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authors is extended to spherical domains using a cubed-
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finite-element formulation to be suitable for spherical do-
mains. In particular the finite-volume transport scheme is
extended to take account of non-uniform, non-orthogonal
meshes and uses an advective-then-flux formulation so that
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ing semi-implicit semi-Lagrangian dynamical core currently
used in the Met Office’s operational model.
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1 | INTRODUCTION1

At the centre of all weather and climate models lies the dynamical core. The dynamical core approximates the fluid2

dynamical motion that is resolved by the model mesh and is coupled to models for unresolved processes such as the3

boundary layer and non-fluid processes such as radiation. The dynamical core is required to be accurate, stable and4

efficient for the scales of motion that it simulates. Fundamental to achieving these properties is the choice of model5

mesh. This choice can result in a number of features that need to be addressed by the numerical scheme, such as6

resolution clustering, non-orthogonality, grid imprinting and computational modes; see Staniforth and Thuburn [1] for7

a more detailed discussion.8

Modern supercomputers consist of a greatly increasing number of (increasingly heterogeneous) processors and9

in order to take advantage of this computational resource the dynamical core needs to make efficient use of memory10

management and communication processes (Lawrence et al. [2]). This has led to a shift away from the regular Latitude-11

Longitude mesh (which, due to convergence of the meridians at the poles, leads to computational bottlenecks) and12

towards some form of quasi-uniform horizontal mesh. Staniforth and Thuburn [1] detailed a number of desirable prop-13

erties that any numerical scheme designed for dynamical cores should exhibit, including mimetic/compatible proper-14

ties, at least 2nd order accuracy and minimal grid imprinting. Achieving these properties is non-trivial, particularly on15

a non-orthogonal meshes, such as is typically the case for quasi-uniform meshes on the sphere.16

Cotter and Shipton [3], Cotter and Thuburn [4] and Thuburn and Cotter [5] developed a family of compatible17

mixed finite-element methods for the shallow-water equations on the sphere where orthogonality of the underlying18

mesh is not required to achieve good accuracy and hence they are well suited to a quasi-uniform mesh. This family19

of schemes was applied to a variety of icosahedral and cubed-sphere meshes. The mixed finite-element approach20

was extended into three-dimensions by Natale et al. [6] and Melvin et al. [7] who presented an application of this21

mixed finite-elementmodel in Cartesian geometry using hexahedral elements and coupled to a finite-volume transport22

scheme and semi-implicit timestepping. Kent et al. [8] then extended the formulation ofMelvin et al. [7] to the shallow23

water equations on a cubed-sphere horizontal mesh. See Cotter [9] for a survey of mixed finite-element methods for24

geophysical modelling.25

The compatible mixed finite-element approach fulfils many of the desirable properties detailed in Staniforth and26

Thuburn [1] for the design of a dynamical core. Importantly it provides discrete analogues of certain continuous27

vector calculus identities (such as + × +ψ ≡ 0 and + · + × v ≡ 0 for all scalar ψ and vector v) as well as sharing many28

of the good wave dispersion properties of the widely used Arakawa C-grid staggering (Arakawa and Lamb [10]). This29

scheme meets the necessary conditions for the absence of computational modes (such as a 2:1 ratio of horizontal30

velocity degrees of freedom to pressure degrees of freedom). Natale et al. [6] and Melvin et al. [11] showed how to31

create function spaces that mimic the Charney-Phillips grid staggering in the vertical direction which is desirable due32

to the absence of computational modes and good wave dispersion properties, (Thuburn and Woollings [12]).33

In this paper the formulation used byMelvin et al. [7] and Kent et al. [8] is extended to three-dimensional spherical34

domains on a cubed-sphere mesh. Principal differences from these models are given in Section 2 and the governing35

equations that are used are revisited in Section 3. Thewave dynamic components of themodel are spatially discretised36

using themixed finite-elementmethod of Cotter and Shipton [3] and the temporal discretisation uses an iterated-semi-37

implicit scheme inspired by that of Wood et al. [13], seeking to maintain the temporal accuracy and long timestep38

stability of that model, Sections 4-5. Mappings from the computational space to the Equiangular cubed-sphere mesh39

used by the finite-element scheme in this study are given in Section 6. As in Melvin et al. [7] and Kent et al. [8] the40

finite-element wave dynamics model is coupled to an explicit finite-volume scheme for the transport terms, described41

in Section 7, which is applied to all model variables. In contrast to the scheme of Melvin et al. [7] and Kent et al. [8],42
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a directionally split method-of-lines scheme is used here to improve the efficiency of the transport scheme, and an43

advective-then-flux approach is used to improve stability of conservative transport in this context. Following Wood44

et al. [13] the iterative timestep is split into outer (transport) and inner (nonlinear) loops and at each iteration a linear45

system inspired by a semi-implicit formulation is solved as in Maynard et al. [14], outlined in Section 8. To assess the46

model’s behaviour in a range of flow regimes it is applied to a number of dynamical core tests from the literature;47

the results are presented in Section 9 and compared to the semi-implicit semi-Lagrangian model of Wood et al. [13].48

Finally, conclusions are summarised in Section 10.49

2 | MODEL FORMULATION50

Themodel formulation closely follows that ofMelvin et al. [7] and the formulation is revisited in the following sections.51

However there are a number of differences that are highlighted here and discussed, together with their motivation,52

in more detail later:53

1. Changes to the finite-volume transport scheme:54

• The momentum equation is reformulated in the advective form instead of the vector invariant form and the55

advection terms are handled by the explicit finite-volume advection scheme instead of the semi-implicit mixed56

finite-element method used by Melvin et al. [7] (Section 5)57

• The finite-volume transport scheme is temporally split between vertical and horizontal directions using a Strang58

splitting method (Section 7.2);59

• The conservative transport scheme uses an advective-then-flux formulation (Section 7.3).60

• The polynomial reconstruction used in the method-of-lines advection scheme uses a two-dimensional horizon-61

tal (Kent et al. [8]) and one-dimensional vertical reconstruction (Section 7.4);62

2. The geopotential is placed in the×3 space instead of×0 (Section 5);63

3. The Jacobian J mapping from the computational space to the physical space is computed with a semi-analytic64

expression via an intermediate spherical coordinate system (Section 6);65

4. The equation of state is sampled at nodal points of the ×3 degrees of freedom instead of being solved in the66

weak form. (Section 8.3)67

3 | CONTINUOUS EQUATIONS68

The Euler equations for a dry perfect gas in a rotating frame are69

∂u
∂t

= − (u · +) u + S, (1)
∂ρ

∂t
= −+ · (ρu) , (2)

∂θ

∂t
= −u · +θ, (3)

where S ≡ −2Ω × u − +Φ − cpθ+Π, together with the nonlinear equation of state70

Π

(
1−κ
κ

)
=
R

p0
ρθ. (4)
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The velocity vector is u; Ω is the rotation vector; Φ is the geopotential; cp is the specific heat at constant pressure; θ is71

the potential temperature, related to temperature throughT = θΠ; Π = (p/p0)κ is the Exner pressure with p pressure72

and p0 a constant reference pressure; R is the gas constant per unit mass; κ ≡ R/cp ; and ρ is the density.73

