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Abstract— In this work we propose an energy-efficient, im-
plantable, real-time, blind Adaptive Stimulation Artifact Rejec-
tion (ASAR) engine. This enables concurrent neural stimulation
and recording for state-of-the-art closed-loop neuromodulation
systems. Two engines, implemented in 40nm CMOS, achieve
convergence of <42μs for Spike ASAR and <167μs for LFP
ASAR, and can attenuate artifacts up to 100mVp-p by 49.2dB,
without any prior knowledge of the stimulation pulse. The LFP
and Spike ASAR designs occupy an area of 0.197mm2 and
0.209mm2, and consume 1.73μW and 3.02μW, respectively at
0.644V.

I. INTRODUCTION

Closed-loop stimulation is desired to build an effective
neuromodulation system. This operation requires concurrent
stimulation and recording of neural signals (<1mV) in the
presence of stimulation artifacts (10s of mV). Conventional
systems are primarily concerned with mitigating saturation
in neural recording front-ends, but do not allow for recording
of signals of interest during stimulation. Recently, front-
ends capable of recording Local Field Potentials (LFPs)
and Action Potentials (Spikes) with up to ±20mV [1] and
±50mV [2] linear-input-range have been introduced. These
designs overcome the saturation problem in conventional
systems. However, large stimulation artifacts remain in the
digitized signal. In this work we demonstrate an energy-
efficient, implantable, real-time, and blind Adaptive Stimu-
lation Artifact Rejection (ASAR) engine that enables closed-
loop neural recording and stimulation, illustrated in Figure 1.
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Fig. 1: Conventional versus proposed neuromodulation system.

Existing artifact rejection solutions lack the ability of con-
tinuous signal recording during stimulation, thus rendering
a critical portion of the data unusable. In [3], an overload
recovery technique is employed, where a shunt resistance
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is used to de-polarize the electrode immediately after stim-
ulation ends. This technique enables quick recovery from
saturation, but does not allow recording during stimulation.
Self-canceling stimulation electrode configurations have been
proposed [4], where recording electrodes are placed differen-
tially around stimulation electrodes, and common-mode pas-
sive filters are used to attenuate the stimulation artifact. This
solution is very application-specific, and severely restricts the
allowed combinations of stimulation and recording sites. The
self-canceling technique also requires that artifacts occupy
frequencies outside the neural signal band, which is not the
case in many practical situations. An adaptive-filtering based
method was suggested in [5], [6], with performance that is
insufficient for implantable closed-loop systems. The esti-
mated artifact is canceled at the input of the amplifier using
a DAC, hence introducing noise at the input of the front-
end. This method requires very long convergence times (3–
12 seconds), which is impractical since stimulation/recording
sites, along with the structural and temporal characteristics
of stimulation pulses, can change in real time. Lastly, the
feedback nature of artifact subtraction limits the maximum
delay between stimulation onset and when the artifact is
observed. If the delay is any longer, the method could fail
unless the stimulation is periodic.

The proposed ASAR engine is capable of adaptively
removing artifacts for varying stimulation characteristics at
multiple sites. A blind artifact template detection technique
is introduced, eliminating the need for prior knowledge of
the temporal and structural characteristics of the stimulation
pulse. This technique enables us to avoid estimating the non-
linearity through brain tissue and electrode interfaces, and
achieves much faster convergence times (<167 μs) and noise
power reduction of up to 49.2 dB. Two designs, the Spike
ASAR and LFP ASAR (Table I) have been implemented in
40 nm CMOS technology to demonstrate these capabilities.

TABLE I: Design specifications for two ASAR implementations.

II. PROPOSED BLIND ASAR SOLUTION

As shown in Figure 2, ASAR operates in two phases: (A)
statistics calculation (training), and (B) template detection
and adaptive filtering.

978-1-5090-4603-4/17/$31.00 ©2017 IEEE

8th International IEEE EMBS Conference on Neural Engineering
Shanghai, China, May 25 - 28 , 2017

186



wk,i-1

dk(i)=sk(i)+ak(i)

ui

dk’(i)

train

threshold

A

avg, 
std 

01
B

template 
detection

adaptive 
filtering

statistics 
calculation

Fig. 2: Blind Adaptive Stimulation Artifact Rejection (ASAR) block
diagram.

A. Statistics Calculation

Statistics of the neural signal, from an adjacent recording
channel, are calculated in the absence of artifacts during the
first N samples, and an appropriate threshold value is set.
This is done by recursively updating the values S(i) = S(i−
1) + x(i) and T (i) = T (i − 1) + x2(i), where x(i) is the
input sample at time i. Mean (avg) and standard deviation
(std) at time i = N are then calculated as (for N large
enough):

avg =
S(N)

N
(1)

std ≈
√

1

N − 1
(T (N)−N · avg2) (2)

The number of samples N is chosen as N = 2n for some
n in order to reduce multiply/divide into shift operations,
resulting in a more efficient hardware implementation.

