌧ min{n1, n2}. This consideration leads to the adoption of the following

optimization framework:

minimize kSk⇤ (2.22)

subject to P⌦S = P⌦X, (2.23)

where kSk⇤ denotes the nuclear norm (the sum of all singular values) of the matrix S. This

strategy forms a convex relaxation alternative to the direct minimization of rank. However,

traditional MC algorithms, as described in [82], typically require at least rmax{n1, n2} log(n1n2)

samples to achieve perfect recovery. This sample size surpasses the inherent degrees of freedom,

O(r), in our problem setup. A critical observation is that as the number r of spectral spikes

nears n1n2, the matrix X may approach a full-rank status, particularly when r > min{n1, n2}.

This scenario underscores the need to explore alternative representations that more e↵ectively

capture the harmonic structure inherent in the problem.

2.3.2 Enhanced Hankel Matrix

In response to these challenges, the Enhanced Matrix Completion (EMaC) strategy [2] has

been proposed to e↵ectively address the problem. The EMaC approach constructs an enhanced

two-fold Hankel matrix for X through a recursive process, as described below:

X
e = HX =

2

66666664

HX[:, 0] H(X[:, 1]) . . . H(X[:, q2 � 1])

H(X[:, 1]) H(X[:, 2]) . . . H(X[:, q2])

...
...

. . .
...

H(X[:, p2 � 1]) H(X[:, p2]) . . . H(X[:, n2 � 1])

3

77777775

2 Cp1p2⇥q1q2 ,
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where H denotes the Hankel operator, p2 (1  p2  n2) is the pencil parameter, and X[: n],

1  n  n2, represents the n-th slice of X. Each element of this matrix is defined as

H(X[:, n]) =

2

66664

H(X[0, n]) . . . H(X[q1 � 1, n])

...
. . .

...

H(X[p1 � 1, n]) . . . H(X[n1 � 1, n])

3

77775
,

with p1 + q1 = n1 + 1, p2 + q2 = n2 + 1, and H(X[:, n]) 2 Cp1⇥q1 . Here, p1(1  p1  n1) is

another pencil parameter.

This EMaC approach, through its unique construction of the enhanced Hankel matrix, o↵ers

a more structured and potentially more computationally e�cient way to harness the inherent

spectral sparsity and harmonic structure of the signal X.

An explicit formula for the enhanced Hankel matrix HX is defined as follows:

[HX]uv = X[m,n],

where the indices are determined by the equations:

u = u1 + u2 · p1, v = v1 + v2 · (n1 � p1 + 1),

m = u1 + v1, n = u2 + v2.

Furthermore, HX possesses a Vandermonde decomposition of the form HX = ELDER

T. The

k-th columns of EL and ER are given by:

EL[:, k] = {y(f1k, ⌧1k; n1)[m] · y(f2k, ⌧2k; n2)[n] | 1  m  p1, 1  n  p2},

ER[:, k] = {y(f1k, ⌧1k; n1)[m] · y(f2k, ⌧2k; n2)[n] | 1  m  q1, 1  n  q2},

and D = diag(d1, · · · , dr). As a result, HX remains a rank r matrix for two-dimensional arrays.
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The problem of recovering X in EMaC from partial measurements is then formulated as:

minimize kMk⇤ (2.24)

subject to P
e

⌦M = P
e

⌦X
e
, (2.25)

where P
e

⌦ is the corresponding sampling operator on the enhanced matrix space. This problem

aims to recover the low-rank matrix X
e from partial measurements by minimizing the nuclear

norm. This convex optimization can be transformed into a semidefinite programming (SDP)

problem and solved using o↵-the-shelf solvers [83].

2.3.3 Singular Value Thresholding for EMaC

While the computational complexity of the Enhanced Matrix Completion (EMaC) method is

similar to that of the ANM approach [35], particularly for one-dimensional frequency models,

the standard SDP solvers, which often employ interior point methods, face di�culties with

large-scale data. For instance, SDPT3 struggles with an n⇥ n data matrix when n exceeds 19,

which corresponds to a 100⇥ 100 matrix post-enhancement. An e↵ective solution for handling

large-scale data is to apply first-order methods specifically tailored for matrix completion

challenges, such as the Singular Value Thresholding (SVT) algorithm [84].

The SVT algorithm is a first-order method designed to solve the following convex optimization

problem e�ciently:

Algorithm 1 Singular Value Thresholding for EMaC [2]
Input: The observed data matrix x0 on the location set ⌦;
Initialization: Initialize the enhanced matrix X

e

0 = Hx0; set M 0 = X
e

0 and t = 0;

while not converged do
Q

t
 T⌧tM t.

M t  H(P⌦H†
Q

t
+ x0).

end while

Output: Retrieve M t from the final iteration, set x†  H†
M t.

The thresholding operator T⌧t(·) in Algorithm 1 denotes the singular value shrinkage operator.

Given the Singular Value Decomposition (SVD) of a matrix X
e = U⌃V

⇤, with ⌃ = diag({�i}),
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then T⌧tX
e is defined as Udiag({max(�i � ⌧t, 0)})V ⇤, where ⌧t > 0 is a soft-thresholding

parameter.

Remark 3. In each iteration, the algorithm constructs a pair Q
t
,M t by first applying singular

value shrinkage and then projecting the result onto the space of multi-level Hankel matrices that

align with the observed entries. Importantly, all matrices involved in the algorithm possess a

multilevel Hankel structure, facilitating e�cient storage and computation. Consequently, the

computational complexity of EMaC is reduced from O(n3) to O(n2 log(n)) compared to ANM,

making it a more feasible option for large-scale data sets.

2.3.4 Advantages of Enhanced Hankel Matrix Approaches

In the field of super-resolution compressed sensing, two principal methods have been predomi-

nantly reviewed: the ANM [35] and the EMaC [2]. To gain a deeper insight into EMaC, we

explore structured low-rank matrix representations that promote spectral sparsity from the

perspective of atomic norms. This exploration involves formulating these methods as atomic

norm minimizations, which arise from various choices of atomic sets in Cadzow’s signal en-

hancement framework. This viewpoint enables us to interpret EMaC, also known as structured

Hankel matrix completion, as a form of relaxed atomic norm minimization tailored for complex

sinusoids.

Consider an order-r spectrally sparse signal (SSS) defined in the Eq. 2.2.

Define the atomic set S0 as:

S0 =

(
rX

k=1

dky(fk, 0; n) : fk 2 [0, 1), dk 2 C
)
. (2.26)

Owing to physical or measurement constraints, often only a subset of x is observable. The

primary challenge lies in recovering the SSS x from its partial observations s 2 Cn, formulated

as:

find x 2 S0 s.t. P⌦x = s. (2.27)
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As elucidated in [35,39], the set S0 is equivalently represented by the Toeplitz-related matrix

set ST :

ST =

8
><

>:
x 2 Cn :

2

64
toep(u) x

x
H

t

3

75 ⌫ 0,u 2 Cn
, rank(toep(u))  r, t > 0

9
>=

>;
. (2.28)

Here, ANM can be formulated as a convex optimization problem for this PSD Hermitian Toeplitz

(toep(u)) model.

Similarly, the low-rank Hankel model can be interpreted as the quest for the best approximation

within the Hankel-based set:

SH = {x 2 Cn : rank(Hx)  r} . (2.29)

In this context, EMaC represents a convex relaxation in accordance with SH .

Given the inclusion ST ✓ SH , the relationship between ANM and EMaC is highlighted in the

following proposition [46, Prop. 2.1]: The nuclear norm minimization, denoted by kHxk⇤, acts

as a convex surrogate for the atomic norm minimization on ST .

This proposition emphasizes the interconnectedness of ANM and EMaC, demonstrating how

the latter can be seen as a convex relaxation of the former, particularly within the framework of

structured low-rank matrix representations that aim to promote spectral sparsity.

The relaxation to a larger set, SH , presents several advantages, as outlined below:

1. The EMaC approach demonstrates superior resolution compared to the ANM method, as

substantiated in [2,85]. This improvement is attributed to a significantly milder coherence

condition.

2. The Hankel-based model permits the application of various non-convex methods [56–58,

61,86]. These approaches are typically more computational e�ciently than their convex

counterparts.
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3. The broader scope of SH makes it applicable to a wider array of problems, including NMR

signals with damping factors [15] and other Hankel matrix-involved problems.

Remark 4. The studies in [43,85] also explore the Hankel-Toeplitz model and the double Hankel

model. These models are formulated to capture spectral sparsity and can be directly solved.

However, their applicability is primarily limited to undamped signals. In the future, it may be

possible to extend PG-based methods to these models, broadening their scope and utility.

2.3.5 Linear Recurrent Time Series

As previously demonstrated, the low-rank structure of Hankel matrices is pivotal in the de-

velopment of the EMaC method. It is not limited to spectrally sparse signal models but also

extends to other low-rank Hankel completion problems including time series represented as

x = [x0, . . . , xn�1]T with length n, which conform to a linear recurrent formula (LRF) if:

xj = a1xj�1 + · · ·+ arxj�r, j = r, . . . , n� 1. (2.30)

Let p < n be an integer, typically denoted as the window length, and q = n� p+ 1. Define the

p-lagged vectors xj = [xj, . . . , xj+p�1]T, for j = 0, . . . , q� 1. By constructing a p⇥ q matrix X
e

as

X
e = [x0, . . . ,xq�1],

it becomes evident that Xe is a Hankel matrix, specifically Hx = X
e. Furthermore, given that

x is a time series obeying an LRF defined above, Hx is a matrix with a rank of at most r. Time

series that satisfy a LRF have broad applications, including economic forecasting, epidemiology,

and control systems, as noted in [14,87]. Unlike the ANM approach, the EMaC methodology

is not limited to the SSS model but extends to other structured matrix completions, such as

Circulant, Toeplitz, and Hankel matrices.
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2.4 Spectral Compressed Sensing Optimization Formula-

tion

Drawing from the preceding analysis, we can formulate the SCS problem as the following

nonconvex optimization problem.

2.4.1 Denoising in Unweighted Array Norm

Mirroring the low-rank Hankel matrix approximation methodologies [88,89], the Noisy-EMaC

problem is formulated as:

minimize kHxk⇤ (2.31)

subject to kHP⌦(x� s)k
F
 ✏, (2.32)

where s,x 2 Cn. This problem can be addressed by SVT, minimizing kHxk⇤+� kHP⌦(x� s)k
F

[2, 84, 88]. It bears resemblance to the Cadzow algorithms [54], which use alternating projection

between the nearest low-rank matrix and the nearest Hankel matrix. However, the Hankel

operator induces varying weights across the vector P⌦(x�s), leading to a weighted least-squares

problem. To circumvent this, an unweighted Cadzow method has been proposed [64], enhancing

recovery accuracy through additional projections.

As an alternative, we present the Noisy-EMaC in an array form:

minimize kHxk⇤ (2.33)

subject to kP⌦(x� s)k
F
 ✏. (2.34)

Though this approach improves reconstruction accuracy, it comes at the cost of increased

computational e↵ort and potentially slower convergence [64, 86].

This SCS formulation, particularly the Noisy-EMaC approach, provides a robust framework for
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addressing denoising in SCS, especially in cases involving unweighted array norms.

2.4.2 Nonconvex Approaches

While enhanced Hankel matrix approaches, such as the SVT, benefit from the Hankel structure

for acceleration, they still require a full SVD in each iteration [2, 90]. This significant drawback

limits their scalability as the problem size increases. Originating from their dependency on

matrix factorizations, these methods are typically e�cient only for medium-sized problems [91].

To augment e�ciency, several studies have proposed non-convex approaches utilizing truncated

SVD [56–58, 61, 86], where the modeling order is assumed to be known in advance. Recent

research indicates that nonconvex formulations can o↵er advantages in specific signal processing

contexts, providing solutions with superior performance [45, 92], and leading to computationally

manageable problems [93]. In these scenarios, the concerns regarding spurious local minima are

either mitigated or non-existent. Consequently, with suitable initializations, local optimization

methods often converge to the global minima [94].

Therefore, rather than the nuclear norm minimization of Xe, the rank constriant is introduced3,

denoted as �(rank(Xe)  r), where �(·) is the indicator function for rank-constrained matrices,

valued at zero if true and infinity otherwise. Moreover, the X
e = Hx here is introduced due

to the lifting technique, which refers to the process of transforming a problem into a higher-

dimensional space, often with the aim of making the problem more tractable or solvable with

the available algorithms [95]. For example, the matrix pencil approach [31] has been utilized to

tackle the nonlinearity and nonconvexity in line spectral estimation.

Conclusively, the rank-constrained nonconvex problem is formulated as:

min
X

e
,x

�(rank(Xe)  r) +
1

2
ks� P⌦xk22 s.t. Xe = Hx, (2.35)

This reformulation towards nonconvex methods paves the way for more e�cient solutions in

3
The model order can be either estimated in advance or approximated through rank-increasing heuristics

[56, 57].
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large-scale SCS problems, leveraging the rank minimization to mitigate computational challenges.

2.4.3 Proximal Gradient Descent

Given the focus on solving the nonsmooth objective function delineated in (2.35), it is pertinent

to explore recent advancements in numerical optimization, particularly for structured nonsmooth

optimization problems. Traditional methodologies like Newton-type methods are not directly

suitable for these scenarios. Consequently, there has been a resurgence in the development

and application of splitting algorithms [6, 96, 97]. These first-order algorithms are adept at

minimizing nonsmooth cost functions while maintaining minimal memory requirements, making

them ideal for large-scale problems. Their primary limitation, however, lies in their relatively

slow convergence rate.

In response to this limitation, significant research e↵orts have been dedicated to optimizing and

accelerating these algorithms. Notably, the PG algorithm, also known as forward-backward

splitting [98] or iterative shrinkage-thresholding algorithm (ISTA) [99], and the ADMM [79] are

among the most prominent splitting algorithms. The PG algorithm’s earliest known acceleration

can be traced back to [100], leading to what is now called the fast proximal gradient algorithm

or fast iterative shrinkage-thresholding algorithm (FISTA) [99].

More recent innovations in accelerating the PG algorithm include the variable metric forward-

backward algorithm [101–104] and the integration of quasi-Newton methods [105–108]. These

latter methods e↵ectively utilize Hessian information to enhance the optimization process.

In summary, the development of these advanced algorithms reflects a significant step forward in

e�ciently addressing large-scale structured nonsmooth optimization problems, particularly in

the context of SCS.
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2.5 Challenges and Motivations

In light of the preceding discussions, the challenges and motivations guiding this thesis can be

summarized as follows:

1. Incorporating Damping Factors: super-resolution SCS algorithms that leverage multi-

block Hankel matrices need to address the damping factor present in signal models, which

is a critical component in various applications, such as MRI.

2. Addressing Bias from Hankel Structure: It is noteworthy that the enhanced matrix

approaches tend to consider elements repetitively due to the Hankel operator. This inherent

bias should be e↵ectively addressed, especially in noisy scenarios, to ensure accurate signal

recovery.

3. Handling Large-Scale Data: E�cient algorithms, such as SVT method, are neces-

sary to manage large-scale data sets commonly encountered in real-world applications.

Such algorithms must be capable of processing high volumes of data without significant

computational bottlenecks.

4. Overcoming Slow Convergence: First-order methods often face challenges related

to slow convergence speeds, particularly in demanding situations characterized by low

sampling rates and substantial noise. Developing strategies to expedite convergence while

maintaining accuracy is crucial.

These challenges form the basis of our research focus, driving the development of improved

algorithms and techniques in the field of super-resolution SCS.
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2.6 Methodologies

In this section, we briefly outline the super-resolution SCS techniques for exponential signals as

follows:

N-D exponential signal

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Undamped complex sinusoid recovery
8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Approximately on the grid
⇢
Compressed sensing [21]

gridless
8
>>>>>><

>>>>>>:

Total variation minimization [4]

Atomic norm minimization [5, 9, 17]

Enhanced matrix completion [1, 27-32,35]

Damped complex sinusoid recovery
⇢
Enhanced matrix completion [1, 27-32,35]

(2.36)

The thesis title reflects the main motivations and advantages from an algorithmic perspective,

focusing on three key aspects: multi-block Hankel, unweighted, and fast proximal gradient

methods. Below, we list and elaborate on these features to address the challenges identified

earlier:

1. Multi-block Hankel Matrix Approach: This approach is chosen due to its storage and

computational e�ciency, exploiting the low rank and Hankel structure. It o↵ers superior

resolution and generalizes well to handle damped signals. Variations of nonconvex modes

are also considered. The computational package for the multi-block Hankel matrix is

introduced in Section 3.

2. Unweighted Array Norm: The unweighted array norm replaces the traditional enhanced

Hankel matrix completion for improved reconstruction. The slow convergence due to

size-dependent Lipschitz constants is mitigated through a modified proximal gradient
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strategy.

3. Proximal Gradient Method Variations: To accelerate convergence, several variations

of proximal gradient methods are introduced. These include:

(a) Low-rank projection to further decrease the objective function.

(b) Hankel space projection for larger step sizes, inversely proportional to the sampling

rate.

(c) Incorporation of Hessian information to address the large conditional number chal-

lenge.

This methodology section thus sets the foundation for addressing the SCS challenges with

e�cient, advanced algorithmic strategies.
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Methodologies
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Chapter 3

Fast Computation Tools for Multi-block

Hankel Matrices

Building upon the discussion in Chapter 2, where we highlighted the e�ciency of the enhanced

multiblock Hankel matrix approach in SCS, this chapter introduces a Julia package designed to

enhance these computations. The package comprises several key tools, each catering to di↵erent

aspects of Hankel matrix manipulation:

1. Hankel Mapping: This function maps an array to a Hankel matrix structure, defined

by the array s and pencil parameter index p:

H = Hankel ( s , p )

The enhanced matrix is e�ciently stored as an array, avoiding explicit construction of the

Hankel matrix for computational and storage e�ciency. Scalar multiplication, conjugation,

addition, subtraction, and transpose operations are implemented in dense form, requiring

only O(n) flops. The full Hankel matrix is not generated unless explicitly invoked:

f u l lHanke l (H)

2. Hankel Matrix-Vector Multiplication: E�ciently computes the product of a p ⇥

q (p+ q = n+ 1) Hankel matrix and a vector using FFT, requiring O(n log n) flops [51].
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H∗x

3. Truncated Singular Value Decomposition (TSVD) of Hankel Matrices: This

tool e�ciently computes the r-truncated SVD of a Hankel matrix, utilizing the FFT and

implicitly restarted Lanczos bidiagonalization (irlb) method [5], with O(rn log n) flops. It

o↵ers several advantages over other methods:

(a) Enhanced e�ciency tailored for TSVD.

(b) Initialization for FFT planned once to minimize repetitive calculations.

(c) Inclusion of modified SVD functions widely used in CS.

# Standard r−l a r g e s t t runcated SVD

U1 , S1 , V1 = i r l b (H, r , to l , i t e r , ncv )

# Linear combination o f the Hankel and \\

# a low−rank matrix X=U1∗S1∗ t ranspose (V1)

U2 , S2 , V2 = i r l b l r (H, r , to l , i t e r , ncv ,U1∗S1 ,V1)

# I t e r a t i v e TSVD based on Riemann mani fo ld U1 and V1

U2 , S2 , V2 = riemannsvd (U1 ,V1 ,H)

4. Penrose Pseudoinverse for Hankel Operator H†: Implements the left inverse operator

of H, transforming p⇥ q matrices into vectors of length n. E�ciently executed using FFT

for matrices where r ⌧ n, with O(r2n+ rn log n) flops [51]. For a matrix X = U⌃V
⇤,

the operation H†
X is performed as:

ph = project lowHanke l (U, S ,V, n , p )

These tools are integral to the implementation of the algorithms proposed in subsequent chapters.

Detailed descriptions of these tools are provided in the following sections. The package is available

at https://github.com/xiyao65/multiblockHankelMatrices.jl.
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3.1 Matrix-vector Multiplication via FFT

To e↵ectively leverage the FFT [51], we exploit the structure of the Hankel matrix by transforming

it into a circulant matrix C. A circulant matrix is a square matrix where each row is a cyclic

shift to the right of the previous row.

