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Abstract

Let X be a variety with a stratification S into smooth locally closed subvarieties such that X is
locally a product along each stratum (e.g., a symplectic singularity). We prove that assigning to each
open subset U ⊂ X the set of isomorphism classes of locally projective crepant resolutions of U defines
an S-constructible sheaf of sets. Thus, for each stratum S and basepoint s ∈ S, the fundamental group
acts on the set of germs of projective crepant resolutions at s, leaving invariant the germs extending to
the entire stratum. Global locally projective crepant resolutions correspond to compatible such choices
for all strata. For example, if the local projective crepant resolutions are unique, they automatically glue
uniquely.

We give criteria for a locally projective crepant resolution ρ : X̃ → X to be globally projective.
We show that the sheafification of the presheaf U 7→ Pic(ρ−1(U)/U) of relative Picard classes is also
constructible. The resolution is globally projective only if there exist local relatively ample bundles
whose classes glue to a global section of this sheaf. The obstruction to lifting this section to a global
ample line bundle is encoded by a gerbe on the singularity X. We show the gerbes are automatically
trivial if X is a symplectic quotient singularity.
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Our main results hold in the more general setting of partial crepant resolutions, that need not have
smooth source.

We apply the theory to symmetric powers and Hilbert schemes of surfaces with du Val singularities,
finite quotients of tori, multiplicative and Nakajima quiver varieties, as well as to canonical threefold
singularities.

1 Introduction

Let X be a variety. Consider the classification of all isomorphism classes of pairs (Y, ρ : Y → X) where
Y is a variety and ρ is a birational morphism. The category of such pairs (Y, ρ) is discrete: given (Y1, ρ1)
and (Y2, ρ2), if there is an isomorphism φ : Y1 → Y2 satisfying ρ1 = ρ2◦φ then φ is unique. Consequently,
the set of isomorphism classes forms a sheaf (whereas, a priori, one might only expect the categories of
pairs to form a stack).

In more detail, suppose we have an open covering
⊔
Ui → X of X and birational morphisms Vi → Ui.

We seek a variety Y with a map to X and an open covering
⊔
Vi → Y such that the diagram

Vi

��

// Y

��

Ui
// X

commutes for all i. If such a Y exists, it is unique up to unique isomorphism. Indeed, for each i, j, if
Vi → Ui and Vj → Uj are isomorphic over a nonempty overlap Ui ∩ Uj , then they uniquely glue, by
the preceding paragraph. So the only condition for the existence of Y is that the maps are pairwise
compatible, i.e., every pair Vi → Ui and Vj → Uj restrict to isomorphic maps over the intersection
Ui ∩ Uj .

We will be especially interested in the case where each Vi → Ui is (locally) projective and crepant.
In this case, Y → X is locally projective and crepant. As a special case, suppose that each Ui admits
a unique locally projective crepant resolution Vi → Ui. Then the gluing condition is automatic, and we
conclude that X admits a unique locally projective crepant resolution Y → X. The most well-known
example of this phenomenon is if X has only du Val surface singularities, in which case the resolution
Y → X is projective and minimal. We give more interesting examples below.

In this paper, we classify locally projective (partial) crepant resolutions from local data, under certain
hypotheses. Our primary setting of interest is that of symplectic resolutions. In order for X to admit a
symplectic resolution, it must be a symplectic singularity in the sense of Beauville [Bea00]. According to
Kaledin [Kal06], algebraic symplectic singularities have a finite stratification by symplectic leaves.

Our main theorem shows that isomorphism classes of locally projective symplectic resolutions of X
are in bijection with compatible, monodromy-free choices of local symplectic resolutions at basepoints of
the strata. We also give criteria for when these resolutions are globally projective.

We actually prove a much more general statement for (partial) crepant resolutions, that does not
require the symplectic structure, at the price of assuming the existence of a nice stratification.

We provide two examples of quotient singularities where the utility of this approach is visible.

Example 1.1. LetSn act on (C×)2n by permuting the n copies of (C×)2. Take the quotient (C×)2n/Sn
∼=

Symn((C×)2). Then the singular locus is the image of the diagonal (where two pairs are equal). At a
singular point, there is a local neighborhood isomorphic to a product of singularities C2m/Sm. These
are well-known to admit a unique projective crepant resolution, by the Hilbert–Chow morphism (and
this is also a special case of [Bel16, Proposition 1.2], which we use below). So there is a unique locally
projective crepant resolution, gluing these together. This resolution is in fact globally projective, given
by the Hilbert–Chow morphism Hilbn((C×)2) → Symn((C×)2).

Example 1.2. Fix n ∈ N. The group Bn := Cn
2 ⋊Sn acts on (C×)2n where Sn denotes the symmetric

group permuting the n copies of (C×)2 and Cn
2 acts diagonally with C2 acting on (C×)2 via (z, w) 7→

(z−1, w−1). The singular locus of the quotient X := (C×)2n/Bn is the union of the diagonal with the
locus of n-tuples of pairs of complex numbers containing a pair of the form (±1,±1). Along a point
of a diagonal-type stratum—that is, a stratum where some pairs are equal, but none are (±1,±1)—the
singularity is a product of singularities C2m/Sm, which each admit a unique crepant resolution given by
Hilb2m(C2). Singularities where some number of pairs are one of the four pairs (±1,±1) are the same
as in a product of singularities of the form Symm(C2/C2), with C2 now acting by ±I. Our results then
imply the formula:

#{isomorphism classes of locally projective crepant resolutions of X}

= (#{isomorphism classes of projective crepant resolutions of Symn(C2/C2)})4 = n4,
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where the last equality is a special case of Bellamy’s formula1 in [Bel16, Proposition 1.2]. To construct
the resolutions, independently pick a local projective crepant resolution around each of the most singular
points (all pairs are equal and are one of the four pairs (±1,±1)), and these spread out uniquely to a
global resolution. In fact, we can see that all such resolutions are globally projective. See Section 4.2 for
more details.

Our key condition on the singularities is the following. Let X be a complex analytic variety equipped
with a locally finite stratification S = {Si} by Zariski locally closed, connected, smooth subvarieties.
(Note that, if X is in fact a complex algebraic variety, by which we mean a separated, reduced scheme of
finite type over C, then the stratification must be finite.)

Definition 1.3. X is said to be locally a product along Si if, for every s ∈ Si, there is a connected
neighborhood U ∋ s in X, a pointed stratified variety F ∋ 0, and a stratified isomorphism φ : (U ∩Si)×
F → U which restricts to the inclusion on (U ∩ Si) × {0}. We call the triple (U,F, φ) a local product
neighborhood and refer to F as a local slice to Si.

Note that the condition implies that the pointed analytic germs of X along s ∈ Si are locally constant
in s. In particular, since Si is connected, all germs of X along points of Si are isomorphic.

Our main results concern varieties X with a locally finite stratification S by such strata, such that F
is stratified and the isomorphism φ respects the stratification. We are interested in crepant resolutions
of X, so we assume that X is normal and that its canonical divisor is Q-Cartier. For technical purposes
we will also need to assume that F admits a projective crepant resolution F̃ → F with H1(F̃ ,O) = 0
(see Definition 3.2), in other words local resolutions can be obtained by resolving the slice. This holds in
all our examples; for the general case, see Remark 3.4.

Since X is assumed to be normal, and our neighborhoods U are connected, they are irreducible.

Definition 1.4. For an open set U ⊂ X, let Rs(U) denote the set of isomorphism classes of (smooth)
locally projective, crepant resolutions of U .

Note that an isomorphism of resolutions is stronger than that of abstract varieties as it is required to
induce the identity map over the base.

In the main body of the text, we will relax the condition that the source is smooth and study partial
crepant resolutions locally dominated by a terminal crepant resolution.

The assignment U 7→ Rs(U) is a presheaf of sets. In fact, is is a sheaf, thanks to the uniqueness of
gluing. Our main result is then:

Theorem 1.5. For a variety X with stratification as above, the sheaf Rs is S-constructible.
Example 1.6. Suppose that X has two strata: the open stratum S0 (the smooth locus), and one singular
connected stratum S1, along which X is locally a product. Pick a basepoint s1 ∈ S1. The theorem then
implies that the fundamental group π1(S1, s1) acts on the stalk Rs

s1 of the sheaf Rs at s1. The fixed
points of this action are the resolutions that extend to a (locally projective, crepant) resolution on a
neighborhood US1 of all of S1. Since these resolutions are isomorphisms over S0 ∩ US1 , they glue to the
identity resolution S0 → S0, to give a global locally projective crepant resolution of X. So Rs(X) can
be viewed as the subset of fundamental group invariant resolutions of Rs

s1 .

Example 1.7. Let X be singular with stratification S := {S0, S1, S2}, such that Si ⊃ Si+1 for i = 0, 1.
Again we have a minimum stratum, S2, and so can pick a crepant resolution in a neighborhood of some
s2 ∈ S2 and then ask if it extends to neighborhoods US2 , US1 , and then US0 . In this way Rs(X) is again
the subset of Rs

s2 invariant under the fundamental groups of S2 and S1. In words, crepant resolutions
are determined by local crepant resolutions around their “most singular” points.

The sheaf Rs is governed by a fundamental object: the presheaf P of relative rational Picard groups,
U 7→ Pic(ρ−1(U)/U) ⊗Z Q (see Theorem 1.15 below). Restricted to the codimension two strata (where
there can only be du Val singularities), its sheafification recovers the local systems defined by Namikawa to
understand the deformation theory of symplectic singularities in [Nam11]; these local systems determine
the Namikawa Weyl (or symplectic Galois) group [Nam10], with monodromy indicating the presence of
non-simply laced types. This group was recently shown to act on cohomology of fibers of symplectic
resolutions, defining a vast generalization of Springer theory [MN19].

The theorem implies the following description of the possible projective crepant resolutions:

Corollary 1.8. Fix (X, S) a stratified variety as above. Pick a basepoint si ∈ Si for each stratum
Si ∈ S. Then isomorphism classes of resolutions in Rs(X) are in bijection, via restriction, with the set
of locally projective, crepant, compatible, π(Si, si)-invariant local resolutions of neighborhoods of the si.

The second goal of this paper is to express the aforementioned compatibility conditions in terms of
linear algebra, thereby establishing a framework to build global resolutions from local ones.

It is well known that a local system of sets on a space is equivalent to a functor from the fundamental
groupoid to sets; by choosing a basepoint this is then equivalent to an action of the fundamental group
on the fiber at the basepoint. In the stratified setting, MacPherson explained that constructible sheaves

1Bellamy is counting symplectic resolutions but the notions of symplectic and crepant agree whenever a symplectic resolution
exists, see e.g. [Kal03, Proposition 3.2].

3



can similarly be defined as functors from the exit path category (see [Tre09, Theorem 1.2]). Let us recall
the statement.

Definition 1.9. Given a locally finite stratified topological space X = ⊔iSi with Si locally closed smooth
manifolds an exit path is a path γ : [0, 1] → X such that, for 0 ≤ t1 < t2 ≤ 1, the dimension of the
stratum containing γ(t1) is less than or equal to the dimension of the stratum containing γ(t2).

Exit paths are all concatenations of paths of a simpler form:

Definition 1.10. A simplified exit path is γ : [0, 1] → X such that γ((0, 1]) all lies in the same stratum.

So, a simplified exit path either lies in a single stratum, or immediately exits one stratum to another.
All exit paths are finite concatenations of simplified exit paths (up to parameterization).

Definition 1.11. Let Ex(X,S) be the category whose objects are points x ∈ X and whose morphisms
are tame homotopy classes of exit paths, through exit paths.

Here, following [Tre09], a tame homotopy is a map H : [0, 1]× [0, 1] → X such that the source can be
continuously triangulated with faces mapping to the same stratum. We will not need this notion in this
paper.

Theorem 1.12 (MacPherson; see [Tre09]). There is an equivalence between S-constructible sheaves and
functors F : Ex(X,S) → Sets. This equivalence sends a functor F to the sheaf F given by:

F(U) = Γ(U,F ) :=

{
(ρx)x∈U ∈

∏
x∈U

F (x)

∣∣∣∣∣ ρy = F ([γ])(ρx), for all exit paths γ : x→ y in U

}
.

Thus, Theorem 1.5 can be rephrased as the following:

Corollary 1.13. There is a functor R : Ex(X,S) → Sets, sending x ∈ X to the stalk Rs
x, such that

Rs(U) = Γ(U,R). The same is true for the functor giving only the smooth resolutions.

To keep the prerequisites to a minimum, we will not rely on MacPherson’s equivalence. We will instead
recall and use the following easier part of MacPherson’s result: There is a unique parallel transport on
exit paths, such that global sections of F are the same as exit path compatible choices of local sections.
A proof is provided for the reader’s convenience in Section 3.4.

If we label by Si the strata of X and choose basepoints si ∈ Si, it is clear that f ∈ Γ(X,R) is uniquely
determined by its values in the stalks R(si): we take the ones compatible under exit paths with endpoints
among the si. We deduce a more precise version of Corollary 1.8, where the compatibility between local
resolutions is given by one being sent to another (up to isomorphism) via exit paths with endpoints the
si. Note that everything is determined by the local resolutions on the closed strata (although to express
compatibility we need to consider exit paths to non-closed strata).

To express the isomorphism classes of local projective crepant resolutions, we use that two such local
resolutions are related by a birational transformation given by a line bundle. Fix X̃ a projective crepant
resolution of X (if one exists). Then isomorphism classes of projective crepant resolutions correspond
to Mori chambers in the movable cone Mov(X̃/X) ⊆ Pic(X̃/X)⊗Z Q, associating each resolution to its
ample cone. (Note that, when X is affine algebraic, it is a consequence of [BCHM10, Corollary 1.3.2]
that there are only finitely many such chambers; see Remark 3.4 below for more details.)

Applying this to strata, we can express parallel transport along exit paths in terms of linear mon-

odromy on the relative Picard group. Given a locally projective crepant resolution ρ : X̃ → X, let PX̃
Z be

the presheaf of relative Picard groups, PX̃
Z (U) := Pic(ρ−1(U)/U), and let P := PX̃

Z ⊗Z Q be the associated
presheaf of rational vector spaces.

Remark 1.14. Since any two crepant resolutions coincide outside codimension two subsets, these
presheaves do not depend on the choice of X̃: any other locally projective smooth crepant resolution
X̃ ′ → X will canonically have the same class group of Weil divisors up to linear equivalence, hence the
same Picard group, and then the same relative Picard group since pullbacks of line bundles on X agree.
So we can omit the X̃. However, for consistency with notation in the main body of the article, we keep
the notation in the integral case (it becomes important when we allow X̃ to be singular).

Theorem 1.15. Assume that X is equipped with a stratification satisfying our hypotheses, and that
ρ : X̃ → X is a locally projective crepant resolution. Then the presheaf P of local relative rational Picard
groups has sheafification P♯ which is a constructible sheaf of rational vector spaces. The sheaf Rs is the
sheafification of the associated presheaf of sets of Mori chambers.

As a result of this, we can give a necessary condition for a locally projective crepant resolution to be
globally projective: the section of Mori chambers should be represented by a global section of P♯, i.e.,
consistent choice of local relatively ample rational class. In many cases we will see that this is almost a
biconditional; in particular we will show:

Theorem 1.16. Let X̃ → X be a locally projective crepant resolution of a Q-factorial symplectic singu-
larity (e.g., a symplectic quotient singularity) with a finite symplectic stratification. Then X̃ is globally
projective if and only if there exists an associated section σ ∈ Γ(X,P♯) of relatively ample classes. Such
a section uniquely determines a relatively ample class in Pic(X̃/X)⊗Z Q.
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Remark 1.17. For general X, it is not true that the existence of a consistent section of local relatively
ample classes is enough to have a relatively ample bundle on all of X̃, i.e., for X̃ → X to be globally
projective. See Example 3.14.

For general X, we will prove:

Theorem 1.18. Given a locally projective crepant resolution X̃ → X and a section σ̃ ∈ Γ(X,PX̃,♯
Z )

of relatively ample classes for X̃ → X, there is a canonical gerbe Lσ̃ on X. Then X̃ → X is globally
projective with relatively ample line bundle locally in the class σ̃ if and only if Lσ̃ is trivial.

Finally, returning to arbitrary X, suppose that a point x ∈ X has a neighborhood isomorphic to a
neighborhood of a Nakajima quiver variety. Then, under mild conditions, [BCS22, Theorem 1.2] implies
that the Mori chamber structure of its crepant resolutions is given by a hyperplane arrangement coming
from geometric invariant theory (GIT). Varieties that locally have this structure include multiplicative
quiver varieties and character varieties of Riemann surfaces [KS23, Theorem 5.4], and more generally
moduli of objects in 2-Calabi–Yau categories by Davison [Dav21, Theorem 5.11], which include Higgs
bundle moduli spaces and moduli of sheaves on K3 or abelian surfaces. In all of these cases, to clas-
sify crepant resolutions, we are reduced to determining the linear monodromies on the aforementioned
hyperplane arrangements given by a set of generating exit paths.

Specializing Theorem 1.5 allows us to prove classification results in the following cases, constituting
our third goal:

(1) varieties with each singularity locally having a unique projective crepant resolution,

(2) symmetric powers of surfaces with du Val singularities,

(3) certain multiplicative quiver varieties, and

(4) finite symplectic quotients of symplectic tori.

We can relax (1) to also allow isolated singularities which may have multiple resolutions; it remains true
that locally projective crepant resolutions are classified by arbitrary choices of local projective crepant
resolutions at the isolated singularities. This includes the case where all singularities are either du Val
or isolated, such as for canonical three-folds and symplectic singularities of dimension four.

Finally, in the main body of the paper, we work in the greater generality of partial crepant resolutions
(not requiring that the source be smooth); note that these always exist, unlike smooth crepant resolutions.

The paper is structured as follows: Section 2 gives background results on stratified varieties and in
particular establishes a large class of stratified spaces with the local product condition. Section 3 contains
the main results of the paper and useful corollaries. Section 4 applies the main results to the examples
listed above.

1.1 Conventions

We will be working with analytic varieties over the complex numbers. By a stratification, we mean a
locally finite stratification by smooth, connected, locally closed subvarieties.

