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Abstract
The evolving landscape of power systems, characterized by the trend of decarboniza-

tion, digitalization and decentralization, demands more efficient, robust, and secure op-
eration strategies. Traditional model-based approaches are being challenged, leading to a
transition to data-driven methods enabled by advances in information and communica-
tion technologies. However, concerns persist regarding the interpretability and reliability
of purely data-driven decision-making processes. Hence, this thesis explores an interme-
diate approach that blends the data and the model for power system operation, offering a
viable solution to the new challenges.

Two distinct frameworks are examined, each offering varying degrees of integration.
The first framework orchestrates sequential learning and optimization processes to facil-
itate the exchange of critical information. The second framework embeds optimization
models within deep learning structures, enabling the forecast to be decision-aware.

Chapter 2 presents a robust moving target defence method for the detection of false
data injection attacks. By optimizing the set points of distributed flexible AC transmission
system devices in real-time, the method maximizes the detection probability under specific
measurement noise levels. Within the context of sequential design in Chapter 3, the thesis
illustrates how a data-driven attack detector and physics-informed attack identifier can
spatially and temporally reduce the operational cost of robust moving target defence by
quantifying its uncertainty set. The sequential design instills greater trust among system
operators, compared to its pure data-driven counterpart.

Chapter 4 evaluates the generalizability of the integrated framework. A unified adver-
sarial training approach is proposed to address its uncertainties in both the input space
of the deep neural network and the parameter spaces of model-based optimization. In
Chapter 5, the integrated framework is introduced to facilitate machine unlearning tasks
in load forecasting, providing a balance between data privacy and the operation cost of
the whole system.
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天行健，君子以自强不息；地势坤，君子以厚德载物。
——《周易》

As heaven maintains vigor through movements,
A gentle man should constantly strive for self-perfection;

As earth’s condition is receptive devotion,
A gentle man should hold the outer world with broad mind.

‘The Book of Changes’
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Chapter 1

Introduction

1.1 Background

The power system is undergoing a profound transformation, shifting from a fossil-fuel-

based paradigm to one characterized by the widespread integration of renewable energy

sources (RESes) [1]. This transition is accompanied by the emergence of decentraliza-

tion and digitalization, fundamentally reshaping the operational framework of the power

system. In detail, with the requirement of net-zero, the increased integration of renew-

able energy presents both opportunities and challenges for the operation of the power

system. First, the intrinsic variability of renewable energy sources requires a more robust

and efficient operation and market strategy, which poses a substantial challenge to con-

ventional model-based optimization method. Second, massive penetration of distributed

energy sources (DERs) requires redesigning the operation algorithm in a decentralized

manner. Finally, as more DERs and increasingly complex communication systems are

interconnected with the grid, the power system is evolving into a cyber-physical entity,

susceptible to malicious activities.

In response to these challenges, data-driven approaches, notably deep learning (DL),

have been explored to extend the capabilities of traditional model-based methods, owing to

their exceptional ability to represent unknown data patterns. The adoption of data-driven

approaches empowers the system operator (SO) to simulate the intricate dynamics of the
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grid, even in the presence of limited knowledge about the underlying mechanisms. More-

over, data-driven algorithms facilitate the relocation of most online computation efforts,

inherent in model-based counterparts, to the offline training phase, offering promising

prospects for real-time operations in complex power systems.

The emerging need for a data-driven approach meets the blossom of advanced mea-

surement systems, communication, and digitalization of power systems, such as smart

meters and phasor measurement units (PMUs). The feasibility of training complex learn-

ing algorithms has become more pronounced with the substantial accumulation of publicly

available data facilitated by these advanced measurement systems. In addition, advances

in computing hardware have significantly alleviated the computational burden associated

with training deep neural networks.

In fact, data-driven methods, such as deep learning, have seen active research and

application in various areas of the power system. Note that the purpose of applying data-

driven approaches is either to expedite online computation or to implicitly capture the

underlying dynamic of the grid, which may be challenging to model analytically. Here is

a brief overview based on various categories of data-driven algorithms:

• Regression. The most practical field of DL for the power system is forecasting,

where a regression model is trained to forecast the future load or renewable energy

[2]. Other regression tasks include predicting the trajectory of the rotor angle for

preventive redispatch [3], learning for optimal power flow [4,5] and state estimation

[6], etc.

• Classification. Security assessment is an example of binary classification task in

power system. The frequency and angle stability are classified to inform a redispatch

action [7] or can be used as a preventive constraint in the dispatch stage [8]. In

addition, anomaly detection and localization have attracted great attention due to

the increasing level of digitalization and decentralization [9]. More detailed reviews

on this topic are provided in Section 1.5.1.

• Generative Model. Generative models can be used to enrich the historical dataset.
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For example, new renewable energy scenarios can be generated for better grid plan-

ning and operation [10]. Missing data can also be imputed via generative model in

low-observable applications [11].

• Reinforcement Learning. Unlike the aforementioned DL techniques, reinforce-

ment learning studies the interaction between the operator and the power grid.

Therefore, the objective is to learn the optimal operation and control actions for

dynamic power grid, such as energy dispatch [12], energy market [13], and voltage

control [14].

These data-driven techniques play a crucial role in advancing various aspects of power

system planning, operation, and control, contributing to the transition toward more effi-

cient, reliable, and resilient grid.

Declaration on the Terminologies

In this thesis, two decision-making frameworks are discussed. Without introducing ambi-

guity, the term “data-driven algorithm/approach/method”, mainly referring to the deep

learning algorithm, denotes the direct learning of decisions from the historic dataset, while

“model-based optimization/approach/method” pertains to the design of policies based on

existing models, usually via optimization programming. Due to the convention in DL

community, the thesis also uses the term “model” in “deep learning model”, “neural net-

work model” or “parametric model”, which should be distinguished by the reader from

the term “model-based”.

1.2 Motivations and Research Questions

This section starts by shedding light on the constraints of data-driven algorithms, which

emerge as a significant hurdle to their practical implementation. While there is a consen-

sus on the potential of data-driven approaches for powering the future intelligent net-zero

power system, this thesis contends that an intermediary phase is necessary, one that in-
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tegrates the insights from models with the advancements made in data-driven algorithms.

Based on the analysis, this section further motivates the objective of the thesis and pro-

poses the research questions which are intended to be answered.

Regardless of its great success in vision and language tasks, the black-box nature of

deep learning makes it difficult for the SO to accept it immediately for three reasons.

1. Lack of Explainability. Most recent deep learning algorithms are modeled by

neural networks (NNs) whose representation ability can only be partially explained.

Therefore, its reliability cannot be fully understood and trusted by the system op-

erator that oversees the critical infrastructure.

2. Lack of Proof of Generalizability. The well-known generalization error caused

by the out-of-distribution samples implies that the performance of the DL models can

hardly be guaranteed in unknown scenarios. For instance, how can system operators

be sure that their collected load consumption data in a certain time window are also

representative to the future? For security-constrained physical power systems, the

lack of generalization not only results in the reduction of economic efficiency, but

also causes system failures, such as blackouts, which should always be avoided under

any circumstance.

3. Ethics, Security, and Privacy Concerns. Attention must be directed toward

the ethical and security considerations associated with deep learning algorithms. In

particular, DL researchers demonstrate that small, specifically designed perturba-

tions of neural network input could lead to significant accuracy drops, as highlighted

by the concept of adversarial attacks [15]. In particular, this NN defect has not been

fully resolved for the past ten years, which exposes potential security risks and chal-

lenges the applicability of neural networks in critical infrastructures. In addition,

the collection of consumer electricity data can raise new concerns about possible

privacy violations.

In contrast, the model-based approach, such as model-based operation and control re-
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lying on optimization programming, has a well-developed theory to support its optimality

and robustness. In such a method, a systematic model is usually required to be built with

reasonable assumptions and prior knowledge. Although not as flexible as its data-driven

counterpart, the model-based approach often guarantees worst-case performance locally

under extreme conditions. This presents a clear advantage over the data-driven approach,

enabling system operators to comprehend the limitations of their algorithm and design

compensation principles as backup plans.

Despite the drawbacks associated with data-driven decision-making, an additional ar-

gument posits that neglecting the well-developed physical model of the power system is

wasteful and regrettable. Numerous existing power system modeling and operation tech-

niques have been successfully built and verified over decades in real-time applications.

Even in the face of a high penetration of renewable energy and the emergence of digitiza-

tion, model-based approaches remain reliable and adept for various tasks.

Based on the above discussions on the interconnections between model-based and data-

driven methods, the main goal of this thesis is to answer the following questions:

• What are the advantages of co-designing a data-driven and model-based algorithm

on both sides?

• If it has benefits, what are the viable options/frameworks to design such algorithm?

• How to demonstrate the performance of blending data and model for power system

operations?

This thesis aims to address these questions by developing theoretical sound algorithms

and validating their performance in real-world power system operation tasks. Meanwhile,

it is intended to show that the expertise in system identification and modeling is instructive

and meaningful for designing accurate and reliable deep learning algorithms. Meanwhile,

by leveraging the latest analytical results from data-driven techniques, the optimality and

robustness of the model-based algorithm can be improved. By all means, this thesis does

not assert that purely automatic operation cannot be achieved; rather, it emphasizes that
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Combined Data and Model 
based Decision Making

Purely Data-Driven Decision 
Making

Separate Design on Data and 
Model based method

Co-design Data and Model 
based method 

Operate Physical System with 
Data

Sequential Formulation Integrated Formulation

Figure 1.1: The taxonomy of decision makings on real-world physical system with data.
Interests of this thesis are highlighted in green.

Table 1.1: Comparison on frameworks of decision making with data.

Framework Training Pipeline DL Model Training Objective
Purely Data-Driven
Decision Making

Train on the decision
of the down-stream
task(s)

Single DL model for
both forecast and
decision-making

Objective of down-
stream task(s)

Separate Design on
Data and Model

Train on the fore-
caster

DL Forecaster Forecast error

Sequential Formula-
tion

Train on the fore-
caster with indirect
information of down-
stream task(s)

DL forecaster Forecast error

Integrated Formu-
lation (End-to-end
learning)

Train on the fore-
caster with down-
stream task(s) di-
rectly embedded

DL forecaster Objective of down-
stream task(s)

emerging technique requires time and effort to integrate into the existing system before

potentially replacing it.

1.3 Introduction to Decision Makings with Data

The great representation capabilities of DL models, evident in their universal approxima-

tion property, have led to successful applications across various practical domains, includ-

ing large language model and computer vision. Continuous advances in DL algorithms

have promising prospects for improving the operations of critical industrial facilities, such

as power systems. In contrast to applications in language and vision tasks, industrial pro-

cesses are characterized by a sequence of decision-making tasks. These processes invariably

involve predictable elements that are unknown at the time of decision-making.
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From the perspective of different automation levels, the deployment of DL models for

power system operation can be classified into purely and partially data-driven approaches.

The taxonomy of data and model-based decision-makings are reported in Fig.1.1 depend-

ing on their different structures of the training pipeline, different types of parametric

forecast model, and the training objective used during training [16]. A brief comparison

is summarized in Table 1.1.

In a purely data-driven approach, the system operator uses DL models alone to per-

form a broad task of its entire process cycle with little human interference. This so-called

decision rule optimization intends to find a parametric mapping from the available data

to the optimal decision rule. For a dynamic system, it shares similarity with reinforce-

ment learning. The inference and training procedure for the purely data-driven approach

is highlighted in Fig.1.2. The benefit of the method is that it is extremely efficient dur-

ing the inference time, as the decision can be generated directly by the forecast model.

In this scope, an automated agent can be built into the power system to first implic-

itly forecast load consumption and renewable generation based on contextual information

and then automatically dispatch energy into the system while controlling any potential

contingencies.

Parametric 
Model

Feature/Context Decision

(Task-aware) Training loss

Figure 1.2: The inference and training (in blue) procedure of purely data-driven decision
making.

Due to its black-box nature, currently the SO may be more willing to use DL models

partially in the sequence of complete decision-making. For example, compared to direct

learning on operational strategies, DL-based algorithms can be used more reliably for fore-

casting tasks, such as load forecasting in power system operation, demand forecasting in

retail, and inventory stock forecasting in commerce. Downstream tasks, such as generator
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dispatch, are still run by humans using conventional model-based approaches. Although

training such DL models is straightforwardly a supervised learning problem, statistical

training criteria, such as mean squared error, may not be aligned with the ultimate goal

of downstream decision-making tasks. Although a perfect prediction would always result

in optimal decisions, the forecast error is inevitable and can propagate, especially on the

test dataset. Physics-informed learning is another example of how physical models can be

used to guide the training of deep neural networks. By embedding universal rules, such

as algebraic and differentiable equations, the DL model can explicitly respect the physical

constraints of the underlying dynamic [17]. Furthermore, all decision-makings are subject

to uncertainties. Conventional optimization models ignore contextual information and

apply unconditional distributions of the uncertain parameter to make decisions. Such de-

cisions can be biased to the real-time situation, causing violations of its constraints and

infeasible decisions. The formulation is usually conservative, and the objective becomes

suboptimal due to the large uncertainties on its parameter space. Therefore, the modeling

of contextual information such as prior knowledge and observations by DL can be used as

a prescription for model-based optimizations.

From the above arguments, instead of treating individual tasks in the entire decision

making separately using distinct data and model based approaches, blending data and

models for operating real-world system can benefit on both methods:

• Model-based optimization can benefit on data-driven learning: Training

the DL forecaster with the awareness of the physical meaning of downstream tasks

can become more economical and reliable.

• Data-driven learning can benefit on model-based optimization: Data-driven

approaches can provide concrete uncertainty quantification and, in turn, improve the

optimality and feasibility of model-based methods.

In recent years, it has drawn great attention within both operation research (OR) and

deep learning communities regarding co-designing data-driven algorithms and model-based

optimization techniques. Referring to Fig.1.1, it is further classified into two paradigms.
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• Sequential formulation on data-driven learning and model-based opti-

mization. In this framework, the data-driven and model-based components are

still treated as separate two-stage procedures, but with some shared information

between them. From the perspective of the model-based method, the outcome of

a probabilistic forecasting model can be used to quantify the uncertainty set of

stochastic or robust optimization. In physics-informed learning, the physics rules

are embedded to reshape its parameter space [17]. In this setting, the objective of

training the DL model is still to improve its accuracy.

• Integrated Formulation on data-driven learning and model-based opti-

mization (End-to-end learning). When the quality of the decisions is beyond

the accuracy of the DL model, the system operator may want to explicitly train

the DL model, in a way that can steer the model-based optimization to have more

economical decision. In the paradigm of contextual optimization, it appears as early

as in [18] and has recently shown a surge of interest with alternative names such

as (task-aware) end-to-end learning, [19, 20], (smart) predict-and-optimize [21], in-

tegrated learning and optimization [16], as well as decision-focused learning [22,23].

The training and inference procedure for sequential and integrated formulations are

illustrated in Fig.1.3 and 1.4, respectively. Referring to Table 1.1, in some cases, the

boundary between two formulations can be vague. For example, the sequential formulation

can become integrated when the models are represented by an explicit function or when

the solution of the down-stream optimizations can be analytically derived. Meanwhile,

although both the integrated formulation (Fig.1.4) and the purely data-driven decision-

making (Fig.1.2) try to minimize the task-aware objective for training the parametric

model, the key difference is that in the purely data-driven approach, the downstream op-

timization is also modeled by trainable parameters, and the parametric space of forecast

and decision is not separable [24]. Therefore, the integrated formulation is also more inter-

pretable than the purely data-driven approach. Broadly speaking, integrated formulation

can also be classified as physics-informed deep learning, since there is a physics model
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(the equilibrium condition represented by model-based optimization) encoded as a layer

of neural network. However, this thesis treats it as a distinct subject because of its strong

connection to optimization theorem and operational research.

Parametric 
Forecast Model

Optimization 
Model

Feature/Context Forecast value Decision

Training loss

Shared knowledge

Figure 1.3: The inference and training (in blue) procedure of sequential formulation.

Parametric 
Forecast Model

Optimization 
Model

Feature/Context Forecast value Decision

(Task-aware) Training loss

Figure 1.4: The inference and training (in blue) procedure of integrated formulation.

1.4 Introduction to Power System Operation and Cyber-

Security

As discussed in the previous sections, this thesis mainly develops new sequential and

integrated formulations of the data-driven and the model-based methods. Although the

proposed learning frameworks are general, their performances are mainly verified in power

system applications, such as power system operation and cyber security. Therefore, an

overview of the two topics is presented in this section.

1.4.1 Power System Operation

This section provides a brief introduction to power system planning, operation, and control

based on the textbook [25]. In general, these components are integrated into the economic

layers of the power system, distinguished by various time dependence.
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Spanning from one to twenty years, the planning problem includes the construction

of new electric energy system or the reinforcement and expansion of an existing one. For

example, transmission expansion planning is carried out with increased DERs, flexible

load components, and the nexus of the multi-energy system [26]. Meanwhile, the cyber

resiliency of the digitalized smart grid needs to be improved against unseen cyber intrusions

[27].

Operations performed around a month prior to power delivery are named operation

planning, which includes energy resource management and preventive maintenance of the

facilities. In the day ahead, electrical power consumption and renewable energy gener-

ations are forecasted. Based on the forecast amount, the set-points of the controllable

generating units are scheduled, and the reserves are prepared for the next-day operation.

In the centralized system, the day-ahead operation solves a unit commitment (UC) prob-

lem to determine the on-off status and hourly set-points of the generator and reserves,

with the purpose of minimizing the cost. In the market framework, the market clearing

algorithm is solved to maximize social welfare. Preventive reserves are deployed one hour

before delivery. Therefore, an economic dispatch (ED) problem is solved to ensure an

economical, reliable, and secure power supply.

In a much higher resolution (e.g., several minutes), optimal power flow (OPF), security-

constrained optimal power flow (SCOPF), and state estimation (SE) are solved to monitor

and adjust system state. Instead of perusing maximum profit, the main criterion at this

stage is to maximize security. In particular, the SE retrieves the system voltage magnitude

and phase angles from the sensor measurements. Voltages can further inform the operation

status and reveal any contingencies or anomalies in the grid. In SCOPF, active and reactive

powers are adjusted by enforcing several contingency scenarios. Such ex-ante preventive

actions ensure that the system can resolve the contingency by introducing appropriate

corrections.

In real time, the generating units are dispatched to meet demand while meeting all

the security constraints of the grid. Active power controllers use active power reserves to
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maintain the system frequency close to 60/50 Hz [28]. It also deviates the active power

flows on tie-lines between different areas, based on the economic agreements. Meanwhile,

reactive power reserves from the generating unit, the capacitor bank, the online tap changer

(OLTC), and the power electronic inverter are controlled to maintain a healthy voltage

profile [14].

This thesis focuses mainly on the operation stage problem, which is strongly related

to centralized UC, ED, and SE, using the proposed sequential and integrated learning

frameworks.

1.4.2 Cyber-Security in Power System

Overview

The advent of information technologies (ITs) has transformed the power grid into a com-

plex cyber-physical power system (CPPS), introducing new risks due to two-way real-time

communication among multiple parties [29]. However, this new opportunity also presents

challenges in the safe and resilient operation of CPPS under cyberattacks [30]. Therefore,

another key practical focus of the thesis is to improve the security and robustness of power

system operations under attacks or uncertainties. The work of Musleh et al. [31] provides

a comprehensive review of seven recent cyber attacks in the energy industry, identifying

vulnerabilities in both physical and cyber layers. One notable example is the half-day grid

blackout in December 2015 in Kiev, where more than 200,000 customers were affected.

Subsequent investigations revealed that hackers had exploited vulnerabilities in the su-

pervisory control and data acquisition (SCADA) protocol [32]. In general, cyber-physical

attacks can be classified according to their unique target and delivery methodologies [31],

such as denial-of-service (DoS) attacks in the network and communication layers where

information flow packets are jammed or lost. In particular, recent research has predomi-

nantly focused on False Data Injection (FDI) attacks, exploring various dimensions such

as DC microgrid operation [33, 34], energy markets [35], frequency regulation [36], and

voltage regulation [37]. However, this thesis primarily addresses FDI attacks targeting
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state estimation.

False Data Injection Attacks

As described in Section 1.4.1, the control center retrieves the operational states of individ-

ual buses using the measurements observed from the remote terminal unit (RTU) and/or

phasor measurement unit (PMU) at regular intervals, ranging from seconds to minutes.

The estimated state plays an essential role in energy management systems (EMS) for

tasks such as contingency analysis, automatic generation control (AGC), and load fore-

casting [38]. Consequently, the FDI attack is defined as the direct manipulation of mea-

surements with the purpose of deviating from the estimated state, thus misleading the

economic and stable operations of the EMS [39,40]. Recent advances in FDI attacks have

exploited vulnerabilities in the Modbus/TCP protocol, circumventing detection by the

bad data detector (BDD) in the control center [41–44].

Detecting FDI attacks efficiently without significantly affecting normal operation is

essential for power system operation. Intuitively, employing a data-driven detector seems

reasonable, given the stealthy nature of FDI attacks on model-based BDD. Meanwhile,

a representative of the dynamic model-based approach, known as moving target defence

(MTD), is recently introduced into the power system. MTD is designed to proactively

alter the physical structure of the grid, enhancing its resilience against potential cyber

threats.

Within the broader framework of blending data and model-based approaches, the

detection of FDI attacks serves as a pertinent benchmark. It provides a tangible measure

of the robustness and efficiency of the proposed framework, ensuring that the system

remains resilient to cyber threats while maintaining normal operational functionality.

1.5 Literature Review

In this section, both data-driven and model-based detection methods for FDI attacks are

reviewed. Furthermore, by assessing the strengths and weaknesses of these two meth-
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ods, the motivation for the primary research focus on leveraging both data and model is

articulated. Special attention is paid to the MTD, which has its own theoretical founda-

tions. This section then moves to the implementation of blending data and model, and

review on the literature on integrating load/renewable forecast with the centralized and

market-based power system operations. It is essential to note that each subsection can be

approached as a standalone monograph on relevant topic.

1.5.1 Detection on False Data Injection Attacks

The concept of stealth FDI attacks on DC state estimation is first verified in [41] where

the attacker can bypass the model-based BDD with limited resources, even with protected

remote terminal units (RTUs). Later, the FDI attack on AC state estimation is proposed

in [42] along with vulnerability analysis. In general, three hierarchical approaches can

be implemented to deal with the FDI attacks, namely protection, detection, and mitiga-

tion [44]. Protection is an attack prevention mechanism that can reject common attack

attempts. However, it is too hard and costly to protect all measurement units in the grid,

and a complete rejection of the attack is unrealistic [45]. The second stage is attack detec-

tion, where model-based and data-driven detectors are two prevalent methods [31]. The

third approach is attack mitigation. For example, in [46], a trilevel optimization algorithm

is proposed to restore the operation after attack with minimum restoration duration.

Model-Based Detection Method

Traditional BDD involves solving the static state estimation problem and calculating the

deviation between true and reconstructed measurements [38]. However, since the static

model cannot capture the dynamics of the power system, it is not effective in detecting

structured attacks [47]. As a result, dynamic state estimation is applied to capture tem-

poral correlations in load and generation patterns and alerts the system operator when

this trend is violated. The dynamic state estimation based on the Kalman filter is one of

this kind [48]. However, the model-based detectors fully use the knowledge of the system
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model and dynamics, which can be easily interpreted and adopted by the system opera-

tor. Although the static model is reliable for decision making, it can be easily targeted by

reconnaissance attacks. The grid topology and parameters can be retrieved by deliberate

attackers using topology identification algorithms. Once the grid knowledge is learned,

the attacker can formulate the attack vector to bypass the model-based detector.

Data-Driven Detection Method

As an improvement of the number and resolution of the grid measurements, the data-

driven method is armed to model complex grid dynamics and uncertainties. In general,

learning algorithms for detecting attacks can be classified into supervised and unsupervised

learning. In the supervised setting, detection is achieved directly by learning a mapping

from the input (feature) space xi ∈ X to the binary classification yi ∈ Y = {0, 1}, for

example, fθ : X −→ Y . The model fitted on the training data-set can be directly used to

classify the legitimacy of the test set. Support Vector Machine (SVM) [49], Naive Bayesian

Classifier (NBC) [50], and Decision Trees (DT) [51] belong to this category.

To enrich a balanced dataset for supervised learning, attack samples are synthesized in

the literature [52]. However, the synthetic attack data may not be representative for the

actual attack attempts, degrading the detection performance of the supervised classifier.

To overcome the problem, unsupervised and semi-supervised methods are considered to

detect the FDI attacks by learning the latent representation of the legit measurements.

Let X be the input (feature) space and Z be the latent space. The unsupervised learning

can be represented by fθ : X −→ Z where the latent representation can be used for

clustering or dimension reduction. Unlike the supervised detector, an implicit classifier

should be built on the latent space Z to detect the attack. The un/semi-supervised

learning approach includes isolation forest [53], semi-supervised support vector machine

[54], autoencoder [55], and prediction-based algorithm where a predictor is built on normal

data and the attack is detected by violating the distribution of the prediction errors [56].

Despite the high detection rate of unsupervised detectors, they suffer from high FPR on
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Table 1.2: Comparison between data-driven and model-based FDI attack detection.

Data-driven Detector Model-based Detector
Method Use data to model the dynamic of the system Use the existing system model

Pros (1) Fast real-time response
(2) No need for model information

(1) High interpretability
(2) Controllable FPR

Cons
(1) Less interpretability
(2) Uncontrollable FPR
(3) Vulnerable to adversarial attacks
(4) Inefficient and unbalanced data

(1) Targeted by intelligent attacker
(2) Model uncertainty and mismatch
(3) Time-consumed real-time optimization
(4) Interfere normal operation

legit measurement under the test set and roundabout training target during training. For

example, in [57], up to 20% FPR is committed to achieve 90% TPR. As data availability is

of high priority in CPSG, continual false alarms from a data-driven detector cause frequent

contingencies and overload response resources, compromising the operator’s confidence in

the detector.

Table 1.2 compares the detections of FDI attacks based on model and data. Data-

driven and model-based detectors can be compensated in various perspectives. For exam-

ple, uncertainties in model-based detector can be mitigated by data-driven calibration [58];

the computational burden of real-time operation can be solved by event-triggering by the

data-driven detector [59]. In contrast, the interpretability of data-driven detector can be

improved by embedding physical information from the system model [60], such as the

power flow equations. Based on the above comparison, detection on FDI attacks becomes

a natural benchmark to test the effectiveness of blending data and models.

1.5.2 Moving Target Defence

As the power system operates quasi-statically, intruders have enough time to learn the

system parameters and prepare FDI attacks [61–63]. As a result, it is viable to invalidate

the attacker’s knowledge by proactively changing the system configuration. Moving target

defence, which is conceptualized first for information technology (IT) security, utilizes this

proactive defence idea [64]. With D-FACTS devices, the control center can alter the

reactances of the transmission lines to physically change the system parameters that are

unknown to the attackers, as shown in Fig. 1.5. Unlike MTD in IT system, the physical

structure of the power system and the attack surface should be explicitly considered when
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Figure 1.5: The working flow of MTD.

operated in the cyber-physical smart grid.

There are three main problems for the design of MTD, namely ‘what to move’, ‘how

to move’, and ‘when to move’. In detail, ‘what to move’ finds the optimal placement of

D-FACTS devices at the planning stage so that the attack surface is minimized; ‘How to

move’ determines the set-points of the D-FACTS devices during the operation to maximize

the detection rate while reducing the extra operational cost. Finally, ‘when to move’

determines the occasion to send the MTD command to the field devices, either periodically

or event-triggered.

To this end, a thorough review on the MTD algorithms is summarized in Table 1.3

with regard to their different perspectives on ‘what to move’, ‘how to move’, and ‘when

to move’. Note that in Table 1.3, only relevant researches to this thesis are summarized,

that is, the MTD to detect the FDI attack against SE. To better analyze the ideas, four

stages of the development of MTD can be identified.

• Stage One. Initially, MTD research involves using random placement and reactance

perturbations to expose FDI attacks [65–67]. However, it has been shown that the

so-called “naive” applications cannot guarantee an effective detection on stealthy

FDI attacks.

• Stage Two. At this stage, the ‘what to move’ is solved, e.g. where to locate the D-



18

FACTS devices to maximize the detection performance. The authors in [68] and [69]

demonstrate that the effectiveness of MTD depends on the rank of the composite pre-

and post- MTD measurement matrices. Furthermore, Liu, et al. [70] and Zhang et

al [71] investigate the D-FACTS devices placement in the planning stage to maximize

effectiveness while minimizing investment budget. Note that in this stage, the FDI

attack is only formulated based on DC SE. Meanwhile, it is assumed that there is

no measurement noise. Therefore, the guaranteed detection performance may not

work in practice.

• Stage Three. At this stage, more realistic operation condition and more intelligent

attackers are considered to improve the MTD performance. For example, AC power

flow model and measurement noise are included. In the meantime, MTD operational

cost, hiddenness, and event-triggereing are investigated. That is, they are trying to

solve the ‘how to move’ and ‘when to move’ problem. In detail, early-stage MTD

researches only consider the DC power flow model. However, many researches have

shown that defence based on DC models may not result in desirable performance

on AC-based attack. Therefore, explicit modeling of AC attack and defence are

discussed in [72], though a certain linearization is required. The authors of [73]

analyze the effectiveness of MTD in real-time using the minimal principal angle

metric and numerically show the relationship between the angle and the average

detection rate. As cyber attack is rare in real-time power grid operation, the cost of

frequent changes on grid parameters can hardly be accepted by the system operator.

Therefore, [73] proposes to combine the detection performance of MTD with the OPF

problem to simultaneously minimize the generator cost. Liu, et.al. [72] explicitly

increases the effectiveness in the cost function. Xu, et.al. [74] derives a robust metric

to guarantee the effectiveness of MTD on unknown attacks. Recently, hidden MTD

is proposed to compete with vigilant attackers who can perform SE and BDD to

verify the integrity of the grid parameters [72, 75–77]. This is actually a natural

point to consider, as the attacker has to do state estimation to formulate the attack.
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Moreover, Higgins et.al. [78] suggests perturbing the reactance through Gaussian

watermarking to prevent the attacker from inferring the new system parameters.

Regarding on ‘when to move’ problem, in most of the literature, MTD is synchronized

with SE and OPF to detect the most frequent attack, while event-triggered approach

is limitedly analyzed in [59,79]. The inevitable cost on MTD is still significant when

considering the small chance that the grid is targeted by FDI attacks. The question

of how to balance detection performance and extra operational cost remains an open

question.

• Stage Four. Since MTD cannot detect all FDI attack due to the restriction of

grid topology, recent works have combined MTD with other defence techniques,

such as cyclic MTD [71] where the entire attack space is covered by multiple and

successive MTD perturbations. In addition, the unprotected subspace can also be

protected by meter protection [76,80]. The idea of MTD is also extended to encoding

encryption in [81]. Meanwhile, the applications of MTD beyond the static state

estimation are researched. For example, [82] applies MTD to detect a Stuxnet-like

attack in dynamic system. Authors in [83–86] apply the MTD on converter in micro-

grid and unbalanced distribution network with the voltage stability constraint being

considered. In addition, the MTD is also used for vulnerability assessment metric

in [87].
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Table 1.3: Literature Review on MTD (sorted by the first appeared publication years).

Ref. Year Description
What to Move

[65–67] 2012-14 Randomly install and perturb D-FACTS devices in all branches.
[68, 88] 2017-18 Link detection to the rank of the composite matrix.
[89, 90] 2019-21 D-FACTS placement for cyber-physical attack.

[75] 2019 Prove the sufficient condition for hidden MTD under DC condition and the
contradiction between hidden and complete MTD.

[91] 2019 Give the systematic condition for complete and incomplete MTD.
[70] 2020 Give algorithm to place D-FACTS devices for complete and incomplete

MTD.
[92] 2020 Enhance MTD with meter protection that can recover the compromised

state.
[93] 2020 Give the systematic condition to complete and incomplete MTD. Demon-

strate that the perturbation almost cannot change the rank condition.
[76] 2020 Prove the attacker’s sufficiency to detect MTD. Co-design MTD and meter

protection to achieve hidden MTD.
[73] 2021 Propose that the detection performance is proportional to the minimum

principal angle between the subspaces of the pre- and post-MTD matrices.
[77] 2021 Propose a sufficient condition for hidden MTD. Placement algorithm for

hiddenness while maximizing the rank of the composite matrix.
[94] 2021 Propose detection upper bound based on the rank of the composite matrix

and placement algorithm to improve the detection.
[72] 2022 Derive the residual-based criterion for MTD hiddenness and effectiveness

by linearization on the power flow equations.
[71] 2022 Propose repeatedly covering different subspaces in incomplete MTD.

