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The discovery of scientific formulae that parsimoniously explain natural phe-
nomena and align with existing background theory is a key goal in science.
Historically, scientists have derived natural laws by manipulating equations
based on existing knowledge, forming new equations, and verifying them
experimentally. However, this does not include experimental data within the
discovery process, which may be inefficient. We propose a solution to this
problem when all axioms and scientific laws are expressible as polynomials and
argue our approach is widely applicable. We model notions of minimal com-
plexity using binary variables and logical constraints, solve polynomial opti-
mization problems via mixed-integer linear or semidefinite optimization, and

prove the validity of our scientific discoveries in a principled manner using
Positivstellensatz certificates. We demonstrate that some famous scientific
laws, including Kepler’s Law of Planetary Motion and the Radiated Gravita-
tional Wave Power equation, can be derived in a principled manner from
axioms and experimental data.

A fundamental problem in science involves explaining natural phe-
nomena in a manner consistent with noisy experimental data and a
body of potentially inexact and incomplete background knowledge
about the universe’s laws. In the past few centuries, The Scientific
Method” has led to significant progress in discovering new laws.
Unfortunately, the rate of emergence of these laws and their con-
tribution to economic growth is stagnating relative to the amount of
capital invested in deducing them®*. Indeed, Dirac’ noted that it is now
more challenging for first-rate physicists to make second-rate dis-
coveries than it was previously for second-rate physicists to make first-
rate ones, while Arora et al.® found that the marginal value of scientific
discoveries to large companies has declined since the fall of the Berlin
Wall. Moreover, Bloom et al.” have found that research productivity in
the United States halves every thirteen years because good scientific
ideas are getting harder to find. This phenomenon can be partly
explained by analogy to the work of Cowen®. Namely, The Scientific
Method has picked most of the low-hanging fruit in science, such as
natural laws that relate physical quantities using a small number of low-
degree polynomials. This calls for more disciplined and principled

alternatives to The Scientific Method, which integrates background
information and experimental data to generate and verify higher
dimensional laws of nature, thereby promoting scientific discovery
(c.f. refs. 9, 10). Accordingly, Fig. 1 provides an overview of scientific
discovery paradigms.

Even as the rate of scientific discovery has decreased, the scal-
ability of global optimization methods has significantly improved.
Indeed, as we argue in this paper, global optimization methods are
now a mature technology capable of searching over the space of sci-
entific laws - owing to Moore’s law and significant theoretical and
computational advances by the optimization community see refs.
11-13, for reviews. For instance, Bertsimas and Dunn', Chap. 1
observed that the speedup in raw computing power between 1991 and
2015 is at least six orders of magnitude. Additionally, polynomial
optimization has become much more scalable since the works of
Lasserre® and Parrilo’, and primal-dual interior-point methods” ™"
have improved considerably, with excellent implementations now
available in, for example, the Mosek solver?. Even methods for non-
convex quadratically constrained problems have already achieved
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Fig. 1| Comparison of scientific discovery paradigms. Traditional scientific dis-
covery formulates hypotheses using existing theory and observed phenomena.
These hypotheses are validated and tested using data. In contrast, machine learning
methods rely on large datasets to identify patterns. Al-Descartes* proposes an
inversion of the traditional scientific discovery paradigm. It generates hypotheses
from observed data and validates them against known theories. However, in Al-
Descartes, theory and data remain disjoint and do not mutually enhance one

another. In contrast, our work, AT-Hilbert, combines data and theory to for-
mulate hypotheses. Unlike conventional methods, insights into data and knowl-
edge embedded in the theory collaboratively reduce the search space. These two
components complement each other: theory compensates for noisy or sparse data,
while data compensates for inconsistent or incomplete theory. Note that blue
denotes components associated with data, purple denotes components linked to
theory, and dashed lines represent iterative processes.

machine-independent speedups of nearly 200 since their integration
within commerecial solvers in 2019'>%,

In this paper (we introduce our notation in our “Methods”
section, code and data used for this work are available at ai-hilbert.
github.io), we propose a new approach to scientific discovery that
leverages these advances by the optimization community. Given a set of
background axioms, theorems, and laws expressible as a basic semi-
algebraic set (i.e., a system of polynomial equalities and inequalities) and
observations from experimental data, we derive new laws representable
as polynomial expressions that are either exactly or approximately
consistent with existing laws and experimental data by solving poly-
nomial optimization problems via linear and semidefinite optimization.
By leveraging fundamental results from real algebraic geometry, we
obtain formal proofs of the correctness of our laws as a byproduct of the
optimization problems. This is notable, because existing automated
approaches to scientific discovery”?”, as reviewed in Section 1 of
our supplementary material, often rely upon deep learning techniques
that do not provide formal proofs and are prone to hallucinating
incorrect scientific laws that cannot be automatically proven or dis-
proven, analogously to output from state-of-the-art Large Language
Models such as GPT-4%. As such, any new laws derived from these sys-
tems cannot easily be explained or justified.

Conversely, our approach discovers new scientific laws by solving
an optimization problem to minimize a weighted sum of discrepancies
between the proposed law and data, plus the distance between the
proposed law and its projection onto the set of symbolic laws derivable
from background theory. As a result, our approach discovers scientific
laws alongside proof of their consistency with existing background

theory by default. Moreover, our approach is scalable; it runs in
polynomial time with respect to the number of symbolic variables and
axioms (when the degree of the polynomial certificates we search over
is bounded) with a complete and consistent background theory.

We believe our approach could be a first step towards discovering
new laws of the universe involving higher-degree polynomials, which
are impractical for scientists to discover without the aid of modern
optimization solvers and high-performance computing environments.
Further, our approach is potentially useful for reconciling mutually
inconsistent axioms. Indeed, if a system of scientific laws is mutually
inconsistent (in the sense that no point satisfies all laws simulta-
neously), our polynomial optimization problem offers a formal proof
of its inconsistency.

Results
We propose a new paradigm for scientific discovery that derives poly-
nomial laws simultaneously consistent with experimental data and a
body of background knowledge expressible as polynomial equalities
and inequalities. We term our approach AT-Hilbert, inspired by the
work of David Hilbert, one of the first mathematicians to investigate the
relationship between sum-of-squares and non-negative polynomials®.
Our approach automatically provides an axiomatic derivation of
the correctness of a discovered scientific law, conditional on the cor-
rectness of our background theory. Moreover, in instances with
inconsistent background theory, our approach can successfully iden-
tify the sources of inconsistency by performing best subset selection
to determine the axioms that best explain the data. This is notably
different from current data-driven approaches to scientific discovery,
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Fig. 2 | The scientific method with scientific discoveries made via classical
methods, data-driven methods, or Al-Hilbert. AT-Hi 1bert proposes scientific
laws consistent with a body of background theory formally articulated as poly-
nomial equalities, inequalities, and relevant data sources. This likely allows scien-
tific discoveries to be made using fewer data points than state-of-the-art
approaches, and for missing scientific axioms to be deduced via abductive rea-
soning as part of the scientific discovery process. On the other hand, existing

approaches to scientific discovery propose laws that may be inconsistent with
either background theory or existing data sources. Note that blue denotes com-
ponents associated with logical theories, purple denotes components linked to
data, yellow denotes hypothesis generation, green denotes hypothesis testing,
orange denotes discovery reporting, white denotes hypothesis refinement, teal
denotes evaluation of the discovery, dashed lines represent macro components
and green lines represent the input of AT-Hilbert.

which often generate spurious laws in limited data settings and fail to
differentiate between valid and invalid discoveries or provide expla-
nations of their derivations. We illustrate our approach by axiomati-
cally deriving some of the most frequently cited natural laws in the
scientific literature, including Kepler’s Third Law and Einstein’s Rela-
tivistic Time Dilation Law, among other scientific discoveries.

