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The electrocardiogram (ECG) can capture obesity-related cardiac changes. Artificial intelligence-
enhanced ECG (AI-ECG) can identify subclinical disease.We trained anAI-ECGmodel to predict body
mass index (BMI) from the ECG alone. Developed from 512,950 12-lead ECGs from the Beth Israel
Deaconess Medical Center (BIDMC), a secondary care cohort, and validated on UK Biobank (UKB)
(n = 42,386), themodel achieved aPearson correlation coefficient (r) of 0.65 and0.62, and anR2 of 0.43
and 0.39 in the BIDMC cohort and UK Biobank, respectively for AI-ECG BMI vs. measured BMI. We
found delta-BMI, the difference betweenmeasured BMI and AI-ECG-predicted BMI (AI-ECG-BMI), to
be a biomarker of cardiometabolic health. The top tertile of delta-BMI showed increased risk of future
cardiometabolic disease (BIDMC: HR 1.15, p < 0.001; UKB: HR 1.58, p < 0.001) and diabetes mellitus
(BIDMC: HR 1.25, p < 0.001; UKB: HR 2.28, p < 0.001) after adjusting for covariates including
measured BMI. Significant enhancements in model fit, reclassification and improvements in
discriminatory power were observed with the inclusion of delta-BMI in both cohorts. Phenotypic
profiling highlighted associations between delta-BMI and cardiometabolic diseases, anthropometric
measures of truncal obesity, and pericardial fat mass. Metabolic and proteomic profiling associates
delta-BMI positively with valine, lipids in small HDL, syntaxin-3, and carnosine dipeptidase 1, and
inversely with glutamine, glycine, colipase, and adiponectin. A genome-wide association study
revealed associations with regulators of cardiovascular/metabolic traits, including SCN10A, SCN5A,
EXOG and RXRG. In summary, our AI-ECG-BMI model accurately predicts BMI and introduces delta-
BMI as a non-invasive biomarker for cardiometabolic risk stratification.

Obesity is a rapidly growing public health challenge1 and is a major con-
tributor to the increasing incidence of cardiometabolic disease2. BodyMass
Index (BMI) is commonly used to define obesity and the associated disease
risk. However, BMI has known limitations as a derived variable, as it is an
insensitive measure of visceral adiposity3 and fails to capture body fat
location and total fat mass4, all of which are important determinants of
cardiometabolic disease5. Consequently, BMI does not accurately reflect the
risk of these diseases6. There is, therefore, a clear need for an accurate, easy-

to-access biomarker that can capture the risk of cardiometabolic disease
related to obesity and perform well across the entire population. This bio-
marker would ideally be able to measure the downstream effects of obesity,
even in subclinical disease, to allow primary prevention treatments to be
prescribed.

In recent years, the application of deep learning in the field of ECG has
gained significant traction, driven by its remarkable diagnostic and pre-
dictive capabilities in predicting future cardiac diseases7–10. Obesity is
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associatedwith remodelling of cardiac electrophysiology, and there arewell-
described changes in the ECG associated with obesity, such as reduced
voltage in precordial leads, T wave flattening, and QT interval
prolongation11–13. With the emergence of AI-enhanced ECG, the potential
for deep learning to extract relevant ECG features becomes even more
compelling. Recent studies have demonstrated that AI-ECG algorithms are
adept at capturing information not only on cardiac but also on non-cardiac
diseases, including metabolic disorders and liver disease14,15. Building upon
these findings, we hypothesised that the ECGcontains valuable information
about obesity and cardiometabolic risk, and that it could be accessed
through deep learning.

Inspired by the recent success of AI-ECG-predicted age, where the
“delta age” (i.e. the difference between the AI-predicted and chronological
age) is associated with increased mortality16, we propose “delta-BMI” (the
difference between AI-ECG predicted BMI and measured BMI), as a novel
biomarker for cardiometabolic risk capable of identifying individuals at risk
of future cardiometabolic disease, including diabetes, hypertension, and
lipid disorders. Furthermore, we identified candidate biological pathways
for this biomarker by exploring its phenotypic, genetic, metabolomic, and
proteomic associations. Finally, using a formof unsupervised deep learning,
a variational autoencoder, we explored the ECG morphological changes
associated with the AI-ECG BMI predictions.

Results
AI-ECG BMI derivation
The Beth Israel Deaconess Medical Center (BIDMC) cohort, a secondary
care dataset comprised of routinely collected data from Boston, USA, was
used as the derivation cohort. In total, 512,950 ECGs from 114,415 subjects
had paired BMI data available. The BIDMC dataset was divided into
training, validation, and holdout test sets using a split ratio of 60/10/30%.
Full details are provided in theMethods.Cohort demographics are shown in
Supplementary Table 1.

We trained the AI-ECG BMI model to predict the subject’s BMI on a
continuous scale, using a previously described residual neural network
(ResNet) architecture17. The AI-ECG-BMI model applied on the 30%
holdout test set achieved a Pearson correlation coefficient of 0.65 (95% CI:

0.65–0.66) between measured BMI and AI-ECG predicted BMI, a correla-
tion of determination (R2) of 0.43 (95%CI: 0.42–0.43), and amean absolute
error (MAE) of 3.95 (95% CI: 3.93–3.97) (Fig. 1, Supplementary Table 2).

External validation
Weused theUKBiobank, a healthy volunteer cohort18, to externally validate
our findings. Digital ECGs and BMImeasurementswere available in 42,386
subjects. Cohort demographics are shown in Supplementary Table 1.
Notably, as a volunteer cohort, the incidence of future adverse cardiome-
tabolic events, except for hypertension, was lower in the UK Biobank as
compared to the BIDMC cohort. In the UK Biobank external validation
dataset, the AI-ECG-BMI model achieved a Pearson correlation coefficient
of 0.62 (0.62–0.63), R2 of 0.39 (95%CI: 0.38–0.40), andanMAEof 2.94 (95%
CI: 2.91–2.96) (Fig. 1, Supplementary Table 2). The correlation plots and
Bland-Altman analyses for both cohorts are presented in Supplementary
Fig. 1.

Supplementary Table 2 presents a comprehensive overview of the AI-
ECGBMImodel’s performancewithin theBIDMCandUKBiobank (UKB)
cohorts, stratified across various subpopulations based on sex and ethnicity.
Notably, the model demonstrates a better performance for females in both
the BIDMC and UKB cohorts, as evidenced by the higher R2 values
(BIDMC:p < 0.005,Δ r = 0.056,UKB:p < 0.005,Δ r = 0.041), i.e. themodel’s
predictions align more closely with actual BMI values for female partici-
pants. In terms of ethnicity, themodel yieldsmore accurateBMIpredictions
for African-American individuals in the BIDMC cohort compared to their
Caucasian counterparts (p < 0.005, Δ r = 0.031), and less accurate predic-
tions for Asian individuals compared to Caucasians (p < 0.005,
Δ r =−0.065).