These equations are solved on a spherical shell subject to the boundary condition of zero mass flux through the74

top and bottom boundaries of the domain.75

4 | OVERVIEW OF THE SPATIO-TEMPORAL DISCRETISATION76

The temporal discretisation of the equations follows that ofMelvin et al. [7] and is inspired by an iterative-semi-implicit77

semi-Lagrangian discretisation such as that used in Wood et al. [13]. In this scheme the advective terms are handled78

using an explicit Eulerian scheme. This includes, in contrast to [7], the advection terms in the momentum equation.79

The scheme acts on an intermediate update of the wave dynamics terms for the variables (see Section 7.1), instead80

of the time level n terms in [7]. The discretization is in flux form for the continuity equation and advective form for81

potential temperature and momentum equations. All other terms are handled using an iterative-implicit temporal82

discretisation. The momentum equation is recast from the vector invariant form of Melvin et al. [7] to the advective83

form, resulting in a consistent discretisation of all transport terms using the finite-volume transport scheme of Section84

7 due to the explicit presence of a transport term for the wind field. The principal advantage of this change is the85

ability to switch from the centred finite-element discretisation used by [7] to the high-order upwind finite volume86

discretisation used for the density and potential temperature fields. Alternatively a reconstructed flux type method87

[15] could be used for the vector invariant form instead of the centred finite-element discretisation.88

With the addition of an implicit Rayleigh damping layer (with height dependent strength µ) applied to the vertical89

component of the velocity vector (1)-(4) are discretised to give90

δtu = −µ
( u · n
z · n

)
z
1

−A

(
up , u1/2

)
+ Sα , (5)

δt ρ = −+ · F
(
ρp , u1/2

)
, (6)

δt θ = −A
(
θp , u1/2

)
, (7)

Π

(
1−κ
κ

) 1
=

R

p0
ρθ

1

, (8)
where, for a generic scalar or vector variable F ,91

δt F ≡
F n+1 − F n

∆t
, F

α ≡ αF n+1 + (1 − α) F n . (9)
The parameter α is a temporal off-centring parameter and the superscripts n and n + 1 indicate approximations at92

time n∆t and (n + 1) ∆t respectively. The advecting velocity u1/2 is therefore a centred Eulerian average in time93

and, in contrast to Melvin et al. [7], the consistent metric modification of u1/2 (their Section 5.3.3) is not used here.94

F

(
qp , u1/2

) is the time-averaged flux and A (
qp , u1/2

) is the time-averaged advection tendency of a scalar qp and95

A

(
vp , u1/2

) is the time-averaged advection tendency of a vector vp , where superscripts p indicate an intermediate96

wave dynamics state of a scalar q or vector field v. See Section 7.1 for more details how the transported states qp97

and vp are computed.98

All terms are discretised in space using the mixed finite-element scheme described in section 5, except for F, A99
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and A which are discretised using the finite-volume scheme described in section 7.100

5 | THE MIXED FINITE-ELEMENT DISCRETISATION101

The finite-element spaces used in the spatial discretisation are the same as those in Melvin et al. [7]. Each variable is102

represented in an appropriate function space in a hexahedral element:103

• u ∈ ×2: The Raviart-Thomas RTl space of vector functions of degree l tangential to and discontinuous across an104

element facet and degree l + 1 normal to and continuous across an element facet;105

• Π, ρ, Φ ∈ ×3: The QDGl space of scalar functions built from the tensor product of degree l polynomials that are106

discontinuous at element boundaries.107

• θ ∈ ×θ : The space of scalar functions based on the vertical part of×2108

• The components of the coordinate field χi ∈ ×χ , i = 1, 2, 3: The QDGm space of scalar functions.109

As in Melvin et al. [7], and following [16], equations (5)-(8) are transformed from cells in the physical space to a110

single reference cell in the computational space. This is done so that a single set of basis function and quadrature points111

can be used in the mixed finite element scheme, instead of defining a different set for each physical cell. The physical112

space consists of a spherical shell divided into many different cells defined by the model mesh and the computational113

space consists of a single unit cell. As stated by [7] "It is important that the transformations between the physical114

and reference cells preserve the various geometric properties of the mixed finite-element discretization. This would115

happen automatically if the metric tensor of the reference cell were the transformation of the metric tensor of the116

physical cell, but this would reintroduce a dependency in the reference cell on the physical cell it is mapped with.117

Instead a Cartesian metric tensor is assumed for the reference cell independently of the physical cell. Therefore,118

preservation of the required properties is achieved by using a specific collection of transformations that are specific119

to each function space." These are the Piola transformations that are given below. Following the choice of a Cartesian120

coordinate system for the physical space the associated metric tensor for both the computational and physical spaces121

is then the identity and is therefore dropped in the following formulation. Additionally, the basis vectors of the vector122

wind u are then the standard Cartesian basis vectors (
ex, ey, ez

) . In principle it would be possible to use a spherical123

coordinate system as the physical coordinates, however this would introduce a non-diagonal metric tensor in the124

mapping from physical to computational space and would modify the transformations used below.125

Given a mapping, φ, between physical space (denoted by undressed variables) χ and computational space (de-126

noted by dressed, ̂ variables) χ̂ such that χ = φ(χ̂) , with a Jacobian J ≡ ∂φ (χ̂) /∂χ̂, variables in each of the four127

function spaces transform from computational space to physical space according to the following rules128

• ×2: v = Ĵv/det J;129

• ×3: σ = σ̂ and + · v = +̂ · v̂/det J for v ∈ ×2;130

• ×θ : w = ŵ ;131

• ×χ : ζ = ζ̂.132

These transformations are designed to preserve various geometric properties of themixed finite element discretisation133

following the assumption decision to use Cartesian metric for the computational space independent of the choice for134

the physical space (see Rognes et al. [16] and references within for more details). Note that, as in Melvin et al. [7], to135
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avoid problems with not being able to exactly integrate the weak form of divergence, the rehabilitation method of136

Bochev and Ridzal [17] is used. This modifies the mapping of σ ∈ ×3 from σ = σ̂/det J to σ = σ̂ which results in a137

weak divergence ∫
σ̂+̂ · v̂ that can be exactly integrated for general cell shapes, see Natale et al. [6] and Melvin et al.138

[7] for more details. In contrast to Melvin et al. [7], the ×0 and ×1 spaces are not used in this formulation. Placing139

Φ ∈ ×3 gives a more compact stencil for the geopotential gradient that matches that of the pressure gradient. This140

leads to a small improvement in the model’s discrete representation of quasi-hydrostatic balance.141

5.1 | Discrete equations using the computational cell142

The discretisations of the continuity (6) and thermodynamic (7) equations follow Melvin et al. [7] and so are not143

repeated here. The momentum equation (5) is now cast in the advective form and therefore the discretisation of the144

transport terms has altered. The form used here is obtained by multiplying (5) by a test function v ∈ ×2, transforming145

to the computational space and integrating over the domain, giving146

〈
Ĵv, Jδt ûdet J

〉
= −

〈
Ĵv, µ

(
û · n̂b
ẑb · n̂b

)
Ĵzbdet J

〉1
+ RAu + Ru

α
, (10)

