Atmos. Chem. Phys., 24, 4231-4252, 2024 Atmospheric
https://doi.org/10.5194/acp-24-4231-2024 :

© Author(s) 2024. This work is distributed under Chem|s.try
the Creative Commons Attribution 4.0 License. and Physics

Atmospheric oxygen as a tracer for fossil fuel carbon
dioxide: a sensitivity study in the UK

Hannah Chawner!, Eric Saboya'”’, Karina E. Adcock?, Tim Arnold>*, Yuri Artioli’, Caroline Dylag>,
Grant L. Forster>®, Anita Ganesan’, Heather Graven®, Gennadi Lessin’, Peter Levy’, Ingrid
T. Luijkx'?, Alistair Manning!', Penelope A. Pickers>°, Chris Rennick>, Christian Rodenbeck!2, and
Matthew Rigby'

1School of Chemistry, University of Bristol, Bristol, UK
2Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences,
University of East Anglia, Norwich, UK
3National Physical Laboratory, Teddington, UK
4School of Geosciences, University of Edinburgh, Edinburgh, UK
>Plymouth Marine Laboratory, Plymouth, UK
®National Centre for Atmospheric Sciences, University of East Anglia, Norwich, UK
7School of Geographical Sciences, University of Bristol, Bristol, UK
8Department of Physics, Imperial College London, London, UK
9Centre for Ecology and Hydrology, Edinburgh, UK

10Meteorology and Air Quality, Wageningen University and Research, Wageningen, the Netherlands

11Hadley Centre, Met Office, Exeter, UK
2Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena, Germany

Correspondence: Eric Saboya (eric.saboya@bristol.ac.uk) and Matthew Rigby (matt.rigby @bristol.ac.uk)

Received: 3 March 2023 — Discussion started: 14 June 2023
Revised: 14 December 2023 — Accepted: 27 January 2024 — Published: 9 April 2024

Abstract. We investigate the use of atmospheric oxygen (O7) and carbon dioxide (CO;) measurements for the
estimation of the fossil fuel component of atmospheric CO, in the UK. Atmospheric potential oxygen (APO)
— a tracer that combines O; and CO,, minimizing the influence of terrestrial biosphere fluxes — is simulated
at three sites in the UK, two of which make APO measurements. We present a set of model experiments that
estimate the sensitivity of APO simulations to key inputs: fluxes from the ocean, fossil fuel flux magnitude and
distribution, the APO baseline, and the exchange ratio of O, to CO, fluxes from fossil fuel combustion and
the terrestrial biosphere. To estimate the influence of uncertainties in ocean fluxes, we compare three ocean
O; flux estimates from the NEMO-ERSEM, the ECCO-Darwin ocean model, and the Jena CarboScope (JC)
APO inversion. The sensitivity of APO to fossil fuel emission magnitudes and to terrestrial biosphere and fossil
fuel exchange ratios is investigated through Monte Carlo sampling within literature uncertainty ranges and by
comparing different inventory estimates. We focus our model—data analysis on the year 2015 as ocean fluxes
are not available for later years. As APO measurements are only available for one UK site at this time, our
analysis focuses on the Weybourne station. Model-data comparisons for two additional UK sites (Heathfield and
Ridge Hill) in 2021, using ocean flux climatologies, are presented in the Supplement. Of the factors that could
potentially compromise simulated APO-derived fossil fuel CO, (ffCO,) estimates, we find that the ocean O3
flux estimate has the largest overall influence at the three sites in the UK. At times, this influence is comparable
in magnitude to the contribution of simulated fossil fuel CO; to simulated APO. We find that simulations using
different ocean fluxes differ from each other substantially. No single model estimate, or a model estimate that
assumed zero ocean flux, provided a significantly closer fit than any other. Furthermore, the uncertainty in the
ocean contribution to APO could lead to uncertainty in defining an appropriate regional background from the
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data. Our findings suggest that the contribution of non-terrestrial sources needs to be better accounted for in
model simulations of APO in the UK to reduce the potential influence on inferred fossil fuel CO; using APO.

1 Introduction

Variations in atmospheric carbon dioxide (CO;) concentra-
tions are due to atmospheric transport and the influence of
fluxes from the terrestrial biosphere, the ocean, and human
activities. With the ultimate aim of evaluating national emis-
sion estimates, a major goal of several recent studies has been
the isolation of only those variations due to anthropogenic
fossil fuel CO, (ffCO;) emissions. Radiocarbon (14C) has
been widely used as a tracer for this purpose (e.g. Levin
et al., 2003; Graven et al., 2009, 2018; Wenger et al., 2019;
Zazzeri et al., 2023). As fossil fuel emissions are depleted in
14C, they can be distinguished from biospheric and oceanic
processes. However, atmospheric '“C measurements are ex-
pensive, they cannot be made continuously to the required
precision, and in some regions there may be a significant in-
terference of '4C emissions from gas-cooled nuclear power
stations (Graven and Gruber, 2011; Bozhinova et al., 2016;
Wenger et al., 2019). An alternative tracer is carbon monox-
ide (CO), which is produced by incomplete combustion. At-
mospheric measurements of CO are much less expensive
than those of '“C and can be made continuously (e.g. An-
drews et al., 2014; Levin and Karstens, 2007; Levin et al.,
2020). However, there is large uncertainty in both the ratio
of CO to CO, emissions from fossil fuel combustion and the
CO flux from non-fossil-fuel sources and sinks (Vardag et al.,
2015).

Pickers (2016) and Pickers et al. (2022) show that atmo-
spheric oxygen (O;) and CO, measurements, combined into
atmospheric potential oxygen (APO) (Stephens et al., 1998),
can be used as a novel tracer for fossil-fuel-derived CO;.
In their study, Pickers et al. (2022) show that their APO-
derived CO, emission changes during the COVID-19 lock-
downs in the UK correspond well to the changes found from
bottom-up inventories. Their method, combining observa-
tions and machine-learning techniques, shows the potential
of APO as a fossil fuel CO; tracer. The basis of this method
is that the ratio of O, to CO; fluxes from the terrestrial bio-
sphere, which are by definition removed from the O, signal
through the use of the APO tracer (Stephens et al., 1998), is
relatively well-constrained and invariant in space and time.
For land-based sources, O and CO, fluxes to the atmo-
sphere from photosynthesis, respiration, and combustion are
strongly anti-correlated: CO; is taken up through photosyn-
thesis whilst O, is released, and the reverse is true for respi-
ration and combustion.

When considering ocean fluxes, the situation is more com-
plex. Differences in solubility (Keeling, 1988b) and carbon-
ate chemistry (Keeling and Shertz, 1992; Keeling and Sever-
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inghaus, 2000) mean that O, and CO; fluxes from the ocean
are largely decoupled. However, previous work has indicated
that the influence of ocean fluxes on the atmospheric ratio of
0O, to CO; is generally smaller than the influence of fossil
fuel combustion on short timescales (Pickers, 2016; Pickers
et al., 2017; Chevalier and WP4 CHE partners, 2021). Pick-
ers et al. (2017) found short-term variability in APO, O3, and
CO;, mole fractions with a very small magnitude from the
ocean when taking ship measurements.

There have been a number of promising attempts to incor-
porate O, modelling as a tracer for ffCO,. Kuijpers (2018)
modelled O, for the autumn of 2014, finding good agreement
with observations at two sites in the UK and the Netherlands.
APO modelling was investigated to derive European ffCO,
fluxes by several groups within the CO, Human Emissions
project (CHE, work package 4; Marshall et al., 2019; Cheva-
lier and WP4 CHE partners, 2021). Comparing with results
from A'*CO, (~*C/C) and CO modelling, they found that
APO-derived ffCO;, gave the strongest correlation to direct
ffCO, models using STILT (Stochastic Time-Inverted La-
grangian Transport model) and TNO fluxes. The APO mod-
els were affected by oceanic fluxes at some coastal sites, al-
though for most coastal sites the ocean influence, modelled
using ocean fluxes from NEMO-PlankTOMS, was consider-
ably smaller than ffCO;.