We denote the symmetric group on n letters by Sn and the cyclic group of order n by Cn. For a finite
set S we denote its cardinality by #S. We use bold to indicate categories such as Sets for the category
of sets.

For a space X we use X̃ to denote (the source of) a resolution, and X to denote its closure. Addi-
tionally, Xsing denotes its singular locus and Xsm its smooth locus.

We refer to a not-necessarily isolated singularity as du Val if it is analytically locally a product of a
du Val singularity with a polydisc.
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2 Stratifications with product singularities

Let S denote a stratification of X by (Zariski) locally closed subvarieties. Let S ∈ S denote a stratum.

Definition 2.1. A stratification, S, of X is locally finite if each x ∈ X lies in the closure of only finitely
many strata.

Throughout the paper we restrict to locally finite stratifications by smooth, connected, locally closed
subvarieties, and simply refer to these as stratifications. Note that, in the case X is actually a complex
algebraic variety (meaning, a reduced, separated scheme of finite type over C) and the stratification is
algebraic, then the stratification must be finite.

We will be interested in stratifications for which X decomposes as a product along each stratum
(Definition 1.3). For such stratifications, X is homogeneous along strata:

Proposition 2.2. Suppose that X is locally a product along a connected, locally closed, smooth subvariety
S. Then for any s, s′ ∈ S, the germs of X at s and at s′ are isomorphic.

Proof. Let T ⊆ S be the set of all points whose germ is isomorphic to the one at s. This is open by the
local product condition: germs at two points (u1, 0), (u2, 0) ∈ (U ∩S)×F ∼= U are isomorphic given that
U ∩S is smooth. But now, the complement of T is also a union of open subsets, one for each isomorphism
class of germs. Since S is connected, and T is nonempty, T = S.

There are many nice examples of stratifications along which X is locally a product. One of the main
cases we will consider is that of Poisson varieties with finitely many symplectic leaves: Recall that a
variety X is Poisson if OX has a Lie bracket {−,−} : OX × OX → OX which is a derivation in each
component. To each local section f ∈ Γ(U,OX) we obtain a vector field ξf given by ξf (g) = {f, g}.
These vector fields form an integrable distribution (local analytic foliation) since [ξf , ξg] = ξ{f,g}. A
symplectic leaf S of X is a leaf of this foliation, i.e., a locally closed subvariety S of X such that
TsS = Span(ξf |s : f ∈ Γ(U,OX), U a neighborhood of x); we require that S be a maximal connected
such subvariety. This ensures uniqueness of a symplectic leaf S through s ∈ X, if it exists.

By the Weinstein splitting theorem, ifX is Poisson and S ⊆ X is a symplectic leaf, thenX decomposes
locally as a product along S, see Appendix A.1.

As a consequence we have the following standard result:

Proposition 2.3. If X is a Poisson variety with a (locally finite) stratification by symplectic leaves, then
X is locally a product along this stratification.

A symplectic singularity, following [Bea00], is a normal variety X such that:

• the smooth locus Xsm of X has a symplectic form ω;

• for some (equivalently, every) projective resolution of singularities ρ : X̃ → X, the pullback ρ∗ω
extends to a regular two-form on X̃.

By [Kal06, Theorem 2.5], every algebraic symplectic singularity has a finite stratification by symplectic
leaves.

Proposition 2.4. Let X be a smooth variety and G a finite group of automorphisms. Then X/G has a
stratification along which X is locally a product.

Proof. Stratify X by stabilizer subgroups. If S is a stratum corresponding to a subgroup H < G, then at
a point s ∈ S, the action of H at a germ of s linearizes. The quotient germ is equivalent to a quotient V/K
for V a vector space and K < GL(V ) a finite group of linear automorphisms. We can write V = V K ⊕V ′

for some complementary K-representation V ′ of V K . Then V/K ∼= V K ×V ′/K. The stratum where the
stabilizer is K is V K , so we indeed get a product along this.

Proposition 2.5. Let X be a Poisson variety and G a finite group of Poisson automorphisms. Let S be
a symplectic leaf of X. Then the image of S in X/G has a stratification by symplectic leaves.

Proof. The proof follows in the same way as the previous one, noting now that in the case K acts
symplectically on V , then the Hamiltonian vector fields at the origin of V/K span the subspace V K/K.

Corollary 2.6. If X is a Poisson variety with a stratification by symplectic leaves, and G is a finite
group of Poisson automorphisms, then X/G also has a stratification by symplectic leaves.

In particular, this includes finite quotients of algebraic symplectic singularities, but actually these are
themselves symplectic singularities by [Bea00, Proposition 2.4].

Given an algebraic variety X with an action by a reductive group G and a G-equivariant ample line
bundle L, let XL ⊆ X be the semistable locus. Recall that this open subset consists of points x ∈ X
such that there is a global G-equivariant section of L⊗m for some m ≥ 1 which does not vanish at x.
Given a subset Z ⊆ X we will also use the notation ZL := XL ∩ Z. Then X//LG := XL//G.
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Proposition 2.7. Let X be a smooth algebraic variety and G×X → X an action of a reductive group
G. Assume that X is equipped with a G-equivariant ample line bundle L (one can take L trivial if X is
affine). Then X//LG has a finite stratification along which it is locally a product.

Proof. It suffices to prove the result for G connected, since by Proposition 2.4, we can take a further
quotient by any finite group. Thanks to the GIT construction, every point in Y := X//LG is the image
of a closed G-orbit in the semistable locus of X, whose stabilizer is a reductive subgroup. By Luna’s
slice theorem, the number of conjugacy classes of such reductive subgroups is finite, which gives a finite
stratification of Y by connected components of the image of points with fixed conjugacy class of stabilizer.

Let S be such a stratum corresponding to the conjugacy class [H] for H ≤ G reductive. We claim
that a local slice to S in Y is given by V//H, for V ⊆ X a slice guaranteed by Luna’s theorem at a point
x ∈ X with closed G-orbit in the semistable locus of X which maps to s. The action of H fixes the
origin 0 ∈ V , and we can linearize the action so that H < GL(V ). We then write V = V H ⊕ V ′ for some
H-subrepresentation V ′, with V H locally giving the stratum S. This implies that the germ of Y at s is
indeed a product along S, as desired.

Proposition 2.8. Let X be an algebraic Poisson variety and G × X → X a Hamiltonian action of a
reductive group G. Assume that X is equipped with a G-equivariant ample line bundle L (one can take
L trivial if X is affine). Let S ⊆ X be an algebraic symplectic leaf. Let Y be the reduced subscheme
of X///LG. Then the image in Y of the closed G-orbits in S ∩ µ−1(0)L are contained in finitely many
algebraic symplectic leaves.

Proof. The proof begins exactly as before: we reduce to the case that G is connected (now using
Proposition 2.5). Since G is connected, it preserves the symplectic leaf S. Consider a closed G-orbit,
G · s ⊆ S ∩ µ−1(0)L. Let H ≤ G be the stabilizer of s, which is reductive. Let Z ⊆ S ∩ µ−1(0)L be
the connected component of the locus with stabilizer conjugate to H which contains s. The variety Z is
locally closed and G invariant. Thanks to Luna’s slice theorem, it consists only of closed G-orbits, and
its image is a locally closed subvariety of Y . Applying [Los17, Section 2.3], we see that the image of Z
lies in a single symplectic leaf of Y , that is, the Hamiltonian vector fields act transitively on the tangent
spaces of every point in the image. Finally, by Luna’s slice theorem, we see that there can only be finitely
many such subvarieties Z, since they are the connected components of loci labeled by conjugacy classes
of reductive subgroups of H occuring as stabilizers of points of µ−1(0)L.

Corollary 2.9. If X is an algebraic Poisson variety with a finite stratification by symplectic leaves, G
is a reductive group acting Hamiltonianly on X, and L is a G-equivariant ample line bundle on X, then
the reduced subscheme of X///LG also has a finite stratification by symplectic leaves.

In particular, we could take X to be a symplectic singularity in the corollary. We remark that, unlike
in the case of finite groups, the quotient X///LG need not itself be a symplectic singularity.

Summarizing, the following classes of varieties have a stratification along which X is locally a product:

(1) any Poisson variety with finitely many symplectic leaves;

(2) any finite or GIT quotient of a smooth variety.

We also saw that the varieties in (1) are closed under finite or GIT Hamiltonian reductions, and that
there the product decompositions are products of Poisson varieties.

Additionally, threefolds with canonical singularities X admit a stratification along which X is locally
a product by [Rei80, Corollary 1.14].

3 Constructibility

The first purpose of this section is to prove Theorem 1.5: the restriction of the sheaf R (defined below)
to each stratum S is locally constant. We will then discuss in more detail the consequent description
of isomorphism classes of locally projective crepant resolutions. Moreover, we will relax the assumption
that (the source of) a resolution is smooth, and work with partial resolutions.

Definition 3.1. For an open set U ⊂ X, let R(U) denote the set of isomorphism classes of locally
projective, partial crepant resolutions of U that are locally dominated by projective terminal crepant
resolutions.

Here the domination condition means that either Ũ ∈ R(U) has terminal singularities, or else there is
an open covering Ui of U for which the restrictions Ũi admit a further projective partial crepant resolution
which does have terminal singularities. Note that, under mild conditions on the singularities, [BCHM10]
ensures that the domination condition holds, see Remark 3.4.
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3.1 Proof of Theorem 1.5: Picard groups and product decompositions

In this section we will prove Theorem 1.5 in the more general context of partial crepant resolutions
(Definition 3.1).

In order to prove that R is constructible, we need to study the Picard group of the local crepant
resolutions using a bit of birational geometry. An important consequence is that, if a single local projective
crepant resolution (or minimal model) can be obtained by resolving the slice, then all local projective
crepant resolutions (or minimal models, or partial crepant resolutions satisfying a technical condition)
are obtained this way.

Definition 3.2. A projective (respectively locally projective) relative minimal model2 of U is a projective
(resp. locally projective) crepant morphism Ũ → U with Ũ having analytically locally Q-factorial,
terminal singularities. If not specified, we assume projective.

Here by Q-factorial we mean that every analytic Weil divisor in Ũ has a multiple which is Cartier
(hence defines a line bundle).

Recall that our assumption on each stratum S is that every point s ∈ S has (a) a neighborhood U ,
(b) a pointed stratified variety F ∋ 0, and (c) a stratified isomorphism φ : (U ∩ S)× F → U . We write
this data as a triple (U,F, φ). We will restrict to a setting where the restriction map from (projective
partial crepant) resolutions of U to F is an isomorphism. For this we will need the following key property
of F :

F admits a projective relative minimal model F̃ → F with H1(F̃ ,O) = 0. (∗)

Observe that, for F Stein, the property (*) implies the same property for any pointed Stein open
subset of F , because the restriction of a projective relative minimal model is still one, and H1(F̃ ,O) = 0
is equivalent to R1ρ∗OF̃ = 0 for ρ : F̃ → F , so this vanishing is also inherited for Stein open subsets. So
we can think of the condition (*) as a condition on the germ of a base point of each stratum.

In many situations, we will be given F̃ , so that (∗) holds. In particular, it holds whenever F locally
admits a projective crepant resolution, and this is true in all of our main examples. But let us take a
moment to explain under what conditions (∗) is guaranteed to hold, according to the minimal model
program.

Definition 3.3. If a variety is isomorphic to an analytic open subset of an (affine) algebraic variety, we
call it “of (affine) algebraic origin”. A variety of algebraic origin is covered by varieties of affine algebraic
origin.

Remark 3.4. By [BCHM10, Corollary 1.4.3, Corollary 1.3.2], when F has affine algebraic origin, then
there exists an algebraic relative minimal model whenever F has only canonical singularities (note that
this is a biconditional, since the existence of a partial crepant resolution with terminal singularities shows
that the original singularities were canonical). In fact, they also show that in this case F̃ is a relative Mori
dream space over F , hence F has only finitely many partial projective crepant resolutions dominated by
terminal ones. If we assume that X itself has canonical singularities (e.g., if X admits a smooth crepant
resolution, or if X has symplectic singularities), then the same holds for F , and we then only need to
check the algebraicity of F to apply op. cit. We then obtain an algebraic minimal model. To be an
analytic minimal model we need to check if it is analytically Q-factorial. This could fail in general, but
will hold in special cases. For example, if X is a cone, we can choose F to be a cone, and then all of the
analytic Weil divisors through the cone point are linearly equivalent in a small enough neighborhood to
an algebraic one, and hence all of the analytic Weil divisors in F̃ are linearly equivalent in the preimage of
a neighborhood of 0 to an algebraic one (obtained from strict transforms of divisors on F and exceptional
divisors).

Moreover, applying op. cit. to any partial projective crepant resolution of F , we get that it is always
dominated by a terminal one (in fact an algebraic minimal model). So the condition of partial projective
crepant resolutions being dominated by terminal ones is in fact redundant in this case.

The condition of having algebraic origin appears to be unnecessary, by replacing results from the
minimal model program used in [BCHM10] by those in [Fuj22, Theorem 1.6] in the analytic setting.3

Given this, up to shrinking F , (∗) holds precisely when X has canonical singularities (which includes all
symplectic singularities). Note also that, if X has symplectic singularities, Kaledin conjectured in [Kal09,
Conjecture 1.8] that F is always conical and in particular of algebraic origin; this is true in all known
examples. In this case [BCHM10] will provide the needed relative minimal model.

Now let us assume (*) holds. We prove the key technical result that implies Theorem 1.5:

Proposition 3.5. Suppose that (U,F, φ) is a local product neighborhood along S and F satisfies (∗).
Assume that U ∩ S is a polydisc (i.e., biholomorphic to a unit disc in Cn). Then every projective partial
crepant resolution ρU : Ũ → U which is dominated by a terminal projective resolution is isomorphic to
Id×ρF : (U ∩ S) × F̃ → (U ∩ S) × F for some projective partial resolution ρF dominated by a terminal

2This is also called a projective (resp. locally projective) Q-factorial terminalization.
3Thanks to Paolo Cascini for pointing out this reference, and thanks to Osamu Fujino for multiple clarifications and sending

a brief note stating the needed assertions.
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projective resolution. Moreover, restriction induces an isomorphism Pic(Ũ) ⊗Z Q → Pic(F̃ ) ⊗Z Q which
maps the ample cone onto the ample cone.

In other words, germs of partial crepant resolutions dominated by terminal ones are isomorphic to
products of the stratum with a resolution of the slice, and all line bundles on the resolution are pulled
back from the resolution of the slice.

For the proof, recall that a line bundle L ∈ Pic(Y ) is movable relative to a map f : Y → Y0 if the
stable base locus has codimension at least two, i.e., outside a subset of Y of codimension at least two,
every point admits a nonzero value on some section σ ∈ Γ(f−1(U), Ln) for some n ≥ 1 and some open
set U ⊆ Y0.

Definition 3.6. Let Y → Y0 be a projective morphism. Given a movable bundle L on Y we can
form a birational modification Y (L) := ProjY0

⊕
m≥0 f∗L

m over Y0, together with a birational map

φL : Y 99K Y (L) over Y0 which is defined outside the stable base locus of L. We say that L,L′ are Mori
equivalent over Y0 if φL ◦ φ−1

L′ is an isomorphism of varieties.

Typically we will have Y0 Stein and Γ(Y,OY ) = Γ(Y0,OY0).

Proof of Proposition 3.5. Note that, since U is assumed to be irreducible, so is F . Take a relative minimal
model F̃ of F with H1(F̃ ,O) = 0. We then get a relative minimal model F̃ ×(U ∩S) of U . One can check
that the projection map induces an isomorphism Pic(F̃×(U∩S)) ∼= Pic(F̃ ) using the long exact sequence
associated to the exponential sequence and Künneth formula together with: H1(F̃ ,O) = 0 = H1(U∩S,O)
and H>0

dR (U ∩S) = 0. This pullback clearly preserves the ample cones, and this yields the final statement.
The isomorphism of Picard groups restricts to an identification of movable cones and Mori decom-

positions. Next, note that any two projective crepant birational morphisms Ũ1, Ũ2 → U from terminal
irreducible varieties Ũ1, Ũ2 are isomorphic in codimension one [KM98, Theorem 3.52] (essentially, the crep-
ancy and terminality imply the two have to extract the same divisors). Thus the Weil divisor class groups
of Ũ1 and Ũ2 are identified. If Ũ1 is Q-factorial, then this gives an identification Pic Ũ2⊗Z Q ⊆ Pic Ũ1⊗Z Q.

In this case, letting L be a relatively ample bundle for Ũ2 → U , then L is movable for Ũ1, and we get a
birational map Ũ1 99K Ũ2

∼= Ũ1(L) (working over U). If, instead, Ũ2 → U is not necessarily terminal, but
is a partial crepant resolution which is dominated by a terminal one V → Ũ2 → U , then Ũ2 is obtained
from V by a birational morphism defined by a line bundle in the nef cone of V , which is well known to
lie in the closure of the movable cone. In view of the fact that all line bundles on our minimal model
F̃ × (U ∩ S) → U are pulled back from one on a minimal model F̃ → F , we see that all the other partial
crepant resolutions are isomorphic to the product of U ∩ S and the modification of F̃ defined by the
appropriate line bundle. This yields the first statement.

For the next corollary, let RF denote the sheaf on F defined in the same way as R.

Corollary 3.7. Given a local product neighborhood (U,F, φ), taking products of resolutions with U ∩ S
yields an isomorphism of the restriction of R to U ∩S with the constant sheaf with stalk equal to the stalk
of RF at 0.

Proof. The restriction R|U∩S takes value on an open subset V given by the limit of R(U ′) over open
neighborhoods of V in X. We can take a basis of these to have the form V × F ′ for F ′ ⊆ F containing
0. Then, the proof follows from Proposition 3.5.

In particular, R is locally constant on S, proving Theorem 1.5.

Remark 3.8. 4 Given a path γ : [0, 1] → S, using local product neighborhoods about points of the
path, we can find a non-canonical isomorphism of the germ of X at γ(0) and the germ of X at γ(1),
as in Proposition 2.2. Then one can check that the monodromy about the path is given by composing
resolutions by this automorphism of the germ. This gives a restriction on the monodromy action: it
can only relate partial crepant resolutions which differ by an automorphism of the germ of the base. In
particular, the two local partial crepant resolutions are isomorphic as abstract varieties (at least, after
restricting to suitable open neighborhoods of the singularity).