RAu ≡ −
〈
Ĵv,A

(
ûp , û

1/2
)〉
, (11)

Ru
α ≡ −

〈
Ĵv, 2Ω × Jû

det J
〉α
+

〈
+̂ · v̂, Φ̂

〉α
−⟪Jcp θ̂v̂K,

{
Π̂
}
⟫
α

+
〈
cp θ̂+̂C · v̂ + v̂ · +̂C

(
cp θ̂

)
, Π̂

〉α
, (12)

where zb and nb are unit vectors parallel to gravity and normal to model layers respectively, see Figure 1 of [7] for147

details. The inner product over the domain D is148

〈f , g 〉 ≡
∫
D
f gdV , (13)

and 〈〈·〉〉 denotes the surface integrals over the collection of all cell faces evaluated in the computational space and149

J·K and {·} indicate the jump in its argument and the value of its argument across a cell face, respectively (see Melvin150

et al. [7], section 4.4.1. for details).151

The equation of state (8) is sampled at nodal points of the finite-element scheme rather than solved in its weak152

form as in Melvin et al. [7]. This is motivated by a desire for (8) to hold exactly as a diagnostic relationship between153

the Exner pressure, potential temperature and density.154

6 | MESH MAPPINGS155

The discretisation presented in the previous section is valid for a general three-dimensional hexahedral mesh and was156

applied to a uniform horizontally biperiodic domain in Melvin et al. [7]. Here spherical shell domains are considered.157

To complete the discretisation the mappings from the computational space to the physcial space introduced in Section158

5 need to be specified.159

The computational space consists of a single unit cell with coordinates χ̂ ∈ [0, 1]3 and a Cartesian (identity) metric160

tensor. Mappings χ = φ (χ̂) are introduced to map this computational cell to each cell in the physical mesh.161
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F IGURE 1 C12 cubed-sphere horizontal mesh with 6x12x12 cells.

The physical mesh coordinates are parametrised as a finite-element field χ ∈ ×χ as in Melvin et al. [7] with a162

piecewise polynomial representation of degreem and have a Cartesian (identity) metric tensor. However, representing163

a spherical manifold with a piecewise polynomial introduces discretisation errors that depend upon the degree m and164

in order to accurately represent the surface of the sphere a high degree ×χ space is required (Kent et al. [8]). To165

avoid this, an alternative approach used here is to map via an intermediate spherical coordinate system ξ such that166

the Jacobian is given by167

J ≡ ∂φ (χ̂)
∂χ̂

≡ ∂χ
∂ξ

∂ξ

∂χ̂
, (14)

where ξ can be chosen such that the transformation of a cell from computational space to physical space, ∂ξ/∂χ̂,168

can be accurately represented by ξ ∈ ×χ with a low degree ×χ space. The coordinate transformation from ξ to χ,169

∂χ/∂ξ is chosen such that it has a known analytic form that captures the spherical nature of the manifold. The form170

of J used in Melvin et al. [7] is recovered by setting ξ = χ in which case ∂χ/∂ξ becomes the identity matrix.171

The horizontal mesh used here is an equi-angular cubed-sphere (Ronchi et al. [18]), Figure 1. Vertically the mesh172

is extruded as described in Adams et al. [19]. The mesh resolution is denoted as CnL` where n is the number of cells173

along one edge of a panel and the ` is the number of vertical layers such that there are 6n2 model columns and 6n2`174

cells in the three-dimensional mesh.175

A geocentric Cartesian coordinate system χ ≡ (X ,Y , Z ) is used where (X ,Y , Z ) = 0 is the centre of the sphere176

of radius a = √X 2 +Y 2 + Z 2. Alongside the Cartesian coordinatesχ a spherical coordinate system ξ ≡ (ξ, η, r ) is used177

with angular variables [ξ, η ] ∈ [−π/4, π/4] on each panel such that lines of constant ξ and η are angularly equidistant178

great circles on each panel and r is the radial distance from the centre of the sphere. As an example, with this choice179

of coordinates and mesh the components of the Jacobian J ≡ ∂χ
∂ξ

∂ξ
∂χ̂

in each cell c with spacing ∆ξc and ∆ηc in the ξ180

and η direction respectively and with a constant slope in height above the surface of the sphere of δξ ≡ ∆rc/∆ξc in181
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the ξ−direction and δη ≡ ∆rc/∆ηc in the η−direction are182

∂ξ

∂χ̂
=

©«
∆ξc 0 0

0 ∆ηc 0

∆ξc tan δξ ∆ηc tan δη ∆rc

ª®®®¬ . (15)

In practice, to maintain flexibility of the scheme and to facilitate the inclusion of arbitrary orography, this component183

of the Jacobian is computed numerically with ξ ∈ ×χ .184

The second component of the Jacobian, ∂χ/∂ξ, transforms the spherical coordinate ξ into the Cartesian coordi-185

nate χ. Following Nair et al. [20] the basis vectors for a panel of the Equiangular cubed-sphere are186

eξ = ( r
%3
) (1 + t 2ξ )

[
−tξ , (1 + t 2η ), −tξ tη

]
, (16)

eη = ( r
%3
) (1 + t 2η )

[
−tη , −tξ tη , (1 + t 2ξ )

]
, (17)

er =
1

%

[
1, tξ , tη

]
, (18)

where187

tξ = tan(ξ), tη = tan(η), % =
√
1 + t 2

ξ
+ t 2η . (19)

The second component of the Jacobian mapping is then188

∂χ

∂ξ
= R i

[
eTξ , e

T
η , eTr

]
, (20)

where R i is a rotation matrix for panel i = 1, . . . , 6 of the cubed-sphere that will translate and rotate [
eT
ξ
, eTη , eTr

] such189

that the union of all 6 panels form a spherical shell. The rotation matrix for each panel is given by190

R1 =
©«
1 0 0

0 1 0

0 0 1

ª®®®¬ , R2 =
©«
0 −1 0

1 0 0

0 0 1

ª®®®¬ , R3 =
©«
−1 0 0

0 0 1

0 1 0

ª®®®¬ ,
R4 =

©«
0 0 −1
−1 0 0

0 1 0

ª®®®¬ , R5 =
©«
0 0 −1
0 1 0

1 0 0

ª®®®¬ , R6 =
©«
0 −1 0

0 0 1

−1 0 0

ª®®®¬ .
(21)

7 | FINITE-VOLUME TRANSPORT DISCRETISATION191

The transport scheme is an extension to the method-of-lines scheme used by Melvin et al. [7]. Solving the transport192

equation for an intermediate estimate sp of wave dynamics terms of a scalar field s with a prescribed wind field u over193

a timestep either in advective form gives194

sn+1 = sp − ∆tA
(
sp , u

)
, (22)
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or in flux form gives195

sn+1 = sp − ∆t+ · F
(
sp , u

)
. (23)