Given a Hankel matrix H 2 Cp⇥q with its first column c = [c1, . . . , cp]T and last row r =

[r1, r2, . . . , rq] (where p � q, r1 = cp and p+ q = n+ 1), the first column of the corresponding

circulant matrix C 2 Cn⇥n is defined as:

ĉ = [c1, . . . , cp, r2, . . . rq]
T
.

For a vector x with q elements, the matrix-vector product y = Hx is equal to the last p

elements of ŷ, where

ŷ = Cx̂, with x̂ = [xq, xq�1, . . . , x1, 0, . . . , 0| {z }
p�1

]T .

The circulant matrix C can be spectrally factorized using the Fourier matrix F , leading to the

following relation:

Cx̂ = inv(F )diag(F ĉ)F x̂,

which implies

ŷ = i↵t(↵t(ĉ) ⇤ ↵t(rev(x̂))).

This approach to matrix-vector multiplication via FFT significantly enhances computational

e�ciency, particularly for large-scale data handling in SCS.

The application of FFT for circulant matrices is well-established and extends e�ciently to

multi-level structures [81, 109]. In the context of this thesis, a 1-D FFT is specifically employed

for multi-block Hankel (MBH) matrix-vector multiplication. This approach is advantageous for
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its minimal memory requirements and enhanced computational e�ciency [3].

The implementation of MBH matrix-vector multiplication is streamlined in Julia, utilizing the

native array manipulation functionalities. The operation of vectorization, which reshapes an

array into a one-dimensional column vector, is a built-in feature in the Julia.Base package.

To circumvent the computational overhead associated with recursive operations as described

in [3], we adopt pad and extract operations in array form. The following algorithm outlines this

e�cient process:

Algorithm 2 MBH Matrix-Vector Multiplication [3]
Input: The multi-dimensional array: s.

ŷ  i↵t(↵t(vec(s)) ⇤ ↵t(rev(pad(x̂))));
y  extract(ŷ);
Return y;

This algorithm e↵ectively leverages FFT for MBH matrix-vector multiplication, streamlining

the computation and ensuring high performance, especially in large-scale SCS scenarios.

pad(x) To accommodate the transformation of a circulant matrix with size (n1 . . . nk)-by-

(n1 . . . nk), the vector x of dimensions (q1 . . . qk) needs to be extended into an array of size

(n1 ⇥ · · ·⇥ nk). This extension involves padding with zeros and is executed in three steps:

1. Reverse the vector x̃.

2. Reshape x̃ into X̄ 2 Cq1⇥q2···⇥qk .

3. Expand X̄ into X̂ 2 Cn1⇥n2···⇥nk by padding zeros at the end of each dimension.

extract(ŷ) While leveraging 1-D FFT for computational e�ciency, it remains essential to

extract the vector y of dimensions (p1 . . . pk) from the larger vector ŷ of size (n1 . . . nk). This

extraction process is conducted as follows:

1. Reshape the reversed vector of ŷ into Ȳ 2 Cn1⇥n2···⇥nk .
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2. From Ȳ , extract Ẏ 2 Cp1⇥p2···⇥pk starting from the beginning of each dimension.

3. Reverse the vectorization of Ẏ to obtain y.

Consequently, the MBH matrix-vector multiplication method achieves a computational complex-

ity of O(n1n2 . . . nk log(n1n2 . . . nk)). This represents an improvement in e�ciency compared to

the complexity of O(n1n2 . . . nk log(n1) log(n2) · · · log(nk)), which is more typical of multi-level

FFT approaches. By consolidating the logarithmic terms, the 1-D MBH approach streamlines

the process, ensuring faster and more e�cient computation suitable for high-dimensional SCS

tasks.

The e�ciency and adaptability of the fast MBH matrix-vector multiplication method are also

influenced by the choice of the pencil parameter p, which is used to choose makes the enhanced

Hankel matrix close to square. Therefore, this parameter plays a crucial role in determining the

structure and e�ciency of the Hankel matrix computations. Notably, the principles underpinning

this methodology are not limited to Hankel matrices alone. They can be similarly applied

to other structured matrices, enhancing the computation in various contexts. For instance,

this approach can be e↵ectively adapted for Toeplitz matrices, which are prevalent in signal

processing and control theory. Additionally, the methodology is highly relevant to the multiple

measurement vector (MMV) model, which is central to many applications in array signal

processing, medical imaging, and geosciences. The ability to apply this fast MBH matrix-vector

multiplication technique across di↵erent structured matrices greatly enhances its utility, making

it a versatile tool in computational mathematics and engineering.

Toeplitz Matrix The development of fast matrix-vector multiplication for structured matrices

such as Toeplitz matrices can be understood by examining their relationship with circulant

matrices. This approach is similar to that used for Hankel matrices, with subtle di↵erences in

the padding and extraction processes.

Consider a simple example with a vector s = [s1, s2, s3]. The corresponding circulant matrix

Cs, Hankel matrix Hs, and Toeplitz matrix T s can be represented as follows:
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Cs =

2

66664

s1 s3 s2

s2 s1 s3

s3 s2 s1

3

77775
, Hs =

2

64
s1 s2

s2 s3

3

75 , T s =

2

64
s2 s1

s3 s2

3

75 .

It can be observed that Hs is essentially a reversed row embedded in the lower left side of

Cs, which aligns with the structure of T s. This observation allows for the adaptation of a fast

matrix-vector multiplication approach for T s. Unlike the reversal required before padding in

Hankel matrices, padding can be applied directly to Toeplitz matrices. Moreover, our method,

which relies on padding and extracting operations on the vector, provides an intuitive and

flexible solution for handling arbitrary large-dimensional structured matrices and their variants.

This approach, though inspired by the circulant matrix framework as detailed in [81], o↵ers a

more straightforward implementation for Toeplitz matrices.

MMV Model Matrix-vector multiplication within the MMV model can also be formulated as

a composition of multiple Hankel matrix-vector multiplications. This is exemplified as follows:

[H1|H2|H3]

2

66664

x1

x2

x3

3

77775
= [H1 ⇤ x1|H2 ⇤ x2|H3 ⇤ x3],

where H i (i = 1, 2, 3) represent individual Hankel matrices. In this model, the overall matrix-

vector multiplication result is essentially a composition of the products of these Hankel matrices

with their corresponding vectors. This approach e↵ectively treats the MMV model as a reduced

form of a level-2 Hankel matrix, allowing each multiplication to be handled separately and

e�ciently. The decomposition of the overall multiplication into separate Hankel matrix-vector

operations simplifies the computation, making the MMV model a powerful tool for processing

multiple measurement vectors in a structured and computationally e�cient manner.
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3.2 Truncated Singular Value Decomposition of Hankel

Matrices

The Lanczos process computes the partial tridiagonalization of a symmetric matrix based on

matrix-vector multiplication, where the largest r eigenvalues and eigenvectors emerge relatively

early in the process, typically within m steps [51]. Considering this e�cient eigenvalue de-

composition of symmetric matrices, a symmetric intermediate for SVD can be constructed as

follows:

1.

Z :=

2

64
0 H

H
H 0

3

75

This associated symmetric matrix is utilized in ARPACK [110] with implicitly restarted

Arnoldi methods [111,112], which involve a larger size of Lanczos vectors.

2. The matrix H
H
H disrupts the Hankel structure and increases error due to the squaring of

the condition number. Another drawback is that if the special structure is to be preserved,

two separate matrix-vector multiplications need to be conducted.

Rather than using the tridiagonalization Lanczos process, Golub-Kahan bidiagonalization [4]

demonstrates an e�cient method for computing the singular value decomposition (SVD). For

large matrices H 2 Cp⇥q, unless the partial bidiagonalization step is kept small, the storage

requirements and computational costs become substantial, especially due to the reorthogonal-

ization process necessitated by round-o↵ errors. However, with a small value of m, the Ritz

approximations may not be accurate. To address this, various restarted approaches have been

proposed.

One such approach involves a sequence of Lanczos partial bidiagonalizations with fixed, relatively

small m, but with improved initial vectors. Sorensen [112] developed implicit Arnoldi methods,

akin to QR algorithms with shifts. While this shift-and-invert approach is e↵ective for small-sized
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problems, it can become untenable for larger problems due to excessive memory and execution

time requirements. Additionally, numerical instability can arise from propagated round-o↵

errors.

To enhance robustness, Krylov subspaces are augmented with certain Ritz vectors in thick-

restarted tridiagonalization methods [113]. Stewart [114] proposed an alternative restart

procedure based on Schur decomposition within Krylov subspaces. The thick-restarted bidi-

agonalization method [5] is an equivalent but simpler implementation of the Krylov-Schur

approach [115]. Moreover, numerical simulations indicate that the implicitly restarted Lanczos

bidiagonalization (irlb) method converges faster than the existing KrylovKit.jl package, which

adopts the Krylov-Schur methods.

As previously mentioned, the Golub-Kahan Bidiagonalization (GKB) process is utilized to

extract information about desired singular vectors/values e�ciently. The GKB process is

detailed in Algorithm 3.

Algorithm 3 Golub-Kahan Bidiagonalization (GKB) [4]

Input: A matrix H 2 Cp⇥q, and the size of Krylov space: m.

Set v0 2 Cq as the initial vector, k  0, �0  1, u0  0.
while �k 6= 0 & k  m do

vk+1  p
k
/�k.

k  k + 1.
rk  Hvk � �k�1uk�1.
↵k  krkk2.
uk  rk/↵k.
p
k
 H

H
uk � ↵kvk.

�k  kpk
k2.

end while

Output: Matrices HV m = UmBm and H
H
Um = V mB

T

m
+ p

m
e
T

m
, with V m = [v1| · · · |vm],

Um = [u1| · · · |um] and Bm as defined in (3.1).

Bm =

2

66666666664

↵1 �1 . . . . . . 0

0 ↵2 �2 . . .
...

...
. . . . . . . . . 0

... 0 ↵m�1 �m�1

0 . . . 0 0 ↵m

3

77777777775

(3.1)
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After executing the Golub-Kahan Bidiagonalization (GKB) process with m steps, typically set

as m = 2r [5], the accuracy of the approximated r-triplets of H is checked against the criterion

�mkeT

m
u

Bm
j
k  � kHk, with � as the tolerance. If convergence is not achieved, iterations need to

be implicitly restarted to enhance accuracy. The dilemma lies in maintaining relevant spectral

information while continuing the GKB process.

Similar to restarted Arnoldi methods, the GKB output is reduced to a smaller factorization:

HṼ r+1 = Ũ r+1B̃r+1, H
H
Ũ r+1 = Ṽ r+1B̃r+1 + �̃r+1ṽr+2e

T

r
, (3.2)

where Ũ r, ṽr, and B̃r collect the desired singular information. To continue the GKB process,

we determine Ṽ r+1, Ũ r+1, B̃r+1, and ṽr+2 as in (3.3):

Ṽ r+1 = [q1, q2, . . . , qr
,vm+1], Ũ r+1 = [p1,p2, . . . ,pr

, ũr+1], (3.3)

where q
i
= V myi

, p
i
= Umxi, and xi,yi

are the left and right singular vectors of Bm. The

orthogonality of Ũ r+1 is maintained by setting ũr+1 = normalize (Hvm+1 �
P

r

i=1 ⇢ipi
).

The final factorization obtained is:

HṼ m = ŨmB̃m, H
H
Ũm = Ṽ mB̃m + �̃mṽm+1e

T

m
, (3.4)

with B̃m defined as:

B̃m =

2

666666666666664

�1 0 . . . 0 ⇢1 . . .

...
. . . . . . . . .

...

0 . . . �r ⇢r 0 . . .

↵r+1 �r+1 . . .

. . . . . .

0 ↵m

3

777777777777775

.

This procedure is repeated until convergence or the outset of another iteration.

Although B̃m is no longer a bidiagonal matrix, the SVD is just a slight disadvantage due to the
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small size of m. Finally, the whole algorithm of irbl is given below in Algorithm 4:

Algorithm 4 Truncated SVD by Implicitly Restarted Lanczos Bidiagonalization [5]

Input: a matrix H 2 Cp⇥q, the size of Krylov space m, number of desired singular triplets r,
tolerance �, machine epsilon ✏.

Set v0 2 Cq as the initial vector, k  0, �0  1, u0  0.
Compute the partial Lanczos bidiagonalization by Algorithm 3.
Compute the singular value decomposition of Bm.
Check convergence: if all r desired singular triplets satisfy �mkeT

m
u

Bm
j
k  � kHk, then exit.

Compute the augmenting vectors:
while not converged do

Determine the matrices V := Ṽ r+1,U := Ũ r+1 by (3.3).

Determine B := B̃r+1 :=

2

66664

�1 0 ⇢1

. . .
...

�r ⇢r

0 . . . ↵r+1

3

77775
.

Append U ,V ,B to Um,V m,Bm.
Calculate the SVD of Bm.

end while

Output: Computed set of approximate singular triplets {�j,uj,vj}rj=1 of H .

Remark 5. In practical implementation of Algorithm 4, orthogonalization is required to compen-

sate for round-o↵ errors. The computational complexity is observed to be O(rM) with M being

the flops of matrix-vector multiplication. Combined with fast matrix-vector multiplication of the

MBH matrix, the TSVD is achieved with O(rn log(n)) flops. The size of Krylov subspaces is set

to 2r by default. An early stopping mechanism is added to monitor the norm of the residual

vector for e�ciency.

Numerical Results of TSVD via irlb with FFT

Numerical simulations demonstrate the advantages of the truncated singular value decomposition

(TSVD). For randomly generated Hankel matrices, TSVD is computed for the largest 10 singular

triplets with a specified level of precision. The primary criterion for comparison is execution

time. According to [56], we set p = bn2 c+ 1 to make the Hankel matrix approximately square.

Benefits of TSVD First, we illustrate the e�ciency of TSVD using the restarted approach,

compared to the full SVD without FFT, as shown in Table 3.1. The tolerance is set to 1⇥ 10�10,
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and the deviation from the true singular values computed by SVD is at most 1⇥ 10�13 in the

simulations. The size of the Krylov subspace is 25. The ratio of svd/irlb is also presented.

Table 3.1: Running time comparison of irlb and full svd.

Dimension of Data irlb (s) svd (s) svd/irlb Ratio
(5000) 5.01e� 1 9.8 19.42
(128, 128) 1.96 43.89 22.39
(30, 30, 30) 2.47 29.19 11.79

Benefits of irlb The numerical experiments in this part briefly compare the proposed package

tool against existing competitive ones (two packages in the Julia community, KrylovKit and

Arpack). First, we construct an abstract MBH matrix with fast matrix-vector multiplication.

There is no on-the-shelf package available for MBH. Our irlb package is tailored for MBH

matrices, meaning we can have a multidimensional array as input to utilize the FFT. The

number of iterations (NI) and matrix-vector multiplication (NMV) are also considered vital

criteria for comparison. Additionally, Arpack.svds applies the routine to the matrix H
H
H,

which is e�cient for small dimensions but su↵ers when the matrix is relatively large and

breaks the Hankel structure. Therefore, we will only compare with the KrylovKit package

with similar parameter settings. The results presented in Table 3.2 for di↵erent sizes of the

MBH matrix display the benefit of irlb in various examples. It is observed that the irlb method

has fewer iterations than the Krylov-Schur methods. Although we have not optimized the

orthogonalization process as has been done in KrylovKit, the benefits are still obvious, especially

for large-scale data.

Table 3.2: Comparison of irlb with KrylovKit.

Method Dimension NI NMV Time (s)
irlb (5000) 7 184 1.72e-1
KrylovKit (5000) 10 204 1.66e-1
irlb (256, 256) 6 182 1.82
KrylovKit (256, 256) 10 210 1.51
irlb (50, 50, 50) 9 232 3.51
KrylovKit (50, 50, 50) 14 274 3.62
irlb (30, 30, 30, 30) 11 294 33.21
KrylovKit (30, 30, 30, 30) 19 376 49.35
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3.3 Fast Penrose Pseudoinverse of Multi-block Hanke-

lization

In this section, we introduce an e�cient implementation for the Penrose pseudoinverse of

Hankelization on a low-rank matrix. This mapping from a low-rank matrix to a MBH matrix is

crucial in SSS recovery and other low-rank MBH Hankel completion problems. Our implemen-

tations, which apply one-dimensional fast Fourier transform (1D FFT) directly, enjoy reduced

execution time, filling a gap in existing computational packages for large-scale and multiblock

Hankelization.

For a given matrix H 2 Cp1···pk⇥q1···qk , the array H†
H 2 Cn1⇥n2···⇥nk is obtained by averaging

each skew-diagonal of the submatrix. This is akin to the conjugate operator of Hankelization,

H⇤, which sums the elements according to the MBH structure. The general computational

complexity for this operation is O(n2
1 · · ·n2

k
). In our applications, such as Cadzow filtering, this

operator acts on a low-rank matrix with Singular Value Decomposition (SVD) represented as

H = U⌃V
⇤, leading to the following formulation:

H†(U⌃V
⇤) =

rX

l=1

⌃(l, l)
�
H†(U (:, l))(V (:, l))⇤

�
. (3.5)

Applying fast convolution in equation (3.5), each term H†(U (:, k))(V (:, k))⇤ is computed with

O(n log(n)) flops. Therefore, the total computation for H†(U⌃V
⇤) requires O(rn log(n)) flops.

As the enhanced MBH Hankel matrix is close to a square matrix, the FFT approach for

convolution is preferred over the overlap-save method. Inspired by the 1D FFT for matrix-vector

multiplication, the 1D convolution for the Penrose pseudoinverse of multiblock Hankelization

achieves a computational complexity of O(n1 · · ·nk(log(n1) + · · ·+ log(nk)) flops, rather than

O(n1 · · ·nk log(n1) · · · log(nk)) flops as required by multi-level convolutions.

Benefits of 1D FFT Numerical benefits of using 1D FFT, as opposed to the DSP.jl package,

which adopted multidimensional FFT, for the Penrose pseudoinverse of rank-1 multi-block

51



CHAPTER 3. FAST COMPUTATION TOOLS FOR MULTI-BLOCK HANKEL MATRICES

Hankelization are demonstrated. The comparison is based on time consumption, with the ratio

of time taken by 1D FFT to DSP.jl denoted as “1D/DSP”. The results are presented in Table

3.3, showing the superior performance of 1D FFT in terms of computational e�ciency.

Table 3.3: Running time (s) comparison of the 1D FFT with DSP.

Dimension of data 1D DSP DSP/1D
(5000) 1.02e-4 1.65e-4 1.62
(3, 7, 21, 7) 7.8e-5 1.91e-4 2.44
(7, 3, 5, 11, 3) 9.2e-5 1.78e-4 1.93

3.4 Conclusions

This chapter delves into advanced computational techniques optimized for MBH matrices,

focusing on spectral compressive sensing and its applications.

1. Fast Matrix-Vector Multiplication for MBH Matrices: We introduce a 1D-FFT

method for expediting matrix-vector multiplication in MBH matrices. This approach

enhances flexibility and computational e�ciency, especially in handling large-scale data.

2. TSVD for MBH Matrices: The TSVD, grounded in the Golub-Kahan bidiagonalization,

is presented as a more computationally e�cient alternative to the full SVD. It e↵ectively

reduces computational demands while maintaining critical spectral information.

3. Fast Penrose Pseudoinverse for MBH Matrices: We explore a technique to compute

the Penrose pseudoinverse of MBH matrices using FFT. This method demonstrates superior

computational speed, making it ideal for large-scale data processing and intricate signal

recovery.

4. Numerical Results and Demonstrated E�ciency: Empirical evidence underlines

the e↵ectiveness of the proposed methods over conventional techniques. These empir-

ical findings confirm the theoretical benefits and practical superiority of the methods,

underscoring their relevance in real-world scenarios.
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In conclusion, the chapter contributes significantly to signal processing and spectral compressive

sensing by introducing e�cient computational strategies for MBH matrices. These methods

facilitate faster and more e↵ective data processing in various applications, particularly where

handling complex signal structures and large-scale data is paramount.
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Chapter 4

Low-Rank Projected Proximal Gradient

This chapter introduces a PG-based approach for recovering spectrally sparse signals (SSSs) from

partially observed, noisy data. The focus is on addressing challenges associated with moderate

scale datasets and low sampling rates. To manage larger scale signals, we propose a nonconvex

and nonsmooth objective function achieved through relaxing the low-rank constraint of the

enhanced Hankel matrix. Traditional super-resolution methods for SSS recovery via enhanced

Hankel matrices often encounter reconstruction inaccuracies, primarily due to unequally weighted

norms and excessively lenient enforcement of the Hankel structure in noisy environments.