How to Move
[88] 2017 Iterative perturb based on the minimum generator cost.
[95] 2018 Minimize difference between pre- and post-MTD power flows and loss.
[68] 2018 Iterative perturbation based on the loss-to-reactance sensitivity matrix.

[89, 90] 2019 Balance the generator cost and MTD effectiveness.
[75] 2019 Analyze that the hidden MTD can also reduce the extra generator cost.

[70, 93] 2020 Minimize the generator cost while perturbing a minimum amount.
[78] 2021 Add physical watermarking on the branch parameter for hiddenness.
[73] 2021 Minimize generator cost while fulfilling detection as hard constraint.
[77] 2021 Minimize generator cost and difference between pre- and post-MTD power

flows. Maximize the reactance perturbation to enhance the detection per-
formance.

[72] 2022 The effectiveness and hiddenness of MTD are balanced by optimization
problem.

[96] 2022 Reduce the difference between post- and pre-MTD generator costs while
perturbing a minimum ratio of the D-FACTS devices.

[74] 2022 Prove the connection between detection and the principal angle. Propose
an algorithm for complete and incomplete MTD.

When to Move
[59] 2021 The MTD is triggered by data-driven detector but randomly perturbed.
[79] 2023 The hidden and complete MTD is triggered and informed by data-driven

detector.

1.5.3 Algorithms on Blending Data-driven and Model-based Approaches

This section draws on relevant researches for decision making with data, from both the-

oretic and practical perspectives. Specifically, it focuses on the co-design of data and

model, especially with the integrated formulation, i.e. the end-to-end learning.

In contextual optimization, it is natural to use DL model to forecast the uncertain
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parameters in constraint optimization. In a sequential formation, the forecast error of

the trained forecaster can be used to construct the uncertain set of robust optimization

[79] , the conditional distribution of stochastic optimization [97], or the ambiguity set of

distributional robust optimization [98].

As shown in Table 1.1 and Fig.1.4, the integrated formulation has three sequentially

connected components: (a). A parametric forecast model that maps the contextual in-

formation (e.g. the input feature) to the interest of forecast; (b). Optimization models

that take the forecast as input and return decisions; and (c). A task-aware loss function

that encodes the ultimate goal of decision making in the whole system. The key of this

framework is to infer the cost of down-stream task(s) directly into the training objective.

Therefore, depending on the different approximations and solution algorithms in the op-

timizations, the solution of the integrated formulation can be broadly divided into direct

solution on optimization, unrolling the optimization, differentiable layer, and surrogate

model.

In general, integrated formation on data and model is essentially an optimization pro-

gramming problem. For instance, many E2E learning can be mathematically formulated

as bilevel optimizations in which the upper level is the expected task-aware cost on the

training dataset and sub-level problems are represented by down-stream optimizations.

Therefore, a direct solution is applicable if the E2E formulation follows a simple pat-

tern. For instance, if the forecast model is linear and down-stream tasks are linear or

quadratic, the bilevel optimization can be converted into mixed integer linear program-

ming (MILP) [99], in which exact solution can be found. However, when the down-stream

optimizations are non-convex, exact solution may not be guaranteed and iterative al-

gorithm is used [100]. Meanwhile, when NN is used as forecast model, direct invoking

optimization software may not be a viable option.

When the gradient descent method is used to train the E2E model, the gradient from

the task-aware cost to the forecast value is required. From the optimization point of view,

since the task-aware cost can be analytically written as a function of the optimal decision of
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down-stream optimizations, it is necessary to compute the exact or approximate Jacobian

of the optimal decision to the parameter of the optimization problems. By constructing

the differentiable optimizer, automatic differentiation packages are able to construct the

computation graph for the back-propagation [101]. Therefore, in the unrolling method,

the iterative solution process is encoded as NN layers [102]. The computation graph is

stored in the forward pass of NN and the gradient of each iteration exists. Since each

iteration can be viewed as a fixed operation on the previous result, a recurrent neural

network (RNN) can be used to reduce memory burden [103].

Unlike the unrolling approach, the differentiable layer method does not need to record

the intermediate iteration in the computation graph. Instead, the down-stream optimiza-

tions are solved by off-the-shelf solvers in the forward pass. An implicit function is built to

link the parameter and the optimal solution of the forecast parameter. Under some minor

assumptions such as non-singularity, the Jacobian matrix exists according to the implicit

function theorem [104]. Practically, OptNet [105] applies the implicit function theorem

to denote the Jacobian after formulating the Karush-Kuhn-Ticher (KKT) condition of

parametric quadratic programming (QP) which is further extended to disciplined convex

programming in CvxpyLayers [106]. However, in some real-time problems, the Jacobian

between the optimal decision and forecast parameter is not well defined. Therefore, sur-

rogate models of the original optimization can be built to enforce the desired continuity,

differentiability, and convexity, as an alternative to the KKT condition. For example,

although linear programming (LP) is a special type of QP, OptNet is not applicable, as

the gradient is zero or undefined everywhere. To address the problem, a quadratic pe-

nalization is added in the objective so that the LP is second-order differentiable [22]. To

find an equivalent continuous optimization, the cutting planing algorithm is introduced,

and the resultant linear programming is equivalent to the original mixed integer linear

programming (MILP) at the optimal solution [107].
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1.5.4 Integrating Energy Forecasting and Power System Operation

E2E learning has also drawn great attention for economic power system operations in

recent years. As discussed in Section 1.4.1, various decision-making tasks span different

time horizons with forecast elements included. This includes load and renewable fore-

casting at the day-ahead level, generator dispatch at both day-ahead and intra-day levels,

state estimation, contingency analysis at higher resolution, and real-time safety control,

among others [25]. The inherently anisotropic nature of power systems requires a specif-

ically tailored DL framework to effectively address the unique challenges posed by these

decision-making tasks.

The main argument of introducing integration on the data and model is that the oper-

ating cost of the power system is highly asymmetric and depends on the varying operating

point. For example, the lack of generation is penalized more than the over-generation.

Therefore, training the forecaster with a symmetric accuracy-driven objective, such as

MSE loss, is not aligned with minimizing the operating cost. In practice, some system

operators notice that the forecast load can influence the profit of down-stream operations.

For example, the California Independent System Operator manually modifies the forecast

load to increase ramping capacity [99]. In addition, the relationship of operating cost

and forecast error is non-linear due to the existence of physical constraints. Based on the

methodologies introduced in the previous section, the recent literature is summarized in

Table 1.4. Similarly, the key to different methods is to find a way to connect the fore-

cast target to the optimality of the down-stream optimization(s). In addition, the type of

parametric forecast model and the type of down-stream optimizations are also highlighted.

In general, load and renewable are prevalent as the forecast targets. Recently, inertia

forecasting has also been discussed due to the high penetration of renewables. As for the

down-stream tasks, centralized operation (including dispatch and re-dispatch problems)

and energy market (including both day-ahead and real-time clearing) are mostly discussed.
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Table 1.4: Literature Review on E2E learning in power system.

Ref. Year Method Forecaster Decision Model
[19] 2017 Differentiable layer Load distribution

(MLP)
Dispatch problem
(Stochastic QP)

[108] 2018 Surrogate model Wind generation
(Boosted regression
tree)

Wind regulation (Ana-
lytic)

[109] 2019 Surrogate model PV Generation (Ana-
log ensemble), spot price
(SVR), regulation price
(KNN)

Day-ahead and real-time
market (Analytic)

[110] 2020 Direct solution (Single
level)

Renewable energy bid
(Linear)

Day-ahead and real-time
market (LP)

[111] 2021 Differentiable layer Load distribution
(MLP)

Economic dispatch
(Stochastic QP)

[112] 2021 Direct solution (Single
level)

Load and Reserve (Lin-
ear)

Dispatch and re-
dispatch problem (LP)

[113] 2021 Direct solution (Single
level)

Wind generation interval
(Linear)

Reserve provision
(MILP)

[114] 2022 Direct solution (Single
level)

Renewable energy (Lin-
ear)

Dispatch (MILP)

[115] 2022 Direct solution (Bilevel) Wind generation interval
(Linear)

Wind regulation (Ro-
bust LP)

[116] 2022 Surrogate model Load (Linear & MLP) Dispatch and re-
dispatch problem (QP)

[117] 2022 Surrogate Model Electricity price (Res-
Net)

Energy storage arbitrage
(MILP)

[100] 2022 Direct solution (Bilevel) Renewable and reserve
(Linear)

Dispatch and re-
dispatch (MILP)

[118] 2022 Differentiable layer Load (LSTM) Dispatch problem
(Stochastic LP)

[119] 2022 Surrogate model Renewable (Decision
tree)

Day-ahead market
(Stochastic QP)

[99] 2023 Direct solution (Bilevel) Load (Linear) Dispatch and re-
dispatch problem
(Linear)

[120] 2023 Direct solution (Single
level)

Inertia (Linear) Day-ahead and real-time
market (QP)

[121] 2023 Surrogate model & Dif-
ferentiable layer

Load (LSTM) Dispatch and re-
dispatch problem
(MILP)

[122] 2023 Differentiable layer Wind generation (GRU) Dispatch problem (Lin-
ear)

[123] 2023 Differentiable layer Renewable energy
(MLP)

Dispatch and re-
dispatch problem
(Linear)

[124] 2023 Surrogate model Load (MLP) Dispatch and re-
dispatch problem
(MILP)

[125] 2023 Reinforcement learning Wind generation interval
(MLP)

Dispatch and re-
dispatch problem
(Robust QP)

[126] 2023 Differentiable layer Load (Linear & CNN &
MLP-Mixer)

Dispatch and re-
dispatch problem (QP)

[20] 2023 Differentiable layer Load (MLP) Dispatch and re-
dispatch problem (LP)

The direct solution method, either formulated as single-level or bilevel optimization, is

more commonly used in power system operation than other fields. As mentioned above,

only linear forecasters are used in the direct solution method, as NN typically requires
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using the stochastic gradient method (SGD) to train. To overcome the limited complexity

of linear model, an extreme learning machine is used to train only the last linear layer of

NN [113,115] while enjoying its high representation ability. The differentiable layer method

has also been implemented, as most of the operation of the power system operation can

be modeled or simplified as QP or LP [20,122,123,126].

In the surrogate model method, by noticing the asymmetric pattern in operating cost,

[108,116] learn a piece-wise linear map from the forecast error to the cost deviation, which

is used as the NN training loss. In addition, most of the application of surrogate model

is to approximate the non-differentiable task-aware cost to enable back-propagation. For

example, [121] applies a similar idea in [107] to find an equivalent LP of MILP through

branch and bound. The resultant LP can then be treated as a differentiable layer. In some

applications, the surrogate model is derived for upper bounding the non-differentiable task-

aware cost [117] so that the worst performance of E2E learning can be guaranteed. The

energy market without constraints can also be solved by the surrogate method, as the only

asymmetry is introduced by the unbalanced cost between the energy sold by the producer

and the actual energy delivered [109].

Recall that E2E learning comes from contextual optimization to quantify uncertain

parameters. Many power system operations also try to combine probabilistic forecast

with stochastic optimization. It is highlighted that such an implementation not only

provides less conservative uncertainty set to the decision making, the uncertainties of the

forecaster can also be reshaped to be more “certain”. For example, the distribution of

the forecast is shifted toward the direction with high profit. Two distinct formulations

have been reported. First, when the down-stream task is stochastic programming (SP),

the mean and variance of the forecast can be predicted. Assuming that the forecast error

follows a normal distribution, sequential quadratic programming is used to find the optimal

decision, and the differentiable layer method can be applied for convex SP [19, 111, 118].

Second, the prediction interval is an effective tool for quantifying uncertainty and usually

serves as an input to down-stream robust optimization [113,115,125].
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Furthermore, the training objective is divided into two categories. In most of the liter-

ature, regret has been used as the training objective of E2E learning, which measures the

difference between the optimal objective based on the ground-truth deterministic param-

eter and the objective parameterized by the forecast value. Since the optimal objective

is constant with respect to the DL model, it is equivalent to the task-aware cost. Op-

timal decision/objective imitation has been adopted in [114, 122] in which the MSE loss

between the optimal objective and the objective parameterized by the forecast, or between

the optimal decision and the decision parameterized by forecast, is used as the training

loss. In addition, since [114, 122] only consider single-stage dispatch problem, regret loss

cannot be used, as the loss is not bounded by ground-truth load or renewable. Conse-

quently, many studies argue that regret is more intrinsic than MSE loss and the two-stage

problem should be considered for power system applications [20, 100]. It is noted that

even for purely model-based optimization without forecaster, the bilevel formulation can

mimic real-time implementation more reasonably by respecting the sequence of decision-

makings [127, 128]. For the non-parametric forecaster, such as those modeled by decision

trees in [119], the task-aware cost can be used to replace the splitting criterion.

In addition to using end-to-end models to train the DL forecaster, the task-aware

objective can be used to evaluate the influences or values of the input samples of the trained

forecaster. In [121], the authors evaluate the value of the dataset from different sectors

in a multi-energy system by integrating two-stage optimizations. In machine unlearning

[126], the task-aware cost is used to assess the influence of consumer data on the test set

performance. A trade-off between unlearning completeness and whole system operation

cost can be built. The authors in [109] also show that simultaneous forecasting on more

than one target organized by task-aware loss can result in more revenues, as the individual

forecasting models can adapt to each other’s forecast errors. The authors in [120] also

include risk aversion in the optimization model.
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1.6 Contributions

This thesis revolves around a central research theme, namely, examining the advantages of

integrating data and model, particularly in the context of power system operation under

uncertainties and attacks. The principal contributions of this research can be succinctly

summarized as follows.

• Intelligent decision-making with combined data and model-based algo-

rithms. In general, the advantages of both sequential and integrated formulations

in combining data and model for power system operations are explored, in compar-

ison to purely data-driven and model-based approaches.

• Robust MTD. The definition of MTD effectiveness has been broadened, moving be-

yond the rank between the composite pre- and post-measurement matrix to consider

the principal angles between their corresponding subspaces. This extension allows

the system operator evaluate their MTD strategy under certain level of measurement

noise and assumption on attack strength. A robust MTD algorithm is proposed, in

the presence of various system topologies and the locations of D-FACTS devices.

• Sequentially designed data-driven detector and robust MTD. A sequential

detector is comprehensively designed by encoding both data-driven detector and ro-

bust MTD. A long short-term memory autoencoder (LSTM-AE) network is built

to detect FDI attacks and the approximate set of the corresponding normal mea-

surements are recovered in a physics-informed way. A new robust MTD algorithm

is formulated as bilevel optimization to improve the hiddenness of MTD while sat-

isfying the a minimum detection rate. The shared information between the model

and the data contributes to reducing the FPR of the data-driven detector, thereby

significantly improving its reliability. The extra operational cost caused by the

conservative nature of the robust MTD becomes more economical due to the event-

triggering mechanism of the data-driven detector and the informative data-driven

attack uncertainty set.
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• Uncertainties in E2E learning and unified adversarial training. The investi-

gation delves into understanding how uncertainties in the unpredictable parameters

of optimization can impact the generalization capabilities of the trained forecaster.

A precise, task-aware adversarial attack is formulated, targeting the input of the

E2E model with a piece-wise linear forecaster and QP decision-making. Drawing

inspiration from adversarial training, a unified framework is designed to address un-

certainties in the input features of DL and unpredictable parameters in optimization.

• Task-aware machine unlearning. A novel task-aware machine unlearning algo-

rithm is designed to eliminate the impact of specific segments of the training dataset

on the trained load forecast model. This algorithm seamlessly integrates into the

E2E learning framework, evaluating the contribution of unlearned samples based

on their impact on operational cost. Additionally, it introduces a task-aware sam-

ple re-weighting algorithm aimed at striking a balance between the completeness of

machine unlearning and the performance of the forecasting model.

1.7 Thesis Outline

This thesis is divided into two parts, comprising a total of four technical chapters. An

overview of the thesis can be found in Fig.1.6.

Part I centers on the integration of deep learning and power system optimization

problems, utilizing two distinct but sequential steps, namely the sequential formulation

for co-designing data and model algorithms. To illustrate the effectiveness, the framework

is applied to detect the FDI attacks and the implementation of MTD. Despite the sep-

arate operation of deep learning and model-based approaches, it is shown that the deep

learning algorithm can mitigate the conservatism inherent in the model-based approach,

especially under robust settings. Additionally, it also explores how incorporating physics

information from the power system can enhance the feasibility of the deep learning. This

part encompasses two chapters:
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Blending Data and Model for Robust and 
Secure Power System Operation

Chapter 2: Model-based Robust MTD

Application: Detecting FDI Attacks

Chapter 3: Data-driven Event-
Triggered MTD

Part I: Sequential Learning and Optimization

Chapter 4: Robust E2E Learning

Application: Load Forecast & Power System Operation

Chapter 5: Task-aware Machine 
Unlearning

Part II: Integrated Learning and Optimization

Chapter 1: Introduction

Chapter 6: Conclusion

Figure 1.6: Outline of the thesis.

• Chapter 2 investigates robust MTD for detecting FDI attacks on power system

state estimation. In particular, this chapter proposes three theoretical principles

related to principal angles between the pre- and post- MTD subspaces of the system

to maximize the detection probability under noisy measurements. The proposed

robust MTD algorithm will be further used as the model-based optimization in the

sequential data-model pipeline of detecting FDI attacks in the following chapter.

• Chapter 3 designs a physical-informed deep learning-based FDI attack detector and

identifier to trigger the robust MTD with hiddenness awareness. This sequential

data-model detection algorithm can effectively reject the false alarms from the data-

driven detector and reduce the size of the uncertainty set of the robust optimization.

Consequently, the accuracy and reliability of the data-driven detector can be im-

proved and the operational cost of MTD can be reduced.

Part II of the thesis delves into the study of an integrated forecasting and decision-

making framework, conceptualized as an end-to-end training algorithm for DL. The em-

phasis is on exploring the robustness of this learning framework and extending its appli-

cation to machine unlearning. This section comprises two chapters:
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• Chapter 4 delves into the exploration of uncertainties in E2E learning in a unified

manner. The chapter systematically addresses uncertainties in both the input of

the DL forecaster and the unpredictable parameters of constrained optimization.

To mitigate these uncertainties, an algorithm based on adversarial training is pro-

posed. The theoretical framework is validated through applications to power system

operation problems.

• Chapter 5 introduces the concept of machine unlearning to the load forecasting prob-

lem and explores the misalignment between accuracy-driven and objective-driven

machine unlearning. A task-aware machine unlearning approach is proposed to

strike a balance between the completeness of unlearning and the performance of

the model.

In each chapter, supplementary yet pertinent background information and literature

reviews are presented. Therefore, each chapter is self-contained and can be read as a

monograph for a relevant topic. The final chapter of the thesis encapsulates the key

findings and proposes directions for future work in each discussed topic. Mathematical

proofs and additional experiment results are available in the Appendix.
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Chapter 2

Robust Moving Target Defence

Against False Data Injection

Attacks in Power Grids

This chapter focuses on the model-based part in the framework of “sequential learning

and optimization”, on which a data-driven detector will be added in the next chapter.

Converting from the noiseless assumptions in the literature, this chapter particularly in-

vestigates the MTD design problem in a noisy environment and proposes the concept of

robust MTD to guarantee the worst-case real-time detection rate against all unknown

FDI attacks. The remainder of this chapter is organized as follows. The preliminaries

are summarized in Section 2.1; Analysis on MTD effectiveness is presented in Section 2.2;

Problem formulation and proposed robust algorithms are presented in Section 2.3; Case

studies are given in Section 2.4 with conclusions in Section 2.5.
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Figure 2.1: EMS with injection attacks and MTD in CPPS.

2.1 Preliminaries

2.1.1 Notations

In this chapter, vectors and matrices are represented by bold lowercase and uppercase

letters, respectively. The p-norm of a is written as ∥a∥p. The column space of A is A =

Col(A). The kernel of a matrix A is represented as Ker(A). The rank operator is written

as rank(A). PA = A(ATA)−1AT represents the orthogonal projector to Col(A) while

SA = I −PA represents the orthogonal projector to Ker(AT ). The set of singular values

is σ(A) = {σ1(A), σ2(A), . . . , σmin{m,n}(A)}. The spectral norm is ∥A∥2 = maxi σi(A)

and the Frobenius norm is ∥A∥F . We use the symbol (·)′ to indicate the quantities after

MTD and (·)a to indicate the quantities after the attack. The matrix operator ◦ represents

the Hadamard product. Other symbols and operators are defined in the chapter whenever

appropriate.

2.1.2 System Model and State Estimation

The power system can be modeled as a graph G(N , E) with |N | = n + 1 number of

buses and |E| = m number of branches. For each bus, its complex voltage is denoted as

ν = v∠θ; and for each branch, the admittance is denoted as y = g + jb. The power

balances can be modeled by a set of nonlinear equations z = h(ν)+e where z ∈ Rp is the
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sensor measurement and p is the total number of sensor measurements; h(·) ∈ Rp is the

power balancing equation; ν ∈ R2n+1 is the system state consisting of voltage magnitudes

at all buses and phase angles at non-reference buses. The measurement noise vector e

follows a zero-mean independent Gaussian distribution with diagonal covariance matrix

R = diag([σ21, σ22, · · · , σ2p]).

As shown in Fig. 2.1, the control center is equipped with state estimation (SE) which

serves as a bridge between remote terminal units (RTU) and the energy management

system (EMS) [129]. The goal of SE is to retrieve the system states at all buses from

the noisy sensor measurement z. In particular, z is composed with active and reactive

power injections and flows such that the system equations h(·) is represented by power

flow equations [129]:

Pi = vi

n∑
j=1

vj (gij cos θij + bij sin θij) (2.1a)

Qi = vi

n∑
j=1

vj (gij sin θij − bij cos θij) (2.1b)

Pk:i→j = vivj (gij cos θij + bij sin θij)− gijv2i (2.1c)

Qk:i→j = vivj (gij sin θij − bij cos θij) + bijv
2
i (2.1d)

where Pi and Qi are the active and reactive power injections at bus i; Pk:i→j and Qk:i→j

are the k-th active and reactive power flows from bus i to j; θij = θi − θj is the phase

angle difference between bus i and j.

Given the measurements, the AC-SE is solved by the following weighted least-square

problem using an iterative algorithm, such as the Gauss-Newton method [38]:

min
ν̂
J(ν̂) = (z − h(ν̂))T ·R−1 · (z − h(ν̂)) (2.2)

where ν̂ is the estimated state. Furthermore, the bad data detection (BDD) at the control

center detects any measurement error that violates a Gaussian prior. Given ν̂, the residual

vector is calculated as r = z − h(ν̂) and the residual is represented as γ(z) = ∥R− 1
2r∥22,
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which approximately follows χ2 distribution with degree of freedom (DoF) p−(2n+1) [38].

The threshold τχ(α) of the χ2 detector can be defined probabilistically based on the desired

False Positive Rate (FPR) α ∈ (0, 1) by the system operator [38]:

∫ ∞

τχ(α)
g(u)du = α (2.3)

where g(u) is the p.d.f of the χ2 distribution and α is usually set as 1%-5%. Consequently,

the BDD detector can be designed as:

DBDD(z) =


1 γ(z) ≥ τχ(α)

0 γ(z) < τχ(α)

where 1 represents the “with attack” alarm and 0 represents the “without attack” alarm.

2.1.3 Attack Assumptions

With the emerging implementation of information and communication techniques, stan-

dard protocols, such as Modbus, can be vulnerable to FDI attacks. It has been shown

that an FDI attack za = z+a can bypass the BDD if a = h(ν + c)−h(ν) where c is the

attack vector on the state vector. In this case, the contaminated measurement becomes

za = h(ν+c)+e whose residual follows the same χ2 distribution as the legit measurement

z.

To successfully launch FDI attacks, we assume the attacker’s abilities as follows.

Assumption 1: The attackers can access all measurements and are aware of the

admittance and topology of the grid to build h(·). The exfiltration can be achieved by

data-driven algorithms [61–63, 130]. However, the duration of data collection is much

longer than a single state estimation time, implying that the attacker cannot immediately

know the exact value of reactance changes [73]. Meanwhile, attackers are also aware of

the exact state or estimation of the state from previous measurements [42,43].

Assumption 2: The attackers can modify or replace all the eavesdropped measure-
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ments to achieve their purposes. However, since large instant measurement changes may

violate the temporal trends of the grid measurements and be detected [56,131], the attack

strength ∥a∥2 is assumed to be small.

Assumptions 1-2 require the attacker’s efforts to gain sufficient knowledge on the grid

topology and operational conditions, which may not be easy in practice. However, we

assume a strong attack ability and study the defence algorithm against general and un-

predictable FDI attacks.

2.1.4 Moving Target Defence

By using the D-FACTS devices, the system operator can proactively change the reactances

to keep invalidating the attacker’s knowledge on h(·):

hx(·)
D-FACTS−−−−−−→ hx′(·)

where x′ = x+∆x is the reactance after activating the D-FACTS devices. As illustrated

in Fig. 2.1, the channels of D-FACTS devices are encrypted and MTD is implemented

with a period shorter than the reconnaissance time of the attacker (see Assumption 1). In

addition, the reactances changed by the D-FACTS devices are physically limited:

−τxi ≤ ∆xi ≤ τxi, i ∈ ED (2.4a)

∆xi = 0, i ∈ E \ ED (2.4b)

where xi is the reactance of the ith branch; τ represents the maximum perturbation ratio

of D-FACTS devices. Typical values of τ are reported as 20% − 50% in the literature

[68–70,73]; ED represents the set of branches equipped with the D-FACTS devices. After

implementing MTD, the residual vector becomes r′a = h′(x) +h(x+ c)−h(x) + e which

may no longer follow the χ2 distribution of the legit measurement and hence trigger the

BDD.
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2.1.5 Model Simplification for MTD Design

To design the MTD against FDI attacks, most of the literature relies on DC or simplified

AC power system models [68–71,73,80,132] and then verifies the performance on the full

AC model. Here, we adopt the simplified AC model based on the linearized measurement

equation. Compared with the DC model, the simplified AC model can reflect different

state values with branch resistance also considered.

In detail, the first-order Taylor expansion can be established around a stationary state

ν0 [72]:

z = h(ν0) + Jν0(ν − ν0) + e (2.5)

where the Jacobian matrix of h(·) is found with respect to ν0 as Jν0 =

[
∂hk
∂νi

∣∣∣
ν=ν0

]
i,k

. The

state ν0 can be simulated from security constrained AC-OPF [129] around the estimated

active and reactive loads before the real-time operation. Alternatively, the states estimated

from the previous measurements or a flat state [80, 81] can also be used. Following the

recent literature on MTD [68, 70, 80], we consider the FDI attacks on the voltage phase

angle and derive the defence strategies according to the power flow measurements at each

branch. Therefore, the complete Jacobian matrix of the power flow measurements with

respect to the phase angles can be rewritten as follows.

Jθ0 =

[
∂Pk:i→j

∂θi

∣∣∣∣
θ=θ0

]
k=1,··· ,m

= −V ·G ·Asin
r + V ·B ·Acos

r (2.6)

where V = diag ((Cfv) ◦ (Ctv)); G = diag(g); B = diag(b); Asin
r = diag(sinAθ0)Ar;

and Acos
r = diag(cosAθ0)Ar. Moreover, Cf and Ct are the ‘from’ and ‘to’ -side incidence

matrices; Ar is the reduced incidence matrix by removing the column representing the

reference bus from the incidence matrixA. To simplify the notation, we omit the subscript

θ0 in Jθ0 in the following discussion.

According to Assumption 2, as the attack strength is limited, the attack vector can
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also be linearized around θ0 as [80]:

a = h(θ0 + c)− h(θ0) = Jc (2.7)

We design the MTD algorithm based on the simplified AC model (2.5)-(2.7) using

active power flow measurements. The proposed MTD will be applied to the original AC

model (2.1)-(2.2) in the simulation.

2.2 Analysis on MTD Effectiveness

In this section, we first extend the concept of complete MTD in the literature from DC

model to simplified AC model. We then define the MTD effectiveness in a probabilistic way

and illustrate the need for a new metric on effective MTD design in a noisy environment.

2.2.1 Complete MTD

Let H and H ′ be the DC measurement matrices. Under the noiseless condition, the

complete MTD can be designed to detect any FDI attack by keeping the composite matrix

[H,H ′] full column rank [68–71]. If the full rank condition cannot be achieved due to

the sparse grid topology (e.g. m < 2n) or limited number of D-FACTs devices, a max-

rank incomplete MTD can be designed to minimize the attack space. As the rank of the

composite matrix is maximized under both complete and incomplete conditions, we refer

to the MTD strategies in [68–71] as max-rank MTD.

To better define the problem, we extend the concept of complete and incomplete MTDs

from the DC model to the simplified AC models in the following proposition:

Proposition 1. The power system modeled by (2.5) is with complete configuration against

the FDI attack modeled by (2.7) only if m ≥ 2n where m and n are the number of branches

and the number of non-reference buses, respectively.

The proof can be found in Appendix B.1.
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As stated by Proposition 1, to have a complete configuration rank([JN ,J ′
N ]) = 2n, the

number of branches should be at least one time larger than the number of non-reference

buses. In addition, the max-rank incomplete MTD with rank([JN ,J ′
N ]) = m can be

designed for the grid with incomplete configuration. In the following discussions, we refer

to the grid that can achieve complete MTD under certain topology and D-FACTS device

deployment as complete configuration, otherwise as incomplete configuration.

2.2.2 β-Effective MTD

Following (2.5), denote z ≜ z − h(θ0) and θ ≜ θ − θ0. For the new system equation

z = Jθ+ e, the residual vector of the χ2 detector can be written as r = S(Jθ+ e) = Se

where S = I − J(JTR−1J)−1JTR−1 is the weighted orthogonal projector on Ker(JT ).

The residual γ = ∥R− 1
2Se∥22 follows the χ2 distribution with DoF m−n. Referring to the

simplified attack model (2.7), the residual vector after MTD under attack can be written

as r′a = S′(Jc + e) where S′ = I − J ′(J ′TR−1J ′)−1J ′TR−1. As a is usually not in J ′

and r′a is biased from zero, the residual γ′a = ∥R− 1
2S′(Jc + e)∥22 follows the non-central

χ2 distribution, i.e. γ′a ∼ χ2
m−n(λ) with non-centrality parameter λ = ∥R− 1

2S′Jc∥22 [133].

Meanwhile, the mean and variance of the distribution are given as E(γ′a) = m − n + λ

and Var(γ′a) = 2(m − n + 2λ), respectively. For a clear presentation, the matrices are

normalized with respect to the measurement noises, e.g., JN = R− 1
2J and aN = JNc.

More details on the transformation can be found in Appendix C.1.

It is clear that when a noisy environment is considered, deterministic criteria can no

longer be used to describe the effectiveness of MTD. A probabilistic criterion is hence

defined. Following (2.3), for any given attack vector a, we define an MTD as β-effective

(β-MTD in short) if the following inequality is satisfied:

f(λ) =

∫ ∞

τχ(α)
gλ(u)du ≥ β (2.8)

where gλ(u) is the p.d.f. of non-central χ2 distribution and β ∈ (0, 1) is a desired detection

rate. When λ increases from 0, the detection probability on a also increases as the mean
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and variance increase [134]. Therefore, for a given β, there exists a minimum λ such that

(2.8) is satisfied. This minimum λ is defined as critical and denoted as λc(β).

Consequently, the rank conditions in [68–71, 80] cannot guarantee the detection per-

formance, as they are not directly linked with the increase of λ to have β-MTD. Fig. 2.2

illustrates the c.d.f. of γ′ on a random FDI attack using max-rank MTDs in a case-14

system. Without using MTD, the detection rate is 5% which is consistent with the FPR.