A second contribution of our approach is that it permits fine-
grained control of the tractability of the scientific discovery process,
by bounding the degree of the coefficients in the Positivstellensatz
certificates that are searched over (see our “Methods” section for a
formal statement of the Positivstellensatz). This differs from prior
works on automated scientific discovery, which offers more limited
control over their time complexity. For instance, in the special case of
scientific discovery with a complete body of background theory and
no experimental data, to our knowledge, the only current alternative
to our approach is symbolic regression see, e.g., ref. 28, which requires
genetic programming or mixed-integer nonlinear programming tech-
niques that are not guaranteed to run in polynomial time. On the other
hand, our approach searches for polynomial certificates of a bounded
degree via a fixed level of the sum-of-squares hierarchy™'°, which can
be searched over in polynomial time under some mild regularity
conditions'?.

To contrast our approach with existing approaches to scientific
discovery, Fig. 2 depicts a stylized version of the scientific method.
In this version, new laws of nature are proposed from background
theory (which may be written down by humans, automatically

extracted from existing literature, or even generated using AI’°) and
experimental data, using classical discovery techniques, data-driven
techniques, or AT-Hilbert. Observe that data-driven discoveries
may be inconsistent with background theory, and discoveries via
classical methods may not be consistent with relevant data sources,
while discoveries made via AI-Hilbert are consistent with
background theory and relevant data sources. This suggests that
AI-Hilbert could be a first step toward discovery frameworks that
are less likely to make false discoveries. Moreover, as mentioned in
the introduction, AI-Hilbert uses background theory to restrict
the effective dimension of the set of possible scientific laws, and,
therefore requires less data to make scientific discoveries than
purely data-driven approaches.

Scientific discovery as polynomial optimization
Our scientific discovery method (AI-Hilbert) aims to discover an
unknown polynomial formula g(-) € R[x] which describes a physical
phenomenon, and is both consistent with a background theory of
polynomial equalities and inequalities B (a set of axioms) and a col-
lection of experimental data D (defined below). We provide a high-
level overview of AT-Hilbert in Fig. 3 and summarize our procedure
in Algorithm 1. The inputs to AI-Hilbert are a four-tuple
(B,D,C(A),d°), where:
* B denotes the relevant background theory, expressed as a col-
lection of axioms in the scientific discovery setting, i.e., the
polynomial laws relevant for discovering q. It is the union of the
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Fig. 3 | Schematic illustration of Al-Hilbert and its components. Using back-
ground knowledge encoded as multivariate polynomials, experimental data, and
hyperparameters (e.g., a sparsity constraint on the background theory) to control
our model’s complexity, we formulate scientific discovery as a polynomial
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optimization problem, reformulate it as a semidefinite optimization problem, and
solve it to obtain both a symbolic model and its formal derivation. Dashed boxes
correspond to optional components. An example is introducing an incorrect can-
didate formula as a new axiom in the background theory.

Proof of Derivability

inequalities {gi(x) >0, ..., gx(x) = 0} defining G and the equalities
{hi(x) =0, ..., h(x) =0} defining H. Further, B is defined over n
variables xj, ..., X,. However, only ¢ of these n variables can be
measured and are directly relevant for explaining the observed
phenomenon. In particular, we let x; denote the dependent vari-
able. The remaining n-¢ variables appear in the background
theory but are not directly observable. The background theory B
is defined as complete if it contains all the axioms necessary to
formally prove the target formula, incomplete otherwise. More-
over, B is called inconsistent if it contains axioms that contradict
each other, consistent otherwise (we define these terms more
rigorously in our “Methods” section). One might also exclude
measurements for certain variables x; if they are trivially con-
nected to other measurable variables. For instance, the period of
rotation can trivially be obtained from the frequency of rotation,
and it is better to avoid having both in the list of measured vari-
ables in our system. We treat known quantities such as c - the
speed of light - as measurable entities.

D = {x;}{*, denotes a collection of data points, or measurements
of an observed physical phenomenon, which may be con-
taminated by noise, e.g., from measurement error. We assume
that x; € R" and x; ;=0 for j>t+1, i.e., the value of x;; - the jth
entry of x; — is set to zero for all variables j that cannot or should
not be measured.

C denotes a set of constraints and bounds which depend on a set
of hyper-parameters A. Specifically, we consider a global bound
on the degree of the polynomial g; a vector d restricting
individual variable degrees in g; a hyperparameter A that models
the fidelity to background theory and data; and a bound over
the number of axioms that should be included in a formula
derivation.

d°(-,G N 'H) denotes a distance function that defines the distance
from an arbitrary polynomial to the background theory. We for-
mally define d° in our “Methods” section.

Algorithm 1 provides a high-level description of AT-Hilbert.
The procedure first combines the background theory B and data D
to generate a polynomial optimization problem Pr which targets a
specific concept identified by a dependent - or target - variable
included in the set of observable entities that can be measured in the
environment (x;, ..., X,). This is achieved by leveraging the distance d*
(formally defined in our “Methods” section) and integrating the
bounds and constraints C (with their hyperparameters A) via the
PolyJuMP.jlJulia package®. This corresponds to the Formulate
step of Algorithm 1, which we formalize in our “Methods” section.

Algorithm 1. AT-Hilbert for Scientific Discovery

Input: (5,D,C(A),d°)

I: Pr «Formulate(B,D,C(A),d°)

2: Pr*? «Reduce(Pr)

3: g(x) ¢ solve(Pr?)

Output: g(x)=0

Output: a,

AI-Hilbert then reformulates the problem PPr as a semidefinite
(or linear if no inequalities are present in the background theory)
optimization problem Pr*?, by leveraging standard techniques from
sum-of-squares optimization that are now integrated within the
SumOfSquares.jl and PolyJuMP.jlJulia packages. This corre-
sponds to the Reduce step of Algorithm 1.

Next, AT-Hilbert solves Pr*? using a mixed-integer conic opti-
mization solver such as Gurobi® or Mosek®. This corresponds to the
Solve step of Algorithm 1.

AI-Hilbert then outputs a candidate formula of the form
g(x) =0 where the only monomials with nonzero coefficients are
those that only contain the variables xj, ..., x,, the independent and
dependent variables that are observed in the environment. The
background theory may contain additional variables x4, ..., X, that
are not observed in the environment and that will not appear in
the derived law. This is because the axioms in the background
theory are not constraints on the functional form of the target
polynomial, but rather general scientific laws describing the envir-
onment, often not including any of the quantities/variables
observed in the data.