To tackle these issues, we have developed our optimization framework in vector form, incorpo-

rating an adjustable Hankel enforcement parameter. This framework is designed to resolve the

weighted convergence problem observed in the Cadzow method. Specifically, we investigate the

PG method with a monotone decreasing strategy to ensure convergence. A notable limitation

of standard proximal PG methods in SCS is their relatively slow convergence speed, largely due

to the application of unweighted norms in the optimization process. We address this limitation

by introducing the low-rank projected proximal gradient (LPPG) method. This method is

structured to converge e�ciently to stationary points via a two-step iterative process. The

initial step involves a modified PG approach that allows for a constant step size, independent of

the signal size, significantly enhancing the gradient descent phase. The subsequent step involves

a strategy of low-rank subspace projection, facilitating optimization within a fixed column and
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row subspace of a low-rank matrix to further reduce the objective function.

Both stages of the LPPG method have been meticulously designed to leverage the inherent

low-rank and Hankel structures of the problem, thereby boosting computational e�ciency.

Our numerical simulations demonstrate a marked improvement in both e�ciency and recovery

accuracy of the LPPG method compared to existing benchmark algorithms. This enhanced per-

formance is especially evident in scenarios characterized by significant noise levels, underscoring

the robustness of our method and its suitability for practical, larger scale SSS recovery tasks.

The remainder of this chapter is structured as follows: We commence with Section 4.1, providing

an overview of related work in the field. Subsequently, in Section 4.2, we delve into our

optimization formulation tailored for SCS, specifically focusing on one-dimensional frequency

models. This section meticulously derives our objective function, employing a refined nonconvex

relaxation approach to ensure precision. In Section 4.3, we introduce our proposed LPPG

method. This method is innovatively designed to locate the critical points of our established

formulation. We o↵er a detailed exposition of the LPPG algorithm, particularly emphasizing its

two-step iterative process. Moreover, we discuss the convergence properties and the subgradient-

based criteria for stopping the algorithm, providing insights into its theoretical underpinnings.

Section 4.4 is dedicated to exploring the computational complexity and e�cient implementation

strategies for the LPPG method. Moving forward, Section 4.5 presents numerical validations

of our method in various settings. Here, we compare the e�ciency and accuracy of the LPPG

method against existing benchmarks to demonstrate its e↵ectiveness. For readers interested in

the technical depth, proofs supporting our results are comprehensively detailed in Section 4.7.

Lastly, the chapter concludes with Section 4.6, where we encapsulate our principal contributions

and the implications of our findings.

4.1 Introduction

As we embark on discussing the methodology of SCS from this chapter, it is pertinent to

briefly review the underlying motivations for the compactness, which will also be beneficial for
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understanding Chapters 5 and 6.

4.1.1 Related Gridless Work

Convex Approach: As previously discussed in Chapter 2, the gridless methods, despite their

e↵ectiveness, encounter limitations when applied to larger scale CS problems. This is primarily

due to the high computational complexity involved in solving the equivalent semi-definite

programming (SDP). To address this challenge, Enhanced Matrix Completion (EMaC) [2] was

proposed, which is an evolution of the traditional spectral estimation technique known as Matrix

Enhancement and Matrix Pencil. EMaC introduces a low-rank Hankel matrix completion

problem, leveraging the shift-invariance property and spectral sparsity, and is underpinned by

the Vandermonde decomposition.

Subsequently, recovery approaches based on Hankel matrices gained popularity [45, 90], particu-

larly for larger scale problems, owing to their computational e�ciency. This e�ciency stems

from the fact that the entire matrix involved is Hankel structured, thereby facilitating e�cient

decomposition. An alternative strategy employed is the Burer-Monteiro heuristic [52, 53], where

low-rank matrices are represented via a bilinear outer product. This approach circumvents the

need for explicit matrix singular value decomposition (SVD).

However, it is important to note, as highlighted in the worst-case analysis by [45], that convex

optimization approaches can encounter failure scenarios, even when only a single element is

missing. This observation underscores the need for careful consideration in the application of

these methods, especially in scenarios where data completeness cannot be guaranteed.

Non-Convex Approach: The use of nuclear norm-based methods in larger scale problems is often

hindered by their requirement for full SVD of the enhanced matrix, which is computationally

intensive. As a result, various non-convex methods [14,54–58] have been developed to directly

address low-rank Hankel matrix completion challenges. One such method is Cadzow’s algorithm

[14,54], which utilizes alternating projections between sets of Hankel and low-rank matrices.
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Though an additional Newton-type step was proposed in [59] to achieve quadratic convergence,

leveraging common regularity intersection conditions [60,61] of Cadzow’s algorithm, its high

computational demand often precludes practical applications. Another notable advancement is

the incorporation of Riemannian optimization techniques [62], which involve adding a projection

to the direct sum of column and row spaces [57,58]. An alternative strategy involves representing

a low-rank matrix or tensor as an outer product of low-rank matrices, allowing for direct

optimization on component matrices, thus bypassing the need for explicit matrix decomposition

[55,56].

Among these non-convex methods, Fast Iterative Hard Thresholding (FIHT) [57] and Projected

Gradient Descent (PGD) [56] stand out due to their e�ciency and convergence guarantees.

These guarantees are based on the Hankel incoherence property [2], making these algorithms

particularly e↵ective in handling larger scale SCS problems.

In the realm of SSS recovery using enhanced low-rank matrix approximation, two primary

challenges are encountered:

1) Biased Weighted Norm: The first challenge arises from the biased weighted norm, a

consequence of repeated elements in the induced Hankel matrix. This bias can adversely a↵ect

the accuracy of the signal recovery process, skewing the results and leading to suboptimal

reconstructions.

2) Computational Complexity: The second major challenge is the significant computational

cost associated with solving structured low-rank approximation problems. Central to this issue is

the condition number of the Hessian matrix associated with the quadratic terms in the objective

function. This condition number is closely related to the Hankel enforcement parameter � and

the size of the signal. A high condition number, especially with large values of � and signal size,

leads to extremely slow convergence rates. This is particularly problematic when traditional

methods, such as evaluating the rank function through SVD, are employed. The computational

complexity of SVD, typically O(n3), renders it impractical for larger scale problems, resulting

in an unmanageably high number of iterations required for gradient-based methods, even in

57



CHAPTER 4. LOW-RANK PROJECTED PROXIMAL GRADIENT

scenarios with moderately sized problems.

Addressing these challenges is crucial to enhance the e�ciency and accuracy of SSS recovery,

especially in large-scale scenarios where computational resources and time are critical factors.

4.1.2 Contributions of LPPG

To overcome the aforementioned challenges, this study introduces a LPPG method, meticulously

designed in two steps, to address a specially formulated objective function with equal weighted

norms. This method showcases e�cient convergence and enhanced performance in demanding

situations, such as in the presence of heavy noise and at low sampling rates. The key contributions

of this work are summarized as follows:

1. An Accurate Formulation: We have developed a formulation that aligns more closely

with the original problem model in two crucial respects. First, unlike traditional Hankel-

based algorithms, our approach represents spectrally sparse signals (SSS) in vector form

rather than augmented matrix form, e↵ectively reducing bias caused by di↵ering weights

in the matrix l2 norm induced by the Hankel operator [14,58]. This significantly enhances

reconstruction accuracy in proportion to the signal size. Additionally, the introduction of

a Hankel enforcement parameter in our unconstrained optimization framework allows for

adjustments based on noise levels, thereby improving accuracy in highly noisy environments.

2. Convergent Low-Rank Projected Proximal Gradient Algorithm: The LPPG

algorithm we propose e�ciently converges to critical points, unrestricted by initialization

constraints, and exhibits superior recovery performance, particularly in nonconvex contexts.

While the standard PG method [6] ensures a monotonically decreasing function with

a constant step-size, it is often hampered by slow convergence due to step-sizes being

inversely proportional to signal size. Our method overcomes this through a modified PG

step featuring an optimized, signal size-independent step-size. Additionally, we introduce

an innovative low-rank matrix subspace projection step, significantly enhancing recovery in
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scenarios with low sampling rates and moderate SSS orders. We demonstrate the e�cacy

of both steps in achieving guaranteed convergence.

3. E�cient Implementations: To enhance the e�ciency of our two-step iterative method,

we have implemented strategies to reduce both the number of iterations and the computa-

tional complexity of each iteration. By fully exploiting the Hankel and low-rank structures,

we have reduced computational demands and storage needs for large-sized variables in

the iterative process. Furthermore, we have streamlined the optimization by converting a

dual-variable problem into a single-variable one, utilizing subgradient conditions. This

optimization reduces computational complexity from O(n3) to O(r4n + r
3
n log n) per

iteration.

In the LPPG method, the Hankel enforcement parameter holds an inverse proportional relation-

ship with the step-size in the gradient descent process. This parameter e↵ectively establishes a

strict upper limit for the step-size, thereby creating a direct link between the noise level and

the convergence speed. Unlike other descent methods that necessitate complex estimations or

line-search algorithms to determine the step-size based on initial conditions, the LPPG method

o↵ers an e�cient way to set this parameter once the noise level is ascertained. For example, in

noiseless scenarios, it is recommended to set the parameter for structural constraints close to

zero, as outlined in [88]. This recommendation implies that a substantially larger step-size can be

chosen for rapid convergence when the Hankel enforcement parameter is minimal. Furthermore,

the LPPG approach paves the way for applying fast variations of the PG method [106,116] in

the realm of SCS.

To substantiate the e↵ectiveness of our proposed LPPG method, extensive numerical simulations

have been conducted. The outcomes from these simulations attest to the superiority of the

LPPG method over existing benchmarks in four key aspects: 1) It requires fewer samples for

accurate estimation of SSS with a higher model order; 2) It achieves faster convergence in

scenarios devoid of noise; 3) It retains robust performance even in the presence of significant noise;

4) It enhances accuracy by e↵ectively mitigating the biased weighted norms associated with

SSS. These advantages underscore the LPPG method’s potential in e�ciently and accurately
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addressing challenges in SCS.

4.2 The Optimization Formulation

We consider an order-r SSS1
x 2 Cn (with r ⌧ n), representing a superposition of complex

sinusoids:

x =
rX

k=1

dky(fk, ⌧k; n), (4.1)

where dk 2 C is the complex amplitude, and y(fk, ⌧k; n) := [1, ei2⇡fk�⌧k , . . . , e
(i2⇡fk�⌧k)(n�1)]T 2

Cn represents the kth spectral component with normalized frequency fk 2 [0, 1) and damping

factor ⌧k [56]. Due to practical constraints, often only a subset of x is accessible for observation.

Denote ⌦ ⇢ {1, . . . , n} as the set of indices corresponding to the observed entries, with

|⌦| := m < n, and let P⌦ be the sampling operator that captures entries indexed by ⌦ while

zeroing out the others. The sampling rate is thus defined as Sp := m/n < 1.

The primary challenge lies in reconstructing the SSS x from its partial observations s, i.e.,

find x s.t. P⌦x = s. (4.2)

The Hankel matrix associated with x, denoted as Hx, admits a Vandermonde decomposition:

Hx =
rX

k=1

dky(fk, ⌧k; p)y(fk, ⌧k; q)T 2 Cp⇥q
. (4.3)

Typically, p and q are chosen such that p ⇡ q ⇡ n/2, resulting in Hx being approximately

square [2, 56]. It is evident that rank(Hx)  r ⌧ q [31], implying a low-rank structure that is

central to our recovery approach.

Consequently, the recovery of SSS can be recast as a problem of low-rank Hankel matrix

recovery [2, 53, 55–57]. To capture the data discrepancy e↵ectively while preserving the Hankel

1
For simplicity, our discussion is centered on one-dimensional SSS in this chapter. However, the proposed

method is adaptable to multilevel cases.
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structure, we introduce an enhanced Hankel matrix X
e = Hx. The rank-constrained nonconvex

optimization problem is then formulated as follows:

min
X

e
,x

�(rank(Xe)  r) +
1

2
ks� P⌦xk22 s.t. Xe = Hx, (4.4)

where �(·) denotes the indicator function for rank-constrained matrices, defined as zero when its

argument is true, and infinity otherwise:

�(x) =

8
>><

>>:

0 x = 1

+1 x = 0.

(4.5)

To circumvent the di�culties inherent in solving this constrained nonconvex optimization

problem, we adopt a relaxation approach:

min
X

e
,x

�(rank(Xe)  r) +
1

2
ks� P⌦xk2 +

�

2
kXe �Hxk2

F
+

↵

2
kxk2, (4.6)

where � > 0 serves as the Hankel enforcement parameter, ensuring adherence to the Hankel

structure, and ↵ is a small positive scalar introduced for regularization purposes. While the PG

algorithm [6] can solve problem (4.6) with a convergence guarantee, its direct application often

results in slow convergence. This sluggishness is attributed to the unequal weighted norm [63,64]

and the high computational complexity per iteration of O(n3), primarily driven by the SVD

operation required by the rank constraint.

Remark 6. For ease of exposition and to maintain focus on the core principles, we limit our

discussion to one-dimensional SSS in Sections 4.2 and 4.3. However, we extend our method to

higher-dimensional cases and present the corresponding simulation results in Section 4.5.

We highlight the key advantages of our formulation as follows:

1. Hankel Enforcement Parameter (�): Our formulation uniquely incorporates the

parameter �, allowing for adjustments based on di↵erent noise levels. This yields two
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significant benefits:

(a) In low noise scenarios, a smaller value of � can be selected [88], facilitating faster

convergence as the step-size in gradient-based methods is inversely proportional to

� [56, 57].

(b) For high noise levels, a larger � ensures more accurate reconstruction by aligning

more closely with the original constrained optimization, especially when data fidelity

is unreliable.

2. Data Fidelity (ks�P⌦xk2): Our chosen data fidelity term contrasts with kH(s�P⌦x)k2F

used in previous works [2, 14,56–58], where varying weighting coe�cients for individual

entries could introduce bias in the solution. Our approach ensures equal treatment of

noise terms, preventing potential biases due to unequal contributions.

The e�cacy of our formulation is demonstrated through numerical simulations, as shown in

Section 4.5.

4.3 A Low-rank Projected Proximal Gradient Method

The formulation we propose represents a nonconvex, unconstrained optimization problem, which

distinctively includes nonsmooth terms. Our main objective is to achieve the critical points

(x?
,X

e?) of the objective function, as delineated in (4.6). This task is carried out with respect

to the observed samples, aiming to accurately recover the underlying spectral components

represented by these critical points.

4.3.1 The Modified Proximal Gradient Step

Given the proximal operator defined as:

prox
�g
(v) = arg min

x

✓
g(x) +

1

2�
kx� vk2

◆
. (4.7)
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For a function g, if prox
g
has a closed or semi-closed form solution and is computationally easy

to evaluate [6, 97], we generally describe such functions as proximable [117]. Let f : Rd ! R be

a function. We say that f is Lipschitz continuous if there exists a constant Lf � 0 such that for

all x,y 2 Rd,

kf(x)� f(y)k2  Lfkx� yk2.

The constant Lf is called the Lipschitz constant of f . The standard PG method process is

detailed in Algorithm 5 in [6]. It addresses unconstrained optimization problems formulated as:

min
x

F (x) := min
x

f(x) + g(x), (4.8)

where f(·) is a Lipschitz di↵erentiable function2, and g(·) is usually a proximable function.

It is crucial to note that the step size 0 < �  1/Lrf is selected inversely proportional to the

Lipschitz constant Lrf .

Algorithm 5 The Standard PG Method [6]

Initialize x0 and select 0 < �  1
Lrf

(where Lrf is the Lipschitz constant of rf).
for k = 0, 1, . . . do

Update xk+1  prox
�g
(xk � �rf(xk)).

end for

The PG method, as described above, is e↵ective in converging within nonconvex and nonsmooth

optimization frameworks, especially when the step size is carefully selected. This gradient-descent

based methodology is notable for consistently reducing the objective function and demonstrating

enhanced robustness, particularly in comparison to alternating projection methods that require

random initialization conditions [56].

When the PG method is applied directly to the function formulated in (4.6), we define:

f(Xe
,x) =

1

2
ks� P⌦xk2 +

�

2
kXe �Hxk2

F
+

↵

2
kxk2. (4.9)

The Lipschitz constant for the gradient of f , denoted as Lrf , is determined to be 1+�min(p, q)+

2
The gradient rf is Lipschitz continuous, with a Lipschitz constant denoted as Lrf .
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↵. Here, p and q are dimensions pertaining to the Hankel mapping as indicated in (2.1). As a

result, the step-size selected for the PG method becomes inversely proportional to the size of

the signal. This relationship unfortunately results in excessively slow convergence, especially for

signals of moderate or large size, rendering this direct application of the PG method impractical

for such scenarios.

In our methodology, we leverage the necessary condition for critical points, which implies that

the partial derivative with respect to x must be zero. This implies that minimizing x is a

fundamental step. It is important to note that the variables x and X
e are linearly coupled solely

within the term kXe �Hxk2
F
. This observation leads us to adopt a substitution strategy to

deduce the critical points x? in terms of Xe. Such a substitution is pivotal for reconceptualizing

the objective function to encompass only the single variable X
e:

F (Xe) := f(Xe) + g(Xe), (4.10)

f(Xe) := min
x

1

2
ks� P⌦xk2 +

�

2
kXe �Hxk2

F
+

↵

2
kxk2, (4.11)

g(Xe) := �(rank(Xe)  r). (4.12)

Because of the lifting technique for Xe, the function g(Xe) is proximable. Moreover, the lifting

variable X
e also makes the Hankel structure constraint more flexible according to the scale

of Hankel enforcement parameter �. This reformulation not only simplifies the optimization

problem but also aligns it more closely with the underlying structure of our Hankel matrix-based

approach in error estimation.

Upon solving for the gradient with respect to x, denoted as rx, we derive the optimal x?:

x
? = L(P⇤

⌦s+ �H⇤
X

e), L = (↵I + P⇤

⌦P⌦ + �H⇤H)�1
. (4.13)

Remark 7. The operator L = (↵I + P⇤

⌦P⌦ + �H⇤H)�1 is guaranteed to exist and can be

represented by diagonal matrices with positive entries. This assurance stems from the fact that
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H⇤H scales each element of an n-dimensional vector by wa, the count of elements in the ath

skew-diagonal of a p⇥ q matrix. Additionally, P⇤

⌦P⌦, which can be equated to P⌦, is represented

by diagonal matrices where the observed entries are marked with 1s, and the unobserved entries

are filled with 0s.

A notable aspect of our formulation in (4.10) is the bounding of the Lipschitz constant of

rf(Xe) by �, which is remarkably independent of the dimensionality of the problem. This

characteristic facilitates the selection of a larger step-size for the corresponding PG method,

thereby accelerating convergence in large-scale scenarios. The Lipschitz constant of rf(Xe),

denoted as Lrf , is calculated in Proposition 1:

Proposition 1. The Lipschitz constant of rf(Xe), denoted as Lrf . We have

rf(Xe) = ��HLP⇤

⌦s� �
2HLH⇤

X
e + �X

e
, (4.14)

and hence Lrf < �.

Remark 8. This reduced upper bound on the Lipschitz constant, Lf , allows for an increased

step-size, � = 1/�, in iterative PG algorithms. This optimized step-size is crucial in achieving

e�cient convergence.

E�ciency in computations is a key strength of our proximal gradient step. It primarily entails

the evaluation of rf(Xe) as expressed in (4.14), in addition to computing the proximal operator:

prox
�g
(Xe

k
� �rf(Xe

k
)) = Tr (X

e

k
� �rf(Xe

k
)) , (4.15)

where Tr(·) represents the truncated SVD operator [118]. Importantly, Tr e�ciently handles

the combination of a Hankel matrix and a low-rank matrix, employing the Lanczos method

to calculate SVD’s extreme triplets via matrix-vector multiplications. Furthermore, Hankel

matrix-vector multiplications can be accelerated from O(n2) to O(n log n) using the FFT [3],

significantly enhancing computational speed.