Two measurement sites equipped with high-frequency
CO; and O instruments have been established in the UK:
one at the Weybourne Atmospheric Observatory (WAO) in
the east of England and one at Heathfield (HFD) telecom-
munications tower in the south of England. In this paper, we
perform simulations of CO; and O,, primarily focusing on
model-data comparisons at WAO for the year 2015, with
further comparisons at HFD and WAO for the year 2021
presented in the Supplement along with a third station at
Ridge Hill (RGL) telecommunications tower. Although at-
mospheric O, measurements are not available from RGL, it
is included to examine the modelled APO further inland. We
test the sensitivity of the APO simulations to changes in a set
of uncertain model input parameters to determine whether a
robust tracer of national scale fossil fuel CO, can be derived.

Modelling atmospheric potential oxygen

As O is abundant in the atmosphere, dilution by trace gases
can have a non-negligible effect on its mole fraction, which
may erroneously be attributed to an Oy flux. To minimize
this influence, atmospheric oxygen mole fraction measure-
ments are commonly reported as a ratio with respect to the at-
mospheric nitrogen mole fraction as §(O,/N>) (Keeling and
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Shertz, 1992):

(8)) / N2)sample - (02/ N2 )reference
(02/ N2)reference

where (O2/N2)sample is the Oz/N ratio of a sample and
(O3 /N2)reference 18 from a reference gas cylinder. 6(O2/N3)
is expressed in “per meg”.

We can define the tracer APO (e.g. Stephens et al., 1998;
Gruber et al., 2001; Battle et al., 2006), which is largely unaf-
fected by exchanges with the terrestrial biosphere but sensi-
tive to fossil fuel (and cement production) and ocean fluxes.
This is a weighted combination of O, and CO; which isolates
the oceanic and fossil fuel (and cement production) compo-
nents:

8(02/N2) = x10%, (1)

APO = 0, + ag x (CO, — 350), 2)

where APO is a mole fraction, ap is the O, : CO; exchange
ratio for the land biosphere, O, and CO; are the atmo-
spheric mole fractions of O and CO; respectively, and 350
(umol mol 1) is an arbitrary reference.

Equations (1) and (2) can be combined, expressing APO
in per meg (Stephens et al., 1998):

oB
SAPO = §(0,/N3) + <X

0,

) x (CO, — 350), A3)

where Xq, is the standard mole fraction of O3 in air, equal
to 0.20946 (Machta and Hughes, 1970).

The regional contribution to APO

The regional contribution of APO can be estimated by com-
bining the mole fraction contributions of Oy, CO;, and Nj.
Following the derivation in Manning and Keeling (2006),
baseline deviations of APO, expressed in per meg, can be
written as

(ap—ap)F +apO +Z N

A(SAPO) = Xo X “4)
2 2
_Fo—agF+ag0+Z N )
Xo, XN, ’

where Z and O respectively are the O, and CO, mole frac-
tion contributions from the ocean; F' and Fg are the contribu-
tions of CO; and O; respectively from fossil fuel combustion
and cement production; N is the Ny contribution; g and
ap are the fossil fuel and biospheric exchange ratios, respec-
tively; and Xy, is the mole fraction of Ny in dry air, given
as 0.78084 (Weast and Astle, 1982), where this and X, are
used to convert from ppm (umol mol~!) to per meg.

When estimating the exchange of N, we need only to con-
sider the ocean contribution, as the other components are
assumed to be negligible (Ciais et al., 2007). We assume a
constant value for g for the UK of —1.07 £ 0.04 (Marshall
et al., 2019; Penelope A. Pickers, personal communication,
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2021). aF varies for different fuel types, having values of
—1.17 for coal, —1.44 for oil, —1.95 for gas, and O for cement
production (Keeling, 1988a; Steinbach et al., 2011), and can
be estimated for the UK by combining fossil fuel emission
estimates and fuel usage statistics, as outlined in Sect. 2.2.2.
However, variations in af are not well studied or well con-
strained. Therefore we follow Jones et al. (2021) in assuming
an uncertainty of 3 %.

2 Methodology

2.1 Observations

At both measurement stations, WAO and HFD, atmospheric
O, measurements are taken using Oxzilla lead fuel cell anal-
ysers (Sable Systems International Inc.) placed in series with
non-dispersive infrared (NDIR) ULTRAMAT 6E CO; anal-
ysers (Siemens Corp.). The gas handling for each system is
similar to that of Adcock et al. (2023), Pickers et al. (2017),
and Stephens et al. (2007), to ensure stable pressures and
flow rates are maintained and to avoid O /N fractionation
effects. A two-stage drying system (Wilson, 2013; Barning-
ham, 2018; Adcock et al., 2023) reduces the dew point of
the sample air to approximately —90 °C. Calibration gases,
consisting of secondary standards that are stored horizontally
in thermally insulated enclosures, are used to characterize
analyser responses on the World Meteorological Organiza-
tion (WMO) CO; scale maintained by the National Oceanic
and Atmospheric Administration (NOAA) and the Scripps
Institution of Oceanography scale for O, by employing rou-
tines and protocols similar to those of Kozlova and Manning
(2009).

The Weybourne Atmospheric Observatory (WAO; https://
weybourne.uea.ac.uk/, 13 March 2024) is a coastal measure-
ment station in Norfolk, in the east of England (52°57'02” N,
1°07'19” E), which has been routinely sampling CO; and O,
since May 2010. Established in 1992, the WAO is a Global
Atmospheric Watch (GAW) regional station, a National Cen-
tre for Atmospheric Sciences (NCAS) Atmospheric Mea-
surement Facility (AMF), and an Integrated Carbon Obser-
vation System (ICOS) Class 2 station. Air is alternately sam-
pled from two identical aspirated inlets at 15 ma.g.l. (Blaine
et al., 2006).

Heathfield is a tall tower measurement site that is part
of the UK Deriving Emissions linked to Climate Change
(DECC) network (Stanley et al., 2018) and has been sam-
pling CO; and Oj since June 2021. The site is in an
agricultural area in the south of England (50°58'36.3” N,
0°13’49.728" E), about 25 km north of the English Channel.
Air is alternately sampled from two identical aspirated inlets
(Blaine et al., 2006) at 100 ma.g.1.

Ridge Hill is also a tall tower measurement site in
the UK DECC network in Herefordshire (51°59'50.766” N,
2°32/23.64” W). Although CO; is sampled here, O3 is not.
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We include Ridge Hill in the analysis to test the model at a
more inland UK site.

The repeatability of the O, measurements from Wey-
bourne, which is determined from regular measurements of
a target tank, typically ranges from 1.68 1.09 per meg
to 3.31£5.46 per meg (Adcock et al., 2023). This ex-
ceeds WMO repeatability goals (WMO, 2019) for O, and is
amongst the most precise globally. The repeatability is cal-
culated using the method described in Pickers et al. (2017)
and is reported with =10 uncertainty to represent how the
measurement system repeatability varies over time. During
the period February to November 2015, the O, measure-
ment repeatability was significantly larger (10.71 £ 10.45)
than usual, caused by poor performance of the Oxzilla anal-
yser. As described in Sect. 2.2, we model the year 2015, as it
is the most recent year for which outputs exist for all of the
ocean models used. This larger repeatability does not signifi-
cantly affect the accuracy of the O, measurements, but it does
compromise the detection limit, meaning that smaller syn-
optic variations in APO (< 10-20 per meg) may be masked
during this period by the measurement imprecision. CO, re-
peatability was not affected and is 0.005 £ 0.023 ppm on av-
erage at Weybourne, calculated from over 8000 target tank
measurements made from 2010-2021.