In more detail, postcomposition with the automorphism group Gs of the germ of X at s ∈ S gives an
action on the set Rs of local partial crepant resolutions at s. This action is determined by the action of
Gs on the discrete Picard group of the germ, which factors through π0(Gs). The above shows that every
monodromy automorphism of Rs is obtainable from this action.

3.2 The constructible (pre)sheaf of relative Picard groups: Theorem
1.15

Let X be an algebraic variety with canonical divisor KX . Let π : X̃ → X be a morphism of algebraic
varieties. Recall that the relative Picard group is defined as Pic(X̃/X) := Pic(X̃)/π∗ Pic(X). We now
define the presheaf P of relative Picard classes without requiring the existence of a smooth crepant
resolution:

4Thanks to Richard Thomas for the question that led to this remark.
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Proposition 3.9. Let X be a normal variety with KX Q-Cartier. There is a canonical presheaf P :
Op(X) → VectQ,

P(U) =

{
Pic(Ũ/U)⊗Z Q, for a relative minimal model Ũ → U,

0, if there is no relative minimal model,
(3.1)

which is well-defined up to canonical isomorphism.

Proof. Any two choices Ũ1 and Ũ2 of relative minimal models have canonically isomorphic relative rational
Picard groups Pic(Ũ1/U) ⊗Z Q ∼= Pic(Ũ2/U) ⊗Z Q, as explained in the proof of Proposition 3.5: the
two resolutions are canonically isomorphic in codimension one by [KM98, Theorem 3.52], so have the
same Weil divisor class groups, and then the fact that they are analytically locally Q-factorial gives the
statement. By restricting relative minimal models and line bundles, this forms a presheaf.

Now the proof of Theorem 1.5 yields the following:

Theorem 3.10. Let X have a stratification satisfying (*) of Section 3.1. Then, the sheafification P♯ of
P is constructible along the stratification.

Proof. If (U ∩S)×F is a local product neighborhood of s, then for any s′ ∈ U ∩S, and any neighborhood
U ′ ⊆ (U ∩ S) × F of s′, we can restrict to a smaller neighborhood of the form (U ′ ∩ S) × F ′ ⊆ U ′ ⊆
(U ∩ S)× F . Then given a minimal model F̃ ′ → F ′ we obtain P((U ∩ S)× F ′) ∼= P(F ′), by Proposition
3.5. So we see that the stalks of P at all s′ ∈ U ∩S are equal to the stalk of P|F at the basepoint 0 ∈ F .
In particular the sheafification of P is locally constant with stalk equal to the latter stalk.

Corollary 3.11. The sheaf R is the sheafification of the presheaf U 7→ Mov(PU )/∼, where Mov(PU ) is
the cone of relative classes of movable bundles on Ũ/U , and ∼ is the Mori equivalence relation.

Proof. Given a local section σ ∈ Γ(U,R), first shrink U so that Ũ → U is either terminal or dominated by
a terminal resolution. Letting Ũ → U be a relative minimal model, we can take a relatively ample bundle
to get an associated class in Pic(Ũ/U); the Mori equivalence class of this determines a local section of
Mov(PU )/∼. (This section is in the movable cone if σ is terminal, and in the boundary if σ is merely
dominated a terminal resolution.)

Conversely, given a local section L ∈ Mov(PU )/∼ we get by the Proj construction Ũ(L) a local
projective partial crepant resolution in R(U). Now, the condition for local sections to be compatible is
that they restrict to isomorphic resolutions on overlaps, which is equivalent to having sections that are
Mori equivalent on the overlap. Note that in the case of R, compatibility implies they glue to a global
(locally projective partial crepant) resolution, hence a section of R. But for Mov(PU )/∼ local sections
only glue in general to a section of the sheafification. (To make sense of a global section of the original
presheaf, the locally projective resolution would have to be globally projective, and we would need to
have a globally defined relative minimal model).

As a result, given a section σ ∈ Γ(X,P♯) whose values are locally in Mov(PU ), we get an associated
partial crepant resolution X̃σ ∈ R(X). Conversely, given X̃ ∈ R(X), we define an associated section
σ ∈ Γ(X,P♯) to be one which is locally the class of a relatively ample bundle on X̃.

Remark 3.12. For a contractible Stein neighborhood U ⊆ X, we have H1(U,O) = 0 = H2(U,Z). So
the exponential sequence gives Pic(U) ∼= H1(U,O×) = 0. By [Gil64], see also [Mil68, 2.10], every analytic
variety has a basis of such neighborhoods. Hence, P♯ is also the sheafification of the presheaf of absolute
(not relative) Picard groups. However, P♯ is in general much closer to P than to the presheaf of absolute
groups; for instance, P♯ is unaffected by the presence of nontrivial line bundles on X, unlike the presheaf
of absolute Picard groups.

3.3 Criteria for locally projective crepant resolutions to be globally
projective

Given a locally projective partial crepant resolution X̃ → X, note that X̃ is globally projective if and
only if there exists a relatively ample line bundle on X̃. Such a bundle would give rise to a global section
of P♯ which lies in the section of Mori equivalence classes of cones determined by the global section of R
defining X̃. We obtain:

Corollary 3.13. Given a locally projective partial crepant resolution X̃ → X, the resolution is globally
projective only if there exists a global section of P♯ lying in the section of Mori equivalence classes
determined by X̃.
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Remark 3.14. In general, the condition here is not sufficient. For example5, let X ⊆ P4 be a hyper-

surface of degree d > 2 with at most (d−1)2

4
ordinary double points. Then by [Che05], X is Q-factorial

(Cheltsov is working in the algebraic category, but by GAGA the same statement holds in the analytic
category). Moreover, X admits small (hence crepant) locally projective resolutions ρ : X̃ → X, obtained
by blowing up each singularity, yielding P1×P1, then contracting one of the rulings (there are two choices
of local resolution at each singularity). We claim that X̃ is not globally projective.

To see this, since the resolution is small, the exceptional locus ρ−1(Xsing) has codimension at least
two. Let Cl denote the Weil divisor class group. We obtain

Pic(X̃)⊗ Q = Pic(X̃ \ ρ−1(Xsing))⊗ Q = Cl(X \Xsing)⊗ Q = Pic(X)⊗ Q,

the last equality following from Q-factoriality of X. That is, the relative rational Picard group is trivial.
So there can be no relatively ample global algebraic line bundle, as the map X̃ → X is not an isomorphism.

Furthermore, a global section σ ∈ Γ(X,P♯) associated to X̃ is equivalent to a local choice, at each
singularity, of relative ample class, which are all independent; in particular such σ exist.

We strengthen Corollary 3.13 to a biconditional giving the obstruction for a locally projective partial
crepant resolution to be globally projective. For this it is necessary to work with an integral version of
P♯:

Definition 3.15. Given ρ : X̃ → X in R(X), we let PX̃
Z be the presheaf on X assigning to open subsets

U ⊆ X the integral relative Picard group, PX̃
Z (U) = Pic(ρ−1(U)/U), and let PX̃,♯

Z be its sheafification.

Note that, in order to define this presheaf in the integral context, we need to fix a resolution X̃ in
R(X), because two different local minimal models only canonically have the same rational Picard group.

Pullback of local relative classes defines a canonical map PX̃,♯
Z → P♯. We call a preimage of σ under

this map an integral lift.

Remark 3.16. There is no guarantee that a given section σ ∈ Γ(X,P♯) defining a partial resolution
X̃ ∈ R(X) admits an integral lift. However, under mild conditions, some multiple does. Suppose that
the stratification of X is finite (e.g., if X is an algebraic variety with algebraic stratification). Then we
can take a multiple of σ such that over some local product neighborhood at each stratum, Nσ is actually
represented by a line bundle. If furthermore m ≥ 1 kills the torsion in the relative Picard groups over
these local product neighborhoods, then mNσ has a canonical integral lift (given by m times an arbitrary
choice of local integral lift of Nσ). It follows that these canonical integral lifts extend to a global integral
lift of mNσ.

Remark 3.17. PX̃,♯
Z is also constructible thanks to Corollary 3.7.

Theorem 3.18. Given a section σ ∈ Γ(X,P♯) which defines a locally projective partial crepant resolution

X̃ ∈ R(X), and an integral lift σ̃ ∈ Γ(X,PX̃,♯
Z ), there is a canonical gerbe Lσ̃ on X which is trivial if

and only if there exists a relatively ample line bundle on X̃ with associated local relative class σ̃. Such a
bundle is unique up to tensoring by the pullback of a line bundle on X.

This in particular implies Theorem 1.18.

Proof of Theorem 3.18. Let ρ : X̃ → X be the resolution map. The gerbe Lσ̃ is defined as follows:

Lσ̃(U) := {line bundles on ρ−1(U) in the relative class σ̃}.

This clearly defines a presheaf of categories on X. In fact it defines a full substack of the stack of line
bundles on X̃, pushed forward to X. In particular Lσ̃ is a stack.

Next, the category of line bundles on X acts on Lσ̃ by tensoring by their pullbacks. We claim that Lσ̃

is locally isomorphic to the category of line bundles with the usual tensor product. To see this, let U ⊆ X
be an open subset with preimage Ũ ⊆ X̃ admitting a relatively ample line bundle L. Let ρU : Ũ → U
be the projection. Then we need to check that HomŨ (L⊗ ρ∗UE,L⊗ ρ∗UF ) ∼= HomU (E,F ). This reduces
to the statement (ρU )∗ρ

∗
U (E

∨ ⊗ F ) ∼= E∨ ⊗ F . Applying the projection formula, this in turn reduces to
(ρU )∗OŨ

∼= OU . This statement is true if the Stein factorization of ρU is trivial, which it is because ρU
is proper and birational and U is normal (hence every finite birational map to U is an isomorphism, by
Zariski’s main theorem).

Thus, Lσ̃ defines a gerbe. The gerbe is trivial if and only if there is an equivalence of categories with
the category of all line bundles on X. Such an equivalence gives rise to a global section of Lσ̃, defined
as the image of the trivial line bundle. This gives rise to a globally defined line bundle which is in the
class σ̃. Conversely, such a globally defined line bundle defines a trivialization of the gerbe, by sending
this line bundle to the trivial line bundle on X. By definition of the gerbe, this line bundle is unique up
to tensoring by line bundles pulled back from X.

We immediately deduce the following:

5Thanks to Mirko Mauri for pointing out this example.
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Corollary 3.19. A resolution X̃ → X in R(X) is globally projective if and only if there exists a section
σ ∈ Γ(X,P♯) lying in the associated Mori equivalence classes of relatively ample bundles with an integral
lift σ̃ whose associated gerbe Lσ̃ is trivial.

In the remainder of this section, we will give criteria for the gerbes Lσ̃ to be trivial and hence for the
converse of Corollary 3.13 to hold.

The gerbe Lσ̃ gives rise to a class in H2(X,O×), which is trivial if and only if Lσ̃ is trivial. In
particular, we have, using the exponential exact sequence:

Corollary 3.20. If H2(X,O×) is trivial, e.g., when H2(X,O) = 0 = H3(X,Z), then Lσ̃ is trivial for
all σ̃, so a locally projective partial crepant resolution X̃ is globally projective if and only if there exists

an associated section σ̃ ∈ Γ(X,PX̃,♯
Z ).

Another way to approach triviality of the gerbe Lσ is by directly considering the restriction map
from global divisors. It is useful to consider this more generally for terminal (not necessarily Q-factorial)
resolutions.

Proposition 3.21. For any terminal Y ∈ R(X), we have a canonical restriction map

r : Cl(Y ) → Γ(X,P♯), (3.2)

and for two different terminal Y1, Y2 ∈ R(X), the maps r1, r2 are identified via the canonical isomorphism
Cl(Y1) ∼= Cl(Y2).

Note that, by [BCHM10, Corollary 1.4.3] (see also Remark 3.4) a terminal resolution Y ∈ R(X) exists
when X is a normal quasi-projective algebraic variety with canonical singularities. Whenever a terminal
Y ∈ R(X) exists, then we can define the map r in the Proposition, which up to canonical isomorphism
does not depend on Y .

Proof. We begin with the last statement. Given two terminal projective partial crepant resolutions
Ũ1, Ũ2 → U of a singularity U , as noted in the proof of Proposition 3.5, Ũ1 and Ũ2 coincide outside subsets
of codimension at least two, and hence their class groups of Weil divisors modulo linear equivalence are
canonically identified, in a way compatible with restriction to open subsets.

We next explain why r is well-defined given Y . Although the restriction map produces Weil divisors
on the local relative minimal models, these are all Q-Cartier by Q-factoriality of the minimal model. Since
they come from a global Weil divisor, they will be compatible and glue to a section of Γ(X,P♯).

Proposition 3.22. Assume that the stratification on X is finite, and that a terminal Y ∈ R(X) exists
with surjective map r in (3.2). Then for any σ ∈ Γ(X,P♯) locally in the closure of the movable cone, with
associated resolution X̃σ dominated by a terminal Y ∈ R(X), X̃σ is globally projective with relatively
ample rational class σ.

More precisely, the conclusion states that, for some N ≥ 1, Nσ is the local rational relative class of
a relatively ample line bundle for X̃σ.

Proof of Proposition 3.22. For σ, X̃σ, Y as in the statement, there exists a Weil divisor D ⊆ Y such that
D is locally over X equivalent to the pullback of a relatively ample Q-Cartier divisor on X̃σ. Because the
stratification is finite, there is some N ≥ 1 such that ND is Cartier locally at a point of every stratum.
Thanks to Corollary 3.7, this means that ND is Cartier on Y . As in the proof of Theorem 3.18, the
direct image of ND to X̃σ is a relatively ample Cartier divisor for X̃σ → X, and hence X̃σ is globally
projective.

Remark 3.23. Note that, by definition, all partial resolutions in R(X) are locally dominated by terminal
resolutions. But they need not be globally so dominated (a priori at least). This explains why this
condition in the proposition is nontrivial. As we already explained though, in many cases (e.g., algebraic)
it is guaranteed that every X (and every partial resolution thereof) is dominated by a terminal resolution.

We now give a stratumwise criterion for the map r to be surjective. It is useful for a section σ of
P♯ to call its support the locus of x where, on every local partial crepant resolution, σ is nonzero, i.e.,
represented by a line bundle not pulled back from X.

Lemma 3.24. Suppose that there is a terminal resolution X̃ ∈ R(X), and that, for every stratum S,
every section σ ∈ Γ(S,P♯|S) supported on S is in the image of r. Then r is surjective.

Proof. We first assume the stratification is finite and later we explain how to remove this assumption.
For a contradiction, suppose σ ∈ Γ(X,P♯) is a section with minimal support not of the form r(D). If

S is a stratum which is open in the support of σ, we can find a global Weil divisor D on some terminal
X̃ ∈ R(X) supported on the closure of the preimage of S such that σ|S = r(D)|S . Then σ′ := σ−r(D) ∈
Γ(X,P♯) has smaller support, so by assumption, there exists another terminal X̃ ′ ∈ R(X) and D′ ⊆ X̃ ′

with σ′ = r(D′). But up to linear equivalence, D′ induces a canonical divisor on X̃, so we can assume
X̃ = X̃ ′. Then σ = r(D) + r(D′) = r(D +D′), a contradiction.
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We used finiteness of the stratification for the existence of a section with minimal support not in the
image of r. This hypothesis can be eliminated: instead, for any σ, we can find a global Weil divisor on
some terminal X̃ supported over the closure of every open stratum of the support of σ. We can assume
all the X̃ are the same since terminal crepant resolutions coincide outside codimension one. We can take
the union of the obtained Weil divisors, which will be a Weil divisor since only finitely many Weil divisors
can intersect at every point of X̃, the ones supported on closed strata meeting at the image of the point
in X. Subtracting the image of the resulting Weil divisor under r from σ will decrease the dimension of
the support of σ, so induction on dimension establishes the desired result.

Remark 3.25. If the assumption of the lemma holds for every local section σ ∈ Ps, s ∈ S, then there is
no monodromy of P♯ on S. To see this, every local section σs is linearly equivalent in a neighborhood of
s to r(D) for a global Weil divisor D on a terminal X̃ ∈ R(X). But then r(D) provides an extension of
σs to a section of P♯|S . As σs was arbitrary, we conclude that P♯ has no monodromy on. S.

3.3.1 Symplectic singularities

In the case that X is a symplectic singularity, we can say more. First of all, we recall a description of
the exceptional divisors in this case:

Proposition 3.26. [Nam01],[Nam22, Corollary 0.2] If X is an irreducible symplectic singularity and
f : Y → X is a projective partial crepant resolution, then for every exceptional divisor D ⊆ Y , the image
f(D) has codimension two.

As a consequence, if f : Y → X is only locally projective, and D ⊆ Y is an exceptional divisor, then
the image f(D) locally has codimension two, hence it has codimension two.

We will now show that the conditions of Lemma 3.24 hold for symplectic quotient singularities, hence
the converse to Corollary 3.13 holds:6

Theorem 3.27. Suppose that X is an analytically locally Q-factorial symplectic singularity, e.g., has only
symplectic quotient singularities, and that its symplectic stratification is finite. Then (3.2) is surjective.
Thus, a terminal X̃ ∈ R(X) is globally projective if and only if a compatible section σ ∈ Γ(X,P♯) of
relative ample classes exists.

This in particular implies Theorem 1.16. To prove it, first we have the following basic lemma:

Lemma 3.28. If X is analytically locally Q-factorial, then for every open subset U ⊆ X, P(U) is spanned
by the classes of exceptional divisors.

Proof. Given that X is analytically locally Q-factorial, then for every x ∈ X, neighborhood U ∋ x, and
partial crepant resolution ρ : Ũ → U with irreducible exceptional divisors Di, the Weil divisor class group
Cl(Ũ) is spanned by the exceptional divisor components [Di] together with Cl(Ũ \

⋂
Di). But Ũ \

⋂
Di

coincides outside codimension two with the locus U◦ ⊆ U over which ρ is an isomorphism, which by
normality of U coincides with U itself. So Cl(Ũ) is generated by Cl(U) and [Di]. By analytically local
Q-factoriality we have Cl(U) = Pic(U). Thus, every Weil divisor on Ũ is linearly equivalent to a linear
combination of exceptional divisor components plus the pullback of a line bundle on U . As a result, P(U)
is spanned by exceptional divisor components.

