
CHARACTERIZING SLOPES FOR 52

JOHN A. BALDWIN AND STEVEN SIVEK

Abstract. We prove that all rational slopes are characterizing for the knot 52, except
possibly for positive integers. Along the way, we classify the Dehn surgeries on knots in S3

that produce the Brieskorn sphere Σ(2, 3, 11), and we study knots on which large integral
surgeries are almost L-spaces.

1. Introduction

Let K ⊂ S3 be a knot. Then a rational number r is said to be a characterizing slope for
K if the result S3

r (K) of Dehn surgery on K with slope r does not arise as r-surgery on any
other knot: in other words, if whenever there is an orientation-preserving homeomorphism

S3
r (K) ∼= S3

r (K ′),

the knot K ′ must be isotopic to K.

All rational numbers are characterizing slopes for the unknot, as well as for the trefoils
and the figure eight knot. These are theorems of Kronheimer–Mrowka–Ozsváth–Szabó
[KMOS07] and of Ozsváth–Szabó [OS19], respectively, each relying on a theorem (due to
Ghiggini [Ghi08] in the latter case) asserting that some form of Floer homology detects the
knot in question. Ni–Zhang and McCoy [NZ14, McC20, McC21] have proved that many
slopes are characterizing for torus knots, especially T2,5 [NZ23]. More generally, Lackenby
[Lac19] has shown that every knot has infinitely many characterizing slopes, and McCoy
[McC19] has strengthened this in the hyperbolic case.

Our main result, Theorem 1.1, says that almost all slopes are characterizing for the knot
52, shown in Figure 1. This is strongest result to date for any non-fibered knot and for any
hyperbolic knot other than the figure eight:

Theorem 1.1. Let r be any rational number other than a positive integer. If for some knot
K ⊂ S3 there is an orientation-preserving homeomorphism

S3
r (K) ∼= S3

r (52),

then K is isotopic to 52. In other words, every r ∈ Q \ Z>0 is characterizing for 52.

It is possible that no positive integer is characterizing for 52 (and hence that Theorem
1.1 is optimal). Indeed, Baker–Motegi [BM18] have exhibited hyperbolic knots such as 86

with no integral characterizing slopes, and Abe–Tagami [AT21] proved similar results for
many other low-crossing knots. At the very least, Proposition 8.3 says that the positive
integer 1 is not characterizing for 52:
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52 52

Figure 1. The knot 52 (left), and its mirror 52 (right).

Proposition 1.2. There is an orientation-preserving homeomorphism

S3
1(52) ∼= S3

1(P (−3, 3, 8)),

so 1 is not a characterizing slope for 52.

This fact was originally discovered by Akbulut [Akb91], who also showed that the traces
of the corresponding surgeries are homeomorphic but not diffeomorphic.

Remark 1.3. The orientation-preserving condition is a necessary part of Theorem 1.1. For
example, there are homeomorphisms

S3
1/2(52) ∼= −S3

1/2(61), S3
1(52) ∼= −S3

1(61).

This can be deduced from [BS21, Proposition 7.2], in which 52 = K(2, 4) and 61 = K(−2, 4).

As an application, we determine all of the ways in which the Brieskorn sphere Σ(2, 3, 11)
can arise from Dehn surgery on a knot in S3:

Theorem 1.4. Given a knot K ⊂ S3 and a rational number r, there exists an orientation-
preserving homeomorphism

S3
r (K) ∼= Σ(2, 3, 11)

if and only if (K, r) is either (T−2,3,−1
2) or (52,−1).

Similar results have been achieved for Σ(2, 3, 5) by Ghiggini [Ghi08, Corollary 1.7], and
for Σ(2, 3, 7) by Ozsváth–Szabó [OS19, Corollary 1.3].

The proof of Theorem 1.1 relies on our recent classification [BS22] of genus-1 knots which
are nearly fibered from the point of view of knot Floer homology:

Theorem 1.5 ([BS22, Theorem 1.2]). Let K ⊂ S3 be a knot of Seifert genus 1 such that

dimQ ĤFK (K, 1;Q) = 2.

Then K is one of the knots

52, 15n43522, Wh−(T2,3, 2), Wh+(T2,3, 2), P (−3, 3, 2n+ 1) (n ∈ Z)

or their mirrors; the knot Floer homologies of these knots are given in Table 1.

Theorem 1.1 is then a combination of Theorems 1.6 and 1.7 below. By way of notation,
whenever we discuss an isomorphism between Heegaard Floer homologies of the form

HF +(Y ;Q) ∼= HF +(Y ′;Q)

in this paper, we will always mean an isomorphism of Q[U ]-modules which respects a decom-
position of each side into summands indexed by Spinc structures on Y and Y ′, respectively.
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K ĤFK (K, 1;Q) ĤFK (K, 0;Q) ĤFK (K,−1;Q)

52 Q2
(2) Q3

(1) Q2
(0)

15n43522 Q2
(0) Q4

(−1) ⊕Q(0) Q2
(−2)

Wh−(T2,3, 2) Q2
(0) Q4

(−1) ⊕Q(0) Q2
(−2)

P (−3, 3, 2n+ 1) Q2
(1) Q5

(0) Q2
(−1)

Wh+(T2,3, 2) Q2
(−1) Q4

(−2) ⊕Q(0) Q2
(−3)

Table 1. The knot Floer homologies of the knots in Theorem 1.5, grouped
by whether the Alexander polynomial is 2t−3+2t−1 or −2t+5−2t−1. The
subscripts denote Maslov gradings.

