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A B S T R A C T   

Traditional methods for uncertainty quantification (UQ) struggle with the curse of dimensionality when dealing 
with high-dimensional problems. One approach to address this challenge is to leverage the potent approximation 
capabilities of deep neural networks (DNNs). However, conventional DNNs often demand a substantial amount of 
high-fidelity (HF) training data to ensure precise predictions. Unfortunately, the availability of such data is 
limited due to computational or experimental constraints, primarily driven by associated costs. To mitigate these 
training expenses, this research introduces multi-fidelity deep neural networks (MF-DNNs), wherein a sub- 
network is constructed to simultaneously capture both linear and non-linear correlations between HF- and 
low-fidelity (LF) data. The efficacy of MF-DNNs is initially demonstrated by accurately approximating diverse 
benchmark functions. Subsequently, the developed MF-DNNs are employed for the first time to simulate the 
aleatory uncertainty propagation in 1-, 32-, and 100-dimensional contexts, considering either uniform or 
Gaussian distributions of input uncertainties. The UQ results affirm that MF-DNNs adeptly predict probability 
density distributions of quantities of interest (QoI) and their statistical moments without significant compromise 
of accuracy. Furthermore, MF-DNNs are applied to model the physical flow inside an aircraft propulsion system 
while accounting for aleatory uncertainties originating from experimental measurement errors. The distributions 
of isentropic Mach number are accurately predicted by MF-DNNs based on the 2D Euler flow field and few 
experimental data points. In conclusion, the proposed MF-DNN framework exhibits significant promise in 
addressing UQ and robust optimization challenges in practical engineering applications, particularly when 
dealing with multi-fidelity data sources.    

Nomenclature 
CO-KRG co-Kriging model 
DNNs deep neural networks 
FCNNs fully connected neural networks 
GPU graphics processing unit 
HF high-fidelity 
KRG Kriging model 
LF low-fidelity 
MF multi-fidelity 
MF-DNNs multi-fidelity deep neural networks 
MF_DNN_Comp composite multi-fidelity deep neural networks 
MF_DNN_ReLU multi-fidelity deep neural networks with ReLU 

activation function 
MISES multiple blade interacting streamtube Euler solver 
MSE mean square error 

NNs neural networks 
QoI quantities of interest 
RBF radial basis function 
UQ uncertainty quantification 
“ReLU” rectified linear unit activation function 
“Sigmoid” logistic sigmoid function 
“Tanh” hyperbolic tangent function 
H number of hidden layers 
M number of LF training points 
N normal (Gaussian) distribution 
P number of HF training points 
U uniform distribution 
Lc overall mean square error of the Correction DNNs 
Lh training loss of Correction DNNs 
Ll training loss of LF-DNNs 
Lr L2 regularization loss of Correction DNNs 
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QLF low-fidelity data set 
QHF high-fidelity data set 
XLF low-fidelity variables 
XHF high-fidelity variables 
bh biases of hth layer 
ŷHF prediction values on HF data points 
yLF label values of LF data points 
θNN neural network parameters 
wh weights of hth layer 
F correlation between LF- and HF data 
T temperature 
λ control parameter of L2 regularization loss 
c multiplicative correction surrogate 
δ additive correction surrogate 
ρ air density 
t Time 
p Pressure 
μ dynamic viscosity 
e internal energy 
κ thermal conductivity 
u flow velocity vector 
∇ differential operator 

1. Introduction 

In practical scenarios, aleatory uncertainties emerge from inherent 
variability and randomness within systems, often presenting a high level 
of dimensionality. These uncertainties encompass a wide array of fac
tors, for instance, the fluctuations in boundary/initial conditions [1], 
uncertain geometries due to manufacturing vibrations [2], harsh oper
ating environments [3] and inherently uncertain model parameters [4]. 
Moreover, the experimental uncertainty [5] stemming from measure
ment errors and the variability of material properties [6] contribute to 
the spectrum of aleatory uncertainties. However, traditional uncertainty 
quantification (UQ) techniques like Monte Carlo (MC), polynomial 
chaos expansion (PCE) and Taylor series expansion-based methods face 
challenges posed by the curse of dimensionality when addressing these 
high-dimensional aleatory uncertainties [7–8]. Substantial volumes of 
high-fidelity (HF) training data are required to attain acceptable levels 
of predictive accuracy for these methods. However, in engineering ap
plications, generating enough HF results often means computationally 
or experimentally prohibitive costs. 

To mitigate this reliance on HF outcomes, multi-fidelity (MF) ap
proaches have garnered substantial interest, harnessing a collection of 
HF- and low-fidelity (LF) data sets [9–12]. Leveraging the availability 
and cost-effectiveness of LF data, the core premise behind MF method
ology is to enhance model prediction accuracy through an augmented 
influx of HF data [13]. Literature has proposed diverse strategies, 
including MF response surface models [14–15], MF artificial neural 
networks [16–17] and MF- or adaptive Gaussian processes [18–22], to 
establish surrogate models. Similarly, for MF UQ methods, the realm has 
seen the introduction of MF PCE [23–24], MF MC approaches [25–26] 
and MF PCE-Gaussian process [27] in prior research endeavours. 
However, the aforementioned methodologies often demonstrate limi
tations in effectively capturing the cross-correlation between HF- and LF 
data. For instance, in our experience, the selection of HF point locations 
plays a pivotal role in influencing the precision of MF response surface 
models. Furthermore, MF Gaussian process regression encounters chal
lenges in hyperparameter optimization with sparse data [28] and in 
tackling high-dimensional problems [29]. The effectiveness of the PCE 
technique heavily relies on the regularity between Quantities of Interest 
(QoI) and input uncertainties, and its efficacy might wane in the absence 
of such regularity, such as in stochastic hyperbolic problems [30]. 
Reference [31] is recommended for a comprehensive overview of MF 
methods in UQ, statistical inference, and optimization. 