Finally, AI-Hilbert returns polynomial  multipliers
{t)(,-}f-;o,{ﬁj}j’.:1 (sums-of-squares polynomials and arbitrary poly-
nomials, respectively) such that

k [
g =ap) + > @ (0g;(x)+ > Bi0)h;(x) @
i=1 j=1

if d°(q,6NH)=0, which is a certificate of the fact that g is deri-
vable from the background theory. If d°>0, then AT-Hilbert
returns a certificate that g is approximately derivable from the
background theory, and ¢ is approximately equal

t0 ao(X) + Y5 o, (0)g;(0) + h_ B0k (x).

Notion of distance to background theory and model complexity
In scientific discovery settings, scientists often start with experi-
mental measurements and a set of polynomial equalities and
inequalities (axioms) that they believe to be true. From these axioms
and measurements, they aim to deduce a new law, explaining their
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data, which includes one or more dependent variables and excludes
certain variables. The simplest case of scientific discovery involves a
consistent and correct set of axioms that fully characterize the pro-
blem. In this case, the Positivstellensatz (see “Methods” section)
facilitates the discovery of new scientific laws via deductive reason-
ing, without using any experimental data. Indeed, under an Archi-
medean assumption (see Theorem 1 in our “Methods” section), the
set of all valid scientific laws corresponds precisely to the pre-prime
(see ref. 32 for a definition) generated by our axioms™ and searching
for the simplest polynomial version of a law that features a given
dependent variable corresponds to solving an easy linear or semi-
definite problem.

Unfortunately, it is not uncommon to have a set of axioms that is
inconsistent (meaning that there are no values of x € R”" that satisfy all
laws simultaneously) or incomplete (meaning the axioms do not ‘span’
the space of all derivable polynomials). Therefore, AT-Hilbert
requires a notion of a distance between a body of background the-
ory (which, in our case, consists of a set of polynomial equalities and
inequalities) and a polynomial. We now establish this definition,
treating the inconsistent and incomplete cases separately; note that
the inconsistent and incomplete cases may be treated via the incon-
sistent case. We remark that refs. 34,35 propose related notions of the
distance between (a) a point and a variety defined by a set of equality
constraints and (b) the distance between two semialgebraic sets via
their Hausdorff distance. To our knowledge, the distance metrics in
this paper are new.

Incomplete background knowledge case. Suppose 5B is a back-
ground theory (consisting of equalities and inequalities in G and H),
and the axioms are not inconsistent, meaning that G N H#¢. Then, a
natural notion of distance is the ¢, coefficient distance d° between g
and G N 'H, which is given by:

min
Ao, -0 €X[X]y 04,
Bir - BieRiX]y 00

d(qGNH):=

k l
q—ap — Z“igi - Zﬁjhj
i-1 j=1

@
2

It follows directly from Putinar’s Positivstellensatz that d(q,G N 'H) =0 if
and only if g is derivable from B. We remark that this distance has a
geometric interpretation as the distance between a polynomial g and
its projection onto the algebraic variety generated by G N H. Moreover,
by norm equivalence, this is equivalent to the Hausdorff distance®
between g and G N H.

With the above definition of d*, and the fact that G N H#0, we say
that GNH is an incomplete set of axioms if there does not exist a
polynomial p with a non-zero coefficient on at least one monomial
involving a dependent variable, such that d“(g,G N H)=0.

Inconsistent background knowledge case. Suppose B is an incon-
sistent background theory i.e, G N 'H =@. Then, a natural approach to
scientific discovery is to assume that a subset of the axioms are valid
laws, while the remaining axioms are scientifically invalid (or invalid in
a specific context, e.g., micro vs. macro-scale). In line with the sparse
regression literature (c.f. ref. 36 and related work on discovering
nonlinear dynamics®®), we assume that scientific discoveries can be
made using at most k correct scientific laws and define the distance
between the scientific law and the problem data via a best subset
selection problem. Specifically, we introduce binary variables z; and y;
to denote whether the ith and j-th laws are consistent and require that
a;=0if z;=0and §;=0if y;= 0 and Y.z;+ Y ;< 7 for a sparsity budget r.
Furthermore, we allow a non-zero ¢, distance between the scientific
law f and the reduced background theory, but penalize this distance in
the objective. This gives the following notion of distance between a

scientific law g and the space G N H:

d“(g.GNH) := min Hq—ao _Z{'(:Iaigi_z:jl':lﬁjhj‘
s.t. a;=0if z;=0¥i € {0, ... k},
B=0ify=0j el .l
Shozit Z_;=IJ)1'ST'
Zg...2,€{0,1},y;,...y,€{0,1},
Ao, -+ 0 € XX 20, Brs - - By € RIX]p 20

5’

€©)

It follows directly from the Positivstellensatz (Theorem 1 in
our “Methods” section) that d = O if and only if g can be derived from .
If T=m+1[, then we certainly have d‘=0 since the overall system of
polynomials is inconsistent and the sum-of-squares proof system can
deduce that “-12>0” from inconsistent proof systems, from which it
can claim a distance of 0. However, by treating t as a hyper-parameter
and including the quality of the law on experimental data as part of the
optimization problem, scientific discoveries can be made from
inconsistent axioms by incentivizing solvers to set z;=0 for incon-
sistent axioms i.

Alternatively, a practitioner may wish to explore the Pareto fron-
tier of scientific discoveries that arise as we vary 7, to detect how large
the set of correct background knowledge is. Provided there is a suffi-
ciently high penalty cost on poorly explaining scientific data via the
derived law, our optimization problem prefers a subset of correct
axioms with a non-zero distance d* to the derived polynomial over a set
of inconsistent axioms which gives a distance d“=0.

Trade-off between data and theory

There is a fundamental trade-off between the amount of back-
ground theory available and the amount of data needed for sci-
entific discovery. Indeed, with a complete and consistent set of
background theories, it is sometimes possible to perform scientific
discovery without any experimental data via the Positives-
tellensatz (see “Methods” section, for a discussion). On the other
hand, the purely data-driven approaches to scientific discovery
reviewed in the introduction and Section 1 of the supplementary
material often require many noiseless or low-noise experimental
observations to successfully perform scientific discovery. More
generally, as the amount of relevant background theory increases,
the amount of experimental data required by AT-Hilbert to
perform scientific discovery cannot increase because increasing
the amount of background theory decreases the effective VC-
dimension of our scientific discovery problem (see, e.g., ref. 39).
This can be seen in the machine learning examples discussed in Sec-
tion 4 of the supplementary material, where imposing a sparsity con-
straint (i.e., providing a relevant axiom) reduces the number of data
observations needed to discover a ground truth model; see also
ref. 40, 41 for an analysis of the asymptotic consistency of shape-
constrained regression. We provide further evidence of this experi-
mentally in our “Methods” section.

The above observations can also be explained via real algebraic
geometry: requiring that a scientific law is consistent with an axiom is
equivalent to restricting the space of valid scientific laws to a subset of
the space of discoverable scientific laws. As such, an axiom is equiva-
lent to infinitely many data observations that penalize scientific laws
outside a subspace but provide no information that discriminates
between scientific laws within the subspace.

We provide examples from the machine learning literature that
illustrate this trade-off between data and theory in Section 4 of
the supplementary material.