The transport scheme is chosen such that it maintains a number of desirable properties:196

1. The flexibility to alter the order of accuracy independently of the accuracy chosen for the finite-element, wave197

dynamics part of the model;198

2. At least second order temporal accuracy;199

3. Small dispersive errors;200

4. Scale selective damping;201

5. Stability for large CFL (u∆t/∆x > 1) flows in any coordinate direction;202

6. Flux-form variables should return increments that are linear in the divergence;203

7. Computationally efficient.204

Achieving the first property rules out using the native finite-element discretisation when using degree l = 0205

spaces, where the transport scheme would be at best first-order, and instead motivates the use of a finite-volume206

method where the spatial accuracy can be linked to the polynomial reconstruction. The desired temporal accuracy is207

achieved through using an explicit multi-stage Runge-Kutta integration scheme for the transport terms in the same208

manner as Melvin et al. [7]. The third and fourth properties can be achieved through using an upwind, even-degree209

polynomial reconstruction of the field used in the advective A and flux F terms of (22) and (23) respectively. To210

achieve the fifth property the explicit Runge-Kutta scheme can be substepped within the transport scheme such that211

the effective CFL number for each substep is within the stability envelope of the desired Runge-Kutta scheme. The212

sixth property is motivated by a desire to maintain a constant density in non-divergent flows. To achieve this it is213

sufficient that the increment of a flux-form variable is linear in the divergence of the transporting wind field, here this214

is achieved by using an advective-then-flux scheme, Section 7.3.215

As a step towards obtaining the seventh property the transport scheme is temporally split between the horizontal216

and vertical directions using a 2nd order Strang splitting (Strang [21]). Splitting can deliver significant computational217

performance benefits, by allowing different schemes or options to be used for the different directions. Horizontal218

transport requires data communication costs when using multi-processor computers, while vertical transport typi-219

cally involves higher Courant numbers (due to the grid anisotropy). Separating the two allows these problems to be220

addressed separately.221

The horizontal spatial reconstruction follows that described in Kent et al. [8] and the vertical reconstruction is222

extended from that used in Melvin et al. [7] as described in Section 7.4. The scheme defined in this section is applied223

in computational space, except for the spatial reconstructionswhich are computed in physical space. The finite-volume224

transport scheme used here is designed for a mesh with a single scalar degree of freedom per cell entity (i.e. in the225

cell centre or centre of a face). To couple the finite-element wave dynamics and the finite-volume transport, scalars226

need to be mapped from the finite-element spaces to the finite-volume space. The mapping from a degree l = 0227

finite-element space to the finite-volume scheme is the identity operator while mapping from an degree l > 0 space228

requires a projection into the finite-volume space and is not considered here.229
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7.1 | Transported State230

As in Kent et al. [8] the transport acts on an intermediate state (up , ρp , θp ) (termed predictors in Kent et al. [8], their231

Section 4.3) for the prognostic variables (u, ρ, θ) that consists of an explicit half timestep estimate of the wave dynam-232

ics terms only. The use of this estimate (instead of just taking the start of timestep fields) allows the present method233

to mimic the stability properties of a semi-implicit semi-Lagrangian scheme while using an Eulerian average advecting234

velocity u1/2 rather than the Lagrangian average advecting velocity used in a standard semi-implicit semi-Lagrangian235

scheme. A full analysis and discussion of reasons behind this choice is in preparation and will be given elsewhere. The236

fields to be transported are given by237

up ≡ [u + (1 − α) ∆tS]n , (24)
ρp ≡ [ρ − (1 − α) ∆t ρ+ · u]n , (25)
θp ≡ θn . (26)

As in Kent et al. [8] the choice of these terms ismotivated by capturing the explicit parts of the non-advective processes238

e.g. ρp contains the ρ+ · u component of + · (ρu) but not the advective u · +ρ component.239

7.2 | Temporal Splitting: Advective Form240

The transport of a field s by a three-dimensional velocity field u is split into vertical and horizontal components using241

a second-order Strang splitting as follows. Noting that following McRae et al. [22] (their table 3, where the×2 space242

used here is referred to as NCFr ) the velocity space×2 ≡ ×h
2 ⊕×

v
2 can be written as the composition of a space×h

2243

of vectors in the horizontal direction and×v
2 of vectors in the vertical direction, (see Maynard et al. [14], their figure 1,244

for a illustrative example). The wind is split into horizontal uH ∈ ×h
2 and vertical uV ∈ ×v

2 components (u ≡ uH ⊕ uV ) .245

The transport equation ∂s/∂t + A (s, u) = 0 is then discretised across the timestep as246

sV = sp − ∆t
2
AV

(
sp , uV

)
, (27)

sHV = sV − ∆tAH (sV , uH ) , (28)
sn+1 ≡ sVHV = sHV −

∆t

2
AH (sHV , uV ) , (29)

with the operator A ≡ AH ⊕ AV split into its horizontal and vertical components. Each split step is then discretised247

using a multistage Runge-Kutta scheme as in Melvin et al. [7], Kent et al. [8], giving248

s (i ) = sp − ∆t
i−1∑
j=1

ai ,j AD
(
s (j ) , uD

)
, i = 1, . . . ,m, (30)

sn+1 = sp − ∆t
m∑
k=1

bkAD

(
s (k ) , uD

)
, (31)

where D is the direction (eitherV or H ), The coefficients ai ,j and bk are given by the Butcher tableau (Butcher [23])249

associated with the chosen scheme. (30)-(31) are then further substepped to ensure stablility for large CFL numbers.250

The specific Runge–Kutta scheme used here, as in Melvin et al. [7] is the third-order, three-stage, strong stability251

preserving Runge–Kutta scheme [24].252
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7.3 | Temporal Splitting: Flux Form253

It is tempting to formulate the flux form by replacing the A’s in (27)-(29) with + · F’s. However, in the presence254

of non-divergent flow this does not have the desirable property of preserving a constant (except for the trivial case255

where the components of the divergence in each direction are zero) as sn+1 is not linear in + · u. Simply replacing only256

the A in (29) by + · F does not conserve the total scalar being transported. However, the following split form is both257

conservative and preserves a constant (Bendall et al. [25]).258

Revisiting the Strang splitting, (27)-(29) are modified as follows259

sV = sp − ∆t
2
AV

(
sp , uV

)
, (32)

sHV = sV − ∆tAH (sV , uH ) , (33)
sn+1 ≡ sVHV = sp − ∆t

2
+V · FV

(
sp , uV

)
− ∆t+H · FH (sV , uH ) −

∆t

2
+V · FV (sHV , uV ) , (34)

with +· ≡ +H · ⊕+V ·. When sp is constant the final step is seen to reduce to sn+1 = sp (1 − ∆t+ · u) which preserves260

sp when + · u = 0.261

At any stage of the split step, where a flux-form equation is solved, such as (34), the advective-then-flux form of262

a Runge-Kutta scheme can be obtained from an m−stage scheme for the advective update (30)-(31) by setting263

s∗ =
m∑
k=1

bk s
(k ) (35)

sn+1 = sp − ∆t+D · FD
(
s∗, uD

)
, (36)

and again when sp is constant the final step reduces to sn+1 = sp (1 − ∆t+ · u) .264