In recent times, the applications of deep learning techniques have 
found broad utility in modelling physical systems [32–33], as well as in 
fields like communications [34] and biological systems [35], primarily 
due to their versatile capacity for universal function approximation. 
Thus, the advent of MF neural networks (NNs) presents a promising 
avenue, particularly due to the fact that compared to traditional func
tion approximators, deep neural networks (DNNs) are acknowledged as 
universal approximators across both low- and high-dimensional con
texts [36]. Noteworthy instances of the applications of MF neural net
works include the work by Lu and Zhu [37], who employed single fully 
connected neural networks (FCNNs) as bi-fidelity surrogate models to 
estimate HF proper orthogonal decomposition coefficients within a 
reduced-order model framework. Yan and Zhou [38] crafted an adaptive 
surrogate model by amalgamating the MF approach with NNs to tackle 
Bayesian inverse problems within a Markov chain MC framework. Conti 
et al. [39] introduced MF long short-term memory networks for 
addressing time-dependent problems. Dhulipala [40] utilized DNNs as 
an LF model and a separated Kriging model for the correction. Motamed 
[41] developed two distinct NNs based on bi-fidelity training data. 
Specifically, the first NN aimed to approximate the correction function 
between LF- and HF data, with its output serving as supplementary HF 
training data for the second NNs. Here, the precision of the artificially 
introduced HF training data significantly influenced the overall NNs’ 
prediction accuracy. 

In a more straightforward approach, Meng and Karniadakis [42] 
established composite NNs where the LF model was initially trained, and 
the LF model’s output was then refined based on HF data. The proposed 
multi-fidelity deep neural networks (MF-DNNs) comprise three 
sub-networks: one for LF prediction, one for HF prediction assuming a 
linear correlation between LF- and HF data, and another for HF pre
diction relying on non-linear correlation. Results demonstrated the 
composite NNs’ proficiency in approximating benchmark functions. The 
utilization of these MF-DNNs in aerodynamic optimization was exem
plified in the work by Zhang et al. [43]. Ahn et al. [44] utilized the 
reduced-order model to update the low-fidelity data within the frame
work of composite neural networks. Meanwhile, Guo et al. [16] con
ducted MF regression using NNs with diverse architectures and 
compared predictive accuracy against the Co-Kriging (Co-KRG) model. 
Guo’s study included the creation of a shallow NN layer to approximate 
the correlation between LF- and HF data. Nonetheless, results indicated 
that its capability in modelling linear correction functions slightly 
diminished when contrasted with the parallel sub-networks structure. 
Furthermore, the performance in predicting high-dimensional problems 
remained undisclosed. 

To overcome the requirement of parallel sub-networks structure 
proposed in previous work, this paper introduces a network architecture 
featuring a single correction sub-network to achieve a balanced capacity 
of modelling both linear and nonlinear corrections. This architectural 
choice brings forth several appealing attributes: 1) eliminating 
assumption bias: the need to allocate weights to separate linear and 
nonlinear sub-networks is circumvented, ensuring a more neutral and 
adaptive modelling approach. 2) alignment with mathematical princi
ples: the proposed architecture closely aligns with the foundational 
mathematical principles underpinning the MF methodology that serves 
as its basis. 3) enhanced simplicity: the streamlined architecture sim
plifies both the training and testing processes of the MF-DNNs, partic
ularly when tackling high-dimensional problems. 4) ease of 
implementation: the implementation of the new MF-DNN architecture in 
programming is notably more straightforward. To the best of the au
thors’ knowledge, this marks the pioneering attempt to address high- 
dimensional aleatory UQ problems using MF-DNNs. The structure of 
the paper unfolds as follows: Section 2 delves into the intricate details of 
the proposed MF-DNNs, followed by Section 3 which showcases the 
outcomes of surrogate modelling and UQ for various benchmark cases. 
Section 4 concludes this research endeavour by presenting the key 
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findings. Additionally, Appendix A adds a comparison of different acti
vation functions in terms of their approximation capabilities. 

2. Multi-fidelity deep neural networks 

One widely used comprehensive correction [13] in bridging LF- and 
HF data is: 

ŷHF = c(X)⋅yLF(X) + δ(X) (1)  

where ŷHF represents the model prediction values on HF data points, c is 
the multiplicative correction surrogate, yLF represents the label values of 
LF data points, δ means the additive correction surrogate. Here the 
multiplicative correction c could be either a constant [45] or the 
non-constant value [46], which represents the linear or non-linear 
correction between ŷHF and yLF. In other words, the comprehensive 
correction in Eq. (1) can be expressed as: 

ŷHF = F (yLF(X),X) (2)  

where F can comprehensively represent both the non-linear and linear 
correlation between the LF- and HF data. Thus, the idea for the proposed 
MF-DNNs is that it should consist of two sub-networks, one for the LF- 
DNNs to approximate the values of yLF, and one for the Correction 
DNNs to predict the ŷHF based on the Eq. (2). 