2.2 Modelling APO

We use a Lagrangian particle dispersion model (LPDM) to
simulate APO at the three measurement sites in the south
of the UK. The key components of our simulation are the
LPDM “footprints”, a set of flux estimates, and boundary
conditions at the edge of our domain. The following sections
outline how each component was produced and used in the
model.

For our analysis we focus on the year 2015, chosen be-
cause time-resolved ocean model outputs are available for all
ocean models considered here, described in Sect. 2.2.2. Wey-
bourne measurements are available for 2015 and are com-
pared to the simulations in Sect. 3. Heathfield observations
are only available from June 2021, when time-resolved ocean
fluxes are not available, so model outputs, derived using cli-
matological fluxes, are compared to the observational data
for this site and are shown in the Supplement. Simulations at
Ridge Hill are shown in the Supplement.

We also model the total CO, and O, mole fractions at
Weybourne to compare the correlations with those observa-
tions to the equivalent for APO.

2.2.1 The atmospheric model

Simulations of atmospheric transport and dispersion are car-
ried out using the Numerical Atmospheric-dispersion Mod-
elling Environment (NAME III, version 7.2), the UK Met
Office’s LPDM (Jones et al., 2007). NAME was run in time-
reversed mode, in which we tracked thousands of model par-
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ticles back in time for 30 d from measurement sites (see e.g.
Manning et al., 2011). The motion of hypothetical “particles”
is simulated based on meteorological fields from the Met Of-
fice Unified Model analyses (Cullen, 1993). The “footprint”
of each measurement was estimated by recording locations
and times at which particles interacted with the Earth’s sur-
face (defined as being the lowest 40 m of the atmosphere
in this case). These footprints relate the sensitivity of mole
fractions at a measurement site to the flux from each grid
cell in the domain. Our domain covered most of Europe,
the east coast of North and Central America, and north-
ern Africa, extending across the longitude—latitude range:
10.729-79.057° N and 97.9° W-39.38°E (shown in Fig. S1
in the Supplement). The footprints have the resolution 0.234°
by 0.352° (roughly 25 km by 25 km over the UK).

The NAME footprints used for this study are disaggre-
gated in time with the method described by White et al.
(2019). To account for the influence of rapid variations in
CO;, flux on the mole fractions, footprints are generated
hourly for the 24 h preceding a simulated data point. Time-
integrated footprints are then used for the remaining 29d
of the simulation. The modelled regional contribution to the
mole fraction of a species, Y;, at a time step, ¢, can then be
estimated by combining the flux field with the high time res-
olution NAME footprint, as shown by Eq. (6) (White et al.,
2019):

H N N
Y, = Z prf—h,j Xdi—h, +prremainderj X gmonth; » (6)
h=0 j=0 j=0

where H is the number of hours back in time over which
the footprint is disaggregated, for which we use 24; & is the
number of hours back in time before the particle release time,
t; j is the grid cell; N is the maximum number of grid cells;
fp,_p,; is one grid cell of the footprint for that time; g;—p,
is one grid cell of the flux field; fpremainderj is the remaining
29 d footprint; and Gmonth; is the monthly average flux for
the grid cell (by calendar month). White et al. (2019) discuss
this method in more detail, including the effects of varying
the level of time-disaggregation of the footprint, H.

2.2.2 Flux products

We model the regional contribution to APO separately for
each of the components of Eq. (5) (Z, Fo, F, O), using
Eq. (6) to combine the flux estimates and NAME footprints.
Here we describe how the fluxes for each component are es-
timated.

Anthropogenic CO; flux estimates for the UK are taken
from the UK National Atmospheric Emissions Inventory
(NAEI), where estimates at a downscaled hourly resolution
are derived using the UKGHG (UK Greenhouse Gas) model
(Levy, 2020). Outside of the UK, anthropogenic flux esti-
mates from EDGAR (Emissions Database for Global Atmo-
spheric Research) are used. As the NAEI includes the an-
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UKGHG hourly CO, flux
from each sector

Hourly CO, flux for each
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NAEI annual fossil fuel

usage for each sector
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Figure 1. Calculation of UK fossil fuel O, fluxes from CO, flux estimates and fuel usage statistics from the UK National Atmospheric
Emissions Inventory (NAEI), where flux estimates are downscaled to an hourly resolution using the UKGHG (UK Greenhouse Gas) flux

model (Levy, 2020).

thropogenic CO, flux estimates from both fossil fuel and
non-fossil-fuel sources (e.g. peat and biomass), we use the
method described in Fig. 1 and Equations (7) and (8) to re-
move emissions associated with non-fossil-fuel sources and
thus estimate the UK fossil fuel CO; and O, flux:

ffCOy =) °> "COxRs. (7
e

S

ffO, = ZZCOZS Rseape, (8)
s e

where s is the SNAP (Selected Nomenclature for reporting
of Air Pollutants, see e.g. Tsagatakis et al., 2022) sector, e
is the fuel or source type (coal, oil, gas, non-combustion,
or cement production), COy, is the CO; flux for the sector,
R;. is the proportion of CO; emissions within the SNAP
sector associated with the fuel type, and ap, is the fossil
fuel exchange ratio for the fuel type. We use NAEI statis-
tics of the annual fuel usage for each SNAP sector (https:
/Inaei.beis.gov.uk/data/data-selector, last access: 13 March
2024) to determine Rg,, assuming that the ratio of fuels used
within each sector is constant throughout the year. When de-
termining the fuel type associated with NAEI emission esti-
mates we follow the assumptions given by Jones et al. (2021),
that emissions from the non-energy use of fuels and the sol-
vent sector relate to non-combustion use of oil, and emis-
sions from the production of non-metallic minerals relate to
cement clinker production. Using the exchange ratio for each
fuel, ap,., we then convert from CO, to O, flux for each fuel
within each sector and take the sum to give the total hourly
O; flux throughout the year. The O; flux from outside of the
UK is estimated using EDGAR CO; fields and o estimates
from GridFED (Jones et al., 2021).

We compare ocean CO, and O, fluxes derived from
NEMO-ERSEM simulations (NE; Butenschon et al., 2016;
Madec and NEMO System Team, 2022), the ECCO-Darwin
model (ED; Carroll et al., 2020), and the Jena CarboScope
APO inversion (JC; Rddenbeck et al., 2008), as well as a
model with ocean fluxes excluded. All of the ocean fluxes
have daily time resolution and raw spatial resolutions of
0.199° x 0.333°, 2.0° x 2.5°, and 0.066° x 0.110° for ED,
JC, and NE respectively, which are regridded to match the
NAME spatial resolution.

https://doi.org/10.5194/acp-24-4231-2024

ED determines ocean—atmosphere transfer of O, and CO»
by combining the CO, partial pressure difference across the
air-sea interface with the relationship between wind speed
and gas transfer, as described by Wanninkhof (1992). The
Darwin Project biogeochemical model resolves the cycling
of CO;, and O3, and its ocean ecology includes phytoplank-
ton and zooplankton (Brix et al., 2015; Carroll et al., 2020).
JC estimates CO, and APO fluxes using a Bayesian atmo-
spheric inversion and measurements from 23 CO, measure-
ment stations and up to 10 O, measurement stations (includ-
ing Weybourne; Rodenbeck et al., 2014, 2008, 2018). For the
JC APO inversion, oceanic CO; fluxes are estimated from the
interpolation of pCO;, data. Air—sea fluxes of O, and CO; in
NE are calculated starting from the gradient of those gases
between the atmosphere and the water and by using Nightin-
gale et al. (2000) to estimate the gas transfer coefficient. The
concentrations of O, and CO, in the water are the results
of dynamical processes in the ecosystem represented in the
model and, in particular, photosynthesis from phytoplankton
and respiration of all planktonic communities, as well as ben-
thic organisms. More details on the dynamics of these gases
can be found in Butenschon et al. (2016). For all of our APO
models we use a nitrogen flux field estimated from NEMO
heat fluxes by Eq. (9):

dCeq O

= 9

Joceany a7 c, 9

where dCeq/dT is the temperature derivative of the solubil-

ity, Q is the ocean heat flux (positive for transfer from the

ocean to the atmosphere), and C, is the heat capacity of sea-
water (Keeling et al., 1993). dCeq/dT is estimated using