To have a high detection rate, e.g., β = 95%, it is desirable to sufficiently shift the distri-

bution as shown by the blue curve. The max-rank MTDs can shift the c.d.f. positively,

but there is no guarantee on how much of such shift can be achieved and whether it leads

to the desired detection rates. This finding clearly calls for a new design of MTD algorithm

in a noisy environment.
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Figure 2.2: Illustration of attack detection probability on IEEE case-14 system based on
simplified AC model (2.5)-(2.7). The more positively the c.d.f. is shifted, the higher
averaged detection rate can be achieved.

Moreover, as numerically shown by [132], not all attacks can be detected by the MTD

with high detection rate. Therefore, we theoretically introduce the following necessary

condition to have β-MTD which can be seen as the limitation of MTD against FDI attacks

with small attack strength.

Proposition 2. An MTD is β-effective only if ∥aN∥2 ≥
√
λc(β).

The proof can be found in Appendix B.2.

Proposition 2 can be further analyzed on a to have ∥a∥2 ≥ σmin

√
λc(β) with σmin =
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mini{σ1, σ2, . . . , σm}. This implies that β-MTD can be achieved only if the ratio between

attack strength and measurement noise is higher than a certain value, which verifies the

numerical results in [132].

2.2.3 Max MTD

While Proposition 2 establishes the theoretical limit on the detection probability for any

given attack strength, in practice, the constraints on D-FACTS devices (2.4a)-(2.4b) fur-

ther restricts such limit. In this context, the maximum detection rate on a known attack

vector aN , with the limits of the D-FACTS devices considered, can be found by the max-

MTD algorithm:

max∆x ∥S′
NaN∥22

subject to (2.4a)− (2.4b)
(2.9)

In practice, it is impossible to design ∆x to achieve a certain λc(β) in advance as aN

cannot be known. Nonetheless, max-MTD can be regarded as the performance upper-

bound for any MTD strategy with the same placement and perturbation limit.

2.3 Robust MTD Algorithms

In this section, we start by establishing the concept of robust MTD and its mathematical

formulation. Then the robust MTD algorithms are formulated for the grid with complete

and incomplete configurations, respectively.

2.3.1 Definition and Problem Formulation

Instead of considering the average detection rate, this chapter defines the robust MTD

that can maximize the worst-case detection rate against all possible attacks. First, we

define the weakest point for a given MTD design as follows.

Definition 1. Given ∆x and the corresponding pair of subspaces (JN ,J ′
N ), the weakest

point of (JN ,J ′
N ) is defined as a unitary element j∗N ∈ JN such that λ(∆x, j∗N ) ≤
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λ(∆x, jN ) for ∀jN ∈ JN , ∥jN∥2 = 1. The worst-case detection rate for attack strength

∥aN∥2 = |a| ̸= 0 is defined as f(λmin) with λmin = λ(∆x, aj∗N ).

According to the Definition 1, the weakest point in (JN ,J ′
N ) satisfies |a|∥S′

Nj
∗
N∥2 ≤

|a|∥S′
NjN∥2, ∀jN ∈ JN , ∥jN∥2 = 1, a ̸= 0. Let a∗N = aj∗N and aN = ajN , the detec-

tion rate on a∗N is the lowest among all attacks with the same strength as ∥S′
Na

∗
N∥2 ≤

∥S′
NaN∥2, ∀aN ∈ JN , ∥aN∥2 = |a| ̸= 0. Note that the weakest point may not be unique,

but all of them have the same worst-case detection rate.

Based on the definition of MTD weakest point, the following robust max-min opti-

mization problem can be formulated:

max∆xmin∥aN∥2=1,aN∈JN
∥S′

NaN∥22

subject to (2.4a)− (2.4b)
(2.10)

The inner problem min∥aN∥2=1,aN∈JN
∥S′

NaN∥22 is the mathematical formulation of

the weakest point in Definition 1 which is maximized over the outer programming. From

a game-theoretic point of view, we can present this setting as an intelligent attacker aims

to develop an FDI attack with the highest probability to bypass BDD and the system

operator tries to improve his/her defence strategy against this intelligent attacker.

In the following sections, we will show that the two-stage problem (2.10) can be reduced

into a single-stage minimization problem by analytically representing the weakest point

using the principal angles between JN and J ′
N .

2.3.2 Robust MTD for the Grid with Complete Configuration

Similar to the one-dimensional case where the angle between two unitary vectors u and v

is defined as cos θ = vTu, the minimal angle between subspaces JN ,J ′
N ⊆ Rp is defined

as 0 ≤ θ1 ≤ π/2 [135]:

cos θ1 = max
u∈JN,v∈J ′

N
∥u∥2=∥v∥2=1

uTv = uT
1 v1 (2.11)



44

where θ1 is the minimal principal angle; u1 and v1 are the first principal vectors. Refer-

ring to (2.11), the following proposition specifies that the weakest point with the lowest

detection rate of (JN ,J ′
N ) is the first principal vector u1 associated with the minimal

principal angle θ1.

Proposition 3. Given a pair of (JN ,J ′
N ), the minimum non-centrality parameter under

attack strength ∥aN∥2 = |a| ̸= 0 is λmin = a2 sin2 θ1. Meanwhile, λmin is achieved by

attacking the first principal vector u1 of JN .

The proof can be found in Appendix B.3.

When θ1 = π/2, Proposition 3 implies that the minimum non-centrality parameter is

equal to a2. As two subspaces are orthogonal if θ1 = π/2, Proposition 3 is consistent with

the maximum detection probability stated in Theorem 1 of [73].

In addition, as sin · is monotonically increasing in [0, π/2], Proposition 3 demonstrates

that the two-stage problem (2.10) can be equivalently solved by one-stage maximization:

max∆x θ1

subject to (2.4a)− (2.4b)
(2.12)

To analytically represent θ1, a sequence of principal angles Θ = {θ1, θ2, . . . , θn} can be

defined iteratively by finding the orthonormal basis of JN and J ′
N such that for i = 2, . . . , n

[135]:

cos θi = max
u∈JN,i,v∈J ′

N,i
∥u∥2=∥v∥2=1

uTv = uT
i vi (2.13)

where JN,i = u
⊥
i−1 ∩ JN,i−1 and J ′

N,i = v
⊥
i−1 ∩ J ′

N,i−1.

Θ can be separated into three parts. Let Θ1 = {θi|θi = 0}, Θ2 = {θi|0 < θi < π/2}, and

Θ3 = {θi|θi = π/2} with cardinality equal to k, r, and l, respectively, and n = k+r+l. The

corresponding vectors U = {u1,u2, . . . ,un} and V = {v1,v2, . . . , vn} are called principal

vectors, which are the orthonormal basis of JN and J ′
N , respectively. Similarly, U and V

can also be separated into U1,V1, · · · . Specifically, U1 = V1 = J ′
N ∩ JN represents the

intersection subspace of dimension k and l is the dimension of orthogonality. Furthermore,
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it is proved that there always exist semi-orthogonal matrices U and V for any JN and

J ′
N such that the bi-orthogonality is satisfied [136]:

UTV = diag([cos θ1, cos θ2, . . . , cos θn]) = Γ (2.14)

Since the orthogonal projector is uniquely defined [135] and also by (2.14), rewriting

PN = UUT and P ′
N = V V T gives

PNP
′
N = UUTV V T = UΓV T (2.15)

Eq. (2.15) is the truncated singular value decomposition (t-SVD) on PNP
′
N where

the diagonal matrix Γ contains the first n largest singular values of PNP
′
N , and U and

V are the first (left- and right-hand) n singular vectors of PNP
′
N . As σ(PNP

′
N ) =

{1k, cos θk+i(i = 1, . . . , r),0k+r+i(i = 1, . . . , l),0n+i(i = 1, . . . ,m − n)}, this t-SVD is an

exact decomposition of PNP
′
N .

Based on the t-SVD, Algorithm 1 is proposed to find the weakest point and the worst-

case detection rate. For the grid with complete configuration, the composite matrix can

be full column rank so that k = 0. Line 6 outputs the weakest point u1 while line

9 outputs the empty intersection subspace. The worst-case detection rate is calculated

according to Proposition 3 in line 7. Practically, once the MTD strategy is determined,

the weakest point u1 of this strategy can be directly spotted. Therefore, the system

operator can evaluate the worst-case detection rate with respect to a maximum tolerable

attack strength |a|.

The t-SVD (2.15) also results in a solvable reformulation of (2.12). The worst-case

detection rate can be maximised by the robust MTD algorithm for the grid with complete

configuration as follows:
min∆x ∥PNP

′
N∥2

subject to (2.4a)− (2.4b)
(2.16)

where the property ∥PNP
′
N∥2 = σmax(PNP

′
N ) = cos(θ1) is used and ∥PNP

′
N∥2 ∈ [0, 1].
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Algorithm 1: Find the Weakest Point(s) and the Worst-Case Detection Rate
Input : grid topology G(N , E), reactance perturbation ∆x, and attack strength

|a|
Output: weakest point uk+1, intersection subspace U1, and worst-case detection

rate fmin

Construct the pre- and post- MTD measurement matrices JN and J ′
N ,

respectively;
Find the orthogonal projectors PN and P ′

N on JN and J ′
N . Then do t-SVD (2.15);

rank = rank([JN ,J ′
N ]); /* Rank of the composite matrix. */

k = 2n− rank; /* The dimension of J ′
N ∩ JN. */

cos(θk+1) = Γ(k + 1, k + 1);
uk+1 = U(k + 1, k + 1); /* The weakest point in JN \ (J ′

N ∩ JN ). */
fmin = f(a2 sin2(θk+1)); /* The worst-case detection rate in
JN \ (J ′

N ∩ JN ). */
if rank = 2n then

U1 = ∅; /* Complete MTD configuration. */
else

U1 = U(:, 1 : k); /* Incomplete MTD configuration. */
end

Remark 1. The robust MTD algorithm (2.16) requires sufficient placement of D-FACTS

devices (as a planning stage problem) to guarantee k = 0, e.g., using the ‘D-FACTS

placement for the complete MTD’ algorithm in [70].

2.3.3 Robust MTD for the Grid with Incomplete Configuration

The robust MTD in (2.16) is not tractable for power system with incomplete MTD con-

figuration. As k ̸= 0, θ1 ≡ 0 and ∥PNP
′
N∥2 ≡ 1 no matter how ∆x is designed. Fig. 2.3

shows a three-dimensional incomplete-MTD case. The attack aN in green shows a ran-

dom attack attempt with non-zero λ. However, the weakest point Col(u1) is not trivial.

As the attacker can possibly target Col(u1), the worst-case detection rate is constantly

equal to FPR. In addition to θ1, every attack in U1 is undetectable. The intersection

can be regarded as the space of the weakest points, whose dimension is calculated as

k = 2n − rank([JN ,J ′
N ]) ̸= 0. Therefore, the smallest non-zero principal angle (which

also corresponds to the weakest point in JN \ (J ′
N ∩ JN )) can be found as θk+1 in line

5 of Algorithm 1 with the minimum detection rate calculated in line 7. Meanwhile, U1,
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Figure 2.3: An illustration on the grid with incomplete configuration, JN ,J ′
N ⊂ R3.

In this three-dimension example, JN and J ′
N are two-dimensional subspaces of R3. By

visualization, there always exists an intersection as long as the columns of JN and J ′
N

span the corresponding two-dimensional subspaces. By definition, their minimum principal
angle is always 0.

corresponding to the subspace that cannot be detected, is calculated in line 11.

To solve the intractable problem, the following design principles are considered which

can improve the robust performance of MTD with incomplete configuration:

Principle 1: Minimize k, the dimension of the intersection.

Principle 2: The attacker shall not easily attack on the intersection subspace U1 by

chance.

Principle 3: Maximize θk+1, the minimum non-zero principal angle in (JN ,J ′
N ).

Each of the principles is discussed as follows.

Principle 1: The idea of Principle 1 is to minimize the attack space that can never be

detected by MTD so that the probability of detectable FDI attacks increases. Minimizing

k is a planning stage problem as the rank of the composite matrix is almost not related

to the perturbation amount of the D-FACTS devices once they have been deployed [69].

In this chapter, we propose a new D-FACTS device placement algorithm to achieve the

minimum k. Compared with the existing work [68–70], our algorithm uses the BLOSSOM

algorithm [137] to find the maximum cardinality matching [138] of G(N , E), which can

reach all necessary buses with the smallest number of D-FACTS devices. More details are

presented in Appendix C.2.

Principle 2: From the robust consideration, the following lemma is derived for the
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attacks targeting on the weakest point(s) for the grid with incomplete MTD configuration.

Lemma 1. Let U = (U1,U2,3) where U2,3 is the collection of columns in U2 and U3. Let

aN = U1c1 + U2,3c2,3 with c1 ∈ Rk and c2,3 ∈ Rr+l. The detection rate on aN does not

depend on the value of c1.

The proof can be found in Appendix B.4.

Although the attackers cannot immediately know the exact x′ (Assumption 1), Lemma

1 suggests that the MTD algorithm should be designed such that the attackers cannot

easily attack on U1 by chance. Specifically, considering the attack targeting a single state

i, if Col(JN (:, i)) ⊆ U1, the single-state attack on the bus i can bypass the MTD while

any attack involving bus i can be detected ineffectively. To avoid ineffective MTD on this

attack, the following constraint is considered.

∥P i
NP

′
N∥2 ≥ γi, ∀i ∈ N c (2.17)

where P i
N =

(
JN (:, i)TJN (:, i)

)−1
JN (:, i)JN (:, i)T is the orthogonal projector on Col(JN (:

, i)). N c represents the index set of buses that are included in at least a loop1 of G. Since

∥P i
NP

′
N∥ ∈ [0, 1] and 1 is achieved when Col(JN (:, i)) ⊆ U1, the threshold γi can be set

close but not equal to 1.

Notice that the constraint in (2.17) cannot eliminate the weakest point(s) nor improve

the worst-case detection rate on U1, but it can restrict the attacker’s knowledge on the

weakest point(s). Rewriting λ as λ = ∥(I − P ′
N )
∑n

i=1 JN (:, i)c(i)∥22, constraint (2.17)

ensures that (I − P ′
N )JN (:, i)c(i) ̸= 0, ∀i ∈ N c. To have low MTD detection rate, the

attacker has to coordinate the attack strength on at least two buses to have low λ which

is only possible if x′ is known. As long as the attacker cannot easily attack U1, the

probability of having the worst case is low and the MTD strategy is still effective from a

robust point of view.

Remark 2. To fulfill constraint (2.17), all buses in N c should be incident to at least a
1As proved by [76], if a bus is not included in any loop, attacks on this bus cannot be detected regardless

of the MTD strategies.
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branch equipped with D-FACTS devices, which can be achieved by the proposed D-FACTS

devices placement algorithm in Appendix C.2.

Principle 3: Although the chance of the worst-case attack is minimized by Principle

1-2, it does not necessarily imply a high detection rate when aN /∈ U1. Similarly to

(2.12), the minimum non-zero principal angle θk+1, which represents the weakest point in

subspace JN \ (J ′
N ∩ JN ) should be maximised by

min∆x cos θk+1

subject to (2.4a)− (2.4b), (2.17)
(2.18)

where cos θk+1 is the (k + 1)th largest singular value.

To our knowledge, there is no direct method to solve (2.18) as finding the singular

value at a certain position requires solving the SVD of PNP
′
N and locating the 1th to kth

singular vectors. Therefore, we propose an iterative Algorithm 2 to solve (2.18). In line 1

of Algorithm 2, a warm start ∆x0 is first found by minimizing the Frobenius norm ∥ · ∥F ,

which is shown to be an upper bound to cos θk+1.

min∆x ∥PNP
′
N∥F

subject to (2.4a)− (2.4b), (2.17)
(2.19)

For a given warm-start perturbation ∆x0, the intersection subspace U1 can be located

by Algorithm 1. Denoting U1(∆x
0) as U0

1 , the t-SVD (2.15) can be rewritten as

PNP
′
N =

(
U0

1 ,U2,3

)I 0

0 Γ2,3


V 0T

1

V T
2,3


= U0

1U
0T
1 +U2,3Γ2,3V

T
2,3

where I is the identity matrix of dimension k; Γ2,3 = diag([cos(θk+1), · · · , cos(θn])) with

θk+1 ̸= 0. Note that U0
1 = V 0

1 = J ′
N ∩ JN .
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Algorithm 2: Robust MTD for the Grid with Incomplete Configuration
Input : grid topology G(N , E), terminating tolerance tol, maximum iteration

number max_ite
Output: reactance perturbation ∆x1

Find the warm start point ∆x0 by solving (2.19);
Find the intersection subspace U0

1 by Algorithm 1;
/* iteration until convergence. */
while step < max_ite do

Find ∆x1 by solving (2.20);
Find the intersection subspace U1

1 by Algorithm 1;
if ∥U1

1 −U0
1 ∥2 ≤ tol then

break; /* converged. */
else

U0
1 := U1

1 ;
end

end

Therefore, the following optimization problem can be formulated to minimize cos θk+1:

min∆x ∥PNP
′
N −U0

1U
0T
1 ∥2

subject to (2.4a)− (2.4b), (2.17)
(2.20)

Denoting the optimal value of (2.20) as ∆x1, a new intersection subspace U1
1 =

U1(∆x
1) can be located. As ∆x1 is solved with fixed U0

1 , U1
1 may not be the same

as U0
1 . After finding the new intersection subspace from ∆x1, (2.20) can be iteratively

solved until convergence, as shown by line 3-11 in Algorithm 2.

To sum up, Algorithm 2 limits the chance of attacking on J ′
N ∩JN (Principal 1-2) and

guarantees the worst-case detection rate in JN \ (J ′
N ∩JN ) (Principal 3 and (2.19)-(2.20))

for the grid with incomplete configuration.

2.3.4 Discussions on Full AC Model Design

In previous sections, we theoretically established the robust MTD algorithm based on the

simplified AC model (2.5)-(2.7). There exists similar concept on the weakest point in

the original AC settings (2.1)-(2.2). Let h′−1(·) represent the result of state estimation

in (2.2). The estimated state on attacked measurement is written as ν̂ ′a = h′−1(z′a)
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and the residual is γ′a = ∥R− 1
2 (z′a − h′(ν̂ ′a))∥22. The weakest point can be defined as a

unitary attack vector such that γ′a is minimized. However, there are several obstacles to

analytically writing its expression. Firstly, recall that a = h(ν ′+ c)−h(ν ′) which is non-

linearly dependent on the post-MTD state ν ′ and the state attack vector c. Note that ν ′

is dependent on x′ which cannot be determined in advance. Second, h′−1(·) requires an

iterative update, such as the Gauss-Newton or Quasi-Newton algorithm. Although it is

possible to reformulate AC-SE as semi-definite programming [139], it lacks of analytical

solution in general. Third, it is difficult to define the concept of angles between subspaces

defined by two functions h(·) and h′(·). Consequently, we theoretically derived the robust

algorithm based on the simplified AC model and numerically verify the performance on

AC-FDI attacks in simulation. We found out that the MTD designed by the sufficient

separation between the subspaces between the real-time Jacobian matrices can provide

effective detection in the full AC model.

2.4 Simulation

2.4.1 Simulation Set-ups

We test the proposed algorithms on IEEE benchmarks case-6, case-14, and case-57 from

MATPOWER [140]. AC-OPF is solved using the Python package PYPOWER 5.1.15.

and the nonlinear optimization problems are solved using the open source library SciPy.

More simulation setups are given below.

Attack Pools and BDD Threshold

Firstly, we define the attack strength with respect to the noise level as:

ρ =
∥a∥2√∑m

i σ
2
i

(2.21)

We consider three types of attacks for the simplified AC model. 1). Worst-case

attack where the attacker attacks on the weakest point uk+1 of a given MTD strategy
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according to Algorithm 1; 2). Single-state attack where the attacker only injects on

single non-reference phase angle; and 3). Random attack where the attack vector a

is randomly generated as follows. First, the number of attacked state ∥c∥0 = q is drawn

uniformly from set {1, 2, . . . , n}. c is then sampled from multivariate Gaussian distribution

with q non-zero entries. Second, the attack vector is found as a = Jc and rescaled by

different ρ = 5, 7, 10, 15, 20 according to (2.21). To simplify the analysis, the measurement

noise is set as σi = 0.01p.u., ∀i in all case studies. In this case, to have β-MTD, the

necessary condition is ρ ≥
√
λc(β)/m according to Proposition 2.

In the original AC model, the measurement consists of Pi, Qi, Pk:i→j , and Qk:i→j (2.1),

which are nonlinearly dependent on θ. Therefore, we randomly sample c from uniform

distribution and classify a = h′(ν ′ + c) − h′(ν ′) into one of the ranges {[5, 7), [7, 10),

[10, 15), [15, 20), [20, 25), [25,∞)} by (2.21).

We sample no_load=50 load conditions on a uniform distribution of the default load

profile in MATPOWER [140] for each grid. We then set the D-FACTS devices using

different MTD algorithms and simulate the real-time measurements. Under each load

condition, we generate no_attack=200 attack attempts for each of the attack types. The

BDD threshold τχ(α) is determined with α = 5% FPR.

Metrics and Baselines

The key metric to evaluate the MTD detection performance is the true positive rate, also

known as the attack detection probability (ADP), which is the ratio between the number

of attacks that are detected by the MTD detector and the total number of attacks.

The max-rank MTD algorithm modified from [68–71] is compared as the baseline

where reactances are randomly changed with µminxi ≤ |∆xi| ≤ µmaxxi. Note that each

reactance is perturbed by µmin > 0 to fulfil the max-rank condition on the composite

matrix. For each attempt of attack no_attack, we simulate no_maxrank = 20 MTDs of

maximum rank to evaluate their average detection performance.
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Figure 2.4: ADPs on simplified case-6 system.
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Figure 2.5: ADPs on simplified case-14 system.

2.4.2 Verification of Theoretical Analysis on Simplified AC Model

In the first case study, we verify the theoretical analysis of robust MTD algorithms and

demonstrate their effectiveness in the simplified AC model (2.5)-(2.7).

First, the ADPs of case-6 with complete configuration are illustrated in Fig. 2.4 for

both worst-case attacks and random attacks. The reactances are changed with τ = 0.2.

Meanwhile, µmin = 0.05 and µmax = 0.2 in the max-rank MTD. In Fig. 2.4(a), the

simulation result on the ADPs of robust MTD is the same as the theoretic detection rate

f(λmin) calculated by Proposition 3, which verifies the theoretic analysis and the design

criteria. In addition, the robust MTD algorithm shows much higher ADPs than the max-

rank MTD on the worst-case attack. Although the max-rank MTD’s performance may

approach the robust MTD in some cases, its average ADP is similar to the FPR as the
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Figure 2.6: ADPs on single-state attacks of case-14 system.

worst-case performance cannot be explicitly considered under the noiseless setting.

In Fig. 2.4(b), the max MTD is added by solving (2.9) with the assumption that the

attack vector aN is known, which represents the performance upper-bound of any MTD

design. As shown by Fig. 2.4(b), the robust MTD algorithm, not only guarantees the worst

case condition, but also outperforms the max-rank MTD by 10%-45% on random attacks

with different ρ. Moreover, the gap between robust MTD and max MTD algorithms is

smaller than 25% and approaches to zero when ρ ≥ 15. However, comparing Fig. 2.4(a)

and Fig. 2.4(b), it is worth noting that the major improvement of robust MTD over

max-rank MTD still lies in the worst-case attacks.

Fig. 2.5 investigates the performance on the case-14 system with incomplete configura-

tion. By Algorithm 1, the minimum k is equal to 6 and the worst point in JN \ (J ′
N ∩JN )

is at u7. Assume that all branches are equipped with D-FACTS devices and the max-

imum perturbation ratio is set as τ = 0.2. Although the detection rates on attacks in

U1 are equal to α according to Lemma 1, the ADP on u7 is nonzero by implementing

Algorithm 2 and increases as the strength of the attack increases. Similarly to Fig. 2.4(a),

although the max-rank MTD algorithm can, by chance, give a high detection rate against

the worst-case attack, its average detection rate is extremely low. In Fig. 2.5(b), the

gap between the max MTD and the robust MTD is also small (5%-30%). The results

demonstrate that robust design can also effectively improve the detection performance for

the grid with incomplete configuration.
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Table 2.1: Average ADPs on random AC-FDI attacks. Max-Rk represents the max-rank
MTD, and Robust represents the robust MTD.

ρ case-6 case-14 case-57
Max-Rk Robust Max-Rk Robust Max-Rk Robust

[5, 7) 7.1% 13.7% 8.6% 18.1% 10.3% 30.3%
[7, 10) 12.6% 33.2% 14.4% 41.2% 15.2% 39.2%
[10, 15) 25.1% 67.3% 27.5% 63.1% 23.7% 55.9%
[15, 20) 44.5% 92.4% 43.4% 87.5% 36.0% 69.1%
[20, 25) 60.2% 98.2% 60.6% 94.5% 50.6% 81.6%

To further investigate on the weakest points in U1, we generate single-bus attack with

ρ = 10 and record the ADPs in Fig. 2.6 with and without Principle 2 (2.17). First,

attacks targeting bus-8 can only be detected by 5%. This is because bus-8 is a degree-one

bus which is excluded by any loop. Second, with Principle 2 considered, the robust MTD

can give more than 90% ADPs for all buses. In contrast, there are attacks against certain

buses, e.g. bus-7, 10, 11, and 13 can be barely detected without Principle 2. Consequently,

the simulation result verifies that Principle 2 can sufficiently reduce the chance of attacking

the weakest points.

2.4.3 Simulation Results on Full AC Model

In this section, we verify the detection effectiveness of the proposed robust MTD algorithms

on FDI attacks under the original AC settings (2.1)-(2.2).

Random Attack

Random attacks ADPs for the full-AC cases-6, case-14, and case-57 systems are summa-

rized in Table 2.1. Similarly to studies on simplified AC models, the proposed robust

algorithms can improve ADPs by 10%-40% compared to the max-rank algorithm. In

particular, for cases with attack strength below 20, robust MTD can almost double the

ADPs of max-rank MTD for all three systems. Therefore, the robust MTD designed by

the principal angles between the subspaces of pre- and post- MTD Jacobian matrices are

still effective on defending AC-FDI attacks. In addition, the attacks with larger attack

strength are more likely to be detected while the detection probability for different sys-

tems under the same attack strength is slightly different due to their different load levels,
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parameters (e.g. the reactance to resistance ratios), and topologies. For instance, case-57

system is harder to detect as the ADPs in both max-rank and robust MTDs are lower

than the case-6 and case-14 systems.

To confirm the detection performance, the residual distributions for the three systems

are summarized in Fig. 2.7 where kernel density estimation is used to smooth the his-

tograms. The result implies that the proposed algorithms can generalize well to AC-FDI

attacks by sufficiently shifting the distribution positively, which is shown to be a key

property on effective MTD with the measurement noise considered in Fig. 2.2. For each

sub-figure, the max-rank MTD performs worse than the robust MTD on average as well.

Impact of Different Placements and Perturbation Ratios of D-FACTs Devices

Fig. 2.8 records the simulation results on AC random attacks under two different D-

FACTS devices placements and four different perturbation ratio limits. In detail, ‘all’

represents perturbing all branches, whereas ‘part’ represents perturbing on branch- 2, 3,

4, 12, 15, 18, and 20, which is the outcome of the ‘D-FACTS Devices Placement Algorithm’

in Appendix C.2. The simulation result shows that k = 6 is achieved and all buses are

covered except bus 8 in ‘part’ placement. As the maximum perturbation ratio is reported

as 50% in literature [73], τ is set as 0.2, 0.3, 0.4, and 0.5. As a result, the grey curve in Fig.

2.8 is simulated in the same settings as the robust MTD in Table 2.1. When the number

of D-FACTS devices is limited, although the minimum k is still met by Principle 1, the

detection rate is significantly reduced. To attain a higher detection rate, the perturbation

limit should be further increased. Notably, the dependence of ADP on different D-FACTS

device placements and perturbation ratios can only be found when the sensor noise is

considered.
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Figure 2.7: Residual distributions of AC-FDI attacks. The first row: case-6 system; the
second row: case-14 system; the third row: case-57 system; the first column: attacks in
range [10, 15); the second column: attacks in range [20, 25).
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Figure 2.8: ADPs under different placements and perturbation ratios of D-FACTS devices.

Computational Time

The computational time of the proposed algorithms is summarized in Table 2.2. We test

the proposed algorithm on the MacBook Pro with Apple M1 Pro chip and 32GB mem-

ory. For each system and algorithm, the computational times under all load conditions are

recorded and averaged. The multi-run strategy is also applied to approach the global opti-

mum of the nonlinear optimization problem which is also included in Table 2.2. Although

the computation time depends on the system scales, number of D-FACTS devices, and

algorithms, they are acceptable for real-time applications. In practice, as attackers spend

time collecting new measurements and learning new parameters [73], the system operator

can solve robust MTD algorithms with a period much longer than the state estimation

time, e.g., several hours, or only change the Jacobian matrix JN when the loads are signif-

icantly changed. A flat state vector may also be a choice to construct the Jacobian matrix

if the loads change slowly.

Table 2.2: Computational Time (averaged by no_load runs).

Case No. D-FACTS Algorithm Time (s)
case-6 11 (2.16) 0.022

case-14
20 Algorithm 2 1.925
20 Algorithm 2 without (2.17) 0.325
7 Algorithm 2 0.532

case-57 78 Algorithm 2 9.357
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2.5 Conclusions

This chapter addresses the real-time robust implementation of MTD against unknown FDI

attacks. The main contributions of this chapter are summarized in the following.

• This chapter proposes the concept of robust MTD in a noisy environment. It is

theoretically proved that, for any given grid topology and MTD strategy, the minimal

principal angle between the pre- and post-MTD Jacobian subspaces is directly linked

with the worst-case performance against all potential FDI attacks, which can be used

as a new criterion to represent the MTD effectiveness. Meanwhile, it is proved that

the worst-case detection rate is proportional to the sine of this angle, with the impact

of measurement noise being explicitly considered. This new criterion is an extension

to the rank condition of the composite pre- and post-MTD matrix, which is only

effective with noiseless measurements.

• A novel MTD design algorithm is formulated to improve the worst-case detection rate

by maximizing the minimal principal angle under the complete grid configuration.

Then it is demonstrated that the worst-case detection rate of the grid with incomplete

configuration cannot be improved. Therefore, an iterative algorithm is formulated to

maximize the minimal non-zero principal angle while limiting the chance of attacking

on the subspace that cannot be detected.

• Numerical simulations on the IEEE 6-bus, 14-bus, and 57-bus systems demonstrate

the improved detection performance of robust MTD algorithms against the worst-

case, random, and single-state attacks, under both simplified and full AC models.
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Chapter 3

Blending Data and Physics

Against False Data Injection

Attack: An Event-Triggered

Moving Target Defence Approach

The robust MTD proposed in the previous chapter can effectively reduce the size of the

attack space and maximize the detection rate of any unknown FDI attacks. However, the

robust setting alters the transmission line reactance aggressively. Meanwhile, as conven-

tional MTD is synchronized with state estimation, the conservative decision (to cover the

entire attack space spatially and temporally) can inevitably cause significant operational

cost. In addition, the black-box nature of the data-driven detector can cause uncontrol-

lable FPR, which limits its wide application. Table 3.1 compares the MTD and the data-

driven detector, showing a clear complement to each other. Although both data-driven

and MTD are studied separately, few works have explored the overlap between these two

areas. The authors in [58] apply data from the high-fidelity simulator to compensate for

the inaccuracy of the detector based on an abstract grid model. Higgins, et.al. [59] pro-

posed to trigger the MTD by the positive alarm of the data-driven detector. However,
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Table 3.1: Comparison on MTD and data-driven detector

Advantages Disadvantages
MTD High interpretability; Controllable

FPR
High operation cost for frequent im-
plementation

Data-Driven Fast response; No extra operation cost Low interpretability; Uncontrollable
FPR

the work does not attempt to optimize the triggered MTD using the information from the

data-driven detector.