Proof of Theorem 3.27. In view of Lemma 3.28, if S is a stratum and σ ∈ Γ(S,P♯|S), and for some open
U , σ|U is supported on U ∩ S, then σ|U is spanned by exceptional divisors in Ũ ∈ R(U) whose image
is U ∩ S. By Proposition 3.26, S must have codimension two. In view of Lemma 3.24 and Proposition
3.22, it thus suffices to show that for every codimension two stratum S, the space of such sections σ is
spanned by the exceptional divisors D in terminal locally projective resolutions ρ : X̃ → X with image
ρ(D) = S.

On S, the sheaf P♯ is locally described as follows: Let s ∈ S and let U ∋ s be a local product
neighborhood, U ∼= (U ∩ S) × F . Then F is a surface with unique singularity the basepoint 0 ∈ U . By
construction F can be taken to be a symplectic singularity, hence a du Val singularity. We can choose U
small enough that F is isomorphic to a neighborhood of zero of C2/H for some finite H < SL2(C). Let
F̃ → F be the minimal resolution. Then P(U) ∼= P(F ) ∼= Pic(F̃ )⊗Z Q ∼= H2(F̃ ,Q).

Globalizing this over S, take a neighborhood U of S which does not intersect any other strata (e.g.,
the union of the open stratum and S). Let ρ : Ũ → U be the minimal resolution. Then the previous
paragraph implies that P♯ ∼= ρ∗Q. By [Nam11, Proposition 4.2], we see that Γ(S,P♯|S) has dimension
equal to the number of irreducible exceptional divisors. Since the exceptional divisors locally span P|S ,
this implies that the global irreducible exceptional divisors span Γ(S,P♯|S).

Since P♯ is constructible by Theorem 3.10, this reduces the study of globally projective terminal
crepant resolutions of these singularities to combinatorics, in the same way as Theorem 1.5 does for
locally projective partial crepant resolutions.

6Thanks to Mirko Mauri for correspondence inspiring this statement.
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Example 3.29. When X is a four-dimensional symplectic singularity, locally projective terminal crepant
resolutions are given by gluing the minimal resolution of the two-dimensional leaves to arbitrary choices of
projective terminal crepant resolutions of neighborhoods of the zero-dimensional leaves. If X is moreover
analytically locally Q-factorial, e.g., a quotient singularity (which needs to be checked only at the zero-
dimensional leaves), then Theorem 3.27 asserts that these resolutions are globally projective if and only if,
for each two-dimensional leaf S, the images of the Mori cones for the resolutions of the zero-dimensional
leaves on its boundary all overlap and, if P♯ has monodromy along S (equivalently, the Namikawa Weyl
group is a folding of the ADE Weyl group for the slice along S), the intersection of the images of the
Mori cones contains an invariant for the monodromy.

Example 3.30. For a special example, suppose X = Y/T where Y is a smooth connected symplectic
fourfold and T is the binary tetrahedral group, acting faithfully. Suppose that T acts symplectically such
that the zero-dimensional leaves of Y/T are the images of the fixed points of T where we get the rank-two
Shephard–Todd complex reflection group G4 acting now symplectically on a four-dimensional space. The
two-dimensional leaves have isotropy group Z3, giving A2 singularities, and each zero-dimensional leaf is
on the boundary of a unique such leaf. By [Bel16], there are two projective (smooth) crepant resolutions
of C4/G4, corresponding to dividing the ample cone of the A2 singularity into two canonical pieces, with
dividing line the fixed locus of the symmetry of the A2 diagram. By the preceding paragraph, the locally
projective crepant resolution is globally projective if and only if each two-dimensional leaf whose closure
contains some zero-dimensional leaves has no monodromy of P♯ (i.e., there are two exceptional divisors
over the two-dimensional leaf, i.e., the leaf contributes a Namikawa Weyl group of S3) and the local
resolutions at the zero-dimensional leaves all pick out the same Mori cone. So the number of globally
projective crepant resolutions is 2m where m is the number of two-dimensional leaves (A2 singularities)
which contain zero-dimensional leaves, provided again that these leaves have no monodromy (otherwise
there is no projective crepant resolution).

3.4 Exit paths

Given a constructible sheaf, it easily follows that parallel transport can be extended to exit paths, and that
global sections are the same as exit-path compatible sections (a weak form of MacPherson’s equivalence):

Proposition 3.31. Let F be a constructible sheaf on a stratified variety (X,S). Given an exit path
γ : [0, 1] → X, there is a unique parallel transport map γ∗ : Fγ(0) → Fγ(1) such that, for each s ∈ Fγ(0),
there is an open covering of [0, 1] with compatible local sections restricting at γ(0), γ(1) to s and γ∗(s),
respectively. Moreover, a global section of F on X is the same as an element of Fx for all x ∈ X
compatible with this parallel transport for all exit paths.

Proof. To define parallel transport along a simplified exit path γ : [0, 1] → X, we first note that for each
local section s ∈ Fγ(0), there is some ε for which the section is defined on γ[0, ε]. We can then extend
to the whole path using parallel transport along the stratum. Since all exit paths are compositions of
simplified exit paths, this defines parallel transport for all exit paths. To see that the parallel transport is
unique, note that the parallel transport along a given stratum is unique, as is restriction of a local section
to a smaller section. Now if we have a section over γ([0, ε]) and restrict it to a section over γ([0, δ]) with
0 < δ < ε, the parallel transport along [δ, ε] recovers the same section as the latter parallel transport is
unique.

A global section of a constructible sheaf on (X,S) is given by a collection of sections fi on neighbor-
hoods Ui of each stratum Si which agree on overlaps. We can choose Ui so that Ui intersects only those
strata Sj such that Si ⊆ Sj (note that by the local product condition, this is equivalent to Si ∩ Sj ̸= ∅).
The sections on each stratum are the same as choices of stalks at each point compatible with parallel
transport along the stratum (by the equivalence between local systems and functors from the fundamen-
tal groupoid to sets). These sections are compatible if and only if they restrict to the same local section
in some neighborhood of each point s in the overlap. The latter can be checked by compatibility with
an exit path ending at s, in view of the uniqueness of the parallel transport. It follows that any choice
of local sections compatible under exit paths glues to form a global section. The converse is clear from
uniqueness of parallel transport.

We can moreover restrict to simplified exit paths, since all exit paths are compositions of these. We
can be more restrictive and check compatibility only with certain paths:

Proposition 3.32. Let (X,S) be a stratified variety by strata satisfying Definition 1.3. Compatibility
of a collection (fx ∈ Fx) of elements of stalks with all exit paths can be checked on simplified exit paths
beginning at a fixed basepoint si of each stratum Si. Moreover we can restrict to exit paths of the following
form, for each stratum Si:

1. For each q ∈ Si, a single path from si to q;

2. A set of closed paths generating the fundamental group π1(Si, si);

3. For each stratum Sj ̸= Si such that Sj ⊇ Si, any choice of neighborhood Ui of si in X, and each
component of Ui ∩ Sj, a single simplified exit path from si to the given component.
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Proof. First, using paths in (1) and (2) we can obtain all homotopy classes of paths in the stratum Si.
It is standard that parallel transport for a local system along homotopic paths is the same, so these are
enough to guarantee we obtain a global section on Si.

It remains to show that the sections defined on each stratum are compatible using (3). Every simplified
exit path can be written as a concatenation of such paths and exit paths which lie in an arbitrarily small
ball about the initial point. So all we need to show is that we can take this initial point to be a fixed
basepoint si of its stratum Si. Let q ∈ S be another point of the same stratum, and let γ be a path in
S from si to q.

We can find an open covering U in X of the stratum Si by open product neighborhoods such that
F|U∩Si is constant for each U ∈ U (since each point of Si is contained in such a U). For each subinterval
[t1, t2] ⊆ [0, 1] whose image under γ lies in a neighborhood U ∈ U , we claim that compatibility with
all simplified exit paths beginning on γ([t1, t2]) follows from compatibility with simplified exit paths
beginning at any fixed point of γ([t1, t2]). For any t3 ∈ [t1, t2] and any simplified exit path β from γ(t3)
to a point x ∈ U∩Sj for j ̸= i, we can form a simplified exit path α from γ(t1) to a point y ∈ U∩Sj in the
same stratum as x and a path γ′ from x to y in U∩Sj . Since F|U∩Si is constant, the two composite paths
from γ(t3) to y ∈ U must have parallel transport yielding the unique extension of fγ(t3) to a section of
U . Since we already have sections defined on all strata, it follows that compatibility with β is equivalent
to compatibility with α.

Since [0, 1] is covered by subintervals [t1, t2] as in the preceding paragraph, we obtain that compati-
bility with exit paths departing γ(0) is equivalent to compatibility at γ(1).

In the situation at hand, given a simplified exit path [0, 1] → X, the parallel transport of s ∈ Fγ(0)

along [0, ε] is given by restricting a local partial resolution to neighborhoods of nearby points to γ(0),
followed by parallel transport in the stratum. The same argument works when including also the datum
of a relatively ample line bundle.

We note that it is a consequence of the constructibility of the sheaves and [Tre09, Theorem 1.2] that
the above actually defines functors Ex(X,S) → Sets such that sections are given by stalks compatible
by exit paths, although we do not need to use this. (This statement, in addition to the above, says that
the above parallel transport for exit paths does not depend on any choices and is independent of tame
homotopy of exit paths.)

3.5 Compatibility across strata

For a stratified variety (X,S), the set of strata has a partial order given by S ≤ S′ if S ⊆ S′. We recall
a few elementary notions for partially ordered sets.

Definition 3.33. The Hasse diagram for a partially ordered set (X,≤) is a directed7 graph with vertex
set X and an arrow x→ x′ if x < x′ and no x′′ satisfies x < x′′ < x.

Definition 3.34. Fix a partially ordered set (X,≤) and two elements x1, x2 ∈ X. When they exist, the
join x1 ∨ x2 is the supremum (i.e., least upper bound) of x1 and x2, and the meet x1 ∧ x2 is the infimum
(i.e., greatest lower bound) of x1 and x2.

Thanks to our procedure, we can build resolutions up from the minimal strata. Two distinct minimal
strata have no meet, and the compatibility condition can be checked in their join. If the join is an open
stratum, the compatibility condition is automatically satisfied since that stratum has a unique (partial)
crepant resolution, namely the identity. Similarly, the compatibility condition is satisfied for smooth
crepant resolutions if the join has codimension at most two, because there there is a unique crepant
resolution (the minimal one).

For constructing resolutions, in the absence of monodromy, one can always extend a crepant resolution
up a chain S1 ≤ S2 ≤ · · · ≤ Sn. In the following special case involving products, we can construct crepant
resolutions down the Hasse diagram (with no obstructions):

S1 S2

S3

`` >>
(3.3)

where the slice to S3 is a product of slices to S1 and S2.

Here, we mean that for x ∈ S3, there is a local neighborhood of x of the form U3 ×F1 ×F2 where U3

is a neighborhood of x in S3, and U3 × F1 and U3 × F2 map isomorphically to neighborhoods of x in S2

and S1, respectively (so the slice to x in S1 is F1 and the slice to x in S2 is F2). The proof of this relies
on the following relative, analytic analogue of [BCS23, Lemma 5.2]:

7Note that most authors draw the Hasse diagram as an undirected graph, but place the vertex for x below the vertex for x′

if x < x′ to indicate direction.
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Lemma 3.35. Let ρi : Ũi → Ui be smooth projective crepant resolutions with Ui contractible Stein
manifolds, for i = 1, 2. Then there is an isomorphism of analytic relative Picard groups:

Pic(Ũ1 × Ũ2/U1 × U2) ∼= Pic(Ũ1/U1)× Pic(Ũ2/U2).

Moreover, under this isomorphism, Mov(Ũ1 × Ũ2/U1 × U2) = Mov(Ũ1/U1) × Mov(Ũ2/U2), with Mori
equivalence relation taken to the product of the Mori equivalence relations.

Proof. First, as explained in Remark 3.12, in this case the absolute Picard groups equal the relative
ones. By Grauert–Riemenschneider vanishing, Rρ∗OŨi

∼= OUi . Since the Ui are Stein, this implies that

H>0(Ũi,OŨi
) = 0. The same is true for the product Ũ1 × Ũ2. By the exponential sequence we therefore

obtain Pic(Ũ1 × Ũ2) ∼= H2(Ũ1 × Ũ2,Z), and Pic(Ui) ∼= H2(Ũi,Z).
Next, for any crepant resolution Ũ → U with U contractible Stein, we claim that H1(Ũ ,Z) = 0

(cf. [Kal09, Corollary 1.5]). To see this, we apply the exponential sequences for Ũ and U :

H0(Ũ ,OŨ )
// H0(Ũ ,O×

Ũ
) // H1(Ũ ,Z)

��

// H1(Ũ ,OŨ )

Γ(U,OU ) // Γ(U,O×
U ) // 0 // 0.

with the first two equalities coming from properness of ρ. We conclude that

H1(Ũ ,Z) ∼= coker(H0(Ũ ,OŨ ) → H0(Ũ ,O×
Ũ
)) ∼= coker(Γ(U,OU ) → Γ(U,O×

U )) = 0.

By the Künneth theorem and connectedness of Ũi we therefore have H
2(Ũ1×Ũ2) ∼= H2(Ũ1)⊕H2(Ũ2),

which by the first paragraph establishes the first assertion.
For the second assertion, let π1, π2 : Ũ1 × Ũ2 → Ũi. We note that, for line bundles Li on Ũi, the base

locus B(π∗
1L1 ⊗ π∗

2L2) is the union of the pullbacks of base loci, π−1
1 B(L1) and π−1

2 B(L2). Finally, for
Li ∈ Mov(Ũi/Ui), we have, for modifications (see Definition 3.6):

Ũ1 × Ũ2(π
∗
1L1 ⊗ π∗

2L2) ∼= Ũ1(L1)× Ũ2(L2).

As a result, the Mori equivalence relation for Ũ1 × Ũ2 is the product of the Mori equivalence relations for
Ũ1 and Ũ2.

Remark 3.36. More generally, we can allow Ũi to be singular and we don’t even need ρi : Ũi → Ui to be
crepant, as long as Ui and Ũi have rational singularities (e.g., canonical singularities by [KM98, Theorem
5.22]), and ρi is locally projective and birational. Under the latter hypotheses, R(ρi)∗OŨi

∼= OUi by
[Kov17, Theorem 1.4], so the result of Lemma 3.35 and the proof holds. In particular, this is true for
any X satisfying (*) and any ρi : Ũi → Ui in R(Ui).

As a consequence of the lemma (since we have a basis of contractible Stein neighborhoods, as noted
in Remark 3.12), a local projective crepant resolution at a point of the stratum S3 is uniquely determined
by local projective crepant resolutions at nearby points of S1 and S2. Therefore, we need not consider
such strata when classifying crepant resolutions.

Remark 3.37. Under a mild condition, a diagram as in (3.3) with the product condition for slices exists
whenever the strata S3 has decomposable slice. Namely, suppose that all the slices to the strata have
exceptional basepoint (meaning that, in a neighborhood of the basepoint, all vector fields on the slice
vanish at the basepoint). This includes the case that the stratification is by iterated singular loci (since by
locally integrating vector fields, singular loci are preserved). In particular, if X is Poisson with a (locally
finite) stratification by symplectic leaves, then the stratification is also the one by iterated singular loci,
and the condition holds.

Then such a diagram occurs whenever a stratum S3 exists with slice decomposing as a product F1×F2:
Simply let S1 be the generic stratum which near s3 ∈ S3 lies in U3 ×{0}×F2, and similarly define S2 as
the generic stratum which near s3 lies in U3 × F1 × {0}.

Without the assumption that basepoints of slices are exceptional, we can still define for a stratum S3

with decomposable slice F1 × F2 (with F1, F2 both singular) strata S1, S2 such that crepant resolutions
for Si uniquely determine one for S3. Indeed, by locally integrating vector fields, after shrinking the
neighborhood we can further decompose Fi as F ′

i × Di for Di some disc, and the basepoint of F ′
i is

exceptional. In this case, there will have to be strata Si with slices F ′
i ×D1 ×D2. In this case, though

S3 will not be a product of the slices to S1 and S2 (unless the Di are zero-dimensional), it is still true
that crepant resolutions for S1 and S2 uniquely determine that of S3, since local crepant resolutions of a
variety and of a variety times a disc are in bijection.

Summarizing this subsection:

(1) a choice of local projective crepant resolutions at the minimal strata can determine at most one
locally projective crepant resolution of X,
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(2) we need not check compatibility for strata whose slices are products of two singular varieties (pro-
vided we determine their local crepant resolutions from factor slices), and

(3) compatibility is automatic across strata whose join is an open stratum, or in the case of full crepant
resolutions, for strata whose join is in codimension two.

3.6 Corollaries of the main theorem

Let (X,S) be as in Theorem 1.5. We will record some consequences of Theorem 1.5. For the first set of
corollaries, we return to the setting of smooth projective crepant resolutions, as in the introduction.

Corollary 3.38. Let {Si}i∈I denote the closed strata in S and pick basepoints si ∈ Si. If the germ of
X at si has a unique local projective crepant resolution for all i, then they glue to form a global locally
projective crepant resolution.

More generally, if this is true for all strata except for isolated singularities, then locally projective
crepant resolutions of X are in bijection with choices of local projective crepant resolutions of the isolated
singularities.

Proof. It suffices to prove the assertion of the second paragraph. We use the subsheaf of R of smooth
crepant resolutions (not the partial ones). All exit paths necessarily take the unique values everywhere
except the isolated singularities, which can therefore take any value to get a global section. The result
then follows from Theorem 1.5.

Corollary 3.39. Let X be a variety whose singularities are all either isolated, or have du Val singular-
ities. Then locally projective crepant resolutions are in bijection with arbitrary choices of local projective
crepant resolutions of the isolated singularities (when they exist).

Here, by “having du Val singularities” we mean that some neighborhood is isomorphic to the product
of a disc of some dimension with a du Val singularity. (Since du Val singularities have no moduli, this
is equivalent to being a codimension two singularity whose generic two-dimensional slice is du Val, see
[Rei80, Corollary 1.14].)