Delta-BMI as a predictor of cardiometabolic disease
Wecalculated delta-BMI (AI-ECGpredictedBMIminusmeasuredBMI) to
evaluate if this metric could provide additive prognostic information for
future cardiometabolic disease, a composite of type 2 diabetes mellitus,
hypertension, and lipid disorders (see outcome definitions in Supplemen-
tary Table 3). We performed Cox regression analyses with delta-BMI split
into tertiles (bottom (delta-BMI ≤−3.74), middle (−3.74 to 2.44), top

Fig. 1 | Association between AI-ECG BMI predictions and measured BMI in the
BIDMC and UK Biobank cohorts. Scatter plots depicting the association between
raw AI-ECG-BMI predictions and measured BMI within (a) the 30% holdout
BIDMC and (b) UK Biobank cohorts. The black identity line serves as a reference

point, representing the ideal prediction scenario. The red line represents the best-fit
line. The R2 (Pearson correlation) was 0.43 (r = 0.65) in the 30% holdout BIDMC,
and 0.39 (r = 0.62) in the UK Biobank cohort.
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(>2.44) (Table 1) and as a continuous variable (Supplementary Table 4),
adjusting for measured BMI, age, and sex; therefore, our findings on delta-
BMI can be considered additive to measured BMI.

In the BIDMC holdout dataset, participants in the top tertile of delta-
BMI exhibited a 15% higher risk for the development of future cardiome-
tabolic disease compared to those in the bottom tertile (Hazard ratio (HR)
1.15, 95%CI: 1.08–1.23, p < 0.001) (Table 1). These patternswere consistent
for individual components of cardiometabolic disease, with higher risks
observed for type 2 diabetesmellitus (T2DM) (HR: 1.25, 95%CI: 1.18–1.31,
p < 0.001), hypertension (HR: 1.26, 95% CI: 1.19–1.33, p < 0.001), and lipid
disorders (HR: 1.21, 95%CI: 1.15–1.27, p < 0.001), in the top tertile of delta-
BMI, compared with the bottom tertile. Survival curves for the BIDMC
cohort are depicted in Fig. 2. Importantly, these associations were identified
regardless of whether the measured BMI was in the healthy weight, over-
weight, or obese ranges (Table 1).

In the UK Biobank cohort, individuals within the top tertile of delta-
BMI demonstrated a 1.58-fold increased risk (95%CI: 1.41–1.76, p < 0.001)
of developing future cardiometabolic diseases compared to those in the
bottom tertile, after adjusting formeasured BMI, age, and sex. Furthermore,
participants in the top tertile of delta-BMI had a 2.28-fold increased risk
(95% CI: 1.76-2.96, p < 0.001) of developing future T2DM, a 1.54-fold
increased risk of developing future hypertension (HR 1.54, 95% CI: 1.37-
1.75, p < 0.001) and a 1.56-fold risk of developing future lipid disorders (HR
1.56, 95% CI: 1.32-1.85, p < 0.001). The survival curves for the UK Biobank
cohort are shown in Fig. 3. Notably, these associations were observed again
irrespective of the BMI category or sex (Table 1).

We also found significant associations between delta-BMI, as a con-
tinuous variable, and incident cardiometabolic disease, type 2 diabetes

mellitus, hypertension, and lipid disorders for both BIDMC and UKB
cohorts (Supplementary Table 4).

Furthermore, we assessed the added predictive value of delta-
BMI in cardiometabolic disease and T2DM prediction through
likelihood ratio tests and continuous net reclassification analyses,
while also examining changes in the concordance index upon its
inclusion in the Cox model (Supplementary Table 5). Incorporating
delta-BMI resulted in significant enhancements in model fit for car-
diometabolic disease, T2DM, hypertension, and lipid disorders, as
indicated by the likelihood ratio tests. Additionally, significant
improvements in continuous net reclassification indices (NRI) were
observed across both the BIDMC and UK Biobank cohorts. Minor yet
significant enhancements in discriminatory power were evident in
both cohorts. Notably, within the BIDMC cohort, subgroups with
higher BMI (>25 and >30) exhibited notable improvements in the
concordance index for future cardiometabolic disease (ΔC-index =
0.0098 (0.0020–0.0177) and ΔC-index = 0.0362 (0.0218–0.0755),
respectively). Looking at the components of the cardiometabolic
disease, the most notable improvement in model fit, assessed by the
likelihood ratio test and the continuous NRI, was observed for T2DM
in both cohorts. For BIDMC outpatients with a BMI of 18.5–24.9,
significant enhancements in C-index were observed (ΔC-index =
0.0239 (0.0053–0.0377)), with similar findings in the UK Biobank
cohort (ΔC-index = 0.0377 (0.0036–0.0751)).

Furthermore, we have explored the additive effect of delta-BMI in the
different ethnic groups in the BIDMC cohort. Delta-BMI significantly
improved the model fit and reclassification of cardiometabolic disease in
Caucasians and Hispanics and of T2DM in Caucasians and Asians.

Table 1 | Adjusted hazard ratios of delta-BMI tertiles for future cardiometabolic outcomes

Type High
delta-BMI

95% CI p-value Middle
delta-BMI

95% CI p-value Age Female BMI

BIDMC (holdout)

Cardiometabolic disease 1.15 1.08–1.23 <0.001 1.12 1.06 – 1.20 <0.001 1.02 0.83 1.02

Type 2 Diabetes Mellitus 1.25 1.18–1.31 <0.001 1.10 1.05–1.16 <0.001 1.01 0.71 1.06

Hypertension 1.26 1.19–1.33 <0.001 1.17 1.11–1.24 <0.001 1.02 0.77 1.03

Lipid Disorders 1.21 1.15–1.27 <0.001 1.15 1.10–1.21 <0.001 1.02 0.78 1.03

BIDMC (holdout) – Cardiometabolic Disease

Outpatient, BMI 18.5–24.9 1.31 1.10–1.57 0.003 1.11 0.95–1.29 0.194 1.03 0.82 1.04

Outpatient, BMI > 25 1.20 1.07–1.36 0.003 1.27 1.13–1.43 <0.001 1.01 0.97 1.01

Outpatient, BMI > 30 1.28 1.07–1.53 0.008 1.23 1.02–1.48 0.029 1.00 1.00 1.01

Outpatient, Females 1.37 1.21–1.56 <0.001 1.19 1.06–1.34 0.005 1.02 N/A 1.02

Outpatient, Males 1.12 0.96–1.30 0.158 1.28 1.11–1.47 <0.001 1.01 N/A 1.01

UK Biobank

Cardiometabolic disease 1.58 1.41–1.76 <0.001 1.36 1.22–1.51 <0.001 1.06 0.72 1.09