65



CHAPTER 4. LOW-RANK PROJECTED PROXIMAL GRADIENT

4.3.2 The Low-Rank Projection Step

In the realm of Hankel low-rank matrix completion, the number of stationary points is known

to scale exponentially with the rank r and linearly with the size n [14]. A pivotal challenge

in this context is the selection of optimal critical points that lead to more accurate signal

reconstructions. Common practices, such as those employed in Cadzow’s algorithm, typically

involve a straightforward and cost-e↵ective scalar correction to minimize the cost function while

maintaining the matrix rank [64].

Motivated by this approach, we have incorporated a subspace projection step into our method-

ology. This step is designed to create a new low-rank matrix X
e

k,
1

2

, which is intended to more

closely align with the Hankel structure and the observed samples. This alignment is achieved

by leveraging the output from the k-th iteration of the proximal gradient step, denoted as Xe

k
.

The primary goal of this subspace projection step is to refine the approximation of Xe

k
such

that it better represents the underlying Hankel structure and sample data, thereby enhancing

the accuracy of the overall signal recovery process.

Specifically, the rank-r matrix X
e

k
undergoes preprocessing to achieve a reduced Singular

Value Decomposition (rSVD): Xe

k
= U k⌃kV

H

k
, where U k 2 Cp⇥r and V k 2 Cq⇥r consist of

orthonormal columns. Maintaining U k and V k as fixed, the optimization problem in (4.6) is

redefined as:

min
X

e
k,x

�(rank(Xe

k
)  r) +

1

2
ks� P⌦xk2 +

�

2
kXe

k
�Hxk2

F
+

↵

2
kxk2

= min
⌃,x

1

2
ks� P⌦xk2 +

�

2
kU k⌃V

H

k
�Hxk2

F
+

↵

2
kxk2, (4.16)

resulting in a least-squares problem involving the variables ⌃ and x, for which there exists a

unique closed-form solution3. The low-rank projection in (4.16) is equivalent to solving the

3
Note that ⌃ is not assumed to be diagonal.
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following system of linear equations:

2

64
P⌦ + �W ��H⇤PU,V

��P⇤

U,V
H �P⇤

U,V
PU,V

3

75

| {z }
A

2

64
x

⌃

3

75 =

2

64
P⌦s

0

3

75 , (4.17)

where PU,V⌃ = U k⌃V
H

k
and P⇤

U,V
X

e = U
H

k
X

e
V k. The equation (4.17) can be resolved using

conjugate gradient methods [51], typically featuring a computational complexity of O((n+ r
2)3).

However, our preliminary simulations suggest that this level of complexity may be excessive for

larger scale problems with a substantial value of n.

As previously demonstrated, we can recast the optimization problem in (4.16) into a single-

variable formulation (4.18), thereby considerably reducing the computational complexity from

O((n+ r
2)3) to O(r3n log n+ r

4
n). Specifically, we reshape (4.16) as follows:

min
⌃k

L(⌃k), with

L(⌃k) = min
x

1

2
ks� P⌦xk2 +

�

2
kU k⌃kV

H

k
�Hxk2

F
+

↵

2
kxk2. (4.18)

In this new formulation, the objective function L(⌃k) solely depends on ⌃k, though its compu-

tation also involves optimizing x. The optimal solutions to (4.18) are outlined below.

Proposition 2. Define PUk,V k
⌃ = U k⌃V

H

k
and P⇤

Uk,V k
X

e = U
H

k
X

e
V k. The optimal solutions

to (4.18) and (4.16) are given by:

x
† = (↵I + P⇤

⌦P⌦ + �H⇤H)�1 (P⇤

⌦s+ �H⇤PUk,V k
⌃?

k
) , (4.19)

⌃?

k
=
�
I � �P⇤

Uk,V k
HLH⇤PUk,V k

��1 �P⇤

Uk,V k
HLP⇤

⌦s
�
. (4.20)

Remark 9. The regularization term ↵

2 kxk
2 ensures that the matrix I � �P⇤

Uk,V k
HLH⇤PUk,V k

is positive definite, guaranteeing the existence of its inverse linear mapping.

Proposition 3. Let Xe

k,
1

2

be defined as U k⌃
?

k
V

H

k
. The low-rank projection step exhibits the
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su�cient decrease property:

F (Xe

k,
1

2

)  F (Xe

k
)�

✓
↵

↵ + �

◆
kXe

k,
1

2

�X
e

k
k2
F
. (4.21)

The computation of (4.19) and (4.20) benefits greatly from the Hankel and low-rank structure of

the involved matrices. The reduction in the number of variables from n+ r
2 to r

2 considerably

lowers the computational complexity. This makes it feasible to determine the optimal values

using the conjugate gradient (CG) method for linear mapping. The computational complexity

for this low-rank projection step is O(r3n log n+ r
4
n). A detailed analysis of this complexity is

provided in Section 4.4.

This step in the algorithm can be viewed as a refinement of the SVD process, aiming to enhance

data fidelity while preserving the Hankel structure after each MPG step. It serves as a critical

adjustment, ensuring that each iteration of the algorithm progresses towards a more accurate

reconstruction of the SSS.

4.3.3 The LPPG Algorithm with Convergence

We incorporate the MPG step with an optimized step-size and the low-rank subspace projection

into our LPPG algorithm. This integration is articulated in Algorithm 6.

Algorithm 6 LPPG for SCS

Input: s, �, ↵, ✏, � = 1
�
, initial guess Xe

0  TrHs.

while k@F (Xe

k
)kF � ✏kXe

k
kF do

Compute X
e

k,
1

2

 U k⌃?
kV

H

k
through subspace projection of Xe

k
.

Update X
e

k+1  Tr

⇣
X

e

k,
1

2

� �rf(Xe

k,
1

2

)
⌘
.

end while

Output: The reconstructed signal Xe

k
from the last iteration, and x

†  L(P⇤

⌦s+ �H⇤
X

e

k
).

The objective function (4.10) consistently exhibits a monotonic decrease after each iteration,

owing to the meticulous optimization of the subproblem. The convergence properties of the

LPPG algorithm are further detailed in Theorem 1.
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Theorem 1. The sequences {Xe

k,
1

2

} and {Xe

k
} generated by Algorithm 6 are bounded. Suppose

X
e⇤ is an accumulation point of the sequence {Xe

k
}. In that case, it satisfies 0 2 @F (Xe⇤),

meaning X
e⇤ is a critical point of the objective function. Furthermore, the following properties

hold:

�rf(Xe

k,
1

2

) +rf(Xe

k+1)�
1

�
(Xe

k+1 �X
e

k,
1

2

) 2 @F (Xe

k+1), (4.22)

and

k � rf(Xe

k,
1

2

) +rf(Xe

k+1)�
1

�
(Xe

k+1 �X
e

k,
1

2

)kF (4.23)


✓
1

�
+ Lrf

◆
kXe

k+1 �X
e

k,
1

2

kF ! 0 as k !1. (4.24)

The convergence rate of the algorithm is characterized by:

min
i=0,··· ,K

k@F (Xe

i+1)k2F 
c0

K + 1
(F (Xe

0)� F
⇤),

where c0 =
(��Lrf )�4

(↵+�)2 .

The proof of Theorem 1 encompasses three key steps: 1) Establishing a su�cient decrease in the

objective function; 2) Proving that any accumulation point Xe⇤ qualifies as a critical point of

the function; and 3) Determining the convergence rate of the algorithm. A detailed exposition

of the proof is provided in Section 4.7.4.

Remark 10. The crux of the convergence in the LPPG algorithm stems from the MPG step.

This step ensures that k@FkF 
⇣

1
�
+ Lrf

⌘
kXe

k+1 �X
e

k,
1

2

kF , which diminishes as k increases.

Additionally, the inclusion of the low-rank subspace projection step contributes to a further

decrease in the objective function. This leads to an accelerated convergence and empirically

yields better signal reconstruction. This enhancement is primarily due to the better alignment

with the observed samples and the intrinsic Hankel structure, as demonstrated in our numerical

experiments.
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4.3.4 Stopping Criteria

Previous research on non-convex methods, such as those cited in [54, 56–58, 119], commonly em-

ployed stopping criteria based on the relative di↵erence between successive iterations, quantified

as kXe

k+1 �X
e

k
k2/kXe

k
k2. This criterion tends to be e↵ective when the initial approximation is

close to the global minimum’s basin of attraction. However, this may not always be su�cient in

practical scenarios, especially when the frequencies to be estimated are closely spaced, as small

step sizes might inadvertently lead the algorithm away from the true solution.

To enhance robustness, our LPPG method directly assesses convergence to critical points through

the subgradient of F . In verifying the accumulation point of {Xe

k
}, we ensure that @F (Xe

k
)

tends towards zero. Given the non-di↵erentiability of g, we utilize the optimality condition of

the proximal operator (4.15) to infer:

�1

�
(Xe

k+1 � (Xe

k,
1

2

� �rf(Xe

k,
1

2

))) 2 @g(Xe

k+1). (4.25)

This leads us to the following formulation:

� 1

�
(Xe

k+1 � (Xe

k,
1

2

� �rf(Xe

k,
1

2

))) +rf(Xe

k+1)

=
1

�
(Xe

k,
1

2

�X
e

k+1) + (rf(Xe

k+1)�rf(Xe

k,
1

2

))

=((
1

�
� �)I + �

2HLH⇤)(Xe

k,
1

2

�X
e

k+1)

=�
2HLH⇤(Xe

k,
1

2

�X
e

k+1) 2 @F (Xe

k+1). (4.26)

This equation facilitates an e�cient check for �2HLH⇤(Xe

k,
1

2

�X
e

k+1), as detailed in Section

4.4.

The choice of � is pivotal for the stopping criteria: in noiseless scenarios, large steps (small

�) are expected, driving the subgradient of F towards zero. Conversely, in heavily noisy

conditions (large �), the subgradient of F might oscillate near local minima, suggesting an

earlier termination. Moreover, once � is fixed, the di↵erence in the MPG step can be used to
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measure the subgradient of F , as indicated in (4.26). The LPPG method with this stopping

criteria proves more robust than the traditional relative di↵erence between iterations, as it

remains una↵ected by the implicit step size.

4.4 Computational Complexity Analysis

In this section, we emphasize the significant reduction in computational complexity achieved with

our proposed LPPG algorithm. Each iteration of the LPPG algorithm incurs a computational

complexity of O(r4n+ r
3
n log n), which is markedly lower than the O(n3) complexity typically

encountered in large-size SSS signal processing. This substantial e�ciency gain stems from the

strategic exploitation of the low-rank and Hankel structures inherent to the problem. As a

result, our LPPG algorithm stands out as a highly e↵ective tool for tackling larger scale SSS

recovery tasks, o↵ering a notable advancement in computational e�ciency.

We base our computational complexity analysis on several fundamental operations relevant to

our algorithm:

The computational complexity analysis of our proposed LPPG algorithm is based on several

key operations:

• Hankel Matrix-vector Multiplication: E�ciently performed using the FFT for a

p⇥ q Hankel matrix mapped from an array of size n, this operation requires O(n log n)

flops [51].

• Low-Rank Matrix-vector Multiplication: The multiplication of a rank-r, n ⇥ n

square matrix with a vector involves O(rn) operations. Given a rank r matrix A 2 Cn⇥n

in SVD form (U⌃V
H), the complexity of multiplying A by a vector x can be broken

down as follows:

A|{z}
n⇥n

⇥ x|{z}
n⇥1

= U|{z}
n⇥r

⇥[ ⌃|{z}
r⇥r

⇥(V H

|{z}
r⇥n

⇥ x|{z}
n⇥1

)] (4.27)

Here, computing V
H
x incurs O(rn) flops, followed by O(r2) for multiplying ⌃ and O(rn)
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for the final product with U (considering r  n).

• Hankel Mapping H: Forming a p ⇥ q Hankel matrix Hx from x of size n is done

with O(n) complexity, leveraging the repeated elements in Hx. Operations like addition,

scaling, and inner products within the Hankel subspace require O(n) flops.

• Adjoint of Hankel Mapping H⇤: The transformation from p ⇥ q matrices to n-

dimensional vectors via H⇤ is optimized in the LPPG algorithm. Given that {Xe

k
} and

{Xe

k,
1

2

} are rank-r matrices, they can be decomposed as Xe = U⌃V
H. In our method,

H⇤ operates post-PU ,V as follows:

H⇤PU ,V ⌃ = H⇤(U⌃V
H)

=
rX

i=1

⌃(i, i)H⇤[U (:, i)V (:, i)H]. (4.28)

The computational complexity of H⇤PU ,V ⌃ is O(r2n+ rn log n) flops, considering the use

of fast convolution techniques.

With the aforementioned preliminaries, it is evident that the LPPG algorithm e↵ectively improves

its computational e�ciency with to handle larger scale SSS recovery problems, leveraging the

unique structures of the matrices involved. Building on these e�cient calculations, we analyze

the computational complexity in each iteration, which encompasses the following three parts:

• Modified PG Step: As delineated in the proximal mapping (4.15), the modified PG

step entails solving a rank-r truncated singular value decomposition (tSVD) of a linear

combination of a Hankel matrix and a low-rank matrix. Constructing this Hankel matrix

demands O(r2n+ rn log n) flops. We implement the fast r-truncated SVD for the linear

combination matrix using the Lanczos method [5,120] withO(rn log n+r
2
n) flops, based on

the fast matrix-vector multiplication of the Hankel matrix and low-rank matrix. Therefore,

the total computational complexity of the modified PG step is O(r2n+ rn log n).
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• Subspace Projection Step: This step involves solving the following equation for ⌃:

�
I � �P⇤

U ,V
HLH⇤PU ,V

�
⌃ = P⇤

U ,V
HLP⇤

⌦s. (4.29)

This general linear equation can be solved using the conjugate gradient method [121] with

at most r2 iterations, where r
2 is the size of the variable vec(⌃). We have shown that

each iteration of the linear mapping in (4.29) requires O(nr2 + rn log n) floating-point

operations (flops). Hence, the total computational complexity for the subspace projection

step is O(nr4 + r
3
n log n).

• Stopping Criteria: As indicated in (4.26), after projecting to Hankel space with

O(r2n+ rn log n) flops via H⇤, we can compute k@FkF in O(n) flops. Thus, our stopping

criteria can be e�ciently verified with O(r2n+ rn log n) flops.

In summary, the computational complexity of our LPPG algorithm is O(r4n+ r
3
n log n) per

iteration. The LPPG algorithm presents a highly e�cient solution for larger scale SSS recovery,

characterized by a manageable computational load even as the problem size increases. By

ingeniously integrating the subspace projection and modified proximal gradient steps, it achieves

a balance between computational demand and the ability to handle complex SSS recovery tasks.

This e�ciency, combined with its adaptability to various scenarios, including high-dimensional

data, positions the LPPG algorithm as a significant advancement in the field of SCS.

Remark 11. High-dimensional Extension The LPPG algorithm, informed by the Hankel-based

methodologies in [2,56–58], shows potential for adaptation to higher-dimensional SSS recovery.

By leveraging the inherent Hankel structure in multidimensional SSS, our algorithm can be

e�ciently implemented for these complex scenarios. Key operations like Hankel matrix-vector

multiplications and the use of the H⇤ operator are e↵ectively applicable in these extended

contexts, ensuring the adaptability and robustness of the LPPG algorithm for high-dimensional

SSS recovery challenges.
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4.5 Simulations

This section presents numerical simulations to demonstrate the e�cacy of the LPPG method,

particularly focusing on its recovery capability under various conditions. The simulations are

organized as follows:

1. Phase Transition Analysis: Section 4.5.1 evaluates the LPPG method’s recovery ability

using a phase transition framework, providing insights into its performance across di↵erent

signal sparsity levels.

2. Convergence Rate in Noise-Free Scenarios: In Section 4.5.2, we examine the rapid

convergence rate of LPPG in scenarios without noise, highlighting the benefits of an

optimized step-size.

3. Robustness to Heavy Noise: Section 4.5.3 tests LPPG’s performance in the presence of

significant additive noise. This section also discusses the adaptability of the hyperparameter

� and its impact on reconstruction quality.

4. Mitigating Weighted Norm Bias: Section 4.5.4 demonstrates how our proposed

formulation e↵ectively addresses the biased weighted norm issue, a common challenge in

Hankel matrix-based methods.

5. Sensitivity to Unknown Model Order: In Section 4.5.5, the robustness of LPPG to

variations in the model order is explored, underlining its e↵ectiveness even when the exact

number of signal components is not precisely known.

These simulations aim to comprehensively assess the LPPG method’s performance under diverse

conditions, verifying its practical applicability in signal recovery tasks.

In all tests, the ground-truth SSS and their partial observations are generated as follows: The

frequency fk of SSS is uniformly distributed on [0, 1), and the phases of complex coe�cients dk

are uniformly sampled on [0, 2⇡). The amplitudes are set to 1 + 100.5ck , where ck is uniformly

distributed on [0, 1]; cf. [56]. For a given sample size m = Spn, ⌦ is assumed to be uniformly

74



CHAPTER 4. LOW-RANK PROJECTED PROXIMAL GRADIENT

sampled. We assess computational e�ciency (number of iterations) and normalized mean

squared error (NMSE, defined as kx† � xk2/kxk2, where x
† denotes the estimate returned) to

highlight the advantages of our LPPG method. We consider level-1, level-2, and level-3 cases in

the data settings, with two di↵erent settings: (a) without damping factor, and (b) damping

factors generated such that 1/⌧1,k is uniformly sampled from [8, 16] for 1  k  r (similarly,

1/⌧2,k from [16, 32] and 1/⌧3,k from [64, 128]) [56].

Our LPPG method is compared with benchmark algorithms, including EMaC [2], FIHT [57],

PGD [56], standard PG [6], and the modified PG algorithm (MPG), which is LPPG without

subspace projection. For large-size cases, we apply EMaC [2] using the alternating projection-

based implementation as suggested in [2]. The value of ↵ is set to 1e� 20 by default.

4.5.1 Empirical Phase Transition

The e↵ectiveness of the recovery algorithms is quantified using the NMSE. A signal is considered

successfully recovered if NMSE is less than 10�3. Figure 4.1 presents the empirical phase

transition, averaged over 50 trials. The phase transition curves, representing a 50% success

rate, are plotted as a function of the sampling ratio Sp and rank r, for both undamped and

damped cases. For computational feasibility, we set n = 63. The stopping criteria for the

algorithms are limited to 1000 iterations (denoted as K) and a numerical-error threshold ✏ of

10�6. It is noteworthy that the standard PG algorithm is excluded from these curves due to its

non-convergence within the 1000 iteration limit.

Our simulations reveal that the damped case is inherently more challenging, requiring a higher

sampling ratio for e↵ective recovery compared to the undamped scenario. Notably, both the

LPPG and MPG methods demonstrate superior performance over other algorithms in these

contexts. The e�cacy of the LPPG method is particularly pronounced in damped cases,

highlighting the significance of its subspace projection step. This step is instrumental in ensuring

successful recovery, especially when the model order is moderate relative to the signal size. The

LPPG algorithm’s ability to further reduce the objective function at each iteration is a key
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Figure 4.1: The 50% phase transition curves: n1 = 63, (p1, q1) = (32, 32).

factor in its high performance. Crucially, the LPPG method shows an enhanced capacity for

successful recovery with lower sampling ratios for a given rank r. This attribute is particularly

beneficial in practical scenarios where e�cient sensing is a priority. These outcomes strongly

attest to the LPPG method’s superiority in handling both damped and undamped spectrally

sparse signals.

Remark 12. While the LPPG method demonstrates superior recovery performance, we aim

to maintain fairness in our comparative analysis. To this end, we consciously avoid scenarios

exclusively favorable to LPPG in subsequent tests. Instead, we select conditions in Sections 4.5.2

and 4.5.3 that are amenable to all algorithms under consideration. This approach ensures a

balanced comparison, reflecting each method’s capabilities under a common set of challenges.