Theorem 1.6 (Theorem 4.1). Suppose for some knot K ⊂ S3 and rational number r ≥ 0
that there is an isomorphism

HF +(S3
r (K);Q) ∼= HF +(S3

r (52);Q)

of graded Q[U ]-modules. Then K is isotopic to 52.

Theorem 1.6 immediately implies the case r ≤ 0 of Theorem 1.1, via the relation

S3
r (K) ∼= −S3

−r(K),

and the relationship between the Heegaard Floer homologies of Y and −Y . For the case
r > 0, we prove the following:

Theorem 1.7. Suppose for some knot K ⊂ S3 and rational number r > 0 that there is an
orientation-preserving homeomorphism

S3
r (K) ∼= S3

r (52),

but that K is not isotopic to 52. Then r is a positive integer, and g = g(K) is at least 2;
if g is even then r divides g − 1, while if g is odd then r divides 2g − 2. Moreover, K has
Alexander polynomial

∆K(t) = tg − 2tg−1 + tg−2 + 1 + t2−g − 2t1−g + t−g,

and the knot Floer homology ĤFK (K;Q) is completely determined as a bigraded Q-vector
space by r and g: it is 9-dimensional, and there is a Q summand in Alexander–Maslov
bigrading (0, 0) while the rest is supported in bigradings (a,m) = (a, a+ δ), where

δ = 2− g +

{
−(g − 1)

(
g−1
r − 1

)
, r | g − 1

− 1
4r (2g − 2− r)2, r - g − 1.

Most of the content of Theorem 1.7 is in Theorem 6.13, which makes heavy use of the
Heegaard Floer mapping cone formula for Dehn surgeries. However, the latter assumes that
g ≥ 2, and it only concludes that r divides 2g− 2. We use an obstruction due to Ito [Ito20]
involving finite type invariants to handle the case g = 1 in Proposition 7.6, and to improve
the condition r | 2g − 2 to r | g − 1 for even g in Proposition 7.7.
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Remark 1.8. In fact, the proof of Theorem 1.7 shows that

HF +(S3
r (K);Q) 6∼= HF +(S3

r (52);Q)

in nearly all cases where it asserts that S3
r (K) 6∼= S3

r (52). The exceptions are when g(K) ≥ 2
is even and r divides 2g(K)− 2 but not g(K)− 1, and when g(K) = 1 and K is one of the
knots listed in Theorem 1.5 with Alexander polynomial 2t− 3 + 2t−1. In the latter case, we

require the full strength of Theorem 1.5, rather than just the claim that ĤFK detects 52, in
order to enumerate the remaining cases and to rule them out one by one in Proposition 7.6.

Remark 1.9. If g(K) = 2 and S3
r (K) ∼= S3

r (52), then Theorem 1.7 says that r = 1 and
δ = 0. This implies that K has the same knot Floer homology as of any of the pretzel
knots P (−3, 3, 2n), where n ∈ Z. We conjecture that it must then actually be isotopic to
P (−3, 3, 2n) for some n, in which case Remark 7.8 will show that it is P (−3, 3, 8).

The proofs of Theorems 1.6 and 1.7 rely heavily on formulas which determine the Hee-
gaard Floer homology of Dehn surgeries on a knot K in terms of the canonical Z⊕Z filtration
on CFK∞(K). This includes both the “large surgeries” formula of [OS04b], which applies
to surgeries of integral slope n ≥ 2g(K) − 1, and the “mapping cone” formula of [OS11],
which applies to surgeries of any positive rational slope. This should come as no surprise to
readers familiar with previous works on characterizing slopes such as [OS19], although the
application of these formulae to the problem considered here is substantially more involved.
We briefly outline their uses below.

First, for Theorem 1.6, we are able to avoid the heavy machinery of the mapping cone
formula by making use of the fact that 52 is very nearly an L-space knot.

Definition 1.10. We say that a closed 3-manifold Y is an almost L-space if it is a rational
homology 3-sphere and satisfies

dim ĤF (Y ;Q) = |H1(Y ;Z)|+ 2.

We say that a nontrivial knot K ⊂ S3 is an almost L-space knot if

dim ĤF (S3
n(K);Q) = n+ 2

(that is, if S3
n(K) is an almost L-space) for some integer n ≥ 2g(K)− 1, in which case one

can show that it holds for all n ≥ 2g(K)− 1.

Then 52 is an almost L-space knot, and there are very few other examples with genus 1.
The following is a combination of Propositions 3.9 and 3.10.

Theorem 1.11. If K ⊂ S3 is an almost L-space knot, then one of the following is true:

(1) K is the left-handed trefoil, figure eight knot, or 52.
(2) g(K) ≥ 2, and K is fibered and strongly quasipositive.