Nature Communications | (2024)15:5922



Article

https://doi.org/10.1038/s41467-024-50074-w

Experimental validation

We perform a variety of experiments with different datasets to evalu-
ate the performance of AT-Hilbert. We first demonstrate that AT-
Hilbert can in some cases, obtain the desired symbolic expression
purely from a complete and consistent background theory without the
use of numerical data; these include the Hagen-Poisseuille equation,
Radiated gravitational wave power formula, and Einstein’s relativistic
time dilation law. In all these cases, the number of observable variables
is a strict subset of all the variables in the background theory. We next
demonstrate the ability to deal with inconsistent background theory
axioms and find a subset of axioms that are consistent and yield the
desired symbolic expression. We also study problems where both
background theory axioms and data are needed to derive the correct
symbolic expression; this is the case when one does not have a com-
plete set of background theory axioms. Finally, we compare AI-
Hilbert against other methods that are purely data-driven (Al Feyn-
man, PySR, Bayesian Machine Scientist) and methods that use back-
ground theory to filter out expressions derived from data (Al
Descartes) and show that AT-Hi lbert has the best performance on a
test set of problems.

Discussion

In this work, we propose a new approach to scientific discovery that
leverages ideas from real algebraic geometry and mixed-integer
optimization to discover new scientific laws from a possibly incon-
sistent or incomplete set of scientific axioms and noisy experimental
data. This improves existing approaches to scientific discovery that
typically propose plausible scientific laws from either background
theory alone or data alone. Indeed, by combining data and back-
ground theory in the discovery process, we potentially allow scien-
tific discoveries to be made in previously inhospitable regimes where
there is limited data and/or background theory, and gathering data is
expensive. We hope our approach serves as an exciting tool that
assists the scientific community in efficiently and accurately
explaining the natural world.

We now discuss the generality and complexity of AT-Hilbert.

Implicit and explicit symbolic discovery

Most prior work (e.g., refs. 42-44) aims to identify an unknown
symbolic model f € R[x],,, of the form y;=f(x;)) for a set of inde-
pendent variables of interest x ¢ R” and a dependent variable y € R,
while AT-Hilbert searches for an implicit polynomial function g
which links the dependent and independent variables. We do this for
two reasons. First, many scientific formulae of practical interest admit
implicit representations as polynomials, but explicit representations of
the dependent variable as a polynomial function of the independent
variables are not possible (c.f. ref. 45). For instance, Kepler’s third law
of planetary motion has this property, as discussed in our “Meth-
ods” section. Second, as proven by Artin*® to partially resolve Hilbert’s
17th problem (c.f. ref. 47), an arbitrary non-negative polynomial can be
represented as a sum of squares of rational functions. Therefore, by
multiplying by the denominator in Artin’s representation*®, implicit
representations of natural laws become a viable and computationally
affordable search space.

We remark that the implicit representation of scientific laws as
polynomials where g(x) = 0 introduces some degeneracy in the set of
optimal polynomials derivable from (10), particularly in the presence
of a correct yet overdetermined background theory. For instance, in
our derivation of Kepler's Law of Planetary Motion, we eventually
derive the polynomial m;m,Gp*=m,d,d5 + myd:d, +2m,d,d>. Since
we have the axiom that myd;=m.d,, we could instead derive the
(equivalent) formula mym,Gp® = (m; + my)dyd,(d, + d5). To partly break
this degeneracy, we propose to either constrain the degree of the
proof certificate and gradually increase it (as is done in (10)) or,
(equivalently in a Lagrangian sense) include a term modeling the

complexity of our derived polynomial (e.g., ||q|l;, the L;-coefficient
norm of q) in the objective.

Complexity of scientific discovery
Observe that, if the degree of our new scientific law g is fixed and the
degree of the polynomial multipliers in the definition in d°is also fixed,
then the optimization problems arising from our approach can be
solved in polynomial time (under the real complexity model, or under
the bit complexity model under some mild regularity conditions on
the semidefinite problems that arise from our sum-of-squares pro-
blems; see Ramana®) with a consistent set of axioms (resp. non-
deterministic polynomial time with an inconsistent set of axioms). This
is because solving our scientific discovery problem with a fixed degree
and a consistent set of axioms corresponds to solving a semidefinite
optimization problem of a polynomial size, which can be solved in
polynomial time (assuming that a constraint qualification such as Sla-
ter’s condition holds)"”. Moreover, although solving our scientific dis-
covery problem with a fixed degree and an inconsistent set of axioms
corresponds to solving a mixed-integer semidefinite optimization
problem, which is NP-hard, recent evidence*® shows that integer
optimization problems can be solved in polynomial time with high
probability. This suggests that our scientific discovery problem may
also be solvable in polynomial time with high probability. However, if
the degree of g is unbounded then, to the best of our knowledge, no
existing algorithm solves Problem (10) in polynomial time. This
explains why searching for scientific laws of a fixed degree and itera-
tively increasing the degree of the polynomial laws searched over, in
accordance with Occam’s Razor, is a key aspect of our approach.
Inspired by the success of AT-Hilbert in rediscovering existing
scientific laws, we now discuss some exciting research directions that
are natural extensions of this work.

Improving the generality of Al-Hilbert

This work proposes a symbolic discovery framework that combines
background theory expressible as a system of polynomial equalities
and inequalities, or that can be reformulated as such a system (e.g., ina
Polar coordinate system, by substituting x=rcos6,y=rsinf and
requiring that x> + y* = r*). However, many scientific discovery contexts
involve background theory that cannot easily be expressed via poly-
nomial equalities and inequalities, including differential operators,
integrals, and limits, among other operators. Therefore, extending A1-
Hilbert to encompass these non-polynomial settings would be of
interest.

We point out that several authors have already proposed exten-
sions of the sum-of-squares paradigm beyond polynomial basis func-
tions, and these works offer a promising starting point for performing
such an extension. Namely, Léfberg and Parrilo*’ (see also Bach® and
Bach and Rudi®) propose an extension to trigonometric basis func-
tions, and Fawzi et al.”* propose approximating univariate non-
polynomial functions via their Gaussian quadrature and Padé
approximants. Moreover, Huchette and Vielma*® advocate modeling
non-convex functions via piecewise linear approximations with strong
dual bounds. Using such polynomial approximations of non-
polynomial operators offers one promising path for extending A1-
Hilbert to the non-polynomial setting.

Automatic parameter-tuning of Al-Hilbert

Our method AI-Hilbert requires hyperparameter optimization by
the user to trade-off the importance of fidelity to a model, fidelity to
experimental data, and complexity of the symbolic model. Therefore,
one extension of this work could be to automate this hyperparameter
optimization process, by automatically solving mixed-integer and
semidefinite optimization problems with different bounds on the
degree of the proof certificates and different weights on the relative
importance of fidelity to a model and fidelity to data, and using
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machine learning techniques to select solutions most likely to satisfy a
scientist using AT-Hilbert; see also ref. 54 for a review of automated
hyperparameter optimization.

Improving the scalability of Al-Hilbert

One limitation of our implementation of AT-Hilbert is that it relies
on reformulating sum-of-squares optimization problems as semi-
definite problems and solving them via primal-dual interior point
methods (IPMs)"*, This arguably presents a limitation because the
Newton step in IPMs see, e.g., ref. 56 requires performing a memory-
intensive matrix inversion operation. Indeed, this matrix inversion
operation is sufficiently expensive that, in our experience, AI-
Hilbert was unable to perform scientific discovery tasks with more
than n =15 variables and a constraint on the degree of the certificates
searched over of d=20 or greater (in general, runtime and memory
usage is a function of both the number of symbolic variables and the
degree of the proof certificates searched over).