4.5.2 Fast Convergence Rate for Noiseless Case

In this experiment, we evaluate the convergence rate of the LPPG algorithm in an ideal, noise-

free scenario. The rate of convergence is closely linked to the choice of the parameter �. The

theoretical bound on the convergence rate is given by the following inequality:

min
i=0,··· ,K

k@F (Xe

i+1)k2F 
(� � Lrf )�4

(K + 1)(↵ + �)2
(F (Xe

0)� F
⇤),
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Figure 4.2: Convergence rate comparison: (n1, n2) = (31, 31), (p1p2, q1q2) = (256, 256), r = 15.
Left: no damping in the test signals and Sp = 0.3. Right: signals are generated with damping
and Sp = 0.4.

suggesting that a smaller value of � results in a more rapid convergence. Following the

recommendation in [88], in cases where the observed data is presumed accurate, setting the

structural constraint parameter � near zero is advisable. Consequently, for the modified proximal

gradient-based algorithms (MPG and LPPG), we set the step size � = 1/� = 1e6. This choice

ensures convergence for any � value, as Lrf < �. In contrast, gradient-based methods such as

FIHT and PGD require empirical adjustment of their step-size relative to the sampling ratio,

as their step-size is not directly linked to the noise level. This necessitates a laborious tuning

process. The alternating projection-based EMaC algorithm does not permit increasing the step

size.

We compare the convergence rates of di↵erent algorithms in both undamped and damped

settings in Figures 4.2a and 4.2b, respectively, by plotting NMSE as a function of the number

of iterations. We test a two-dimensional SSS x of size 31 ⇥ 31, constructing a level-2 block

Hankel matrix Hx 2 C256⇥256. For the undamped setting, the sampling ratio is set to 0.3, and

for the damped case, it is 0.4, with the rank consistently at 15. These parameters ensure that

all algorithms are operable while allowing di↵erentiation in their performance. The experiment

is repeated over 50 trials with the stopping criteria of K = 1000 iterations and ✏ = 10�6.

Figures 4.2a and 4.2b display the convergence rates for the undamped and damped scenarios,
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respectively.

• In both scenarios, the LPPG algorithm achieves the fastest convergence, clearly outper-

forming the other methods.

• The MPG algorithm also shows a quicker convergence compared to PGD and EMaC,

underscoring the e�cacy of the modified PG step.

• The standard PG algorithm lags in terms of convergence speed due to its smaller step

size, dictated by Lrf , highlighting the challenges in applying standard PG to SCS tasks

with equally weighted norms.

• Although FIHT demonstrates competitive convergence speed, its final NMSE values

exhibit instability due to the lack of guaranteed reduction in the objective function in

each iteration.

These results confirm the significant impact of both the subspace projection and the modified

PG step in ensuring faster convergence rates in SCS.

4.5.3 Robustness to Additive Noise

In practical applications, noise-free measurements are often unattainable. Therefore, the

robustness of SSS recovery algorithms to additive noise is crucial. We introduce noise in the

measurements with the following noise vector:

e = ⌘ · kP⌦xk ·
w

kwk ,

where w is a standard complex Gaussian random vector, and ⌘ denotes the noise level. We

focus on a challenging scenario with ⌘ = 1, corresponding to a Signal-to-Noise Ratio (SNR) of 0

dB.

We consider a three-dimensional SSS x of size 15⇥15⇥15, with its Hankel matrix Hx 2 C512⇥512

forming a level-3 block. The sampling ratio is set to 1.0 in both undamped and damped
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settings, emphasizing the denoising capability of the algorithms. The rank is fixed at 10.

Results are averaged over 50 trials, providing a consistent and comparative evaluation of the

algorithms’ performance in the presence of significant noise. This experiment aims to test the

algorithms’ e↵ectiveness in a noise-heavy environment, particularly focusing on the adaptability

and performance of the LPPG approach. Given the challenging nature of a high noise level,

this setup serves to demonstrate the utility of the Hankel enforcement parameter � in such

conditions.

All algorithms tested in this experiment terminate under one of two conditions: either when the

relative change in the Hankel matrix, represented as kXe

k+1 �X
e

k
kF/kXe

k
kF , falls below 10�3,

or when the maximum iteration count of 1000 is reached. This stopping criterion is deliberately

set to a higher threshold due to the high noise level and the limited improvement in NMSE

with an increasing number of iterations. The results of this test are summarized in Table 4.1.

The EMaC algorithm serves as a baseline for this experiment. It is a constrained optimization

method implemented via alternating projections, and notably, it does not allow for variation in

the Hankel enforcement parameter �. In contrast, to enhance reconstruction accuracy under

noisy conditions, the LPPG method and other algorithms allow for a larger � value compared to

noise-free scenarios. For this experiment, we select � values from the set {1 ⇤ �⇤
, 10�⇤

, 100�⇤}4,

with the understanding that a larger � implies a smaller step size for the standard PG algorithm,

potentially leading to its early termination. This setup not only tests the algorithms’ robustness

to noise but also demonstrates the impact of the parameter � on their performance.

The analysis of the results presented in Table 4.1 yields several crucial insights into the algorithms’

performance under heavy additive noise:

1. Enhanced Accuracy with Increased �: A prominent trend observed is that larger values of

the Hankel enforcement parameter (�) consistently lead to better recovery accuracy. This

observation holds true across various algorithms, emphasizing the importance of adjusting

� appropriately in noisy conditions.

4
Here the �⇤

is the default value for each algorithm. Moreover �⇤
= Sp for Enhanced matrix form (PGD and

FIHT), �⇤
= Sp ⇤ n1n2n3/(p1p2p3 ⇤ q1q2q3) for vector form (PG-based algorithms) as a fair comparison.
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Table 4.1: NMSE, number of iterations and time comparisons under heavy noise SNR =
0dB, (n1, n2, n3) = (15, 15, 15), (p1p2p3, q1q2q3) = (512, 512), r = 10, Sp = 1.0.

� � = 1 ⇤ �⇤
� = 10�⇤

� = 100�⇤

Criterion NMSE Iter NMSE Iter NMSE Iter
undamped case

EMaC [2] 0.161 7 0.161 12 0.161 12
PGD [56] 0.173 10 0.210 15 0.211 16
FIHT [57] 0.173 10 0.160 9 0.160 12

standard PG [6] 0.650 1 0.306 1 0.160 1
Modified PG [86] 0.646 7 0.277 18 0.136 37

LPPG [86] 0.646 6 0.277 12 0.128 31
damped case

EMaC [2] 0.163 7 0.163 12 0.163 12
PGD [56] 0.173 10 0.159 28 0.162 43
FIHT [57] 0.173 14 0.160 15 0.163 12

standard PG [6] 0.651 1 0.308 1 0.163 1
Modified PG [86] 0.646 7 0.278 23 0.134 43

LPPG [86] 0.646 7 0.278 20 0.129 36

2. Superior Performance of MPG and LPPG with High �: Notably, when � is set to 100,

both the MPG and the LPPG methods exhibit superior recovery capabilities compared to

other algorithms. In particular, LPPG achieves the highest accuracy levels. Interestingly,

even the standard PG algorithm, with just one iteration, shows competitive performance

under these conditions. On the other hand, algorithms like FIHT and PGD outperform

EMaC only when � is increased, underscoring the pivotal role of the Hankel constraint in

their performance.

3. E↵ectiveness of Chosen Stopping Criteria: The stopping criteria, particularly the term

�
2HLH⇤(Xe

k,
1

2

�Xe

k+1) 2 @F (Xe

k+1), as discussed in Section 4.3.4, prove to be an e↵ective

measure for terminating the iterations of PG-based algorithms. This factor is especially

crucial for methods like PGD and FIHT, which might otherwise demonstrate oscillatory

behavior around the optimal solution.
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Figure 4.3: Performance for additive noise: (n1, n2, n3) = (15, 15, 15), (p1p2p3, q1q2q3) =
(512, 512), r = 10, Sp = 1.0. Left: no damping in the test signals. Right: signals are gen-
erated with damping.

Moreover, we show in Fig. 4.3 to demonstrate the outstanding performance to di↵erent levels of

noise. The Hankel enforcement parameter � is optimized for each algorithm and noise level to

pursue the best reconstruction.

These insights collectively underscore the robustness and e�ciency of the LPPG method in the

recovery of SSSs amidst heavy additive noise. This robustness, combined with the algorithm’s

computational e�ciency, highlights its potential applicability in real-world scenarios where noise

is a prevalent challenge.

4.5.4 The Benefit of Vector Formulation

Our research makes a significant contribution by adapting PG algorithms for vector formulations,

particularly through the introduction of the modified PG approach. This section highlights

the benefits of our vector form formulations, which align closely with the original problem and

improve reconstruction accuracy as the signal size increases.

Previous studies, such as those by Gillard et al. [119] and Wang et al. [58], have noted that

traditional algorithms like Cadzow’s may result in biased reconstructions due to the presence of

repetitive elements in the enhanced matrix. To illustrate this issue, we analyze the Normalized
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NMSE for several algorithms—FIHT, PGD, EMaC, and our LPPG method (with MPG and

standard PG sharing the same data fidelity item as LPPG). We focus on one-dimensional Spec-

trally Sparse Signal (1D SSS) recovery for varying signal sizes n 2 {17, 33, 65, 129}, examining

how the impact of repetitive elements escalates with increasing signal size. The NMSE result,

averaged over 50 trials, consider fully observed signals with added noise and a rank of 2. The

stopping criteria are set at a maximum of 1000 iterations (K = 1000) and a numerical-error

threshold of 10�6 (✏ = 10�6). The Hankel enforcement parameter � is optimized for each

algorithm and noise level to pursue the best reconstruction.

Furthermore, we present a comparative analysis using a bar chart to depict the relative

mean squared error (RMSE) in relation to LPPG. The RMSE is defined as kNMSELPPG �

NMSEk2/kNMSELPPGk2, where NMSELPPG represents the NMSE achieved by the LPPG algo-

rithm. This comparison aims to provide a clear metric for evaluating the recovery capability of

di↵erent algorithms across various signal sizes.
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Figure 4.4: Convergence rate comparison: n1 = 17, 33, 65, 129, p1 = q1 = 9, 17, 33, 65 , r =
2, Sp = 1.0,SNR= 0dB.

The results depicted in Figure 4.4 lead us to two essential observations regarding the performance

of the tested algorithms in 1D SSS recovery, particularly under the influence of signal size and

algorithmic approach.

1. Improved Reconstruction with Increasing Signal Size: All algorithms under

consideration exhibit enhanced reconstruction accuracy as the signal size grows. This

improvement is likely a consequence of the signal’s increased sparsity in the frequency
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domain, which becomes more pronounced with larger signal sizes. This trend is observed

consistently across di↵erent algorithms, indicating a general characteristic of SSS recovery

approaches.

2. Consistent Superiority of the LPPG Algorithm: The LPPG algorithm stands out

for its consistently superior performance across all tested signal sizes. Notably, the RMSE

in comparison to LPPG increases for other algorithms as the signal size grows. This trend

underscores the LPPG algorithm’s robustness against the impact of repetitive elements in

the enhanced matrix, which becomes more significant in larger signal sizes. Furthermore,

the advantage of the LPPG algorithm is particularly remarkable in cases involving damped

signals, emphasizing its e↵ectiveness in handling more complex SSS recovery scenarios.

These observations a�rm the e�cacy of the LPPG algorithm in SSS recovery tasks, highlighting

its capability to overcome challenges posed by larger signal sizes and the presence of repetitive

elements in the enhanced matrix.

4.5.5 Sensitivity to Model Order

In practical scenarios, the precise model order of a SSS might not be accurately known. This

section discusses the robustness of the LPPG method, alongside other algorithms, under scenarios

of both under- and over-estimation of the model order. We conducted experiments on three-

dimensional signals with an actual model order of r = 5 and a sampling rate of 0.5, covering

both undamped and damped signals. Our analysis focuses on the NMSE and the number

of iterations (Iter) required for convergence. The stopping criteria are set at a maximum of

1000 iterations (K = 1000) and a numerical-error threshold of 10�6 (✏ = 10�6). The Hankel

enforcement parameter � is optimized for each algorithm and noise level to pursue the best

reconstruction.

1. Optimal NMSE at True Model Order: All algorithms exhibit the lowest NMSE when

the input model order r matches the true model order of 5.
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2. Large NMSE Under-Estimation or Over-Estimation: Under-estimation or Over-

estimation of r results in larger NMSE due to systematic truncation errors.

3. Desirable NMSE with Over-Estimation: Increasing the model order beyond the

true value maintains desirable NMSE, albeit at the cost of significantly more iterations,

particularly evident in algorithms other than LPPG.

4. E�cient Over-Estimation with LPPG: LPPG shows an ability to achieve good NMSE

even with over-estimated r, without incurring excessive additional iterations compared to

the scenario with the true model order.

Results are summarized in Tables 4.2 and 4.3 for undamped and damped signals, respectively,

averaged over 50 random instances. These findings indicate two feasible strategies for LPPG

when the exact model order is unknown:

• Rank Increasing Heuristic: Begin with a low rank, increase it incrementally, executing the

LPPG algorithm until convergence at each step, and monitor the NMSE on the observed

entries. The process continues until no significant improvement in NMSE is observed with

an increase in rank [56,57].

• Slight Over-Estimation Approach: If reconstruction accuracy under heavy noise is not the

primary concern, a straightforward approach is to slightly over-estimate the model order

and run the LPPG algorithm.

These strategies provide a practical guide for applying the LPPG method e↵ectively, even in

the absence of precise information on the model order of the underlying SSS.

4.6 Conclusions

In this chapter, we presented the low-rank projected proximal gradient method, an innovative

approach for SSS recovery. Central to this approach is a non-convex optimization framework
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Table 4.2: Mean values of NMSE and Iter over 50 undamped random instances: X 2
C11⇥11⇥11

,X
e 2 C216⇥216 and Sp = 0.5.

Test rank 2 3 4 5 6 7 8

SNR = 1
FIHT [57] NMSE 0.66 0.47 0.29 2.6e-7 1.0e-2 1.4e-2 1.9e-2

Iter 12 13 13 14 1000 1000 1000
PGD [56] NMSE 0.66 0.47 0.29 6.6e-6 2.3e-5 8.0e-4 1.0e-3

Iter 278 96 154 53 872 1000 1000
Modified PG [86] NMSE 0.50 0.34 0.22 1.0e-6 4.5e-4 1.3e-3 1.5e-3

Iter 25 26 28 29 53 53 52
LPPG [86] NMSE 0.50 0.34 0.22 1.0e-6 1.0e-6 1.0e-6 1.0e-6

Iter 17 18 19 17 18 18 18

SNR = 20

FIHT [57] NMSE 0.67 0.49 0.31 2.2e-2 2.4e-2 2.9e-2 3.3e-2
Iter 102 102 125 124 281 292 732

PGD [56] NMSE 0.67 0.49 0.37 2.2e-2 2.2e-2 2.3e-2 2.8e-2
Iter 215 309 429 351 1000 1000 1000

Modified PG [86] NMSE 0.63 0.46 0.29 1.9e-2 2.1e-2 2.5e-2 2.7e-2
Iter 366 354 392 386 566 443 1000

LPPG [86] NMSE 0.63 0.46 0.29 1.9e-2 2.1e-2 2.5e-2 2.8e-2
Iter 129 136 144 176 209 227 301

SNR = 0

FIHT [57] NMSE 0.67 0.51 0.36 0.22 0.26 0.30 0.33
Iter 108 117 123 119 724 1000 1000

PGD [56] NMSE 0.67 0.51 0.36 0.22 0.40 0.30 0.33
Iter 289 312 444 356 1000 1000 1000

Modified PG [86] NMSE 0.65 0.49 0.34 0.18 0.21 0.25 0.27
Iter 377 378 382 380 1000 1000 1000

LPPG [86] NMSE 0.65 0.49 0.34 0.16 0.21 0.29 0.29
Iter 172 175 189 192 556 566 581

that incorporates an enhanced low-rank Hankel matrix while evaluating the residual error in the

vector form of the original signal. This vector formulation, shared with two other algorithms

proposed in this thesis, demonstrates broad applicability and benefits, as shown in Section 4.5.4.

The core innovation of the LPPG method lies in its iterative process, which comprises two
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Table 4.3: Mean values of NMSE and Iter over 50 damped random instances: x 2
C11⇥11⇥11

,X
e 2 C216⇥216 and Sp = 0.5.

Test rank 2 3 4 5 6 7 8

SNR = 1
FIHT [57] NMSE 0.56 0.38 0.21 1.1e-7 1.1e-2 2.4e-2 4.6e-2

Iter 10 11 13 16 1000 1000 1000
PGD [56] NMSE 0.56 0.38 0.21 8.6e-6 2.0e-4 2.3e-3 1.9e-3

Iter 415 123 205 168 1000 1000 1000
Modified PG [86] NMSE 0.41 0.28 0.15 8.5e-7 3.9e-3 6.4e-3 8.0e-3

Iter 20 19 25 26 245 465 521
LPPG [86] NMSE 0.41 0.28 0.15 1.0e-6 1.0e-6 1.0e-6 1.0e-6

Iter 13 16 17 18 18 18 19

SNR = 20

FIHT [57] NMSE 0.59 0.38 0.22 2.3e-2 2.7e-2 2.9e-2 3.5e-2
Iter 110 113 121 123 444 453 598

PGD [56] NMSE 0.59 0.38 0.22 2.3e-2 2.3e-2 2.3e-2 2.3e-2
Iter 356 479 732 1000 1000 1000 1000

Modified PG [86] NMSE 0.56 0.36 0.20 1.9e-2 2.2e-2 3.3e-2 3.0e-2
Iter 376 389 389 395 427 1000 516

LPPG [86] NMSE 0.56 0.36 0.20 1.9e-2 2.2e-2 2.3e-2 2.4e-2
Iter 115 148 164 169 179 193 194

SNR = 0

FIHT [57] NMSE 0.60 0.41 0.29 0.23 0.26 0.30 0.33
Iter 119 129 134 142 867 672 685

PGD [56] NMSE 0.60 0.41 0.36 0.23 0.24 0.26 0.28
Iter 394 583 965 853 1000 10000 1000

Modified PG [86] NMSE 0.58 0.39 0.27 0.19 0.22 0.24 0.27
Iter 384 386 398 415 1000 1000 1000

LPPG [86] NMSE 0.58 0.39 0.27 0.19 0.22 0.24 0.27
Iter 147 178 212 212 643 645 656

distinct steps in each iteration. The first step involves optimization with respect to all variables,

excluding the column and row sub-spaces of the Hankel matrix. The second step simultaneously

updates these sub-spaces along with all other variables. Each step is meticulously tailored to

leverage the inherent structures of the problem, optimizing the recovery process.
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A notable feature of the LPPG method is its theoretical guarantee of convergence. This

characteristic not only solidifies its theoretical foundation but also significantly enhances its

practical applicability. Extensive numerical simulations have underscored the LPPG method’s

superiority, showcasing a faster convergence rate and higher reconstruction accuracy compared

to existing benchmark algorithms. This performance is especially pronounced in scenarios

characterized by larger scale data and substantial noise levels.

Overall, the LPPG method emerges as a robust and e�cient solution for SSS recovery, adept at

tackling the complexities and challenges prevalent in practical settings.

This chapter has successfully extended the PG method for vector-form CS, culminating in the

development of the LPPG method. Despite its notable successes, areas for further improvement

remain.

1. Computational Complexity: The primary computational load in LPPG arises from

the low-rank subspace projection. This aspect becomes particularly challenging for larger

scale signals with high model orders, limiting the method’s practicality in such scenarios.

2. Balance Between Convergence and Accuracy: While the low-rank projection

e↵ectively reduces iteration count, it remains significant, especially under larger Hankel

enforcement parameters. This necessitates a careful trade-o↵ between convergence rate

and reconstruction accuracy, dictated by the choice of the Hankel enforcement parameter.

This is emperically solved by early termination of the algorithm since the NMSE does not

improve significantly after a certain number of iterations.

Looking forward, the integration of accelerated proximal gradient techniques into the LPPG

framework presents an exciting avenue for research. Such advancements could yield more e�cient

and potent solutions for SSS recovery. The next two chapters of this thesis will explore these

possibilities, aiming to further refine and enhance the capabilities of the PG method in handling

complex signal processing challenges. Overall, the journey of enhancing the LPPG method

continues, with the goal of achieving optimal balance in computational e�ciency, convergence

rate, and reconstruction accuracy for larger scale SSS recovery tasks.
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4.7 Proofs

In this section, we provide mathematical proofs for the theoretical results stated in Proposition

1, Proposition 2, Proposition 3, and Theorem 1.