Type 2 Diabetes Mellitus 2.28 1.76–2.96 <0.001 1.53 1.17–2.00 0.002 1.04 0.51 1.16

Hypertension 1.54 1.37–1.75 <0.001 1.33 1.18–1.50 <0.001 1.06 0.72 1.10

Lipid Disorders 1.56 1.32–1.85 <0.001 1.46 1.24–1.71 <0.001 1.06 0.61 1.06

UK Biobank – Cardiometabolic Disease

BMI 18.5–24.9 1.63 1.31–2.03 <0.001 1.57 1.29–1.90 <0.001 1.08 0.81 1.12

BMI > 25 1.52 1.33–1.73 <0.001 1.26 1.10–1.43 <0.001 1.05 0.69 1.08

BMI > 30 1.56 1.27–1.91 <0.001 1.28 1.05–1.57 0.017 1.05 0.68 1.07

Females 1.73 1.47–2.03 <0.001 1.45 1.24–1.69 <0.001 1.07 N/A 1.09

Males 1.44 1.24–1.68 <0.001 1.26 1.09–1.46 0.002 1.06 N/A 1.09

Hazard Ratios from survival analysis of delta-BMI tertiles adjusted for measured BMI, age, and sex, on the future incidence of cardiometabolic disease, type 2 diabetes mellitus, hypertension, and lipid
disorders in theBIDMCholdout set and theUKBiobankcohort. Sub-analyses includecardiometabolic disease stratifiedbyBMIcategories (18.5–24.9,≥25,≥30) andsex for both theBIDMCholdout set and
the UK Biobank cohort. Tertile cut-offs for delta-BMI were defined as follows: Bottom (delta-BMI ≤ 3.74), Middle (−3.74 to 2.44), and Top (>2.44). The analysis excluded BMI < 18.5 due to insufficient
numbers of participants.
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Biological plausibility: clinical associations of delta-BMI
To investigate the underlying associations between delta-BMI and dif-
ferent diseases, we performed a phenome-wide association (PheWAS)
study in the BIDMC cohort. To do this, we performed univariate logistic
regression analyses between delta-BMI (adjusted for measured BMI, sex,
age, and age2), and 1408 different phecodes with at least 100 cases. Given
the adjustment for measured BMI, our findings should be considered
additive to traditionalmeasuredBMI. AManhattan plot depicts 55 (3.9%)
significant associations in Fig. 4a. An interactive version of the figure can
be accessed in the Online Supplement. We identified significant associa-
tions with type 2 diabetes mellitus, hypertension, hypertensive heart
disease, long-term (current) use of insulin and oral hypoglycaemics,
hyperlipidaemia, hypercholesterolaemia, liver disease, and ASCVD.

Figure 4b presents odds ratios (ORs) per unit change of delta-BMI for the
top 20 significant top-level phecodes.

Biological plausibility: phenotypic associations of delta-BMI
Subsequently, we performed a UK Biobank phenome-wide association
analysis between 1368 phenotypes and delta-BMI, adjusted for BMI, sex, age,
and age2. The phenotype dataset included a wide array of categories, such as
blood tests, cardiac and brain MRI features, imaging parameters, physical
measures, and others. A Manhattan plot depicts all the significant associa-
tions in Fig. 5a (an interactive version can be accessed in the Online Sup-
plement). After correcting for the Bonferroni threshold of significance, we
identified 231 (16.9%) statistically significant phenotypes. These included key
biomarkers, such as triglycerides, high light scatter reticulocyte percentage,

Fig. 2 | Kaplan–Meier survival curves stratified by delta-BMI curves for future
cardiometabolic outcomes in the BIDMC cohort. Kaplan–Meier survival curves
stratified by tertiles of delta-BMI in the BIDMCCohort: Subplots a–d depict survival
curves for cardiometabolic disease, type 2 diabetes mellitus, hypertension, and lipid
disorders, respectively. Patients are stratified into tertiles based on delta-BMI,

providing insights into the differential risk of each outcome. Log-rank p-values are
reported for each outcome, highlighting statistically significant differences in sur-
vival across delta-BMI tertiles. Tertile cut-offs for delta-BMI are defined as follows:
Bottom (delta-BMI ≤−3.74), Middle (−3.74 to 2.44), and Top (>2.44).
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alanine aminotransferase, and apolipoprotein B. For physical measures,
positive associations included abdominal fat ratio, diastolic blood pressure,
and waist circumference. Delta-BMI was also positively associated with
imaging parameters, such as abdominal subcutaneous adipose tissue volume
and bone mineral density. Furthermore, cardiac MRI associations included
pericardial fat mass. We also identified significant negative associations
between delta-BMI and sex hormone-binding globulin andHDL cholesterol
(Fig. 5b).

Biological plausibility: metabolomic associations of delta-BMI
In our metabolomic profiling analysis, we used a metabolome-wide asso-
ciation study (MWAS) as an initial step in selecting metabolites associated
with delta-BMI (Fig. 6a). The significant variables (n = 136) were then used

in a stability selection with LASSO (Fig. 6b). The resulting stably selected
metabolites (n = 14) were used in amultivariate linear regression to identify
their contributions to delta-BMI variability (Fig. 6c). We found significant
negative associations betweendelta-BMIandglutamine, citrate, glycine, and
cholesteryl esters in very large HDL. Significant positive associations were
found between delta-BMI and omega-3 fatty acids, valine, glucose, glyco-
protein acetyls, total lipids in small HDL, and triglycerides in very large
VLDL. Collectively, these metabolites explained a modest proportion of
delta-BMI variability (R2 = 0.046).