Therefore, in the framework of sequential learning and model-based optimization, this

chapter studies how a data-driven detector can be used to trigger the robust MTD and to

adaptively reduce the size of uncertain attack space while improving its hiddenness to the

attacker. In summary, this framework can be regarded as robust optimization with data-

driven uncertainty set construction. In addition, the proposed sequential learning and

optimization framework encodes prior knowledge on power system operation to demon-

strate how physics can improve the detection accuracy and how MTD can help reject false

positive decisions from the data-driven detector.

The remainder of the chapter is organized as follows. Preliminaries are given in Section

3.1. The proposed DDET-MTD algorithms are described in Section 3.2. The results are

analyzed in Section 3.3 and this chapter concludes in Section 3.4.

3.1 Preliminaries

In this chapter, similar AC power flow models, the state estimation procedure, the defini-

tion of FDI attacks, and the implementation of MTD as section 2.1.2 are adopted. Any

relevant refinement of the settings and the data-driven LSTM-AE detector are also ex-

plained. Similarly as before, vectors and matrices are represented by bold lower-case and

upper-case letters, respectively. The zero and identity matrices are represented as O and

I with appropriate dimensions. [·] represents the diagonalization on a vector; (·)∗ and

(·)T represent the conjugate on a complex vector and matrix transpose. The Hadamard

product is represented as ◦. The operators P(A) = A(ATA)−1AT and S(A) = I−P(A)

represent the orthogonal projection matrices on Col(A) and Ker(AT ), while PW (A) and
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SW (A) represent the same operations with weight matrix W . The symbol of probability

is denoted as P.

3.1.1 System Model

Referring to the Section 2.1.2, the power flow equations can be summarized as

z = h(x) + e (3.1)

where e is the zero-mean Gaussian measurement error with diagonal covariance matrix

R = diag[σ21, σ22, . . . , σ2m]. In this chapter, the RTU measurements and the corresponding

mathematical formulations are considered as follows [141]:

1). Complex power injections:

Sbus = [v]Ybusv
∗

2). ‘from’ and ‘to’-side complex power flows:

Sf = [Cfv]Y
∗
f v

∗

St = [Ctv]Y
∗
t v

∗

where v ∈ CN+1 is vector of complex bus voltages; Cf and Ct ∈ RM×(N+1) are the ‘from’

and ‘to’ side incidence matrices, respectively; Ybus ∈ R(N+1)×(N+1) is the bus admittance

matrix; Yf and Yt ∈ RM×(N+1) are the ‘from’ and ‘to’ side branch incidence matri-

ces, respectively. The total measurement becomes z = [P T
bus,P

T
f ,P

T
t ,Q

T
bus,Q

T
f ,Q

T
t ]

T ∈

R2N+4M+2. Detailed formulations of Ybus, Yf , and Yt can be found in [141].

Based on the estimated state using SE in (2.2), the BDD raises an alarm if the mea-

surement residual is greater than a predefined threshold [38]. In detail, letting fχ(γ|κ)

represent the density function of residual γ with DoF κ, the SO can decide the detection
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threshold τχ(α) by a tolerable FPR α such that

P(γ ≥ α) =
∫ ∞

τχ(α)
fχ(γ|κ)du = α (3.3)

3.1.2 FDI Attacks

Given the measurement z, an attacker can launch FDI attacks by formulating za = z +

a, a ∈ RP , which cannot be detected by the BDD if a = h(v̂+ c)−h(v̂) [42]. Under this

condition, za = h(v+ c) + e whose residual is unchanged as (3.3). To successfully launch

FDI attacks, the attacker’s abilities are assumed as follows:

Assumption One. The attackers are aware of the topology and parameters of the

grid to build h(·), which can be circumvented by data-driven algorithms [142]. However,

data collection is time-consuming, e.g. several hours [73].

Assumption Two. The attacker can access and modify all sensor measurements. This

can be achieved by hijacking all RTU measurements or by changing the domain name

system server between the SCADA front end and the control center [143]. Meanwhile,

the attack strength is limited because the attacked state should be within the normal

range [35].

Assumption Three. The attacker can verify his knowledge about the grid parameters

by checking the integrity of the hijacked measurement. Similarly to BDD, the attacker

can perform SE, and if the residual is greater than the threshold, the attacker will not

carry out the attack but will turn to collecting more information [75].

Assumption One to Three require the attacker’s effort to gain accurate gird topology

and parameters, which may not be practical in real-time operation. However, we assume

the strongest attacker and study the general defence algorithm against the unpredictable

attacker, which is in line with the assumptions made in [68–70,72,73].
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Figure 3.1: An illustrative structure of LSTM-AE neural network with four LSTM layers.
In the forward pass, the measurements are reconstructed at the output with purpose
of detecting attack, while in the backward recovery, the measurements are iteratively
projected onto the normality manifold through gradient descent. Note that the backward
here should be distinguished to the backward pass in automatic differentiation.

3.1.3 LSTM-AE based Data-Driven Detector

Although the attacker can launch FDI attacks by exploring the grid topology and param-

eters, the attacked measurement z<t>
a at time t may violate the trend in a certain time

window of length T . Our previous work in [131] designed a semi-supervised data-driven

detector using LSTM-AE to explicitly learn the spatio-temporal correlations in sequen-

tial measurements. Fig. 3.1 illustrates the structure of LSTM-AE where each column of

connected LSTM cells represents one layer of the deep recurrent network. Given a set

of L normal measurements Z = {z<1>, z<2>, . . . , z<L>}, consider a length-T continuous

subset Zi = {z<ti>, z<ti+1>, · · · , z<ti+T−1>}. At each layer, LSTM cells contain ‘states’

whose values depend on the previous memories and can be updated or forgotten by the

current measurement. To learn the temporal pattern of the measurements, the LSTM-AE

is trained to compress its input Zi into a latent representation of the lower dimension,

while only normal data can be successfully recovered by the decoder; thus, real-time attack
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measurements can be distinguished by directly evaluating the loss function:

L(Zi) =
1

TP

T−1∑
j=0

∥∥z<ti+j> − fd
(
fe
(
z<ti+j>

))∥∥2
2

(3.4)

where fe and fd represent the encoder and decoder mappings respectively. The detection

threshold τlstm can be defined based on the distribution of the residual L(Zi) in the

validation set [131]. Although the attacker may also exploit the temporal correlations

between the measurements, we assume that they cannot know the exact temporal pattern

learned from the LSTM-AE detector.

3.1.4 Moving Target Defence

Compared to the data-driven detector, model-based detections are more likely accepted

by the system operator due to its high interpretability. To overcome the static nature of

the model-based detector, MTD is introduced to proactively change the grid parameters

using D-FACTS devices. The typical reactance perturbation ratio is less than 50% [73].

For convenience, the constraint on the reactance is converted to the constraint on the

susceptance as follows.

hb0(·)
MTD−−−→ hb′(·)

where b′ = b0 + ∆b are the susceptances after activating the D-FACTS devices. Details

on the reactance to susceptance conversion can be found in Appendix D.1. Physical

constraints can be represented by the set B = {b′|b− ≤ b′ ≤ b+} where b− and b+ are

the lower and upper bound of the susceptance. If there is no D-FACTS device in branch

i, b−i = b+i = b0i.

If there is no attack, the post-MTD measurement still follows the χ2 distribution.

Therefore, MTD does not introduce additional FPR. On the contrary, if the attack exists,

the residual vector will no longer follow the χ2 distribution of the legitimate measurement

and hence trigger the BDD alarm. In detail, MTD effectiveness refers to the accuracy of

BDD after MTD is activated [68]. Recent literature also proposes the concept of MTD
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Figure 3.2: The DDET-MTD framework in one execution cycle. An LSTM-AE neural
network is trained offline on normal measurement dataset. The same NN is used for online
attack detection and identification. If an alarm is raised, the identified attack uncertainty
set is fed into the two-stage robust MTD optimization to accept or reject the alarm from
the data-driven detector.

hiddenness by noticing that the prudent attacker can also check the integrity of model

parameters using the BDD-like method [75]. According to Assumption Three, the system

will therefore face new threats [75]. Apart from achieving high detection rate, the hidden

MTD requires reducing the attacker’s residual so that the attackers keep using out-of-date

grid knowledge to formulate the attack.

3.2 Data Driven Event-Triggered MTD

As shown in Fig. 3.2, the proposed DDET-MTD has three successive components in one

execution cycle. First, the LSTM-AE detector in Section 3.1.3 is trained on the normal

dataset offline and then tests the sensor measurement collected from SCADA in real-time

operation. If a positive alarm is raised at SE time t1, an attack identification algorithm is

implemented to approximately extract the attack vector in the second component using the

same neural network. The attack identification serves as the bridge between the data and

physics by applying the extracted attack knowledge to the MTD design, in the meantime,

reduces the execution cost of MTD and improves its hiddenness. In the last component,

based on the identified attack, a robust MTD algorithm is triggered to verify the positive

alarm from the LSTM-AE detector at the next SE time t2. Intuitively, the false alarms
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from the data-driven detector can be sufficiently rejected by the subsequent MTD due to

the controllable FPR of the MTD.

3.2.1 Physics-Informed Attack Identification

The LSTM-AE detector defines a manifold for normal measurement. Therefore, the at-

tack identification can be achieved by first recovering the normal measurement toward the

manifold of the LSTM-AE detector. Following Section 3.1.3, given a continuous measure-

ment set Zi = {z1, z2, . . . , zT } with positive alarm by the LSTM-AE detector, we assume

that only the last measurement vector is anomalous. Let the anomalous attack and re-

covered measurement be za and znorT , respectively. To explicitly encode the measurement

equation (3.1), the recovered measurement can be written as

znorT = h(vnorR,T ,v
nor
I,T ) (3.5)

where vnorR,T and vnorI,T are the recovered real and imaginary voltage vectors. Here, the

rectangular form on complex number is used to ensure stable back-propagation in Neural

Network. Let Znor
i = {z1, z2, . . . , znorT }. An energy function measuring the distance from

Znor
i to the normality manifold defined by the LSTM-AE can be written as:

E(vnorR,T ,v
nor
I,T ) = L(Znor

i ) + βR∥vnorR,T − vnorR,a∥1 + βI∥vnorI,T − vnorI,a ∥1 (3.6)

Eq. (3.6) can be viewed as a non-linear Lasso regression on decision variable (vnorR,T ,v
nor
I,T )

where the projection of the attack measurement za on the LSTM-AE manifold is calcu-

lated with physical information (3.5) considered. In detail, the first term in (3.6) is the

reconstruction loss (3.4) of the recovered normal measurement znorT , while the second and

third terms penalize the difference between real and imaginary-part voltage deviations

with weights βR and βI , respectively. Since the attack is usually sparse, the l1-norm is

used to regularize the number of attacked states. The l1-norm is also less sensitive to the

attack vector than the l2-norm used in L(Znor
i ) of (3.4).
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Figure 3.3: Illustration on attack identification algorithm.

The attack identification algorithm is illustrated in Fig. 3.3 and Algorithm 3. As shown

in Fig. 3.3, the physics information is encoded through the measurement equation (3.1)

and SE (2.2) when projecting the attack measurement onto the normal manifold defined by

the LSTM-AE detector. Therefore, the main component of Algorithm 3 is to recover znorT

seen by both the BDD and the LSTM-AE detector. In line 3, the state estimation of the

previous measurement is used as the warm start. Adam Optimizer [144] is used to minimize

weighted loss Ek (3.6) by backpropagation with step size lridentifier. The iteration in lines

5-14 is terminated if the reconstruction loss (3.4) is lower than the threshold τlstm or the

maximum iteration number itemax is achieved. The minimum iteration number itemin is

designed for warm-up purposes. Finally, the attack vector is identified by subtraction in

line 15.

Given the i-th attack in an attack index set Ia, the attack identification uncertainty

set can be empirically determined as Ci = {c′|∥c′ − c̄i∥22 < ϱ2} where ϱ is the empirical

upper bound on the deviation between the identified attack vector c̄i and the ground truth

ci for any ∀i ∈ Ia.

In summary, Algorithm 3 guarantees that the recovered measurement can bypass the

LSTM-AE detector and BDD. Therefore, the recovered state obeys the physics rules of

power system. It also takes advantage of the formulation on FDI attacks so that the

identified attack vector can lead to a stealthy attack, further improving the identification

accuracy.
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Algorithm 3: Attack Identification
Input : L(·), Zi, lridentifier, βR, βI , τlstm, itemin, itemax
Output: Identified attack vector c̄ = (c̄R, c̄I)
Do state estimation on zaT as vaR,T and vaI,T , and on zT−1 as vR,T−1 and vI,T−1

k = 1
vkR,T = vR,T−1, vkI,T = vI,T−1 /* warm start */
Initialize Adam optimiser with lridentifier
while k ≤ itemax do

zkT = h(vkR,T ,v
k
I,T )

Zk = combine{Zi[1 : T − 1], zkT }
Ek = L(Zk

i ) + βR · ∥vkR,T − vaR,T ∥1 + βI · ∥vkI,T − vaI,T ∥1
if k ≥ itemin or L(Zk

i ) < τlstm then
break

end
(vk+1

R,T ,v
k+1
I,T )

Adam←−−− arg min Ek
k ← k + 1

end
c̄R = vaR,T − vkR,T , c̄I = vaI,T − vkI,T

3.2.2 Hidden and Effective MTD Algorithm

In the third component of DDET-MTD, the positive alarm of the LSTM-AE detector

and the identified state attack vector can be used to trigger and design the MTD algo-

rithm. Before introducing the idea of event triggering, the MTD algorithm is formulated

as follows.

min
b′∈B

P(Attacker can detect the MTD) (3.7a)

subject to P(Operator can detect the attack) ≥ ρ (3.7b)

Although the hiddenness of MTD is essential to deceive the prudent attacker, we argue

that the main target of MTD is to detect the ongoing attack with high detection rate.

Therefore, (3.7) is designed to minimize the attacker’s chances of noticing the existence of

MTD, subject to a specific detection accuracy ρ on the attack. However, this optimization

problem is intrinsically hard to solve for two reasons. First, both the cost and the con-

straint in (3.7) are probabilistic and nonconvex, so the convergence property and global
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optimality are difficult to guarantee. Second, to guarantee detection accuracy, it requires

the exact knowledge of the attack vector, which cannot be known in advance. To address

the first problem, local linearizations are introduced in the measurement equation (3.1)

on which convex relaxation is applied. For the second, a robust two-stage optimization

problem is established based on the set of identification uncertainty set Ci from Algorithm

3.

Approximations of MTD Hiddenness

By explicitly considering the influence of susceptance on the measurement, the measure-

ment equation (3.1) can be rewritten as z = h(v, b) + e. Under normal operation (no

attack and MTD), the last iteration of SE is to solve the following normal equation:

z − h(v̂, b0) =Hv̂(v − v̂) + e (3.8)

whereHv̂ =
[
∂h(v,b0)

∂v

]
v=v̂

and v̂ is the state estimated before MTD. For the above system,

the residual can be derived as

γ(z, b0) = ∥R− 1
2Sv̂e∥22 (3.9)

where Sv̂ = SR−1(Hv̂). γ(z, b0) also follows the χ2 distribution with DoF P − 2N .

When the MTD is triggered, both b and v will be deviated from the stationary point.

The first-order Taylor expansion around (v̂, b0) is written as:

z′ − h(v̂, b0) =Hv̂(v
′ − v̂) +Hb0(b

′ − b0) + e (3.10)

where Hb0 =
[
∂h(v̂,b)
∂b0

]
b=b0

.

Combining (3.8)-(3.10), the attacker’s residual on the post-MTD measurement ∆z′

becomes:
γ(z′, b0) = ∥R− 1

2Sv̂(Hv̂(v
′ − v̂) +Hb0(b

′ − b0) + e)∥22

= ∥R− 1
2Sv̂(Hb0(b

′ − b0) + e)∥22
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in which the second equality is due to the fact that Sv̂Hv̂ = 0. Meanwhile, γ(z′, b0)

follows the non-central χ2 distribution (NCX) with non-centrality parameter:

λ(z′, b0) = ∥R− 1
2Sv̂Hb0(b

′ − b0)∥22 (3.11)

Since the probability that the MTD is detected by the attacker increases monotonically

as λ(z′, b0) increases [74], λ(z′, b0) should be minimized. This result is consistent with

the findings in [72,75,77] where the measurement change before and after MTD should be

small. Note that both Sv̂ and Hb0 are constants for a given load condition. Meanwhile,

Hb0 can be derived analytically using methods similar to those in [145].

Approximation of MTD Effectiveness

To accelerate the convergence speed and performance of SE, dishonest SE is widely used,

in which the Jacobian matrix remains unchanged throughout the iteration [69]. The last

iteration of dishonest SE on z′ is represented as:

z′ − h′(v̂′) =H ′
v0(v

′ − v̂′) + e (3.12)

where v̂′ is the estimated state of z′ and H ′
v0 =

[
∂h′(v)
∂v

]
v=v0

.

The residual of the above system is derived as γ(z′, b′) = ∥R− 1
2S′
v0e∥

2
2 where S′

v0 =

SR−1(H ′
v0). Similarly, γ(z′, b′) follows the χ2 distribution with DoF P − 2N .

When an attack exists, a = h(v̂′a+c)−h(v̂′a) where v̂′a is the estimated state from the

attacker after the MTD is triggered. As required by the MTD hiddenness, the difference

in pre- and post-MTD measurements is minimized. Therefore, it is reasonable to assume

that v̂′a is close to v̂. Following Assumption Two, for small state injection, the attack

vector can be approximated as a =Hv̂c [80]. Consequently, the non-centrality parameter

of the post-MTD measurement under attack is approximated as:

λ(z′a, b
′) = ∥R− 1

2S′
v0Hv̂c∥22 (3.13)
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Attack-Aware Robust MTD Reformulation

Based on the approximations of the hiddenness (3.11) and effectiveness (3.13) of MTD,

the probabilistic optimisation problem (3.7) becomes nonprobabilistic for a given attack

c:

min
b′∈B

λ(z′, b0) (3.14a)

subject to λ(z′a, b
′) ≥ λc(ρ) (3.14b)

In (3.14a), only when λ(z′, b0) = 0, the MTD can be 100% hidden to the attacker. In

most cases, the hiddenness and effectiveness of MTD have been shown to be contradictory

[75–77]. In (3.14b), the probability constraint (3.7b) is converted non-probabilistic. In

fact, there is a λc(ρ) such that the detection rate at c is equal to ρ [74]:

P(γ ≥ τ(α)) =
∫ ∞

τ(α)
fχ(γ|κ, λc) = ρ (3.15)

where fχ(γ|κ, λc) represents the density function of the NCX distribution with DoF κ =

P − 2N and the non-centrality parameter equals λc.

Optimization (3.14) still requires exact knowledge of the attack vector c, which is

not available for the operator. Therefore, a robust reformulation of (3.14) is derived by

guaranteeing the lowest detection rate for the attacks in the attack uncertainty set C

defined in Section 3.2.1:

min
b′

λ(z′, b0) (3.16a)

subject to b′ ∈ B (3.16b)

min
c′∈C

λ(z′a, b
′) ≥ λc(ρ) (3.16c)

Problem (3.16) is a bilevel optimization problem [146]. The objective of the upper level

is to decrease the chance that the attacker detects MTD. The decision variable in upper



73

level is the MTD setpoint b′ and the constraint on b′ is the permissible set of D-FACTS

devices B. At the lower level, the objective function is to find the state injection that

results in the lowest detection rate, subject to the set of uncertainties C. Note that the

upper level decision variable b′ is nested at the lower level parametrically. The nesting

structure robustly ensures that all possible attacks in C can be detected with predefined

probability ρ.

To simplify the analysis, only active power flow measurements are considered for MTD

effectiveness, as active power is more important in state estimation and sensitive to changes

in voltage phase angle [81]. As a result, the Jacobian matrix in (3.12) can be analytically

written as:

Hv0 = V ·G ·As
r︸ ︷︷ ︸

C

−V ·B ·Ac
r (3.17)

where V = [(Cfv0) ◦ (Ctv0)]; G = [g]; B = [b]; As
r = [sinAθ0]Ar; and Ac

r =

[1/t][cosAθ0]Ar. Ar is the reduced incidence matrix by removing the column that rep-

resents the reference bus from the incidence matrix A; t is the vector of the transformer

tap ratio. The detection threshold corresponding to the active power flow measurements

is denoted as λ′c. Intuitively, guaranteeing the detection rate on a subset of the measure-

ment can also guarantee the detection rate on the full measurement due to the increased

redundancy.

As proved by [74], only when the attack strength is greater than a certain threshold

can λ(z′a, b
′) ≥ λ′c be satisfied. Therefore, despite the non-linearity and non-convexity,

(3.16) may not have a feasible solution. As a result, (3.16) is separated into two stages. In

stage one, the feasibility of constraint (3.16c) is checked by maximizing its left hand side.

The optimal solution of stage one is then used as the feasible warm start in stage two to

improve its hiddenness.



74

Convex Stage-One Optimization

In stage one, the feasibility of constraint (3.16c) is checked by maximizing the detection

rate on the worst-case attack in C

max
b′∈B

min
c′∈C

λ(z′a, b
′) (3.18)

Multi-run strategy is required to solve the non-convex problem (3.18) with different

starting points in B. For each run, an equivalent convex reformulation is derived as follows:

Proposition 4. Define auxiliary variable ω ∈ R, ν ∈ R, H1 = R− 1
2Hv̂, and H ′

0 =

R− 1
2H ′

v0 . The problem (3.18) is equivalent to the following:

max
b′,ν,ω

ω (3.19a)

subject to [b′]− [b−] ⪰ 0, [b+]− [b′] ⪰ 0 (3.19b)

ν ≥ 0 (3.19c)
ν(c̄T c̄− ϱ2)− ω νc̄T O

⋆ νI +HT
1 H1 HT

1 H
′
0

⋆ ⋆ H ′
0
TH ′

0

 ⪰ 0 (3.19d)

The proof can be found in Appendix B.5.

Referring to (3.17), the only nonlinearity of (3.19) is in the last block-diagonal entry

of (3.19d). To linearize H ′
0
TH ′

0, iterative algorithm is designed with starting point b0 and

the following proposition is derived:

Proposition 5. Let CN = R− 1
2C and V N = R− 1

2V . Define bk as the feasible solution

of the k-th iteration. A sufficient convex condition for (3.19d) is


ν(c̄T c̄− ϱ2)− ω νc̄T O

⋆ νI +HT
1 H1 HT

1 H
′
0

⋆ ⋆ Hupdate

 ⪰ 0 (3.20)
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with

Hupdate = (V N [bk]A
c
r)

T (CN + V N [b′]Ac
r) + (CN + V N [b′]Ac

r)
T (V N [bk]A

c
r)

−(V N [bk]A
c
r)

T (V N [bk]A
c
r)

The proof can be found in Appendix B.6.

In summary, at the k-th iteration, the following convex programming is solved until

convergence, though it may not converge to the global optimality of (3.18) and (3.19).

max
b′,µ,ω

ω

subject to (3.19b), (3.19c), (3.20)
(3.21)

Convex Stage-Two Optimisation

The stage-one problem checks the feasibility of (3.16c). In detail, if the optimal solution

ω∗ of (3.19) (or similarly the final iteration of (3.21)) is greater than λ′c, the original bilevel

problem (3.16) can be solved with the optimal point of (3.19) as a feasible warm start.

Otherwise, the threshold in (3.16c) should be reduced to ω⋆ to have a feasible solution.

In either situation, denoting the threshold of constraint (3.16c) after stage one as ω, the

following proposition gives a feasible and convex reformulation to (3.16) in which the MTD

effectiveness is guaranteed to the level determined by stage one while the hiddenness is

improved.

Proposition 6. With all variables and parameters defined as in Proposition 4, and let

auxiliary variable ϕ ≥ 0, Hhid = R− 1
2Sv̂Hb. The bilevel optimisation problem (3.16) with

λc(ρ) replaced by ω can be solved by

min
b′,ν,ϕ

ϕ (3.22a)

subject to (3.19b), (3.19c), (3.19d) (3.22b)ϕ (b′ − b0)THT
hid

⋆ I

 ⪰ 0 (3.22c)
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The proof can be found in Appendix B.7.

Similarly, the non-convexity in H ′
0
TH ′

0 can be solved iteratively by the sufficient con-

dition described in Proposition 5. This results in an iterative algorithm to solve the

stage-two problem:

max
b′,µ,ϕ

ϕ

subjective to (3.19b), (3.19c), (3.20), (3.22c)
(3.23)

where ωs in (3.22) and (3.23) are constants determined by the optimum of stage one.

In summary, the two-stage optimization in DDET-MTD has been developed to guar-

antee the effectiveness of MTD while improving hiddenness. Based on convex relaxation,

the hidden and effective MTD can be designed as follows:

1. Solve the stage-one problem (3.21) iteratively with different start point b0. Store

the multi-run results of b′ in a set Done and the corresponding cost ω into a set Gone.

2. If the largest cost in Gone is smaller than λ′c, use the corresponding susceptance in

Done as a warm start in stage-two problem (3.23) and solve it iteratively.

3. If the largest cost in Gone is larger than or equal to λ′c, define the index set Itwo =

{i|ωi ≥ λ′c, ωi ∈ Gone} and candidate warm-start susceptance set Dtwo = {D[i], i ∈

Itwo}. For each b ∈ Dtwo, iteratively solve stage-two problem (3.23). The optimal

susceptance is returned with the smallest cost.

The detailed algorithm can be found in Appendix D.2.

3.3 Simulations and Results

3.3.1 Simulation Settings

Model Configurations

The proposed DDET-MTD algorithm is tested on the IEEE case-14 system [141]. Al-

though we have derived the theoretical analysis using simplified models, all the simulations
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are implemented under full AC condition. Real-time load consumptions and photovoltaic

generations are assigned to each bus for four months using a similar method in [14]. The

load data is interpolated to 5-min resolution, resulting in over 35k data in total. For

each operation instance, AC-OPF is solved by PyPower [141]. The standard deviation of

the measurement noise is set to 2% of the default values in the case-14 system case file.

The FPR of BDD is set as α = 2%. The MTD threshold λc and λ′c are determined by

(3.15) with ρ = 1 − α = 98%. LSTM-AE attack detection and identification algorithms

are trained and implemented using PyTorch [147] with hyperparameters summarised in

Table 3.2. The data set is separated into 60% training, 20% validation, and 20% test sets.

Throughout the simulation, random sparse AC-FDI attacks are generated with the num-

ber of attacked buses equal to 1-3, and the strength of the attacks is set as ±10%−20% and

±20% − 30% of the normal state solved from the real-time measurements. For example,

the pair (2, 0.3) means that there are two buses being attacked with strength at random

in ±0.2− 0.3. In the simulation, 200 attacks are randomly generated from the entire test

set for each type of attack. Without losing generality, all the branches are equipped with

D-FACTS devices and the maximum reactance perturbation ratio is 50% [73]. Further-

more, the convex MTD optimization problems are solved by CVXPY [148] with MOSEK solver.

Hyperparameters for stage-one and stage-two optimizations are summarized in Table 3.3.

Table 3.2: Hyperparameters for the Detector and Identifier.

Sample Length 6 Encoder Size 68-48-29-10
Epochs No. 1000 Batch Size 32
lrdetector 0.001 lridentifier 0.005

Early Stop Patience 10 Early Stop Diff. 0
βR,βI 0.1 Optimizer Adam
itemax 1000 itemin 50

Table 3.3: Hyperparameters for Stage-One/Two Optimizations.

Multi-Run No. no 15
Max. iteration No. iteone, itetwo 100

Tolerance of stage one tolone 0.1
Tolerance of stage two toltwo 1
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Baseline Algorithms

Two algorithms, namely, the modified Max-Rank MTD [68–70] and (incomplete) Ro-

bust MTD [74], are implemented for benchmarking the proposed algorithm. In Max-

Rank MTD, the D-FACTS devices are perturbed within µminxi ≤ |∆xi| ≤ µmaxxi (with

µmax > µmin > 0) so that the rank of the composite matrix is maximized, which results in

maximum detection rate under noiseless assumption. Due to the randomness of this algo-

rithm, we simulate 1000 attacks for each attack scenario under different load conditions

and record the average performance. The Robust MTD algorithm considers maximizing

the detection rate on the worst-case attack without any prior knowledge of the attack.

Therefore, it can be viewed as a conservative formulation on DDET-MTD with an attack

uncertainty set C = RN . Although both baseline algorithms are periodic with SE, we also

simulate their event-triggering variants, triggered by the same LSTM-AE.

Metrics

Four metrics are considered throughout the simulation.

From an attack defence perspective, Attack Detection Probability (ADP) and Defence

Hiddenness Probability (DHP) can be used to assess the effectiveness and hiddenness of

MTD as follows [77].

ADP =
Number of attacks being detected

Total number of attacks (3.24a)

DHP =
Number of MTDs not being detected

Total number of MTDs (3.24b)

From an economical perspective, the increase in average cost and the average pertur-

bation ratio of reactance due to the trigger of the MTD are considered.

3.3.2 LSTM-AE Detector

Fig. 3.4 illustrates the TPR and FPR of the LSTM-AE detector. Various detection

thresholds τlstms are determined by the distribution of reconstruction losses in the valida-
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Figure 3.4: Performance of LSTM-AE attack detector: (a). Generalization error (FPR)
on the test dataset; (b). ROC curves on different attacks.

tion set [131]. As shown in Fig. 3.4(a), the same detection threshold based on the FPR

in the validation set can result in a higher FPR in the test set due to unseen load and

PV patterns. The ROC curves on different types of attack are also summarized in Fig.

3.4(b), which clearly shows the trade-off between TPR and FPR. In detail, a larger attack

results in a higher detection rate and to have 90% TPRs on all types of attack, at least

25% normal operation samples are incorrectly classified as attack. Since attack is rare in

real-time operations, this high FPR can significantly influence normal operation. In the

following simulation, τlstm corresponding to 8.0% FPR in the validation set is used as the

detection threshold in the LSTM-AE detector, resulting in 12.84% FPR in the test set

(highlighted by the red dotted line in Fig. 3.4).

3.3.3 LSTM-AE Identifier

Fig. 3.5 summarized the performance of the attack identification algorithm. As shown

in Fig. 3.5(a), the average identification deviation is around 0.01p.u. and most of them

are smaller than 0.04p.u.. As the average normal state angle in the simulation is 0.71p.u.,

the identification algorithm is accurate and stable under different attack scenarios. Fig.

3.5(b) tests whether the recovered measurement can bypass the BDD and LSTM-AE

detector. First, since the identification algorithm filters the measurement noise by (3.5),

the recovered measurement can certainly bypass the BDD. Second, due to the existence
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Figure 3.5: Performance of LSTM-AE attack identification: (a). Identification deviation
(in p.u.); (b). Probability of bypassing detectors.

of regularization in the energy function (3.6) and the limit of iteration numbers, only

80% of the recovered measurement can bypass the LSTM-AE detector. Nonetheless, the

reconstruction losses are much smaller than those of the attacked measurement, meaning

that the recovered measurements are close to the normality manifold defined by the LSTM-

AE detector. Therefore, the identified attack vector is quite accurate and can be used to

guide the hidden and effective MTD algorithm.

3.3.4 Properties of DDET-MTD

In this section, we investigate the performance of the proposed DDET-MTD algorithm.

Sensitivity of ϱ

First, based on the identification accuracy in Fig. 3.5, the effectiveness and hiddenness of

MTD are summarized in Fig. 3.6(a) and (b), respectively. In Fig. 3.6(a), a larger attack

is more likely to be detected and, in general, ADP increases and then decreases slightly as

ϱ increases. When ϱ is small, the MTD is optimized on the limited set of candidate attack

vectors around the identified attack, which may not include the actual attack vector. On

the contrary, when ϱ is large, the robust MTD is conservative by maximizing the detection

rate on the worst possible attack in a larger set, causing the actual detection rate to

decrease. An extreme example is that when ϱ > ∥c∥2, a zero-state attack vector becomes
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Figure 3.6: Evaluation on different ϱs: (a). MTD effectiveness; (b). MTD hiddenness.

the worst-case attack, leading to a trivial solution to (3.18). Regarding the hiddenness of

MTD, Fig. 3.6(b) shows that MTDs on a strong attack result in high DHP, which implies

the trade-off between hiddenness and effectiveness. Referring to (3.16), when the attack

is strong, the effectiveness constraint can be more easily achieved, which in turn gives a

lower residual of the attacker. Meanwhile, DHP decreases as ϱ increases, which can be

explained by a similar reason. In the following, ϱ = 0.01 will be used as the uncertainty

bound in C due to its high ADP and moderate DHP.