InC = Ag+ A Ts + AxT§ + A3T§

+ S(BO+B]TS+32T52> , (10)
with
571.3—-T
Ts=In(=——). (11)

where C is the gas concentration, 7 is the temperature (K),
S is the salinity, and the A and B coefficients are defined in
Hamme (2004). The surface heat flux is calculated by NEMO
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as the balance between the non-solar heat (sum of sensible,
latent, and long-wave heat fluxes) and the incoming solar ra-
diation (Madec and NEMO System Team, 2022). Both the
ocean temperature and salinity are derived from the NE sim-
ulation.

When modelling CO, and O, mole fractions separately,
we must include a terrestrial flux component. For this we use
CO; flux estimates from the Organising Carbon and Hydrol-
ogy In Dynamic Ecosystems (ORCHIDEE; Krinner et al.,
2005) model. ORCHIDEE is a dynamic vegetation model
which simulates the principal biospheric processes influenc-
ing the global carbon cycle, including photosynthesis, au-
totrophic respiration, and heterotrophic respiration. To esti-
mate the terrestrial O, flux we multiply the CO, flux by ap,
which we assume is equal to —1.07 £ 0.04 (see Sect. 1).

2.2.3 APO boundary conditions

Using the method of Lunt et al. (2016), we model the con-
tribution from the boundary conditions at the edge of our
domain using global atmospheric fields of APO mole frac-
tions from the JC global APO inversion (Rédenbeck et al.,
2008, version apo99X_WAO_v2021). Whilst the JC APO
fields include data from WAO in their derivation, any circu-
lar influence on our results should be small, because the do-
main boundaries are far from the UK (~ 1000 km); therefore,
WAQO data should not strongly influence the gradients simu-
lated there. These boundary conditions are propagated to the
measurement site by tracking the location at which NAME
model particles leave the domain, thus providing a baseline
estimate at the site. The baseline estimated from the bound-
ary conditions is adjusted for consistency with the observa-
tions. To do this, we adjust the JC background for each month
such that the simulated APO during periods of minimal ter-
restrial influence (defined as the 90th percentile of APO in a
simulation with no ocean fluxes) are consistent with the ob-
servations at the same times. The original and adjusted JC
backgrounds are shown in Fig. S2.

2.3 Sensitivity experiments

Model simulations of APO are sensitive to uncertainties in
several variables of Eq. (5). In this section, we outline how
we investigate the sensitivities to the biospheric and anthro-
pogenic exchange ratios (o and «p), ocean fluxes, fossil fuel
CO, emissions, baseline, and atmospheric model. The sensi-
tivity tests (for APO and ffCO;) are summarized in Table 1.

2.3.1 Sensitivity to the exchange ratios: ag and af

To investigate our sensitivity to «g and of in Eq. (5) we em-
ploy a Monte Carlo method, randomly generating a value
for each from a Gaussian distribution with a standard devia-
tion of 0.04 mol mol~! (Marshall et al., 2019) and 3 % (Jones
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(c) NAEI minus ED&AR

0 2 4 6 8 10 12 14 16 —6-4-20 2 4 6 8 10
ffCO, flux, umol/m?/s

Figure 2. The ffCO, flux estimated by the NAEI, embedded in
EDGAR (a, c¢), and the difference between the NAEI and the
EDGAR fields (b, d) for August (a, b) and December 2015 (c, d).
By definition, panels (b) and (d) are zero outside of the UK. The
crosses show the locations of the sites included in this study: HFD,
RGL, and WAO.

et al., 2021) for o and ap respectively. Doing so, we gener-
ate 1000 values for the APO time series.

As af varies for different fuels, we must take this into ac-
count when studying the sensitivity to ag. As described in
Sect. 2.2.2, the fossil fuel O, flux for each sector is calculated
using aF based on the proportion of fuels consumed within
that sector. We therefore initially investigate the sector-wise
sensitivity of the O; flux to o for each fossil fuel: coal, oil,
and gas. We combine this information to determine the over-
all sensitivity of the fossil fuel O; flux and the APO simula-
tion to af.

2.3.2 Sensitivity to fossil fuel flux magnitude and
distribution

We estimate the sensitivity of the modelled APO to changes
in the distribution and magnitude of fossil fuel CO,. We in-
vestigate the influence of the spatial distribution by compar-
ing APO simulations using the NAEI and EDGAR, which are
overall very similar in magnitude but have different distribu-
tions (Fig. 2). As discussed in Sect. 2.2, our APO model uses
NAEI ffCO; emission estimates for the UK, which are em-
bedded in those of EDGAR and combined with NAEI fuel
usage statistics to calculate ffO, uptake. We compare these
estimates to EDGAR CO; emissions with GridFED og.

We investigate the sensitivity of the APO model to the
magnitude of ffCO, using a Monte Carlo ensemble in which
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Table 1. Summary of sensitivity tests. The left-hand column indicates the parameter being investigated and whether the sensitivity to APO or
ffCO; is being investigated. The middle column briefly describes the method employed to determine the sensitivity, and the relevant results

section is shown to the right.

Sensitivity test Method Section
APO: biosphere exchange ratio («p) Monte Carlo ensemble 32
APO: fossil fuel exchange ratio (o) Monte Carlo ensemble and comparison of GridFED- and NAEI-derived ratios 3.2
APO: ocean flux estimate Comparison of NEMO, ECCO-Darwin, and Jena CarboScope flux estimates 3.4
APO: fossil fuel flux magnitude and distribution ~ Monte Carlo ensemble and comparison of NAEI and EDGAR distributions 33
APO: background Comparison of JC and REBS 3.5
ffCO,: ocean flux estimates Comparison of NEMO, ECCO-Darwin, and Jena CarboScope ocean fluxes 3.6
ffCO,: background Comparison of JC and REBS 3.6

the overall CO; flux in the entire domain is allowed to vary
by £10%. This range is considerably larger than the dif-
ference between EDGAR and the NAEI, which is approxi-
mately 0.7 % but chosen so that the effect on APO can be
identified.

2.3.3 Sensitivity to ocean flux

Figure 3 shows the ocean flux fields from the ED and NE
models and the JC inversion. This figure is shown for a pe-
riod (13 August 2015) when the footprint for WAO is pre-
dominantly across the ocean. On this date, and in general,
there is a much larger flux in coastal regions in the NE ocean
model compared to both the ED and JC estimates. Unlike
exchange ratios, the sensitivity of simulated APO to ocean
fluxes cannot be described by an uncertainty on a single pa-
rameter. Therefore, to examine the sensitivity to this term,
we produce APO time series using the three different flux
estimates such that we can qualitatively compare the effect
on APO magnitude and variability and compare the correla-
tion of each model with the observations. We also produce
a time series with the ocean component excluded to exam-
ine whether the fit to the observations can be improved by
assuming a negligible ocean contribution.