Biological plausibility: proteomic associations of delta-BMI
In the proteomic analysis, we first conducted a proteome-wide asso-
ciation study (PWAS, Fig. 7a), identifying 100 significant proteins. Next,

Fig. 3 | Kaplan–Meier survival curves stratified by delta-BMI curves for future
cardiometabolic outcomes in the UK Biobank. Kaplan–Meier survival curves
stratified by tertiles of delta-BMI in the UK Biobank Cohort: Subplots a–d depict
survival curves for cardiometabolic disease, type 2 diabetes mellitus, hypertension,
and lipid disorders, respectively. Patients are stratified into tertiles based on delta-
BMI, providing insights into the differential risk of each outcome. Log-rank p-values

are reported for each outcome, highlighting statistically significant differences in
survival across delta-BMI tertiles. Tertile cut-offs for delta-BMI are defined as fol-
lows: Bottom (delta-BMI ≤−3.74), Middle (−3.74 to 2.44), and Top (>2.44). To
enhance clarity, the lower limit of the y-axis has been adjusted to 0.90, indicated by
the break lines between 0.90 and 0.
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Fig. 4 | Phenome-wide association study (PheWAS) of delta-BMI in the BIDMC
cohort. Exploration of the underlying biology through a phenome-wide association
study (PheWAS) in the BIDMC cohort: a A PheWAS Manhattan plot showing the
negative logarithm of the univariate logistic regression p-values between delta-BMI
and disease phecodes, adjusted for measured BMI, sex, age, and age2. The dashed
horizontal line signifies the Bonferroni corrected threshold for multiple

comparisons. Out of 1408 comparisons, 55 (3.9%) reached significance based on the
Bonferroni correction. An interactive version of the plots can be accessed in the
Online Supplement. b Illustrates the top 20 significant phecodes associated with
delta-BMI, presenting their respective odds ratios with 95% CI. ASCVD athero-
sclerotic cardiovascular disease.
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stability selection via LASSO (Fig. 7b) identified 39 stably selected
proteins. Finally, we used multivariate linear regression with these
proteins to evaluate their impact on delta-BMI variability (Fig. 7c). We
found significant negative associations between delta-BMI and colipase

(CLPS), complement C9 (C9), adiponectin (ADIPOQ), histidine-rich
calcium-binding proteins (HRC), and versican (VCAN). Significant
positive associations were found between delta-BMI and syntaxin 3
(STX3) and carnosine dipeptidase 1 (CNDP1). Collectively, these

Fig. 5 | Phenome-wide association study (PheWAS) of delta-BMI in the UK
Biobank. Exploration of the underlying biology through a phenome-wide associa-
tion study (PheWAS) in the UK Biobank using clinical phenotypes: a A PheWAS
Manhattan plot showing the negative logarithm of the univariate correlation p-
values between delta-BMI and routinely recorded clinical features, adjusted for
measured BMI, sex, age, and age2. The dashed horizontal line signifies the Bonferroni
corrected threshold for multiple comparisons. Out of 1368 comparisons, 231

(16.9%) reached significance based on the Bonferroni correction, most of which
came from imaging parameters, physical measures, and biomarkers. An interactive
version of the plots can be accessed in theOnline Supplement. b Illustrates the top 20
significant clinical phenotypes correlatedwith delta-BMI, presenting their respective
correlation coefficients (Pearson). SHBG Sex Hormone Binding Globulin, PWA
Pulse Wave Analysis, BP Blood Pressure, BMD Bone Mineral Density, HDL High-
Density Lipoprotein.
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proteins explained a higher proportion of delta-BMI variability
(R2 = 0.098) than the NMR metabolites.

Biological plausibility: genetic associations of delta-BMI
To investigate the underlying genetic associations with delta-BMI, we
performed a genome-wide association study (Fig. 8a). We found a sig-
nificant locus adjacent to sodium voltage-gated channel alpha subunit 10
(SCN10A), and a borderline significant locus adjacent to cancer suscept-
ibility 20 (CASC20). Additionally, we used the summary GWAS char-
acteristics to test for gene-level associations and identified additional
associations with retinoid X receptor gamma (RXRG) and exo/endonu-
clease G (EXOG) (Fig. 8b). SCN10A is a regulator of prolonged PR
interval19, Brugada syndrome20, and ECG morphology21–23. The top 3
variants of SCN10A in our analysis have previously been associated at
GWAS with resting heart rate24, heart rate response to exercise25, and P
wave duration26.CASC20 is a regulator of bodyheight, BMI-adjustedwaist
circumference, and heel-bone mineral density (a measure of osteo-
porosis). The lead variant in our analysis (rs6107848) has been associated
with BMI-adjusted waist circumference27. RXRG is a regulator of BMI-
adjusted waist circumference28 and of QRS morphology29, QT interval30,
appendicular lean mass31, gluteofemoral adipose tissue volumes32, and
cardiovascular ageing33. The heritability of delta-BMI was estimated to be
0.109 (95% CI: 0.083–0.135, p ~ 0).

Explainability: ECG morphologies associated with AI-ECG BMI
predictions
To enhance the interpretability of our AI-ECG BMI model, we trained an
XGBoost model using variational autoencoder-derived latent factors to
estimate the AI-ECG-derived BMI predictions. Figure 9a provides a visual
representation highlighting the top 20most important latent factors driving
the AI-ECG BMI predictions of the XGBoost model. Figure 9b shows the
latent traversals of the five most important latent factors in AI-ECG BMI
predictions. To provide insight into the ECGmorphologies associated with
each latent factor, we conducted correlation analyses between the latent
factors and ECG parameters in both the BIDMC and UK Biobank cohorts.
Latent factors 50 and 6 are correlatedwith theQRSaxis, latent factor 43with
heart rate, and16withPR interval duration.Additionally,QRSdurationwas
found to be associatedwithmultiple latent factors, including latent factors 6,
31, and 16 (Fig. 9c, d).

Discussion
In this study, we trained an AI-ECG model to accurately identify an indi-
vidual’s BMI. Importantly, we validated our model in two diverse popula-
tions, spanning secondary care and volunteers across two continents. Our
findings highlight the model’s capacity to predict BMI across diverse
populations.Notably, we evaluated the utility of delta-BMI as a predictor for
future cardiometabolic disease, including type 2 diabetes mellitus,

Fig. 6 | Metabolomic analysis of delta-BMI variability. Exploration of the
underlying biology of delta-BMI variability using the UK Biobank NMR metabo-
lomic data: a A metabolome-wide association study (MWAS) Manhattan plot
showing the negative logarithm of the univariate correlation p-values between delta-
BMI and the concentrations of NMR metabolites, adjusted for BMI, sex, age, and
age2. Out of 168 comparisons, 136 (80.1%) reached significance based on the Bon-
ferroni correction. An interactive version of the plots can be accessed in the Online
Supplement. b Stability selection analysis employing LASSO regression on

significant MWAS metabolites: This analysis, conducted over 1000 iterations with
80% subsampling, identifies robust metabolite associations with delta-BMI.
Adjustments weremade for measured BMI, sex, age, and age2. The black dashed line
represents the calibrated selection proportion. cMultivariate linear regression
analysis of stably selected metabolites against delta-BMI, adjusted for measured
BMI, sex, age, and age2, demonstrating the individual contribution of stably selected
metabolites to variations in delta-BMI.
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hypertension, and lipid disorders, demonstrating its potential prognostic
value, which is additive to measured BMI. Additionally, we identified can-
didate biological pathways, including important phenotypic, genotypic,
metabolomic, and proteomic associations. Using a variational autoencoder,
we also provided insights into model prediction, which are in line with
biologically plausible findings.