Comparison with Max-Rank and Robust MTDs

In this section, Stage-One and Stage-One + Stage-Two of the proposed DDET-MTD are

compared with the Max-Rank MTD and Robust MTD algorithms. To fairly verify the

performance of the proposed algorithm, both Max-Rank and Robust MTDs are triggered

by the same LSTM-AE detector. Therefore, only the attacks that can be detected by the

LSTM-AE are evaluated by the MTD algorithms, and we will leave a full comparison in

the next section. First, as shown in Fig. 3.7(a), both Stage-One and Stage-One + Stage-

Two can achieve ADPs greater than 96% in all attack cases. The ADP of Stage-One is

slightly higher than that of Stage-One + Stage-Two when the attack strength is small.

This is because Stage-One maximises the residual, while Stage-Two adds the threshold as

constraint. The proposed algorithm has an ADP comparable to the Robust MTD, which

is significantly higher than the Max-Rank MTD. Therefore, it can be concluded that the
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Figure 3.7: Comparison on Stage-One, Stage-One + Stage-Two in DDET-MTD, Max-
Rank MTD, and Robust MTD, assuming that the attack is detected by the LSTM-AE
detector: (a). MTD effectiveness; (b) MTD hiddenness.

event-triggered MTD does not significantly compromise the performance of the LSTM-

AE detector shown in Fig. 3.4. Furthermore, Fig. 3.7(b) shows that adding Stage-Two

can significantly improve MTD hiddenness without compromising ADP. On the contrary,

without considering the hiddenness of MTD, Stage-One, Robust and Max-Rank MTDs

can always be detected by the attacker once the detector raises an alarm.

3.3.5 Performances under Real-Time Operations

In this section, more realistic power system operation is considered. The proposed DDET-

MTD is compared with the Max-Rank MTD and the Robust MTD in both periodic and

event-triggering settings. Meanwhile, as cyberattacks are very rare in practice, it is

reasonable to discuss MTD usage and generator cost without attacks to see how the extra

defence can impact normal system operations. In addition, the false positive rate reduction

of the LSTM-AE detector is also discussed.

Operations under FDI Attack

Average performances of Max-Rank MTD (Max), Robust MTD (Robust), and DDET-

MTD (DDET) under different attack scenarios are compared in Table 3.4.

In general, DDET-MTD has the highest DHPs under each attack. Note that the DHPs

of event-triggered Max-Rank and Robust MTDs are not zero due to the missing alarms
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Table 3.4: Average MTD performance under different attacks (in %). The ↑ and ↓ rep-
resent the desired values being large and small, respectively. The best and second best
performances are highlighted in red and blue, respectively.

Attack Metric Periodic Event-Triggered
Max Robust Max Robust DDET

(1,0.2)
↑ ADP 71.90 90.00 65.10 74.00 75.50
↑ DHP 0.00 0.00 19.20 23.00 41.24
↓ Cost 0.17 0.64 0.14 0.47 0.02
↓ Reac. 27.53 45.69 22.30 34.84 17.15

(1, 0.3)

↑ ADP 83.40 93.00 79.70 84.50 85.50
↑ DHP 0.00 0.00 11.70 12.00 64.00
↓ Cost 0.17 0.61 0.16 0.54 0.01
↓ Reac. 27.73 45.50 24.12 40.21 11.01

(2, 0.2)

↑ ADP 93.10 98.50 90.81 98.00 95.50
↑ DHP 0.00 0.00 2.20 2.00 34.72
↓ Cost 0.17 0.60 0.16 0.60 0.01
↓ Reac. 27.34 45.82 26.95 44.63 16.56

(2, 0.3)

↑ ADP 96.91 100.00 98.10 100.00 100.00
↑ DHP 0.00 0.00 0.40 0.00 67.00
↓ Cost 0.17 0.64 0.17 0.631 0.00
↓ Reac. 27.45 45.63 23.38 45.54 9.12

(3, 0.2)

↑ ADP 98.90 99.00 97.61 99.00 100.00
↑ DHP 0.00 0.00 0.80 1.00 45.00
↓ Cost 0.18 0.62 0.17 0.64 0.00
↓ Reac. 27.24 45.21 27.36 45.28 13.66

(3, 0.3)

↑ ADP 99.80 100.00 99.90 100.00 100.00
↑ DHP 0.00 0.00 0.00 0.00 81.00
↓ Cost 0.17 0.66 0.18 0.65 0.00
↓ Reac. 27.53 45.54 27.57 45.85 7.33

(false negative samples) from the LSTM-AE detector. The false negative rate of the

LSTM-AE detector also causes the lower ADP of DDET-MTD than the periodic Robust

MTD when the attack strength is low (see Fig. 3.4(b)). However, periodic Robust MTD

is the least economical method and cannot improve the hiddenness of MTD.

Thanks to the attack uncertainty set C, the DDET-MTD can detect the attack with

fewer efforts, resulting in the best economic performance of the lowest average reactance

perturbation. Additionally, when the attack strength increases, the reactance perturbation

ratio decreases, which can save the usage of D-FACTS devices in real-time operation. In

contrast, as Robust MTD considers the worst detection performance all the time, it has

the worst economic performance. The Robust and Max-Rank MTDs have almost constant

average ratios per D-FACTS device under both periodic and event-triggering settings, as

both algorithms cannot reflect different attack strengths and therefore can easily over-react

most of the time.

Although optimization (3.7) does not take generator cost into account, simulation
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Figure 3.8: a). Average ADP to average reactance increase ratio; (b). Average DHP
to average reactance perturbation ratio. (E) and (P) represent the event-triggered and
periodic settings, respectively.

shows that DDET-MTD results in the lowest cost increase under each attack for two rea-

sons. First, the DDET-MTD has the minimum reactance deviation against the default

reactance settings. Therefore, its operational point is closest to the optimal setting. Sec-

ond, by improving the MTD hiddenness, the pre- and post- MTD power flows become

similar to each other, resulting in less flow redistribution and similar line losses. Fur-

thermore, Table 3.4 also illustrates that smaller costs are needed to detect more intense

attacks in DDET-MTD, which is similar to the reactance perturbation.

To better illustrate the performance, Fig. 3.8 calculates the ratio of ADP and DHP

with respect to the average perturbation ratio. It can be demonstrated that the DDET-

MTD has the best trade-off between attack defence and operation economics, especially

when the attack strength is high.

False Positive Rejection

Fig. 3.9(a) records the residuals of the LSTM-AE detector in a single day from the test

set. Positive samples are highlighted as red circles. There are many false positive alarms

during the night, which can be caused by irregular use of electricity. Once the LSTM-

AE detector raises an alarm, the attack identification and MTD will be triggered. As

there is no ongoing attack, the residual of the post-MTD measurement follows the χ2

distribution. Consequently, as shown by Fig. 3.9(b), all the false positive samples have
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Figure 3.9: False positive rejection on LSTM-AE detector using event-triggered MTD: (a).
Residual of LSTM-AE detector; and (b). Residual of BDD (possibly after MTD).

residuals lower than the BDD threshold and no further actions are needed by the system

operator. On average, the FPR of the LSTM-AE detector is reduced from 12.84% to

1.84% on test set after applying DDET-MTD. Note that the MTD FPR is well controlled

by the predetermined BDD FPR α = 2.0%.

Normal Operations

We now compare the economic performances of different MTD strategies without FDI

attacks. The results in Table 3.5 demonstrate that event triggering can significantly re-

duce the reactance perturbation and extra operational cost of MTDs. Meanwhile, the

proposed DDET-MTD has the least interference with normal system operation, making

it a promising defence strategy against rare FDI attacks.

Table 3.5: Average economical performances under normal operations (in %)

Metric Periodic Event-Triggered
Max Robust Max Robust DDET

↓ Cost 0.171 0.628 0.019 0.059 0.005
↓ Reac. 27.470 45.565 3.159 5.069 2.334

3.4 Conclusion

This chapter proposes a novel Data-Driven Event-Triggered MTD (DDET-MTD) algo-

rithm to achieve high TPR and low FPR against FDI attacks, which can benefit both the
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data-driven detector and the physics-based MTD. The contributions of this chapter are

highlighted below.

• A novel event-triggering framework is proposed that seamlessly links the design and

implementation of a data-driven detector and physics-based MTD. The proposed

framework outperforms the individual approach by rejecting false positive decisions

from the data-driven detector and reducing the use and cost of MTD.

• A novel measurement recovery algorithm is proposed to identify attacks through

normality projection. The FDI attack detector and identifier are integrated into a

single LSTM-AE deep learning model, while the physics on power flow equations is

embedded to ensure the fidelity of the recovered attack.

• A bilevel optimization problem is formulated for the MTD design. In the upper level,

the MTD hiddenness is improved while in the lower level, the detection accuracy is

robustly guaranteed on the worst-case attack around the identified attack vector.

To guarantee the feasibility and the convergence, the nonlinear non-convex bilevel

optimization is further relaxed into two successive semi-definite programmings using

linear matrix inequalities and duality.

• The performance of the algorithm is verified with two benchmark algorithms under

periodic and event trigger settings, using real-time load and solar profiles.
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Chapter 4

E2E-AT: A Unified Framework for

Tackling Uncertainty in

Task-aware End-to-end Learning

4.1 Introduction

Successful machine learning involves a complete pipeline of data, model, and downstream

applications. Instead of treating them separately, there has been a prominent increase of

attention within the constrained optimization (CO) and machine learning (ML) commu-

nities towards combining prediction and optimization models. The so-called end-to-end

(E2E) learning captures the task-based objective for which they will be used for decision

making. The idea of integrating learning and model has been applied to many critical

industrial activities, such as better management of the power system [119,123], constraint

satisfaction in control [149], and routing behavior of the transportation network [150].

Therefore, it is essential to understand the vulnerability of this learning framework and

to study the associated robust enhancement.

The parameters in CO and task-aware cost can be classified into predictable and un-

predictable parameters. Here, the predictable parameters are those that can be modeled
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by the forecast distribution, while the unpredictable parameters cannot. In power sys-

tem operation, the predictable parameters are the load and renewable energy while the

unpredictable parameters are the system configurations, such as generator cost, thermal

constraints, and susceptance of transmission lines. Conventionally in ML, the uncertainty

of the data is only defined by the input of the forecast model, the worst case of which

can be found by adversarial attack and treated by adversarial training [151]. In the E2E

model, the definition of data is augmented by the CO parameter1. Although the uncer-

tainty of predictable parameters can be modeled by the forecast model, the uncertainty

of unpredictable parameters is usually overlooked in the literature. The authors in [124]

also realize that dynamic environments, such as varying parameters, cannot be adapted to

current E2E learning. However, they treat the varying parameters as input to the forecast

model, which may not be realistic since the unpredictable parameters may not be realized

when forecasting.

In this chapter, a multi-level optimization problem is constructed to systematically

study the E2E learning where the down-stream decision-makings are modeled as lower-

level problems. It is demonstrated that a single-stage formulation cannot reflect real-time

operation and lead to a deviation from the optimal decision. In the meantime, neglecting

the uncertainty of unpredictable parameters during training causes a new trigger for gen-

eralization errors. The main contribution of this chapter is to treat multiple sources of

uncertainty from both input space of ML and unpredictible parameter in COs uniformly

as a robust optimization problem, which can be practically solved by end-to-end adver-

sarial training (E2E-AT) and differentiable layers. When forecaster is piece-wise linear

and the down-stream optimizations are quadratic, an exact input space adversarial at-

tack is proposed to increase the task-aware cost as an augmented integer programming.

Our method can be viewed as a natural interconnection between adversarial training, the

implicit layer, and E2E learning. Finally, the performance of E2E-AT is evaluated using

a real-world end-to-end power system operation problem, including load forecasting and

sequential scheduling tasks.
1The unpredictable parameter of task-aware cost is merged as part of CO.
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4.2 Preliminaries

4.2.1 Adversarial Training and Certified Robustness

In supervised learning, a parametric model f(x;θ) can be defined to map from input x

to label y for (x,y) ∈ D by minimizing the following empirical loss:

minθ
∑
i∈D
L(f(xi;θ),yi) (4.1)

In this chapter, we use (x,y) ∈ D and i ∈ D interchangeably to denote a sample of

the dataset.

It has been well studied that the deep neural network is prone to small perturbations

on its input. In security-critical applications, robustness has become an emerging factor.

Adversarial training has been shown to improve the robustness of NN, which transforms

(4.1) into a robust optimization [151]:

minθ
∑
i∈D

maxδi∈∆ L(f(xi + δi;θ),yi) (4.2)

where ∆ = {δ : ∥δ∥∞ ≤ ϵ} is the attack budget set for some small ϵ > 0.

Robust optimization (4.2) is practically solved by iterative approaches in which adver-

sarial perturbation is first solved by inner minimization through gradient ascent. To keep

the attack within ∆, projected gradient descent (PGD) [151] is adopted:

δit+1 = P∆
(
δit + γ · sign

(
∇δL

(
f
(
xi + δit

)
,yi
)))

(4.3)

where P∆ is the projector on ∆ and γ is the step size.

Although adversarial training is effective in improving robustness, it may give the

wrong sign of security as inner maximization is inexactly solved. A certification approach

can be made on the feedforward neural network with ReLU activations, e.g., a piecewise

linear neural network2. Using the big-M method, the neural network with d layers can be
2Convolution layer and other piecewise linear activations, such as leaky ReLU, are also piecewise linear.
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represented by the following set [152]

Cnn(x;θ) =


y :

z1 = x, zi+1 ≥Wizi + bi,

zi+1 ≥ 0,ui · vi ≥ zi+1

Wizi + bi ≥ zi+1 + (1− vi)li,

vi ∈ {0, 1}|vi|, i = 1, · · · , d− 2

y =Wd−1zd−1 + bd−1


(4.4)

where θi = (Wi, bi) is the weight and bias of the i-th layer. ui and li are the upper and

lower bounds of the output of i-th layer, which can be efficiently estimated by interval

bound propagation (IBP) [153]. vi is an integer vector that controls the activation of

ReLUs.

Based on (4.4), the inner maximization of (4.2) becomes:

maxδi L(ŷi,yi)

subject to δi ∈ ∆, ŷi ∈ Cnn(xi + δi;θ)
(4.5)

As Cnn(x;θ) is defined by mixed integer linear constraints, (4.5) can be solved exactly

for certain types of loss function. When cross-entropy loss is used, we can choose to

maximize the output of each logit, and if all the logits are not greater than the ground-

truth logit within the attack budget, the NN is said to be certified robust at the candidate

sample. For a regression task, (4.5) can be formulated as mixed-integer linear programming

(MILP) to maximize or minimize the forecast value [154].

4.2.2 End-to-End Machine Learning

End-to-end learning takes the fusion of prediction (ML) and decision making (CO), which

aims to find the map from the data to the optimal decision such that the learned ML

model can optimally reflect the CO through training. Meanwhile, E2E learning distin-

guishes itself from separate supervised learning followed by the CO in which the prediction

divergence and the task-aware cost can have a large mismatch [16].
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Referring to a recent review [155], the CO can be modeled as

z⋆ = argminz ℓ(z;y)

subject to z ∈ C(z;y)
(4.6)

where ℓ(·) is the objective function, z is the decision variable, y is the parameter, and C

is the constraint set.

Let ŷ be the output of f(x;θ) and let ẑ⋆ be the minimizer of (4.6) parameterized

by ŷ. There are two options to learn the E2E model guided by (4.6). In the supervised

learning setting, a suitable loss function M can be chosen to minimize the difference to

ground-truth decision, e.g. M(ẑ⋆, z⋆) or M(ℓ(ẑ⋆; ŷ), ℓ(z⋆;y)) [156] . Alternatively, the

regret function [21] can be implemented:

regret = ℓ(ẑ⋆; ŷ)− ℓ(z⋆;y) (4.7)

The ground truth decision z⋆ in (4.7) is not necessary to compute exactly, since ℓ(z⋆;y)

is constant [22]. Therefore, we argue that the regret function (4.7) is more intrinsic, as

the training loss has the same format as the CO objective (4.6).

4.3 A Heuristic Example

Before we move into a detailed formulation of the robustness of E2E learning, we first high-

light a misleading formulation, which violates the intention of E2E learning and introduces

model uncertainties between training and inference.

Consider two E2E learning problems based on the supervised setting:

argminϑ,ẑ M(ẑ) :=
∑

i∈DM(ℓ(ẑi; ŷi), ℓ(zi⋆;yi))

subject to ẑi ∈ C(zi; ŷi), i ∈ D
(4.8)
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whose minimum point is denoted as (θ⋆1, ẑ
⋆
1). And,

argminϑ,ẑ M(ẑ) :=
∑

i∈DM(ℓ(ẑi; ŷi), ℓ(zi⋆;yi))

subject to ẑi ∈ argminzi{ℓ(zi; ŷi) : zi ∈ C(zi; ŷi)}, i ∈ D
(4.9)

with minimum point (θ⋆2, ẑ
⋆
2).

E2E learning problem (4.8) takes the sample-wise constraints of (4.6) as its constraints

while (4.9) is a bilevel optimization problem whose upper level minimizes the difference to

the ground-truth objective ℓ(zi⋆;yi) and each lower level solves the sample-wise decision-

making problem in parallel.

In the inference stage, we first predict ŷ = f(x;θ⋆) and then solve the optimization

problem (4.6) parameterized by ŷ. The optimal decision variables are denoted as ẑ⋆r (θ⋆1)

and ẑ⋆r (θ⋆2), respectively.

Proposition 7. Given two formulations (4.8) and (4.9) of E2E learning, M(ẑ⋆1) ≤

M(ẑ⋆2) =M(ẑ⋆r (θ
⋆
2)) ≤M(ẑ⋆r (θ

⋆
1)).

The proof can be found in Appendix B.8.

It shows that formulation (4.8) can result in different decisions at the training and

inference stages. Therefore, Proposition 7 demonstrates that a misformulation of CO can

possibly lead to misled decision making at inference. Broadly speaking, the ignorance of

the optimization model contributes to a new source of uncertainties, causing generalization

error, in addition to the well-studied uncertainties in the dataset (e.g. out-of-distribution

samples, adversarial attack, etc.). This motivates us to take into account the uncertainties

in both the input space and the CO formulation.

4.4 Sequential E2E Learning as Multi-Level Optimization

Proposition 7 implies formulating E2E learning as a multi-level optimization problem by

respecting the sequence of downstream tasks. Given θ, sequential decision makings can

be denoted as lower-level problems after the prediction.
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Formally, at the inference stage, the cost of one-time decision making on (x,y) ∈ D

can be written as:

min L(ẑ1, · · · , ẑm;y,ϕ0)

subject to ẑi ∈ argminzi{ℓi(zi;y,ϕi) : zi ∈ Ci(zi;y, ẑi−1,ϕi)}, i = 2, · · · ,m

ẑ1 ∈ argminz1{ℓ1(z1;y,ϕ1) : z1 ∈ C1(z1;y, ŷ,ϕ1)}

ŷ = f(x;θ)

(4.10)

Inference (4.10) containsm downstream tasks with objective ℓi(·)s, constraint set Ci(·)s,

and unpredictable parameter ϕis. It can be compactly denoted as

minẑ L(ẑ;θ,x,y,ϕ)

subject to ẑ ∈ CE2E(z;θ,x,y,ϕ)
(4.11)

where ẑ = [ẑ1, · · · , ẑm] and ϕ = [ϕ0, · · · ,ϕm]. CE2E(·) represents the constraint set rep-

resenting all constraints of (4.10). Note that we consider the COs as parametric functions

that can be uniquely modeled by (θ,x,y,ϕ).

To train f(·;θ), the empirical training loss can be minimized:

minθ
∑

i∈D L(ẑi;θ,xi,yi,ϕ)

subject to ẑi ∈ CE2E(zi;θ,xi,yi,ϕ), i ∈ D
(4.12)

Since this chapter does not focus on solving optimizations, we restrict down-stream

optimizations to quadratic programming (QP). QP has been widely implemented in many

industrial applications and is mostly discussed in the E2E learning literature [155]. Mean-

while, since QP is convex and if the Slater condition holds, the Karush–Kuhn–Tucker

(KKT) condition is sufficient for optimality [157]. Therefore, optimizations at the lower

level can be replaced by the corresponding KKT conditions, known as the mathematical

program with equilibrium constraints (MPEC) [158]. Therefore, if a linear parametric

model is considered, it is possible to solve (4.12) exactly using optimization software.

In addition to the linear model, stochastic gradient descent (SGD) needs to be applied
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on the mini-batches of D to train the NN model. SGD requires 1) a forward pass in

which the optimizations are solved and 2) a backward pass to update the NN parameters.

Denote the equality part of KKT condition of the i-th optimization as

g(z⋆i ; ẑi−1,y,ϕi) = 0 (4.13)

which can be viewed as differentiable layer (OptNet) [105] by the implicit function theorem

[104]:
∂z⋆i
∂ẑi−1

= −
(
∂g(z⋆i ; ẑi−1,y,ϕi)

∂zi

)−1 ∂g(z⋆i ; ẑi−1,y,ϕi)

∂ẑi−1
(4.14)

Note that in (4.13) and (4.14), the optimal dual variables (λ⋆,ν⋆) in the KKT con-

ditions are omitted for simplicity. As long as the Jacobian matrix is not singular, the

gradient of the output z⋆i to the input ẑi−1 exists, allowing backpropagation through the

differentiable layers.

4.5 Unified Robustness Framework

When treating the E2E framework as an integrated model, the data source includes both

conventionally defined data samples (x,y) ∈ D and the unpredictable parameter ϕ of

COs. Small input uncertainties have been shown to cause a significant performance drop,

and it is reasonable to draw a similar conclusion for the unpredictable parameter. In

fact, Proposition 7 shows that any mismatches between the COs used for training and

inference should be explicitly considered. Although COs can take an infinite number

of formulations, without loss of generality, we restrict the uncertainties of COs in the

parameters of objective and constraints. We argue that the unpredictable parameter used

during training may not be the same as that used for real-time decision-making. For

example, in power system operation, the production costs of the generators can vary

over time, and the resistance and susceptance of transmission lines can be altered both

intentionally and unintentionally. These parameters are usually not known to the system

operator in advance or at least not fully aware when training the forecast model. See Fig.
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Figure 4.1: An illustration of E2E-AT learning. We consider the uncertainties in the input
data (x,y) ∈ D and the uncertainties in the COs, specifically, the unpredictable parameter
ϕ.

4.1 for an illustration.

4.5.1 Formulation

Consider the uncertainty of the input x+δx ∈ X and the unpredictable parameter ϕ+δϕ ∈

Φ. Denote ψ = (x,ϕ) ∈ Ψ := X ×Φ. The worst scenario, which maximizes the task-aware

objective, can be formulated as

maxψ∈Ψ L(ẑ;θ,ψ,y)

subject to ẑ ∈ CE2E(z;θ,ψ,y)
(4.15)

in which θ is fixed.

Consequently, a robust optimization can be formulated. A unified E2E adversarial

training (E2E-AT) considering both input and CO uncertainties becomes

minθ
∑

i∈D maxψi∈Ψi L({ẑi;θ,ψi,yi)

subject to ẑi ∈ CE2E(zi;θ,ψi,yi), i ∈ D
(4.16)

where the constrains are subject to both minimization and maximization. Adversarial

training can be adopted to solve (4.16). Similarly to the implicit function theorem (4.14),

the gradient of the constraint exists, regardless of the minimization or maximization.

Therefore, Danskin’s theorem can be used by first solving the inner maximization through
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gradient ascent (with θ fixed) and then for the outer gradient descent (with ψ fixed).

Although using the Danskin theorem requires one to exactly solve the inner maximization,

it can give a descent direction for suboptimal ψ, e.g. solved by PGD (4.3) and is applicable

to various adversarial training algorithms [151,159,160].

4.5.2 Certified Robustness

Although PGD (4.3) is effective for E2E-AT, it cannot verify the robustness, as it only

finds the local maximum [161]. In particular, a robustness certification on (4.11) verifies

if an adversarial example exists within the budget ∆ such that the task-aware objective

is altered by a certain amount. The key is to find the exact adversarial attack in (4.15).

We show that for specific type of objective and COs (e.g. affine-parametric QPs), optimal

solution to (4.15) can be solved exactly, which extends the certified robustness in piecewise

linear neural network (4.4).

Proposition 8. The affine-parametric QP:

zi+1 := arg minz 1
2z

TQz + qTz

subject to Az +Gzi ≤ b

Cz +Hzi = d

(4.17)

can be equivalently written as the set of mixed integer linear constraints:

Qzi+1 + q +A
Tλi+1 +C

Tνi+1 = 0

Czi+1 +Hzi − d = 0

0 ≤ λi+1 ≤ φM

(φ− 1)M ≤ Azi+1 +Gzi − b ≤ 0

φ ∈ {0, 1}|φ|
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where Q, q,A,G, b,C,H,d are the parameters with proper dimensions. φ is binary vector

and M is a large positive number. The equalities and inequalities are element-wise.

The proof can be found in the Appendix B.9.

Due to the complexity of integer programming, we restrict the original settings in [105]

by assuming linearity in uncertain terms for certified robustness. For example, when the

uncertainty in the input feature is considered, the parameter zi that represents the optimal

decision of the previous task is decoupled from the variable z and is affine so that the above

reformulation is linear. When the uncertainty of CO is considered, we assume that the

uncertain unpredictable parameter is decoupled from the decision variables as well. We

note that this setting follows the disciplined parametrized programming (DPP) [106].

Since both affine-parametric QP (4.17) and the neural network (4.4) can be repre-

sented by mixed-integer linear constraints, maximizing an affine function subject to these

constraints becomes mixed-integer linear programming (MILP), which can be effectively

solved and used to certify the worst possible cost.

4.5.3 Discussion on the Robustness

Previously, the uncertainty involved in COs has been considered in many E2E learning

algorithms. From the perspective of contextual optimization, E2E learning applies ML to

predict the uncertain parameter [16]. In such setting, probabilistic forecast and stochastic

program can be implemented [19]. However, we view the entire E2E learning as an inte-

grated model such that the uncertainty of the intermediate variable can be merged within

the E2E training objective. Alternatively, we separate the parameters of COs into two

parts. The first part (predictable parameter) is forecasted by the ML while the second part

is unpredictable (unpredictable parameter). Indirectly, the uncertainty of the predictable

parameter is tackled by adversarial training on the input feature, while the uncertainty of

unpredictable parameter needs to be treated as well.

We note that the physical meaning of the uncertainty of the unpredictable parameter

is different from that of the adversarial attack in the input feature space. Although the



99

ultimate goal is to improve the robustness of the ML, the adversarial attack assumes that

there exists a malicious party that can find the worst attack. However, the uncertainty

of the unpredictable parameter always exists regardless of the malicious party. Inspired

by the previous work [4,162], we can alternatively view the E2E-AT on the unpredictable

parameter as the following optimization problem:

minθ α
∑

i∈D L(z̄i;θ,xi,yi, ϕ̄) + (1− α)
∑

i∈D E(ẑi,ϕi)[L(ẑi;θ,xi,yi,ϕi)]

subject to z̄i ∈ CE2E(zi;θ,xi,yi, ϕ̄), i ∈ D

ẑi ∈ CE2E(zi;θ,xi,yi,ϕi), ϕi ∈ Φi, i ∈ D
(4.19)

where z̄i is the decision variable from the COs parameterized by the nominal unpredictable

parameter ϕ̄.

It can be argued that the NN forecaster is trained by considering the expected task-

aware cost due to uncertainties. The learning objective (4.19) takes the nominal unpre-

dictable parameter (denoted as ϕ̄) and the expected uncertainties over Φi into account,

which are balanced by the hyperparameter α. As shown in (4.19), this stochastic program

can be solved by sampling ϕi ∈ Φi during training. In addition, if the uncertainty set of

the unpredictable parameter is independent of the sample, Φ is not subject to index i.

4.5.4 Final Training Objective

In E2E-AT, (4.19) is solved by robust optimization by finding the maximum over ψi ∈ Ψi,

as in (4.16). We also take the input uncertainty into account:

minθ α ·
∑

i∈D L(z̄i;θ, ψ̄i,yi) + (1− α) ·
∑

i∈D maxψi∈Ψi L(ẑi;θ,ψi,yi)

subject to z̄i ∈ CE2E(zi;θ, ψ̄,yi)

ẑi ∈ CE2E(zi;θ,ψi,yi), i ∈ D

(4.20)

The new adversarial training objective provides an upper bound on the expectation

part of (4.19). Meanwhile, similar to adversarial training on image tasks [159], α can be

used to balance the clean and adversarial accuracies. When α → 1, (4.20) becomes the
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original E2E learning and when α→ 0, it becomes pure adversarial training. In addition,

clean and adversarial training losses may not directly reflect clean and robust accuracy

for image tasks, causing an unbalanced training objective. In E2E-AT, the two objectives

are defined by the task, which is the exact metric during decision making.

Previously in [4, 162], the authors reformulate a bilevel optimization problem into ro-

bust optimization and use the implicit function theorem for constraint satisfaction. Con-

necting (4.19) to (4.20), we extend [4] to training ML models. It can be seen that for each

mini-batch in E2E-AT, a similar robust optimization is solved as [4]. The implicit function

theorem is also used to learn the task-aware objective while satisfying the constraints.

4.5.5 ‘Free’ E2E Adversarial Training

In E2E-AT, the number of forward and backward passes is equal to no_batch× (no_pgd+

1)× no_epoch (assuming that all minibatches have the same size). Adversarial training is

computationally ineffective due to intensive backpropagation (controlled by the complexity

of the neural network). The computational burden is even higher in E2E-AT as in each

forward pass, the COs need to be solved (controlled by the complexity of the COs). To

save training time, we adopt the gradient reuse strategy. In the adversarial training for

free [163], the attack vector and the model parameter are repeatedly updated in the same

mini-batch for no_pgd times. Then, epoch_no is divided by no_pgd to maintain the total

number of model updates unchanged. This results in no_batch × no_epoch numbers of

forward and backward passes, which is the same as the clean E2E training.

4.6 Experiment

In the experiment, the NN is trained to forecast the load in the power system. The

robustness of various E2E-AT settings is explored. Detailed experiment settings can be

found in Appendix E.3 and more results can be found in the Appendix E.4.



101

4.6.1 Power System Operations

A practical power system operation problem, named as network constrained economic dis-

patch (NCED), is considered, which has been widely used in the US and can be formulated

as two-stage QP or LP [25]. In stage one (also known as dispatch), the set points of the

generator are determined based on the forecast load. The goal of the first stage is to

minimize the generator cost while meeting the physical constraints of the grid. When the

generator has been dispatched, we consider a realization on the actual load by solving the

second stage problem (also known as redispatch), in which any mismatches on the load

and generation from stage one, as well as the violation of the physical constraints of the

grid, will be penalized by extra cost:

P ⋆
g = Dispatch(f(x;θ), b) (4.21a)

P ⋆
ls,P

⋆
gs = Redispatch(y,P ⋆

g , b) (4.21b)

where P ⋆
g is the optimal generator dispatch, P ⋆

ls is the load shedding and P ⋆
gs is the power

storage. b is the susceptance of the transmission line (when the resistance is close to zero,

the susceptance is reciprocal to the reactance). The task-aware objective is defined as

L(θ) = cTg Pg + c
T
lsPls + c

T
gsPgs (4.22)

where cg, cls, and cgs are the coefficients such that cls ≫ cgs ≫ cg. That is, the load

shedding is more costly. The detailed formulation on the dispatch and re-dispatch problem

used for this section can be found in Appendix E.1.

4.6.2 Training Settings

We use an open source load forecasting dataset from the Texas Backbone Power System

[164] on a modified IEEE bus-14 system. We randomly collect 1.0k samples and use a
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feedforward neural network with three hidden layers to forecast the load3. We do E2E-AT

with a). input feature uncertainties δx, b). uncertainty of the unpredictable parameters

δϕ, and c). integrated uncertainties of both (δx, δϕ). We first implement natural (or clean)

E2E learning, based on which we warm-start the E2E-ATs. Adam optimizer is used, and

‘Adversarial training for free’ [163] is applied to reuse the gradients for PGD.