2.3.4 Sensitivity to the background estimate

As our APO simulations only account for the influence of
fluxes within our regional domain, an estimate must be made
of the APO entering the domain. In this section, we de-
scribe how different background estimates might influence
the comparison between the APO simulation and the obser-
vations. The background represents the APO variability that
is representative of the well-mixed atmosphere at the UK’s
latitude, excluding local influences. We compare the mod-
elled A(SAPO) (calculated using Eq. 5) with background-
subtracted observations at Weybourne throughout 2015. We
compare two methods to subtract the background from the
observations. First, we estimate a baseline from the APO ob-
servations using the “REBS” statistical fitting routine (Ro-
bust Extraction of Baseline Signal; Ruckstuhl et al., 2012;
Pickers et al., 2022) with a span value of 0.03, equivalent to
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a smoothing window of approximately 1 week. This smooth-
ing window was thought to be the most appropriate for in-
corporating wider-scale APO signals from outside Europe
into the background term while simultaneously excluding lo-
cal influences. For our second background subtraction we
use the JC background estimate, estimated from boundary
conditions propagated to the measurement site using NAME
(Sect. 2.2.3). A monthly adjustment is made to the JC back-
ground to account for offsets observed in some months,
as described in Sect. 2.2.3. This gives us two estimates of
observation-derived ffCO;, which we can compare the back-
ground subtraction method.

These background estimates are inherently different: for
example, the REBS baseline incorporates regional ocean sea-
sonality, whereas the JC estimate represents contributions
from outside of the domain. However, comparing both back-
ground subtractions gives us an idea of the impact of differ-
ences between background estimates, such as their variabil-

1ty.

2.3.5 Sensitivity to the atmospheric model

In this study, we use the NAME atmospheric transport
model (Sect. 2.2). Although NAME has been extensively
inter-compared to other transport models in several publica-
tions (e.g. Brunner et al., 2017; Rigby et al., 2019; Monteil
et al., 2020), systematic errors in NAME will influence the
comparison with observations. Whilst an extensive model
inter-comparison exercise is beyond the scope of this pa-
per, to provide a simple comparison with another widely
used modelling system, we compare the NAME fossil fuel
CO; time series to that of CarbonTracker Europe (CTE2022;
van der Laan-Luijkx et al., 2017; Friedlingstein et al., 2022).
CTE2022 uses the TMS transport model (Krol et al., 2005)
driven by ERAS meteorology to transport prior fluxes glob-
ally, and surface CO, fluxes are optimized on a weekly time
step over the period 2000-2021. The prior fluxes are from the
SiB4 Biosphere Model (Haynes et al., 2019), the Global Fire
Assimilation System (GFAS) fire emissions (Kaiser et al.,
2012), GridFED fossil fuel emissions (Jones et al., 2021),
and JC ocean fluxes. CO, mole fractions based on the op-
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Figure 3. The daily mean O; ocean flux fields from the ED model (a), the JC inversion (b), the NE model (¢), and the NAME footprint (d) on
13 August 2015 at WAO, at a time during which the ED and NE ocean fluxes dominate the simulated APO and when there is a large difference
between the estimated O, contribution from the three flux estimates. The flux fields have two example footprints overlaid, corresponding to

0.002 and 0.005 (mol mol™1) (molm=2 s~ 1)1,

timized CTE2022 at the WAO are used here, with separate
tracers available for each of the described flux components.

2.4 Fossil fuel CO> mole fraction

Previous studies have indicated that we can assume that
ocean fluxes do not contribute strongly to the overall APO
at a measurement site over short timescales (Pickers, 2016;
Pickers et al., 2017; Chevalier and WP4 CHE partners,
2021). Based on this assumption, it has been proposed that
we can estimate regional ffCO, mole fractions from APO,
following Pickers (2016):

SAPO — §APOyq

ffCO, =
Rsapo: o,

12)
where SAPOy; is a background APO estimate and
R5APO: CO, 1s the SAPO : ffCO; ratio which can be estimated
from Rsapo:co, = oF — aB.

To estimate the time-varying ratio Rsapo:co, in the air
intercepted at the measurement site, we use the footprint-
weighted fossil fuel exchange ratio:

1 N
———— (or,j —aB)fp, ;. (13)
Zj:ofpt,j j=0

where t is the time, j is the grid cell, N is the maximum
number of grid cells, af; ; is a for one grid cell at that time,
fp,,; 1s one grid cell of the hourly footprint at that time, and

R 5AP0:CO, =

Z?]:Ofpn j 1s the sum of the footprint across all grid cells at
that time.

Here we investigate how well we can retrieve ffCO, mole
fraction contributions from our APO simulations, and we
also estimate ffCO; from our observations using Eq. (12).
These estimates are directly compared to modelled ffCO, by
multiplying the NAEI-within-EDGAR flux by NAME foot-
prints, as described in Sect. 3.1. Equation (12) requires an
estimate of the APO background,  APOyg;. When deriving
ffCO, from the model we compare two methods to estimate
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this term: in one case by fitting a baseline to the APO model
using the REBS statistical fitting routine; for comparison we
use the adjusted JC background estimate. The baselines for
the whole of 2015 are shown in Fig. S9. We then derive
ffCO, from the below-baseline APO, comparing the effect of
using a constant value for Rsapo:co, and of using Eq. (13)
to calculate a time-varying exchange ratio.

3 Results and discussion

3.1 Simulated APO at UK measurement sites

Here we show our APO model results for 2015. As examples,
one summer month (August) and one winter month (Decem-
ber) are shown. These months were selected based on data
availability, statistical goodness-of-fit, and having 2 months
that represent sufficiently distinct parts of the APO seasonal
cycle. Simulations for all months of 2015 and 2021 are pro-
vided in the Supplement (Figs. S3 and S6).

The simulated CO, and O, mole fractions and APO con-
tribution due to each source and sink are shown in Fig. 4
for August and December 2015 at the three sites. In August,
the ocean and fossil fuel mole fraction contributions have
similar magnitudes, and there are sustained periods during
which the ocean APO component dominates over the fossil
fuel component. We find that there are background O; ex-
cursions which are considerably larger than those inferred
by Pickers et al. (2017). However, there is a large disagree-
ment between the three models of ocean APO contribution,
and the difference between them is frequently of a similar
magnitude to that of their contribution. Whereas over the
summer the ED and JC models suggest net oxygen release
from the ocean, over the winter we see overall uptake due
to the differences in temperature and solubility, as well as
the balance of respiration and productivity. In December, the
magnitude of the fossil CO; and O, mole fractions is larger
than that of the ocean, although there are still large differ-
ences between the ocean models. However, when converted
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Figure 4.

to the fossil fuel and ocean components of APO, the magni-
tudes are similar for Weybourne, and for much of December
the fossil fuel component is small compared to the ocean at
Heathfield and Ridge Hill, despite these sites being further
inland than WAO. For all three sites, variation between the
ocean models is comparable to the magnitude of their flux,
and there are large periods of December during which the
ocean is dominant as an O, sink. This is in contrast to the
findings of Chevalier and WP4 CHE partners (2021), who
found that the fossil fuel APO contribution was dominant
at all sites, including Weybourne and Heathfield. That study
used a combination of fluxes from NEMO-PlankTOMS and
the atmospheric transport model STILT (Lin et al., 2003).
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However, Chevalier and WP4 CHE partners (2021) do not
provide details on the magnitude of variability in these flux
estimates.