Proof. Let Z ⊆ X be the singular locus. This is a Zariski subset which, by assumption, has only isolated
singularities. At any smooth point, by assumption it is analytically locally the product of a du Val
singularity and a smooth disc. So, X is stratified, with three types of strata: the open strata, the strata
which locally have du Val singularities, and the isolated strata. Since du Val singularities all have unique
projective crepant resolutions, the result now follows from Corollary 3.38.

Corollary 3.40. Let X be either a 4-dimensional variety with symplectic singularities, or a 3-dimensional
canonical singularity. Then locally projective crepant resolutions of X are in bijection with arbitrary
choices of local projective crepant resolutions of the isolated singularities (when they exist).

Proof. Note that two-dimensional canonical singularities, two-dimensional symplectic singularities, and
du Val singularities all coincide. Also, canonical and symplectic singularities are normal by definition,
hence smooth in codimension one. Therefore, it suffices to show that canonical 3-dimensional and sym-
plectic 4-dimensional singularities are stratified, with all non-isolated, non-open strata of codimension
two. For symplectic singularities, this follows from the stratification into symplectic leaves. For canonical
three-dimensional singularities, this was explained in [Rei80, Corollary 1.14] (as cited already).

Corollary 3.41. Let (X,S) be a stratified variety satisfying Definition 1.3 and F a constructible sheaf.
Let U ⊂ X be an open subset of X such that for each stratum Si ∈ S, U ∩ Si is connected and nonempty
and the inclusion map ι : U ∩ Si ↪→ Si induces a surjection π1(U ∩ Si) ↠ π1(Si) on fundamental groups.
Then the restriction map induces a bijection Γ(X,F) → Γ(U,F).

Note that, under our assumptions, the subvariety U inherits a stratification by locally closed connected
strata U ∩ Si satisfying Definition 1.3.

Proof. Sections on U and on X can both be identified with choices of sections at every point compatible
under the exit paths listed in Proposition 3.32. If we choose basepoints of X to be in U , then the list
of exit paths can be chosen to be exactly the same (for item (2), it’s because of the assumption on
surjectivity of π1(Si ∩ U) → π1(Si), together with the bijection between the connected strata, and for
item (3), it’s because an open neighborhood of a point of si is contained in both U and X, along with
the bijection of connected strata), except we additionally need for sections on X to have compatibility
with a single path from the basepoint of each stratum Si to each point of Si \ U . The latter just says
that the sections at X \ U are uniquely determined from those on U .

Corollary 3.42. Let (X,S) be a stratified variety with a unique minimal stratum given by a point
Smin = {s}, satisfying Definition 1.3. Then there is an injection R(X) ↪→ R(Us) for Us any neighborhood

of s, and the same holds replacing R with R̃ and P. If there exists a neighborhood Us isomorphic to the
neighborhood of 0 in a conical variety Y , then there is an injection R(X) ↪→ R(Y ).
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In particular, if Y = M0,0(Q, d) is a (conical) Nakajima quiver variety (see Subsection 4.4 for the
definition) for an unframed quiver Q with some di = 1 such that there exists a simple representation, then
the set R(M0,0(Q, d)) into which R(X) injects can be described by GIT chambers following [BCS22,
Corollary 4.7].

Proof. The first statement is an immediate consequence of the constructibility of the sheaves (or of the
exit path description of global sections). For a conical variety X with cone point 0, one can choose a
stratification S where each stratum Si is conical (i.e., 0 ∈ Si). Therefore, compatibility can be checked
in any neighborhood of 0.

Next notice that if a local resolution has monodromy along the loop γ in a stratum S, then the
non-triviality of the homotopy class [γ] implies γ has a non-zero winding number about 0. Consequently
the resolution does not arise as an extension of one in a neighborhood of the cone point.

Therefore, any resolution of any neighborhood of 0 extends uniquely to X.

3.7 Reduction to combinatorics and linear algebra

Our main result says the assignment of U ⊂ X open to the set R(U) of isomorphism classes of projective
crepant resolutions on U is an S-constructible sheaf. Such an S-constructible sheaf can in turn be
described as a functor F : Ex(X,S) → Sets. By choosing the auxiliary data of a basepoint s ∈ S for
each stratum in S and a generating set of simplified exit paths {γs,s′}, such a functor is a system of sets
F (s) := Rs with generalization maps gens,s′ := F (γs,s′) : Rs → Rs′ if S′ ∩ S ̸= ∅.

In nice cases, for each pair of strata, it suffices to choose only one exit path between them (as a
consequence, we only need to do this for neighboring strata), as we now explain. Suppose si ∈ Si for
i = 1, 2 and s2 ∈ S1. Suppose s2 has a neighborhood basis {Ui} such that Ui ∩ S1 is connected (hence
path-connected, since S1 is a manifold). Then any two simplified exit paths from s2 into S1 differ by an
invertible morphism in the exit path category. A stronger, sufficient condition that ensures the need for
only a single exit path from s2 into S1 is that S1 is topologically unibranch at s2.

Definition 3.43. [Mum81, Definition (3.9)] Let X be a variety and fix x ∈ X. We say X is topologically
unibranch at x if for all Zariski closed subsets Y ⊂ X, x has a neighborhood basis {Un} in the complex
topology such that Un\(Un ∩ Y ) is connected.

This property is equivalent to the statement that the fiber of x in the the normalization of X is a
single point (see the exposition in [MO15, Section 5.6] on Zariski’s main theorem [Zar43], where this is
the claim U3 ⇐⇒ U4).

Note that, by local triviality along a stratum and the assumption that strata are connected, these
properties hold at si if and only if they hold at any other point of the same stratum. In this situation, we
can refine Proposition 3.32 to only need a single simplified exit path at each si to each stratum Sj with
Sj ∋ si. As we observed already, these are the same as the strata with Sj ⊇ Si. Finally, by composing
these with an arbitrary path from the endpoint of the simplified exit path to the basepoint sj , we obtain
the following:

Corollary 3.44. Consider a stratified variety satisfying Definition 1.3. Suppose that for every pair of
strata Si, Sj with Sj ⊇ Si, Sj is topologically unibranch at si (or just that there is a neighborhood basis
{Uk} of Sj at si such that Uk ∩ Sj is connected for all k). Then global sections of a constructible sheaf
F are in bijection with choices of sections at basepoints si which are compatible with parallel transport
along:

(1) Any set of closed paths generating the fundamental groups π1(Si, si);

(2) For each pair of distinct strata Si, Sj with Sj ⊃ Si, any single exit path from si to sj.

Note that in (2) in the corollary, we can take the path to be a simplified exit path. Moreover, since
compositions of exit paths are exit paths, we can also restrict in (2) to pairs of neighboring strata, i.e.,
strata such that there does not exist an intermediate stratum Sk /∈ {Si, Sj} with Sj ⊃ Sk, Sk ⊃ Si. These
are the strata that are adjacent in the poset of strata under inclusion of closures, (i.e., adjacent in the
Hasse diagram).

In view of Theorem 3.10, for each of the paths above, we only need to compute the parallel transport
as a linear map on the sheaf P♯ of local relative Picard spaces. Then, the global locally projective
resolutions are given by choices of Mori cones at each basepoint compatible under this transport, and
the global projective resolutions with fixed relatively ample bundle are given by choices of movable line
bundles compatible under this transport. In this sense, we have reduced the classification of crepant
resolutions to combinatorics and linear algebra, provided we have computed the local classification and
the parallel transport.

Remark 3.45. The unibranch condition is not always satisfied in examples. For example, if X is the
nilpotent cone of a semisimple Lie algebra, stratified by the adjoint orbits, it can happen that an orbit
closure is not unibranch. This is true even though X admits a (unique) projective crepant resolution,
the Springer resolution.
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For instance, let S1 be the nilpotent orbit in so7 labeled by the partition (3, 2, 2), of dimension 12.
The orbit closure S1 is not unibranch at a point of the orbit S2 labeled by (2, 14) of dimension 10 (see
[KP82, p. 595]).

4 Examples

4.1 Monodromy and incompatibility

We now construct examples with monodromy obstructions and examples with compatibility obstructions
to gluing local crepant resolutions.

The below examples are either Nakajima quiver varieties or nilpotent orbit closures in sln(C). For the
first type it is well known that the slice to the strata are also Nakajima quiver varieties. In the case where
variation of stability produces a smooth symplectic resolution, it also produces one for each of the slices,
so that condition (*) is satisfied. For the second type, the Springer resolution produces resolutions for
the Kostant–Slodowy slices to each of the strata, so that again (*) is satisfied. (It is also true that, since
these examples are algebraic and have canonical singularities, (*) is a general consequence of [BCHM10],
see Remark 3.4.)

Example 4.1. (Monodromy can occur) Let Q be the quiver with a single vertex and g ≥ 3 loops. Pick
the dimension vector α = (2). By Bellamy–Schedler [BS21], the quiver variety (see Subsection 4.4)

M0,0(Q, (2)) =

{
(X1, Y1, . . . , Xg, Yg) ∈ EndC(C

2)

∣∣∣∣∣
g∑

i=1

[Xi, Yi] = 0

}
//GL2(C)

is Zariski locally factorial, terminal, and singular and hence does not admit an algebraic symplectic
resolution. The same holds for the variety X := M0,0(Q, (2))\{0}, which we claim has an analytically
local symplectic resolution around every point. To see this notice that the stratification of M0,0(Q, (2))
into its symplectic leaves is given on semisimple representations (i.e., elements of closed GL2-orbits in
µ−1(0)) by:

S0 := {ρ = ρ1 ⊕ ρ2 | ρ1 ∼= ρ2} S1 := {ρ = ρ1 ⊕ ρ2 | ρ1 ̸∼= ρ2} S2 := {ρ simple}.

This variety has dimension 2− 4(2− 2g) = 8g − 6. The minimal stratum S1 of X has local quiver

• •g
2g−2

g

with 4g−2 total arrows and dimension vector (1, 1). This is not smooth: its singular locus is the minimal
leaf corresponding to all the arrows of the doubled quiver between two distinct vertices being zero.
This singular locus has dimension 4g, corresponding to the loops of the doubled quiver being arbitrary
scalars. It admits a symplectic resolution since the dimension vector (1, 1) is indivisible, i.e., the greatest
common divisor of its entries is one. As the singular locus has codimension 4g − 6 > 2, and hence the
exceptional locus has codimension greater than one, the symplectic resolutions are small (contract no
divisors). By [BCS22, Theorem 1.2], there are two non-isomorphic projective symplectic resolutions,
given by the two inequivalent nonzero stability conditions (1,−1) and (−1, 1). The complement of this
leaf is the smooth open leaf of simple representations. Hence X admits an analytically local symplectic
resolution in some neighborhood of every point, yet these do not glue to a global algebraic symplectic
resolution. Furthermore, there is a monodromy obstruction to an analytic locally projective crepant
resolution: a path in the variety which swaps the isomorphism classes of ρ1 and ρ2 will swap the two
stability conditions, thus interchange the two inequivalent resolutions.

Example 4.2. (Incompatibility can occur) Let O be the minimal nilpotent orbit closure of sl3(C),
defined explicitly as {A ∈ sl3(C) : A2 = 0}. Note that O has a stratification into {0} and O. Neither
stratum can have monodromy since π1({0}, 0) = 1 and Rs is a singleton set for s ̸= 0. (In fact, it is
also true that π1O = 1, since the partial Springer resolution provides an isomorphism O ∼= (T ∗P2) \ P2,
but we do not need this.) Further, O admits two symplectic resolutions of the form T ∗(SL3(C)/P ) → O
corresponding to the two parabolic subgroups of SL3(C). We can also write these resolutions as T ∗Gr(1, 3)
and T ∗Gr(2, 3), or the cotangent bundle of P2 and its dual. So the product O ×O ×O has strata with
no monodromy and admits 23 symplectic resolutions.

Let Y = O×O×O\{(0, 0, 0)}. There are three minimal leaves: O× 0× 0, 0×O× 0, and 0× 0×O.
Each has slice isomorphic to O × O and hence has 4 symplectic resolutions. Of the 43 = 64 possible
choices, only 8 can result in an actual symplectic resolution. Indeed, the choices can only be compatible
when they come from a triple of choices by restriction, i.e., from a choice of resolution at the cone point
we threw out. This can be seen by restricting from each pair of minimal leaves to their product.

Example 4.3. (Constructing monodromy) Let X be a symplectic singularity with two symplectic res-
olutions X1 and X2 that differ by composing with an automorphism ϕ : X → X of the singularity (in
particular, X1 is isomorphic to X2 as varieties). Let S be symplectic with an automorphism ψ whose
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non-identity powers {ψn | ψn ̸= idS}n∈N have no fixed points. Assume further that the order of ϕ divides
the order of ψ (or the order of ψ is infinity). The quotient (X × S)/G by the group G := ⟨ϕ × ψ⟩ has
non-trivial monodromy along a path from (x, s) to (ϕ(x), ψ(s)) in X × S.

For example, for n,m ∈ N with m < n/2 define

Xn,m = {A ∈ sln(C) | A2 = 0, rankC(A) ≤ m}.

There are non-isomorphic Springer resolutions T ∗(Gr(m,n)), T ∗(Gr(n−m,n)) → Xn,m whose sources are
isomorphic as varieties (via an inner product ⟨−,−⟩ on Cn that identifies eachm-plane with its orthogonal
complement (n−m)-plane), and this isomorphism induces a nontrivial automorphism of Xn,m, namely
the transpose. Note that ϕ squares to the identity. Let S = (C)2\{(0, 0)} with action of C2 = ⟨ψ⟩ taking
(x, y) 7→ (−x,−y). Then (Xn,m ×S)/((A, x, y) ∼ (A∨,−x,−y)) has monodromy taking T ∗(Gr(m,n)) to
T ∗(Gr(n−m,n)) along a path from (A, x, y) to (A∨,−x,−y) in X × S.

4.2 Symmetric powers of surfaces with du Val singularities

Let Y be a surface with only du Val singularities and a symplectic form on the smooth locus. Consider
X := Symn(Y ) := Y ×n/Sn where Sn denotes the symmetric group on n-letters acting by permuting the
factors. Then X has a stratification by symplectic leaves (equivalently, the singularity stratification):

X =
⊔

f : Y sing → N∑
f(z) ≤ n

Xf Xf :=
⊔

f : Y sing → N∑
z f(z) ≤ n

Symn−
∑

z f(z)(X\Xsing)×
∏

z∈Y sing

(z, . . . , z) (f(z) times).

Note that the singularities satisfy (*) since the slice to the strata are products of symmetric powers

of du Val singularities (or C2), and each of these can be resolved by the composition Hilbm(C̃2/Γ) →
Symm(C̃2/Γ) → Symm(C2/Γ) of the Hilbert–Chow morphism and the symmetric power of the mini-
mal resolution of the surface. (Also, analytically locally the variety is isomorphic to complex algebraic
varieties, so Remark 3.4 applies to this case.)

Proposition 4.4. Every locally projective partial crepant resolution of X is uniquely determined by its
restriction to open neighborhoods of the points (z, . . . , z) (n times) for z ∈ Y sing. Consequently, for Uz

disjoint neighborhoods of the singularities z of Y ,

R(Y ) ∼=
∏

z∈Y sing

R(Symn(Uz)) ∼=
∏

z∈Y sing

R(Symn(Ĉ2/Γz))

for some Γz ⊂ SL2(C). Hence each locally projective partial crepant resolution of Y is locally given by
variation of stability parameter.

Moreover, if Y has finitely many singularities, then every locally projective partial crepant resolution
of X is globally projective.

By [BC20, Corollary 1.3], R(Symn(Ĉ2/Γz)) can be identified with chambers in the GIT fan modulo
the Weyl group action. The later can be computed explicitly, forW with Coxeter number h and exponents
e1, . . . , eℓ

#R(Symn(Ĉ2/Γz)) =

ℓ∏
i=1

(
(n− 1)h

ei + 1
+ 1

)
see [Bel16, Proposition 1.2]. For example, in type E, writing T,O, I for the binary tetrahedral, binary
octahedral, and binary icosahedral groups respectively, we have

#R(Symn(Ĉ2/T )) =
n

30
(1728n5 − 4320n4 + 4140n3 − 1900n2 + 417n− 35)

#R(Symn(Ĉ2/O)) =
n

280
(59049n6 − 183708n5 + 229635n4 − 147420n3 + 51156n2 − 9072n+ 640)

#R(Symn(Ĉ2/I)) =
n

1344
(1265625n7 − 4725000n6 + 7323750n5 − 6100500n4 + 2943325n3

− 820260n2 + 121796n− 7392).

Proof. Denote the singularities of Y by zi, i.e., Y
sing = {zi}. For each zi ∈ Y pick Ui ⊆ Y a contractible

neighborhood, such that the collection {Ui} is pairwise disjoint.
Let V = Y \

(
⊔iUi

)
where Ui denotes the closure of Ui in S. The inclusion map ιV : V → Y induces a

surjection on the fundamental group of the smooth locus Y sm and the inclusion ιU : (⊔iUi) → Y induce
surjections on the fundamental groups of the singular strata, Y sing = {zi}. So their union ι : V ⊔(⊔iUi) →
X induces surjections on the fundamental group of each stratum. Therefore, the induced inclusion on the
nth symmetric power Symn(ι) : Symn(V ⊔ (⊔iUi)) → Symn(Y ) induces surjections on the fundamental
groups of each stratum. For each stratum in Symn(Y ), there is a stratum in Symn(V ⊔ (⊔iUi)) mapping
into it which is of the form

S ×
∏
i

(zi, . . . , zi) ⊆ Symm V ×
∏
i

Symmi Ui ⊆ Symn(V ⊔ (⊔iUi)).
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By Corollary 3.41, we can detect monodromy of a stratum of Symn(Y ) by monodromy on the source
stratum. This is a product of S with a point, so the monodromy is detected by the monodromy along
S ⊆ Symm V . Since there is locally a unique crepant resolution along this stratum, there can be no
monodromy. Consequently, there is no obstruction extending local crepant resolutions to entire stratum.