B. Template detection and adaptive filtering

To clean the measurement dk(i) at electrode k, we choose
a nearby electrode k′ and determine a template ui ∈ R1×16.
Based on the threshold obtained in the previous phase, ui(�),
the �-th element of ui is estimated from dk′(i) through
blanking within α · std of the mean:

ui(�) =

{
dk′(i− �), if |dk′(i− �)− avg| ≥ α · std,
0, otherwise

(3)
The template is then applied to a Normalized Least Mean
Square (NLMS) 16-tap adaptive filter [7], depicted in Fig-
ure 3. The clean neural signal ŝk(i) is then obtained by
subtracting the estimated artifact uiwk,i from dk(i):

wk,i = wk,i−1 +
μ

‖ui‖2 + ε
uT
i [dk(i)− uiwk,i−1] (4)

ŝk(i) = dk(i)− uiwk,i (5)

The implemented filter has latency of 16 sampling clock
cycles, and operates in real-time. Additionally, the ASAR is
implemented in a fully digital feed-forward manner, which
avoids injecting noise at the input of the front-end and does
not limit the filter’s attenuation as no feedback DAC is
required. Due to the feed-forward nature of ASAR, the error
signal cannot be used directly as the estimate. As shown
in (5), ŝk(i) is to be obtained using the most recent coeffi-
cients wk,i. Most current adaptive filter implementations use
a classical Least Mean Squares algorithm, whereas we utilize
the normalized LMS variant, which computes a variable step
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Fig. 3: Detailed implementation of the template detection, 16-tap
adaptive filter, and iterative coefficients wi update blocks.

size at every iteration, see (4), and requires 16 additional
adders and multipliers but results in faster convergence times.

The choice of the template ui is critical. The stimulation
pulse itself, as employed in [5], [6], is not suitable for this
purpose, because: (a) the mapping from stimulator through
stimulation electrode, brain tissue and sensing electrode is
highly non-linear, resulting in the need for complex filters
and long convergence times, and (b) prior knowledge about
the structural and temporal shape of the stimulation pulse
is required. To remedy both drawbacks, the blind template
detection method (1)–(3) was developed, which operates
without information on the stimulation waveform. By ob-
taining a template from an adjacent electrode and learning
only the mapping between adjacent recordings, a linear
NLMS filter with 16 taps turns out to be sufficient. Most
importantly, this enables our implementation to work with
any arbitrary stimulation pulse. Figure 3 shows the detailed
implementation of the 16-tap adaptive filter, along with the
template detection block.

III. MEASUREMENT RESULTS

Clinical human patient data were used to test both ASAR
designs. Chip measurements with sample data for LFP sig-
nals, with input resolution of 16-bits, and sampling frequency
of 6 kHz, as well as Spike ASAR, with recordings containing
Spike and LFP signals, sampled at 24 kHz, with input
resolution of 12-bits are shown in Figure 4. At the time
of measurement, recordings with artifacts up to 29mVp−p

(LFP) and 36mVp−p (Spike) were available, resulting in
artifact attenuation of up to 37 dB and 40 dB, respectively;
however, the designs are capable of handling larger ampli-
tudes (Figure 1).
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Fig. 4: (top) chip measurement of design 1 (LFP recording, Fs=6 kHz, input resolution=16 bits, stimulation artifact amplitude = 29mVp−p)
(bottom) chip measurement of design 2 (Spike + LFP recording, Fs=24 kHz, input resolution=12 bits, stimulation artifact amplitude =
14mVp−p).

Figure 5 shows the time-domain recordings and spec-
trogram of neural signal (Spike and LFP) with 36mVp−p

stimulation artifacts with and without the ASAR activated.

signal (s) + 
artifact (a)

cleaned signal 
(s)̂

Am
pl

it
ud

e 
(m

V)

-20

-10

0

10

20

Am
pl

it
ud

e 
(m

V)

-20

-10

0

10

20

Fr
eq

ue
nc

y 
(K

H
z)

0

1

2

3

4

5

Time (s)
0.2 0.4 0.6 0.8 1

Time (s)
0.2 0.4 0.6 0.8 1

Time (s)
0.2 0.4 0.6 0.8 1

Time (s)
0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y 
(K

H
z)

0

1

2

3

4

5

without ASAR with ASAR

Fig. 5: (left) Time-domain recordings and spectrogram of neural
signal (Spike + LFP) with 36mVp−p stimulation artifact. (right)
Measured ASAR output waveform and spectrogram.

A true measurement of the filter performance is difficult as
the cleaned signal ŝk(i) includes the signal of interest com-
bined with a small residual artifact, which are inseparable,
making it impossible to obtain a ground truth. To provide
a better measure, we added synthetic artifacts with various
amplitudes to recorded data without stimulation artifacts, and
ran simulations to calculate the reduction of artifact power
(Figure 6). This shows that the ASAR can achieve noise
power reduction of up to 49.2 dB.

The designs achieve real-time convergence of <42 μs for
Spike ASAR and <167 μs for LFP ASAR, making them
suitable for closed-loop neuromodulation systems. The LFP
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Fig. 6: Calculation of noise (artifact) power suppression based on
SNR comparison of added known synthetic artifacts to clinical
patient data (input) and simulated cleaned signal by ASAR (output).

and Spike ASAR designs occupy an area of 0.197mm2

and 0.209mm2, and consume 1.73 μW and 3.02 μW, re-
spectively at a 0.644V supply. Table II compares our work
with the state of the art. Figure 7 shows the chip micrograph
implemented in 40 nm CMOS technology.

IV. CONCLUSIONS
This work demonstrates a blind ASAR solution that meets

the challenges of modern implantable, closed-loop, neuro-
modulation systems, and enables concurrent stimulation and
recording of neural signals, in real-time, without needing any
prior knowledge of the stimulation pulse, and can aid in the
investigation of instantaneous response to stimulation.

188



TABLE II: (top) Comparison of various stimulation artifact rejection methods. (bottom) Comparison with state-of-the-art.
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operating frequencies 12x and 16x higher than the respective sampling frequency of each design, and higher power. 
b power calculations assume stimulations to be ON for 5% of the total duration of the test. 
c artifact attenuation of up to 42dB is based on the resolution of the 8-bit DAC and not a true measure of the filter attenuation (reported measured 
attenuation of 24dB was chosen for comparison). 
d emulated by adding varying synthetic artifacts to clinical human patient neural signal. 
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Fig. 7: Chip micrograph.
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