Using a secondary care dataset, we developed an AI-ECG BMI model
that captures electrophysiological changes relating to adiposity. Further-
more, we externally validated the model in a cohort of healthy volunteers
from the UK Biobank, underscoring its applicability in diverse population
groups. Notably, the model performed well across both sexes and major
ethnic groups. Interestingly, the model had improved performance in
females compared to males, even though the derivation dataset had no
significant differences in sex. The model may therefore be identifying
obesity-related ECG changes that are more apparent in women than men.

Our model demonstrates better performance compared to Ryu et al.‘s
BMI prediction model, with Pearson R of 0.65 (BIDMC) and 0.62 (UKB),
andR2 values of 0.43 (BIDMC) and0.39 (UKB), surpassing their reportedR2

of 0.279. Despite their lower reported MAE of 2.332, the measured BMI of
our cohorts exhibits markedly higher variance, enhancing the model’s
applicability in clinical settings. Furthermore, our AI-ECGmodel compares
favourably with other BMI models utilising more complex data. It aligns

well with the brain MRI image-based model (Pearson r = 0.68)34, and
though it exhibits lower correlation coefficients compared to models based
on psychological variables (Pearson r = 0.81)35 and the UKB-PPP model
using nearly 3000 protein variables (Pearson r = 0.89)36, its primary
advantage lies in its accessibility. The widespread availability of ECGmakes
our AI-ECG model a practical and valuable tool for clinical settings.

Obesity is amajor public health challenge, largely due to the associated
risks of cardiometabolic disease. Although BMI is commonly used to define
obesity, BMI itself poorly reflects the risk of cardiometabolic disease. Our
findings demonstrate that delta-BMIyields additional insights beyond those
provided by BMI alone, and an AI-ECG-predicted BMI exceeding the
measured BMI may serve as an indicator of elevated risk for future cardi-
ometabolic diseases.

Significant enhancements in model fit, reclassification, and minor but
significant improvements in discriminatory power were observed with the
inclusion of delta-BMI in both the BIDMC and UK Biobank cohorts.
Notably, within the BIDMC cohort, notable enhancements in the con-
cordance index were observed for patients with higher BMI (>25 and >30)
when delta-BMI was added. This may be relevant for patients with meta-
bolically healthy obesity37 – a subset of individuals with a BMI > 30, tradi-
tionally labelled as obese, whomay exhibit a reduced risk of cardiometabolic
disease. In this scenario, negative delta-BMI may serve as a valuable

Fig. 7 | Proteomic analysis of delta-BMI variability. Exploration of the underlying
biology of delta-BMI variability using the UK Biobank PPP data: a A protein-wide
association study (PWAS) Manhattan plot showing the negative logarithm of the
univariate correlation p-values between delta-BMI and the concentration of pro-
teins, adjusted for measured BMI, sex, age, and age2. Of the 2919 proteins analysed,
100 (3.4%) surpassed the Bonferroni-corrected significance threshold. An inter-
active version of the plots can be accessed in the Online Supplement. b Stability

selection analysis employing LASSO regression on significant PWAS proteins: This
analysis, conducted over 1000 iterations with 80% subsampling, identifies robust
protein associations with delta-BMI. Adjustments were made for measured BMI,
sex, age, and age2. The black dashed line represents the calibrated selection pro-
portion. cMultivariate linear regression analysis of stably selected proteins against
delta-BMI, adjusted for measured BMI, sex, age, and age2, demonstrating the indi-
vidual contribution of stably selected proteins to variations in delta-BMI.
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indicator, identifying those individuals with metabolically healthy obesity
and offering a more nuanced and personalised assessment of risk.

Further analysis revealed that among the components of cardi-
ometabolic disease, the most substantial improvement in model fit
and net reclassification was observed for T2DM in both cohorts.
Notable enhancements in discriminatory power were evident among
patients with normal weight in the BIDMC cohort, whereas
improvements spanned across all BMI categories in the UK Biobank
cohort as well as female participants in both cohorts. This trend may
reflect a broader effectiveness of the model in healthier populations,
suggesting its potential utility for preventive healthcare interventions
and risk assessment.

We also explored the additive effect of delta-BMI in various ethnic
groups, finding significant improvements in model fit and reclassification
for cardiometabolic disease in Caucasians and Hispanics, and for type 2
diabetes mellitus in Caucasians and Asians within the BIDMC cohort.
However, due to small sample sizeswithin ethnic groups, further research in
additional diverse datasets is necessary to evaluate the implications of these
findings.

Subjects at risk of cardiometabolic disease already commonly have an
ECG undertaken to identify prevalent cardiovascular diseases. However, in
this work, we show the predictive capability of the ECG to predict future
cardiometabolic disease, including hypertension, diabetes, and dyslipidae-
mia. This has important implications for screening of cardiometabolic
disease, as the AI-ECGBMImodel could be integrated into current practice
to identify patients in need of increased surveillance, which may include
bloodpressuremonitoring ormore frequent blood sampling forHbA1c and
lipids levels. Furthermore, delta-BMI could also act as a potential motiva-
tional tool forpatients. Informationabout future risks, beyond that of simple
BMI measurement, may help encourage lifestyle changes to improve car-
diometabolic health.

The general reluctance to embrace AI tools in clinical settings often
stems from the perceived “black box” nature of the models38. To enhance
clinician and patient confidence inAI, it is crucial to prioritise explainability
and biological plausibility. In our study, we have, through various meth-
odologies, delved into the morphological and biological foundations of AI-
ECG BMI predictions. This emphasis on transparency and biological
plausibility aimsnotonly to address the ‘blackbox’ concernsofAIbut also to

Fig. 8 | Genome-wide association study (GWAS) of delta-BMI variability.
Exploration of the underlying biology of delta-BMI variability through a genome-
wide association study (GWAS): GWASManhattan plots of genomic loci associated
with delta-BMI. a Highlights the nearest genes associated with single nucleotide
polymorphisms (SNP), with the red line depicting the genome-wide significant
threshold (P < 5 ×10−8). b Displays a Manhattan plot derived from the gene-based

test using MAGMA, mapping input SNPs to 18,882 protein-coding genes; the red
line represents the genome-wide significant threshold (P < 2.65 ×10−6). SCN10A
sodium voltage-gated channel alpha subunit 10, CASC20 cancer susceptibility 20,
RXRG retinoid X receptor gamma, SCN5A sodium voltage-gated channel alpha
subunit 10, EXOG exo/endonuclease G.
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improve clinician andpatient confidence in the application ofAI-ECG-BMI
in clinical settings.