The architecture of the proposed MF-DNNs is shown in Fig. 1. Here 
we assume that there is a large set of LF training data yLF(XLF), XLF ∈ R 

and a relatively small set of HF training data yHF(XHF), XHF ∈ R,

XHF⊂XLF. The cost function was set to be the mean square error (MSE) 
between the prediction results and the actual values. The gradient in
formation of the cost function to the network parameters could be ob
tained based on automatic differentiation, and the prediction error of 
the MF-DNNs was minimized by using gradient-based optimization al
gorithms. In detail, the ADAM and L-BFGS optimizers [47–48] were 
deployed here because of their better generalizing performance when 
compared to the other optimization methods [49–50]. To avoid over
fitting, the L2 regularization loss (also called Ridge regression [51]) was 
added to minimize the loss function by summing the squared magnitude 
of network weight coefficients. Here the LF-DNNs and Correction DNNs 
were trained in sequence, which is beneficial for the programming and 
training. The definition of the loss function for the LF-DNNs is shown as 
follows: 

Ll =
1
M

∑M

i=1
(ŷLF (XLF ; θNN) − yLF(XLF))

2 (3)  

θNN = {(wh, bh)}
H+1
h=1 (4)  

where Ll represents the training loss of LF-DNNs, M means the number of 
LF training points, θNN means the set of neural network parameters, wh is 
the weights of hth layer, bh is the biases of hth layer and H means the 
number of hidden layers. The trained LF-DNNs then operated as an 
offline surrogate model. This implies that it remained fixed and was not 
retrained during the training process of the Correction DNNs. Further
more, the definition of loss function for the Correction DNNs is shown as 
follows: 

Lc = Lh + Lr (5)  

Lh =
1
P
∑P

i=1
(ŷHF (XHF ; θNN) − yHF(XHF))

2 (6)  

Lr = λ
∑

w2
h (7)  

where Lc represents the overall training loss of Correction DNNs, Lh is 
the prediction MSE of Correction DNNs, Lr represents the L2 regulari
zation loss of Correction DNNs, P is the number of HF training points and 
λ is the control parameter of L2 regularization loss. During the training 
process, the LF-DNNs shared the same HF independent variables with 
the Correction DNNs, i.e., the set {XHF} used in the Correction DNNs 
were also incorporated during the training phase of the LF-DNNs. The 
purpose is to enable the Correction DNNs to effectively learn the dis
parities between the predictions generated by the LF-DNNs {ŷLF} and 
the corresponding HF dependent variable set {yHF}, facilitating its 
ability to correct and refine the output predictions accordingly. 

The hyperparameters of the MF-DNNs, encompassing factors like the 
number of hidden layers, neurons per hidden layer, and learning rate, 
were fine-tuned using the Bayesian optimization algorithm [52]. 
Bayesian optimization was chosen for its reputation as a robust global 
optimization technique suitable for scenarios with noisy black-box 
problems. It typically demonstrates improved performance in effi
ciently balancing the trade-off between exploration and exploitation, 
surpassing conventional grid search [53] and random search methods 
[54]. To assess the effectiveness of the optimized MF-DNNs, the K-fold 

Fig. 1. Architecture of the proposed MF-DNNs (taking two-layer as an example).  
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cross-validation approach was employed [55]. Diverging from the 
prevalent usage of the hyperbolic tangent function (“Tanh”) in con
ventional MF-DNNs [16,42], this study adopted the rectified linear unit 
activation function (“ReLU”). This choice aimed to achieve a harmo
nious equilibrium between approximating both linear and non-linear 
correlations within a single sub-network. The mathematical expression 
of “ReLU” is provided below: 

f (x) = max(0, x) (8) 

The “ReLU” function confers an advantage in expediting and 
enhancing the training of DNNs compared to traditional logistic sigmoid 
(“Sigmoid”) and hyperbolic tangent (“Tanh”) functions, particularly for 
datasets characterized by high dimensionality [56]. Further explora
tions of the "ReLU" function’s function approximation capabilities are 
provided in Appendix A at the end of this paper. The construction and 
training of MF-DNNs were conducted using Keras within the Tensorflow 
2 environment [57]. The establishment flowchart and detailed training 
procedures for the MF-DNNs are as follows:  

Algorithm Multi-fidelity Deep Neural Networks 

1. Building the initial fully connected LF-DNNs; 
2. Optimizing the hyperparameters in LF-DNNs using the Bayesian optimization 

method; 
3. Training the LF-DNNs based on the M realizations of the LF data set QLF = {y(1)LF ,

…, y(M)

LF } using the ADAM and L-BFGS optimizers; 
4. Building the initial Correction DNNs and calling the trained LF-DNNs in 3) as a 

sub-module; 
5. Optimizing the hyperparameters in the Correction DNNs using the Bayesian 

optimization method; 
6. Training the Correction DNNs based on the HF data set QHF = {y(1)HF ,…,

y(N)

HF } (M≫N) using the ADAM and L-BFGS optimizers; 
7. Validating and testing the accuracy of the trained MF-DNNs based on the K-fold 

cross-validation method.  

3. Results and discussions 

Within this section, a series of benchmark tests were executed to 
thoroughly assess the performance of the constructed MF-DNNs across 
the realms of surrogate modelling and UQ. 

3.1. 1-dimensional function with linear correlation 

In this section, the initial tests involved examining a 1-dimensional 
function characterized by a linear correlation between LF- and HF 
data. The theoretical expressions of these functions are as follows: 

yL(x) = 0.5yH + 10(x− 0.5) − 5 (9)  

yH(x) = (6x − 2)2sin(12x− 4) (10) 

To effectively approximate both the LF- and HF functions, a dataset 
comprising 21 LF points (uniformly distributed within the interval XLF ∈

[0, 1]) and 4 HF points (XHF ∈ [0, 0.35, 0.75, 1]) was generated and 
subsequently employed as training data for MF-DNNs. Prior to the 
official training process of MF-DNNs, key hyperparameters such as the 
learning rate, the number of hidden layers, and the number of neurons 
within each hidden layer were meticulously tuned via Bayesian opti
mization. The ranges of discrete parameters considered were as follows: 
hidden layer count [1–4], neuron count per hidden layer ([8, 16, 24, 32, 
40, 48, 56, 64]) and learning rate ([0.01, 0.001, 0.0001]). The objective 
of the optimization was to minimize the prediction loss of MF-DNNs. 
Each training was executed for a total of 2000 epochs. Following 20 
iterations of Bayesian optimization, the optimal architecture for the 
LF-DNNs converged to feature 3 hidden layers with 64, 64, and 40 
neurons within each respective hidden layer. The optimal architecture 
for the Correction DNNs comprised a single hidden layer housing 8 
neurons. Furthermore, the optimal learning rate was determined to be 
0.001 (Fig. 2). 