7.4 | Spatial reconstruction of a scalar field265

The transport scheme computes a high order reconstruction š of a given scalar field s in physical space χ. For a scalar266

value in cell j the reconstructed field is computed at points staggered half a grid length j ± ∆i /2, i = 1, 2, 3 from the267

original field in all three directions, where ∆i is defined to be the grid spacing in the χ̂i direction. For example, for a268

field in ×3 such as the density ρj , which is located at cell centres, then the reconstructed field ρ̌j±∆i /2 is computed269

at the centre of each cell face j ± ∆i /2. The reconstruction is computed by fitting a polynomial through a number of270

cells and evaluating this polynomial at the staggered points. The reconstruction is given an upwind bias, determined271

by the wind direction (uj for A and uj±δi for F), by using even order polynomials for the reconstruction.272

The horizontal spatial reconstruction is the same as Kent et al. [8] and is based on that used in Thuburn et al. [26]273

and the interested reader is referred to Baldauf [27] and Skamarock and Menchaca [28] for other results on these274

types of schemes. In brief, a two-dimensional polynomial in local Cartesian coordinates is fitted in a least squares275

sense to a region of cells around the reconstruction point. This polynomial is then evaluated at the reconstruction276

point to give the reconstructed field. This method results in a scheme that is accurate across discontinuities in the277

mesh (such as at panel boundaries) and reduces grid imprinting from the transport scheme.278

The vertical reconstruction follows the same method as the horizontal scheme, except now a one-dimensional279

polynomial is used and the local coordinate system z can be taken to be aligned to the radial distance from the surface280

of the sphere and the origin of the local coordinate system is at the reconstruction point.281

Near the top and bottom boundaries when there are not enough points to construct an upwind degree n polyno-282
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mial then the stencil is shifted so that the same polynomial is used as the first point where there are enough points for283

an upwind polynomial. The result is that the polynomial is no longer upwinded but the desired degree is maintained.284

7.5 | Flux computation285

The flux F is computed as in Kent et al. [8] by a pointwise multiplication of the computational wind field û sampled286

at the centre of each face k = j ± δi by the reconstructed scalar š287

F ≡ û (χ̂k ) š . (37)
The finite-volume divergence operator for a flux is then given by288

+ · F =
1

det J
∑

k=1,...,6

F (χ̂k ) · n̂j , (38)

where k is the index of each face of the cell j .289

7.6 | Advective increment computation290

To compute the advective tendency A ≡ u ·+s of a field s , given the reconstructed field š located at points staggered291

half a grid length from s j the advective update is292

Âj ≡
1

det J û
(
χ̂j

)
· δ̂š j , (39)

where û (
χ̂j

) is the computational velocity field sampled at χj and δ̂ is the discrete gradient operator in the computa-293

tional space. For example if š are located on cell faces [
š j+∆1/2, š j−∆1/2, š j+∆2/2, š j−∆2/2, š j+∆3/2, š j−∆3/2

] on the (East,294

West, North, South, Up, Down) sides of cell j respectively then295

δš j ≡
[(
š j+∆1/2 − š j−∆1/2

)
,
(
š j+∆2/2 − š j+∆2/2

)
,
(
š j+∆3/2 − š j−∆3/2

)]
. (40)

Optionally monotonicity can be enforced on the advective update Â through a simple clipping scheme. On the296

final stage of the Runge-Kutta scheme the update Â is modified to ensure that smin ≤ sn+1 ≤ smax where smin and297

smax are the minimum and maximum values of sp used in the stencil to compute Â respectively.298

7.7 | Advection of vector fields299

To compute the advective increment Â
(
ν̂, û

1/2
)
of a vector field ν̂ the advected field is first transformed into physical300

space using the×2 transform301

¤χ ≡ ∂χ
∂t

=
Jν̂
det J , (41)

where each component of ¤χ is placed in the×3 space ¤χi ∈ ×3 i = 1, 2, 3. Sinceχ is a Cartesian coordinate systemwith302

basis vectors (
ex, ey, ez

) this means that the Cartesian components of the velocity vector are transported, avoiding303
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the computation of gradients of any basis vectors. Each component of the vector is transported as a scalar in the304

advective form by solving305

¤χn+1i = ¤χp
i
− Â

(
¤χi , û

1/2
)
, (42)

with Â given by (39) using the method described in the previous sections. Once all three components have been306

advected the advective increment Â is307

Â ≡
[
Â

(
¤χ1, û

1/2
)
, Â

(
¤χ2, û

1/2
)
, Â

(
¤χ3, û

1/2
)]
, (43)

and is mapped back to the×2 space through (11).308

8 | TIMESTEPPING309

The timestepping algorithm closely follows that of Melvin et al. [7] but, inspired by the algorithm of Wood et al. [13],310

the Newton loop is split into (no ) outer loops and (ni ) inner loops, such that the advection scheme is called no times311

in the outer loop, whilst updates to the residuals and the linear solver are called no × ni times in the inner loop.312

8.1 | Linear System313

The solution procedure follows Melvin et al. [7] except that the linear system is modified to include the Coriolis terms.314

To recap, increments to the state variable x′ ≡ x(k+1) − x(k ) at iteration k are sought from the linear system315

L
(
x∗

)
x′ = −R

(
x(k )

)
, x ≡ (u, ρ, θ,Π)T . (44)

The linear operator L is inspired by the linearisation of the set of residuals R (see section 8.3 below) about some316

reference state x∗ ≡ (0, ρ∗, θ∗,Π∗)T with relaxation factors τu,ρ,θ to obtain L (x∗) . In spatially continuous form L from317

Melvin et al. [7] (their (42)) is augmented by the Coriolis terms to give318

L
(
x∗

)
x′ =

©«
(1 + 2τu∆tΩ×) u′ − µ

( nb ·u′
nb ·zb

)
zb + τu∆t cp (θ′zb [nb · +Π∗ ] + θ∗+Π′) ,

ρ′ + τρ∆t+ · (ρ∗u′) ,
θ′ + τθ∆tu′ · zb (nb · +θ∗) ,

1−κ
κ

Π′
Π∗ −

ρ′
ρ∗ −

θ′
θ∗ .