Combining the APO components using Eq. (5) gives a
modelled APO for Weybourne, as shown in Fig. 5 (for all
three sites in 2015 see Fig. S3, and for Weybourne and Heath-
field in 2021 see Fig. S6). We find that although the magni-
tude of the variability is similar, there are substantial differ-
ences between the simulations and the observations. Figure 6
shows the R? and root-mean-square error (RMSE), compar-
ing each set of APO simulations and the observations at Wey-
bourne for each month throughout 2015. The mean of all the
APO simulations for December gives a closer fit to the ob-
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Figure 4. The first six panels show the gas-specific sectoral contributions of the ocean and fossil fuel components of APO to the mole
fractions of each species at Weybourne, Heathfield, and Ridge Hill (a, b, ¢) and the APO ocean and fossil fuel contributions to the APO
model at the three sites (d, e, f) throughout August 2015. The blue, green, and purple lines show the contributions calculated from the ED,
JC, and NE fluxes respectively, and the orange lines show the fossil fuel contributions. Solid lines represent O, in the top panels and APO
in the bottom panels, dashed lines show the CO,, and dash-dotted lines show the Nj. The next six panels show the regional contribution of
the ocean and fossil fuel components of APO to the mole fraction of each species at Weybourne, Heathfield, and Ridge Hill (g, h, i) and the
overall regional ocean and land contribution to the APO model at the three sites (j, k, 1) throughout December 2015. The blue, green, and
purple lines show the contributions calculated from the ED, JC, and NE fluxes respectively, and the orange lines show the fossil contributions.
Solid lines represent Oy in the top panels and APO in the bottom panels, dashed lines show the CO», and dash-dotted lines show the N».

servations at Weybourne than the mean of all the APO sim- during the spring and autumn. This is shown in Fig. S4,
ulations in August (average R? of 0.34 vs. 0.10 and average where there is larger scatter over the summer months. As
RMSE of 7.1 vs. 8.4 per meg for December and August re- discussed above and shown in Fig. 5, we also find that the
spectively). We see a clear seasonal trend, that the correlation model is more sensitive to the ocean flux over the summer,
is lowest throughout the summer and winter and increased when the difference between the three APO simulations us-
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Figure 5. The modelled and observed APO at Weybourne throughout August (a) and December (b) 2015, where we model APO using three
different ocean flux estimates from the global ED ocean model (blue), the global JC inversion (green), and the regional NE ocean model
(purple). We also show the APO model with no ocean contribution (dashed grey line). The dotted grey line shows the baseline derived from
JC boundary conditions, which has been adjusted as described in Sect. 2.2.3. The magenta dots show the observations, and the dotted purple
line shows the baseline fit to the observations using the statistical fitting routine REBS.

o
©

no ocean
ED

o
o
ksl

- ED, daytime

-- JC, daytime

- NE, daytime
ED, ocean filtered
JC, ocean filtered

Correlation, R?
o
B

o
N

0.0{ (a) NE, ocean filtered

30
25
£
5 20
Q
w 15
)
E 10

51(b)
Jan Feb Mar Apr May ul Aug Sep Oct Nov Dec

Jun J
Month in 2015

Figure 6. R? (a) and the root-mean-square error (RMSE) (b) of the modelled APO compared to the observations at Weybourne in 2015.
The blue, green, purple, and grey lines show the results from the models derived using the NAME simulations and either ED, JC, NE, or no
ocean fluxes respectively. The solid, dashed, and dotted lines respectively show the correlations when we do not apply any filter, when we
filter for just daytime hours, and for times when the footprint has at least 40 % sensitivity to the land.

ing different ocean fluxes is substantially larger (a monthly
average of 7.0 per meg difference between the smallest and
largest estimate in August, compared to 3.8 per meg in De-
cember). However, although our model agreement may be
affected by ocean fluxes, we do not see a substantially bet-
ter or worse fit when we exclude the ocean fluxes entirely,
as shown in Fig. 6. The R? and RMSE for the CO; and O
models are shown in Fig. S5, where we generally see higher
correlations with the data for the CO, and O, simulations

https://doi.org/10.5194/acp-24-4231-2024

(R? generally above 0.4) than we do for APO. We also find
that our 2021 model, shown in Fig. S6, does not display such
large variability. In that simulation, we use ocean climatolo-
gies, finding that localized ocean emission or uptake events
are smoothed as they are averaged across a number of years.

Next we try filtering our model in two ways to see the
effects on the correlation with the observations. First, we
study only daytime hours (between 11:00 and 15:00LT) as
the planetary boundary layer is generally more well-mixed
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during the day than at night, and so it is often assumed that
the model-data mismatch will be smaller. Separately, we fil-
ter for times at which the footprint has at least 40 % sensi-
tivity to the land, to investigate the effects of reducing the
influence of ocean-dominated time steps. With both tests we
see a small improvement in the correlation in some months.
Overall, the difference in the simulations without filtering is
small (Fig. 6). We further discuss the sensitivity to the ocean
fluxes in Sect. 3.4.

3.2 Sensitivity to exchange ratios

The 30 sensitivity of APO to ap and oF is shown in Fig. 7
(30 is shown so that changes can be seen). In general, the
model is more sensitive to o than op (average lo interval
of 0.27 and 0.41 per meg for ap in August and December
2015 respectively, compared to 0.30 and 0.52 per meg for
af). For both variables, the influence on APO of a 1o change
is generally small compared to the difference between the
observations and the model that we see in Fig. 5. We see
larger sensitivity to both values of @ when the mole fraction
is dominated by fossil fuel fluxes. Chevalier and WP4 CHE
partners (2021) also identified an influence on the simulated
APO due to potential misspecification of op.

3.3 Sensitivity to fossil fuel CO» flux

Figure 8 shows APO at Weybourne, with fossil fuel sources
modelled using a combination of fluxes and exchange ra-
tios as follows: NAEI (within EDGAR) with NAEI exchange
ratios (labelled “NAEI”’), EDGAR with GridFED exchange
ratios (“EDGAR-GridFED”), and NAEI with GridFED ex-
change ratios (“NAEI-GridFED”). We find that although
there are variations in the magnitude at some time steps, the
variability of the EDGAR and NAEI fossil fuel APO mod-
els is very similar. For the most part, the two models agree,
with high R? in both August and December 2015, as shown
in Table 2. This suggests that the choice of inventory does
not have a significant impact on the simulations compared to
the other components that we investigated. Additionally, in
agreement with the findings of Sect. 3.2, the model does not
seem highly sensitive to ap: the application of different fossil
fuel exchange ratios to estimate the O, uptake does not cause
a strong disagreement between the two fossil fuel O, models
in Fig. 8, which have a high R?.

Figure 8 shows the modelled APO time series and the as-
sociated 30 range when sampling the magnitude of fossil
fuel emissions with a 10 % standard deviation. The sensitiv-
ity is highest when air comes from populated areas. How-
ever, these periods of high sensitivity do not necessarily co-
incide with times when the discrepancy between the model
and observations is highest, suggesting that errors in fossil
fuel fluxes alone could not explain some of the differences
between the model and the observations.
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3.4 Sensitivity to ocean flux

When comparing APO models and observations in Fig. 6
(and Figs. S3 and S4), we find the biggest disagreement dur-
ing the summer. At this time of year there is increased ocean
productivity compared to over the winter; thus the variations
between the models are larger and the APO models vary
more widely. Conversely, the highest correlation between all
models and the observations is seen in October (see Fig. S7),
when the ocean acts as a small O, sink and the O, ocean
flux is smallest of any month. We see in Figs. 4, 5, and S3
that the models using the ED and NE fluxes exhibit large
events of O, release throughout the summer, which are more
exaggerated in NE. At some of these times we see large dif-
ferences between the ED and NE models compared to the
model with no ocean component, as the ocean models in-
dicate large APO excursions. Between April and June espe-
cially, there are excursions in the NE APO model which have
a much larger magnitude (up to ~ 85 per meg) than any in the
observations. On the other hand, JC shows much smaller O,
fluxes with generally smoother variations and even suggests
some negative APO contribution from the ocean during the
summer. At some points during the summer we therefore see
increased variability with NE compared to the other mod-
els. This difference may be due to the handling of coastal
fluxes and the influence of rivers, which are more finely re-
solved in NE with its higher spatial resolution (~7km vs.
~ 18 km), with explicit nutrient input from rivers, and by a
more detailed representation of physiological processes of
phytoplankton (e.g. variable stoichiometry). Another factor
that could contribute to differences between estimates of Oy
air—sea fluxes between ocean models is the differences in the
wind products used to drive the air-sea exchange and their
spatial and temporal resolution.