With this theorem at hand, we are able to show quickly that if there is an isomorphism

HF +(S3
r (K);Q) ∼= HF +(S3

r (52);Q)

for some rational r ≥ 0, then K must also be an almost L-space knot of genus 1, and then
we only have to rule out the left-handed trefoil and the figure eight. The following is also
a straightforward consequence of Theorem 1.11.

Theorem 1.12 (Theorem 3.14). Let K ⊂ S3 be a knot. Then dimQ ĤF (S3
1(K);Q) = 3 if

and only if K is either the left-handed trefoil, figure eight, or 52.
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Theorem 1.7 requires substantially more effort than Theorem 1.6. The key input is a
computation in §6.2 showing that for any r > 0 and any Spinc structure s on S3

r (52), the
Heegaard Floer homology HF +(S3

r (52), s;Q) is always isomorphic to something of the form

T +
(0) ⊕Q2n

(0)

as a relatively graded Q[U ]-module. Here,

T + ∼=
Q[U,U−1]

U ·Q[U ]
,

the U -action lowers the grading by 2, and the “(0)” subscripts indicate that the element
1 ∈ T and the Q2n summand both lie in grading 0. If S3

r (K) ∼= S3
r (52) for some r > 0, then

in §5 we find that this imposes strong restrictions on CFK∞(K). In the case g(K) ≥ 2, we
see in §6 that these restrictions often imply that for some s ∈ Spinc(S3

r (K)), either:

• ker(U) ⊂ HF +(S3
r (K), s;Q) cannot lie in a single grading, or

• HF +(S3
r (K), s;Q) ∼= T + ⊕Q.

The first of these applies when 0 < r < 1, or when r = p/q ≥ 1 is non-integral and
p | 2g(K) − 2, and the second applies when r = p/q ≥ 1 and p - 2g(K) − 2. Both of these
contradict the computation of HF +(S3

r (52);Q), completing the proof in these cases.

1.1. Notation. All Floer homologies in this paper will be taken with coefficients in Q. We
will therefore omit the coefficients from the notation going forward.

1.2. Organization. In §2, we review some facts about knot Floer homology and the large
surgery and mapping cone formulas, and then carry out some computations for the knots

of Theorem 1.5. In §3, we use this to study the dimension of ĤF of Dehn surgeries, proving
Theorem 1.11 about almost L-space knots. We apply this in §4 to prove Theorem 1.6. In
§5, we begin to work toward Theorem 1.7, eliminating all but finitely many K in the case
g(K) = 1 and then obtaining some restrictions in the case g(K) ≥ 2, and in §6 we apply the
mapping cone formula together with these restrictions to complete the proof of Theorem 1.7
for g(K) ≥ 2, modulo the modest improvement of Proposition 7.7. In §7, we use finite type
invariants to achieve that improvement and to finish off the case g(K) = 1, completing the
proof of Theorem 1.7 and hence of Theorem 1.1.

In the last few sections we study some specific examples of surgeries. In §8, we prove
Proposition 8.3, asserting that 1 is not a characterizing slope for 52, and then in §9 we prove
Theorem 1.4 on the Dehn surgery characterization of Σ(2, 3, 11).

1.3. Acknowledgements. We thank Tetsuya Ito for helpful correspondence, and the anony-
mous referees for their feedback.

2. Heegaard Floer homology of surgeries on knots

2.1. The Heegaard Floer mapping cone formula. Knot Floer homology [OS04b, Ras03]
assigns to any nullhomologous knot K ⊂ S3 a graded, Z⊕ Z-filtered chain complex

(CFK∞(K), ∂∞),

whose filtered chain homotopy type completely determines the Heegaard Floer homology of
Dehn surgeries on K, where we recall that we are working with coefficients in Q throughout.
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As a matter of convention, we use coordinates (i, j) to refer to the two filtration levels,
and notation like

C{i = 0, j ≤ 1} ⊂ CFK∞(K)

to refer to the subquotient spanned by generators which lie in the indicated subset of the
(i, j)-plane. We will also use the shorthand

C{i0, j0} := C{i = i0, j = j0}.

The differential lowers the grading by 1 and does not increase either filtration, meaning
that each C∗{i ≤ i0, j ≤ j0} is a subcomplex: we have

∂∞ (C∗{i ≤ i0, j ≤ j0}) ⊂ C∗−1{i ≤ i0, j ≤ j0}

for all (i0, j0).

With this in mind, following [Ras03, §4.5 and §5.1], one can take CFK∞ to be freely

generated over Q[U,U−1] by ĤFK (K;Q). We take

C∗{0, a} ∼= ĤFK ∗(K, a;Q),

and the U -action gives isomorphisms

Uk : C∗{0, a}
∼=−→ C∗−2k{−k, a− k}

for all k ∈ Z. In the form specified here, the restriction of the differential ∂∞ to each
C{i0, j0} is zero. See the “reduction lemma” of [HW18, §2.1] for details.