We begin by proving the following lemma, which o↵ers a useful formula for computing the

gradient of a function minimized with respect to its arguments.

Lemma 2. Let h : Cp⇥q⇥Cn ! R be a continuously di↵erentiable function, and let f : Cp⇥q ! R

be defined as f(Xe) = minx2Cn h(Xe
,x). Assume that for each X

e 2 Cp⇥q, there exists a

minimizer x
?(Xe).

Then, for any X
e 2 Cp⇥q, the gradient of f with respect to X

e exists and is given by:

rf(Xe) = rX
eh(Xe

,x
?),

Proof. To prove this lemma, we utilize the chain rule of calculus. Let x? be the minimizer of

h(Xe
,x), such that f(Xe) = h(Xe

,x
?). We then have:

rf(Xe) = rh(Xe
,x

?)

= rX
eh(Xe

,x
?) +rxh(X

e
,x

?)rX
ex

?

= rX
eh(Xe

,x
?),

where the second equality is derived from the chain rule, and the third equality follows from the

optimality condition rxh(X
e
,x

?) = 0.

Hence, we have proven that rf(Xe) = rX
eh(Xe

,x
?).

4.7.1 Proof of Prop. 1

We adapted a modification to the non-convex non-smooth unconstrained optimization problem

by transforming it into a single variable problem F (Xe) = f(Xe) + g(Xe). A key advantage
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of this approach is achieving a better upper bound for Lrf as �, which is independent of the

signal size. The proof is as follows:

Proof. Firstly, consider the gradient with respect to x:

rx

�1
2
ks� P⌦xk2 +

�

2
kXe �Hxk2

F
+

↵

2
kxk2

�

= (↵I + P⇤

⌦P⌦ + �H⇤H)�1

| {z }
L

x� P⇤

⌦s� �H⇤
X

e
. (4.30)

Setting this gradient to zero yields the closed-form solution for x?:

x
? = L(P⇤

⌦s+ �H⇤
X

e).

Substituting x
? into h(Xe

,x), we get:

f(Xe) = h(Xe
,x

?) =
1

2
ks� P⌦x

?k2 + �

2
kXe �Hx

?k2
F
+

↵

2
kxk2.

Applying Lemma 2, we have:

rf(Xe) = rX
eh(Xe

,x
?) = �(Xe �Hx

?)

= �X
e � �HL(P⇤

⌦s+ �H⇤
X

e) (4.31)

The Hessian matrix of f(Xe) is then �I � �
2HLH⇤. Since:

0  k�2HLH⇤k = �k�H(↵I + P⌦P⇤

⌦ + �H⇤H)�1H⇤k < �, (4.32)

we conclude that Lrf < �.5

5
The operator norm is used in (4.32). It is the maximum eigenvalue of the corresponding matrix representation.
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4.7.2 Proof of Prop. 2

In this proof, we aim to e�ciently solve the low-rank subspace projection step by transforming

h(⌃,x) into a single variable function f(⌃). We will detail the procedure to find the optimal

value for the low-rank subspace projection.

Proof. Consider the optimization problem:

L(⌃) = min
x

h(⌃,x)

= min
x

1

2
ks� P⌦xk2 +

�

2
kU⌃V

H �Hxk2
F
+

↵

2
kxk2.

The optimal x, denoted as x
†, for any given ⌃, is found by solving the inner least squares

problem h(⌃,x).

By di↵erentiating with respect to x, we obtain:

@

@x
h(⌃,x) = (↵I + P⇤

⌦P⌦ + �H⇤H)x� P⇤

⌦s� �H⇤PU ,V ⌃. (4.33)

Setting (4.33) to zero yields the closed-form solution for x†:

x
† = (↵I + P⇤

⌦P⌦ + �H⇤H)�1

| {z }
L

(P⇤

⌦s+ �H⇤
U⌃V

H).

Applying Lemma 2, the gradient of f with respect to ⌃ is:

rf(⌃) = r⌃h(⌃,x
†)

= �P⇤

U ,V
PU ,V ⌃� �P⇤

U ,V
Hx

†

= �⌃� �P⇤

U ,V
HL(P⇤

⌦s+ �H⇤PU ,V ⌃). (4.34)
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The solution to the linear equation

[I � �P⇤

U ,V
HLH⇤PU ,V ]⌃ = P⇤

U ,V
HLP⇤

⌦s. (4.35)

provides the Proposition 2 results:

x
? = (↵I + P⇤

⌦P⌦ + �H⇤H)�1(P⇤

⌦s+ �H⇤PU ,V ⌃
?),

⌃? =
�
I � �P⇤

U ,V
HLH⇤PU ,V

��1 �P⇤

U ,V
HLP⇤

⌦s
�
. (4.36)

4.7.3 Proof of Prop. 3

The proposition asserts that the low-rank subspace projection step guarantees su�cient decrease

in the objective function. The formal statement is as follows:

F (Xe

k,
1

2

)  F (Xe

k
)�

✓
↵

↵ + �

◆
kXe

k,
1

2

�X
e

k
k2
F
. (4.37)

Proof. Define the mapping M as follows:

M =
�
I � �P⇤

U ,V
HLH⇤PU ,V

�
. (4.38)

Then, consider the following inequality chain:

kXe

k,
1

2

�X
e

k
k2
F
= k⌃

k,
1

2

�⌃kk2F (4.39)

(a)


✓
↵ + �

↵

◆
k⌃

k,
1

2

�⌃kk2M
(b)


✓
↵ + �

↵

◆⇣
F (Xe

k
)� F (Xe

k,
1

2

)
⌘
. (4.40)

Inequality (a) follows from the fact that ↵

↵+�
is the smallest eigenvalue of the positive definite

mapping M. Inequality (b) arises from the optimal solution of the least squares problem in the
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low-rank subspace projection step.

4.7.4 Proof of Theorem 1

Our non-convex PG-based methods, featuring two monotonously decreasing steps, converge to

critical points. This convergence is primarily attributed to the modified PG step, which demon-

strates that k@F (Xe

k+1)kF  (1/� + Lrf)kXe

k+1 �X
e

k,
1

2

kF , with the latter term approaching

zero. We also provide a convergence speed analysis. The proof can be divided into three key

steps:

1. Su�cient Decrease of the PG Step: In Algorithm 6, observe that:

X
e

k+1 = argmin
X

e
hrf(Xe

k,
1

2

),Xe �X
e

k,
1

2

i

+
1

2�
kXe �X

e

k,
1

2

k2
F
+ g(Xe). (4.41)

Therefore, we have:

hrf(Xe

k,
1

2

),Xe

k+1 �X
e

k,
1

2

i

+
1

2�
kXe

k+1 �X
e

k,
1

2

k2
F
+ g(Xe

k+1)

 g(Xe

k,
1

2

). (4.42)
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From the Lipschitz continuous of rf we have

F (Xe

k+1)  g(Xe

k+1) + f(Xe

k,
1

2

) (4.43)

+ hrf(Xe

k,
1

2

),Xe

k+1 �X
e

k,
1

2

i+ Lrf

2
kXe

k+1 �X
e

k,
1

2

k2
F

 g(Xe

k,
1

2

)� hrf(Xe

k,
1

2

),Xe

k+1 �X
e

k,
1

2

i

� 1

2�
kXe

k+1 �X
e

k,
1

2

k2
F
+ f(Xe

k,
1

2

)

+ hrf(Xe

k,
1

2

),Xe

k+1 �X
e

k,
1

2

i � Lrf

2
kXe

k+1 �X
e

k,
1

2

k2
F

= F (Xe

k,
1

2

)�
1
�
� Lrf

2
kXe

k+1 �X
e

k,
1

2

k2
F
. (4.44)

2. H
⇤ is a critical point: 0 2 @F (Xe⇤)

Due to the decrease property of the subspace projection step, we have:

F (Xe

k+1, 1
2

)  F (Xe

k+1)  F (Xe

k,
1

2

). (4.45)

Thus:

F (Xe

k+1, 1
2

)  F (Xe

0), F (Xe

k+1)  F (Xe

0) (4.46)

for all k. It is evident that {Xe

k
} and {Xe

k,
1

2

} are bounded. Therefore, {Xe

k
} has

accumulation points. As F (Xe

k
) is decreasing, F has the same value at all the accumulation

points. Let this value be F
⇤. Based on (4.44), we have:

1
�
� Lrf

2
kXe

k+1 �X
e

k,
1

2

k2
F
 F (Xe

k,
1

2

)� F (Xe

k+1)

 F (Xe

k
)� F (Xe

k+1). (4.47)

Summing over k = 0, . . . , K, we obtain:

1
�
� Lrf

2

KX

k=0

kXe

k+1 �X
e

k,
1

2

k2
F

 F (Xe

0)� F (Xe

k
)  F (Xe

0)� F
⇤  1. (4.48)
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As Lrf <
1
�
, we have:

lim
k!1

kXe

k+1 �X
e

k,
1

2

k2
F
! 0. (4.49)

From the optimality condition of (4.41), we have:

0 2 rf(Xe

k,
1

2

) +
1

�
(Xe

k+1 �X
e

k,
1

2

) + @g(Xe

k+1). (4.50)

Hence:

�rf(Xe

k,
1

2

) +rf(Xe

k+1)�
1

�
(Xe

k+1 �X
e

k,
1

2

) 2 @F (Xe

k+1). (4.51)

Moreover, we get the key result:

k � rf(Xe

k,
1

2

) +rf(Xe

k+1)�
1

�
(Xe

k+1 �X
e

k,
1

2

)k

 (
1

�
+ Lrf )kXe

k+1 �X
e

k,
1

2

k ! 0 as k !1. (4.52)

Let X
e⇤ be any accumulation point of {Xe

k,
1

2

}, say {Xe

kj ,
1

2

} ! X
e⇤ as j ! 1. From

(4.49), we have {Xe

kj+1}!X
e⇤ as j !1. Since f is continuously di↵erentiable and g is

lower semicontinuous, we have:

lim
j!1

F (Xe

kj+1) = F (Xe⇤). (4.53)

Therefore, combining {Xe

kj+1}!X
e⇤, (4.22), (4.23), and (4.53), we conclude:

0 2 @F (Xe⇤). (4.54)

3. Convergence speed Given that (4.26) implies �2HLH⇤(Xe

k,
1

2

�X
e

k+1) 2 @F (Xe

k+1), we
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can establish the convergence speed as follows:

min
i=0,··· ,K

k@F (Xe

i+1)k2F 
�
4

(↵ + �)2
· min
i=0,··· ,K

kXe

i,
1

2

�X
e

i+1k2F

 �
4

(↵ + �)2
· 1

K + 1

KX

k=0

kXe

k,
1

2

�X
e

k+1k2F

 c0

K + 1
(F (Xe

0)� F
⇤),

where c0 =
(��Lrf )�4

(↵+�)2 .

In conclusion, we finish the proof.
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Chapter 5

Hankel Projected Proximal Gradient

5.1 Introduction

In this chapter, we explore the reconstruction of n-size r-spectrally-sparse signals from their

m-size subsets, with a particular focus on addressing challenges arising from low sampling

density. Such scenarios often lead to slow convergence, posing significant challenges in signal

processing. However, the impracticality of complete sampling in many real-world scenarios,

due to environmental or economical hardware constraints, necessitates e�cient data acquisition

strategies. These often involve collecting only a subset of discrete samples, leading to sparse

observations, particularly as the signal size increases.

Chapter 4 detailed a proximal gradient-based method tailored for SCS. This LPPG method is

noted for its benefits, which include enhanced reconstruction accuracy and consistent convergence

towards critical points. However, it encounters computational challenges, particularly under low

sampling ratios (denoted as Sp = m/n) and in the context of large-scale signal scenarios. These

limitations primarily stem from two factors:

1. Increased Number of Iterations: Sparse observations necessitate more iterations for

convergence, which is particularly challenging in large-scale signal scenarios.
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2. High Computational Complexity per Iteration: The LPPG method exhibits escalated

computational demands, especially when the model order is high. This complexity impedes

its practicality in handling large-scale datasets e�ciently.

This computational burden is obviously undesirable when the noise level is high, as it necessitates

a large number of iterations to achieve convergence with a larger Hankel enforcement parameter

�. Practically, to trade o↵ the reconstruction accuracy and the computational e�ciency, a

suitable � is selected for a given noise level and early stopping is applied to terminate the

iteration process.

Given these challenges, there is a pressing need for an alternative approach capable of e�ciently

addressing SSS recovery with reduced computational time, particularly in cases with limited

observed entries. While Nesterov’s memory techniques, as implemented in the Fast Iterative

Shrinkage-Thresholding Algorithm (FISTA) [99], o↵er a promising avenue with their ability

to achieve a fast convergence rate while maintaining the computational simplicity of classical

projection gradient algorithms [122,123], they fall short in nonconvex scenarios. Moreover, the

accelerated PG method designed for nonconvex cases [116] only shows marginal improvements

in convergence speed.

Therefore, the development of a method that can e�ciently and e↵ectively handle the challenges

of SSS recovery in sparse and large-scale scenarios remains an open and significant area of

research. Such a method would ideally combine the advantages of fast convergence and low

computational complexity, making it suitable for a wide range of practical applications in signal

processing and related fields.

In the literature, two primary types of acceleration methods are commonly utilized for structured

low-rank matrix approximation. These are:

1. Reduce the Number of Iterations via Second-order Information: Drawing parallels

to Newton’s method [124], the proximal Newton-type [106] and Cadzow’s Newton-type [59]

algorithms are designed with second-order convergence. This approach, however, increases

storage and computational complexity. Furthermore, quasi-Newton methods [105,107,108],
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including limited memory techniques like L-BFGS [125], are also applied. Diagonal

or structured approximations of the Hessian matrix are considered in variable metric

algorithms [101, 102,126], facilitating the use of second-order information to decrease the

number of iterations required for convergence.

2. Reduce the Computational Complexity per Iteration via the Intrinsic Structure:

The intrinsic structure of Hankel/Toeplitz matrices [89, 127,128] can also be leveraged to

reduce computational complexity per iteration. This includes the truncated SVD mapping

operated on the structured matrix. Additionally, low-rank manifold approaches [57,128,129]

are utilized to expedite the SVD process by selecting the tangent space of the low-rank

space, thus providing an e�cient computational framework.

These methods collectively enhance the e�ciency of structured low-rank matrix approximation,

contributing significantly to advancements in this domain.

In this work, we introduce the Hankel projected proximal gradient (HPPG) method, designed to

optimize both the number of iterations and computational complexity per iteration in spectrally

sparse signal recovery. This method significantly accelerates convergence and enhances recovery

accuracy by incorporating Hankel projection into the MPG process. The HPPG method’s key

contributions are as follows:

1. E�cient Convergence through Hankel Projection: The integration of Hankel

projection within the PG framework facilitates more e�cient convergence towards local

minima. Unlike traditional line-search strategies [6, 86], HPPG employs an expanded

step size, flexibility adjusted in accordance with the sampling ratio. This novel approach

ensures accelerated convergence, particularly in scenarios characterized by extremely sparse

sampling. Moreover, the Lipschitz constant of the PG is upper bounded by 1, no matter

how large the �, this is a significant improvement for noisy cases.

2. Reduced Computational Complexity: Alongside a reduction in the number of

iterations, the HPPG method significantly decreases the computational complexity per

iteration. For n-size r-spectrally-sparse signals, the complexity is reduced from O(r4n+
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r
3
n log n) to O(r2n+ rn log n), retaining the Hankel structure. Simulation results verifies

the e↵ectiveness of the HPPG method in terms of both accuracy and computational speed.

These contributions collectively demonstrate the HPPG method’s potential in providing a more

e�cient approach to the recovery of SSSs, especially in the context of sparse sampling.

5.2 The Optimization Formulation

Similar to Chapter 4, this work focuses on the recovery of one-dimensional SSS, with extensions

to multilevel case simulations included in Section 5.5. For clarity of exposition, we consider the

example of undamped SSS.

x =
rX

k=1

dky(fk; n), (5.1)

where dk denotes the complex coe�cient, and y(fk;n) encapsulates the frequency of the kth

spectral component.

The task at hand is to recover the SSS x from its partial observations s:

find x s.t. P⌦x = s. (5.2)

The Hankel matrix Hx can be decomposed using a Vandermonde structure:

Hx =
rX

k=1

dky(fk; p)y(fk; q)T 2 Cp⇥q
. (5.3)

Typically, as described in [2, 56], we choose p ⇡ q ⇡ n/2 (p  q) to make Hx approach a

square matrix form, which enhances resolution performance. Additionally, we demonstrate that

this squared enhanced matrix o↵ers a better Lipschitz constant and consequently an improved

condition number of the Hessian matrix for the continuous part of the objective function.

99



CHAPTER 5. HANKEL PROJECTED PROXIMAL GRADIENT

Remark 13. To mitigate performance degradation, researchers have incorporated prior knowl-

edge of the target signal [53] and employed the Hankel-Toeplitz model for undamped SSS [44].

However, these methods come with their own set of model assumptions and limitations, particu-

larly in handling the damping factor.

The rank-constrained nonconvex problem is thus formulated as:

min
X

e
,x

�(rank(Xe)  r) +
1

2
ks� P⌦xk22 +

�

2
kXe �Hxk2

F
. (5.4)

In contrast to the objective function (4.6) addressed by LPPG, this simplified formulation

circumvents the need for its regularization term.

5.3 A Modified PG Method With Single Variable

As demonstrated in Chapter 4, the direct application of PG [6] to the SSS recovery in array

norm resulted in unacceptably slow convergence due to the small step size. Specifically, the

standard PG applied directly to (5.4) yields Lrf = 1+ �min(p, q)1, leading to a small value for

� in the proximal gradient descent process. To enhance the step size, a reformulation of (5.4),

focusing solely on the single variable X, is presented in [86]:

F (Xe) := f(Xe) + g(Xe), (5.5)

f(Xe) := min
x

1

2
ks� P⌦xk2 +

�

2
kXe �Hxk2

F
, (5.6)

g(Xe) := �(rank(Xe)  r). (5.7)

Supposing the Lipschitz constant of rf(Xe) is Lrf , we have Lrf  �, irrespective of the

dimensionality, as shown in Proposition 4.

1
This Lipschitz constant partly reveals the reason for the squared enhanced Hankel matrix.
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Proposition 4 (Proposition 2 in [86]). We have

rf(Xe) = ��HLP⌦s� �
2HLH⇤

X
e + �X

e
,

and r2
f(Xe) = �(I � �HLH⇤) with L = (P⌦ + �H⇤H)�1. Moreover, we have Lrf as

0 < Lrf  �.

Additionally, the equation (5.6) represents a least-square problem with a closed-form solution

given by

x
? = L · (P⌦s+ �H⇤

X
e). (5.8)

Note that L = (P⌦+�H⇤H)�1 is a diagonal matrix with positive entries, which can be e�ciently

evaluated. The modified proximal gradient then takes the form:

prox
�g
(Xe

k
� �rf(Xe

k
)) = Tr (X

e

k
� �rf(Xe

k
)) , (5.9)

where Tr(·) denotes the operator that truncates the matrix to its top r singular values.

As a result, the step size � of the modified PG method should satisfy �  1
�
, which is dimension-

independent. However, the approaches outlined in [86] are less e↵ective at lower sampling rates

due to the following reason: the expression 1
2ks� P⌦xk22 within the modified objective function

(5.4) is typically small, which consequently leads to a relatively larger value of �. Moreover,

when the noise level is large it is troublesome to adjust the Hankel enforcement parameter �

between the reconstruction accuracy and the computational e�ciency, especially in the case of

high computational complexity per iteration.

5.4 The Modified PG Method in Hankel Space

In this section, we employ a Hankel space projection denoted as HS before applying the proximal

mapping. This approach o↵ers two significant advantages: 1) a more accurate estimation of

Lrf , which is related to the sampling rate; and 2) a faster proximal mapping due to the Hankel
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structure.