The weights and biases of MF-DNNs underwent an initial update 
using the ADAM optimizer for the first 1000 steps. Subsequently, the 
optimization process continued by incorporating the L-BFGS optimiza
tion algorithm for the subsequent 2000 steps. The performance of the 
well-trained MF-DNNs is visually depicted in Fig. 3. In detail, Fig. 3(a) 
illustrates that the MF-DNNs precisely approximate the HF function, 
with the utilization of 4 HF data points. This outcome effectively affirms 
the competence of the crafted Correction DNNs equipped with the 
“ReLU” activation function, which adeptly captures the linear correla
tion between LF- and HF data. Moreover, a comprehensive performance 

Fig. 2. Establishment flowchart of MF-DNNs.  
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evaluation of the proposed MF-DNNs (denoted as MF_DNN_ReLU) is 
conducted by comparing it against alternative surrogate models, namely 
the Radial Basis Function (RBF), Kriging (KRG), Composite Multi- 
Fidelity Deep Neural Networks (MF_DNN_Comp) as proposed in 
Ref. [42], and Co-KRG as shown in Fig. 3(b). For a fair comparison, 
unless specified otherwise, MF_DNN_ReLU and MF_DNN_Comp share 
identical hyperparameter settings; the sole distinction lies in 
MF_DNN_Comp incorporating an additional parallel branch for the 
Correction DNNs. 

Both RBF and KRG models were trained based on the HF data points 
only, and a further insight into the MSE of these models on 1000 vali
dation data points is compiled in Table 1. Among these considered 
models, the proposed MF-DNNs demonstrate superior performance 
across the board, with an exception for the Co-KRG model. This result is 
in line with expectations, considering that Co-KRG was originally 
formulated based on linear assumptions and should be efficient in 
handling low-dimensional problems. This also underscores the effec
tiveness of proposed MF-DNNs in accurately approximating the linear 
correlation between LF- and HF data. 

3.2. 1-dimensional function with non-linear correlation 

The one-dimensional function featured by the non-linear correlation 
between the LF- and HF data was then tested here. The theoretical ex
pressions of this function are as follows: 

yL(x) = 0.5(6x − 2)2sin(12x− 4) + 10(x− 0.5) − 5 (11)  

yH(x) = 0.1yL(x)2
+ 10 (12) 

A training dataset was prepared comprising 21 LF points drawn from 
a uniform distribution within the interval XLF ∈ [0, 1], as well as 6 HF 
points selected at XHF ∈ [0, 0.1, 0.3, 0.7, 0.9, 1]. The “ReLU” activation 
function was implemented to assess its capacity in effectively approxi
mating the non-linear correlation present between the LF- and HF 

functions. Following a training approach akin to that detailed in Section 
3.1, the optimization of NN hyperparameters was performed using the 
Bayesian optimization method. Each training process spanned 2000 
epochs. After 20 iterations of optimization, the LF-DNNs’ optimal ar
chitecture emerged, consisting of 3 hidden layers with 64, 64, and 40 
neurons within each respective hidden layer. Similarly, the Correction 
DNNs’ optimal architecture comprised 2 hidden layers housing 64 and 
56 neurons in each hidden layer. 

Initially, the weights and biases of the MF-DNNs underwent an up
date using the ADAM optimizer for the initial 1000 steps. Subsequently, 
the optimization process continued through the application of the L- 
BFGS optimization algorithm for the ensuing 2000 steps. The perfor
mance of this approach is visually represented in Fig. 4(a), where the 
MF-DNNs effectively capture and approximate the HF function with 
accuracy, leveraging insights from 6 HF data points. A comprehensive 
comparison was then conducted against alternative models, including 
RBF, KRG, MF_DNN_Comp, and Co-KRG, as depicted in Fig. 4(b). Among 
these models, the proposed MF-DNNs stand out by exhibiting distribu
tions that closely align with the HF function. The MSE of these models in 
predicting 1,000 validation data points was summarized in Table 2. The 
outcomes underscore that the proposed MF-DNNs attain a level of pre
dictive accuracy comparable to the composite structure introduced in 
Ref. [42]. This shows the ability of Correction NNs equipped with the 
“ReLU” activation function to effectively approximate the non-linear 
correlation existing between the LF- and HF data. 

3.3. 32-dimensional function 

In various industrial design scenarios, dealing with 32 parameters 
constitutes a moderately high-dimensional space. Consequently, the 
effectiveness of the proposed MF-DNNs in approximating a 32-dimen
sional function was evaluated. The underlying mathematical expres
sions for this function are delineated as follows: 

yL(x0,… , x31) = 0.8 ∗ yH − 0.4
∑30

i=0
(xixi+1) − 50, xi ∈ [−3, 3] (13)  

yH(x0,… , x31) = (x0 − 1)2
+
∑31

i=1

(
2x2

i − xi−1
)2
, xi ∈ [−3, 3] (14) 

A training dataset was generated, comprising 200,000 LF- and 2000 
HF data points, employing the Latin Hypercube Sampling (LHS) tech
nique [58]. The training process extended across 5000 epochs. 
Following 20 iterations, the results from the Bayesian optimization 

Fig. 3. Performance of MF-DNNs in approximating 1-dimension function with linear correlation (a: Comparison between the MF-DNN prediction results and 
analytical values; b: Comparison of MF-DNNs with the other surrogate models). 