In detail, a). Since meteorological features have been normalized into [0, 1], we attack

with a normalized budget ϵx ∈ {0.02, 0.03}. The inner maximization is solved with 7

PGD steps and the step size is dynamically set as ϵx/7 × 2. We summarize this setting

from [159]. We clamp the attacked input into [0, 1] whenever it is updated. b). We consider

uncertainties on the susceptance b in the redispatch problem. Since each transmission

line can have different nominal susceptance, we set the budget ϵϕ ∈ {0.05, 0.15} as the

proportion to the individual nominal value, which is consistent with the common operation

range of susceptance [74]. c). We do E2E-AT with (ϵx, ϵϕ) ∈ {(0.02, 0.05), (0.03, 0.15)} for

the integrated uncertainties. The other settings are the same as in (a) and (b).

4.6.3 Performance of E2E-AT

Multi-run adversarial attacks are evaluated in Table 4.1. For each sample and attack

scenario, we randomly select three starting points within the attack budget and report the

worst task-aware cost (4.22) to reduce the variance. Specifically, five training algorithms

are compared:

• NAT: Natural training with task-aware loss;

• AT-MSE: Adversarial training with MSE loss;

• AT-INPUT: Adversarial training with task-aware loss and input uncertainties;

• AT-PARA: Adversarial training with task-aware loss and unpredictable CO uncer-

tainties; and

• AT-BOTH: Adversarial training with task-aware loss and integrated uncertainties.
3More experiment can be found in the Appendix E.4
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Table 4.1: Performances of the E2E-AT.

Training Method Clean Input Attack, ϵx CO Attack, ϵϕ Integrated Attack, (ϵx, ϵϕ)
ϵx ϵϕ α N/A 0.01 0.02 0.03 0.05 0.10 0.15 (0.01,0.05) (0.02,0.10) (0.03,0.15)

NAT: Natural Training with Task Loss
0 0 0 201.6 653.6 1188.5 1792.1 754.6 2044.3 3468.4 1153.9 3090.8 5214.4

AT-MSE: Adversarial Training with MSE Loss
0.02 N/A N/A 396.5 676.6 978.3 1278.4 1223.8 2576.7 3923.6 1475.4 3120.1 4778.3
0.03 N/A N/A 437.0 653.6 886.3 1125.5 1208.8 2517.2 3881.6 1410.5 2956.5 4624.0

AT-INPUT: Adversarial Training with Task Loss on the Input Uncertainty

0.02 0 1.0 219.1 445.2 745.0 1106.1 672.4 1929.0 3334.02 934.4 2706.3 4854.5
0.5 203.1 438.9 790.1 1246.7 660.7 1932.7 3349.6 914.8 2763.9 4930.5

0.03 0 1.0 239.4 448.6 705.0 1022.1 638.7 1787.5 3220.6 855.5 2445.9 4507.0
0.5 227.6 556.8 976.6 1435.3 783.7 2074.9 3503.1 1106.8 2948.5 4999.8

AT-PARA: Adversarial Training with Task Loss on the CO Uncertainty

0 0.05 1.0 212.3 398.84 726.8 1197.4 214.9 590.1 1931.3 399.1 939.1 2620.0
0.5 206.7 419.3 798.2 1299.9 215.6 741.2 2120.4 419.8 1114.8 3072.6

0 0.15 1.0 214.0 488.7 900.1 1434.5 214.0 221.0 453.2 493.0 925.8 1502.0
0.5 216.5 423.5 804.6 1309.8 216.5 223.1 465.6 429.6 817.8 1324.6
AT-BOTH: Adversarial Training with Task Loss on the Integrated Uncertainties

0.02 0.05 1.0 228.2 399.5 655.7 992.0 254.2 823.5 2156.7 400.5 1128.7 2956.2
0.5 212.1 490.1 879.9 1336.5 289.4 1257.9 2711.8 516.0 1793.9 3903.8

0.03 0.15 1.0 274.7 551.0 856.5 1226.3 274.7 279.0 495.7 550.6 883.4 1274.0
0.5 239.2 429.1 666.3 977.6 239.2 250.8 508.3 429.0 667.6 1053.7

We first highlight that uncertainties in COs can significantly increase the cost, e.g. 15

times higher than the clean cost when ϵϕ = 0.15 for NAT. The AT-MSE performs better

for input attacks, compared to the NAT, but performs poorly on the CO attacks. This

is because AT-MSE is only trained with input uncertainties. Second, the performance of

E2E-AT is similar to conventional adversarial training for image classification [151, 159].

For instance, training with a larger attack budget can result in better robustness on

attacks with a smaller budget but can inevitably increase the clean cost. Meanwhile, the

hyperparameter α gives a trade-off between clean and robust accuracy in most cases.

In addition to common findings on adversarial robustness of image tasks, some unique

findings of E2E-AT are highlighted. First, AT-INPUT and AT-PARA are more effective

in the uncertainty with which they are trained. However, it is observed that E2E-AT

based on one source of uncertainty can also improve the robustness of the other. For

example, in AT-PARA, the cost of the input attack is even lower than that trained by AT-

INPUT, when ϵx is small. Moreover, AT-PARA is more effective in the integrated attack

than AT-INPUT. In fact, any input uncertainty eventually feeds into the COs, which

becomes the uncertainties of the predictable parameters in COs. Finally, AT-BOTH not
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Figure 4.2: Input space adversarial attack using the exact MILP formulation. (a): Natural
Training; (b):Adversarial Training with δ = 0.02, α = 1; (c):Adversarial Training with
δ = 0.03, α = 1.

only improves the robustness of integrated uncertainty, but improves the robustness of the

individual’s. All of the findings demonstrate that the uncertainties of both sources can be

treated together in a unified way.

4.6.4 Certified Robustness

Certification on the robustness of the input space is considered, as susceptance b is coupled

with the decision variable and Proposition 8 is not applicable. Using Proposition 8 and

the mixed integer reformulation of NN (4.4), the exact input space adversarial attack on

sample (x,y) can be found by a mixed integer linear program (MILP). Interval bound

propagation (IBP) [153] is used to estimate the bounds of layers in NN. As for COs, we

set M = 105 by experience. Due to the large computation burden, we randomly sample

15 same samples and solve the robust certification using Gurobi. A detailed formulation



105

Table 4.2: CO uncertainties with random sampling of b. The adversarial attack reported
in Table 4.1 is denoted as PGD-7.

Training Method Clean ϵ = 0.05 ϵ = 0.1 ϵ = 0.15
Random PGD-7 Random PGD-7 Random PGD-7

NAT 201.6 267.2 754.6 396.6 2044.3 655.5 3468.4
AT-PARA ϵϕ = 0.05, α = 1.0 212.3 212.3 214.9 218.4 590.1 313.3 1931.3
AT-PARA ϵϕ = 0.05, α = 0.5 206.7 206.7 215.6 222.6 741.2 313.1 2020.4
AT-PARA ϵϕ = 0.15, α = 1.0 214.0 214.0 214.0 214.0 221.0 222.9 453.2
AT-PARA ϵϕ = 0.15, α = 0.5 216.5 216.5 216.5 216.5 223.1 219.4 465.6

on certified robustness of power system operation can be found in Appendix E.2.

The comparison results of input space adversarial attack can be found in Fig.4.2 in

which ‘Clean’: cost of the clean sample; ‘PGD-30’: cost of adversarial sample found by

30 PGD steps; ‘Exact’: cost of adversarial sample found by exact MILP; ‘Verify’: cost

of the adversarial sample by feeding the MILP solutions into the dispatch and redispatch

problems. First, the branch-and-bound algorithm is applied whose optimality is guaranteed

if feasible. Meanwhile, the MILP formulation is verified as the same task-aware cost is

achieved when solving the downstream COs parameterized by the optimal attack vector.

Second, it can be observed that the exact attack vector causes the worse cost degradation,

compared to the PGD-30 attacks. Finally, AT-INPUT can effectively reduce the task-

aware cost on the exact input space attack.

4.6.5 Parameter Uncertainties in COs

As shown in (4.19), the uncertainties of CO can be modeled by stochastic CO. To model

stochastic susceptance b, we randomly alter the susceptance (random attack) for each

sample and report the task-aware cost in Table 4.2. Under the random attack, the task-

aware cost of NAT increases, clearly demonstrating the need for adversarial training.

After E2E-AT, task-aware cost under random attacks is significantly reduced and is equal

to the corresponding clean cost when the attack budget is small. Although the clean cost

increases, it is still lower than the average cost under random attacks. The task-aware

cost is also empirically upper bound by the adversarial attack (e.g. PGD-7), which verifies

our argument on connecting the stochastic COs with E2E-AT (4.16) and (4.20).
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4.7 Conclusion

This chapter proposes a unified framework for tackling uncertainties in task-aware E2E

learning. In is shown that the uncertainties occur at both the input feature of ML and

the unpredictable parameter of COs. A robust program is formulated, which is practically

solved by adversarial training (E2E-AT). Through theoretical analysis and experiment, it

is demonstrated that 1). The unpredictable CO uncertainty can cause significant general-

ization degradation which has been overlooked before; 2). The optimal adversarial attack

on affine-parametric QP can be found by solving the mixed-integer (linear) program; and

3). Adversarial training can effectively improve the robustness of E2E learning in a unified

way.
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Chapter 5

Task-Aware Machine Unlearning

and Its Application in Load

Forecasting

In this chapter, the integrated learning and optimization (E2E learning) framework is

implemented into a reverse problem, that is, to eliminate the influence of samples from

the trained machine learning model with task-aware cost considered. This chapter first

introduces the necessity of unlearning consumers’ data from both privacy and security per-

spectives. Then the state-of-the-art literature on existing machine unlearning methods are

discussed. Finally, the motivation of this chapter is presented to balance the completeness

of unlearning and the task-aware performance of the ML model.

5.1 Introduction

5.1.1 Data Privacy and Security in Load Forecasting

Accurate load forecasting is essential for the security and economic operation of the power

system. The deterministic [165] and probabilistic [166] methods are two main categories.

Recently, machine and deep learning algorithms have been widely applied to better retrieve
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spatial and temporal information, which certainly benefit the progression of load forecast-

ing [2]. To fulfill the training purpose, large amount of data from unsecured individuals is

collected, which challenges the integrity of data ownership and security.

In power system, the system operator (SO) collects and transfers individual data for

various operational purposes. However, this arrangement has raised privacy concerns, as

individual load data are sensitive and can be targeted to retrace personal identity and

behavior [167]. From the perspective of data security, data collected from unsecured

sources are prone to errors and adversaries. For example, the authors of [168] benchmark

how poor training data could degrade forecast accuracy by introducing random noise.

Furthermore, data poisoning attack is specifically designed to contaminate the training

dataset to prevent the load forecaster from being accurate at the test stage [169].

Most of the existing work designs a preventive training algorithm to address concerns

about data privacy and security. For example, federated learning is studied, in which

each training participant only shares the trained parameters with the central server [170].

In [171], a fully distributed training framework has been proposed in which each par-

ticipant only shares the parameters with his neighbors. Differential privacy is another

privacy-preserving technique used for load forecasting to avoid identifying the individ-

ual [172]. To combat poisoning attack, federated learning enhanced with differential pri-

vacy is developed in [173]. By weight-clipping and adding noise to the central parameter

update, the global model can be resistant to inference attacks to some extent. In addition,

gradient quantization is applied, where each participant only uploads the sign of the local

gradient [174].

5.1.2 Machine Unlearning

However, training stage prevention is not sufficient when the post-action of removing

the impact of those data from the trained forecaster is needed. From privacy concerns,

in addition to the right to share the data, many national and regional regulations have

certified the consumers’ ‘right to forget’ [175], such as the European Union’s General
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Data Protection Regulation (GDPR) and the recent US’s California Consumer Privacy

Act (CCPA). That is, consumers are eligible to request to destroy their personal records

at any stage of the service, including the encoded information in the trained model [176].

Meanwhile, the SO may not be aware of the data defect until the model has been trained

and deployed. Obviously, a straightforward approach to removing the impact of part of the

dataset is to retrain the model from scratch on the remaining data. However, retraining

can be computationally expensive, and an ideal method is to use the already trained model

as a starting point.

In this context, machine unlearning (MU) has been introduced in machine learning

especially the computer vision community to study the problem of removing a subset

of training data, the forget or unlearn dataset, from the trained model. It has recently

been extended to other practical fields, such as removing bias in language models [177],

unlearning personal information on the Internet of Things [178] and digital twin mobile

networks [179], as well as removing malicious samples in wireless communication beam

selection problems [180].

Originating from [181] for statistical query learning, MU can be broadly classified into

exact and approximate unlearning. Exact unlearnings are developed for specific algo-

rithms, such as k-means [182] and modified random forest [183]. The gradient and the

Hessian matrix of the training objective are useful to approximate the influence of samples

on the parameters of the trained model. Therefore, the Fisher information [184, 185] and

the influence function [186–188] are adopted to unlearn the influence of the forget dataset

from the trained model. Motivated by differential privacy, [188] certifies the exactness

of data removal in linear classifiers. However, these methods are difficult to generalize

to the neural network (NN) [189] with guaranteed unlearning performance. To overcome

the problem, a mixed-privacy forgetting is proposed to only unlearn on a linear regres-

sion model around the trained NN [187, 188]. Projected gradient unlearning is proposed

in [190]. The gradient orthogonal to the column space of gradients of the remaining dataset

is adopted to incrementally unlearn the forget dataset without catastrophically forgetting
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the remaining dataset.

Another line of research assumes that the model is trained with an oracle, that is,

by taking into account the future unlearning requirement during training. For example,

amnesiac training tracks the contribution of each training batch. When data in a batch is

requested to be removed, the batch contribution can simply be subtracted [191]. Alterna-

tively, an exact but efficient retraining algorithm is proposed in [192] in which ensemble

models are trained on disjoint subsets of data. Therefore, only the model trained on the

unlearned dataset needs to be re-trained. However, when the forget dataset spreads over

multiple models, this method becomes less efficient. Finally, the theorem and application

of machine unlearning are continually studied and more information can be found in the

recent review [193].

5.1.3 Research Gaps

Unlearning Completeness vs Model Performance

Although retraining is usually not a viable option, it is broadly agreed that the golden

rule for unlearning is to minimize the distance between unlearnt and retrained models

[193]. In addition, the unlearning algorithm is complete if the unlearnt model is identical

to the model re-trained on the remaining dataset. However, we argue that complete

unlearning may not be suitable for power system applications. Referring to Table 5.1,

when the privacy is mainly concerned (privacy-driven MU), although complete unlearning

can certainly remove the influence of the forget dataset, it can inevitably degrade the

performance of the trained model so that the interest of the remaining customers is harmed

[176]. For the security-driven MU, the malicious data can still contain useful information.

However, the complete unlearning not only removes the adverse influence of the forget

dataset, but also the useful one.

Therefore, under both privacy and security concerns, machine unlearning is to elim-

inate the influence of the data from the load forecaster while considering the possible

influence on the model performance. This dilemma is modeled as a trade-off between
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Table 5.1: The Purposes of Unlearning.

MU Purpose Description Target
Privacy-driven Some training data contains sensitive

information and is asked to remove by
the customer.

The main target is to unlearn the
model as if it is originally trained
without the forget data.

Security-driven Some training data is malicious or bi-
ased, whose influence should be re-
moved from the trained model by the
SO.

The main target is to remove the
malicious information from the model
while keeping the useful information.

unlearning completeness and model performance. How to quantitatively calculate the two

factors effectively and efficiently without knowing the re-trained model needs to be inves-

tigated.

Physical Meaning of Power System

Apart from the completeness and performance trade-off, directly applying the MU algo-

rithms from machine learning community overlooks the physical meaning of power system.

In load forecasting, the ultimate goal is to use the forecast load for downstream tasks, such

as dispatching the generator. As shown in [19, 20, 123], the forecast error mismatches the

generator cost deviation such that a highly accurate load forecaster may not result in

economic power system operation. Intuitively, we argue that the performance of MU also

deviates from the accuracy criterion to the task-aware generator cost. Therefore, the cost

of generator needs to be evaluated as the performance criterion when dealing with the

completeness-performance trade-off.

To our knowledge, this is the first time machine unlearning has been applied to power

system applications. Specifically, it is introduced into the load forecasting model (shown

in Fig.5.1).

5.2 Machine Unlearning for Load Forecasting

5.2.1 Parametric Load Forecasting Model

In this chapter, we consider the load forecasting problem with n loads/participants. Given

dataset D = {(xi,yi)}Ni=1. Let xi ∈ Rn×M be the feature matrix, i.e., each load has
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Figure 5.1: A workflow of machine unlearning. The data removal request can be made
by privacy and security concerns. An unlearning algorithm is developed to update the
forecaster with the role of power system operation being considered.

feature of length M , and yi ∈ Rn be the ground truth load. A parametric model f(·;θ) :

Rn×M × RP → Rn can be trained as

θ⋆ = arg min
θ
L(θ) = arg min

θ

1

N

N∑
i=1

ℓ(f(xi;θ),yi) (5.1)

where L(θ) is the training loss. For simplicity, denote ℓ(f(xi;θ),yi) as ℓi(θ) as the loss on

the i-th sample. MSE is commonly used as the training loss by assuming that the forecast

error follows Gaussian distribution, i.e., ℓi(θ) = ∥f(xi;θ)− yi∥22.

In addition to the training dataset D, there is a test dataset Dtest on which a test

criterion can be performed:

Ltest(θ
⋆) =

1

Ntest

Ntest∑
i=1

ℓitest(θ
⋆) (5.2)

The test criterion ℓitest(θ) can be different from the training loss ℓi(θ). For instance, the

load forecasting model can be trained with MSE loss but is usually evaluated by MAPE,

etc. In this chapter, we call the loss/criterion such as MSE and MAPE as statistical(-

driven) loss/criterion.
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5.2.2 Influence Function

The influence function defines a second-order method to evaluate parameter changes when

training samples are up-weighted by a small amount [194]. Define a sub-dataset Dup ⊆ D.

For every sample j ∈ Dup up-weighted by ϵj , the new objective function can be written as

θ⋆mod = arg min
θ
Lmod(θ)

= arg min
θ

1

N

∑
i∈D

ℓi(θ)︸ ︷︷ ︸
L(θ)

+
1

N

∑
j∈Dup

ϵjℓj(θ)

︸ ︷︷ ︸
Lup(θ)

(5.3)

The first-order optimality condition gives that

∇Lmod(θ
⋆
mod) = 0 (5.4)

Apply the first-order Taylor expansion around θ⋆ on (5.4):

∇Lmod(θ
⋆) +∇2Lmod(θ

⋆)(θ⋆mod − θ⋆) ∼= 0

Consequently, up-weighting samples in Dup can approximately result in parameter changes

θ⋆mod − θ⋆ ∼= −
(
∇2Lmod(θ

⋆)
)−1∇Lmod(θ

⋆) (5.5)

Furthermore, since ∇L(θ⋆) = 0, ∇Lmod(θ
⋆) = ∇Lup(θ⋆). Eq. (5.5) can be rewritten

as

θ⋆mod − θ⋆ ∼= −
(
∇2Lmod(θ

⋆)
)−1∇Lup(θ

⋆) (5.6)

When ϵj is small and/or |Dup| ≪ |D|, ∇2Lmod(θ
⋆) ∼= ∇2L(θ⋆). Therefore, (5.6) is further

approximated as

θ⋆mod − θ⋆ ∼= −
(
∇2L(θ⋆)

)−1∇Lup(θ
⋆) (5.7)

where ∇Lup(θ⋆) =
1
N

∑
j∈Dup ϵ

j∇ℓj(θ⋆) and ∇2L(θ⋆) = 1
N

∑
j∈D∇2ℓj(θ⋆).
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We highlight that (5.5)-(5.7) are Newton’s update on the parameter with respect to

the new objective (5.3). Therefore, for the multivariate linear load forecaster with MSE

loss, (5.5) and (5.6) are exact updates on the trained model θ⋆.

5.2.3 Machine Unlearning Algorithm

From a data privacy perspective, participants are eligible to ask the SO to remove their

data and influence on the trained model θ⋆. When a request is made on record j, the

corresponding datum (xj ,yj) needs to be removed from the training dataset. Meanwhile,

D can contain erroneous or malicious data, caused by improper data collection or poisoning

attacks, whose influence on the trained forecaster needs to also be removed.

Define Dunlearn ⊂ D as the dataset that needs to be removed and |Dunlearn| ≪ |D|. The

remaining dataset is denoted as Dremain = D \ Dunlearn. A commonly used MU algorithm

can be directly derived from the influence function by setting ϵj = −1 in (5.3). As a result,

(5.5) can be modified as

θ⋆remain
∼= θ⋆ −

 ∑
i∈Dremain

∇2ℓi(θ⋆)

−1 ∑
i∈Dremain

∇ℓi(θ⋆) (5.8)

For a linear forecaster, unlearning (5.8) is complete as it is guaranteed to converge at

θ⋆remain, the model retrained by Dremain. Similar unlearning algorithms can also be derived

from (5.6) and (5.7).

5.3 Performance-aware Machine Unlearning

A complete MU algorithm on linear load forecaster such as (5.8) can inevitably influence

the performance of the test dataset (will be shown in the simulation). Following the

previous work in [195], a performance-aware machine unlearning (PAMU) is derived by

re-weighting the remaining samples based on their distinct contribution to the statistic

criterion (5.2).

To start, the influence function (5.7) can be further extended to assess the performance
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change of the test set due to the up-weighted objective (5.3) [189, 196]. The performance

on the test dataset for model parameterized by θ⋆remain can be written as

Ltest(θ
⋆
remain) =

1

Ntest

Ntest∑
i=1

ℓitest(θ
⋆
remain) (5.9)

Applying first-order Taylor expansion on (5.9) gives:

Ltest(θ
⋆
remain)

∼=
1

Ntest

Ntest∑
i=1

ℓitest(θ
⋆)︸ ︷︷ ︸

Ltest(θ⋆)

+
1

Ntest

Ntest∑
i=1

∇ℓitest(θ
⋆)T (θ⋆remain − θ⋆) (5.10)

To eliminate the performance change (5.10), the remaining dataset can be re-weighted.

The idea is straightforwardly that, after unlearning, different remaining samples will have

different influence on the performance, which needs to be re-weighted as if they are being

re-trained.

The new objective function on the re-weighted remaining dataset can be written as

θ⋆remain,ϵ = arg min
θ

1

N

∑
i∈Dremain

ϵiℓi(θ) (5.11)

where ϵi is an unknown weight for sample i in the remaining dataset. Referring to (5.5),

the parameter changes can be approximated as

θ⋆remain,ϵ − θ⋆ ∼= −

 ∑
i∈Dremain

ϵi∇2ℓi(θ⋆)

−1 ∑
i∈Dremain

ϵi∇ℓi(θ⋆) (5.12)

Plugging (5.12) into (5.10), the performance changes can be written as:

Ltest(θ
⋆
remain,ϵ)− Ltest(θ

⋆) ∼=mT
∑

i∈Dremain

ϵi∇ℓi(θ⋆) (5.13)

where

mT = − 1

Ntest

∑
i∈Dtest

∇ℓitest(θ
⋆)T

 ∑
i∈Dremain

ϵi∇2ℓi(θ⋆)

−1

(5.14)
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When ϵi is close to 1, the m vector can be approximated as

m̃T = − 1

Ntest

∑
i∈Dtest

∇ℓitest(θ
⋆)T

 ∑
i∈Dremain

∇2ℓi(θ⋆)

−1

(5.15)

Our goal is to find an optimal weights to improve the test set performance, which can

be formulated as a constrained optimization problem:

ϵ⋆ = arg min
ϵ

m̃T
∑

i∈Dremain

ϵi∇ℓi(θ⋆)

subject to 1

Nremain
∥ϵ− 1∥1 ≤ λ1, ∥ϵ− 1∥∞ ≤ λ∞

(5.16)

where ϵ ∈ R|Dremain| and 1 ∈ R|Dremain|.

In (5.16), the weights of the remaining samples are optimized so that the influence

of forgetting Dunlearn is reduced. Since the first-order Taylor expansion (5.10) is a local

approximation, the 1-norm and inf-norm constraints are added to control aggregated and

individual re-weighting. When λ1 → 0 or λ∞ → 0, ϵ→ 1, representing complete machine

unlearning (5.8). When λ1 and λ∞ become larger, the performance of the test dataset

improves, while the completeness of the unlearning is reduced. Therefore, by controlling

λ1 and λ∞, the trade-off between MU completeness and performance changes can be

balanced.

Since both m̃ and ∇ℓi(θ)⋆, i ∈ Dremain are calculated in advance, (5.16) is a convex

optimization problem that can be easily solved. Once the optimal weights ϵ⋆ are optimized,

we can unlearn Dunlearn through (5.12). Regarding different choices of ℓtest, e.g. MSE and

MAPE, the remaining dataset can be reweighted in distinct manners. It is also possible

to integrate different criteria.

Furthermore, compared to [195], the objective of (5.16) does not take the absolute

value. Therefore, the objective of (5.16) can be negative and it is allowed to improve

performance beyond the originally trained model. Any uncovered biased data in Dremain

will be assigned a smaller weight, and unlearning becomes a one-step continual learning
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on the re-weighted samples. Re-weighting the samples to improve the model performance

has been used in other load forecasting algorithm [197]. However, we directly find the

suitable weights on the trained parameter θ⋆ through an optimization problem (5.16) and

update the model using the second-order approach (5.12).

5.4 Task-aware Machine Unlearning

5.4.1 Formulation and Algorithm

In power systems, the forecast load is further used to schedule generators, and the statistic

accuracy of the forecast load is eventually converted into the deviation of the generator

cost, which is strongly linked to the value of each sample as well as the profit of the SO and

participants. As a result, PAMU guided by the statistic-driven criterion may not reflect

on the ultimate goal of power system operation, and a further step on PAMU is needed

to balance the generator cost, which can be done by taking the generator cost as the new

test criterion.

To measure the impact of model parameter θ on the objective (5.18), the following

task-aware criterion Lgen(θ) can be formulated:

min
θ

1

Ntest

Ntest∑
i=1

ℓigen(θ)

s.t.



(Re-dispatch):

(P i⋆
ls ,P

i⋆
gs) ∈ arg min{cls2∥P i

ls∥22 + cgs2∥P i
gs∥22 + cls∥P i

ls∥1 + cgs∥P i
gs∥1 :

(P i
ls,P

i
gs) ∈ Credispatch(P

i⋆
g ,y

i)}

(Dispatch):

P i⋆
g ∈ arg min{P iT

g QgP
i
g + c

T
g P

i
g + cls∥si∥1 : (P i

g , s
i) ∈ Cdispatch(ŷ

i)}

(Forecast):

ŷi = f(xi;θ)

for all i = 1, · · · , |Dtest|

(5.17)
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Detailed formulations can be found in Appendix F.1. The task-aware criterion (5.17)

can be viewed as a trilevel optimization problem with two lower levels, taking the expec-

tation over the test dataset. For each sample, the lower level one is a dispatch problem

that minimizes the generator cost subject to the system operation constraint Cdispatch. Pg

is the generator dispatch. Lower level two is a re-dispatch problem which aims to bal-

ance any under- or over-generation due to inaccurate forecast through load shedding Pls

and generation storage Pgs, under the constraint set Credispatch. The upper level, which

represents the expected operation cost, can be determined as the integration of the two

stages:

ℓgen(Pg,Pls,Pgs;θ)

= P T
g QgPg + cls2∥Pls∥22 + cgs2∥Pgs∥22 + cTg Pg + cls1∥Pls∥1 + cgs1∥Pgs∥1

(5.18)

When θ is fixed and if each lower-level problem has a unique optimum, (5.17) is the

expected real-time power system operation cost on the test dataset.

Referring to (5.10), to evaluate the influence on the generator cost, the gradient

∇ℓigen(θ
⋆) needs to be calculated, which seems to be a problem due to the nested struc-

ture and constraints in (5.17). To solve the problem, firstly, for each sample i, it can

be observed that the lower level problems are sequentially connected, that is, the input

to stage one problem is the forecast load while the input to stage two problem is the

generator dispatch status from stage one. Second, the lower-level problems are also inde-

pendent among samples and the constraints. Therefore, the lower-level optimizations can

be viewed as composite function for each sample. Let P i
g = p⋆1(ŷ

i) and P i
ls,gs = p

⋆
2(P

i
g ,y

i)

be the optimal solution map for dispatch and re-dispatch, the individual generator cost

(5.18) can be written as a composite function:

ℓigen(θ
⋆) = ℓigen(p

⋆
1(ŷ

i),p⋆2(p
⋆
1(ŷ

i),yi)) (5.19)

Alternatively, we can view the lower-level optimizations as sequential layers upon the

parametric forecasting model. The layer, which represents a constrained optimization
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Figure 5.2: The structure of tri-level optimization (5.17) viewed as layers in the forward
pass. The gradients used in (5.20) are highlighted in red.

problem, is named as differentiable convex layer [106].

Consequently, TAMU can be achieved by replacing the statistic metric ℓitest(θ
⋆) by

ℓigen(θ
⋆), followed by finding the weights of the remaining dataset (5.16) and updating the

parameters by (5.12).

The last issue that needs to be resolved is to calculate the gradient of (5.19) as required

by (5.10). From the chain rule, the gradient of (5.19) can be written as:

∂ℓigen(θ
⋆)

∂θ

=

(
∂ℓigen(P

i
g ,P

i
ls,gs)

∂Pg
+
∂ℓigen(P

i
g ,P

i
ls,gs)

∂Pls,gs

∂p⋆2(P
i
g)

∂Pg

)
× ∂p⋆1(ŷ

i)

∂ŷ

∂f(θ⋆)

∂θ

(5.20)

with the gradient flow highlighted in Fig.5.2. In (5.20), the gradient ∂ℓigen(θ
⋆)/∂θ exists if

the gradients through the differentiable convex layers, namely ∂p⋆1(ŷi)/∂ŷ and ∂p⋆2(P
i
g)/

∂Pg, exist, which is fulfilled under some assumptions in the following proposition.

Proposition 9. The gradients ∂p⋆1(ŷi)/∂ŷ and ∂p⋆2(P i
g)/∂Pg exist, which do not depend

on ŷi and P i
g, respectively, if 1). Q is positive definite, cls2 and cgs2 are positive; and 2).

The linear independent constraint qualification (LICQ) is satisfied at the optimum of each

of the lower-level problems.

The proof can be found in Appendix B.10.
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5.4.2 Extension to Neural Network based Load Forecaster

The unlearning algorithm (5.8) is complete on the linear load forecaster as the training

objective is quadratic. However, this condition is usually not satisfied for neural networks.

In the meantime, its Hessian can be singular due to early stop of training. This makes the

influence function approximate poorly to the parameter and performance changes [189],

and it becomes harder to evaluate the trade-off between unlearning completeness and

model performance in PAMU and TAMU.

To address this problem, we assume that there exists a load forecasting model which

is not trained by the consumers’ data in the service provided by SO. The model can be

a pre-trained model which is publicly available or can be trained on historic non-sensitive

data by the SO. Using the idea of transfer learning [198], the SO can then use the pre-

trained load forecaster as a deep feature extractor and use the consumers’ data to fine

tune the last layer. Therefore, only the last layer needs to be unlearnt.

Practically, we first divide the training dataset into pre-trained and user-sensitive data

as Dpre and Dsen, respectively, with Dpre ∩ Dsen = ∅. The pre-trained data is assumed to

be collected neutrally, which does not violate any participant’s privacy and is error-free,

while the user-sensitive data may not be. We then pre-train a load forecaster on the Dpre

using regular stochastic gradient descent (SGD), and the trained model (except for the last

layer) can be used as a deep feature extractor f(·;θ⋆FE). As illustrated in Fig.5.3, Dsen is

further used to fine-tune Linear Layer 2 by the MSE loss. Since using a stochastic gradient

method can introduce uncertainties, we propose to fine-tune the last layer analytically on

Dsen according to the following proposition.

Proposition 10. The optimization problem of minimizing the MSE loss on a linear layer

without activations is quadratic and has unique minimizer if the extracted features from

f(·;θ⋆FE) are linearly independent.