Given this, there are by definition a pair of chain homotopy equivalences

C{i = 0} ' ĈF (S3),

so the induced complex (C{i = 0}, ∂′) has homology ĤF (S3) ∼= Q supported in grading 0.
The Ozsváth–Szabó tau invariant τ(K) [OS03c] is the minimum j-filtration level at which
this generator appears. Similarly, we have a chain homotopy equivalence

C{i ≥ 0} ' CF +(S3)

and then

H∗{i ≥ 0} ∼= HF +(S3) ∼= T + :=
Q[U,U−1]

U ·Q[U ]
.

Definition 2.1. Given CFK∞(K) as above, we define subquotient complexes

A+
s = C{max(i, j − s) ≥ 0}, B+ = C{i ≥ 0}

Âs = C{max(i, j − s) = 0}, B̂ = C{i = 0}

with differentials induced by ∂∞, for all s ∈ Z. These come with chain maps

v+
s : A+

s → B+, h+
s : A+

s → B+

in which v+
s is defined by projection onto C{i ≥ 0}, and h+

s is a composition

A+
s

proj−−→ C{j ≥ s} Us−−→ C{j ≥ 0} '−→ C{i ≥ 0} = B+.

The last arrow is a homotopy equivalence which exchanges the i and j filtrations; we omit
its definition.
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Remark 2.2. The projection v+
s is an isomorphism at the chain level for all s ≥ g(K),

since the kernel consists of the direct sum of subspaces

C{i, j} ∼= C{0, j − i} ∼= ĤFK (K, j − i)

with i ≤ −1 and j ≥ s ≥ g(K), and then ĤFK (K, j − i) = 0 because j − i ≥ g(K) + 1.
Similarly, each h+

s is an isomorphism for all s ≤ −g(K).

These complexes determine the Heegaard Floer homology of “large” surgeries on K, in
the following sense.

Theorem 2.3 ([OS04b, Theorem 4.4]). Choose a positive integer p ≥ 2g(K) − 1. Then
there is a canonical affine map Spinc(S3

p(K)) ∼= Z/pZ (see [OS08, Lemma 2.2]) such that
we have relatively graded isomorphisms

HF +(S3
p(K), s) ∼= H∗(A

+
s ) and ĤF (S3

p(K), s) ∼= H∗(Âs)

for any integer s with |s| ≤ p
2 .

Remark 2.4. The definition of the map Spinc(S3
p(K)) ∼= Z/pZ in [OS08, Lemma 2.2]

implies that if s ∈ Spinc(S3
p(K)) is identified with s ∈ Z/pZ, then the conjugate Spinc

structure s is identified with −s.

They also determine the invariants of arbitrary Dehn surgery, though in a more compli-
cated way. Given relatively prime integers p, q > 0 and arbitrary i ∈ Z, we define

A+
i =

⊕
s∈Z

(
s,A+

b(i+ps)/qc

)
, B+

i =
⊕
s∈Z

(s,B+)

and a chain map

D+
i,p/q : A+

i → B+
i

(s, as) 7→
(
s, v+
b(i+ps)/qc(as)

)
+
(
s+ 1, h+

b(i+ps)/qc(as)
)
.

The various A+ and B+ summands each inherit relative gradings from CFK∞(K). We
place a relative grading on their direct sums A+

i and B+
i , respecting the relative gradings

on each individual summand, so that D+
i,p/q lowers the grading by 1.

Theorem 2.5 ([OS11, Theorem 1.1]). Let X+
i,p/q denote the mapping cone of the chain map

D+
i,p/q : A+

i → B+
i . Then there is a natural identification Spinc(S3

p/q(K)) ∼= Z/pZ for which

we have a relatively graded isomorphism

H∗(X+
i,p/q)

∼= HF +(S3
p/q(K), i)

for all i ∈ Z/pZ.

The A+
s complexes have homology of the form

H∗(A
+
s ) ∼= T + ⊕Hred(A+

s ),

where Hred(A+
s ) is finitely generated over Q, and the maps v+

s and h+
s restrict to surjections

(v+
s )∗, (h

+
s )∗ : T + → H∗(B

+) ∼= T +.

Each of these maps is then multiplication by some nonnegative power of U , and we define

Vs(K), Hs(K) ∈ Z≥0
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to be these exponents.

Proposition 2.6 ([NW15, HLZ15]). The invariants Vs = Vs(K) and Hs = Hs(K) satisfy
the following constraints.

(1) Vs ≥ Vs+1 and Hs ≤ Hs+1 for all s ∈ Z. [NW15, Lemma 2.4]
(2) Vs = 0 for all s ≥ g(K). [NW15, §2.2]
(3) V−s = Vs + s for all s ∈ Z. [HLZ15, Lemma 2.5]
(4) H−s = Vs for all s ∈ Z. [HLZ15, Lemma 2.3]
(5) Vs+1 ≤ Vs ≤ Vs+1 + 1 for all s ∈ Z.

Proof. Only the inequality Vs ≤ Vs+1 + 1 of item (5) needs to be proved. Combining the
other parts of the proposition, we have

Vs = V−s − s ≤ V−s−1 − s =
(
V−(s+1) − (s+ 1)

)
+ 1 = Vs+1 + 1

as desired. �

The following results relate the invariants Vs(K) and Hs(K) to HF +(S3
p/q(K)).