ª®®®®®®¬
(45)

Note, followingWood et al. [13] but in contrast toMelvin et al. [7], only the vertical component of the implicit buoyancy319

terms (θ′+Π∗, u′ · +θ∗) are retained in the linear systemwhich improves the efficiency of the solver without detracting320

from the convergence properties.321

8.2 | Inner Loop Convergence322

The implicit terms in the continuity and thermodynamic equations contain corrections to the transport terms, + · (ρ∗u′)323

and u′ · +θ∗ respectively, where the velocity increment u′ ≡ u(k+1) − u(k ) is defined relative to the latest (inner324
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loop) estimate for the velocity field u(k ) . Since the transport terms are only updated in the outer loop the advecting325

wind is u1/2 = 1/2
(
u(o ) + un

) where u(o ) is the latest estimate of un+1 available in the outer loop. If the inner loop326

iterate ni > 1 then the two estimates for un+1 do not agree (
u(o ) , u(k )

) and this can lead to an inconsistency in the327

discretisation. Taking the thermodynamic equation θ′ + τθ∆tu′ · +θ∗ = Rθ with τθ = 1/2 and θ∗ = θn this becomes328

θ (k+1) − θ (k ) +
∆t

2

(
u(k+1) − u(k )

)
· +θn

= Rθ ≡ −
[
θ (k ) − θn + ∆t

2

(
u(o ) + un

)
· +θn

]
, (46)

which can be rearranged to give329

θ (k+1) − θn +
∆t

2

(
u(k+1) + un

)
· +θn

=
∆t

2

(
u(k ) − u(o )

)
· +θn , (47)

where the left hand side is the desired temporal discretisation of the equation (centred implicit). However the term330

on the right hand side only vanishes if u(k ) = u(o ) . The solution to this inconsistency is that in the inner loop when331

ni > 1 the residuals of the thermodynamic (Rθ ) and continuity (
Rρ

) equations are set to zero. Returning to the above332

example (46) is replaced by333

θ (k+1) − θ (k ) + ∆t

2

(
u(k+1) − u(k )

)
· +θn = 0, (48)

and for k such that u(k−1) = u(o ) then replacing θ (k ) with (46) with all indices reduced by 1 yields the desired form334

θ (k+1) − θn + ∆t

2

(
u(k+1) + un

)
· +θn = 0. (49)

The same result then applies for larger k upon repeated use of (49). This inner loop correction to the residuals is not335

applied to the momentum equation or equation of state since in this case the linear corrections in (45) correspond to336

terms that are updated in the inner loop, i.e. there are no linear transport terms, and so there is no inconsistency.337

8.3 | Discrete Linear System338

Applying the mixed finite-element discretisation of Section 5 to (45) results in:339

M
µ,C
2 ũ′ − P Π∗2vθ θ̃

′ −Gθ∗ Π̃′ = −Ru, (50)
M3ρ̃

′ + D
(
ρ̂∗ũ′

)
= −Rρ , (51)

Mθ θ̃
′ + P θ

∗
θ2v ũ

′ = −Rθ , (52)
E Π
∗
Π̃′ − E ρ∗ ρ̃′ − E θ∗ θ̃′ = −RΠ, (53)
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with340

Ru = ∆t
(
M2δt ũ +Mµũ

1
− Ru

α − RAu
)
, (54)

Rρ = ∆t
(
M3δt ρ̃ − RFρ

)
, (55)

Rθ = ∆t
(
Mθδt θ̃ − RAθ

)
, (56)

RΠ ≡
(
1 − p0Π

1−κ
κ

Rρθ

)
, (57)

where P Π∗2vθ and P θ∗θ2v are the vertically restricted versions of the P Π∗2θ and P θ∗
θ2

operators given in Melvin et al. [7] (their341

(84) and (87)). M µ,C
2 is the operator formed by combining the ×2 mass matrix with the operators arising from the342

Rayleigh damping and Coriolis terms:343

M
µ,C
2 ≡ M2 + ∆tMµ + τu∆tMC , (58)

with344

(MC ) i j ≡
〈
Ĵvi , 2Ω ×

Ĵvjdet (J)
〉
. (59)

As, in contrast to Melvin et al. [7], the equation of state is now sampled the operators in (53) are given by345

E Π
∗

=
1 − κ
κ


p0
R

(
Π̂∗

) 1−κ
κ

ρ̂∗θ̂∗


σ̂

Π̂∗
, (60)

E ρ
∗

=
σ̂

ρ̂∗
, (61)

E θ
∗

=
ŵ

θ̂∗
. (62)

Each entry Ei ,j of an operator E is obtained by evaluating all variables at nodal points χ̂i with basis function σ̂j or ŵj .346

All other operators have the same form as given byMelvin et al. [7]. At convergence of the iterative procedure primed347

quantities vanish and R (
x(k )

)
= 0 is solved.348

8.4 | Iterative Solver349

The system of equations (50)-(53) is solved using the method presented in Maynard et al. [14]. This consists of350

an iterative Krylov method that is preconditioned by an approximate Schur complement of the equations for the351

pressure increment which is itself solved using a single v-cycle of a geometric multigrid method. The approximate352

Schur complement is achieved by a diagonal mass lumping ofMθ andM µ
2 (where the Coriolis terms have been dropped353

from the lumped approximation, equivalent to τu = 0 in (58)).354
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8.5 | Mass Conservation355

Mass conservation in the combined finite-element finite-volume discretisation is achieved by combining (51), (55)356

along with ∆t RFρ = τρ−1D
(
F

[
ρp , û

1/2
] )

giving357

M3ρ̂
(k+1) + D

(
ρ̂∗

[
û(k+1) − û(k )

] )
= M3ρ̂

n + τρ
−1D

(
F

[
ρp , û

1/2
] )

(63)

and summing over the entire domain D this reduces to ∑
DM3

(
ρ̂ (k+1) − ρ̂n

)
= 0 following definition of the discrete358

divergence operator from [7], their (82), giving ∑
D D ( ·) ≡ 0.359

9 | COMPUTATIONAL EXAMPLES360

In order to assess the accuracy of the model it is run on a set of standard numerical tests for atmospheric dynamics361

drawn from the literature. These are used to ensure the model generates the correct response to forcing at different362

scales as well as maintaining the large scale balances important in the governing equations. Of particular concern with363

meshes, such as the cubed-sphere, that have discontinuities in their coordinate lines, is what impact those disconti-364

nuities have on the numerical solutions, referred to as grid imprinting.365

The tests results presented in this section are:366

9.1 Resting atmosphere over orography (Test 2.0.0 from the 2012 DCMIP project, Ullrich et al. [29])367

9.2 Flow over a Gaussian mountain (Allen and Zerroukat [30])368

9.3 Deep atmosphere baroclinic wave (Ullrich et al. [31])369

9.4 Held-Suarez climate test (Held and Suarez [32])370

Key test parameters for each of these examples are summarised in Table 1 where the average grid spacing has been371

taken to be the square root of the average cell area. For a Cn mesh this is given by372

dC =

√
4πa2

6n2
. (64)

While in principle the finite-element methodology affords flexibility in the polynomial degree, as in Melvin et al.373

[7] the focus will again be on results in the lowest-degree l = 0 case. Additionally a number of simplifications and374

specifications to the formulation given in previous sections are made:375

• The coordinate space is×χ = Q
DG
1 ;376

• The angular resolution of the cubed-sphere mesh is kept constant: ∆ξc = ∆ηc = π
2n , [c;377

• The semi-implicit scheme is centred in time: α = 1/2;378

• The relaxation parameters are τu = 1/2 and τρ,θ = 1which is empirically found to improve convergence, consistent379

with Wood et al. [13];380

• 2 outer (advection) and 2 inner (nonlinear) iterations are used: no = ni = 2;381

• As in Melvin et al. [7] the reference profiles x∗ are taken to be the start of timestep fields x∗ ≡ xn with no382

adjustment applied to these fields;383
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Test Section Resolution CnLm Approx grid Model depth ∆t

(n cells per edge, spacing dC (km) zT (km) (s)
m layers)

Resting atmosphere 9.1 C96L30 96.0 12 600
Gaussian mountain 9.2 C96L40 96.0 32 900
Baroclinic wave 9.3 C96L30 96.0 30 900

Baroclinic wave: grid imprinting 9.3.1 C448L30 20.6 30 225
C896L30 10.3 30 225

Held-Suarez 9.4 C48L30 192.1 30 1800
TABLE 1 Model parameters for each test.