5.4.1 A Sampling-rate-related L̂rf in Hankel Space

Definition 5.4.1 (Hankel matrix projection on low-rank matrix). For a rank-r matrix X
e 2

Cn1⇥n2 that admits a SVD as Xe = U⌃V
H, the Hankel matrix projection is defined as HSXe =

HW�1H⇤
U⌃V

H.

As indicated in Prop. 4, we have r2
f = �(I � �HLH⇤). If Xe is projected into the Hankel

space as X̂e = HSXe = Hx̂, the operator norm of r2
f on Hankel space is calculated as:

sup
kHx̂kF=1

k�(I � �HLH⇤)Hx̂kF (5.10)

= sup
kHx̂kF=1

�k(I � �H(P⇤

⌦P⌦ + �H⇤H)�1H⇤)Hx̂kF (5.11)

= sup
kHx̂kF=1

�kH(I � �(P⇤

⌦P⌦ + �H⇤H)�1H⇤H)x̂kF . (5.12)

Given D = (I � �(P⇤

⌦P⌦ + �H⇤H)�1H⇤H) 2 Cn⇥n, we observe that D is a diagonal matrix

with elements

Dii =

8
>><

>>:

1
1+�wi

if i 2 ⌦

0 if i /2 ⌦

, for i = 1, 2, · · · , n,

where wi is the i-th element of w. Therefore, the operator norm of r2
f equals �kHDx̂kF ,

which is bounded by �

1+�
kHP⌦x̂kF .

Considering the sampling ratio of the sampling operator P⌦ is Sp, we can derive an improved

approximation of Lrf as

L̂rf =
�Sp

1 + �
. (5.13)

This L̂rf demonstrates two notable characteristics:

1. Its magnitude is proportional to Sp.
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2. It is bounded by 1, regardless of the magnitude of �.

Similarly, the operator norm of the inverse of the Hessian operator norm of r2
f
�1 can be

approximated as 1+�max(p,q)
�

2. Consequently, the condition number , which determines the

convergence speed for the gradient descent method, is given by

(r2
f) ⇡ �Sp

1 + �
· 1 + �max(p, q)

�
=

Sp(1 + �max(p, q))

1 + �
. (5.14)

The (r2
f) is reduced from 1+ �max(p, q), which also explains the preference for an enhanced

Hankel matrix close to a square matrix.

Remark 14. It is important to note that this L̂rf based on Hankel space significantly di↵ers

from a line-search strategy. Since � acts as a precise and tight upper bound for the original Lrf ,

the step size returned by the line-search mechanism is typically 1/�. The advantage of HPPG

over the line-search approach is evident in the numerical results presented later. Moreover, the

HPPG method is more e�cient to choose a larger � which is often the troublesome procedure in

noisy scenarios.

5.4.2 The HPPG Algorithm With Convergence

To establish a convergence guarantee for the HPPG, equipped with the optimized L̂rf , we

introduce the following condition, denoted as C, to guide the update of Xe

k+1:

C:

⌧
1

�̂
rf(X̂k)�

1

�
rf(Xe

k
), X̂k �X

e

k

�
� 0. (5.15)

Eq. (5.15) is set to ensure the monotone decrease of the HPPG, thus guaranteeing the su�cient

descent property as outlined in [116]. Furthermore, when condition C holds true, each iteration

necessitates only a single proximal mapping operation. The HPPG algorithm is detailed in

Algorithm 7.

2
The inverse of the Hessian operator is not well-defined due to the potential existence of zero eigenvalues.
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Algorithm 7 HPPG for SCS

1: Input: The observations: s,
2: Hankel enforcement parameter: �
3: X

e

0  prox
�g
(Hs), constant � = 1

�
, �̂ = 1+�

�Sp

4: while k < K or k(Xe

k
�X

e

k�1)kF � ✏kXe

k�1kF do

5: X̂
e

k  HSXe

k

6: Zk+1  prox
�̂g

⇣
X̂

e

k � �̂rf(X̂e

k)
⌘

7: if Update Condition C then
8: X

e

k+1  Zk+1

9: else
10: X

e

k+1  prox
�g
(Xe

k
� �rf(Xe

k
))

11: end if
12: end while
13: Output: x†  L(P⇤

⌦s+ �H⇤
X

e

k
), Xe

k
in the last iteration

When the update condition is met, we can show that F (Zk+1)  F (Xe

k+1), where Zk+1 is

determined by the proposed Hankel matrix proximal step (cf. Line 3, Algorithm 2), and

X
e

k+1 is obtained from the modified PG step (cf. Line 7, Algorithm 2). Therefore, the

proposed HPPG method exhibits the Su�cient Descent Property as demonstrated in Chapter 4.

Consequently, similar to the proof of LPPG, the convergence of the HPPG method to critical

points is guaranteed as 0 2 @F (Xe⇤), where X
e⇤ is the accumulation point of the sequence

{Xe

k
}k=1,2,... [116].

Remark 15. The HPPG outlined in Algorithm 7 is a monotone decreasing iterative process

converging to the critical points. However, in cases of ill-conditioned problems, a monotone

algorithm may exhibit slow convergence due to short step sizes or zigzagging trajectories while

maintaining a non-increasing objective function [130]. The Update Condition C in Algorithm

7 is a conservative strategy to ensure a strictly decreasing property. It is possible to allow for

occasional increases in the objective function value to improve convergence [131–134], although

this nonmonotone version of HPPG is not detailed here for brevity.

5.4.3 Computational Complexity per Iteration

Besides the enhanced fast convergence due to the larger step size �̂  1
L̂rf

, the computational

complexity per iteration of the HPPG method is significantly reduced to O(r2n+ rn log n) from
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the traditional O(n3) complexity.

The proximal mapping on the function �(rank(Xe)  r) acts as a truncated singular value

decomposition (SVD) operator [118]. In the modified PG step (cf. Line 7, Algorithm 2),

the truncated SVD is performed on a linear combination of a Hankel matrix and a low-rank

matrix. This process can be accelerated using the Lanczos method and FFT [51], resulting in a

computational complexity of O(rn log n+ r
2
n) flops. In contrast, the proposed Hankel matrix

proximal step (cf. Line 3, Algorithm 2), which operates directly on the Hankel matrix, requires

only O(rn log n) flops.

Furthermore, the Hankel projection on a low-rank matrix can be computed e�ciently using

fast convolution techniques, incurring a computational cost of O(r2n+ rn log n) flops [51]. The

update condition in (5.15) involves calculating an inner product, which also has a computational

complexity of O(r2n+rn log n) flops. Therefore, the total computational complexity per iteration

for the HPPG method remains at O(r2n+ rn log n), making it a highly e�cient approach for

spectrally sparse signal recovery.

5.5 Simulations

Remark 16. Unlike the LPPG discussed in Chapter 4, the convergence of the HPPG is

determined by the di↵erence between consecutive iterations. This approach is motivated by three

reasons: (1) the boundedness of the subgradient of the PG-based method by the adjacent di↵erence,

(2) the computational e�ciency of using the adjacent di↵erence for benchmark methods, and

(3) the variability of the Hankel enforcement parameter �, which renders the accuracy of the

subgradient for early termination.

To evaluate the recovery capability of the HPPG method, we consider a successful recovery

when the NMSE is below 10�3. The HPPG method, characterized by its monotone decreasing

property and larger step size, shows superior performance in finding favorable critical points for

the nonconvex formulation. This is empirically supported by the recovery phase transition curve
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Figure 5.1: Phase transition curve n = 63, (n1, n2) = (32, 32).

depicted in Fig. 1. The curve represents the threshold above which the tested methods exhibit

a 50% failure rate. The results demonstrate that the proposed HPPG algorithm outperforms

other methods under consideration.

We then assess the rapid convergence of the HPPG method with respect to NMSE, the number

of iterations, and computational time. This assessment is particularly relevant for challenging

sampling ratios, specifically p = {0.2, 0.1}. The results, as summarized in Table 5.1, demonstrate

that HPPG achieves the fastest convergence among the methods tested. This notable performance

is primarily due to its reduced count of iterations and the e�cient computational complexity

per iteration. HPPG’s ability to achieve rapid convergence in scenarios with low sampling ratios

is a significant advantage, emphasizing its e↵ectiveness in spectrally sparse signal recovery.
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Table 5.1: NMSEs and time(s) for di↵erent p: x 2 C65⇥65, the resulting X
e 2 C1089⇥1089, and

r = 10.

Sampling rate p=0.2 p=0.1
Criterion NMSE Iter Time(s) NMSE Iter Time(s)
EMaC [2] 2.1e-6 86 3.9 3.4e-6 183 6.9
PGD [56] 7.2e-6 58 2.1 8.6e-6 76 2.8
FIHT [57] 2.02e-7 22 1.8 3.6e-7 46 2.6

Modified PG [86] 5.6e-6 80 4.2 1.5e-5 159 8.1
HPPG [135] 4.4e-7 15 (15)3 1.1 4.4e-7 34 (34) 1.6

Finally, we investigate the robustness of the HPPG method in scenarios involving additive

zero-mean Gaussian noise. As outlined in [86], a larger Hankel enforcement parameter (�) is

often associated with more accurate recovery in the presence of noise. The HPPG method, with

its advantageously upper-bounded L̂rf , demonstrates exceptional e↵ectiveness, especially for

relatively large values of �. This results in enhanced reconstruction accuracy. The performance

of HPPG, as compared to benchmark methods, is illustrated in Fig. 2. Across a range of

signal-to-noise ratios (SNR), HPPG consistently outperforms the other methods considered in

the study, underscoring its robustness in noisy environments.

5.6 Conclusions

In this chapter, we introduce the HPPG method, designed for the reconstruction of spectrally

sparse signals, particularly under very low sampling ratios. The HPPG approach e↵ectively

addresses and mitigates the high computational demands associated with the LPPG method.

Notably, HPPG reduces both the number of iterations required for convergence and the

computational complexity inherent in each iteration.

The HPPG method is distinguished by its ability to utilize a larger step size in the modified

proximal gradient process. This step size is directly related to the sampling rate and is upper

bounded, independent of the Hankel enforcement parameter. Additionally, the HPPG method

leverages the Hankel structure to further enhance its computational e�ciency.

3
The number in brackets indicates the iterations when Condition C is updated.
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Figure 5.2: Performance under additive noise: X 2 C11⇥11⇥11, the resulting X
e 2 C216⇥216,

p = 0.2, and r = 5.

Empirical evaluations of the HPPG method demonstrate its superior performance compared

to existing state-of-the-art approaches. The advantages are particularly evident in terms of

recovery accuracy and computational speed, making HPPG a highly e↵ective and e�cient tool

for the reconstruction of spectrally sparse signals in scenarios characterized by low sampling

rates. This chapter details the formulation, implementation, and empirical validation of the

HPPG method, underscoring its significant contributions to the field of signal processing.
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Chapter 6

Hessian Proximal Gradient Methods

The LPPG method, introduced in Chapter 4, e↵ectively recovers SSSs of medium size with

considerable accuracy. The HPPG method, detailed in Chapter 5, addresses computational

complexity challenges by adopting an increased step size and the utilization of the Hankel

structure. This method overcomes low-sampling issues and bounds the Lipschitz constant of

the smooth component at 1, regardless of the magnitude of the Hankel enforcement parameter

�. However, akin to other first-order methods, HPPG su↵ers from slow convergence when � is

substantially high, as needed in high noise scenarios. This slow convergence is due to the condition

number, (r2
f), being proportional to �. Typically, achieving fast convergence requires

compromising reconstruction accuracy, often managed by employing a smaller regularization

coe�cient for the Hankel structure constraint.

In addition to the utilization of intrinsic structures, we present an accelerated PG algorithm

incorporating Hessian information. To achieve both rapid convergence and accurate recon-

struction, we introduce the Hessian proximal gradient (HPG) method. This approach selects a

larger regularization coe�cient without compromising reconstruction accuracy. Remarkably,

the computational complexity of the forward step with a preconditioned Hessian is reduced

from O(n3) to O(r2n+ rn log n) for n-size r-spectrally-sparse signals. Our numerical simula-

tions demonstrate that HPG surpasses state-of-the-art methods in computational speed and

reconstruction accuracy, especially under high noise levels.
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The objective function for HPG remains the same single-variable formulation as presented in

the previous chapter:

F (Xe) := f(Xe) + g(Xe), (6.1)

f(Xe) := min
x

1

2
ks� P⌦xk2 +

�

2
kXe �Hxk2

F
, (6.2)

g(Xe) := �(rank(Xe)  r). (6.3)

HPG is a second-order proximal method based on this modified single-variable formulation. The

following sections provide a brief overview of existing literature regarding proximal methods,

leading to a detailed exposition of our HPG method.

6.1 Introduction

Firstly, we state the definition of the scaled proximal mapping, which is the key to the proximal

Newton method.

Definition 6.1.1 (Scaled Proximal Mapping: proxH
g
(X)). The scaled proximal mapping is

defined as the optimization problem:

proxH
g
(X) := argmin

Z

1

2
kX �ZkH + g(Z), (6.4)

where kXkH = trace(XT
HX) and H ⌫ 0. When H = I, this reduces to the standard proximal

mapping.

The key part of proximal methods lies in solving a subproblem of the form

argmin
Dk


f(Xk) +rf(Xk)

T
Dk +

1

2
D

T

k
HkDk + g(Xk +Dk)

�
(6.5)

at each iteration, where Hk is typically a positive definite matrix. The solution Dk in this
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context is unique and is characterized using the proximity operator:

Dk := proxHk
g

�
Xk �H

�1
k
rf(Xk)

�
, (6.6)

proxHk
g

(X) := argmin
Z

1

2
kX �ZkHk

+ g(Z). (6.7)

Subsequently, the next iteration is defined as Xk+1 = Xk +Dk.

First-order methods select H as a positive multiple of the identity matrix, i.e., H = �
�1
I, where

� > 0. Due to their computational e�ciency in many scenarios, or even analytical solvability,

these methods have been a focus of intensive research over the past decade. They encompass

numerous variants, including Nesterov’s acceleration techniques [99, 136]. Known for their ease

of implementation and well-documented convergence properties, first-order methods, however,

are often criticized for their poor convergence rates, particularly when the condition number of

H is significantly large. This can result in a large number of iterations to achieve an acceptable

solution approximation.

Variable metric proximal methods allow for the alteration of H in each iteration based on

specific criteria [126,137,138]. However, these methods often lose the analytical solvability of

the subproblem (6.5), necessitating further investigation into the solutions of these subproblems.

This typically includes an inexactness criterion [139,140] and considerations for structured or

diagonal H [126].

Second-order methods, closely related to variable metric approaches, incorporate second-order

information of f in Hk, approximating Hk ⇡ r2
f(Xk). Proximal Newton methods [7,

141], for instance, directly use Hk = r2
f(Xk) and are acknowledged for their excellent

convergence properties akin to the Newton method for smooth unconstrained minimization [7].

Conversely, due to the computational expense associated with such approaches, particularly in

high-dimensional problems, proximal quasi-Newton or proximal Newton-type methods are often

favored [105, 142]. These methods involve approximating the Hessian using quasi-Newton or

limited memory quasi-Newton strategies. The practical challenge lies in the exact solution of

the proximal Newton step, which requires the numerical resolution of problem (6.5).
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In this chapter, we introduce the HPG method, a novel approach that addresses the challenges

of slow convergence and limited recovery accuracy in SSS recovery. This method stands out

by incorporating second-order information, leading to two major contributions: Firstly, the

utilization of a preconditioned Hessian matrix significantly accelerates convergence towards

local minima. This e�ciency is achieved with fewer iterations, even across a broad spectrum of

regularization coe�cients for the Hankel structure constraint. Secondly, we achieve a substantial

reduction in computational complexity per iteration, from O(n3) to O(r2n + rn log n), for

n-size r-spectrally-sparse signals. This reduction is accomplished by leveraging the Hankel

and low-rank structure inherent in these signals. To our knowledge, this represents the lowest

computational complexity achieved in a Hessian-based method for this class of problems.

Numerical simulations underscore the significant advancements of the HPG method over existing

benchmarks, showcasing marked improvements in both accuracy and computational speed.

6.2 The Proximal Newton Method

Algorithm 8 Proximal Newton Method [7]

1: Set Hk := r2
g(Xk).

2: Initialize X0.
3: while condition or k = 0, 1, 2, . . . do
4: Update Xk+1  proxHk

g

�
Xk �H

�1
k
rf(Xk)

�
.

5: end while

Although the proximal Newton method can converge under some mild assumptions [7], such as

the convexity of f [105, 142] or global continuity of rf [106, 143], there are still computational

bottlenecks to consider. Notably, some studies focusing on the `1-norm (g = k · k`1) have also

been investigated [144, 145]. However, despite its improved convergence rate, the proximal

Newton method faces two significant computational challenges:

1. For a dense Hk, calculating the inverse H
�1
k

is often not feasible.

2. The scaled proximal mapping cannot be e�ciently solved with a standard inner solver,

except for `1 regularized linear models.
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To address these issues, the Hankel structure is employed in the HPG method for solving SCS

problems.

6.3 The HPG Algorithm with Convergence

In this section, we introduce the HPG method, a second-order proximal approach based on

the single-variable formulation presented in equations (6.1)–(6.3). The HPG method, detailed

in Algorithm 9, aims to accelerate convergence by incorporating Hessian information. Key to

this method is the introduction of the preconditioned Hessian matrix H̃k, which supersedes

the original Hessian matrix Hk in the proximal Newton step. The Hessian matrix, denoted

as Hk := r2
f(Xe

k
), captures the local geometry of f(Xe

k
) at the k-th iteration, facilitating a

more e�cient progression toward stationary points. Traditionally, the inverse of the Hessian

matrix is employed for acceleration, albeit at a significant computational cost of O(n3) [146].

Our proposed algorithm leverages Hessian information while maintaining a more manageable

computational complexity of O(r2n+ rn log n) per iteration, as established in Proposition 5.

To address specific challenges in the HPG method, we introduce two key modifications. Firstly,

due to the potential presence of zero eigenvalues in the Hessian matrix Hk, which impede its

invertibility, we propose the use of a preconditioned Hessian matrix H̃k. This matrix is defined

as follows:

H̃k := �(I � �HL̃H⇤) � 0, L̃ := (I + �H⇤H)�1
.

Secondly, to ensure the convergence of the HPG method, which is implemented using H̃k, we

introduce the following update criterion:

C: h1
�
H̃k

�1rf(Xe

k
)�rf(Xe

k
), Zk+1 �X

e

k
i � 0, (6.8)

where Zk+1 is derived by applying the proximal mapping with the preconditioned Hessian H̃k. In

cases where condition (6.8) is not satisfied, the standard PG method with a guaranteed su�cient

descent property is employed [116]. The HPG method, incorporating these modifications, is
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detailed in Algorithm 9.

Algorithm 9 HPG for SCS

1: Set Xe

0  prox
�g
Hs, constant �  1

�
.

2: while k < K or k(Xe

k
�X

e

k�1)kF � ✏kXe

k�1kF do

3: Zk+1  prox
�g

⇣
X

e

k
� H̃k

�1rf(Xe

k
)
⌘
;

4: if h 1
�
H̃k

�1rf(Xe

k
)�rf(Xe

k
),Zk+1 �X

e

k
i � 0 then

5: X
e

k+1  Zk+1;
6: else
7: X

e

k+1  prox
�g
(Xe

k
� �rf(Xe

k
));

8: end if
9: end while

Output: Xe

k
in the last iteration, x†  L(P⇤

⌦s+ �H⇤
X

e

k
)

Remark 17. Analogous to the HPPG, the HPG can be adapted with a soft condition C,

enhancing its robustness by permitting an increase in the objective function when necessary.

When the update criterion is satisfied, it can be demonstrated that the Hessian proximal step

(as outlined in Line 2 of Algorithm 9) achieves a greater descent than the standard PG step

(refer to Line 6, Algorithm 2). Consequently, the HPG method also fulfills the Su�cient Descent

Property as detailed in [116]. Thus, convergence of the HPG method to critical points is

assured, satisfying 0 2 @F (Xe⇤). Here, Xe⇤ denotes the accumulation point of the sequence

{Xe

k
}k=1,2,... [116].

In addition to the rapid convergence enabled by the preconditioned Hessian, Proposition

6 demonstrates that the computational complexity of the HPG method is maintained at

O(r2n+ rn log n) per iteration. This complexity is significantly more e�cient than the O(n3)

typically encountered in common Hessian-based methods.