To address this limitation and enhance the scalability of A1-
Hilbert, there are atleast three future directions to explore. First, one
could exploit ideas related to the Newton polytope (or convex hull of
the exponent vectors of a polynomial)® to reduce the number of
monomials in the sum-of-squares decompositions developed in this
paper, as discussed in detail in ref. 34, Chap 3.3.4. Second, one could
use presolving techniques such as chordal sparsity*®* or partial facial
reduction®®® to reduce the number of variables in the semidefinite
optimization problems that arise from sum-of-squares optimization
problems. Third, one could attempt to solve sum-of-squares problems
without using computationally expensive interior point methods for
semidefinite programs, e.g., by using a Burer-Monteiro factorization
approach®®® or by optimizing over a second-order cone inner
approximation of the positive semidefinite cone®*.

Methods

We next state the main theoretical results that underpin AT-Hilbert
and describe the methods used to address the problems studied to
validate AT-Hilbert.

Preliminaries

We let non-boldface characters such as b denote scalars, lowercase
bold-faced characters such as x denote vectors, uppercase bold-faced
characters such as A denote matrices and calligraphic uppercase
characters such as Z denote sets. We let [n] denote the set of indices
{1, ..., n}. We let e denote the vector of ones, O denote the vector of all
zeros, and I denote the identity matrix. We let ||x||, denote the p-norm
of a vector x for p > 1. We let R denote the real numbers, S" denote the
cone of nxn symmetric matrices, and S”, denote the cone of nxn
positive semidefinite matrices.

We also use some notations specific to the sum-of-squares (SOS)
optimization literature; see ref. 32 for an introduction to computa-
tional algebraic geometry and ref. 34 for a general theory of sum-of-
squares and convex algebraic optimization. Specifically, we let R[x],, 54
denote the ring of real polynomials in the n-tuple of variablesx € R” of
degree 2d, P,5: ={p € R[X],54 : P*¥)20 Vx e R"} denote the
convex cone of non-negative polynomials in n variables of degree 2d,
and

i=1

X0 = {p(x) £ 35 . Ml € RIX], 0, pPX) = Zq%(x)} )

denote the cone of sum-of-squares polynomials in n variables of
degree 2d, which can be optimized over via (n:;d) dimensional

semidefinite matrices (c.f. ref. 16) using interior point methods". Note
that X[x],24 € Pn2q, and the inclusion is strict unless n<2, 2d<2 or

n=3,2d=4".Nonetheless, X[x],,»4 provides a high-quality approxima-
tion of P, 54, since each non-negative polynomial can be approximated
(in the ¢; norm of its coefficient vector) to any desired accuracy € > 0 by
a sequence of sum-of-squares®. If the maximum degree d is unknown,
we suppress the dependence on d in our notation.

To define a notion of distance between polynomials, we also
use several functional norms. Let ||-||, denote the ¢, norm of a
vector. Let g e N" be the vector (y,...,u,) and x* stand for the
monomial x/*...x}". Then, for a polynomial g € R[x],,, with the

decomposition qX) = 3 ey, <20 GuXF, We let the notation |

q”pz(Z‘leN":H[lHISZdaz)l/p denote the coefficient norm of the
polynomial,

Finally, to derive new laws of nature from existing ones, we
repeatedly invoke a fundamental result from real algebraic geometry
called the Positivstellensatz (see, e.g., ref. 66). Various versions of the
Positivstellensatz exist, with stronger versions holding under stronger
assumptions see ref. 67, for a review, and any reasonable version being
a viable candidate for our approach. For simplicity, we invoke a com-
pact version due to®, which holds under some relatively mild
assumptions but nonetheless lends itself to relatively tractable opti-
mization problems:

Theorem 1. (Putinar’s Positivstellensatz®>, see also Theorem 5.1 of
ref. 16): Consider the basic (semi) algebraic sets

G:= {X eR": g1(x)=0,. ..,gk(x)ZO}, 5)
H:={xeR": hy(x)=0,....h(x)=0}, 6)

where g;,h; € Rx],, and g satisfies the Archimedean property (see also
ref. 34, Chap. 6.4.4), i.e., there exists an R >0 and ay, ...a, € X[x], such

that R — 31 x2 =ato(x) + S5 a;(0)g;(x).
Then, for any f € R[x],, 54, the implication

xXegnNH = f(x)=20 @)

holds if and only if there exist SOS polynomials o, ..., ax € X[x],, 24, and
real polynomials B, ...,B; € R[x], 4 such that

k l
fOO)=ap00) + ga,-(x)g,-(xﬁ Zlﬁj(x)hj(x)' (8)
i= j=

Note that strict polynomial inequalities of the form h;(x) >0 can
be modeled by introducing an auxiliary variable 7 and requiring that
hi(x)T*-1=0, and thus our focus on non-strict inequalities in Theorem
1is without loss of generality see also ref. 34.

Remarkably, the Positivstellensatz implies that if we set the
degree of a;s to be zero, then polynomial laws consistent with a set of
equality-constrained polynomials can be searched over via linear
optimization. Indeed, this subset of laws is sufficiently expressive
that, as we demonstrate in our numerical results, it allows us to
recover Kepler’s third law and Einstein’s dilation law axiomatically.
Moreover, the set of polynomial natural laws consistent with poly-
nomial (in)equalities can be searched via semidefinite or sum-of-
squares optimization.

Overall problem setting: combining theory and data

AI-Hilbert aims to discover an unknown polynomial model g(x) =0,
which contains one or more dependent variables raised to some power
within the expression (to avoid the trivial solution g=0), is
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approximately consistent with our axioms G and H -meaning d¢ is
small, and explains our experimental data well, meaning g(x;) is small
for each data point i, and is of low complexity.

Let xy, ..., X, denote the measurable variables, and let x; denote the
dependent variable which we would like to ensure appears in our sci-
entific law. Let Q= {g € N" :|| u||; < 2d}. Let the discovered polynomial
expression by

aw= > a4, ©

HeQ

where 2d is a bound on the maximum allowable degree of gq. We for-
mulate the following polynomial optimization problem:

> 1gx)I+A-d(q.GN'H)

X;€D

s.t. >, a,=1,
peQp >1

MiNgeg, ,,

10)

n
a,=0vpeQ: > p>1,

Jj=t+1

where d-, the distance between g and the background theory, is the
optimal value of an inner minimization problem, 1> 0 is a hyperpara-
meter that balances the relative importance of model fidelity to the
data against model fidelity to a set of axioms, the first constraint
ensures that x;, our dependent variable, appears in g, the second
constraint ensures that we do not include any unmeasured variables. In
certain problem settings, we constrain d°=0, rather than penalizing
the size of d° in the objective.

Note that the formulation of the first constraint controls the
complexity of the scientific discovery problem via the degree of the
Positivstellensatz certificate: a smaller bound on the allowable degree
in the certificate yields a more tractable optimization problem but a
less expressive family of certificates to search over, which ultimately
entails a trade-off that needs to be made by the user. Indeed, this trade-
off has been formally characterized by Lasserre®’, who showed that
every non-negative polynomial is approximable to any desired accu-
racy by a sequence of sum-of-squares polynomials, with a trade-off
between the degree of the SOS polynomial and the quality of the
approximation.