• A quadratic reconstruction of scalar fields is used in the advection scheme to compute fluxes F̂ and advective384

updates Â;385

• The damping layer is not required for any tests considered here and so µ ≡ 0;386

• The vertical mesh consists of n levels and the height of each level k is387

zk = zT εk + zB (1 − εk ) (65)
where z = r − a is the height above the surface of the sphere and zB is height of the domain surface above a388

(zB = 0 or as defined by any orographic profile). The non-dimensional parameter ε is given by389

εk = (k /n) , (66)
for a uniform vertical mesh or390

εk =

√
γ (k /n)2 + 1 − 1√

γ + 1 − 1
, (67)

with γ = 15 for a quadratic stretching.391

• All initial conditions are computed by sampling the field at degree of freedom locations and where required the392

density or initial pressure are obtained from the equation of state. Additionally, no discrete balance is applied to393

the initial conditions.394

For the spherical domain used in these examples the coordinate χ is replaced by the standard geocentric Cartesian395

coordinates X so that (χ1, χ2, χ3) ≡ (X , Y , Z ) . Additionally the results are linearly interpolated into a regular lat-lon396

grid for presentation. In this sectionw is used to denote the vertical component of the velocity u in the radial direction397

(i.e. w = Dr /Dt , Dχ3/Dt ) and u is the zonal component of the velocity u (i.e u = r cosφDλ/Dt , Dχ1/Dt ). Initial398

conditions are given in spherical coordinates with latitude φ ∈ (−π/2, π/2) and longitude λ ∈ (−π, π) .399

9.1 | Resting atmosphere over orography400

Orography is represented in themodel formulation through the Piola transforms and in particular through the Jacobian401

J. In the presence of orography the mapping ∂ξ/∂χ̂ (15) introduces a coupling between the horizontal components402
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of the velocity vector into the vertical component of the momentum equation (through the tan δξ and tan δη terms403

in (15)). This is in contrast to most models (such as Wood et al. [13]) where the presence of orography and terrain fol-404

lowing coordinates introduces a coupling of the vertical components of the pressure gradient term into the horizontal405

components of the momentum equation (for example (22) & (23) of Wood et al. [13]). It is therefore interesting to see406

how this different formulation can represent a balanced state over orography. To complement the orographic tests407

already presented in Melvin et al. [7] test 2.0.0 from the DCMIP2012 project Ullrich et al. [29] is used to simulate a408

resting atmosphere over large scale orography.409
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F IGURE 2 Zonal (left panels) and vertical (right panels) wind fields for the resting atmosphere case after 6 days
on a C96L30 mesh with ∆t = 600 s. The top row shows results from this paper and the bottom row shows results
from the semi-implicit semi-Lagrangian ENDGame model with a 1 degree resolution and ∆t = 600 s, (Wood et al.
[13]).

The test is based upon earlier ideas by Lin [33]. The orographic profile is given by410

zB =


h0
2

[
1 + cos (

πrm
Rm

)] cos2 (
πrm
ζm

)
, if rm < Rm ,

0, otherwise. (68)

The mountain height is h0 = 2000m and Rm = 3π/4, ζm = π/16. The great circle distance from the mountain centre-411

point (λm , φm ) = (3π/2, 0) is412

rm = arccos [sinφm sinφ + cosφm cosφ cos (λ − λm ) ] . (69)
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The atmosphere is initialised at rest (u = 0) and is non-rotating (Ω = 0). A constant lapse rate Γ = 0.0065Km−1 is used,413

giving the initial temperature as414

T = T0 − Γ (r − a) , (70)
withT0 = 300K . This example tests the accuracy of the pressure gradient terms over orography. Since the initial state is415

in balance no motion should be generated, but, due to inaccuracies in the pressure gradient terms in terrain following416

coordinates, this balance will not be discretely maintained and motion will be generated. The size of the motion417

generated is related to the error in the pressure gradient terms. Figure 2 shows the zonal and vertical wind fields along418

the equator after 6 days simulation on a C96L30 mesh with a uniform vertical resolution and model top at zT = 12km.419

This is compared to the semi-implicit semi-Lagrangian model ofWood et al. [13] run on a 1 degree Latitude-Longitude420

mesh with the same vertical mesh. Over the mountain a small amount of motion is generated, as shown in both the421

zonal and vertical velocities (Figure 2, top row). Compared to Wood et al. [13] (Figure 2, bottom row) the zonal422

velocity perturbations are approximately an order of magnitude smaller while the vertical velocity perturbations are423

of the same order but less widespread, particularly over the orography. Taken together this indicates the model is able424

to maintain balance over orography relatively well and there is no spuriously large growth of perturbations.425

9.2 | Flow over a Gaussian hill426

This test simulates the generation of Rossby waves from flow over orography and is based upon the test of Tomita427

and Satoh [34] and Jablonowski et al. [35] and further developed by Allen and Zerroukat [30]. The set up used here428

follows Allen and Zerroukat [30] and the mountain profile is given by429

zB = h0 exp
[
−

(
a

ζm
rm

)2]
, (71)

with h0 = 2000m , ζm = 1500km and rm given by (69) with the mountain centre at (λm , φm ) = (−π/2, π/6) . The initial430

wind is given by431

u (r cosφ) = u0 r
a
cosφ, (72)

with u0 = 20ms−1 which is (5.7) fromAllen and Zerroukat [30] with β = 0. The atmosphere is isothermal withT = 288K432

and the surface pressure is given by (5.15) in Allen and Zerroukat [30]:433

ps = pp exp [
(2Ωa + u0)

u0
2RT

cos2 φ] exp (
− zsg
RT

)
, (73)

with pp = 930hP a . The model is run at C96L40 resolution with a uniform vertical mesh and model top at zT =434

32km. The 700hP a geopotential height and temperature are shown at days 5, 10 and 15 of the simulation in Figure435

3. These results are similar to both the Yin-Yang and ENDGame semi-implicit semi-Lagrangian results presented in436

Allen and Zerroukat [30] (their figures 8 and 9). The locations of the cubed-sphere panel boundaries are overlaid on437

the temperature figures and although the mountain is located across a panel edge there are no obvious indications of438

grid imprinting from the cubed-sphere on the solution profiles.439
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(d) Day 10T 700

−150 −100 −50 0 50 100 150
Longitude

−50

0

50

La
tit
ud

e

2500.0

2500.
0

2700.0

2700.0

2900.0

2900.0

3100.0

3100.0

3300.0 3300.0

2400

2500

2600

2700

2800

2900

3000

3100

3200

3300

(e) Day 15 z700
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F IGURE 3 700hP a geopotential height (left column) and temperature (right column) at days 5, 10 and 15 for the
flow over a Gaussian hill test at C96L40 resolution with ∆t = 900s . The location of the cubed-sphere panel
boundaries are overlaid on theT 700 plots.
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9.3 | Baroclinic wave440
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(a) Day 8 surface pressure
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(b) Day 10 surface pressure
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(c) Day 8T 850
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(d) Day 10T 850
F IGURE 4 Surface pressure (top row) and 850 hPa temperature (bottom row) for the Baroclinic wave test on a
C96L30 mesh with ∆t = 900 s. Left panels: after 8 days simulation and Right panels: after 10 days simulation.