Theorem 2.7 ([NW15, Proposition 1.6]). Given relatively prime p, q > 0 and an integer i
with 0 ≤ i ≤ p− 1, we have

d(S3
p/q(K), i)− d(S3

p/q(U), i) = −2 max
(
Vb i

q
c(K), Hb i−p

q
c(K)

)
.

Lemma 2.8. If K ⊂ S3 has genus g ≥ 1, then there is a short exact sequence

0→ ĤFK ∗+2(K, g)→ H∗(A
+
g−1)

(v+g−1)∗
−−−−−→ H∗(B

+)→ 0

of Q[U ]-modules, in which ĤFK (K, g) has trivial U -action and A+
g−1 and B+ are equipped

with absolute gradings as quotients of CFK∞(K). In particular, for N ≥ 2g − 1 we have
U ·HF +

red(S3
N (K), g − 1) = 0 and

dim HF +
red(S3

N (K), g − 1) = dim ĤFK (K, g)− Vg−1(K).

Proof. The short exact sequence is [OS19, Lemma 3.3]. To prove it, we use the short exact
sequence of chain complexes

(2.1) 0→ C{−1, g − 1} → A+
g−1

v+g−1−−−→ B+ → 0

defined by the natural inclusion and projection maps, which induces a long exact sequence

· · · → H∗(C{−1, g − 1})→ H∗(A
+
g−1)

(v+g−1)∗
−−−−−→ H∗(B

+)→ . . .

on homology. The complex C{−1, g − 1} has zero differential and trivial U action, and it
is the image under U of

C{0, g} ∼= ĤFK (K, g),

hence its homology is just ĤFK ∗+2(K, g). Meanwhile we know that H∗(B
+) ∼= T +, and

v+
g−1 is an isomorphism in all sufficiently large gradings, so it follows that H∗(A

+
g−1) also

contains a tower T + which surjects onto H∗(B
+). Thus the long exact sequence splits.

The claim about dim HF +
red(S3

N (K), g−1) now follows quickly from Theorem 2.3, because

we can identify ker v+
g−1 with all of HF +

red(S3
N (K), g − 1) plus whatever portion of T + ⊂

H∗(A
+
g−1) is in the kernel, and the latter has dimension Vg−1 by definition. �
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Although Theorem 2.5 as stated only determines the relative grading on HF +(S3
p/q(K)),

we can use the integers Vs and Hs to recover the absolute grading by Theorem 2.7.

Proposition 2.9. Suppose for some knots K,K ′ ⊂ S3 and some relatively prime p, q > 0
that

HF +(S3
p/q(K)) ∼= HF +(S3

p/q(K
′))

as graded Q[U ]-modules. Then we have ∆′′K(1) = ∆′′K′(1). Moreover, if g(K) = 1 then
V0(K) = V0(K ′), and if in addition p

q > 1 then Vs(K
′) = 0 for all s ≥ 1.

Proof. Let Y be the rational homology 3-sphere S3
p/q(K). Rustamov [Rus04, Theorem 3.3]

proved that its Casson–Walker invariant satisfies

|H1(Y ;Z)|λ(Y ) =
∑

s∈Spinc(Y )

(
χ(HF +

red(Y, s))− 1
2d(Y, s)

)
,

and the right hand side is completely determined by HF +(Y ), hence so is λ(Y ). The surgery
formula for the Casson–Walker invariant [Wal92, Theorem 4.2] then says that

λ(Y )− λ(S3
p/q(U)) =

q

p

∆′′K(1)

2
,

so we conclude that ∆′′K(1) is determined by p
q and HF +(S3

p/q(K)). By hypothesis the same

data determines ∆′′K′(1) in exactly the same way, so these second derivatives are equal.

Now suppose that g(K) = 1. Then Proposition 2.6 says that Vs(K) = H−s(K) = 0 for
all s ≥ 1, and then that V0(K) is either 0 or 1 since V1(K) = 0. We therefore have

d(S3
p/q(K), i)− d(S3

p/q(U), i) =

{
−2V0(K), 0 ≤ i ≤ min(p, q)− 1

0, min(p, q) ≤ i ≤ p− 1

by Theorem 2.7. It follows that

(2.2)
∑

i∈Z/pZ

(
d(S3

p/q(K), i)− d(S3
p/q(U), i)

)
= −2V0(K) ·min(p, q).

By the same argument we have

(2.3)
∑

i∈Z/pZ

(
d(S3

p/q(K
′), i)− d(S3

p/q(U), i)
)
≤ −2V0(K ′) ·min(p, q),

and the left sides of (2.2) and (2.3) are equal, so V0(K ′) ≤ V0(K) ≤ 1. If V0(K ′) = 0 then
Vs(K

′) = 0 for all s ≥ 0, so the left side of (2.3) is equal to 0, hence V0(K) = 0 as well.
Otherwise V0(K ′) = 1 implies that V0(K) = 1, so in any case we have V0(K) = V0(K ′).