Using a variational autoencoder model, we demonstrate that the QRS
axis, resting heart rate, PR interval, and QRS duration are important in AI-
ECG-BMI predictions. This is consistent with prior analyses relating the
ECG to obesity-related cardiac changes39–44.

The ability of the AI-ECG BMImodel to identify individuals at higher
risk of future cardiometabolic disease raises important questions as towhich
clinical factors and biological pathways are identified in these predictions.
Through a phenome-wide association study, we identified associations
between delta-BMI and cardiometabolic conditions, including type 2 dia-
betes mellitus, hypertension, hyperlipidaemia, hypercholesterolaemia, liver
disease, and atherosclerotic cardiovascular disease. Furthermore, delta-BMI
is also associated with anthropometric measures of truncal obesity, such as
abdominal fat ratio and waist circumference, aligning with previous studies
highlighting the role of truncal obesity in cardiometabolic syndrome45 and
mortality46. Interestingly, delta-BMI is also inversely associated with sex

hormone-binding globulin (SHBG), which aligns with previous studies
showing an inverse relationship between SHBG and adiposity47,48, coronary
atherosclerosis, and cardiometabolic disease49–51. Furthermore, delta-BMI’s
positive association with pericardial fat mass suggests that pericardial fat
may play a role in mediating cardiometabolic risk, supported by its link to
multiple measures of adiposity and metabolic syndrome52,53.

Through our metabolic profiling analyses, we have identified robust,
independent metabolites associated with delta-BMI. Notably, these meta-
bolites impact delta-BMI independently of each other and measured BMI.
We observed significant negative associations between delta-BMI and glu-
tamine, citrate, glycine, and cholesteryl esters in very largeHDL.Conversely,
metabolites such as omega-3 fatty acids, glucose, valine, total lipids in small
HDL, and triglycerides in very large VLDL exhibited positive associations
with delta-BMI. These findings are consistent with previous research indi-
cating that glycine and glutamine are linked to improved insulin sensitivity,
while valine is associated with reduced insulin secretion54. The positive link
between omega-3 fatty acids and delta-BMI corresponds with evidence

Fig. 9 | Explainable AI in ECG morphology. Explainable ECG morphology: An
XGBoost model was trained using variational autoencoder-derived latent factors to
estimate the AI-ECG-derived BMI predictions. a Depicts a beeswarm plot of the 20
most influential latent factors, ordered by their feature importance derived from the
SHAP (SHapley Additive exPlanations) values. Each dot represents a SHAP value
for a specific latent factor, providing insight into the significance of these latent
factors and the direction of their impact on the AI-ECG BMI predictions. For
example, for latent factor 50, lower values of the latent factor (in blue) indicate a

positive impact on theAI-ECGBMI estimation, resulting in higher BMI predictions,
while higher feature values (in red) indicate a negative impact on the AI-ECG BMI
estimation, resulting in lower BMI predictions. b Illustrates the latent traversals of
the top 5 latent features and their impact on the ECG morphology. ECG
morphologies corresponding with high and low AI-ECG BMI predictions are
represented in red and blue, respectively. Subplots c and d show correlation heat-
maps between ECG parameters and the VAE-derived latent factors for the BIDMC
and UK Biobank cohorts, respectively.
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suggesting their detrimental impact on obesity, insulin resistance, and
hyperlipidemia, despite their cardioprotective benefits in other metabolic
conditions55. The observed inverse relationship between delta-BMI and
cholesteryl esters in HDL, coupled with a positive correlation with total
lipids in small HDL, suggests enhanced lecithin:cholesterol acyltransferase
(LCAT) activity. This enzymatic action typically enriches HDL with lipids,
while concurrently depleting its cholesteryl ester content, a metabolic sig-
nature noted in the presence of diabetes mellitus56. This is further corro-
borated by our proteomic profiling analysis, which identified LCAT as a
stable protein positively associated with delta-BMI.

Through our plasma proteomic profiling analysis, we have identi-
fied robust, independent protein analytes associated with delta-BMI.We
have observed negative associations between delta-BMI and CLPS,
ADIPOQ, C9, HRC, and VCAN, and positive associations with STX3
and CNDP1. CLPS, implicated in the breakdown of dietary fats, is noted
for genetic variations that are associated with metabolic characteristics
in non-diabetic patients of European descent57. ADIPOQ is known to
have decreased levels in conditions such as T2DM, obesity, and heart
disease, implicating its importance in the metabolic homoeostasis58.
STX3 is found to inhibit insulin release and production59, while CNDP1
is positively related to diabetic kidney disease and renal function
markers60. The roles of C9, HRC, and VCAN in delta-BMI variability
and cardiometabolic disease remain to be fully understood, highlighting
a gap for further investigation.

Our studyhas limitations. Firstly, therewas a temporal gapbetween the
initial collection of themetabolomic and proteomic data in theUKBiobank
and the subsequent acquisition of the resting ECGs, with the former
occurring approximately 8 years before the latter. This temporal gap
introducesnoise in establishing relationshipsbetween themetabolomic, and
proteomic markers and the electrocardiographic outcomes. Additionally,
it’s important to note that the UK Biobank cohort is not ethnically diverse
and exhibits a healthy volunteer bias, whichmay limit the generalisability of
the findings to more diverse populations.

In conclusion, our study demonstrates the effectiveness of an AI-
enhanced ECGmodel in accurately predictingBMI, validated across diverse
populations. The introduction of delta-BMI as a predictor of cardiometa-
bolic disease offers valuable additional prognostic insights beyond tradi-
tional BMI assessments. Our exploration of biological pathways, spanning
phenotypic, genotypic, metabolomic, and proteomic associations, con-
tributes to a comprehensive understanding of the association between delta-
BMI and cardiometabolic disease. The clinical implications could extend to
enhanced screening strategies, personalised risk assessment, andmotivation
for lifestyle interventions.

Methods
Ethical approvals
For the Beth Israel Deaconess Medical Center (BIDMC), cohort ethics
review and approval were provided by the Beth Israel Deaconess Medical
Center Committee on Clinical Investigations, IRB protocol # 2023P000042.

The UK Biobank has approval from the North West Multi-Centre
Research Ethics Committee as a Research Tissue Bank (application IDs
48666, 47602).

ECG datasets
As this was a retrospective study, no a priori sample size calculations were
performed. Missing data was handled by complete-case analysis.