The proof can be found in Appendix B.11.

According to Proposition 10, ReLU activation cannot be used in Linear Layer 1 as it can

result in trivial output when the extracted features are negative for some of the samples in
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Figure 5.3: Structure of NN based load forecaster and feature extractor. All the layers
except for the Flatten Layer and the Linear Layer 2 contain activations.

the remaining dataset. When an unlearning is requested, the same unlearning algorithms

developed previously can be applied on Linear Layer 2 alone and MU (5.8) is complete.

Since the feature extractor trains only on the pre-train data, it does not contain sensitive

information that needs to be unlearnt.

5.4.3 Computations

In this section, we discuss some computational issues and some useful open-source packages

for the developed unlearning algorithms.

Inversion of Hessian

Machine unlearning (5.8) and calculation of vector m̃ in PAMU and TAMU require matrix

inversion of the Hessian matrix. In general, second-order differentiation on training loss

is time consuming, as storing and inverting the Hessian matrix requires O(d3) operations,

where d represents the number of parameters in the load forecast model.

Using m̃ (5.15) as a example:

m̃T = − 1

Ntest

Ntest∑
i=1

∇ℓitest(θ
⋆)T︸ ︷︷ ︸

vT∈R1×d

 ∑
i∈Dremain

∇2ℓi(θ⋆)

−1

︸ ︷︷ ︸
H−1∈Rd×d

(5.21)

Calculating m̃ can be reduced to solve a linear system:

H · m̃ = v (5.22)
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The conjugate gradient (CG) descent algorithm can be applied to solve (5.22) up to

d iterations. We also apply the Hessian vector product (HVP) [199] to directly calculate

Hm̃k for the k-th iteration in CG so that the Hessian matrix will never be explicitly

calculated and stored. HVP is computationally efficient as it only requires one modified

forward and backward pass. Similarly, to implement PAMU or TAMU, we can modify the

objective directly into the sum of training loss weighted by ϵ⋆ from (5.16) and implement

the same CG and HVP procedure. We implement these functionalities using a modified

version of Torch-Influence package [189].

Differentiable Convex Layer

In TAMU, the gradient of generator cost (5.20) can be analytically written according to

Proposition 13 in Appendix B.10. It also requires the forward pass to solve the dispatch

and re-dispatch problems. In the simulation, we model the operation problems and (5.16)

by Cvxpy [148]. When calculating the gradient, we use PyTorch automatic differentiation

package and CvxpyLayers [106] to implement fast batched forward and backward passes.

5.5 Experiments and Results

5.5.1 Simulation Settings

We used an open-source dataset from the Texas Backbone Power System [164] which in-

cludes meteorological and calendar features and loads in 2019 with a resolution of one hour.

The dispatch and re-dispatch problems are solved on a modified IEEE bus-14 system to

demonstrate the proposed algorithms. Three parametric load forecasting models, namely

multivariate linear regression, convolutional neural network (CNN), and MLP-Mixer [200],

are trained by MSE loss. Detailed experimental settings can be found in Appendix F.2.
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Figure 5.4: Performance of complete machine unlearning algorithm (5.8) on remain (blue),
unlearn (red) and test dataset (blue) of the linear load forecaster. The dotted curves
report the performance of the original model and the solid curves are the performance of
the unlearnt model. Different unlearning criteria are used with (a): MSE; (b): MAPE;
(c): Cost.

5.5.2 Unlearning Performance on the Linear Model

Unlearning Performance

Unlearning performances on the linear load forecasting model under various unlearning

criteria are summarized in Fig.5.4. We have verified that the unlearning algorithm (5.8)

results in the same updated parameter as the one re-trained on the remaining dataset

under all unlearning rates.

Note that the dotted curves, which represent the performance of the original model,

only slightly change over the various unlearning ratios. Broadly speaking, the perfor-

mance gaps between the unlearnt and original models becomes larger as the unlearning

ratio increases. Especially, all the performance criteria on the test dataset become worse
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Figure 5.5: Relationship on the influences of MSE, MAPE, and Cost criteria on the
test dataset from the samples in remain dataset. The r values are Pearson correlation
coefficients. (a): MSE and MAPE (r = 0.829); (b): MSE and Cost (r = 0.073); (c):
MAPE and Cost (r = −0.480)

when the unlearning proportion increases, which verifies the statement that unlearning

can inevitably degrade the generalization ability of the trained model. For instance, the

generator cost can increase by 20% when 20% of the training data are unlearnt. In con-

trast, the performance of the remain dataset improves as the unlearning ratio increases.

This is because when the original model is unlearnt, the model parameters are updated

and fitted more on the remaining dataset. Moreover, it can be observed that the trends of

performance changes of the unlearnt model are distinct for different criterion. In detail,

the generator cost (Fig.5.4c) diverges more significantly from the original model, compared

to MSE and MAPE.
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Performance Sensitivity Analysis

For each sample in the remaining dataset, we can calculate its influence on the expected

performance of the test dataset. The remaining dataset is chosen as it is re-weighted by

PAMU and TAMU. For i ∈ Dremain, the influence can be found by (5.13) and (5.15), i.e.,

Iitest −
1

Ntest

∑
j∈Dtest

∇ℓjtest(θ
⋆)T

 ∑
j∈Dremain

∇2ℓj(θ⋆)

−1

∇ℓi(θ⋆) (5.23)

where the test loss ℓtest(·) can be MSE, MAPE or Cost (5.19). To visualize the relationship

among these criteria, we randomly draw 1k samples with equal size of under- and over-

generation cases from the remaining dataset. For each sample, the under-generation means

that the sum of the forecast loads is lower than the sum of the ground-truth load, and

the over-generation is opposite. The relationships of any two of the criteria are illustrated

in Fig.5.5 with associated Pearson correlation coefficients (the r value) calculated. Using

MSE and MAPE as an example, the Pearson correlation coefficient is defined as

rMSE,MAPE =

∑
i(IiMSE − ĪMSE)(IiMAPE − ĪMAPE)√∑

i(IiMSE − ĪMSE)2
√∑

i(IiMAPE − ĪMAPE)2
(5.24)

where ĪMSE and ĪMAPE are the mean of MSE and MAPE influence, respectively.

Since the performance changes are modeled linearly by first-order Taylor expansion

(5.10) and the objective of re-weighting optimization is also linear (5.16), Pearson cor-

relation coefficient is a suitable indicator of the linear relationship. In Fig.5.5, positive

sensitivity represents the degradation of performance after unlearning such sample. That

is, after this sample is unlearnt, the MSE, MAPE, or average generator cost on test dataset

increases.

First, the Pearson correlation coefficients have clearly demonstrated that there exists

a strong positive linear relationship between the two statistic criteria (0.829), while this

relationship is insignificant between the statistic and task-aware criteria (0.073 between

MSE and Cost and -0.480 between MAPE and Cost). These distinct relationships imply
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that balancing performance by one statistical criterion is likely effective on the other. In

contrast, balancing the performance by statistical criteria can unlikely be effective on the

generator cost and vice versa. Secondly, as the under-generation is more costly than the

over-generation, unlearning an under-generation sample tends to reduce the overall gener-

ator cost with negative sensitivities. As shown by Fig.5.5b and Fig.5.5c, if the sensitivities

are projected to the y-axis, most of the negative sensitivities are contributed by the under-

generation samples, which verifies our intuition. However, it does not occur in MSE and

MAPE as they are almost centrally symmetric around the origin in Fig.5.5a.

The above discussions can verify the intuition that the statistic performance cannot

reflect and may even conflict with the task-aware operation cost.

Performances of PAMU and TAMU

The performance of PAMU and TAMU on the test dataset is reported in Fig.5.6 in which

25% training data is removed. To balance the trade-off, λ1 is varied and the inf-norm

constraint λ∞ in (5.16) is set as 1. That is, the weight of a remaining sample can very

from 0 to 2. First, unlearning by balancing one of the criteria can effectively maintain

the performance of the same criterion (e.g., red curve in Fig.5.6a, blue curve in Fig.5.6b,

and green curve in Fig.5.6c). When λ1 approaches 0, the PAMU and TAMU become

complete with the same performance as the retrained model in all criteria, as no samples

can be re-weighted. When λ1 increases, the performance of the original model is recovered

and the divergence to the retrained model increases. After λ1 is further increased, better

performance is achieved, resulting in a new type of continual learning through sample

re-weighting. As a result, the proposed PAMU and TAMU can effectively balance the

completeness and performance trade-off in MU by changing λ1. In addition, Fig.5.7 il-

lustrates the parameter difference to the retrained model (evaluated by 2-norm) vs the

generator cost, which clearly demonstrates the trade-off as well.

Meanwhile, it is observed that the cost curves perform differently compared to the MSE

and MAPE curves. When balancing the cost, both MSE and MAPE get worse. In contrast,



127

0.00 0.05 0.10 0.15 0.20 0.25
L1 constraint

3.5

4.0

4.5

5.0

M
SE

 (
×1

e
3 )

MSE-PAMU
MAPE-PAMU
TAMU
Original model
Complete unlearnt model

(a)

0.00 0.05 0.10 0.15 0.20 0.25
L1 constraint

12

13

14

15

16

M
A

PE
 (

%
)

(b)

0.00 0.05 0.10 0.15 0.20 0.25
L1 constraint

0.8

1.0

1.2

1.4

1.6

C
os

t 
(×

1e
3 )

(c)

Figure 5.6: Performance of PAMU and TAMU with different test criteria. a), b), and c)
are performances on the test dataset evaluated by MSE, MAPE, and average generator
cost, respectively. The performance of the original model and the model unlearnt by
complete unlearning (5.8) are represented by the black and orange lines, respectively

balancing the MSE can also keep/improve the MAPE performance to some extent, and visa

versa. This observation is in line with the analysis on the Pearson correlation coefficient

in the previous section.

5.5.3 Unlearning Performance on the NN Forecaster

Since the fine-tuning objective on Dsen is quadratic (Proposition 10), the direct unlearning

is also complete for the NN load forecaster. We can expect that the unlearning behaviors

are similar to the linear counterpart. Therefore, we only highlight some of the simulation

results and leave details in Appendix F.3. Similarly to the linear counterpart, unlearn-

ing part of the training dataset can deteriorate the performance of the test set. The

performance-aware unlearning algorithm can effectively balance the unlearning complete-
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Figure 5.7: Trade-off between MU completeness and the operation cost.

ness and model performance, which is more effective on the criterion it is evaluated on.

However, instead of having opposite statistical and cost trends in Fig.5.6, all criteria are

improved with decay speed. This is because the NN-based load forecaster is more accurate

than the linear counterpart, resulting in a less significant misalignment between the load

forecast accuracy and the generator cost.

5.6 Conclusion

This chapter introduces machine unlearning algorithm for load forecasting model to elim-

inate the influence of data that is adversarial or contains sensitive information of individ-

uals. The contributions of this chapter are summarized as follows.

• Machine Unlearning: The influence of forget dataset on the trained model is eval-

uated using the influence function-based approach, which is eliminated by Newton’s

update.

• Completeness-Performance Trade-off: Complete unlearning is shown to in-

evitably influence the statistical performance of the load forecaster, such as MSE

and MAPE. To overcome the dilemma, the influence function is used to quantify

the impact on the statistical performance of each sample, allowing the remaining

dataset to be reweighted through optimization and the performance to be improved

through performance-aware machine unlearning (PAMU).
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• Task-aware Machine Unlearning: Finally, statistical performance has been

shown to not reflect the ultimate goal of power system operation, such as minimizing

the cost of generator dispatch. Therefore, a task-aware machine unlearning (TAMU)

is proposed by formulating the unlearning objective as a trilevel optimization. The

existence of the gradient of such task-aware objective is theoretically proved, which

is key to sample re-weighting. The simulation results verify that the proposed task-

aware algorithm can significantly reduce the generator cost on the test dataset by

compensating for the unlearning completeness.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

This thesis delves into the challenge of integrating data and the model for secure and robust

decision-making, with a specific focus on power system operations. Here, the term “data”

encompasses data-driven decision-making methodologies such as deep learning algorithm,

while “model” refers to model-based decision-making techniques such as optimization pro-

gramming. We argue that the co-design of data and model is a crucial stride towards the

evolution of automated decision-making in the future.

Given that real-time tasks often entail multi-step decision-making processes, data-

driven operations can be classified into a purely data-driven approach and a mixed data

and model-based approach. The latter can be further subcategorized into separate, sequen-

tial, and integrated blending of data and model, with concise definitions and properties

provided in the thesis’s Introduction. Two key theoretical frameworks, specifically the

sequential and integrated formulations, are technically highlighted. Their effectiveness

is demonstrated through applications in the detection of FDI attacks and objective-based

load forecasting, respectively.

In general, the advantages of blending data and model include:

• In the context of data-driven algorithms like deep learning, incorporating physical
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information during both the training and inference stages can markedly enhance

their feasibility and reliability. In the case of a data-driven attack detector, a sub-

sequent model-based verification can statistically manage the FPR. Similarly, for

a data-driven attack identifier, integrating physics-informed algorithms allows en-

coding prior knowledge of the attack to improve identification accuracy. In E2E

learning, the inclusion of a differentiable convex layer serves to guide the parametric

space of the data-driven model towards the objectives of downstream tasks.

• In the realm of model-based optimization, uncertain parameters can be learned and

quantified through a data-driven algorithm. This approach enables the shift of the

online computation burden into the offline training phase. Additionally, for robust

and stochastic optimization, the uncertainty set and the underlying distribution of

parameters can be intelligently learned, with the purpose of maximizing the profit

of decision-making.

In particular, the contribution of each chapter is given as follows.

Part I of the thesis focuses on sequential design of the learning and optimization al-

gorithm, with application to detecting FDI attacks on power system state estimation. To

start, this thesis first proposes a new model-based robust MTD algorithm in Chapter 2.

We demonstrate that the existing criterion for MTD effectiveness based on the rank con-

dition on the composite pre- and post-MTD measurement matrix is insufficient when the

measurement is noisy. Therefore, it is theoretically proved that the weakest point for any

given MTD strategy corresponds to the smallest principal angle between the pre- and post-

MTD measurement Jacobian subspaces, and the worst-case detection rate is proportional

to the sine of this angle, with the impact of measurement noise being explicitly considered.

For MTDs with a complete configuration, an optimization problem is formulated to max-

imize the minimum principal angle. It is then demonstrated that the worst-case detection

rate of the grid with incomplete configuration cannot be improved. Therefore, an iterative

algorithm is formulated to maximize the minimal non-zero principal angle while limiting

the chance of attacking on the subspace that cannot be detected.
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The robust MTD can be conceptualized as a robust optimization problem with an

attack uncertainty set equivalent to the entire feasible measurement space. Chapter 3

demonstrates an extension to robust MTD and highlights the advantages of the sequential

formulation. The proposed data-driven event-triggered MTD comprises two components.

Firstly, an unsupervised LSTM-AE detector is trained on the historical normal measure-

ment dataset. Whenever the data-driven detector triggers an alarm, an attack identifica-

tion algorithm is employed to project the attacked measurement onto the manifold defined

by the LSTM-AE and the feasible set defined by the power flow equation. The resulting

permissible attack set is constructed and utilized as the uncertainty set for robust MTD.

As an extension to Chapter 2, robust MTD is formulated as robust bilevel optimization to

enhance the hiddenness while satisfying a pre-defined detection rate. To ensure feasibility

and convergence, the nonlinear non-convex bilevel optimization is further relaxed into two

successive semidefinite programmings using linear matrix inequalities and duality. Numer-

ical experiments demonstrate that the shared information between the model and the data

contributes to reducing the FPR of the data-driven detector, significantly enhancing its

reliability. The additional operational cost incurred by the conservative nature of robust

MTD becomes more economical due to the event-triggering mechanism of the data-driven

detector and the informative data-driven attack uncertainty set.

Part II of the thesis studies the uncertainty and application of integrated E2E learning.

In Chapter 4, the multi-step E2E learning problem is first formulated as a multi-level opti-

mization problem. Compared to a single-level formulation, the optimal objective of multi-

level optimization is equivalent to the cost of real-time operation. Then the uncertainty

of E2E learning is classified into uncertainties on the input features and unpredictable

parameters of down-stream optimizations. It is shown that neglecting either can cause

generalization errors at the inference time. The main contribution of this chapter is to

propose a unified robust optimization framework on anisotropic uncertainties. It is also

proved that for piece-wise linear and quadratic down-stream optimizations, there exists an

exact integer reformulation to find the exact worst input space uncertainty. The proposed
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E2E-AT becomes a natural interconnection between adversarial training, differentiable

optimization, and E2E learning.

Chapter 5 of the thesis applies the E2E learning framework to a “reverse” problem of

unlearning the influence of data subset from the trained load forecasting model. Techni-

cally, this is the first time that machine unlearning is applied to the power system applica-

tion. In a baseline algorithm, the influence of the unlearnt data is defined by the influence

function and eliminated by second-order optimization. For the linear forecast model,

the baseline algorithm is proved to be complete. We then show that complete unlearn-

ing can inevitably influence the statistic performance of the load forecaster. To balance

completeness and performance, performance-aware unlearning is proposed to reweight the

remaining dataset by its contribution to the performance of the test set. The implemen-

tation of E2E learning occurs when we modify the metric in PAMU as the generator cost.

As a result, to balance completeness and task-aware generator cost, a tri-level optimiza-

tion problem is formulated. The existence of the gradient of such task-aware objective has

been proved theoretically and analytically. The simulation results verify that the proposed

task-aware algorithm can significantly reduce the generator cost on the test dataset by

compensating for the unlearning completeness.

6.2 Future Work

Due to the limited time, this thesis has only covered two main aspects of blending data and

model for decision-making: the sequential and integrated formulations. Several theoretical

and practical improvements could be explored in the future.

Firstly, the thesis has focused on down-stream tasks that can be modeled by convex

optimizations within the E2E learning framework. Future research could address scenarios

involving non-convex optimizations, such as those with integer variables or non-convex

terms in real-time power system operations like UC or AC-OPF. Effectively and efficiently

encoding non-convex optimizations as differentiable layers in the E2E framework remains

an open research topic.
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Secondly, the computational burden of training E2E models is extremely high com-

pared to training with an accuracy-driven loss function, as the exact optimization problems

need to be solved at each forward pass. The high computational burden restricts the use

of E2E learning in large power grids. Future research could explore fast solution algo-

rithms for specific optimization problems or find a trade-off between computation speed

and solution optimality.

Third, this thesis discusses the E2E learning with deterministic forecasting and op-

timizations. As the motivation of E2E learning is to quantify the uncertainties of an

unknown parameters in optimization, it is straightforward to extend it into probabilistic

forecast followed by uncertain optimization and analyze its properties systematically. The

stochastic setting can have a significant impact on the real-time application. For exam-

ple, probabilistic load forecasting and two-stage stochastic power system operation can

be used to deal with uncertainties of renewable generations and to quantify the risk of

decision-making. Other viable options include data-driven uncertainty set forecast with

robust optimization or ambiguity set forecast with distributionally robust optimization.

The E2E learning framework could also be extended beyond supervised learning. Since the

forecasting model adapts to different downstream tasks, it could be explored to integrate

the dynamics of the power system into E2E learning, driven by model-based control or

reinforcement learning.

For E2E-AT, a thorough investigation of the relationship between multiple sources

of uncertainty could be an interesting future work, since conventional adversarial train-

ing usually has a single source of uncertainty. Theoretical analysis is needed and Multi-task

learning [201], which trains simultaneously for various objectives, can be borrowed to han-

dle multi-uncertainties. In addition, solving the exact attack vector is an MILP problem,

which cannot be used for adversarial training due to its high complexity. Developing

certified and tractable E2E-AT is also important for security purposes.

Finally, for the sequential data-driven and MTD detector for FDI attacks, there is

potential in combining them into an integrated model. The transition from a regression
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problem to embedding a binary classification problem into an E2E learning framework

also remains an open question for future exploration.
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Appendix A

Reproducibility

All data used for the thesis are publicly available. The results of the experiments are

partially reproducible. Please refer to the following GitHub repositories for details:

1. Robust Moving Target Defence Against False Data Injection Attacks in Power Grids:

https://github.com/xuwkk/Robust_MTD.

2. Blending Data and Physics Against False Data Injection Attack: An Event-Triggered

Moving Target Defence Approach: https://github.com/xuwkk/DDET-MTD.

3. E2E-AT: A Unified Framework for Tackling Uncertainty in Task-aware End-to-end

Learning: https://github.com/xuwkk/E2E-AT.

4. Task-Aware Machine Unlearning and Its Application in Load Forecasting: https:

//github.com/xuwkk/task_aware_machine_unlearning.

https://github.com/xuwkk/Robust_MTD
https://github.com/xuwkk/DDET-MTD
https://github.com/xuwkk/E2E-AT
https://github.com/xuwkk/task_aware_machine_unlearning
https://github.com/xuwkk/task_aware_machine_unlearning
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Appendix B

Mathematical Proofs

B.1 Proof to Proposition 1

The composite matrix of the original and perturbed Jacobian matrix (2.6) can be written

as:

(
J J ′

)
= V ·

(
B −G B′ −G

)
·



Acos
r 0

Asin
r 0

0 Acos
r

0 Asin
r


Given the property of the matrix product, the rank of the composite matrix satisfies

rank((J J ′)) ≤ min{m,m, 2n}. If m < 2n, rank((J J ′)) ≤ m < 2n no matter how the

D-FACTS devices are altered. Therefore, the MTD cannot be complete if m < 2n.

B.2 Proof to Proposition 2

First, a β-MTD has ∥S′
NaN∥2 ≥

√
λc(β). The necessary condition then follows from

∥S′
NaN∥2 ≤ ∥SN∥2∥aN∥2 = ∥aN∥2.

Moreover, as aN = R− 1
2a, it also gives ∥S′

N∥2∥R
− 1

2 ∥2∥a∥2 = ∥R− 1
2 ∥2∥a∥2 ≥

√
λc(β).

As ∥R− 1
2 ∥2 = maxσ(R− 1

2 ) = σ−1
min, it can be derived that ∥a∥2 ≥ σmin

√
λc(β). Further-

more, if R = diag([σ, σ, · · · , σ]) is isotropic, it gives ∥R− 1
2a∥2 = σ−1∥a∥2 ≥

√
λc(β). Let
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ρ = ∥a∥2/
√∑m

i σ
2
i . We can result in ρ ≥

√
λc(β)/

√
m.

B.3 Proof to Proposition 3

According to Definition 1, the weakest point j∗N ∈ JN , ∥j∗N∥2 = 1 can be derived by

j∗N = arg min jN∈JN
∥jN∥2=1

√
λeff

= arg min jN∈JN
∥jN∥2=1

∥jN−P ′
NjN∥2

∥jN∥2

= arg min jN∈JN
∥jN∥2=1

sin∠{jN ,P ′
NjN}

(B.1)

Note that the triangle relationship within the sides ∥jN∥, ∥P ′
NjN∥, and ∥jN −P ′

NjN∥

and the ratio in (B.1) is the sine of the angle between the vectors jN and P ′
NjN . Bas-

ing on the definition of principal angle (2.11), the sine of the angle is minimized when

∠{jN ,P ′
NjN} = θ1. The minimum principal angle is achieved when jN and P ′

NjN are

reciprocal such that jN = u1 and P ′
NjN = P ′

Nu1 = cos θ1v1 [136,202].

Moreover, the worst-case detection rate is achieved when attacking on u1 such that

λmin = ∥au1 − a cos θ1v1∥22 = a2 sin2 θ1

B.4 Proof to Lemma 1

Rewrite the non-centrality parameter as

√
λ = ∥(I − V V T )Uc∥2

= ∥(U − V Γ)c∥2

= ∥ ((U1,U23)− (V1Γ1,V23Γ23)) c∥2

(B.2)

As U1 = V1 and Γ1 = I, (B.2) can be reduced to
√
λ = (U23 − V23Γ23)c23 which does

not depend on c1.
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B.5 Proof to Proposition 4

To start, the Schur complement [203] is given as follows.

Theorem 1. Given any symmetric matrix Z =

A B

⋆ C

, if C is invertible, the following

two conditions are equivalent: (1) If C ≻ 0, then Z ⪰ 0; (2) A−BC−1BT ⪰ 0.

Proposition 11. Given any symmetric matrix Z =

A B

⋆ C

, the following two condi-

tions are equivalent: (1) Z ⪰ 0; (2) C ⪰ 0, (I −CC†)BT = 0, A−BC†BT ⪰ 0.

First, the inner problem of (3.18) can be written as:

min ∥S′
0H1c

′∥22

subject to ∥c′ − c̄∥22 ≤ ϱ2
(B.3)

where S′
0 = S(H ′

0) and the Lagrangian of (B.3) is written as:

L(c′, ν) = c′T
(
HT

1 S
′
0H1 + νI

)
c′ + (−2νc̄T )c′ + ν(c̄T c̄− ϱ2) (B.4)

Based on (B.4) and denoting M =HT
1 S

′
0H1 + νI, the dual function of (B.3) can be

analytically written as

g(ν) = inf
c′
L(c′, ν)

=


−(νc̄)TM †(νc̄) + ν(c̄T c̄− ϱ2) M ⪰ 0, νc̄ ∈ Col(M)

−∞ otherwise

(B.5)
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Let −(νc̄)TM †(νc̄) + ν(c̄T c̄− ϱ2) ≥ ω. The dual problem of (B.3) becomes:

max
ν,ω

ω

subject to ν ≥ 0

ν(c̄T c̄− ϱ2)− ω − (νc̄)TM †(νc̄) ≥ 0

M ⪰ 0

νc̄ ∈ Col(M)

(B.6)

Note that the last constraint of (B.6) can be rewritten as MM⊥νc̄ = νc̄. Applying

Proposition 11, the dual problem can be rewritten as

max
ν,ω

ω

subject to ν ≥ 0ν(c̄T c̄− ϱ2)− ω (νc̄)T

⋆ M

 ⪰ 0

(B.7)

The strong duality between (B.3) and (B.7) holds as long as C ̸= ∅ [157]. Consequently,

the robust stage one problem (3.18) becomes:

max
b′,µ,ω

ω (B.8a)

subject to [b′]− [b−] ⪰ 0, [b+]− [b′] ⪰ 0 (B.8b)

ν ≥ 0 (B.8c)ν(c̄T c̄− ϱ2)− ω (νc̄)T

⋆ M

 ⪰ 0 (B.8d)

Note that M = νI +HT
1 H1 −HT

1 H
′
0(H

′T
0 H

′
0)

−1H
′T
0 H1 is nonlinear in the deci-

sion variable b′. In Theorem 1, define A :=

ν(c̄T c̄− ϱ2)− ω (νc̄)T

⋆ νI +HT
1 H1

, B :=
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 0

HT
1 H

′
0

, and C := H
′T
0 H

′
0 in (B.8d). Since C > 0 and Theorem 1, the constraint

(B.8d) becomes (3.19d), which finalizes the proof.

B.6 Proof to Proposition 5

First, the following sufficient condition holds for any matrices E,E0 with the same di-

mension [204]:

ET
0 E +ETE0 −ET

0 E0 ⪰ 0⇒ ETE ⪰ 0

Define E = CN + V N [b′]Ac
r and E0 = V N [bk]A

c
r. Replacing H ′

0
TH ′

0 in (3.19d) by

Hupdate = E
T
0 E +ETE0 −ET

0 E0 finalizes the proof.

B.7 Proof to Proposition 6

The dual function (B.5) is the lower bound of the primary function, e.g. g(ν) ≤ ∥S′
0H1c

′∥22

for ∀c′ ∈ C. Therefore, a sufficient condition for (3.16c) is g(ν) ≥ ω. Note that λc(ρ) is

replaced by constant ω in stage two. Therefore, Proposition 6 can be proved similarly to

Proposition 4. Furthermore, define the cost of (3.16) as (b′−b0)THT
hidIHhid(b

′−b0) ≤ ϕ.

Applying Theorem 1 on I gives (3.22c).

B.8 Proof to Proposition 7

First, M(ẑ⋆1) ≤ M(ẑ⋆2) can be directly verified since (4.9) has a tighter constraint on

the optimality condition in the lower level problem than it in (4.8). For fixed θ⋆2, the

optimal decision ẑ⋆r (θ⋆2) is achieved when each subproblem, represented as the lower level

problem in (4.9), achieves its optimum. Therefore, ℓ(ẑi⋆2 ;yi) = ℓ(ẑi⋆r (θ⋆2);y
i) and M(ẑ⋆2) =

M(ẑ⋆r (θ
⋆
2)). It also shows that (θ⋆2, z

⋆
r (θ

⋆
2)) is the minimizer of (4.9). Note that multiple

global minimizers are also satisfied. Since (θ⋆1, z
⋆
r (θ

⋆
1)) is also feasible with (4.9), it gives

M(ẑ⋆r (θ
⋆
2)) ≤M(ẑ⋆r (θ

⋆
1)), which finalizes the proof.
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B.9 Proof to Proposition 8

We give the proof by first introducing the complementary linearization [205,206]:

Proposition 12. The complementary condition a ≥ 0, b ≥ 0, a · b = 0 can be replaced by

a ≥ 0, b ≥ 0, a ≤ ψM, b ≤ (1− ψ)M, ψ ∈ {0, 1}

where M is a large enough constant.

For the optimal primal-dual pair (zi+1,λi+1,νi+1), the Karush–Kuhn–Tucker (KKT)

condition [157] gives that

Qzi+1 + q +A
Tλi+1 +C

Tνi+1 = 0 (B.9a)

Czi+1 +Hzi − d = 0 (B.9b)

diag(λi+1)(Azi+1 +Gzi + b) = 0 (B.9c)

Azi+1 +Gzi − b ≤ 0 (B.9d)

λi+1 ≥ 0 (B.9e)

Each of the lower-level problems can be equivalently written in this form. Since the

complementary condition states that at least one of the inequality constraints or the dual

variable equals zero, (B.9c), (B.9d), and (B.9e) can be rewritten by Proposition 12, which

finalizes the proof.



144

B.10 Proof to Proposition 9

We prove Proposition 9 by proving a more general Proposition 13. To start, consider the

following QP:
x⋆ = arg min

x

1

2
xTQx+ qTx

s.t. Ax+ b+ g(z) ≤ 0

Cx+ d+ h(z) = 0

(B.10)

where x ∈ Rn, Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, d ∈ Rp, and

z ∈ Rq. g : Rq → Rm and h : Rq → Rp are functions on z, representing the perturbation

parameters. Apart from the linear parametric inequality constraints in (5.17), we also

include the linear parametric term g(z) in the inequality constraint for generalization

purposes (and it also gives the same conclusion). We call (B.10) affine-parametric, since

the parametric terms g(z) and h(z) are affine in the inequality and equality constraints.

Proposition 13. Given an affine parametric QP (B.10), the optimal primal and dual pair

(x⋆,λ⋆,ν⋆) is an affine function of the parameter (g(z),h(z)) if 1). Q is positive definite;

and 2). the linear independent constraint qualification (LICQ) is satisfied at (x⋆,λ⋆,ν⋆).

Proof. First, the LICQ states that the gradient of the active constraints (including all

equality constraints and active inequality constraints) are linearly independent [207].

Therefore, C is full row rank.Second, the equality Karush–Kuhn–Tucker (KKT) con-

ditions [207] can be denoted as:

G(x⋆,λ⋆,ν⋆, z) =


Qx⋆ + q +ATλ⋆ +CTν⋆

diag(λ⋆)(Ax⋆ + b+ g(z))

Cx⋆ + d+ h(z)

 = 0

We divide the proofs by the existence of active constraints.

When there are no active inequality constraints, λ⋆ = 0 due to complementary slack-

ness. Since Q is positive definite, the stationary condition gives x⋆ = −Q−1(q +CTν⋆).

From the equality constraint, it can be derived that ν⋆ = (CQ−1CT )−1(−CQ−1q + d+
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h(z)). Note thatCQ−1CT is positive definite (thus invertible). Let Ĉ = Q−1CT (CQ−1CT )−1,

the analytical form for x⋆ can be written as

x⋆ = (−Q−1 + ĈCQ−1)q − Ĉ(d+ h(z)) (B.11)

which is affine in h(z).