The baroclinic wave test of Ullrich et al. [31] simulates the formation of a series of features typical of mid-latitude441

weather systems. The test is run for 15 days at C96L30 resolution with a quadratic vertical mesh and the same442

timestep ∆t = 900s as used in Wood et al. [13] with a monotonic filter applied to the transport of θ as described in443

Section 7.6. The surface pressure and 850hP a temperature at days 8 and 10 are shown in Figure 4. These compare444

well with the results shown in both Ullrich et al. [31] and Wood et al. [13]. Importantly there are no obvious signs445

of grid imprinting in the southern hemisphere in either the pressure or temperature fields. The minimum surface446

pressure throughout the simulation compared toWood et al. [13] is shown in Figure 5 and bothmodels show excellent447

agreement through the first 10 days of simulation before some divergence in model solutions over the last 5 days of448

simulation.449

9.3.1 | Grid Imprinting450

Following Ji [36] to further investigate the grid imprinting in the model the baroclinic wave test is repeated at high451

horizontal resolution (C448 and C896) for a single simulated day. The vertical velocity (with zonal mean removed)452

around a corner of the cubed-sphere in the southern hemisphere (away from the initial perturbation) is shown in453

Figure 6 and can be compared with Figures 2.6 & 2.7 of Ji [36]. At both resolutions there is some spurious motion454
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F IGURE 5 Minimum surface pressure for the Baroclinic wave test on a C96L30 mesh with ∆t = 900 s compared
with the SISL model of Wood et al. [13] on a 1 degree mesh with the same timestep.
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(b) C896
F IGURE 6 Vertical velocity at a corner of the cubed-sphere after 1 day of simulation on a (left) C448L30 mesh
with ∆t = 450 and (right) C896L30 mesh with ∆t = 225.
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around the corner of the cubed-sphere, however the values are very small, of the order 10−3mm/s, and smaller than455

both the MPAS and FV3 models considered in Ji [36], so this level of grid imprinting is considered acceptable. These456

results support the choice to use a lowest degree compatible finite-element method which simplifies a number of457

aspects of the model design (such as coupling to existing subgrid parametrisation schemes, Brown et al. [37]).458

9.4 | Held-Suarez459

The Held-Suarez idealised climate test (Held and Suarez [32]) simulates the evolution of an atmospheric state with460

relaxation towards a prescribed surface temperature and wind profile. The model is run for 1200 days and time-461

averaged fields (after the first 200 day spinup period) are shown in Figure 7. The initial state is taken to be the462

baroclinic wave initial state from Section 9.3. The time-average (sampled every day) of the zonal velocity field on a463

C48L30 mesh using a quadratic stretching in the vertical mesh is shown in Figure 7. The left panel shows the zonally464

averaged zonal velocity field and the right panel shows the zonal velocity on level 14 (approximately though the centre465

of the jets). These profiles are again similar to those produced by ENDGame (Tort et al. [38]). The horizontal cross466

section shows no obvious sign of grid imprinting from the cubed-sphere grid, indicating that even for long timescale467

runs there is no systematic error from the treatment of the cubed-sphere panel corners and edges.
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F IGURE 7 Zonally averaged zonal velocity (left) and zonal velocity on level 14 (≈ 10.5km) (right) fields. All fields
are averaged over the last 1000 days of a 1200 day Held-Suarez run using a C48L30 mesh with ∆t = 1800 s.

468

10 | SUMMARY469

Themixed finite-element, finite-volume, semi-implicit model ofMelvin et al. [7] has been extended to spherical geome-470

try for atmospheric modelling. The finite-volume transport scheme has been extended to encompass the momentum471

advection terms and has been adapted to the non-uniform, non-orthogonal horizontal mesh by using polynomial472

reconstructions as in Kent et al. [8]. In order to maintain a constant field, an advective-then-flux formulation for con-473

servatively transported variables is used (Bendall et al. [25]). The finite-element method presented in Melvin et al. [7]474

has required minimal modification for spherical geometries, highlighting the flexibility of this approach, and the only475

significant change here is the use of a semi-analytic mapping to the sphere to accurately represent a spherical shell476

domain. The temporal discretisation mimics that of Wood et al. [13] and is coupled to the multigrid solver of Maynard477

et al. [14] to give an efficient method of solving the linear semi-implicit system.478

The semi-implicit finite-element finite-volume dynamical core has been applied to a number of standard dynamical479

tests. The model has been shown to produce results comparable to those in the literature and in particular to the480

existing semi-implicit semi-Lagrangian ENDGame dynamical core (Wood et al. [13]) used in operational models at the481
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Met Office. These results demonstrate that using l = 0 elements provides sufficient accuracy on a cubed-sphere mesh482

and so this formulation is planned to be used in future applications of this model. We note that the model can be run483

for simple dynamical core tests at higher l > 0 finite element order. The main missing block towards running more484

complex tests is the functionality to map the high order finite element spaces to low order spaces on a high resolution485

mesh in order to couple to the finite volume transport scheme and the physical parametrisations. This model has also486

recently been coupled to idealised physical parametrisations and chemical processes by Brown et al. [37] and to the487

simulation of Exoplanet atmospheres, Sergeev et al. [39], again producing results comparable to those in the literature.488

Continual improvements are being made to optimise the computational performance of the model. There does489

not appear to be any fundamental barrier to achieving comparable throughput to the present operational model.490

As a next step towards using this model for numerical weather and climate prediction the dynamical core has been491

extended to handle moist dynamic processes and coupled to the existing suite of subgrid physical parametrisations492

used by Walters et al. [40]. The formulation and code have been extended to limited area domains with forced493

boundaries and both of these developments will be reported upon in future work. In order to couple with a data494

assimilation system a tangent linear version of this model has also been developed and again will be reported upon in495

future work.496

Data Availability497

The data used to support the findings of this study were generated using the Met Office’s LFRic-Atmosphere model.498

The LFRic-Atmosphere source code and configuration files are freely available from theMet Office Science Repository499

Service (https://code.metoffice.gov.uk) upon registration and completion of a software licence.500
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