(i) The BIDMC cohort. The Beth Israel Deaconess Medical Center
(BIDMC) cohort is a secondary care dataset consisting of routinely col-
lected data from Boston, USA. Subjects over 16 years old with a valid ECG
performed from2014 to 2023were included. Prior ECGsback to2000were
included for these subjects. BMI was derived from contemporaneous
weight measurements acquired within a 30-day window of each ECG
recording, complemented by height assessments conducted within 1 year
of the respective ECG. Diagnostic International Classification of Diseases

(ICD) codes were used to determine disease status. Subjects were censored
at the time of outcome or last in-person hospital contact.

(ii) The UK Biobank Cohort. The UK Biobank is a longitudinal study of
over 500,000 volunteers aged 40–69 at the time of enrolment in
2006–201061. At baseline assessment, participants provided information
on health and lifestyle via questionnaire, had physical measures taken
(including height, weight, and blood pressure), and donated samples of
blood urine and saliva. A subgroup of participants was invited back for
subsequent visits for additional investigations, including cardiac mag-
netic resonance imaging (MRI), brain MRI, and digital ECGs.
42,386 subjects with digital ECGs taken at the instance 2 visit were
available for analysis. The collected data include clinical, metabolomic,
proteomic, and genomic data, and were linked to cancer and death
registries, hospital admissions, and primary care records. There is evi-
dence of healthy volunteer selection bias18. Outcomes were linked to
cancer and death registry data, hospital admissions, and primary care
records. Detailed phenotyping using the cardiac MRI data has been
previously described62,63.

ECG pre-processing
The 12-lead ECGs from both cohorts were pre-processed using a bandpass
filter at 0.5–100Hz, a notch filter at 60 Hz, and re-sampled to 400Hz. Zero
padding was used to achieve a signal with 4096 samples for each lead for a
10 s recording.

Model development
The model was derived using the BIDMC cohort. The BIDMC cohort
consists of 1,163,401 ECGs from189,540 patients, ofwhich 512,950 (44.1%)
ECGs from114,415 subjects had pairedBMI data available. To prevent data
leakage, the dataset was divided by patient ID using a 60/10/30 split into
derivation, validation, and holdout test sets, respectively. The ECG-AI
model, which employed a ResNet architecture adapted fromRibeiro et al.17,
was trained using 10-second 8-lead ECGs. Specifically, lead III and the
augmented leads were omitted from the model as they are linear combi-
nations of leads I and II. The architecture incorporates a linear function in
the final layer for BMI prediction. Themodel was internally validated using
the 30% holdout test set (152,166 ECGs from 34,325 patients).

External validation
We externally validated the model using the UKB dataset. The original
42,386 ECGs were divided into validation and holdout test sets using a split
ratio of 10/90%. The validation set was used to derive the bias-correction
coefficients,whichwere thenused to adjust theBMIestimates of theholdout
test set. The holdout test set (n = 38,148) was used for subsequent down-
stream analyses.

Outcome definition
BMI for theBIDMCcohortwas calculatedusingpatient heightwithin a year
andweightwithin 30days of ECGs. For theUKBcohort, BMIwasmeasured
concurrently with ECGs. The primary survival analysis outcome was inci-
dent cardiometabolic disease. The secondary outcomeswere incident type 2
diabetes, hypertension, and lipid disorders (see outcome definitions in
Supplementary Table 3). Follow-up periods were adjusted by censoring at
loss of follow-up or event occurrence.

Bias correction
Delta-BMI was negatively correlated with BMI (Pearson r =−0.695,
p ≈ 0.0), thus individuals with higher BMI demonstrated lower delta-BMI.
This phenomenon, also known as the ‘regression dilution’ effect observed in
previous models predicting biological age, underscores the need for bias
correction to mitigate measurement error. Based on previous studies33,64–66,
we addressed the correlation betweendelta-BMI andBMI in the holdout set
by fitting a linear regression between the raw uncorrected delta-BMI and
measured BMI in the validation dataset. Then, we adjusted the predicted
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BMI in the holdout set by subtracting the intercept and dividing it by the
slope of the linear regressionmodel66. Thiswas repeated for theUKBcohort,
using10%of thedataset as a validation cohort toderive the regressionmodel
coefficients. This 10% validation cohort was excluded from subsequent
downstream analyses. See Supplementary Fig. 1 for more details.

Survival analysis and statistical analyses
The AI-ECG BMI model was assessed using Pearson correlation, R2, and
MAE, with 95% CIs derived from 1000 bootstrap iterations on 80% of the
holdout datasets. To evaluate the prognostic significance of delta-BMI in the
BIDMC and UK Biobank cohorts, we conducted Cox regression, adjusting
for BMI, age, and sex, and reported HRs and 95% CIs. Delta-BMI was
analysed both as continuous and categorical variables. For the categorical
analysis, delta-BMI was stratified into three tertiles: bottom (≤−3.74),
middle (−3.74 to 2.44), and top (>2.44). Cox regression analyses were also
conducted for stratified sex and BMI groups (18.5–24.9, ≥25, ≥30). Due to
insufficient numbers, BMI < 18.5 was excluded (BIDMC: n = 794, UKB:
n = 258). Consistent with recent evidence against the necessity of propor-
tional hazards testing inwell-powered clinical datasets,wedidnot assess this
assumption, treating the Cox model’s hazard ratio as an average estimate
over the follow-up period67.

Next, we performed an exploratory analysis to evaluate the incremental
predictive utility of delta-BMI in predicting future cardiometabolic disease
and its components. Firstly, we conducted likelihood ratio tests (LRT) to
gauge the significance of model improvement upon incorporating delta-
BMI. Secondly,we computed the continuousnet reclassification index (NRI)
to quantify the extent towhich delta-BMI enhances risk stratification. Lastly,
we examined changes in the concordance index upon the inclusion of delta-
BMI into the Cox model, providing insights into its discriminatory power.

Phenome-wide association study (PheWAS)
Weconducted aphenome-wide association study (PheWAS) in theBIDMC
cohort to determine delta-BMI’s disease associations, using univariate
logistic regressions on 1408 disease phecodes. Similarly, in the UKB cohort,
we analysed 1368 clinical phenotypes consisting of patient measurements,
surveys and investigations, with delta-BMI, using univariate correlations.
Adjustments were made for BMI, sex, age, and age2, as well as Bonferroni
correction to account for multiple testing.