After solving Problem (10), one of two possibilities occurs. Either
the distance between g and our background information is O, or the
Positivstellensatz provides a non-zero polynomial

k ]
r(x) :=q(x) — ap(x) — Zlai(x)g,-(X) - ;ﬂ,»(x)h,(x) 1)
i= Jj=

which defines the discrepancy between our derived physical law and
its projection onto our background information. In this sense, sol-
ving Problem (10) also provides information about the inverse
problem of identifying a complete set of axioms that explain g. In
either case, it follows from the Positivstellensatz that solving Pro-
blem (10) for different hyperparameter values and different bounds
on the degree of g eventually yields polynomials that explain the
experimental data well and are approximately derivable from
background theory.

Discovering scientific laws from background theory alone

Suppose that the background theory B constitutes a complete set of
axioms that fully describe our physical system. Then, any polynomial
that contains our dependent variable x; and is derivable from our
system of axioms is a valid physical law. Therefore, we need not even
collect any experimental data, and we can solve the following

feasibility problem to discover a valid law (let Q = {gr € N" ;|| p||; <2d}):

3 qe)= 3 ax*
HeQ

k [
st gx)=ag(x)+ _Zlari(x)g,-(x)+ les(x)hj(x).
Jj= Jj=
> 4=l

peQp >1

12)

n
a,=0vpeQ: 3 p>l,

j=t+1
a;(x) € 2[X]p 24, Bi(X) € RIX]; 24,

where the second and third constraints ensure that we include the
dependent variable x; in our formula g and rule out the trivial solution
g =0, and exclude any solutions g that contain uninteresting symbolic
variables respectively.

Note that if we do not have any inequality constraints in either
problem, then we may often eliminate &; and obtain a linear optimi-
zation problem.

Hagen-Poiseuille equation

We consider the problem of deriving the velocity of laminar
fluid flow through a circular pipe, from a simplified version of the
Navier-Stokes equations, an assumption that the velocity can
be modeled by a degree-two polynomial in the radius of the pipe,
and a no-slip boundary condition. Let u(r) denote the velocity in the
pipe where r is the distance from the center of the pipe, R denotes
the radius of the pipe, Ap denotes the pressure differential
throughout the pipe, L denotes the length of the pipe, and u
denote the viscosity of the fluid, we have the following velocity
profile for r € [0, R]:

u(r)= 222(r2 — R?).

o 13)

We now derive this law axiomatically by assuming that the velocity
profile can be modeled by a symmetric polynomial and iteratively
increasing the degree of the polynomial until we obtain a polynomial
solution, consistent with Occam’s Razor. Accordingly, we initially set
the degree of u to be two and add together the following terms with
appropriate polynomial multipliers:

u=cy+c,r?, (14)

o dp
_ = 15
par(raru) I 0, 15)
Co+C,R*=0, (16)

dp

= _ 17
L Ap. 17)

Here Equation (14) posits a quadratic velocity profile in r, Equation (15)
imposes a simplified version of the Navier-Stokes equations in
spherical coordinates, Equation (16) imposes a no-slip boundary
condition on the velocity profile of the form u(R) = 0, and Equation (17)
posits that the pressure gradient throughout the pipe is constant. The
variables in this axiom systemare u, r, R, L, 1, Ap, o, 3, and %. We treat
co,cz,g—ﬁ as variables that cannot be measured and use the differ-
entiate function in Julia to symbolically differentiate u=cq+c,r*
with respect to r in Equation (15) before solving the problem, giving the
equivalent expression 4c,ur — r%. Solving Problem (12) with u as the
dependent variable, and searching for polynomial multipliers (and
polynomial g) of degree at most 3 in each variable and an overall
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degree of at most 6, we get the expression:
4rluu — rAp(R*> — r?)=0, 18)

which confirms the result. The associated polynomial multipliers for
Equations (14)-(17) are:

4rly, 19)
r’L —LR?, (20)
4rlLy, (21
r’—rr%. (22)

Radiated gravitational wave power

We now consider the problem of deriving the power radiated from
gravitational waves emitted by two-point masses orbiting their com-
mon center of gravity in a Keplerian orbit, as originally derived by
Peters and Mathews®® and verified for binary star systems by Hulse and
Taylor®. Specifically,*® showed that the average power generated by
such a system is:

32G*
pP=— W(”llmz)z("’h +my),

(23)
where P is the (average) power of the wave, G = 6.6743 x 10 "' m* kg™ s
is the universal gravitational constant, c is the speed of light, m;, and
m, are the masses of the objects, and we assume that the two objects
orbit a constant distance of r away from each other. Note that this
equation is one of the twenty so-called bonus laws considered in the
work introducing Al-Feynman®, and notably, is one of only two such
laws that neither Al-Feynman nor Eureqa’® were able to derive. We now
derive this law axiomatically, by combining the following axioms with
appropriate multipliers:

w*r’ — G(m; +m,)=0, (24)
5 -1 xy  0\\°
X5(my +my)*c’ P+ GTr T mmyr*| xy -1 0 =0,
o o -!
(25
x’+y*=1, (26)

where we make the variable substitution x = cos ¢,y = sin ¢, Tr stands
for the trace function, and we manually define the derivative of a
bivariate degree-two trigonometric polynomial in ¢ = ¢po + wt in (x,y)
in terms of (x,y, w) as the following linear operator:

d ( sing >T<aL1 am) < simp)
dt \ \ cos¢ a; a,)\cosg
—a)( sing )T < Aoty G — Gy ) < sind))
cos ¢ Ay — Ay —a;—ay;) \Cosp )’
Note that Equation (24) is a restatement of Kepler’s previously
derived third law of planetary motion, Equation (25) provides the

gravitational power of a wave when the wavelength is large compared
to the source dimensions, by linearizing the equations of general

@7)

relativity, the third equation defines the quadruple moment tensor,
and Equation (26) (which we state as x*+y? =1 within our axioms) is a
standard trigonometric identity. Solving Problem (12) with P as the
dependent variable, and searching for a formula involving
P, G, r, c, m;, my with polynomial multipliers of degree at most 20, and
allowing each variable to be raised to power for the variables
(P,x,y,0,G,r,c,m, m,) of at most (1,4,4,4,3,6,1,5,5) respectively,
then yields the following equation:

%Prscs(m1 +my)?= %8 G*mimi(my +m,)®, (28)

which verifies the result. Note that this equation is somewhat expen-
sive to derive, owing to the fact that searching over the set of degree
20 polynomial multipliers necessitates generating a large number of
linear equalities, and writing these equalities to memory is both time
and memory-intensive. Accordingly, we solved Problem (12) using the
MIT SuperCloud environment” with 640 GB RAM. The resulting
system of linear inequalities involves 416392 candidate monomials,
and takes 14368s to write the problem to memory and 6.58s to be
solved by Mosek. This shows that the correctness of the universal
gravitational wave equation can be confirmed via the following
multipliers:

5 Gn2m3 ((u"’rG(x2 + yZ)2 +w?rPG(m, + my) + GA(m; + mz)z) , (29
1 s

30

20" (30)

%8 wW*roGPm?ma(my + my)(xx* +y* +1). (31

Finally, Fig. 4 illustrates how the Positivstellensatz derives this
equation, by demonstrating that (setting m; =m, =c=_G=1), the grav-
itational wave equation is precisely the set of points (w, r, P) where our
axioms hold with equality.