Table 1 
MSE for prediction of 1-dimensional function with linear 
correlation.  

Models MSE of test dataset 

MF-DNN_ReLU 9.65e-03 
MF-DNN_Comp 4.10e+00 
RBF 18.39e+00 
KRG 4.21e+00 
Co-KRG 4.32e-09  
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method indicated that the LF-DNNs’ optimal architecture consisted of 2 
hidden layers with 512 neurons and 256 neurons within each respective 
layer. The Correction DNNs exhibited an optimal architecture featuring 
a single hidden layer hosting 32 neurons. The “ReLU” activation func
tion was deployed within the Correction-DNNs, while the learning rate 
was fine-tuned to 0.001 to facilitate an optimal training process. The 
computational power of the NVIDIA TESLA K80 Graphics Processing 
Unit (GPU) available in Google Colaboratory was harnessed, thereby 
enhancing the efficiency of the MF-DNN training process. 

The initial phase of training involved updating the weights and 
biases of MF-DNNs using the ADAM optimizer for the initial 1000 steps. 
Following this, the training process proceeded with the application of 
the L-BFGS optimization algorithm, aimed at further diminishing the 

training loss over the subsequent 2000 steps. Illustrated in Fig. 5 is a 
comparison between the prediction results of MF-DNNs and the corre
sponding analytical solutions. The x and y coordinates of the red scatter 
points represent the MF-DNN predictions and the corresponding 
analytical solutions, respectively. Ideally, a zero prediction error would 
result in the red scatter points aligning precisely with the black line (the 
line slope is 1). In addition, the blue points represent predictions derived 
from the KRG model, which solely utilizes HF data. The alignment of the 
red scatter points with the analytical solutions for MF-DNNs underscores 
the effectiveness in capturing the underlying patterns, particularly in 
addressing high-dimensional challenges. 

Table 3 provides an overview of the MSE exhibited by various models 
on a validation dataset encompassing 50,000 data points. The outcomes 
validate that the proposed MF-DNN model achieves a level of accuracy 
comparable to, even slightly better than, the composite architecture, 
surpassing the performance of the other assessed models. It’s note
worthy that the Co-KRG model faces limitations in addressing this spe
cific problem due to the substantial size of the covariance matrix 
([200,000, 200,000]), necessitating a memory capacity of at least 320 
GB to yield results. 

3.4. 100-dimensional function 

The performance of the MF-DNNs, introduced in this study, is further 
assessed by evaluating its predictive capabilities on a 100-dimensional 
benchmark function: a significant high-dimensional function in the en
gineering field. The mathematical expression for the benchmark func
tion under examination can be formulated as follows: 

yL(x0,… , x99) = 0.8 ∗ yH − 0.4
∑98

i=0
(xixi+1) − 50, xi ∈ [−3, 3] (15)  

yH(x0,… , x99) = (x0 − 1)2
+
∑99

i=1

(
2x2

i − xi−1
)2
, xi ∈ [−3, 3] (16) 

Fig. 4. Performance of MF-DNNs in approximating 1-dimension function with nonlinear correlation (a: Comparison between the MF-DNN prediction results and 
analytical values; b: Comparison of MF-DNNs with the other surrogate models). 

Table 2 
MSE for prediction of 1-dimensional function with non-linear 
correlation.  

Models MSE of test dataset 

MF-DNN_ReLU 1.15e-02 
MF-DNN_Comp 1.18e-02 
RBF 1.22e+00 
KRG 2.05e+00 
Co-KRG 4.97e+00  

Fig. 5. Performance of MF-DNNs in approximating 32-dimensional function.  

Table 3 
MSE for prediction of 32-dimensional function with non- 
linear correlation.  

Models MSE of test dataset 

MF-DNN_ReLU 9.83e-04 
MF-DNN_Comp 1.01e-03 
RBF 1.08e+00 
KRG 4.38e-02 
Co-KRG NON  
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The training of the MF-DNN model was conducted utilizing an 
extensive dataset comprising 10,000,000 LF data points and 100,000 HF 
data points. Based on the Bayesian optimization results of hyper
parameters, the architectural design of the LF-DNNs encompassed 4 
layers, with respective neuron counts of 512, 512, 256, and 128. The 
Correction DNNs were fashioned as a single-layer network comprising 
64 neurons. In both the LF-DNNs and Correction DNNs, the “ReLU” 
activation function was employed. Additionally, the learning rate was 
set to 0.001 to facilitate effective learning during training. The 
comprehensive training procedure was also executed within the Ten
sorFlow 2 framework, hosted in the Google Colaboratory environment. 

As illustrated in Fig. 6, MF-DNNs effectively demonstrate its capa
bility to predict the analytical solutions for the 100-dimensional func
tion. The evaluation of multiple models on a validation dataset, 
comprising 1,000,000 scaled data points, is summarized in Table 4, 
which provides insight into the MSE values. Notably, the results show 
that the proposed MF-DNNs outperform the other models in terms of 
accuracy, thereby affirming its efficacy in addressing high-dimensional 

surrogate modelling challenges. It’s worth noting that the RBF, KRG, 
and Co-KRG models face limitations during the training process due to 
their substantial memory requirements, which hinder their successful 
completion of training. 