Finally, if V0(K) = V0(K ′) = 1 and p > q then we have by Theorem 2.7 that

d(S3
p/q(K

′), q)− d(S3
p/q(U), q) = −2 max(V1(K ′), Hb q−p

q
c(K

′))

≤ −2V1(K ′),

which implies that the left side of (2.3) is at most −2qV0(K ′)− 2V1(K ′). But this is equal
to the left side of (2.2), which is equal to

−2V0(K) · q = −2qV0(K ′),

so we must have V1(K ′) = 0. Then Vs(K
′) = 0 for all s ≥ 1 by Proposition 2.6. �
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2.2. Computations for nearly fibered knots. In this subsection we work out some

examples of the large surgery formula. Let K be a genus-1 knot for which ĤFK (K, 1) is

2-dimensional. Then K is one of the knots listed in Theorem 1.5, with ĤFK (K) shown in
Table 1, and in every case there is some integer m ∈ Z such that

ĤFK (K, 1) ∼= Q2
(m),

where the subscripts denote the Maslov grading. (For the mirrors of the knots in Table 1,

this follows from the relation ĤFKm(K, a) ∼= ĤFK−m(K,−a).)

We first determine HF +(S3
1(K)) in the cases where K is either 52 or its mirror.

Proposition 2.10. We have

HF +(S3
1(52)) ∼= T +

(0) ⊕Q2
(0) and HF +(S3

1(52)) ∼= T +
(−2) ⊕Q(−2)

as graded Q[U ]-modules.

Proof. In these cases K is alternating, so ĤFK (K) is thin — there is some s ∈ Z such that

each ĤFK (K, a) is supported in homological grading a − s — and for alternating knots
we have s = −1

2σ(K) [OS03b, Theorem 1.3], where σ(K) is the signature. (This uses

the convention that positive knots such as 52 have negative signature, so σ(52) = −2 and
σ(52) = 2.) In this case the differential on CFK∞(K) has a fairly simple form, namely

∂∞ (C{i0, j0}) ⊂ C{i0 − 1, j0} ⊕ C{i0, j0 − 1},
by the fact that deg(∂∞) = −1. Since H∗(C{i = 0}) ∼= Q is supported at Alexander grading
j = τ(K) in homological grading 0, we have τ(K) = −1

2σ(K), so

τ(52) = −1 and τ(52) = 1.

We can therefore find bases for the complexes (C{i = 0}, ∂′) so that they are represented
by the diagrams

j = −1:

j = 0:

j = 1:

or

for 52 and 52 respectively. (Here each dot represents a generator of a Q summand, and
an arrow of the form “• → •” means that the corresponding generators x and y satisfy
∂′x = y.) In turn, this together with the chain homotopy equivalence C{i = 0} ' C{j = 0}
and the requirement that (∂∞)2 = 0 completely determines CFK∞(K) for each of these
knots K.

Now by inspecting Figure 2 we see that

(2.4) H∗(A
+
0 (52)) ∼=

Q[U,U−1]

U ·Q[U ]
〈d− a〉 ⊕Q〈a, b〉 ∼= T +

(0) ⊕Q2
(0),

since the indicated elements a, b, d all have homological grading −1 + σ(52)
2 = 0. The

homology H∗(B
+(52)) ∼= T + has bottom-most element [d] = (v+

0 )∗([d − a]), so then
(v+

0 )∗|T + : T + → T + is an isomorphism and we have V0(52) = 0. Now Theorem 2.3
says that HF +(S3

1(52)) ∼= H∗(A
+
0 (52)) as relatively graded groups, while Theorem 2.7 says
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i

j

−

−

−

−

a

U−1a

U−2a

d

U−1d

U−2d

b

c

CFK∞(52)

i

j

−

−

−

−

x

U−1x

U−2x

y

CFK∞(52)

Figure 2. The complexes (CFK∞(K), ∂∞) for K = 52 and K = 52, with
A+

0 shaded. The dots represent generators of C{i, j}, all of which lie in

grading i+ j + σ(K)
2 . Minus signs on arrows indicate a coefficient of −1.

that the tower T + in HF +(S3
1(52)) has bottom-most grading d(S3

1(52)) = −2V0(52) = 0, so
we conclude that HF +(S3

1(52)) is exactly as claimed.

Similarly, we see from Figure 2 that

H∗(A
+
0 (52)) ∼=

Q[U,U−1]

U ·Q[U ]
〈x〉 ⊕Q〈y〉 ∼= T +

(−2) ⊕Q(−2),

since the indicated elements x, y ∈ C{−1, 0} have homological grading −1 + σ(52)
2 = −2.

The kernel of (v+
0 )∗ contains [x] but not [U−1x], so the restriction (v+

0 )∗|T + : T + → T + is
multiplication by U , hence V0(52) = 1. Now we conclude exactly as before that d(S3

1(52)) =
−2V0(52) = −2 and hence that HF +(S3

1(52)) is exactly as claimed. �

For the knots of Theorem 1.5 other than 52 and 52, it is a little bit harder to determine
CFK∞(K). We will avoid this problem by using the large surgery formula to compute

ĤF (S3
1(K)), and then deducing HF +(S3

1(K)) from this in Proposition 2.14.

Proposition 2.11. Let K be a genus-1 knot for which ĤFK (K, 1) ∼= Q2
(m0+1). If K is

neither 52 nor its mirror, then τ(K) = 0 and

ĤF (S3
1(K)) ∼= Q(0) ⊕

(
Q(m0) ⊕Q(m0−1)

)⊕2

as relatively graded Q-vector spaces.