Let z1 and z2 be du Val singularities in the surface Y . Fix 0 < m < n. Define the strata in
X = Symn(Y )

Sa,b,c := {(z1, . . . , z1︸ ︷︷ ︸
a copies

, y1, y2, . . . , yb, z2, . . . , z2︸ ︷︷ ︸
c copies

) | yi ∈ Y sm, yi ̸= yj for i ̸= j} a+ b+ c = n.

The four chains:

Sn,0,0 → Sn−1,1,0 → · · · → Sm,n−m,0 Sm,0,n−m → Sm,1,n−m−1 → · · · → Sm,n−m,0

S0,0,n → S0,1,n → · · · → S0,m,n−m Sm,0,n−m → Sm−1,1,n−m → · · · → S0,m,n−m

form an M-configuration in the Hasse diagram

Sm,n−m,0 = {(
m copies︷ ︸︸ ︷
x1, . . . , x1, y1, . . . , yn−m)} S0,m,n−m = {(y1, . . . , ym,

n-m copies︷ ︸︸ ︷
x2, . . . , x2)}

Sn,0,0 = {(x1, . . . , x1)}

OO

Sm,0,n−m = {(x1, . . . , x1︸ ︷︷ ︸
m copies

, x2, . . . , x2︸ ︷︷ ︸
n-m copies

)}

66ii

S0,0,n := {(x2, . . . , x2)}

OO

The slice to Sm,0,n−m is a product of slices to Sm,n−m,0 and S0,m,n−m. So as explained in Subsection
3.5 in general, a choice of crepant resolutions in neighborhoods of the points (x1, . . . , x1) and (x2, . . . , x2)
determine crepant resolutions in neighborhoods of the point in Sm,0,n−m for all 0 < m < n. Note that
we can check compatibility across Sn,0,0 and S0,0,n in the diagonal stratum {(x, x, . . . , x) : x ∈ S} as it
is the join Sn,0,0 ∨ S0,0,n. The diagonal stratum has a unique crepant resolution given by the Hilbert
scheme, so all choices of crepant resolutions glue compatibility in the diagonal.

We have seen that an arbitrary choice of local crepant resolutions of the minimal strata Symn{zi}
determine at most one local resolution at all minimal strata. They therefore determine at most one local
crepant resolution at all strata. We also saw that these resolutions cannot have any monodromy. To
conclude that there is a unique locally projective crepant resolution determined by our choice of local
resolutions at the strata Symn{zi}, it remains to show that there exists a compatible choice of local
crepant resolutions for all the strata. Each stratum, as above, is of the form S ×

∏
i Sym

mi{zi}. The

slice here is a product of slices to S ⊆ Symn−
∑

i mi V and to Symmi{zi} ⊆ Symmi Ui. The former has
a unique crepant resolution and the latter resolutions are uniquely determined by our resolutions at the
strata Symn{zi}. So again as explained in Subsection 3.5, we obtain a resolution for this stratum, and
by construction these are all compatible. This determines a unique locally projective crepant resolution
of Symn Y .

Finally, we show that the locally projective resolutions are globally projective, assuming Y has finitely
many singularities. Let Z := C2/G be a du Val singularity, and let Z̃ be its minimal resolution (which

is crepant). Recall that the Hilbert-Chow morphism Hilbn(Z̃) → Symn(Z̃) is a symplectic resolution

of singularities. There is a map exc : Pic(Hilbn(Z̃)) → Z projecting to the exceptional divisor. For
different choices of movable bundle at the most singular points to glue to a section of P♯ (and to fit into
an M-configuration) we need their images under exc to agree. This can be arranged e.g., by rescaling an
arbitrary collection, so arbitrary choices of movable bundles at the most singular points glue.

By the same argument as for R, there is no monodromy of P♯, unless there is on strata of Symm V .
Using M -configurations we can reduce to the case of the diagonal stratum V ⊆ Symm V . But there the
local relative Picard group is Z, spanned by the globally defined exceptional divisor of the Hilbert–Chow
resolution. So the local sections of P on the diagonal stratum all extend, and there is no monodromy.

We thus conclude that Γ(X,P♯) is isomorphic to the direct sum of Z (for the diagonal stratum) with
the sum over all singularities z ∈ Z of the kernel of exc in the local sections of P at n · z. This is spanned
by global divisors: the exceptional one together with the strict transform of the exceptional divisors of the
minimal resolution of Z. The exceptional divisor is supported on all of X, whereas the strict transforms
of exceptional divisors of Z̃ at a du Val singularity z ∈ Z are supported on the closed codimension-two
stratum of schemes which intersect z. Linear combinations are supported on the corresponding union of
these closed strata. Thus, Lemma 3.24 and Proposition 3.22 apply, and all global sections of P♯ are classes
of global line bundles. Hence all locally projective partial crepant resolutions are globally projective.

Remark 4.5. Since symmetric powers of du Val singularities are quotient singularities, in the terminal
case, we could also have applied Theorem 3.27 to replace the argument in the last paragraph.

21



4.3 Hilbert schemes of a surface with du Val singularities

Let Γ ⊂ SL2(C) be a non-trivial, finite subgroup and let n > 1. The nth symmetric power Symn(C2/Γ)
has multiple non-isomorphic symplectic resolutions of singularities. One such resolution is given by

nΓ-Hilb(C2) := {Γ-invariant ideals I ⊂ C[x, y] | C[x, y]/I ∼= C[Γ]⊕n as Γ-representations}.

where C[Γ] denotes the regular representation. Additionally, Symn(C2/Γ) has a partial resolution of
singularities given by

Hilbn(C2/Γ) := {ideals I ⊂ C[x, y]Γ | dimC(C[x, y]
Γ/I) = n}.

Craw–Gammelgaard–Gyenge–Szendrői [CGGS21, Theorem 1.1] and Craw–Yamagishi [CY24, Theorem
1.2] prove that the invariants map

nΓ-Hilb(C2) → Hilbn(C2/Γ) I 7→ I ∩ C[x, y]Γ

is the unique projective symplectic resolution of singularities for Hilbn(C2/Γ).
Now let Y be a surface with finitely many du Val singularities and let X := Hilbn(Y ) be its Hilbert

scheme. By assumption, for each zi ∈ Y sing there is an analytic neighborhood Ui which is either smooth
or du Val, locally isomorphic to C2/Γi. In each case, for every m ≥ 1, Hilbm(Ui), which is smooth
if Ui is smooth by [Fog68, Theorem 2.4], has a unique symplectic resolution of singularities given by
mΓi- Hilb(Ũi) → Hilbm(Ui) for some open Ũi ⊆ C2 with Ui

∼= Ũi/Γi. By the same argument as in the
previous subsection, these glue uniquely to a locally projective symplectic resolution of Hilbn(Y ): any
locally projective crepant resolution is uniquely determined by its restriction to Hilbn(V ⊔ (⊔iUi)), and
the preceding defines compatible locally projective crepant resolutions for the connected components,
Hilbm−

∑
i mi(V )×

∏
i Hilbmi Ui. Call this resolution X̃ → X := Hilbn Y .

Composing these with the Hilbert–Chow maps Hilbmi Ui → Symmi Ui produces one of the locally
projective crepant resolutions of Symmi Ui constructed in the preceding subsection, which we showed to
actually be globally projective. A relatively ample line bundle for the resulting resolution X̃ → Symn Y
is automatically relatively ample over Hilbn Y . So we see that X̃ → Hilbn Y is also globally projective.
By construction it is the unique globally projective crepant resolution, since it restricts to the unique one
for neighborhoods Hilbn Ui.

We conclude:

Proposition 4.6. There is a unique globally projective crepant resolution of Hilbn Y , given by gluing the
resolutions mΓi-Hilb Ũi → Hilbm Ui. In the case that Y is a global quotient Y ∼= Ỹ /Γ, this resolution is
isomorphic to nΓ-Hilb(Ỹ ).

Remark 4.7. It follows from the above that, if X = Hilbn(Z) for some surface Z, then X admits a
crepant resolution precisely when Z has at worst du Val singularities. The preceding gives the existence
of a unique projective crepant resolution when X has at worst du Val singularities. Conversely, note that
all of the singularities of Z appear in X, and already in the set of distinct n-tuples of points of Z. But
it is well known that the canonical surface singularities are precisely the du Val singularities. In order to
have a crepant resolution, the singularities must be canonical.

Remark 4.8. We did not check whether there exists non-projective, locally projective crepant resolutions
of Hilbn Y . This seems like an interesting problem. We claim any such resolution π of Hilbn Y , gives a
proper crepant resolution π′ of Symn Y that is not locally projective. Explicitly π′ is the composition of
π with the Hilbert–Chow morphism. If π′ is locally projective, then the final sentence of Proposition 4.4
implies that π′ is globally projective. It follows that π is globally projective and hence isomorphic to the
unique globally projective crepant resolution constructed above.

4.4 Multiplicative quiver varieties

Let Q be a quiver, k an algebraically closed field of characteristic zero, and A a k-algebra with a kQ0-
bimodule structure. Notice that an A-moduleM has a dimension vector d := (di) := (dim(ei ·M)) ∈ NQ0 .
The group Gd :=

∏
i GLdi(k) acts on the space of A-modules by conjugation. Following King [Kin94],

define θ ∈ Homgrp(Gd, k
∗) = ZQ0 to be a character of Gd. The quiver variety for A is the moduli space

Md,θ(A) of d-dimensional, θ-semistable representations of A.
If A = Πλ(Q) is the deformed preprojective algebra of the quiver Q, then Md,θ(A) is the Nakajima

quiver variety. In this case we write Mλ,θ(Q, d) := Md,θ(Π
λ(Q)) in order to conform to the more

standard notation. If A = Λq(Q) is the multiplicative preprojective algebra of Crawley-Boevey and Shaw
[CBS06], then Md,θ(A) is the multiplicative quiver variety.

Multiplicative quiver varieties includes character varieties of Riemann surfaces with monodromy con-
ditions (as open subsets, which are the entire variety in genus zero), and modifications of du Val sin-
gularities. We showed in [KS23, Theorem 5.4] that the formal local structure of multiplicative quiver
varieties agrees with that of Nakajima quiver varieties. Consequently, for each multiplicative quiver va-
riety Md,θ(Λ

q(Q)) and each module M one can classify symplectic resolutions for a sufficiently small
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open neighborhood UM of M . Moreover, the slices to the strata are also Nakajima quiver varieties,
and whenever variation of stability produces a symplectic resolution or relative minimal model, then the
slice is also resolved, verfying (*). By [BS16], this is always true except in the “(2,2)” case, where a
further blow-up of the reduced singular locus produces a crepant resolution of singularities. It follows
that all multiplicative quiver varieties have stratifications satisfying (*) (which is also a consequence of
[BCHM10], see Remark 3.4).

The main results of this paper give a theoretical technique to classify global symplectic resolutions,
provided one can compute the symplectic leaves and calculate the monodromy and compatibility con-
straints. Without monodromy computations, we can still prove partial results.

For dimension vectors d, d′ ∈ NQ0 we write d′ < d if d − d′ ∈ NQ0 . The decomposition type of
a semisimple representation is the unordered collection of dimension vectors of simple summands with
multiplicities. Note that every point of a moduli space Md,0(A) of a quiver algebra A is represented by
a unique semisimple representation up to isomorphism. Taking connected components of the loci with
fixed decomposition type, we obtain a finite stratification of Md,0(A) by connected strata (although these
strata need not be smooth).

Proposition 4.9. Let A be an augmented kQ0-algebra, i.e., A is equipped with a kQ0-algebra homo-
morphism A ↠ kQ0. Equip Md,0(A) with the stratification above. Let the zero representation of a
given dimension vector denote the one factoring through the augmentation. The following conditions are
equivalent:

(1) The zero representation lies in the closure of every stratum (i.e., symplectic leaf) of Md,0(A).

(2) The variety Md′,0(A) is connected for all d′ < d.

Proof. (1) =⇒ (2): By definition, every stratum is connected. Since the closure of a connected set
is connected, and the union of intersecting connected sets is connected, we establish that Md,0(A) is
connected. Since Md′,0(A) appears as a union of strata in Md,0(A) for all d

′ < d, we have that all such
multiplicative quiver varieties are connected.
(2) =⇒ (1): By contrapositive, assume that the closure of some stratum of does not contain the zero
representation. This stratum is a product of (Zariski) open strata in quiver varieties of dimension vectors
adding to d, corresponding to the decomposition type of the representations in the stratum. Thus for
some d′ < d, there is an open stratum whose closure does not contain the zero representation. Assume d′

is minimal with this property. Take the union X of all such closures, and let Y be the union of closures
of open strata containing the zero representation. We claim that X and Y are open, so the moduli space
is disconnected. Since these are closed sets whose union is the whole variety, it suffices to show that
X ∩ Y = ∅. If not then the intersection contains a non-open stratum whose closure does not contain the
zero representation. This contradicts minimality of d′.

We apply the preceding result in the case of A = Λ1(Q). We need to take q = 1 for the relation∏
a∈Q1

(1 + aa∗)(1 + a∗a)−1 − q to lie in the ideal (kQ1), which we take to be the augmentation ideal.
Note that, in general, multiplicative quiver varieties may be reducible or even disconnected. There is
no trouble applying our theory to this case (and indeed we did not assume irreducibility), as birational
morphisms make sense in the reducible setting.

Corollary 4.10. Suppose that d is a dimension vector such that Md′,0(Λ
1(Q)) is connected for all d′ < d.

Then R(Md,0(Λ
1(Q))) ↪→ R(Md,0(Π(Q))).

More explicitly, the map is given by restricting to a neighborhood of the zero representation, identi-
fying with a neighborhood of the zero representation in an additive quiver variety and extending to the
entire variety.

Proof. It suffices to establish the hypotheses of Corollary 3.42 in the case X = Md,0(Λ
1(Q)), s is the zero

representation, and Y = M0,0(Q, d). By Proposition 4.9 the zero representation s ∈ Md,0(Λ
1(Q)) is con-

tained in the unique minimal stratum. Additionally, there exists a neighborhood of zero in Md,0(Λ
1(Q))

that is isomorphic to a neighborhood of zero in M0,0(Q, d) by [KS23, Corollary 5.22] (noting that Q′ = Q
and d′ = d in this case since the Ext-quiver of the zero representation is the original quiver). So Corollary
3.42 gives the inclusion R(Md,0(Λ

1(Q))) ↪→ R(M0,0(Q, d)), completing the proof.

The original motivation for this paper was to extend the classification of symplectic resolutions of
quiver varieties [BS16, BCS22] to multiplicative quiver varieties. For quiver varieties the symplectic leaves
are given by representation type. Multiplicative quiver varieties have a stratification by representation
type but these strata need not be connected and the symplectic leaves may be a finer stratification.
In examples below, we establish that the stratifications into symplectic leaves and representation types
agree. Hence the classification of symplectic resolutions of the multiplicative quiver variety Md,0(Λ

1(Q))
agree with the known classification of symplectic resolutions of the quiver variety M0,0(Q, d).

Type Ã For Q = Ãn−1, the cycle with n-vertices, q = 1, d = 1, and θ = 0, our previous work [KS23,

Corollary 6.14, Proposition 6.19] building on Shaw [Sha05, Theorem 4.1.1] describes M1,0(Λ
1(Q)) as the
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spectrum of the commutative ring Rn := k[X,Y, Z]/(Zn +XY +XY Z). Note that (1 + Z) is invertible
in Rn as the relation can be rewritten:

Zn +XY +XY Z = Zn +XY (1 + Z) = Zn + 1− 1 +XY (1 + Z) = (Zn + 1) +XY (1 + Z)− 1

= (1 + Z)(Zn−1 − Zn−2 + · · ·+ (−1)n−1 +XY )− 1.

Hence there is an isomorphism of rings

k[X,Y, Z][(1 + Z)−1]/(Zn +XY ) → k[X,Y, Z]/(Zn +XY +XY Z) X 7→ X(1 + Z), Y 7→ Y, Z 7→ Z.

Since the vanishing of Zn +XY is the du Val singularity for Ãn−1, we conclude that this multiplicative
quiver variety is a Zariski-open subset of the (additive) quiver variety. In particular, M1,0(Λ

1(Q)) has a
unique symplectic resolution of singularities.

Example 4.11. Let Q = Ã2, d = (2, 3, 5), and λ = 0 = θ. Then the canonical decomposition of d is

(2, 3, 5) = 2(1, 1, 1) + (0, 1, 0) + 3(0, 0, 1).

The decomposition on the level of quiver varieties, is

M0,0(Q, d) ∼= Sym2(M0,0(Q, (1, 1, 1)))×M0,0(Q, (0, 1, 0))× Sym3(M0,0(Q, (0, 0, 1)))

∼= Sym2(M0,0(Q, (1, 1, 1)))

since M0,0(Q, ei) is a single point, for any elementary vector ei = (0, . . . , 0, 1, 0, . . . , 0). This realizes

M0,0(Q, d) = Sym2(M0,0(Q, (1, 1, 1))) = Sym2(C2/C2)

as a symmetric product of a surface with a du Val (A1) singularity. Hence, Md,0(Π(Q)) has two symplectic

resolutions of singularities given by Hilb2(C̃2/C2) and 2C2-Hilb(C2).
We claim that the multiplicative quiver variety Md,0(Λ

1(Q)) has the same classification of symplectic
resolutions. In fact, it has the same stratification into symplectic leaves by representation type and hence
is a Zariski-open subset

Md,0(Λ
1(Q)) = Sym2(M1,0(Λ

1(Q)) ⊂ Sym2(C2/C2) ∼= Md,0(Π(Q)).

We conclude that all symplectic resolutions of this multiplicative quiver variety are given by variation
of geometric invariant theory quotient (VGIT), since the same holds in the additive case by Bellamy–
Craw [BC20, Corollary 1.3].

Hyperpolygon spaces Let Qn be the star-shaped quiver with a central vertex v, n external vertices
w1, . . . , wn, and an arrow from each external vertex to the central vertex. Let d be the dimension vector
(2, 1, 1, . . . , 1) where the vertices are ordered (v, w1, . . . , wn). The Nakajima quiver varieties M0,0(Qn, d)
for these data are called hyperpolygon spaces due to being a hyperkähler analogue of moduli spaces of
polygons in R3, see [HK97]. In [BCR+21, Corollary 1.4], the authors show that all crepant resolutions
of the hyperpolygon spaces are given by variation of GIT and consequently can be counted explicitly in
terms of GIT chambers. Further [BCR+21, Proposition 3.8, Remark 3.9] counts the crepant resolutions
for n ≤ 9. We claim that these results are valid in the multiplicative setting.