3.5. UQ for 1-dimensional function 

The well-trained MF-DNNs were employed here to assess the impact 
of input aleatory uncertainties on the QoI. Initially, Eqs. (9)–(10) were 
selected as the governing equations for uncertainty propagation. Sub
sequently, two representative types of input uncertainty distributions 
were introduced into the UQ process: uniform distributions and 
Gaussian distributions. More specifically, the variable x ∈ Γ was treated 
as either a uniformly distributed random variable over the interval Γ =

U [0.6, 0.8] or a Gaussian distributed random variable with the interval 
Γ = N [0.7, 0.032]. For the generation of Gaussian distributions within a 
specific bounded interval, the multidimensional truncated Gaussian 
method [59] was employed. In the UQ process, the MC method was 
chosen due to its straightforward implementation and robustness. In 
detail, 10 million sample points generated by the MC method were 
utilized here to compute the statistical moments. Comparisons were 
made between the MF-DNN-derived statistical moments of the QoI 
under the two distinct input uncertainties and the analytical solutions. 
The outcomes are summarized in Table 5. Notably, the MF-DNNs 
demonstrated accurate predictions of the QoI’s mean and variance. 
The greatest prediction error was observed in the kurtosis, a measure 
associated with the tail distributions of the QoI. 

Fig. 7 presents a histogram-based comparison of the probability 
density distributions of the QoI under varying distributions of input 
uncertainties. The analysis demonstrates that the QoI with the highest 
probability is concentrated around -6 for both the cases of uniform and 
Gaussian input uncertainty distributions. However, a notable shift in the 
probability density occurs when transitioning from uniform to Gaussian 
input uncertainty distributions, resulting in a concentration of distri
butions within the interval [−6, −4]. Overall, this comparison reveals 
that MF-DNNs are capable of effectively simulating the low-dimensional 
uncertainty propagation process. 

3.6. UQ for 32-dimensional function 

To further assess the capacity of the MF-DNNs in tackling moderately 
high-dimensional UQ problems, we selected the 32-dimensional 
benchmark test function (expressed in Eqs. (13)–(14)) as the govern
ing equation for uncertainty propagation. For this test, the input un
certainty variable x ∈ Γ was considered as either a 32-dimensional 
uniformly distributed random variable within Γ = U [−3, 3] or a 32- 
dimensional Gaussian distributed random variable within Γ = N (0,
12). To generate the Gaussian distributions across all 32 dimensions, we 

employed the multidimensional truncated Gaussian method. 

Fig. 6. Performance of MF-DNNs in approximating 100-dimensional function.  

Table 4 
MSE for prediction of 100-dimensional function with non- 
linear correlation.  

Models MSE of test dataset 

MF-DNN_ReLU 4.09e-03 
MF-DNN_Comp 4.51e-03 
RBF NON 
KRG NON 
Co-KRG NON  

Table 5 
Comparison of statistical moments of QoI for 1-dimensional function.  

Statistic Description- Input uncertainties with uniform distribution  

mean variance skewness kurtosis 

Analytical results −3.926 3.706 0.549 −1.165 
MF-DNNs prediction 

(1e+07 samples) 
−3.929 3.723 0.551 −1.165 

Prediction error (%) 0.076 0.462 0.542 0.012  

Statistic Description- Input uncertainties with Gaussian distribution  

mean variance skewness kurtosis 

Analytical results −4.426 1.344 0.691 −0.087 
MF-DNNs prediction 

(1e+07 samples) 
−4.423 1.356 0.680 −0.090 

Prediction error (%) 0.068 0.884 1.592 3.448  
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Subsequently, the MC method (10 million sample points) was utilized to 
simulate the uncertainty propagation process. By leveraging the MF- 
DNNs, the statistical moments of the QoI were computed for both 
input uncertainty scenarios. These results were then compared against 
the analytical outcomes, as outlined in Table 6. 

While there might be some discrepancies in the kurtosis predictions, 
the MF-DNNs demonstrate remarkable precision in estimating the mean 
and variance of the QoI responses. Fig. 8 depicts the histogram com
parison of the probability density distributions of the QoI for the 32- 
dimensional function. The probability density distributions of the QoI 
exhibit a leftward "bias" as the input uncertainties transit from the 

uniform to the Gaussian distributions. MF-DNNs can effectively capture 
and represent both the qualitative and quantitative aspects of the un
certainty propagation process for moderately high-dimensional UQ 
problems. 

3.7. UQ for 100-dimensional function 

The 100-dimensional UQ problem was then addressed using the MF- 
DNN model. The input uncertainty, represented as x ∈ Γ, could take two 
distinct forms: a 100-dimensional uniformly distributed random vari
able over the interval Γ = U [ − 1, 1], or a 100-dimensional Gaussian 

Fig. 7. Histogram comparison of QoI probability density distributions for 1-dimensional function (a: Probability density distributions with uniform uncertainty; b: 
Probability density distributions with Gaussian uncertainty). 

Table 6 
Comparison of statistical moments of QoI for 32-dimensional function.  

Statistic description- Uniform distribution  

mean variance skewness Kurtosis 

Analytical results 2.106 0.269 0.313 0.103 
MF-DNNs predictions 

(1e+7 samples) 
2.105 0.266 0.300 0.080 

Prediction error (%) 0.022 0.255 1.344 14.483  

Statistic description- Gaussian distribution  

mean variance skewness Kurtosis 

Analytical results 0.364 0.029 0.931 1.144 
MF-DNNs predictions 

(1e+7 samples) 
0.364 0.029 0.908 0.939 

Prediction error (%) 0.200 0.690 2.469 17.834  
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distributed random variable with the interval Γ = N (0, 12). For both 
types of input uncertainties, the MC-based (10 million sample points) 
MF-DNNs were employed to compute the statistical moments of the QoI. 
These calculated moments were subsequently compared to their corre
sponding analytical counterparts, and the comparison results are sum
marized in Table 7. MF-DNNs consistently deliver high accuracy in 
predicting the mean value, while the most significant deviation is 
observed in the prediction of kurtosis. Additionally, the probability 
density distributions of the QoI were determined using MF-DNNs, and 
the histogram comparison of these distributions is illustrated in Fig. 9. 
Although some discrepancies are observed in the prediction of variance, 
skewness, and kurtosis when compared to the analytical results, the 

probability distributions derived from the MF-DNNs closely align with 
the analytical solutions. 