Based on our investigation we cannot determine which, if
any, of the ocean flux estimates represent the APO contribu-
tion at sites in the UK. Furthermore, we do not see a substan-
tial difference in correlation between the observations and
either the simulations that include ocean fluxes or those that
do not. Chevalier and WP4 CHE partners (2021) also noted
an ocean influence in their simulations using different trans-
port models to those used here. Our result requires further
investigation, since the magnitude of some of the short-term
ocean variability during the summer in NE and ED simula-
tions is inconsistent with what is seen in the observations
at WAO. Furthermore, the extent to which these findings
are due to the coastal location of WAO needs to be deter-
mined, since some shipboard measurements do not show a
large sensitivity to ocean fluxes (Pickers, 2016). Rodenbeck
et al. (2023) suggest that a dense continental network of sta-
tions measuring APO could minimize the potential influence
of oceanic fluxes, meaning that robust estimates of fossil fuel
CO», fluxes could be made by using observed APO gradients
within a continent.
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Figure 7. APO at Weybourne during August (a, b) and December (c, d) 2015 and the sensitivity to ag and ap. The magenta points are
the observations, the purple line is the model using NE ocean O, fluxes, and the shaded region is the 30 range derived from a Monte Carlo
ensemble in which ap (purple, panels a and ¢) and «f (grey, panels b and d) are sampled.

Table 2. R? for August and December 2015, comparing the modelled APO using NAEI CO, fluxes and exchange ratios, EDGAR CO,
fluxes with GridFED exchange ratios, and NAEI CO; fluxes with GridFED exchange ratios. For these APO models we use the NE O, ocean

flux estimates.

August 2015 ‘ December 2015
NAEI EDGAR NAEI-GridFED ‘ NAEI EDGAR NAEI-GridFED
NAEI - 0.957 0.999 - 0.910 0.994
EDGAR 0.957 - 0.962 | 0910 - 0911
NAEI-GridFED  0.999 0.962 — | 0.994 0911 -
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Figure 8. The APO model at Weybourne in August (a) and December (b) 2015 using NAME footprints and O, fluxes from the NE ocean
model, compared to the model using NAEI fluxes and exchange ratios (purple), to that using NAEI fluxes and GridFED exchange ratios
(grey), and to that using EDGAR fluxes and GridFED exchange ratios (orange). The observations are shown in magenta; the shaded regions
represent the 3¢ uncertainty in the model, assuming a 10 % lo uncertainty on the fossil fuel component; and the dotted grey line is the

background derived from JC boundary conditions.

3.5 Sensitivity to the background estimate

Figure 9 shows the modelled regional A(SAPO) and the
background-subtracted observations. We compare the back-
ground subtraction from the statistical (REBS) filter with the
adjusted model-estimated baseline from the JC global fields.
For most of the time series, the two baseline estimates lead
to similar regional signals. In December there is more of a
difference between the two signals, where at some regions
the REBS subtracts a smaller background and leaves posi-
tive APO excursions. We expect that this difference arises be-
cause there is more variability within the JC background esti-
mate. We see in Fig. S2 that this variability is increased in the
winter compared to in the summer. We see in Fig. 10 that the
correlation between the background-subtracted observations
and the models is similar for both methods of background
subtraction. Neither choice leads to a substantial difference
in model-data mismatch.

3.6 Estimation of fossil fuel CO»

We test how well we can retrieve the regional contribution of
ffCO, from our modelled APO, using the method described
in Sect. 2.4. Figures 11 and S10 show the comparison be-
tween ffCO; derived from our modelled APO and the direct
simulation of ffCO; using NAME (i.e. ffCO, fluxes multi-
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plied by NAME footprints). The comparison for all months
throughout 2015 and the correlations are shown in Fig. S10.
Comparisons are shown when three different ocean flux es-
timates are used or when two different methods are used
for subtracting the baseline. Differences between the APO-
derived ffCO, and the direct ffCO, simulation will be due to
the influence of ocean fluxes on the APO simulation (which
is assumed negligible in Eq. 12) and misspecification of the
background. All other factors, including atmospheric trans-
port, are consistent between the two sets of simulations.
Therefore, the APO-derived ffCO, using the adjusted JC
background exactly matches the direct ffCO, simulation if
ocean fluxes are zero.

Firstly, we will consider the APO-derived ffCO, using
the adjusted JC backgrounds. Throughout the summer, when
there are large O, release events in the modelled ocean
fluxes, the APO simulation using NE generally underesti-
mates ffCO,, even indicating negative mole fractions for
large parts of the month. The ED and JC APO simulations
show closer overall agreement with ffCO; in August, al-
though some discrepancy remains for all three. All three
models overestimate the ffCO, for the majority of the win-
ter compared to the direct ffCO, simulation. In this case
the background APO, estimated as described in Sect. 2.4,
is underestimated for large parts of the month, which may
be due to modelled oceanic uptake of oxygen around the
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Figure 9. The modelled regional APO contribution and the background-subtracted APO observations at Weybourne throughout August (a)
and December (b) 2015, where we model APO using three different ocean flux estimates from the global ED ocean model (blue), the global
JC inversion (green), and the regional NE ocean model (purple). We also show the APO model with no ocean contribution (grey line). We
show two versions of background subtraction using a statistical routine (REBS, purple crosses) and using the JC background (pink points).
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models derived using the NAME simulations and either ED, JC, NE, or no ocean fluxes respectively. The solid and dashed lines respectively
show the results when we subtract the REBS statistical background from the observations and when we subtract the JC-derived background.

UK throughout the winter. Chevalier and WP4 CHE partners
(2021) found high correlations between their APO-derived
ffCO, and direct STILT model. The period over which this
correlation was found is unclear from their work. We find
that our correlation is greatly improved when averaging over
larger time periods due to the seasonality in APO.

For the simulations where the REBS baseline has been fit-
ted to the APO simulations and then subtracted, the derived
ffCO, from ED and NE is higher during the summer and
lower during the winter than when the adjusted JC back-
ground is used. For the model that used JC ocean fluxes,
which are considerably smaller than either ED or NE, there
is a much smaller difference between the two estimates. The

https://doi.org/10.5194/acp-24-4231-2024

large difference between the simulations using these two
baseline estimates likely stems from the influence of ocean
fluxes. The REBS fit incorporates seasonal oceanic trends
and removes long-timescale oceanic fluxes from the model.
However, it is also susceptible to fitting to large APO excur-
sions in the model which occur due to modelled short-term
variability from the ocean. This is clear throughout June in
Fig. S9. On the other hand, as JC is independent of the model,
it does not encapsulate any regional ocean influence, and any
ocean contribution is treated as ffCO,.