Proposition 4.12. There is a bijection R(Md,0(Λ
1(Qn))) ∼= R(M0,0(Qn, d)) given by the inclusion

map from Corollary 4.10. In particular, [BCR+21, Remark 3.9] applies to give the number of locally
projective crepant resolutions, which are all globally projective.

As stated above, n = 4, 5, 6, Md,0(Λ
1(Qn)) has 1, 81, and 1684 locally projective crepant resolutions

respectively, which are all globally projective.

Lemma 4.13. Fix n,m ∈ N with m,n > 1 and monic polynomials χi ∈ C[x] of degree m. Let X ⊆
GLm(C)n the subset of matrices such that the i-th matrix has characteristic polynomial χi for all i. Let
Yc ⊆ GLm(C) denote the subset of matrices of trace c. Define the locus of n-tuples of m×m matrices

Z := {(A1, A2, . . . , An, B) ∈ X × Yc | A1A2 · · ·AnB = I}.

Then, Z is irreducible.

Proof. First, note that the variety embeds into the subset of X of n-tuples such that the inverse of the
product has a fixed value c of the trace.

Consider matrices A1, A2, . . . , An with Jordan decompositions of the inverses A−1
i := Si +Ni, where

Si is semisimple and Ni is nilpotent. For each i and λ ∈ C consider

Xi,λ := (Sn +Nn) · · · (Si−1 +Ni−1)(Si + λNi)(Si+1 +Ni−1) · · · (S1 +N1)

rescaling the nilpotent part of the A−1
i . Now tr(Xi,λ) is a linear function of λ, so either it obtains all

values once, or it is constant. The condition to be constant, tr(Xi,λ) = α a fixed value, is closed on the
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n-tuples of matrices, hence also on X. It is not the entire space since we can take all S1, . . . , Sn to be
diagonal, take two matrices Ni, Nj to have tr(NiNj) ̸= 0, and all other Nk with k /∈ {i, j} to be zero.

So, we get that on a dense open subset U ⊂ X, the locus with tr(Xi,λ) = α is given by a unique
choice of λ. So the map

U × C× → C, (X,λ) 7→ tr(Xi,λ)

has fibers which project isomorphically to U . In particular, the fibers are irreducible.
Applying the multiplication map U ×C× → U , the image of this fiber gives an open dense irreducible

set of n-tuples which have the given value of trace. The whole locus of desired tuples is thus irreducible.

Proof of Proposition 4.12. To obtain the inclusion map of Corollary 4.10, we need to establish that
Md′,0(Λ

1(Qn)) is connected for each d′ < d. This is a consequence of Lemma 4.13 for m = 2 and
characteristic polynomials equal to (x − 1)2, since a product of unipotent 2 × 2 matrices is unipotent if
and only if it has trace two.

For the injection to be surjective, we need to show that every local crepant resolution near zero
extends to a global one. We will show these are in fact given by VGIT and hence globally projective,
proving simultaneously the last statement.

In [KS23, Theorem 5.4], we establish that Md,0(Λ
1(Qn)) is locally a quiver variety. Note that the

hypotheses of [ST19, Theorem 1.5] are satisfied, so Md,0(Λ
1(Qn)) has a crepant resolution given by

variation of stability parameter (for a generic choice of parameter). The varieties Md,0(Λ
1(Qn)) and

M0,0(Q, d) have the same choices of stability parameter and the same symplectic leaves since the stratifi-
cation by representation type is connected. It follows that the injection of resolutions R(M0,0(Q, d)) ↪→
R(Md,0(Λ

1(Qn))) is surjective and we have the same classification of symplectic resolutions.

Remark 4.14. According to the interpretation of multiplicative quiver varieties as character varieties
[CBS06], [ST19, Theorem 3.6], the multiplicative quiver varieties above can also be interpreted as the
moduli spaces of rank two local systems on Riemann spheres punctured at n points with unipotent
monodromies about the punctures. Thus Proposition 4.12 gives a complete classification of the (locally)
projective crepant resolutions of these character varieties. One can deduce from this that distinct crepant
resolutions are connected by sequences of local Mukai flops, precisely as in [BCR+21].

The proof of Proposition 4.12 holds in the following more general case:

Corollary 4.15. Suppose Q is a quiver and d is a dimension vector satisfying:

• Md′,0(Λ
1(Q)) is connected for all d′ < d,

• The hypothesis of [BCS22, Theorem 1.2] holds for M0,0(Q, d) showing it is a Mori dream space
with all projective crepant resolutions given by VGIT.

Then R(Md,0(Λ
1(Q))) ∼= R(M0,0(Q, d)) and all resolutions are given by VGIT (hence globally projec-

tive).

Note here that the hypotheses of [ST19, Theorem 1.5] for the multiplicative variety Md,0(Λ
1(Q))

to admit a symplectic resolution by VGIT are automatically satisfied when the conditions of [BCS22,
Theorem 1.2] hold for M0,0(Q, d), since the latter include the facts that the dimension vector is indivisible
and contained in Σ0,0.

4.5 Moduli spaces of objects in 2-Calabi–Yau categories

A k-linear triangulated category with finite-dimensional hom spaces, C, is 2-Calabi–Yau if it has a Serre
functor given by shift by 2. Observe that 2-Calabi–Yau categories arise naturally in geometry including
any full subcategory of:

(1) the derived category of finite-dimensional modules for a 2-Calabi–Yau dg-algebra, which includes
dg-preprojective algebras and multiplicative dg-preprojective algebras (see e.g., [BCS23]),

(2) the derived category of coherent sheaves on a compact Calabi–Yau surface (K3 or abelian variety);

(3) the wrapped Fukaya category of a real 4-dimensional Weinstein manifold [Gan12],

(4) the cluster category of a finite quiver (see e.g., [Kel08]), and

(5) the category of semistable Higgs bundles of fixed slope on a closed Riemann surface Mg.

The Higgs bundle example follows from realizing this category is a subcategory of coherent sheaves on
the symplectic manifold T ∗(Mg). Note that, analogously, a full subcategory of (1) for the multiplicative
preprojective algebra includes categories of local systems on Riemann surfaces with punctures, fixing
monodromy conjugacy classes at the punctures (see [ST19, Theorem 3.6] and the preceding discussion).

The key idea in this section is to build crepant resolutions for a variety X by realizing X as the
moduli space of objects for C, a 2-Calabi–Yau category, X ∼= M(ob(C)). Davison proved that such
moduli spaces are étale-locally quiver varieties [Dav21, Theorem 5.11, Theorem 1.2], at least over an
open subset: Given a closed point x ∈ X corresponding to a “simple-minded collection” of objects in
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C, i.e., a direct sum of objects F⊕ri
i such that dimHom(Fi,Fj) = δij and Ext<0(Fi,Fj) = 0 for all

i, j, there is an étale neighborhood of x ∈ X which is isomorphic to an étale neighborhood of the zero
representation in a conical Nakajima quiver variety. These also have a symplectic form on the smooth
locus [BD21, Theorem 5.5], so that the (open locus of simple-minded objects in) the coarse moduli space
forms a symplectic singularity. The argument in the case of multiplicative quiver varieties then shows
that the stratification by symplectic leaves satisfies (*).

Bellamy and the second-named author determine which quiver varieties admit projective, crepant (or
equivalently symplectic) resolutions in [BS21]. Recently, Bellamy, Craw, and the second-named author
give a criterion for a variety X presented as a GIT quotient to have all projective crepant resolutions
given by variation of GIT [BCS22, Theorem 1.1, Condition 3.4]. Moreover, they prove that, under
mild hypotheses, Nakajima quiver varieties satisfy this criterion, thus giving a classification of projective
crepant resolutions by VGIT [BCS22, Theorem 1.2].

Consequently, for M(ob(C)) the moduli of objects in a 2-Calabi–Yau category, one can compute
the local classification of projective, crepant resolutions in the étale neighborhood of any point, by first
identifying the neighborhood with that of a quiver variety, where every such resolution can be described
by VGIT.

In more detail, consider the open subset of objects M with End(M) semisimple. Then there ex-
ists a quiver Q = (Q0, Q1) with (1) End(M) Morita equivalent to kQ0 and (2) the Morita equivalence
taking Ext1(M,M) to kQ1. The quiver Q is called the Ext-quiver for M . And in the 2-Calabi–Yau
case the entire Ext-algebra Ext∗(M,M) can be recovered (as a graded vector space) from Q since
Ext2(M,M) ∼= Ext0(M,M)∗ and Extn(M,M) = 0 for n > 2. Note further that Ext1(Ei, Ej) ∼=
Ext1(Ej , E1)

∗ so dim(Ext1(Ei, Ej)) = dim(Ext1(Ei, Ej)) and hence Q is a doubled quiver. The multi-
plication on Ext∗(M,M) is determined by the pairing on Ext1(M,M) (together with vanishing in degree
≥ 3). While, in general one would need to describe the entire A∞-structure on Ext∗(M,M), Davison
[Dav21, Theorem 1.2] proved that this algebra is formal.

By computing monodromy and compatibility, one could apply our local-to-global analysis, where the
stratification S is determined by Ext-quiver type (passing to connected components), to classify global
projective symplectic resolutions of X.

Even without computing monodromy and compatibility we can still apply Corollary 3.42 to obtain:

Corollary 4.16. Let C be a 2-Calabi–Yau category and let M(ob(C)) denote its moduli space of objects.
Assume M(ob(C)) has a unique minimal stratum with basepoint M . Let Q be the Ext-quiver for M and
d = (di := dim(Ext1(eiM, eiM))). Then

R(M(ob(C))) ↪→ R(M0,0(Q,d)).

More generally, we always have an embedding R(M(ob(C))) →
∏

i R(M0,0(Qi,di)) into the product
over all minimal strata of the set of local resolutions near a fixed basepoint of the stratum.

4.6 Finite symplectic quotients of symplectic tori

Let T = (C×)n be the n-dimensional complex torus, and let t ∼= Cn be its Lie algebra. To this we can
associate two natural symplectic varieties: T ∗(T) ∼= T × t∗ and T × T.

As explained in Section 2, any finite symplectic quotient has a finite stratification by symplectic
leaves, with a local product decomposition. In this section we will look at the case where the actions are
moreover group automorphisms of the torus. Recall that the group of multiplicative automorphisms of
the torus T is the group of automorphisms of the lattice Hom(T,C×) ∼= Zn of characters, i.e., GLn(Z).
These induce symplectic automorphisms of T ∗(T) and T × T. We will also consider the larger group
Sp2n(Z) of symplectic group automorphisms of T × T.

4.6.1 Weyl group quotients

Let G be a reductive group with maximal torus T and Weyl group W := NG(T)/T. Here we consider the
quotients T × T/W and T ∗(T)/W .

Remark 4.17. The three classes of quotients (1) T×T/W , (2) T ∗(T)/W , and (3) T ∗(t)/W are of interest
in part because of their descriptions as the connected component of the identity of the quasi-Hamiltonian
reductions: (1) G×G///G, (2) T ∗(G)///G, and (3) T ∗(g)///G. These statements can be found in [LNY23,
Theorem 1.1.2, Theorem 1.1.4] but note Ansatz 1.2.5 and see Remark 1.1.5 for previous partial results
including [Jos97] and [EG02] who obtain the result only after quotienting out the nilradical, i.e., for
reduced rings. One could use the formula for G×G///G in [LNY23, Theorem 1.1.4] to analyze the other
connected components, which are quotients of smaller tori.

Let us first consider the case where G is simply-connected and semisimple. Let Sn denote the
symmetric group on n letters and Cn denote the cyclic group of order n.
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Type A (SLn+1): The quotient T × T/W := (C×)n × (C×)n/Sn+1 can be viewed as the subset of

Symn+1(C2) given by{
(λ1, µ1), (λ2, µ2), . . . , (λn+1, µn+1) ∈ Symn+1(C2)

∣∣∣∣∣
n+1∏
i=1

λi = 1 =

n+1∏
i=1

µi

}
.

Explicitly, λn+1 = 1/
∏n

i=1 λi and µn+1 = 1/
∏n

i=1 µi and in particular each λi, µi ̸= 0. Hence each
singularity in T × T/W can be identified with a singularity in Symn+1(C2). Consequently, each singu-
lar point x has a neighborhood Ux with a unique crepant resolution given by the Hilbert–Chow map
Hilbn+1(Ux) → Symn+1(Ux). By Corollary 3.38, these unique local resolutions glue to a unique global,
crepant resolution. This resolution is a priori only locally projective but in this case is given by the global
Hilbert scheme

Hilbn+1
1 (C× × C×) :=

{
I ∈ Hilbn+1(C× × C×)

∣∣∣∣∣
n+1∏
i=1

λi = 1 =

n+1∏
i=1

µi

}
.

Type B (SO2n+1) and type C (Sp2n): Note that the reduced quotients in these cases are the same
torus quotients, given as follows:

T × T/W = (C×)n × (C×)n/(Cn
2 ⋊Sn) = Symn(C× × C×/C2)

where C2 acts on C× × C× by (z, w) 7→ (z−1, w−1) and hence fixes the four points (±1,±1). These are
the four singularities of C× × C×/C2 and each singularity is an A1 singularity C2/C2, where C2 acts on
C2 by (z, w) 7→ (−z,−w).

Denote by R(X) the set of isomorphism classes of symplectic resolutions of the variety X. It follows
that we obtain the following formula:

#R(T × T/W ) = (#R(Symn(C2/C2)))
4 = n4.

Similarly, the number of symplectic resolutions for T ∗(C×)n/(Cn
2 ⋊Sn) is n

2, the square of the number
of symplectic resolutions of Symn(C2/C2).

In all other types, the formal completion of the quotient at the identity will recover the quotient T ∗t///W ,
which does not admit a symplectic resolution by [Gor03, Bel09].

Next consider the general type A case. Then the existence of a symplectic resolution was classified in
[BS23, Theorem 1.10]. In particular, for type An, n ≥ 2, and G (almost) simple, a symplectic resolution
only exists if G = SLn+1(C) as above.

Example 4.18. For example, for the case G = PGL3(C), we obtain a quotient T × T/S3, for T a two-
dimensional torus, which does not admit a symplectic resolution. One explicit way to think about the
action is to consider T = (C×)3/C× ⊂ PGL3(C) with the quotient action being the diagonal action, then to
act by usual permutations. Then the element (123) fixes the nine points Y×Y for Y = {(1, ζ, ζ2) | ζ3 = 1}.
But the reflections (12) and (23) only fix the subset Y × {1} and {1} × Y , respectively. This leaves
9− (3 + 3− 1) = 4 nonresolvable C3-singularities.

4.6.2 T × T/Γ

In this section again T ∼= (C×)n but now W is replaced by Γ ⊂ Sp2n(Z) a finite group acting on T × T.
We first restrict to the case n = 1, and Γ ∼= Ci for i = 2, 3, 4 or 6.

Define Γi := ⟨γi⟩ ∼= Ci where γi is given by

γ6 =

(
0 1
−1 1

)
γ4 =

(
0 1
−1 0

)
γ3 = γ2

6 =

(
−1 1
−1 0

)
γ2 = γ2

4 =

(
−1 0
0 −1

)
.

Γi acts on C× × C× via the weights matrix:(
a b
c d

)
· (x, y) = (xayb, xcyd)

so

γ6·(x, y) = (y, x−1y) γ4·(x, y) = (y, x−1) γ3·(x, y) = (x−1y, x−1) γ2·(x, y) = (x−1, y−1).

Each action preserves the symplectic form ω = dx/x ∧ dy/y, as each weight matrix has determinant 1.
The fixed points of each action are

(x, y) = (y, x−1y) =⇒ x = y, y = x−1y =⇒ x = y = 1

(x, y) = (y, x−1) =⇒ x = y, y = x−1 =⇒ x = y = ±1

(x, y) = (x−1y, x−1) =⇒ x2 = y, y = x−1 =⇒ x = y−1 = ζ3

(x, y) = (x−1, y−1) =⇒ x = x−1, y = y−1 =⇒ x = ±1, y = ±1.
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Each fixed point gives a singularity in the orbit space that is locally du Val and hence has a unique crepant
resolution. These glue to a unique crepant resolution of the entire variety. Moreover, this resolution is
projective and so the set of projective crepant resolutions of (C×)2/Γi is a singleton.

These are the only finite group actions on (C×)2 preserving dx/x ∧ dy/y. To see this, the following
lemma is useful:

Lemma 4.19. Suppose that G < Sp2m(R) with complexified symplectic representation C2m symplectically
irreducible. Then C2m is reducible as a complex representation.

Proof. Observe that if a complex irreducible representation V of a finite group is defined over R, it
preserves a nondegenerate symmetric bilinear form (e.g., by averaging the standard inner product over
the group), so it cannot preserve a symplectic form.

Proposition 4.20. Let Γ be a finite subgroup acting on (C×)2 by group automorphisms preserving the
invariant symplectic form dx/x∧dy/y. Then Γ is cyclic of order 1, 2, 3, 4, or 6 and the quotient (C×)2/Γ
admits a unique projective crepant resolution of singularities.

Proof. Such an action is given by a finite subgroup of SL2(Z). These are cyclic of orders 1, 2, 3, 4, or
6. An algebraic argument for this follows because SL2(Z) is isomorphic to an amalgamated product
C4 ∗C2 C6.

For a geometric argument, first by Lemma 4.19, the group must act reducibly, hence it is conjugate
to a subgroup of diagonal matrices therefore abelian. Next, the abelian finite subgroups of SL2(C) are
cyclic. Finally, the cyclic subgroups with integral traces are precisely the ones of the given orders.

For the final statement, all singularities of the quotient are du Val and hence admit unique local
projective crepant resolutions of singularities. So the quotient (C×)2/Γ admits a unique locally projective
crepant resolution of singularities. But also, this is globally projective, since it is well known that the
resolutions can be obtained by iterated blowups of the (isolated) singularities.