3.8. Application in predicting turbine nozzle flow 

As a crucial component, the aeroengine provides thrust, electric 
power, and compressed air for the aircraft, and any potential failures 
could result in catastrophic consequences. Thus, assessing the aero
engine performance and its reliability in the presence of external alea
tory uncertainties is critical during both the design and operation phases 
[60]. This paper utilizes MF-DNNs to predict the flow field within a 
representative aeroengine component, specifically focusing on the LS89 

Fig. 8. Histogram comparison of QoI probability density distributions for 32-dimensional function (a: Probability density distributions with uniform uncertainty; b: 
Probability density distributions with Gaussian uncertainty). 

Table 7 
Comparison of statistical moments of QoI for 100-dimensional function.  

Statistic description- Uniform distribution  

mean variance skewness Kurtosis 

Analytical results 6.716 0.861 0.176 0.029 
MF-DNNs predictions 

(1e+7 samples) 
6.723 0.828 0.159 0.033 

Prediction error (%) 0.104 3.833 9.659 12.121  

Statistic description- Gaussian distribution  

mean variance skewness Kurtosis 

Analytical results 1.159 0.094 0.521 0.358 
MF-DNNs predictions 

(1e+7 samples) 
1.150 0.090 0.436 0.279 

Prediction error (%) 0.776 4.255 16.315 22.067  
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turbine vane [61] as the reference case. The LS89 nozzle guide vane was 
originally designed and subjected to experimental testing at the von 
Karman Institute for Fluid Dynamics, with comprehensive measure
ments available. The essential geometric and operational parameters of 
the LS89 blade are outlined in Table 8. 

To predict the near-wall isentropic Mach number distributions on the 
vane surface, which play a pivotal role in determining the flow patterns 
of turbine nozzle flow, two fidelities of training data were employed. 
Abundant 2D Euler flow data served as the LF source, while a limited set 
of experimental measurements acted as the HF source. The governing 
equations corresponding to these two levels of fidelities for the 
compressible flow field are presented below: 

Euler flow :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρ
Dt

= −ρ∇⋅u

Du
Dt

= −
∇p
ρ

De
Dt

= −
p∇⋅u

ρ

(17)  

Navier − Stokes flow :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρ
Dt

= −ρ∇⋅u

Du
Dt

= −
∇p
ρ +

μ
ρ∇

2u +
μ
ρ∇

(∇⋅u
3

)

De
Dt

= −
p∇⋅u

ρ +∇⋅(κ∇T) +
μ
ρ∇

2u +
μ
ρ∇

(∇⋅u
3

)

(18)  

where ρ is the air density, t the time, p the pressure, u the flow velocity 
vector, ∇ the differential operator, μ the dynamic viscosity, e the in
ternal energy, T the temperature, κ the thermal conductivity and D

Dt the 
material derivative. The 2D Euler flow was numerically solved using the 
computational code MISES (Multiple Blade Interacting Streamtube Euler 
Solver), which was developed by Drela and Youngren at MIT [57]. The 
mesh for the simulation was generated using MISES/ISET with around 3, 
180 cells generated in the LF simulations. The detailed 2D mesh within 
the LS89 passage along with the contour of the Mach number distribu
tion are illustrated in Fig. 10. 

The Euler flow analysis reveals the presence of two shock waves 
within the vane passage. The front shock wave arises due to the choking 

Fig. 9. Histogram comparison of QoI probability density distributions for 100-dimensional function (a: Probability density distributions with uniform uncertainty; b: 
Probability density distributions with Gaussian uncertainty). 

Table 8 
Key parameters of LS89 vane.  

Parameter Value 

Chord 67.647 mm 
Pitch 57.500 mm 
Stagger angle 55◦

LE radius 4.127 mm 
TE radius 0.710 mm 
Inlet total pressure 159, 600 Pa 
Inlet total temperature 420 K 
Inlet flow angle 0◦

Inlet turbulence intensity 3 % 
Outlet static pressure 82,350 Pa  
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effect in the throat area, while the rear shock wave forms near the 
trailing edge due to the flow acceleration on the suction surface. How
ever, it’s important to note that the MISES solver typically determines 
the behaviour of the trailing edge flow based on the Kutta condition, 
rather than explicitly resolving the underlying flow physics [62]. 
Consequently, the Euler flow results may not accurately predict the base 
pressure and losses in the trailing edge region [63–64]. To address this 
limitation, MF-DNNs are adopted here to capture the fundamental flow 
patterns using LF Euler results and then refine the trailing edge flow field 
using HF experimental measurements. 

In this context, the primary focus of MF-DNNs is to predict the dis
tributions of isentropic Mach numbers on the vane surface. The reason is 
that the distributions of Mach numbers directly determine the flow 
patterns inside the turbine nozzle. More comprehensive reconstruction 
of the flowfield utilizing MF-DNNs can be achieved after obtaining HF 
experimental data from within the cascade passage. For the training data 
input, a combination of 160 LF points and 4 HF points were selected. The 
modelling process separately addressed the near-wall flow fields on both 
the pressure and suction sides of the LS89 vane. 

Fig. 10. Generated mesh and contour of Mach number inside turbine nozzle passages.  

Fig. 11. MF-DNN prediction of near-wall isentropic Mach number on LS89 
vane surface. 