Proof. We attempt to construct the full knot Floer complex CFK∞(K). The relation

ĤFKm(K, a) ∼= ĤFKm−2a(K,−a)



12 JOHN A. BALDWIN AND STEVEN SIVEK

i

j

−

−

−

−

−

−

−

−

x

Figure 3. The complex (CFK∞(K), ∂∞), with Â0 shaded and possible
diagonal arrows omitted. The black dots represent generators of C{i, j} in
grading m0 +i+j, while the white dots represent generators U−ix in grading
i+ j. The minus signs on some arrows indicate a coefficient of −1 in ∂∞.

tells us that if ĤFK (K, 1) ∼= Q2
(m0+1) then ĤFK (K,−1) ∼= Q2

(m0−1), so the model complex

(C{i = 0}, ∂′) for ĈF (S3) has the form

Q2
(m0+1)

ĤFK (K, 0)

Q2
(m0−1),

∂′1

∂′2

∂′0

and in fact the ∂′2 component of the differential must be zero since it cannot lower the
grading by 2.

If K is neither 52 nor its mirror, then we can read dim ĤFK (K, 0) = 5 off of Table 1, and
so H∗(C{i = 0}, ∂′) ∼= Q is only possible if ∂′1 is injective and ∂′2 is surjective. Moreover, the
homology is necessarily supported in Alexander grading j = 0, so τ(K) = 0. This completely
determines the i-preserving (vertical) component of ∂∞, as illustrated in Figure 3. The
chain homotopy equivalence C{i = 0} ' C{j = 0} and the relation (∂∞)2 = 0 then nearly
suffice to determine ∂∞; the only ambiguity is whether there are any arrows involving the
generators Ukx ∈ C{i = j = −k}, and these must be diagonal (meaning neither vertical
nor horizontal) if they exist.

This discussion completely determines the subquotient complex Â0, which is shaded in
Figure 3, since it does not see any diagonal arrows that might exist in CFK∞(K). The
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complex has nine generators, only two of which have nonzero differentials, and the hat
version of the large surgery formula in Theorem 2.3 tells us that

ĤF (S3
1(K)) ∼= H∗(Â0) ∼= Q0 ⊕Q2

(m0) ⊕Q2
(m0−1)

as relatively graded vector spaces. �

If Y is an arbitrary 3-manifold with torsion Spinc structure s, so that its homological
grading is Z-valued, then the short exact sequence of complexes

0→ ĈF ∗(Y, s)→ CF +
∗ (Y, s)

U−→ CF +
∗−2(Y, s)→ 0

turns into a long exact sequence of Q[U ]-modules

· · · → HF +
∗+1(Y, s)

U−→ HF +
∗−1(Y, s)→ ĤF ∗(Y, s)→ HF +

∗ (Y, s)
U−→ HF +

∗−2(Y, s)→ . . . ,

from which we can extract a short exact sequence

(2.5) 0→
HF +
∗−1(Y, s)

U ·HF +
∗+1(Y, s)

→ ĤF ∗(Y, s)→ ker(U |HF+
∗ (Y,s))→ 0.

Equation (2.5) immediately implies the following.

Lemma 2.12. If U ·HF +
red(Y, s) = 0 and we have an isomorphism

HF +(Y ) ∼= T +
(d) ⊕

k⊕
i=1

Q(ni)

of graded Q[U ]-modules, where the (d) subscript denotes the grading of ker(U) ⊂ T +, then

ĤF (Y ) ∼= Q(d) ⊕
k⊕
i=1

(
Q(ni+1) ⊕Q(ni)

)
.

This implies in particular that dim ĤF (Y, s) = 1 + 2 dim HF +
red(Y, s).

Corollary 2.13. If K ⊂ S3 has genus g ≥ 1, then

dim ĤF (S3
2g−1(K), g − 1)− 1

2
= dim ĤFK (K, g)− Vg−1(K).

Proof. Lemma 2.8 says that U ·HF +
red(S3

2g−1(K), g − 1) = 0 and that

dim HF +
red(S3

2g−1(K), g − 1) = dim ĤFK (K, g)− Vg−1(K).

Now apply Lemma 2.12. �

Proposition 2.14. Let K be a genus-1 knot for which dimQ ĤFK (K, 1) = 2. If K is
neither 52 nor its mirror, then V0(K) = 0 and

HF +(S3
1(K)) ∼= T +

(0) ⊕ ĤFK (K,−1)

as graded Q[U ]-modules.
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Proof. We write ĤFK (K, 1) ∼= Q2
(m0+1) as before, and then the symmetry

ĤFKm(K, a) ∼= ĤFKm−2a(K,−a)

of [OS04b, Equation (2)] implies that ĤFK (K,−1) ∼= Q2
(m0−1).

We observe from Lemma 2.8 that U · HF +
red(S3

1(K)) = 0, since g(K) = 1. In Proposi-

tion 2.11 we saw that dim ĤF (S3
1(K)) = 5, so Lemma 2.12 says that dim HF +

red(S3
1(K)) = 2.