Computational Complexity Analysis. In this section, we demonstrate how the computa-

tional complexity of each iteration is reduced from O(n3) to O(r2n+rn log n). The fundamental

principle is that when rf(Xe

k
) is a Hankel matrix, the calculation of H̃

�1

k
rf(Xe

k
) can be

e�ciently performed with only O(n) flops. Furthermore, in cases where rf(Xe

k
) is not a Hankel

matrix, we can employ the Neumann series expansion [147] to simplify the computation of

H̃
�1

k
, as the inequality I � �HL̃H⇤ ⌫ 0 holds. Consequently, to expedite the computation
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of H̃
�1

k
rf(Xe

k
), we decompose rf(Xe

k
) based on the Hankel projection HS. This approach

ensures a significant acceleration in the calculation process.

Proposition 5. We have

X
e

k
� H̃

�1

k
rf(Xe

k
) = HL̃�1LP⌦s+ �H(L̃�1L� I)H⇤

X
e

k
,

and this could be calculated with O(rn log n) flops.

Proof. To avoid the notational cluster, we suppress the subscript k in the proof. Let rf(Xe) =

�(L+X
e), where L := �HLP⌦s� �HLH⇤

X
e is a Hankel matrix.

H̃
�1rf(Xe) = �

�1(I � �HL̃H⇤)�1 ⇥ �(L+X
e)

a
=

1X

k=0

(�HL̃H⇤)k(L+HSXe +X
e �HSXe)

b
= H

1X

k=0

(L̃�W)kS(L+X
e) +

1X

k=0

(�HL̃WS)k(Xe �HSXe)

c
= H(I � L̃�W)�1S(L+X

e)

+ (I + �HL̃WS + (�HL̃WS)2 + · · · )(Xe �HSXe)

d
= H(I � L̃�H⇤H)�1S(L+X

e) + (Xe �HSXe)

= HL̃�1S(L+X
e) + (Xe �HSXe). (6.9)

(a) is from I � �HL̃H⇤ ⌫ 0 and the Neumann series [147];

(b) results from that (L+HSXe) is Hankel, and (HS)k = HS for k � 1;

(c) is becaues of Neumann series as
P

1

k=0(L̃�W)k = (I � L̃�W)�1.

(d) is noticed by the fact that �HL̃WS(Xe�HSXe) = �HL̃WSXe� �HL̃WSXe = 0.
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Then we have

X
e

k
� H̃

�1

k
rf(Xe

k
) = ��HH⇤

X
e

k
�HL̃�1SLk

= HL̃�1LP⌦s+ �H(L̃�1L� I)H⇤
X

e

k
. (6.10)

Therefore, the computational burden of Xe

k
� H̃

�1

k
rf(Xe

k
) is mainly from H⇤

X
e

k
. Since X

e

k
is

a low-rank matrix, H⇤
X

e

k
can be computed in O(rn log n) flops via FFT [51].

Proposition 6. The computational complexity of the HPG method is O(r2n + rn log n) per

iteration.

Proof. As established in Proposition 5, the forward step in HPG has a complexity of O(rn log n).

Subsequent to this, the proximal mapping in HPG, which either operates as a truncated SVD

operator on a Hankel matrix (refer to the Hessian proximal step in Algorithm 9) or as a linear

combination of a Hankel matrix and a low-rank matrix (refer to the standard proximal step),

can be expedited. This acceleration is achieved through the Lanczos method, as detailed in [51],

which requires O(r2n+ rn log n) flops. Moreover, the update condition outlined in (6.8) involves

an inner product calculation, also computable within O(r2n+ rn log n) flops. Consequently, the

overall per-iteration computational complexity of the HPG method is O(r2n+ rn log n).

6.4 Experiments

In this section, we demonstrate the performance of the HPG as compared to the modified PG

(MPG) [86], the LPPG [86], the PGD [56] and the HPPG [135]. The stopping criteria are set as

K = 1000 and ✏ = 10�6, where K is the maximum number of iterations and ✏ is the numerical-

error threshold. In addition, the frequency fk of SSS is randomly generated according to the

uniform distribution on [0, 1), and the phase of complex coe�cients bk is uniformly sampled on

[0, 2⇡) while the amplitudes are selected to be 1 + 100.5ck where ck is uniformly distributed on

[0, 1]; cf. [56]. For a given sample size m = Spn, it is assumed that ⌦ is uniformly sampled. In

order to study the robustness in practice, the samples contaminated by the zero-mean Gaussian
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Figure 6.1: Convergence speed for di↵erent �: x 2 C2001, the resulting Xe 2 C1001⇥1001, Sp = 0.5,
r = 20, and SNR = 10dB.

noise are considered. The computational e�ciency (time) and the normalized mean squared

error (which is defined as kx† � xk2/kxk2 where x
† denotes the estimate returned by HPG;

NMSE) are considered to show the advantages of our HPG method. The results are averaged

on 50 independent Monte–Carlo trials. The Hankel enforcement parameter � is optimized for

each algorithm and noise level to pursue the best reconstruction.

6.4.1 Convergence Analysis of the HPG Method

In this subsection, we demonstrate the notable e�ciency of the HPG method, particularly its

ability to achieve rapid convergence with fewer iterations. This aspect is critical, considering the

usual trade-o↵ between reconstruction accuracy and computational e�ciency in SCS algorithms.

Our analysis reveals that the choice of the Hankel enforcement parameter � significantly influences

the convergence speed and reconstruction accuracy. As illustrated in Table 6.1, a larger �

value typically results in superior reconstruction performance in practical scenarios but at the

cost of slower convergence. This slower convergence often leads to an early termination at the

maximum iteration limit of k = 1000. Conversely, while the PGD method shows commendable

performance for � = 1, the MPG, LPPG, and HPPG methods tend to yield better outcomes

with a smaller � value of 0.01. The process of fine-tuning � for varying datasets and noise

levels can be laborious and ine�cient. In stark contrast, the HPG method exhibits remarkable

adaptability, e�ciently converging to critical points across a broad spectrum of � values without

entailing substantial additional computational costs. This attribute of HPG is notably beneficial
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in scenarios with variable noise levels and data characteristics. Figure 6.1 further supports the

fast convergence speed of HPG. Notably, the convergence rate is directly measured using the

subgradient, which provides a more accurate and reliable metric for assessing the algorithm’s

performance in reaching critical points.

Table 6.1: NMSEs and # Iter for di↵erent �: x 2 C2001, the resulting X
e 2 C1001⇥1001, Sp = 0.5,

r = 20, and SNR = 10dB.

� 0.01 1 100
Criterion NMSE Iter NMSE Iter NMSE Iter
PGD [56] 4.6e-1 1000 8.5e-2 176 1.2e-1 1000
MPG [86] 9.6e-2 78 2.1e-1 1000 5.1e-1 1000
LPPG [86] 9.6e-2 42 7.0e-2 1000 1.2e-1 1000
HPPG [135] 9.6e-2 73 1.1e-1 1000 1.3e-1 1000
HPG [148] 8.0e-2 16 8.0e-2 28 7.9e-2 33

6.4.2 Overall Performance of HPG in Terms of Time E�ciency and

NMSE

This section highlights the comprehensive performance advantages of the HPG method, focusing

on time e�ciency and NMSE metrics. Based on the earlier discussions, we adopt a default

setting of � = 100 for the HPG algorithm, which has been shown to deliver superior NMSEs

consistently. The choice of a larger, fixed value for � simplifies the implementation of HPG,

bypassing the need for extensive tuning processes typically associated with other methods. This

default setting is crucial for demonstrating the robustness and adaptability of HPG across

di↵erent noise levels and problem scenarios.

Table 6.2 presents a comparative analysis of both NMSEs and wall-clock times for various

algorithms, considering both fixed and optimized � values. Notably, the time-intensive process

of tuning � for other algorithms is excluded from this comparison, emphasizing the inherent

e�ciency of HPG. The results from Table 6.2 reveal that the HPG algorithm consistently

surpasses other methods in achieving lower NMSEs while maintaining superior computational
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e�ciency. This advantage is accentuated by the reduced number of iterations and the lower

computational complexity per iteration inherent in the HPG method. The findings underscore

the practicality and e↵ectiveness of HPG, particularly in applications where time e�ciency and

reconstruction accuracy are paramount.

Table 6.2: NMSEs and time(s) for di↵erent SNR with fixed �: x 2 C2001, the resulting
X

e 2 C1001⇥1001, Sp = 0.5, and r = 20.

SNR 0dB 10dB 20dB
Criterion NMSE Time NMSE Time NMSE Time
PGD [56] 2.6e-1 3.8 9.1e-2 3.1 2.6e-2 3.2
MPG [86] 3.1e-1 4.4e-1 1.8e-1 7.9e-1 5.1e-2 9.1e-1
LPPG [86] 3.1e-1 8.4 1.0e-1 8.1 3.0e-2 8.4
HPPG [135] 3.1e-1 4.4e-1 1.1e-1 3.5e-1 3.5e-2 1.0
HPG [148] 2.5e-1 1.5 8.9e-2 1.7 2.5e-2 1.8

6.4.3 Robustness of Model Order in HPG Method

In this subsection, we explore the robustness of the HPG method regarding model order

estimation, building upon observations made in Chapter 4. As noted previously, overestimating

the model order results in acceptable reconstruction errors; however, it significantly increases

the number of iterations required for convergence. The experimental setup parallels that in

Chapter 4, with a focus on three-dimensional spectrally sparse signals. The true model order

is set at r = 5 with a sampling rate of 0.5. We systematically vary the model order, starting

from r = 2 and incrementally increasing it by 1 until reaching a maximum of r = 8. This

approach allows us to evaluate the performance of the HPG method under various model order

estimations. Three distinct levels of additive noise are considered, corresponding to optimized

Hankel enforcement parameters. The termination of the tested algorithms is contingent upon

two conditions: a relative change in the Hankel matrix below 10�6 (kXe

k+1 �X
e

k
kF/kXe

k
kF ) or

reaching the maximum iteration count of 1000.

The results, as summarized in Table 6.3, demonstrate the robustness of the HPG method in

scenarios involving both high noise levels (large Hankel enforcement parameter) and overesti-
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Table 6.3: NMSE and Iter for undamped Signals: X 2 C11⇥11⇥11
,X

e 2 C216⇥216 and Sp = 0.5.

Test rank 2 3 4 5 6 7 8

SNR = 1
FIHT [57] NMSE 0.66 0.47 0.29 2.6e-7 1.0e-2 1.4e-2 1.9e-2

Iter 12 13 13 14 1000 1000 1000
PGD [56] NMSE 0.66 0.47 0.29 6.6e-6 2.3e-5 8.0e-4 1.0e-3

Iter 278 96 154 53 872 1000 1000
Modified PG [86] NMSE 0.50 0.34 0.22 1.0e-6 4.5e-4 1.3e-3 1.5e-3

Iter 25 26 28 29 53 53 52
LPPG [86] NMSE 0.50 0.34 0.22 1.0e-6 1.0e-6 1.0e-6 1.0e-6

Iter 17 18 19 17 18 18 18
HPPG [135] NMSE 0.45 0.34 0.21 1.2e-7 2.1e-2 2.6e-2 3.6e-2

Iter 9 21 13 14 95 426 1000
HPG [148] NMSE 0.46 0.34 0.22 1.3e-6 8.9e-4 2.9e-3 3.3e-3

Iter 21 21 24 24 28 45 53

SNR = 20

FIHT [57] NMSE 0.67 0.49 0.31 2.2e-2 2.4e-2 2.9e-2 3.3e-2
Iter 102 102 125 124 281 292 732

PGD [56] NMSE 0.67 0.49 0.37 2.2e-2 2.2e-2 2.3e-2 2.8e-2
Iter 215 309 429 351 1000 1000 1000

Modified PG [86] NMSE 0.63 0.46 0.29 1.9e-2 2.1e-2 2.5e-2 2.7e-2
Iter 366 354 392 386 566 443 1000

LPPG [86] NMSE 0.63 0.46 0.29 1.9e-2 2.1e-2 2.5e-2 2.8e-2
Iter 119 136 152 185 216 233 332

HPPG [135] NMSE 0.66 0.47 0.30 1.5e-2 2.1e-2 2.3e-2 2.3e-2
Iter 1000 288 294 118 199 276 332

HPG [148] NMSE 0.66 0.47 0.30 2.2e-2 2.6e-2 3.3e-2 3.7e-2
Iter 20 21 23 24 36 37 79

SNR = 0

FIHT [57] NMSE 0.67 0.51 0.36 0.22 0.26 0.30 0.33
Iter 108 117 123 119 724 1000 1000

PGD [56] NMSE 0.67 0.51 0.36 0.22 0.40 0.30 0.33
Iter 289 312 444 356 1000 1000 1000

Modified PG [86] NMSE 0.65 0.49 0.34 0.18 0.21 0.25 0.27
Iter 377 378 382 380 1000 1000 1000

LPPG [86] NMSE 0.65 0.49 0.34 0.16 0.21 0.29 0.29
Iter 172 175 189 192 556 566 581

HPPG [135] NMSE 0.66 0.49 0.33 0.14 0.18 0.23 0.28
Iter 168 178 284 462 1000 1000 1000

HPG [148] NMSE 0.67 0.49 0.36 0.23 0.25 0.30 0.34
Iter 21 22 23 24 55 77 79

mated model orders. This finding suggests that when reconstruction accuracy is not the primary

concern, setting a larger � value and a higher-than-actual model order can be a viable strategy.

This approach can o↵er computational advantages, particularly in practical scenarios where the
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exact model order is unknown or di�cult to estimate accurately.

6.5 Conclusions

In this chapter, we introduce the HPG method, a novel approach tailored for SCS with Hessian

information. The primary innovation of the HPG method lies in its integration of Hessian

information to accelerate the convergence towards optimal solutions maintaining acceptable

computational complexity. Specifically, the method:

• Utilizes the Hankel and low-rank structures to minimize both the number of iterations

needed for convergence and the computational complexity per iteration.

• Demonstrates a marked improvement in recovery accuracy and computational e�ciency

compared to current state-of-the-art approaches in scenarios involving both high noise

levels (large Hankel enforcement parameter) and overestimated model orders.

Through empirical studies, the HPG method has been shown to outperform existing methods in

SCS. The advantages are particularly notable in terms of recovery accuracy and computational

speed, making the HPG method a preferred choice for practical applications in this domain.
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Summary and Conclusions
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Chapter 7

Conclusion

In this chapter, we will summarize the thesis achievements and discuss the future work.

7.1 Summary of Thesis Achievements

This thesis has delved into various proximal-type approaches for the recovery of spectrally sparse

signals via unweighted multi-block Hankel matrix form. Key achievements are outlined below:

7.1.1 Fast Computation of Multi-block Hankel Matrix

Chapter 2 reviews the groundwork with background of super-resolution SCS including two typical

convex ANM and EMaC algorithms. In Chapter 3, we initiate our formal study by introducing

fast algorithms for computing the structured Hankel matrix. These algorithms, designed for

multi-level and large-scale data, capitalize on the compact Hankel structure and the FFT. They

significantly reduce computational complexity, making them highly practical. Our exploration

includes algorithms for Hankel operator computation, matrix-vector multiplication, truncated

singular value decomposition, and Penrose Pseudoinverse of Hankel operator. Additionally, we

have developed a Julia package tailored specifically for SCS. Numerical results demonstrate the
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e↵ectiveness of these algorithms.

7.1.2 Fast Proximal-type Algorithms for Spectral Compressed Sens-

ing

Chapter 4 introduces our novel algorithm, the low-rank projected proximal gradient (LPPG),

designed for recovering spectrally sparse signals from unweighted multi-block Hankel matrices.

This algorithm is built upon a non-convex non-smooth optimization formulation and leverages

modified proximal gradient methods and low-rank projection to address convergence speed

issues. It achieves faster convergence and empirically superior reconstruction accuracy compared

to existing methods. Extensive numerical results support these claims, highlighting LPPG’s

e�ciency in terms of accuracy and computation time.

In Chapter 5, we retain the beneficial aspects of our formulation while enhancing convergence

speed. Despite LPPG’s superior recovery performance, its computational complexity limits

its practicality for large-scale data with high model order. To address this, we utilize the

Hankel structure to increase the step size inversely proportional to the sampling ratio and bound

the Lipschitz constant, regardless of the size of the Hankel enforcement parameter �. This

modification reduces computational complexity from O(r4n+ r
3
n log n) to O(r2n+ rn log n),

as demonstrated by our numerical results.

Chapter 6 explores the use of second-order information to further accelerate convergence.

The Hessian proximal gradient (HPG) method, developed here, employs a preconditioned

Hessian matrix to significantly improve convergence, especially in challenging scenarios with

high noise levels and overestimated model order. By leveraging the Hankel structure, we reduce

the computational complexity of the Hessian matrix and ensure convergence without solving

complex subproblems. Numerical evidence suggests that HPG surpasses LPPG and HPPG in

computational e�ciency, particularly when reconstruction accuracy is less critical.
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7.1.3 Comparison of the Proposed Algorithms

In this thesis, we proposed three algorithms for the recovery of spectrally sparse signals from

unweighted multi-block Hankel matrices. The structured enhanced matrix completion approaches,

which excel in handling large signal sizes while achieving super-resolution, are summarized as

follows:

Structured Enhanced Matrix Completion

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Nonconvex
8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

Weighted Norm
8
>><

>>:

Gradient Descent (PGD) [56]

Alternating Projection (Cadzow) [57]

Unweighted Norm
8
>>>>>><

>>>>>>:

Low-Rank Projected Proximal Gradient [86]

Hankel Projected Proximal Gradient [135]

Hessian Proximal Gradient [148]

Convex
8
>><

>>:

Semi-Definite Program [35]

Soft Value Thresholding [2]

(7.1)

The unweighted norm approach potentially o↵ers better reconstruction accuracy due to unbiased

error measurement. Our three modified proximal gradient algorithms are all based on this

principle and successfully address the issues of size-dependent slow convergence. Each algorithm

employs di↵erent optimization acceleration techniques, making it challenging to definitively

identify the best among them. The advantages and disadvantages of these three algorithms are

summarized in Table 7.1.
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Table 7.1: Comparison of the Proposed Algorithms.

Method Name Features Computational
Complexity
per Iteration

Advantages Disadvantages

LPPG Low-rank projec-
tion

O(r4n +
r
3
n log n)

Excellent recon-
struction accu-
racy and phase-
transition perfor-
mance

High computa-
tional cost for
large model or-
ders and high
noise levels

HPPG Hankel structure
projection with
improved step-
size

O(r2n +
rn log n)

Rapid conver-
gence and robust
performance

Slower conver-
gence under high
noise and with
over-estimated
model order

HPG Hessian matrix
utilization for
second-order
method

O(r2n +
rn log n)

Fast convergence
in challenging
scenarios

Slightly lower
reconstruction
accuracy com-
pared to LPPG
and HPPG

7.2 Future Work Directions

This thesis has made significant contributions to signal recovery guarantees and fast convergence

rate analysis. However, there remain avenues for further research and improvement.

7.2.1 Signal Recovery Guarantee

The empirical results in this thesis demonstrate the phase transition of exact recovery and

the high reconstruction accuracy of the proposed methods. While convergence to critical

points is theoretically proven, a comprehensive theoretical analysis of phase transition recovery

and reconstruction accuracy in the nonconvex setting is still needed. Future work will aim to

rigorously establish these aspects, particularly focusing on array form and incoherence conditions,

which are critical for understanding and improving the performance of these recovery methods.
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7.2.2 Enhancing Fast Convergence

The optimization problem in this thesis is formulated as a nonconvex and nonsmooth challenge,

for which proximal-type methods have been developed to ensure convergence. However, there

are other acceleration techniques, such as quasi-Newton methods and Riemannian manifold

optimization, that warrant exploration. Drawing from the successful implementation of Hankel

structure in the HPG approach, it is anticipated that these advanced methods could be further

simplified and enhanced by leveraging the Hankel structure. Additionally, a detailed analysis of

the fast convergence rates of the proposed algorithms is a crucial area for future investigation,

potentially leading to more e�cient and robust signal recovery solutions.
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