Lwr=2
E20P+32rwf =0
E5Pr+64=0

Fig. 4 | Intersection of background theory axioms for the Radiation Gravita-
tional Wave Power Equation. lllustration of the Positivstellensatz and its ability to
recover the Radiation Gravitational Wave Power Equation in the special case where
m;=m,=c=G=1Keeping other variables constant, the points that obey the power
equation are the intersection of the points that obey Kepler’s Third Law and the
points of a linearized equation from general relativity, and the wave equation is
recoverable by adding these other equations with appropriate polynomial
multipliers.
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Einstein’s Relativistic Time Dilation Law
Next, we consider the problem of deriving Einstein’s relativistic time
dilation formula from a complete set of background knowledge
axioms plus an inconsistent Newtonian axiom, which posits that light
behaves like a mechanical object. We distinguish between these
axioms using data on the relationship between the velocity of a light
clock and the relative passage of time, as measured experimentally by
Chou et al.”” and stated explicitly in the work of Cornelio et al.**, Tab. 6.
Einstein’s law describes the relationship between how two
observers in relative motion to each other observe time and demon-
strates that observers moving at different speeds experience time
differently. Indeed, letting the constant ¢ denote the speed of light, the
frequency f of a clock moving at a speed v is related to the frequency fo
of a stationary clock via

(32)

We now derive this law axiomatically, by adding together the
following five axioms with appropriate polynomial multipliers:

cdt, —2d=0, (33)
cdt —2L=0, (34)
412 +4d* — 2de* =0, 35)
fdtp=1, (36)
fdt=1, (37)
plus the following (inconsistent) Newtonian axiom:
deX(* +c%) - 4L*=0, (38)

where dt, denotes the time required for a light to travel between two
stationary mirrors separated by a distance d, and dt denotes the time
required for light to travel between two similar mirrors moving at
velocity v, giving a distance between the mirrors of L.

These axioms have the following meaning: Equation (33) relates
the time required for light to travel between two stationary mirrors to
their distance, Equation (34) similarly relates the time required for light
to travel between two mirrors in motion to the effective distance L,
Equation (35) relates the physical distance between the mirrors d to
their effective distance L induced by the motion v via the Pythagorean
theorem, and Equations (36), (37) relate frequencies and periods.
Finally, Equation (38) assumes (incorrectly) that light behaves like
other mechanical objects, meaning if it is emitted orthogonally from
an object traveling at velocity v, then it has velocity vv2 +c2.

By solving Problem (10) with a cardinality constraint c.f. refs. 73,74
that we include at most 7 =5 axioms (corresponding to the exclusion of
one axiom), a constraint that we must exclude either Equation (34) or
Equation (38), f as the dependent variable, experimental data in
f.fo, v, c to separate the valid and invalid axioms (obtained from*, Tab.
6 by setting fo =1 to transform the data in (f—fo)/fo into data in f, fo),
fo,v,c as variables that we would like to appear in our polynomial
formula g(x)=0Vx € GNH, and searching the set of polynomial
multipliers of degree at most 2 in each term, we obtain the law:

—fo+fP+far?=0, (39)
in 6.04 seconds using Gurobi version 9.5.1. Moreover, we immedi-
ately recognize this as a restatement of Einstein’s law (32). This shows

that the correctness of Einstein’s law can be verified by multiplying the
(consistent relativistic set of) axioms by the following polynomials:

2df5f* +ofof*, (40)

—ofof = 2fof°L, (4D

—f272, (42)

—2cdf, f* — f*, (43)
def f — dif fv? + g — fou?. (44)

Moreover, it verifies that relativistic axioms, particularly the axiom
cdt =2L, fit the light clock data of ref. 72 better than Newtonian axioms,
because, by the definition of Problem (10), AT-Hilbert selects the
combination of =35 axioms with the lowest discrepancy between the
discovered scientific formula and the experimental data.

Kepler’s Third Law of Planetary Motion
We now consider the problem of deriving Kepler’s third law of pla-
netary motion from a complete set of background knowledge
axioms plus an incorrect candidate formula as an additional
axiom, which is to be screened out using experimental data. To
our knowledge, this paper is the first work that addresses this par-
ticularly challenging problem setting. Indeed, none of the approa-
ches to scientific discovery reviewed in the introduction successfully
distinguish between correct and incorrect axioms via experimental
data by solving a single optimization problem. The primary
motivation for this experiment is to demonstrate that AT-Hilbert
provides a system for determining whether, given a background
theory and experimental data, it is possible to improve upon a
state-of-the-art scientific formula using background theory and
experimental data.

Kepler’'s law describes the relationship between the distance
between two bodies, e.g., the sun and a planet, and their orbital peri-

ods and takes the form:
_Amd + d2)3
p= G(my+my) ’

where G=6.6743x10"m*kg's? is the universal gravitational
constant,m;, and m, are the masses of the two bodies, d; and d, are the
respective distances between m;, m, and their common center of mass,
and p is the orbital period. We now derive this law axiomatically by
adding together the following five axioms with appropriate polynomial
multipliers:

(45)

dim; —d,m,=0, (46)

(d, +d,)’Fg — Gmym, =0, (47)
F.—myd,w*=0, (48)
F.—Fg=0, 49)
wp=1, (50)

plus the following (incorrect) candidate formula (as an additional
axiom) proposed by Cornelio et al.*”* for the exoplanet dataset (where
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Coefficient distance to ground truth
>

1 25 50 75 100
Number of data points

(a) Omitting axiomd_1m_1-d_2m_2=0

IS =) =3

Coefficient distance to ground truth
N

1 25 50 75 100
Number of data points

(b) Omitting all axioms

Fig. 5 | Coefficient distance between scientific formula derived by Al-Hilbert and ground truth. The x-axis depicts the number of data points where we omit some

axioms (a), or all axioms (b).

the mass of the planets can be discarded as negligible when added to
the much bigger mass of the star):

p*m; —0.1319(d, +d,)*=0. (51)
Here F, and F. denote the gravitational and centrifugal forces in the
system, and w denotes the frequency of revolution. Note that we
replaced p with 2mp in our definition of revolution period in order that
 does not feature in our equations; we divide p by 2m after deriving
Kepler’s law.

The above axioms have the following meaning: Equation (46)
defines the center of mass of the dynamical system, Equation (47)
defines the gravitational force of the system, Equation (48) defines the
centrifugal force of the system, Equation (49) matches the centrifugal
and dynamical forces, and Equation (50) relates the frequency and the
period of revolution.