Fig. 12. MF-DNN predictions of near-wall isentropic Mach number on LS89 
vane surface considering aleatory uncertainty from experimental measurements 
(a: Error with a fix variation interval of 0.2; b: Error with a normalized variation 
interval to 10 %). 
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The LF-DNN architecture comprised 5 hidden layers with 256, 128, 
128, 64, and 32 neurons in each layer, respectively. Meanwhile, the 
Correction DNNs were constructed with 4 hidden layers containing 128, 
64, 32, and 32 neurons on each respective layer. The comparison out
comes of isentropic Mach number distributions are depicted in Fig. 11. 
Unlike the approach of placing pressure probes across the entire chord of 
the vane surface, MF-DNNs accurately predicted the distributions of the 
isentropic Mach number based on the 2D Euler flow field and only 4 
experimental measurement data points. The MF-DNNs inherited the 
flow pattern from the upstream region and intelligently corrected the 
Mach number distributions near the shock wave occurring close to the 
trailing edge. 

In the following section, the training process of the MF-DNNs in
cludes the incorporation of aleatory uncertainties stemming from HF 
experimental measurement errors. Specifically, two distinct types of 
measurement errors were taken into consideration. The first type 
involved uncertainties with a fixed value-based variation interval, 
wherein uncertain Mach numbers were distributed within intervals of 
0.2. The second type comprised uncertainties normalized to 10 %. In 
both cases, aleatory uncertainties were modelled using Gaussian distri
butions. In contrast to the previous MF-DNN configurations with 
determined outputs, the MF-DNNs were updated to accommodate these 
aleatory uncertainties. This entailed adjusting the output layer to 
include 2 neurons, enabling the prediction of the mean and standard 
deviation, respectively. The prediction outcomes of the updated MF- 
DNNs are depicted in Fig. 12. Evidently, the MF-DNNs adeptly pre
dicted mean values, utilizing information from 4 HF data points 
encompassing two different forms of aleatory uncertainties. Further
more, the MF-DNNs offered reasonable estimations of deviations, cor
responding to 95 % confidence intervals. These results serve to confirm 
the capability of the proposed MF-DNNs in effectively addressing alea
tory uncertainty challenges within real-world engineering applications. 

4. Conclusions 

This paper introduces multi-fidelity deep neural networks (MF- 
DNNs) as a solution for high-dimensional aleatory uncertainty quanti
fication (UQ) problems. The key conclusions drawn from this research 
are as follows:  

1) The effectiveness of MF-DNNs is demonstrated through the accurate 
approximation of various benchmark functions with increasing di
mensions. While the Co-Kriging model can efficiently address low- 
dimensional problems characterized by linear correlation, the su
perior performance of MF-DNNs in managing high-dimensional 
challenges is highlighted when compared to other models.  

2) MF-DNNs demonstrate their effectiveness in predicting probability 
density distributions and statistical moments of quantities of interest 
(QoI) across various UQ problems. The method has been proved with 
different PDF inputs (gaussian and uniform) and the method was 
consistent with Monte Carlo output.  

3) The model has been applied to a real aero engine problem. MF-DNNs 
precisely capture the near-wall flow characteristics of LS89 turbine 
vane, inheriting the upstream low-fidelity (LF) Euler flow pattern 
and intelligently correcting Mach number distributions near shock 
waves using high-fidelity (HF) experimental data. 
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Appendix A. Comparison of activation functions in neural networks 

A comparison of the capabilities of different activation functions, namely “ReLU”, “Sigmoid” and “Tanh” in regression was carried out in this 
section. Theoretical analysis reveals that all three of these activation functions are nonlinear, according to the definition of nonlinearity (where the 
derivative of the dependent variable changes with the independent variable). They have been extensively used for approximating nonlinear functions. 
This section investigates their effectiveness in approximating both linear and nonlinear functions. To study this, four types of simple linear and 
nonlinear unary functions are chosen as the governing equations, as follows: 

y = 2x, x ∈ [−1, 1] (A.1)  

y = 2x2, x ∈ [−1, 1] (A.2)  

y = 2x3, x ∈ [−1, 1] (A.3)  

y = 2sin(4x), x ∈ [−1, 1] (A.4) 

To evaluate the influence of different activation functions (“ReLU”, “Sigmoid” and “Tanh”) on neural network performance, three separate neural 
networks (NNs) were established. Each NN employed a distinct activation function while keeping other factors, such as hyperparameters and 
initialization, consistent. A total of 21 training points were generated uniformly within the interval x ∈ [− 1, 1]. The NN architecture featured 2 
hidden layers, each containing 20 neurons. Training was carried out for 1000 epochs, with a batch size of 7. 

Fig. A.1 illustrates the comparison of predictions obtained using different activation functions. Notably, both “ReLU” and “Tanh” activations 
exhibit closer agreement with theoretical values compared to the “Sigmoid” activation. To provide a quantitative evaluation, Table A.1 presents the 
MSE values on the validation dataset. Across various linear and nonlinear functions, the “ReLU” activation consistently demonstrates higher pre
diction accuracy compared to the other activation functions. These results affirm that the proposed Correction DNNs, employing the “ReLU” activation 
function, can adeptly approximate both linear and nonlinear correlations across a diverse array of scenarios. 
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Fig. A.1. Comparison of NNs with various activation functions in approximating linear/nonlinear functions   
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Table A.1 
MSE comparison of NNs with various activation functions.   

ReLU Tanh Sigmoid 

Test MSE for A.1 9.48e-06 4.50e-04 2.35e-03 
Test MSE for A.2 5.13e-05 1.25e-03 3.61e-01 
Test MSE for A.3 9.77e-05 1.38e-03 1.00e-02 
Test MSE for A.4 2.62e-04 1.12e-03 5.62e-04  
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