Genome-wide association study (GWAS)
To identify genetic associations with delta-BMI, we performed a genome-
wide association study (GWAS) in theUKB.Using linear regression, delta-
BMI was adjusted for the following covariates: age at the imaging visit, sex,
height, BMI, imaging assessment centre, and the first 10 genetic principal
components. The UKB participants included in the genetic analyses were
selected for European ancestry, missingness rate of SNPs <10%, no sex
discrepancies, and outliers of heterozygosity or relatedness.After selection,
ECGswere available for 27,988 individuals.Quality control was performed
to exclude SNPs with a minor allele frequency <0.1%, genotyping rate
<95%, deviation of heterozygosity with Hardy–Weinberg equilibrium
p < 1.0 ×10−8 or <0.4 INFO imputation score.

TheGWASwas carried out with the FastGWAMLM implemented by
theGenome-wideComplexTrait Analysis (GCTA) software using a genetic
relationship matrix (GRM) to adjust for population structure68. The delta-
BMIdistributionswerenormalisedby rank-based inversenormal transform
prior to the analysis. Age, sex, height, BMI, the UKB assessment centre, and
the first 10 genetic principal components were included as covariates. We
report the SNPs which were identified by the conventional genome-wide
significance threshold of p-value < 5 ×10−8.

The genetic variance explained by genome-wide SNPs (SNP-based
heritability) was calculated with the genomic-relatedness-based restricted
maximum likelihood (GREML) analysis using the GCTA software69.
Genetic correlation was calculated with the bivariate GREML analysis
method70. The QQ plots for GWAS summary statistics and gene-based test
are shown in Supplementary Fig. 5.

Metabolome-wide association study (MWAS)
Over 250,000UKBparticipants have been profiled byNightingaleHealth to
obtain their nuclear magnetic resonance (NMR) EDTA plasma sample
metabolic biomarkers71. After extracting absolutemeasures and eliminating
entries with over 40% missingness for rows and 20% for columns, we
retained data for 274,350 participants from instance 0. We subsequently
adjusted and standardised NMR metabolite readings for spectrometer
variations and excluded outliers exceeding 4 interquartile ranges71. The final
dataset, following filtering for complete cases, included 22,322 UK Biobank
participants with both NMR metabolite profiles and 12-lead ECGs (UKB-
NMRmet-ECG). To investigate the associations between delta-BMI and
UKB NMR metabolites data, we initially conducted univariate correlation
analyses of individual metabolites with delta-BMI, adjusted for BMI, sex,
age, and age2, with a significance threshold of 2.976×10−4. Secondly, we
employed stability selection with the least absolute shrinkage and selection
operator (LASSO) regression to identify stable predictors of delta-BMI (R
package Sharp, version 1.4.572). The stability selection with LASSO was
conducted over 1000 iterations with subsampling of 80% of the total UKB-
NMRmet-ECG dataset, with lambda constrained to 1 ×10−8 and 5 ×10−1.
The calibration of π (selection proportion) and λ (L1 penalty factor) is
shown in Supplementary Fig. 2. The combination of parameters resulting in
the highest stability score was selected (π = 0.650 and λ = 0.142), thus
obtaining 14 stably selected predictors. These predictors were then used in a
multivariate linear regression to disentangle the metabolomic associations
with delta-BMI, as seen in Fig. 6c.

Proteomic-wide association study (PWAS)
53,030 UKB participants had their plasma proteomic profiles analysed by
the Pharma Proteomics Project36 at instance 0 using the antibody-based
Olink Explore 3072 PEA, measuring 2923 protein analytes36. Observations
with less than 40% missingness and protein analytes with less than 20%
missingness were retained, leaving 2919 analytes for further analysis.
Missing valueswere imputedusing simplemean imputation and scaled (sci-
kit-learn, version 1.1.1) (Supplementary Fig. 3). In total, 3512 patients had
both proteomic data and 12-lead ECGs (UKB-PPP-ECG). To investigate
the associations between delta-BMI and the UKBiobank plasma proteomic
data, we mirrored the metabolomic approach. Initially, we conducted a
univariate regression analysis with delta-BMI as outcome and protein
analytes as predictors, adjusted for BMI, sex, age, and age2, with a sig-
nificance threshold of 1.7123 ×10−5. Secondly, we performed stability
selection with LASSO regression to identify stably selected protein pre-
dictors of delta-BMI. Variable selection using the Sharp package was done
over 1000 iterations with a subsampling of 80% of the total UKB-PPP-ECG
dataset. The calibration of π and λ is depicted in Supplementary Fig. 4. The
combination of parameters with the highest stability score was selected
(π = 0.560 and λ = 0.107), thus identifying 39 stably selected predictors. The
stable predictors were then used in multivariate linear regression to disen-
tangle the proteomic associations with delta-BMI, as seen in Fig. 7c.

Explainability
To understand the ECG morphologies associated with the AI-ECG BMI
predictions, we trained aVAE, as previously described73, usingmedian ECG
beats. Median beats were extracted using the BRAVEHEART software, as
previously described74. The VAE was based on a convolutional encoder/
decoder architecture, which was inspired by architectures previously used
for ECG analysis75,76. Specifically, the encoder comprised of six convolu-
tional blocks of feature extraction, adjusted for themedian beat ECG signal.
The decoder architecture was designed as a symmetrically inverse network
of the encoder. The total number of parameterswas 1,533,888 and1,283,976
for the encoder and decoder, respectively. A detailed depiction of the net-
works’ architecture can be seen in Supplementary Fig. 6.

Using the samedata split as for theAI-ECGBMImodel,we then trained
an eXtreme Gradient Boosting (XGBoost) model using the VAE latent fea-
tures with AI-ECG BMI as the output. In the BIDMC holdout set, the
XGBoost model achieved a Pearson correlation coefficient of 0.77 (95% CI:
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0.77–0.78) and R2 of 0.61 (95% CI: 0.60–0.61) (Supplementary Fig. 7a). The
model was then validated in the UK Biobank, where it achieved a Pearson
correlation coefficient of 0.78 (95% CI: 0.78–0.79) and R2 of 0.61 (95% CI:
0.600–0.62) (Supplementary Fig. 7b). The top 5 most important features, as
assessed by SHAP values (Fig. 9a), were visualised by latent traversals73

(Fig. 9b) and cross-correlated with known ECG parameters (Fig. 9c, d).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
UK Biobank data are available upon application (http://www.ukbiobank.ac.
uk/). The studywas conducted under applicationnumbers 48666 and 47602.
The GWAS summary level data are available from the GWAS catalogue
(https://ebi.ac.uk/gwas/) through the accession number GCST90429062.
The BIDMC dataset is restricted due to ethical limitations. Researchers
affiliated to educational, or research institutionsmaymake requests to access
the datasets. Requests should be made to the corresponding author of this
paper. They will be forwarded to the relevant steering committee.

Code availability
The programming code relating to these analyses will be made available
under GNU General Public License version 3 upon request to the corre-
sponding author.
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