When there exist some active inequality constraints, let λ̃, Ã, b̃, and g̃(z) be the

sub-matrices whose rows are indexed by the active constraints. Therefore, ATλ⋆ = ÃT λ̃⋆

and the active inequality constraint becomes:

Ãx⋆ + b̃+ g̃(z) = 0 (B.12)

Since Q is positive definite, the stationary condition gives that

x⋆ = −Q−1(q + ÃT λ̃⋆ +CTν⋆) (B.13)

Plugging (B.13) into (B.12) and the equality condition gives the following matrix form:

Q

 λ̃⋆

ν⋆

 =

 −ÃQ−1q + b̃+ g̃(z)

−CQ−1q + d+ h(z)


︸ ︷︷ ︸

r(z)

(B.14)

where

Q =

 ÃQ−1ÃT ÃQ−1CT

CQ−1ÃT CQ−1C̃T


=

 Ã

C

Q−1

(
ÃT CT

)

Due to LICQ, (ÃT ,CT ) is full column rank. Therefore, Q is positive definite and from
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(B.14)  λ̃⋆

ν⋆

 = Q−1r(z) (B.15)

which is affine in (g̃(z)T ,h(z)T )T . Consequently, plugging (B.15) into (B.13) gives

x⋆ = −Q−1
(
q + (ÃT ,CT )Q−1r(z)

)
(B.16)

which is affine in (g̃(z)T ,h(z)T )T .

Since the optimal solution of every QP satisfying Proposition 13 is an affine function

of the parameter ((B.11) and (B.16)), the gradients of the convex layers in the dispatch

and re-dispatch problems exist and can be analytically written regardless of the perturbed

parameter.

B.11 Proof to Proposition 10

Let f(·;θ⋆FE) be the trained feature extractor on the pre-train dataset. Let Xsen ∈ RNsen×d

be the extracted feature of Dsen as input to the Linear Layer 2. Nsen is the number of user

sensitive data and d is the output size of feature extractor. Note that d≪ Nsen and Xsen

is full column rank by the condition. Meanwhile, let Ysen ∈ RNsen×n be the ground truth

load over n participants. The parameter of Linear Layer 2 is denoted as Θ ∈ Rd×n.

Let y·,i ∈ RNsen and θ·,i ∈ Rd be the i-th column of Ysen and Θ, respectively. The

fine-tuning objective can be written as

L(θ) = 1

Nsen · n

n∑
i=1

∥y·,i −Xsenθi∥22 (B.17)

Now define X̂sen = diag([Xsen, · · · ,Xsen︸ ︷︷ ︸
n

]) ∈ RNsenn×dn as a block diagonal matrix packed

by n Xsens. Ŷsen = [yT·,1, · · · ,yT·,n]T ∈ RNsenn and Θ̂ = [θT·,1, · · · ,θT·,n]T ∈ Rdn be the

flattened version of Ysen and Θ, respectively. It can be verified that (B.17) is equivalent
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to

L(θ) = 1

Nsen · n

(
Θ̂

T
X̂T

senX̂senΘ̂− 2Y T
senX̂senΘ̂+ Ŷ T

senŶsen
)

(B.18)

Since Xsen is full column rank, X̂T
senX̂sen is positive definite. Therefore, (B.18) and

(B.17) are quadratic with unique global minimizer.
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Appendix C

Supplementary Material for

Robust Moving Target Defence

Against False Data Injection

Attacks in Power Grids

C.1 Normalised Measurement Vectors and Matrices

We consider measurement noise follows independent Gaussian distribution which is not

necessarily isotropic. Let zN = R− 1
2z, eN = R− 1

2e, and JN = R− 1
2J . The measurement

equation becomes zN = JNθ+ eN . PJ , which is defined on ⟨ , ⟩
R− 1

2
, now becomes PJN =

JN (JT
NJN )−1JT

N , defined on ⟨ , ⟩. Similarly, SJN = I − PJN . It is easy to show that

R− 1
2SJ = SJNR

− 1
2 . As a result, r(zN ) = SJNeN follows (approximately) standard

normal distribution r(zN ) ∼ N (0, I). For convenience, we write PJN and SJN as PN and

SN in short of the main content.



149

C.2 D-FACTS Devices Placement

A modified minimum edge covering algorithm is proposed to find the smallest number

of D-FACTS devices covering all buses while satisfying the minimum k condition. The

pseudocode is given by Algorithm 4. In detail, the inputs to the proposed MTD deployment

algorithm are the grid information G(N , E) and the output is branch set ED. On lines 1-

2, CB represents the function to calculate the set of cycle bases of a given graph. The

algorithm 4 then removes any buses that are not included by cycle basis (thus not in

any loops) and the corresponding branches from the grid G. In line 3-4, the minimum

edge covering (MEC) problem is solved. Given the power grid topology, MEC firstly runs

the maximum (cardinality) matching algorithm to find the maximum branch set whose

ending buses are not incident to each other [138]. The maximum matching is found by

Edmonds’BLOSSOM algorithm where the size of the initial empty matching is increased

iteratively along the so-called augmenting path spotted by blossom contraction [138].

After constructing the maximum matching, a greedy algorithm is performed to add any

uncovered buses to the maximum matching set. The resulting set of branches becomes ED,

the minimum edge covering set where each bus is connected to at least one branch. Lines

5-15 guarantee the minimum k requirement where it breaks the edge in any identified cycle

bases in G2. At last, line 11-13 is added to avoid adding any new loop in G1.
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Algorithm 4: D-FACTS Devices Placement Algorithm
Input : grid topology G(N , E)
Output: branch set with D-FACTS devices ED
L = CB(G); /* find the circle basis */
Find buses N1 not in L. Remove N1 and the incident branches from G. Name the
resulting graph as G(N , E);
Emin = MEC(G), construct G1(N , Emin) and G2(N , Er) with Er = E \ Emin;
L2 = CB(G2) /* loops in non D-FACTs graph */
for loop in L2 do

for e in loop do
Construct G1(N , Emin) and G2(N , Er) where Emin ← Emin + e and
Er ← Er − e;
L1 = CB(G1);
/* loops in D-FACTs graph */
if L1 = ∅ then

break
else
G1(N , Emin) and G2(N , Er) where Emin ← Emin − e and Er ← Er + e;

end
end

end
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Appendix D

Supplementary Material for

Blending Data and Physics

Against False Data Injection

Attack: An Event-Triggered

Moving Target Defence Approach

D.1 Convert the Range of Reactance into Susceptance

Let the branch i have resistance ri ∈ (0,∞) and reactance xi ∈ (0,∞). The susceptance

bi can be determined as:

bi(xi) =
−xi

r2i + x
2
i

Therefore, bi decreases monotonically on (0, ri) and increases on (ri,∞). Considering

the permissible range of xi ∈ [x−
i ,x

+
i ], the permissible range of bi can be determined.

For ri ∈ [x−
i ,x

+
i ], b− = −ri

r2i +x
2
i
, b+ = max

(
−x+

i

r2i +x
+
i

2 ,
−x−

i

r2i +x
−
i

2

)
; for ri /∈ [x−

i ,x
+
i ], b− =

min
(

−x+
i

r2i +x
+
i

2 ,
−x−

i

r2i +x
−
i

2

)
, b+ = max

(
−x+

i

r2i +x
+
i

2 ,
−x−

i

r2i +x
−
i

2

)
.
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D.2 Hidden and Effective MTD Algorithm

The hidden and effective MTD algorithm is summarized in Algorithm 5 in detail. The

inputs of the algorithm B, C, CN , V N ,Ac
r,H1,Hhid, and λ′c have been defined in the main

content. Furthermore, define tolone and toltwo as the tolerance of stage-one and stage-two

problem, respectively. Define iteone and itetwo as the maximum iteration step in stage-one

and stage-two problem, respectively. Meanwhile, let no be the multi-run number. The

output of this algorithm is the set-point of the D-FATCS devices, denoted as bmtd.

As shown by Algorithm 5 lines 1-15, the optimal solution of (3.21) can replace bk+1

and the iteration continues. The iteration ends if the improvement in ω is limited or the

step no is achieved. The multi-run solutions are stored to be further used in stage two.

As in Algorithm 5 lines 17-25, if the maximum state one objective ω∗ is smaller than

threshold λ′c, the stage-two problem starts at the corresponding susceptance and reduces

the threshold into ω∗. If the threshold is achieved by stage one, a candidate feasible

susceptance set Dtwo is established, and multi-runs are implemented on this candidate set.

As shown in lines 27-37, for each candidate b, (3.23) is solved iteratively until convergence.

Finally, the susceptance bmtd with the smallest cost is returned in line 38.
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Algorithm 5: Hidden and Effective MTD Algorithm
Input : B, C, CN , V N , Ac

r, H1, Hhid, λ′c, tolone, toltwo, iteone, itetwo, no
Output: bmtd
/* Stage-One Algorithm */
Done = {·}, Gone = {·} /* Store multi-run results */
i = 0
while i ≤ no do

k = 0, ωk = 0
Random generate bk ∈ B
while k ≤ iteone do

Solve (3.21). Record the optimal value as ω⋆ and optimal solution as b′
bk+1 ← b′

if ω⋆ − ωk ≤ tolone then
break

end
k ← k + 1, ωk = ω⋆

end
Done = {Done, b′}, Gone = {Gone, ω⋆}

end
/* Stage-Two Algorithm */
ω∗ = maxG
if λ′c > ω∗ then

Define Itwo = {i|ωi = arg maxGone}
Dtwo = {Done[i]|i ∈ Itwo}
ω = ω∗

else
Define Itwo = {i|ωi ≥ λ′c, ωi ∈ Gone}
Dtwo = [Done[i]|i ∈ Itwo]
ω = λ′c

end
P = {·}, Q = {·}
for b ∈ Dtwo do

k = 0, bk = b, ϕk = 1e+ 5
while k ≤ itetwo do

Solve (3.23). Record the optimal value as ϕ⋆ and optimal solution as b′
if ϕk − ϕ⋆ ≤ toltwo then

break
end
k ← k + 1, ϕk = ϕ⋆

end
P = {P, b′}, Q = {Q, ϕ⋆}

end
bmtd = P[arg miniQ]
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Appendix E

Supplementary Material for

E2E-AT: A Unified Framework for

Tackling Uncertainty in

Task-aware End-to-end Learning

E.1 Network Constrained Economic Dispatch

The stage-one problem is a generator dispatch problem, which can be modelled as:

(P ⋆
g ,ϑ

⋆, s⋆) = arg minPg ,ϑ,s c
T
g Pg + cls1

Ts

s.t. P g ≤ Pg ≤ P̄g

AT diag(b)Aϑ = CgPg −Cl(ŷ − s)

P f ≤ diag(b)Aϑ ≤ P̄f

s ≥ 0

ϑref = 0

(E.1)

In (E.1), Pg and ϑ are the vector of generator dispatch and voltage angle in each

bus. A linear cost function is considered. All the equality and inequality signs in the
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constraints are element-wise. The first constraint represents the upper and lower bounds

for each generator. The second constraint represents the thermal limit on the power flow

in each transmission line where b is the line susceptance, A is the incidence matrix of

the power system. The third constraint represents the requirement for power balance on

each bus, where Cg and Cl are the incidence matrices of the generator and the load,

respectively. ŷ represents the forecast load which is parameterized by the neural network

model, for example, ŷ = f(x;θ). We also add a slack variable s ≥ 0 as a compensation for

infeasibility with large cost coefficient cls. The fifth constraint indicates that the system

is referenced to the slack bus with constant phase angle.

When the generator has been dispatched as P ⋆
g , we consider a realization on the actual

load y by solving the second stage problem (also known as redispatch problem):

(P ⋆
ls,P

⋆
gs,ϑ

⋆) = arg minPls,Pgs,ϑ c
T
lsPls + c

T
gsPgs

subject to AT diag(b)Aϑ = Cg(P
⋆
g − Pgs)

−Cl(y − Pls)

P f ≤ diag(b)Aϑ ≤ P̄f

Pls ≥ 0,Pgs ≥ 0

ϑref = 0

(E.2)

The objective of stage two is to balance the load and to solve any violation of physical

constraints of power grid using load shedding Pls if the generator dispatch is lower than

the actual load and energy storage Pgs if the generator dispatch is higher than the actual

load. Since load shedding (similar to blackout) is more critical and should be avoided as

much as possible, it is assigned by a larger penalty, i.e. cls ≫ cgs.

We highlight that our formulation on power system operation is more realistic than [19],

in which the behavior of different loads and network constraints are ignored. This results

in more complex COs. In detail, the two COs have more than 60 decision variables and

150 constraints in total, which needs to be exactly solved for every forward pass.
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E.2 Certifying the Load Forecasting E2E Learning

Using Proposition 8 and the mixed integer reformulation of NN (4.4), an exact adversarial

attack on input (x,y) can be found by MILP. It is known that the value of the ‘big M’

used for NN linearization (e.g. the lower and upper bounds of the output of each NN layer

(4.4), the upper bounds of the active inequality dual variables, and the lower bounds of

the inactive inequality constraints of the COs) is essential to the performance of MILP

solution. Therefore, interval bound propagation (IBP) [153] is used to estimate the layers’

bounds in NN. As for COs, we set M = 105 by experience.

E.2.1 Formulation

By using Proposition 8 and the mixed integer reformulation of NN (4.4), the exact input

space adversarial attack on sample (x,y) can be found by an MILP:

δ⋆ = maxδ cTg Pg + c
T
lsPls + c

T
gsPgs

subject to Pls,Pgs ∈ CReispatch
Lin-KKT (Pls,Pgs;Pg)

Pg ∈ CDispatch
Lin-KKT(Pg; ŷ)

ŷ ∈ Cnn(x+ δ;θ)

(E.3)

where Cnn(·) is the mixed integer linear representation of the trained neural network by

(4.4), CDispatch
Lin-KKT(·) and CReispatch

Lin-KKT (·) are the linearized KKT conditions of the lower level

dispatch and redispatch problems, respectively by Proposition 8. Note that (E.3) is a

rather simplified representation that omits the detailed formulation of the constraints, the

integer variables in Cnn(·), CDispatch
Lin-KKT, and CReispatch

Lin-KKT , dual variblaes, as well as the associated

lower and upper bounds (big-M) of the integers. Nonetheless, (E.3) is formulated as MILP,

which can be solved by solvers like Gurobi.
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E.2.2 Interval Bound Propagation (IBP)

Based on (4.4), the lower and upper bounds of each layer in NN can be estimated linearly

as:

l̂i = max {0, li}

ûi = max {0,ui}

li+1 = max {0,Wi} · l̂i + min {0,Wi} · ûi + bi

ui+1 = min {0,Wi} · l̂i + max {0,Wi} · ûi + bi

(E.4)

for i = 1, · · · , d − 1. The initial bound is determined by the attack budget ϵ, that is,

l̂1 = x− ϵ · 1 and û1 = x+ ϵ · 1.

E.3 Details Experiment Settings

E.3.1 Data Source

The IEEE bus-14 system is modified from PyPower1.

The meteorological features in the Texas Backbone Power System [164] include tem-

perature (k), longwave radiation (w / m2), shortwave radiation (w / m2), zonal wind

speed (m / s), meridional wind speed (m / s) and wind speed (m / s) which are nor-

malized into [0,1]. The calendar feature includes the cosine and sin of the weekday in a

week and hour in a day according to their individual period. We pack the meteorologi-

cal features of 14 buses as well as the 4 calendric features. Therefore, a single datum is

(xi,yi) ∈ R4+6∗14 × R14. We map the dataset to the scale that is suitable for the bus-14

system. In detail, we start at small ground-truth load profile and gradually increase to

just have the feasible solution of the dispatch and redispatch problems.
1https://github.com/rwl/PYPOWER/blob/master/pypower/case14.py.

https://github.com/rwl/PYPOWER/blob/master/pypower/case14.py
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E.3.2 Packages

During inference, we formulate the dispatch and redispatch problem by Cvxpy [148], which

are solved by calling Gurobi2. When calculating the gradient, we use PyTorch automatic

differentiation package and CvxpyLayers to implement fast batched forward and backward

passes [106].

E.3.3 Network structure

The forecast neural network has three hidden layers with output sizes of 200, 200, and

100. ReLU activations are added between layers. We also add a ReLU activation before

the convex layer so that the forecast load is guaranteed to be positive and the adversarial

attack cannot result in negative forecast load as well. The ReLU layer is also added when

evaluating the certified approach.

E.3.4 Training Settings

For all experiments, we set batch size as 32 and use Adam optimizer [144]. We train the

NN with MSE loss for 250 epochs. The learning rate is 10−3 with cosine annealing. We

store the NN states at 200 epochs and warm-start natural E2E learning for 50 epochs with

learning rate 10−5. For E2E-AT, we warm-start training from the state trained by natural

E2E learning for 100 epochs with learning rate 10−5. As we set the PGD step to be 7, it

is equivalent to 14 epochs under adversarial training for free setting.

For the input space attack, we only attack the meteorological features in the input

as the calendric features are discrete and can be easily verified by the operator. For

uncertainties in the unpredictable parameter in COs, the susceptance of the transmission

line is attacked. This is a realistic setting, as the susceptance of the transmission lines may

vary due to temperature changes or can be intentionally altered by the system operator

via electronic devices [74]. However, such changes cannot be detected when forecasting

the load and during the dispatch stage.
2https://www.gurobi.com.

https://www.gurobi.com
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Table E.1: Performances of the E2E-AT. The model is trained on a larger dataset and
evaluated on the test dataset.

Training Method Clean Input Attack, ϵx CO Attack, ϵϕ Integrated Attack, (ϵx, ϵϕ)
ϵx ϵϕ α N/A 0.015 0.04 0.06 0.05 0.10 0.15 (0.015,0.05) (0.04,0.10) (0.06,0.15)

NAT: Natural Training with Task Loss
0 0 0 220.3 943.8 2366.2 3528.0 852.8 2254.5 3679.3 1526.4 4287.7 6477.6

AT-MSE: Adversarial Training with MSE Loss
0.015 N/A N/A 356.9 836.0 1792.3 2552.5 1294.3 2705.0 4069.1 1727.0 3864.4 5844.9
0.04 N/A N/A 462.3 745.3 1300.0 1820.6 1292.0 2647.1 4024.5 1558.3 3414.7 5273.2
0.06 N/A N/A 646.4 846.5 1229.5 1586.8 1352.7 2652.2 4022.7 1540.6 3169.1 4967.4

AT-INPUT: Adversarial Training with Task Loss on the Input Uncertainty

0.015 0 1.0 302.1 430.3 692.3 981.3 369.2 884.5 1939.9 488.3 1374.5 2981.5
0.5 240.9 544.4 1322.8 2009.5 756.5 2038.0 3455.0 1074.3 3361.1 5566.8

0.04 0 1.0 429.1 539.4 755.7 950.9 449.5 517.3 656.0 552.1 802.2 1050.6
0.5 280.9 509.7 972.0 1403.5 739.3 1875.1 3259.2 940.9 2687.7 4647.4

0.06 0 1.0 436.4 528.2 706.5 859.0 449.6 490.7 584.6 538.1 729.9 940.9
0.5 307.8 432.1 659.9 863.5 553.0 1350.5 2500.5 660.0 1788.9 3268.0

AT-PARA: Adversarial Training with Task Loss on the CO Uncertainty

0 0.05 1.0 223.0 1003.9 2532.6 3717.9 231.1 967.3 2526.4 1014.9 2908.2 5028.1
0.5 224.8 1019.5 2538.8 3717.7 239.0 1096.5 2677.8 1028.5 3000.9 5222.0

0 0.10 1.0 227.3 934.2 2456.0 3653.9 227.3 262.7 956.7 949.4 2483.2 3912.2
0.5 226.9 927.3 2325.5 3392.5 227.1 269.6 1072.2 928.5 2326.8 3760.9

0 0.15 1.0 244.8 1042.6 2552.3 3737.4 244.8 245.5 269.1 1039.3 2545.7 3847.1
0.5 237.1 974.3 2470.4 3646.2 237.1 237.7 286.6 978.2 2455.3 3733.9

AT-BOTH: Adversarial Training with Task Loss on the Integrated Uncertainties

0.015 0.05 1.0 305.9 447.8 734.3 1063.7 308.7 389.2 643.5 450.2 816.0 1296.1
0.5 267.2 743.7 1734.4 2593.4 404.5 1671.6 3150.6 806.5 2865.1 5163.7

0.04 0.10 1.0 385.4 462.6 600.0 731.7 385.8 394.0 438.8 461.4 608.8 782.4
0.5 293.3 516.2 961.2 1376.6 296.4 456.6 1069.9 516.2 1061.1 1849.6

In addition, we noticed that the objective of E2E adversarial training is nonsmooth.

For example, the training objective can be significantly increased when certain inactive

CO constraints become active or vice versa. Therefore, we use gradient clip to restrict the

1-norm of the gradient to be maximum 2.0 when updating the network. We found that

this setting can result in more stable training.

E.4 Extra Experiment Results

E.4.1 Robust Performance on the Test Dataset

In the main content, we train on 1.0k random samples in the Texas backbone power

system and report the clean and robust task-aware cost. Here we train on the entire

dataset which contains 8760 samples (i.e., one hour resolution of year 2019). We do

random train-test split with proportion 8:2. The training epoch is increased to 200 (or
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28 epochs using ‘adversarial training for free’) and the batch size is increased to 64. The

remaining training settings are the same as before. We then attack the trained model and

report the performance on the test dataset.

To observe some new results, we increase the attack budget of the input space uncer-

tainty as ϵx ∈ [0.015, 0.04, 0.06] to have a task-aware cost comparable to the parameter

attack and set the parameter attack budget as ϵϕ ∈ [0.05, 0.10, 0.15]. Furthermore, We

report the worst task-aware cost within three multi-runs. Note that we select the worst

attack vector for each sample in the minibatch.

The extra experiment results are shown in Table E.1. In general terms, the extra

experiment in the large data set illustrates similar results to those in Table 4.1. And the

main difference is caused by the increase in the input attack budget ϵx.

We summarize some of the findings below.

1. In all E2E-AT, the clean accuracy decreases as the attack budget increases, which is

consistent to the conventional adversarial training. Moreover, model trained under

larger attack budget can also improve robustness under smaller attack budget.

2. Hyperparameter α can balance clean accuracy and robust accuracy, which is consis-

tent with conventional adversarial training.

3. The AT-MSE can impact the robust accuracy under input attack (but still much

higher than E2E-AT), but cannot improve the robustness of CO, which actually

becomes worse compared to NAT. This is because the AT-MSE only captures the

input uncertainties and fits to the MSE loss. Therefore, it cannot be generalized to

the uncertainty of CO.

4. Both input and CO uncertainties must be considered when designing the E2E learn-

ing task. E2E-AT is an effective approach to improve the model robustness. And

the unified training (AT-BOTH) can result in the best task-aware costs in most of

the cases.

5. In the new experiment, it can be observed that training under input space adversaries
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can improve not only the input robustness but the CO robustness. We actually have

opposite results of the experiment in Table 4.1 in which the robustness of CO can

improve the robustness of the input. We argue that the main reason is caused by the

different influence of the input and CO uncertainties under different attack budgets.

This explains why AT-BOTH can significantly improve the robustness of CO but

only has a limited improvement on the robustness of input uncertainty. We will

discuss this point in the next section.

E.4.2 Gradient Analysis of E2E-AT on the Relationship between Input

and CO Uncertainties

Based on the experiment results in Table 4.1 and Table E.1, we speculate that the ro-

bustness of one uncertainty can improve the robustness of the other, that is, the two

uncertainties are not contradictory in E2E-AT. We thereby give a more detailed discus-

sion.

To start, the two sources of uncertainties, e.g., input and CO uncertainties, are handled

by training a same robust NN, which is a parametric model to forecast the predictable

parameter of CO. According to the sensitivity analysis [157], a robust E2E model under

uncertain COs implies that the robust NN can forecast a parameter such that the activa-

tions of constraints will not be significantly changed. From the structure of E2E learning,

the input uncertainty is amplified by the NN [153], which becomes an additional uncertain

parameter of the COs. Similarly, an input-robust E2E model also requires that the NN

forecast does not trigger significant constraint violations. Therefore, we speculate that the

E2E-AT training objectives under input and CO uncertainties are not contradictory, as

they are both reflected and controlled by the behavior of the COs.

However, the effectiveness of AT-INPUT on CO uncertainties (or AT-PARA on input

uncertainties) depends on the individual attack budget, which can be analyzed by a gradi-

ent analysis. From Table E.1, we compare the uncertainty of the input and unpredictable

parameters in CO by designing the attack budget ϵx and ϵϕ to have a similar task-aware
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cost in the clean E2E model. We conclude that the robustness of CO is easier to improve

than the robustness of input, and improving the robustness of input can improve the ro-

bustness of CO. To verify this point, we calculate the average ℓ1 norm of the gradient

of the NN when input and unpredictable parameter attacks are separately generated.

Both the NN without E2E-AT (warm started by E2E learning) and the NN updated by

AT-BOTH (with ϵx = 0.04 and ϵϕ = 0.10) are evaluated.

First, as shown in Table E.2, the gradient of E2E-AT is very large and requires a gradi-

ent clip during training. Second, although the initial task-aware costs are similar for input

and parameter adversaries (2366 vs 2354), the initial gradient under input adversaries is

10 times higher than it of parameter adversaries. Even after AT-BOTH, the difference

is still more than 10 times. This implies that the impact of the CO uncertainties on the

task-aware cost is much less than the input uncertainties under the current attack budget.

Table E.2: Un-clipped average gradients for E2E-AT in ℓ1-norm.

Before E2E-AT After E2E-AT
Input Attack 4.5× 105 8.4× 104

CO Attack 5.8× 104 5.7× 103

These findings do not violate our initial goal of unifying uncertainties in E2E learning.

Actually, we can show that the improvements in the two uncertainties are not contradic-

tory. Otherwise, improving the uncertainties of one cannot improve the uncertainty of

the other. To verify the idea, we plot the cosine similarities of the gradients of NN for

all mini-batches of size 16 on the entire training dataset. As shown in Fig.E.1, the cosine

similarities are close to one, meaning that training on one of the uncertainties can also

improve the robustness of the other, which is the same as observed by the experiment

results.

Based on the experiment results in Table 4.1 and E.1, as well as the discussions above,

we conjecture that, assuming the training objectives on improving the robustness of dif-

ferent uncertainties sources are not contradictory:

1. The gradients of NN under the adversaries/uncertainties from different sources can

be used to model their impacts on E2E-AT. It can also give a hint on setting the
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Figure E.1: Cosine similarities of the gradients of NN under the input space adversarial
attack and unpredictable parameter attack in CO. (a): Before E2E-AT (warm start from
E2E learning); (b): After E2E-AT.

individual attack budget. And to have more balanced adversarial training behaviors

among different uncertainty sources, the attack budgets might be set according to

the initial NN gradients other than the task-aware costs.

2. The dominating uncertainty, for example, the one with a higher NN gradient, can

dominate the training process and be also effective on the remaining uncertainties.

On the contrary, uncertainty with a smaller impact cannot significantly improve the

robustness of the others.
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Appendix F

Supplementary Material for

Task-Aware Machine Unlearning

and Its Application in Load

Forecasting

F.1 Power System Operation Models

In the US, the following network constrained economic dispatch (NCED) problem is widely

adopted [25]. Given the forecast load ŷ on each bus,

(P ⋆
g ,ϑ

⋆, s⋆) = arg min
Pg ,ϑ,s

P T
g QgPg + c

T
g Pg + cls∥s∥1

s.t. P g ≤ Pg ≤ P̄g

Bbusϑ = CgPg −Cl(ŷ − s)

P f ≤ Bfϑ ≤ P̄f

s ≥ 0, ϑref = 0
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In the dispatch problem, a quadratic generator cost is adopted. In addition, Bbus and Bf

are the bus susceptance and branch succeptance matrices, respectively. Cg and Cl are the

generator and load incidence matrices, respectively. A slack variable s ≥ 0 with large cost

cls is introduced to ensure feasibility.

After the generators are scheduled, any over- and/or under- generations are penalized

when the actual load y is realized in real time. In detail, given P ⋆
g , we consider the

following optimization problem modified from [116]:

(P ⋆
ls,P

⋆
gs,ϑ

⋆) = arg min
Pls,Pgs,ϑ

cls2∥Pls∥22 + cgs2∥Pgs∥22

+ cls1∥Pls∥1 + cgs1∥Pgs∥1

s.t. Bbusϑ = Cg(P
⋆
g − Pgs)−Cl(y − Pls)

P f ≤ Bfϑ ≤ P̄f

Pls ≥ 0, Pgs ≥ 0, ϑref = 0

where Pls and Pgs are the load shedding and generation storage. The second-order cost

cgs2 < cls2 and linear cost cgs1 < cls1 are set to penalize more on the load shedding.

F.2 Detailed Experiment Settings

F.2.1 Data Description

The meteorological features in the Texas Backbone Power System [164] include tempera-

ture (k), long-wave radiation (w / m2), short-wave radiation (w / m2), zonal wind speed

(m / s), meridional wind speed (m / s) and wind speed (m / s), which are normalized

according to their individual mean and standard deviation. The calendar feature includes

the cosine and sin of the weekday in a week and the hour in a day according to their

individual period. Therefore, a single datum is (xi,yi) ∈ R14×10×R14. We also normalize

the target load by its mean and std. Meanwhile, we use the first 80% data as training

dataset and the remaining as test dataset. Finally, the IEEE bus-14 system is modified

from PyPower.
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F.2.2 Linear Load Forecaster

The linear load forecaster can be found by

min
θ

1

N · 14

N∑
i=1

∥xiθ − yi∥22

where θ ∈ R10. The quadratic objective can be solved analytically or by using conjugate

gradient descent.

F.2.3 Convolutional NN Load Forecaster

A CNN is used as feature extractor, which is summarized in Table.F.1.

Table F.1: Structure of the CNN load forecasting model. For the convolutional layer,
(k : w × h+ s+ p) represents the k number of filters, kernel size w × h with s stride and
p padding in both sides. For the linear layer, the number indicates the output size. The
activation function is written in bracket.

Conv Layer 1 8: 3 × 3 + 1 + 1 (ReLU)
Conv Layer 2 8: 4 × 4 + 2 + 1 (ReLU)
Linear Layer 1 64 (tanh)
Linear Layer 2 14 (No activation)

F.2.4 MLP-Mixer Load Forecaster

We also tested the unlearning performance on other NN-based feature extractor, e.g. an

MLP-Mixer [200]. Notably, MLP-Mixer only contains two types of multi-layer perceptrons

(MLPs), which iteratively capture the information on the feature patches and across the

feature patches. In our load forecast setting, it iteratively captures the features within

each load and across each load. Regardless of its simple structure, it has been reported

that MLP-Mixer can have a performance comparable to CNN or attention-based networks,

e.g., transformers [200]. The structure of MLP-Mixer is summarized in Table F.2.

Traing Configuration

We use the same training specifications for CNN and MLP-Mixer. We select the first 30%

in the training dataset as the pre-train dataset and the remaining as the user-sensitive
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Table F.2: Structure of the MLP-Mixer load forecasting model with exact settings in the
original MLP-Mixer paper. One basic Mixer block contains two MLP blocks. Each MLP
block contains two linear layers and one activation function between them. We also apply
layer norms before each MLP block and pooling layers wherever necessary.

No. of Patches 2
No. of Mixer Blocks 2

MLP 64 (GeLU)
Linear Layer 1 64 (tanh)
Linear Layer 2 14

dataset. The NN forecaster is trained with 100 epochs, batch size of 16, Adam optimizer

with learning rate of 10−4 and cosine annealing. We also use early stop and record the

model with the best performance.

F.3 Extra Experiment Results

The detailed unlearning performances on the CNN and MLP-Mixer based load forecasting

models can be found in Fig.F.1 and Fig.F.2, respectively.
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Figure F.1: Performance on the CNN load forecaster. (a)-(c): performance of complete
machine unlearning algorithm (5.8); (d)-(f): Performance of PAMU and TAMU with
different test criteria
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Figure F.2: Performance on the MLP-Mixer load forecaster. (a)-(c): performance of
complete machine unlearning algorithm (5.8); (d)-(f): Performance of PAMU and TAMU
with different test criteria
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