Accordingly, we solve our polynomial optimization problem
under a sparsity constraint that at most 7=5 axioms can be used
to derive our model, a constraint that d°=0 (meaning we need
not specify the hyperparameter A in (10)), by minimizing the objective

n

> 19, (52)

i=1

where g is our implicit polynomial and {fi}f‘zl is a set of observations of

the revolution period of binary stars stated in ref. 43, Tab. 5. Searching

over the set of degree-five polynomials g derivable using degree six

certificates then yields a mixed-integer linear optimization problem in

18958 continuous and 6 discrete variables, with the solution:
mym,Gp? — myd,ds — mydid, — 2m,d,d>=0, (53)

which is precisely Kepler’s third law. The validity of this equation can

be verified by adding together our axioms with the weights:

—d2pu, (54)

- (55

dip? +2dyd,p* + d3p?, (56)
dip? +2d,d,p* + d5p?, (57)

myd,dspw + myds dypw + 2myd, dopw + myd,ds + myds d, + 2m,d, d3,
(58

as previously summarized in Fig. 3. This is significant, because existing
works on symbolic regression and scientific discovery?>” often strug-
gle to derive Kepler’s law, even given observational data. Indeed, our
approach is also more scalable than deriving Kepler’'s law manually;
Johannes Kepler spent four years laboriously analyzing stellar data to
arrive at his law’®.

Kepler’s law revisited with missing axioms
We now revisit the problem of deriving Kepler’s third law of planetary
motion considered, with a view to verifying AT-Hi 1bert’s ability to
discover scientific laws from a combination of theory and data. Spe-
cifically, rather than providing a complete (albeit inconsistent) set of
background theories, we suppress a subset of the axioms (46)-(50)
and investigate the number of noiseless data points required to
recover Equation (53). To simplify our analysis, we set G=1 and gen-
erate noiseless data observations by sampling the values of the inde-
pendent variables (the masses of the two bodies and the distance
between them) uniformly at random in the ranges observed in real
data (i.e., exoplanet dataset in Al-Descartes*’) and computing the value
of the dependent variable (the revolution period) using the ground
truth formula.

To exploit the fact that our data observations are noiseless, we
solve the following variant of (10):

L > 19+ - d@G M+ A=A = L) gl
X;€

s.t. > a,=l,
neQu 21

n
a,=0vpeQ: > p=l,

j=t+1
> lgixpl<IDle,
XD
Y aq<-110V Y a,21/10
peQ:p =0 peQ:p; =0

(59

where we set 1;=0.9,14,=0.01, ¢=107 for all experiments, seek a
degree 4 polynomial g using a proof certificate of degree at most 6,
and use L;-coefficient norm of g as a regularization term analogously to
Lasso regression”’. Note that the second-to-last constraint ensures that
the derived polynomial g explains all (noiseless) observations up to a
small tolerance. Further, the last constraint is imposed as a linear
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inequality constraint with an auxiliary binary variable via the big-M
technique’®”, to ensure that the derived formula includes at least one
term not involving the rotation period.

Figure 5 depicts the ¢, coefficient distance between the scientific
formula derived by AI-Hilbert and Equation (53) mod
dim, —d,m, =0 as we increase the number of data points, where we
suppress the axiom dym;-d,m,=0 (left), where we suppress all
axioms (right). In both cases, there is an all-or-nothing phase transition
[(cf. ref. 80), for a discussion of this phenomenon throughout
machine learning] in AT-Hilbert’s ability to recover the scientific law,
where before a threshold number of data points, AT-Hi 1bert cannot
recover Kepler’s law, and beyond the threshold, AT-Hi 1bert recovers
the law exactly.

Note that the increase in the coefficient distance before m=71
data points reflects that solutions near g =0 (and thus closer in coef-
ficient norm to the ground truth) are optimal with m =0 data points
but do not fit a small number of data points perfectly, while poly-
nomials g further from the ground truth in coefficient norm fit a small
number of data points perfectly. Indeed, the total error with respect to
the training data is less than 107 for all values of m in both problem
settings.

Figure 5 reveals that when only the axiom dym;—dom,=0 is
missing, it is possible to perform scientific discovery with as few as 46
data points, while at least 71 data points are needed when all axioms are
missing. This is because the axiom dym; — d,m, =0 multiplied by the
term in the proof certificate —d%pzw2 is of a similar complexity as
Kepler’s Third Law. Thus, the value of dym; — d,m;, = 0 is 46 data points,
while the value of all axioms is 71 data points. The value of data com-
pared to background theory depends, in general, on the problem
setting and the data quality, as well as how well dispersed the data
samples are.

Bell inequalities
We now consider the problem of deriving Bell Inequalities in quantum
mechanics. Bell Inequalities® are well-known in physics because they
provide bounds on the correlation of measurements in any multi-
particle system which obeys local realism (i.e., for which a joint prob-
ability distribution exists), that are violated experimentally, thus
demonstrating that the natural world does not obey local realism. For
ease of exposition, we prove a version called the GHZ inequality®*.
Namely, given random variables A, B, C which take values on {+ 1}, for
any joint probability distribution describing A, B, C, it follows that
P(A=B)+PA=C)+P(B=0C)=1, (60)
but this bound is violated experimentally®.

We derive this result axiomatically, using Kolmogorov's prob-
ability axioms. In particular, letting p_;; ;=P(A= —1,B=1,C= —1),
deriving the largest lower bound for which this inequality holds is
equivalent to solving the following linear optimization problem:

Minpyg+ppc+Pac St PES, (61
where S:={p=20,e"p=1}, pss=p-1-1-1+P-1-11*P111+p111 and
Pac Pac are defined similarly.

We solve this problem using Gurobi and Julia, which verifies
that y =1is the largest value for which this inequality holds, and obtains
the desired inequality. Moreover, the solution to its dual problem
yields the certificate 2p_; -; -1 +2p; 1, O, which verifies that 1 is indeed
a valid lower bound for psz + psc + pac, by adding e'p to the left-hand
side of this certificate and 1 to the right-hand side.

To further demonstrate the generality and utility of our approach,
we now derive a more challenging Bell inequality, namely the so-called
13322 inequality (c.f. ref. 84). Given particles Ay, A,, As, By, By, B3 which
take values on {+1}, the inequality reveals that for any joint

probability distribution, we have:

E[A;] — E[A,] + E[B;] — E[B,] — E[(A4; — Ay)(B; — B,)] (62)
+E[(A; +Ay)Bs] + E[A3(B + By)] < 4.

Using the same approach as previously, and defining p to be an
arbitrary discrete probability measure on {+1}°, we verify that the
smallest such upper bound which holds for each joint probability
measure is 4, with the following polynomial certificate modulo e’p=1:

4pr11111 TAP121001 T 8P221011 T 4P 12011 T 4P22011 Y 8P222111
AP 11211 T 8P211201 TAP121201 T 8P221211 T4P212211 T 4P222211
+4P111121 T 4P211121 T 12P121121 1129221121 7 8P122121 T 8P222121
+8P111221 1 8P211221 1120121221 1120221221 T 4P122221 Y 4P222221

tA4P11221214P212212 TAP111122 T 8P121122 T AP 21122 Y 4PL12122
+8P122122 402221221 8P111222 1 4P211222 7 8P121222 T 4P221222
+A4D112222T4P12222220

(63)

where an index of 1 denotes that a random variable took the value —1
and an index of 2 denotes that a random variable took the value 1, and
the random variables are indexed in the order A;, A,, A3, By, By, Bs.

Data availability
The data used in this study are available in the AT-Hilbert GitHub
repository®: https://github.com/IBM/Al-Hilbert.

Code availability
The code used for this work can be found, freely available, at the
AI-Hilbert GitHub repository®: https://github.com/IBM/Al-Hilbert.
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