Using these examples, we can extend the type B/C Weyl group quotients as follows:

Example 4.21. Let W = Sn ⋉ Γ be a wreath product with Γ < Sp2(Z) and Sn permuting the pairs
(x1, y1), . . . , (xn, yn) and hence preserving the symplectic forms

∑n
i=1 dxi/xi∧dyi/yi and

∑n
i=1 dxi∧dyi.

So W < Sp2n(Z). In particular we can let Γ = Cm for m ∈ {1, 2, 3, 4, 6}. Then the quotient T × T/W is
identified with Symn(C× ×C×/Γ). In particular, there is a symplectic resolution given by Hilbn Y for Y
the minimal resolution of C× × C×/Γ.

The above example actually produces all of the groups whose quotient admits a projective crepant
resolution:

Proposition 4.22. Let Γ ⊂ Sp2n(Z) be a finite subgroup acting on (C×)2n by group automorphisms
preserving the invariant symplectic form

∑
i dxi/xi ∧ dyi/yi. The quotient (C×)2n/Γ admits a locally

projective symplectic (equivalently crepant) resolution of singularities only if Γ ∼=
∏

i Γi with each of the
Γi of the form Sn ⋉H with H ∈ {C1, C2, C3, C4, C6}, where the derivative of the action near 1 ∈ (C×)2n

is given by the product of the usual reflection representations of each Γi.

Proof. Suppose that (C×)2n/Γ admits a crepant resolution for Γ < Sp2n(Z). Then the local model
at the identity is C2n/Γ for the same group. Let us assume the representation C2n is symplectically
irreducible, otherwise the pair (C2n,Γ) decomposes as a product of pairs. Thus, by Lemma 4.19, C2n is
isomorphic to a sum of G-invariant Lagrangian subspaces L ⊕ L′. If C2n/G admits a locally projective
symplectic resolution, then G must be generated by symplectic reflections [Ver00]. In turn, if G preserves
a Lagrangian L, it must be a complex reflection group. Thanks to [Bel09] building on Ginzburg–Kaledin
[GK04, Corollary 1.2.1] (and see also Etingof–Ginzburg [EG02, Corollary 1.1.4 (i)] and Namikawa [Nam11,
Corollary 2.1]) we have a complete list of complex reflection groups Γ such that the symplectic quotient
singularity C2n/Γ admits a projective symplectic resolution. This includes the wreath products Sn ⋉Γn

for Γ < SL2(C) cyclic. In turn, as in Proposition 4.20, to have integral traces this means Γ is cyclic
of order 1, 2, 3, 4, or 6, since for γ ∈ Γ, a corresponding reflection in the wreath product has trace
2n− 2+ tr(γ). Other than the wreath products and Sn+1, the only other complex reflection group with
symplectic quotient admitting a symplectic resolution is the binary tetrahedral group. In Lemma 4.24
below, we show that the quotient of (C×)4 by the binary tetrahedral group does not admit a symplectic
resolution of singularities, completing the classification.

For each group Γ ⊂ Sp2n(Z) appearing in Proposition 4.22, there exists an action of Γ on (C×)2n

such that the quotient (C×)2n/Γ admits a symplectic resolution of singularities. Thus, Proposition 4.22
completes the classification of the rationalizations of integral representations such that the corresponding
torus quotient admits a symplectic resolution of singularities. But a rationalization of an integral repre-
sentation may admit multiple inequivalent integral forms. Moreover, for many fixed Γ, we can find an
action on (C×)2n such that the resulting quotient does not admit a symplectic resolution of singularities:
see Example 4.18. There can even be nontrivial ways to form an extension of two integral representations:
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Example 4.23. Let C4 = ⟨i⟩ ⊂ C act on the lattice Z2 ∼= Z1⊕Zi ⊂ C by multiplication in C. The group
C4×C4 acts on Z4 ∼= Z2⊕Z2 componentwise. It also acts on the equivalent lattice 1

2
Z4, with each action

giving the same integral representation C4 × C4 → GL4(Z). Next we consider the intermediate lattice

Z4 ⊊ L := ⟨v1 := (1, 0, 0, 0), v2 := (0, 1, 0, 0), v3 := (0, 0, 1, 0), v4 :=
1

2
(1, 1, 1, 1)⟩ ⊊ 1

2
Z4.

Notice that L contains (0, 0, 0, 1) = 2v4 − (v1 + v2 + v3) and therefore contains (a/2, b/2, c/2, d/2) for
a, b, c, d ∈ 2Z + 1. The action of C4 × C4 on Z4 restricts to L, giving a representation

C4 × C4 → GL(L) ∼= GL(Z4)

that is rationally (but not integrally) equivalent to to the original representation. That it is not integrally
equivalent follows because L is not spanned by elements which are fixed by one of the two C4 factors,
whereas Z4 is so spanned. This is true even though there is a short exact sequence

0 → Z2 → L→ Z2 → 0,

with the first and third terms giving the standard rotation representations of the two factors of C4. So
there are nontrivial ways to extend integral representations.

We complete the prove of Proposition 4.22 by ruling out the binary tetrahedral group.

Lemma 4.24. The quotient (C×)4/T , where T is the binary tetrahedral group acting symplectically on
(C×)4 does not admit a symplectic resolution of singularities.

Proof. First, observe that there may be many ways for T to act symplectically on (C×)4. We are fixing
only the complex symplectic representation of T , so the embedding T ⊆ Sp4(C). This is conjugate to a
real representation, T ⊆ Sp4(R), and this real representation is uniquely determined up to isomorphism.
One explicit way to understand it is to realize T inside the quaternions H, as the group generated by
i, j, k, 1

2
(1 + i + j + k). Then, every integral representation, up to isomorphism, can be constructed by

choosing a full (rank four) T -invariant lattice Λ ⊆ H.
We now consider the fixed points of T on (C×)4. First consider the element i ∈ T . Now i acts on Q4

without eigenvalues ±1, so this determines an action of the Gaussian integers, Z[i] ∼= Z[x]/(x2 + 1), on
Λ. This action is torsion free as Λ is torsion free. Since Z[i] is a PID, Λ is a free Z[i]-module. So we can
write the action in the standard way. The number of fixed points is four, the same as for block diagonal
90-degree rotation matrices, which is the γ4 case above.

Next, in order to admit a symplectic resolution, each such fixed point must also be fixed by a reflection.
Since i and any reflection generate T , we can assume that each of the above fixed points are fixed by all
of T , at least to investigate the existence of a symplectic resolution.

We next turn to elements of order six (i.e., −1 times a reflection). For such an element γ there is a
saturated sublattice of rank 2, Λ0, on which γ acts by −1, and quotient lattice Λ/Λ0 on which γ acts as
a Z[ζ]-module, for ζ a primitive cube root of unity. The latter is also a PID and hence Λ/Λ0 is a free
Z[ζ]-module. So we can write the action of γ in the standard way for an order six element. Overall the
action of γ is block-upper triangular with diagonal blocks −I and the standard order-six action. There
are still 4 fixed points, since the order six action has no fixed points (the equations to be fixed give a
unique solution, regardless of the choice of four fixed points corresponding to the sublattice, i.e., quotient
torus). By the preceding argument, each fixed point has stabilizer all of T .

However, the element −I fixed sixteen points on the four-torus: all involutions. So there are twelve
points with stabilizer C2; they form one T -orbit. Thus there is a nonresolvable C2-singularity of (C×)4/T .

Remark 4.25. There is an obvious choice of lattice invariant under T in the proof: the lattice of Hurwitz
quaternions. For this choice one can see that the fixed points are exactly as in the proof. Note that there
could exist a different lattice with different fixed points: this would happen only if the elements i, j, k
do not all share the same four fixed points. In this case, one of the non-identity fixed points of i would
also have to be fixed for j and k, hence for all of Q8, hence for all of T since Q8 is normal. So we would
get two fixed points for T , and two fixed points each for the groups ⟨i⟩, ⟨j⟩, ⟨k⟩ ∼= C4, which all form a
single orbit of T . Aside from these eight points we would have eight more fixed points for −I, breaking
up into subsets of two fixed points for minus each reflection and its inverse. These sets of size two have
stabilizers C6, also nonresolvable. They form two orbits of size four. So in this model we would get
one nonresolvable C4 singularity and two nonresolvable C6 singularities (instead of one nonresolvable C2

singularity). It would be interesting to see if an appropriate lattice can be found to construct such a
quotient.
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A The Weinstein splitting theorem in the singular case

A.1 The splitting theorem

The celebrated Weinstein splitting theorem [Wei83, Theorem 2.1] gives a local decomposition of a smooth
Poisson manifold into a symplectic part and a part with zero rank at the basepoint. This result goes
through exactly the same in the case of analytic varieties, but for sake of completeness, we provide the
statement and repeat the proof. Note that a version of this for formal neighborhoods was proved in
[Kal06], as a consequence of Proposition 3.3 therein. By passing from analytic to formal neighborhoods,
the result below also recovers such a decomposition.

Theorem A.1. Let (X,σ) be a (real or complex) analytic Poisson variety and x ∈ X. Then there is a
neighborhood U ∋ x of X and a pointed Poisson isomorphism (U, x) ∼= (S, s)×(Z, z) where S is symplectic
and the Poisson structure of Z vanishes at z.

Proof. Let K denote either R or C depending on whether we work in the real analytic or complex analytic
setting. The proof is by induction on the rank of σ. If this rank is zero, then S must be a point, and the
statement is obvious. Assume the rank is nonzero. Restricting to a small enough analytic neighborhood
U , we can find a Hamiltonian f ∈ O(U) such that ξf |x ̸= 0. Up to further restriction of U , we may
assume it is a Zariski closed subset of a ball B ⊆ Kn for some n centered at x = 0. Then there exists a
vector field ξ̃f on B which is tangent to U and restricts there to ξf . Up to shrinking B and U , we may

pick coordinates x1, . . . , xn on B centered at 0 with ξ̃f (x1) = 1. Let g := x1|U . Then {f, g} = 1, and
hence [ξf , ξg] = ξ1 = 0. Since ξf (f) = 0 = ξg(g), whereas ξf (g) = 1 = −ξg(f), ξf and ξg are linearly
independent at 0.

Since ξ̃f is nonvanishing on B, by the Frobenius integrability theorem (for the holomorphic case, see

[Voi02, 2.26]), we can locally integrate the distribution spanned by ξ̃f to a submersion B → Kn−1 with

ξ̃f tangent to the fibers, up to shrinking B and U . This gives local coordinates x2, . . . , xn annihilated

by ξ̃f . As a result, ξ̃f = h∂1 for some function h, which by assumption is nonvanishing in B, and hence

invertible. Then the coordinates
∫
h−1dx1, x2, . . . , xn have the property that ξ̃f = ∂1.

Now, the ideal IX of X is locally generated at x = 0 by some functions g1, . . . , gk independent of x1.
Shrinking U and B if necessary, we can assume these generate the ideal IU of U ⊆ B, globally on B.
Extend ξg to a vector field ξ̃g on B tangent to U . Note that [∂1, ξ] vanishes on U if and only if ξ is a sum
of a vector field constant in x1 (i.e., commuting with ∂1) and a vector field itself vanishing on U (as IU
is generated by functions independent of x1). So up to changing the extension ξ̃2 of ξ2, we can assume

that actually [ξ̃f , ξ̃g] = 0.

Then by the Frobenius integrability theorem again, we can find coordinates x3, . . . , xn with ξ̃f (xi) =

0 = ξ̃g(xi) for 3 ≤ i ≤ n (again up to shrinking B and U). Since ξ̃f , ξ̃g are tangent to U we get
that IU is generated by functions in x3, . . . , xn. Moreover, we can further change the coordinates to
g, f, x3, . . . , xn, since ξ̃f (g) = 1 = −ξ̃g(f), whereas ξ̃f (f) = 0 = ξ̃g(g), so that the derivatives of f, g are
linearly independent at x to those of x3, . . . , xn.

In this new coordinate system we get a Poisson isomorphism (U, x) ∼= (S, s) × (U ′, x), with (S, s)
symplectic of dimension two and (U ′, x) Poisson, since {f, g} = 1 and {f, xi} = 0 = {g, xi}, i ≥ 3.

Iterating the procedure, we will eventually obtain the theorem.

A.2 A non-Poisson version of the splitting theorem

Rewriting the essential part of the argument of the Weinstein splitting theorem in the non-Poisson setting
we arrive at the following, which we would imagine is known:

Lemma A.2. Let X be a (real or complex) analytic variety and ξ1, . . . , ξm vector fields on X which
commute. Suppose that at some x ∈ X, ξ1|x, . . . , ξm|x ∈ TxX are linearly independent. Then in some
local analytic neighborhood U of x, the ξi integrate to give a decomposition U ∼= D × Z for D a polydisc
of dimension m, with coordinates x1, . . . , xm, such that ξi = ∂i.

Proof. We can take an analytic neighborhood U of x which is isomorphic to a Zariski closed subset of an
open ball B ⊆ Kn centered at 0, for K = R or C. We will think of U as a subset of B with x ∈ U equal
to 0 ∈ B. We can pick U small enough that ξ1, . . . , ξm are linearly independent on U . Let ξ̃1, . . . , ξ̃m
be vector fields on B which are tangent to U and restrict there to ξ1, . . . , ξm. Applying the Frobenius
integrability theorem (for the holomorphic case, again see [Voi02, 2.26]) to ξ̃1, we get a local submersion

at x = 0, B → Kn−1 (up to shrinking B and U) with ξ̃1 tangent to the fibers. This defines coordinates

x1, x2, . . . , xn on B centered at 0 with ξ̃1 = h∂1 for some function h nonvanishing on B. Changing
coordinates x1 7→

∫
h−1dx1 (if necessary after shrinking U), we get ξ̃1 = ∂1, as desired.

Next, since ξ̃1 is tangent to X, the ideal IU is generated near x ∈ Kn by some functions in x2, . . . , xn
(i.e., independent of x1). We can assume these globally generate up to shrinking U and B. Then because

[ξ̃1, ξ̃2] vanishes on U , we see that ξ̃2 must be a sum of a vector field commuting with ξ̃1 = ∂1 and one

vanishing on U . So we can find another choice of ξ̃2 (still restricting to ξ2 on X) such that [ξ̃1, ξ̃2] = 0.
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Now applying the Frobenius integrability theorem again, we can assume that ξ̃1, ξ̃2 both annihilate
x3, . . . , xn. As before we can assume ξ̃1 = ∂1. Since they are linearly independent, ξ̃2 = f∂1 + g∂2 with
f, g independent of x1 and g nonvanishing on B. Up to change of coordinates x1 7→ x1 −

∫
fg−1dx2, we

can assume f = 0, and up to change of coordinates x2 7→
∫
g−1dx2, we can assume g = 1.

Inductively, if we have coordinates such that ξ̃1 = ∂1, . . . , ξ̃k = ∂k, then since these are tangent to U ,
the ideal IU is locally generated at x by functions of xk+1, . . . , xn. We can make another choice of ξ̃k+1

(restricting to ξk+1 on X) which commutes with ξ̃1, . . . , ξ̃k. Applying the Frobenius integrability theorem

we have new coordinates xk+2, . . . , xn annihilated by ξ̃1, . . . , ξ̃k+1. We can arrange that the latter vector
fields are ∂1, . . . , ∂k, together with something of the form f1∂1 + · · ·+ fk+1∂k+1, with fk+1(0) ̸= 0. Now

changes of coordinates as before replace x1, . . . , xk+1 by new coordinates so that ξ̃i = ∂i for 1 ≤ i ≤ k+1,
completing the inductive step.

By induction we thus find coordinates on a ball about x = 0 in Kn so that ξ̃i = ∂i for all 1 ≤ i ≤ m.
The ideal IX is generated by functions in the xi for i > m. We obtain an analytic neighborhood of x ∈ X
isomorphic to a product of an open polydisc D ⊆ Km and another variety Z (the vanishing locus of the
generators of IX in a polydisc with coordinates xm+1, . . . , xn), with ξi the coordinate vector fields on
D.

References

[BC20] Gwyn Bellamy and Alastair Craw. Birational geometry of symplectic quotient singularities.
Invent. Math., 222(2):399–468, 2020.

[BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan. Existence of
minimal models for varieties of log general type. J. Amer. Math. Soc., 23(2):405–468, 2010.

[BCR+21] Gwyn Bellamy, Alastair Craw, Steven Rayan, Travis Schedler, and Hartmut Weiss. All 81
crepant resolutions of a finite quotient singularity are hyperpolygon spaces, 2021.

[BCS22] Gwyn Bellamy, Alastair Craw, and Travis Schedler. Birational geometry of quiver varieties
and other GIT quotients, 2022.

[BCS23] Tristan Bozec, Damien Calaque, and Sarah Scherotzke. Calabi-Yau structures for multiplica-
tive preprojective algebras. J. Noncommut. Geom., 17(3):783–810, 2023.

[BD21] Christopher Brav and Tobias Dyckerhoff. Relative Calabi-Yau structures II: shifted La-
grangians in the moduli of objects. Selecta Math. (N.S.), 27(4):Paper No. 63, 45, 2021.

[Bea00] Arnaud Beauville. Symplectic singularities. Invent. Math., 139(3):541–549, 2000.

[Bel09] Gwyn Bellamy. On singular Calogero-Moser spaces. Bull. Lond. Math. Soc., 41(2):315–326,
2009.

[Bel16] Gwyn Bellamy. Counting resolutions of symplectic quotient singularities. Compositio Math-
ematica, 152(1):99–114, 2016.

[BS16] Gwyn Bellamy and Travis Schedler. On the (non)existence of symplectic resolutions of linear
quotients. Math. Res. Lett., 23(6):1537–1564, 2016.

[BS21] Gwyn Bellamy and Travis Schedler. Symplectic resolutions of quiver varieties. Selecta Math.
(N.S.), 27(3):Paper No. 36, 50, 2021.

[BS23] Gwyn Bellamy and Travis Schedler. Symplectic resolutions of character varieties. Geom.
Topol., 27(1):51–86, 2023.

[CBS06] William Crawley-Boevey and Peter Shaw. Multiplicative preprojective algebras, middle con-
volution and the Deligne-Simpson problem. Adv. Math., 201(1):180–208, 2006.
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