In Sect. 2.4 we make the assumption that the ocean com-
ponent of the APO measurements is negligible when deriv-
ing ffCO;. This is based on previous studies of short-term

Atmos. Chem. Phys., 24, 4231-4252, 2024
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Figure 11. The modelled ffCO, for August (a, b, ¢) and December (d, e, f) 2015 derived from the APO model for Weybourne using the
results from three different ocean flux fields (blue): ED (a, d), JC (b, e), and NE (c, f). We compare to the model calculated directly from the
NAEI-within-EDGAR fluxes and NAME footprints (pink). The direct model is equivalent to the ffCO, in the top panels of Fig. 4, and the

APO models are shown in Fig. 5.

ocean-related APO variability, which in turn are based on
observations. However, these models all indicate a persistent
ocean contribution at all sites, which biases our calculation
of ffCO, from the APO simulations. As shown in Sect. 3.1,
there is a large variation in O, flux estimates between ocean
models. We cannot conclude which model, if any, gives a
more accurate representation of the ocean O, flux. Further-
more, CO, and O» ocean fluxes are decoupled; therefore
the exchange ratio varies as the footprint intercepts different
parts of the ocean. Based on our analysis using these three

Atmos. Chem. Phys., 24, 4231-4252, 2024

ocean flux estimates, a correction for oceanic fluxes would
be subject to substantial uncertainty.

Next we apply the same method to estimate ffCO;, from
the observed APO at Weybourne (Pickers et al., 2022) as
described in Sect. 2.4. Figure 12 shows observation-derived
ffCO, compared to the direct ffCO, simulations. Here, we
have used the NAME simulation with NAEI and EDGAR
fluxes and also the outputs of the CTE system. The cor-
relations (R?) between the observation-derived ffCO, and
the ffCO, model are shown in Fig. 13. As we found in
Sect. 2.2, we see low correlations over the summer, with

https://doi.org/10.5194/acp-24-4231-2024
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and a constant exchange ratio respectively. The purple triangles and pluses show the same but with the REBS baseline subtracted, the orange
line shows the model calculated directly from the NAEI-within-EDGAR fluxes and NAME footprints (equivalent to that in the top panels of
Fig. 4), and the brown line shows the model derived from CarbonTracker Europe (CTE2022).
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stronger agreement in March, April, and November. There
is not a large difference in the correlation for the JC and
REBS background subtractions. This is contrary to our find-
ings shown in Fig. 11, where we see that there are sometimes
large differences in ffCO; estimates for different methods of
background subtraction. This is due to the large ocean con-
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tribution, which was assumed to be encapsulated in the back-
ground estimate. Throughout December we find when using
the REBS background-subtracted observations that we fre-
quently estimate negative ffCO, contributions. These are not
as apparent when subtracting the JC background. This could
be a result of increased variability in the JC background es-
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timate. Based on the synthetic data results presented in the
previous paragraphs, discrepancies may be because of the
influence of non-negligible ocean flux contributions or er-
rors in assigning baseline values. At certain times we see an
~5-8 umol mol~! difference between the direct model and
the observation-derived ffCO, using the REBS background
subtraction. This translates to an ocean contribution of ~ 10—
20 per meg. This would be a large contribution, although the
majority of the differences between the estimates are much
smaller than this.

We also test the conversion of the APO observations to
ffCO, using a constant APO: ffCO, ratio, assuming of =
—1.5, as shown by the blue points in Fig. 12. Throughout
the year, the correlation between this estimate of ffCO, and
the direct model are slightly lower than when using a time-
varying APO : ffCO; ratio; thus we find that using a time-
varying APO : ffCO, ratio gives a slightly closer fit to the
direct ffCO, simulation.

4 Future outlook

Here, we have found model—data discrepancies for APO that
are relatively large compared to model-data discrepancies
for O, and CO, at Weybourne in the UK. This work has used
model simulations to understand the factors that could most
strongly influence these differences, which can hopefully
now inform further observation-based studies. In particular, a
better understanding of oceanic CO, and O; fluxes in coastal
regions was the most important factor in our simulations. If
a substantial oceanic influence is confirmed, continental sites
far from ocean influence may currently be more viable for
fossil fuel CO; estimation using APO and/or substantially
more dense APO measurement networks will be required to
account for these fluxes (e.g. Rodenbeck et al., 2023). In fu-
ture, the development of alternative tracers that are sensitive
to ocean fluxes and insensitive to terrestrial sources may help
us better understand their relative influences. We also found
that the choice of baseline affects our APO model and de-
rived ffCO,, although errors in assigning regional baselines
may also be due in part to the influence of non-terrestrial
fluxes.

Alongside APO, other tracers such as radiocarbon and CO
can give extra insight into regional ffCO, emissions. Several
studies have shown that radiocarbon is a promising tool for
this (e.g. Levin et al., 2003; Graven et al., 2009; Zazzeri et al.,
2023). However, unlike APO, most radiocarbon programmes
rely on flask measurements which are not continuous and
require time-consuming analysis. This makes radiocarbon
a comparatively expensive method which cannot presently
provide such insight into high-frequency variability. Radio-
carbon measurements are also susceptible to contamination
of 14C emissions from nuclear power plants. The impact of
nuclear power plant '*C emissions can be accounted for by
using emissions data and information about venting times
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from individual nuclear power plants. However, these data
are challenging to obtain. Although CO measurements are
much cheaper than radiocarbon and can be made continu-
ously (e.g. Andrews et al., 2014; Levin and Karstens, 2007;
Levin et al., 2020), the conversion from CO to ffCO; is un-
certain.

Given the challenges of each, further work is required to
improve each of these tracers for ffCO, emissions evalua-
tion. Here, we have identified key areas of focus which may
improve the use of APO for this purpose in the future.

5 Conclusions

We have simulated the tracer APO throughout the years 2015
and 2021 at three sites in the UK: Weybourne, Heathfield,
and Ridge Hill. Generally, the correlation with the observa-
tions is smaller for APO than for simulations of CO, and O;.
We find that modelled ocean signals sometimes dominate the
APO model and that correlations tend to be higher for APO
during the spring and autumn when ocean fluxes are smallest.

We have presented a sensitivity analysis of the factors
that most strongly influence modelled atmospheric APO.
Our simulations suggest that uncertainties in ocean fluxes
contribute substantially to modelled APO and APO-derived
ffCO, at measurement sites in the UK. Our analysis cannot
determine which ocean model (or, indeed, zero ocean flux)
or baseline estimation method leads to the closest agreement
with the observations. A robust estimate of ffCO; is likely to
depend strongly on these factors being well-known or being
proven to have little influence using observation-based meth-
ods. We do not find evidence from our three UK stations that
the substantial (yet uncertain) influence of oceanic fluxes on
simulated APO is reduced further inland, but since the UK
is surrounded by ocean, simulated APO at continental Eu-
ropean locations may be less strongly affected. More robust
ffCO, estimates may be possible if a sufficiently dense net-
work of sites were available, which could account for fos-
sil fuel influences jointly with those of any oceanic sources.
In comparison to the ocean fluxes and baseline, the sensi-
tivity of APO to uncertainties in fossil fuel and terrestrial
biosphere exchange ratios was relatively small. Our analysis
shows that further work should focus on improving ocean O;
and CO» flux estimates which could improve the agreement
between modelled and observation APO-derived estimates of
UK ffCO,.

Code availability. The code for the analysis presented is avail-
able at https://doi.org/10.5281/zenodo.7688294 (Chawner, 2023).
We also use code developed by the ACRG at the University of Bris-
tol, which is available at https://doi.org/10.5281/zenodo.6834888
(Rigby et al., 2022).
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Data availability. The datasets generated and analysed during
this study are available at https://doi.org/10.5281/zenodo.7681834
(Chawner et al., 2023). The observational datasets are available on
CEDA:

— Heathfield CO, and O;. https://catalogue.ceda.ac.uk/uuid/
bfc2483537a744dca8e3239278b6e522 (Adcock and Pickers,
2022).

— Weybourne CO,. https://catalogue.ceda.ac.uk/uuid/
87fc265aab6bb4aeb961e62da2cd6cadl (Forster, 2022a).

— Weybourne 0,. https://catalogue.ceda.ac.uk/uuid/
b3f9714c956f428a840211e0184e23eb (Forster, 2022b).
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online at: https://doi.org/10.5194/acp-24-4231-2024-supplement.
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