But then

V0(K) = dim ĤFK (K, 1)− dim HF +
red(S3

1(K)) = 2− 2 = 0

by another application of Lemma 2.8. With this information at hand, Theorem 2.7 tells us
that

d(S3
1(K)) = d(S3

1(U))− 2V0(K) = 0.

Now if we write

HF +(S3
1(K)) ∼= T +

(0) ⊕Q(d) ⊕Q(e)

for some integers d and e, then Lemma 2.12 says that

ĤF (S3
1(K)) ∼= Q(0) ⊕Q(d) ⊕Q(d+1) ⊕Q(e) ⊕Q(e+1).

Up to translation by an overall constant, Proposition 2.11 says that these gradings are
0,m0,m0,m0 − 1,m0 − 1 in some order. This is only possible if that constant is zero and
d = e = m0 − 1, except possibly if m0 = −1 and {d, e} = {0, 1}. But we can rule out this
last case because it would imply that S3

1(K) has Casson invariant

λ(S3
1(K)) = χ(HF +

red(S3
1(K)))− 1

2
d(S3

1(K)) = 0− 0 = 0

by [OS03a, Theorem 1.3], and yet λ(S3
1(K)) =

∆′′K(1)
2 = ±2 by the surgery formula for the

Casson invariant. This completes the proof. �

3. The dimension of ĤF

3.1. The invariants r̂0 and ν̂. For a fixed knot K ⊂ S3, the dimension of ĤF (S3
p/q(K))

varies in a predictable way with p and q. We will make use of this where possible, since it
is easier to apply in practice than the mapping cone formula.

Proposition 3.1. Let K ⊂ S3 be a knot. Then there are integers r̂0(K) and ν̂(K) such
that

dimQ ĤF (S3
p/q(K)) = q · r̂0(K) + |p− qν̂(K)|

for all coprime integers p 6= 0 and q > 0.

Hanselman [Han23, Proposition 15] proved a version of Proposition 3.1 with coefficients
in Z/2Z, though he pointed out that it can be extracted from [OS11, Proposition 9.6],
where it is proved with the desired Q coefficients. (It can also be proved in exactly the
same way as its instanton Floer analogue [BS21, Theorem 1.1], using only the surgery exact
triangle and an adjunction inequality.) In fact, if the Heegaard Floer ν invariant of K [OS11,
Definition 9.1] satisfies ν(K) ≥ ν(K), then [OS11, Equation (40)] implies the relation

r̂0(K)− ν̂(K) =
∑
s∈Z

(
dimH∗(Âs)− 1

)
.
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Moreover, we know from [BS21, Lemma 10.4] that

(3.1) ν̂(K) =

{
max(2ν(K)− 1, 0), ν(K) ≥ ν(K)

−max(2ν(K)− 1, 0), ν(K) ≤ ν(K).

Proposition 3.2. The invariants r̂0(K) and ν̂(K) satisfy the following properties.

(1) The invariants of K and its mirror are related by (r̂0(K), ν̂(K)) = (r̂0(K),−ν̂(K)).
(2) The difference r̂0(K)− |ν̂(K)| is a nonnegative even integer.
(3) ν̂ is a smooth concordance invariant, and

|ν̂(K)| ≤ max(2g4(K)− 1, 0)

where g4 denotes the smooth 4-ball genus.
(4) The invariant ν̂(K) is either odd or zero.
(5) If V0(K) = 0 then ν̂(K) ≤ 0.
(6) If ν̂(K) ≤ 0 then τ(K) ≤ 0, and if ν̂(K) = 0 then τ(K) = 0.

Proof. Claim (1) is immediate from Proposition 3.1 and the relation S3
r (K) ∼= −S3

−r(K),

together with the fact that dim ĤF (Y ) = dim ĤF (−Y ) for all Y . For (2), we choose a
positive integer p > ν̂(K) and apply Proposition 3.1 to get

dim ĤF (S3
p(K)) = p+ (r̂0(K)− ν̂(K)),

so by [OS04c, Proposition 5.1] we have

dim ĤF (S3
p(K))− χ(ĤF (S3

p(K))) = r̂0(K)− ν̂(K).

The left hand side is twice the dimension of the odd-graded part of ĤF (S3
p(K)), so it is

evidently nonnegative and even. The same is true of

r̂0(K)− ν̂(K) = r̂0(K) + ν̂(K),

so in either case r̂0(K)− |ν̂(K)| is nonnegative and even as well. Since ν(K) and ν(K) are
smooth concordance invariants, claims (3) and (4) follow immediately from (3.1) and the
fact that |ν(K)| ≤ g4(K).

In order to prove (5), we use the invariant ν+(K) [HW16], which is by definition the
smallest s such that Vs(K) = 0. If V0(K) = 0 then [HW16, Proposition 2.3] tells us that

τ(K) ≤ ν(K) ≤ ν+(K) = 0,

and since ν(K) is equal to either τ(K) or τ(K) + 1 (see [OS11, Equation (34)]) we have

ν(K) ≥ τ(K) = −τ(K) ≥ 0 ≥ ν(K).

Now (3.1) tells us that ν̂(K) = −max(2ν(K) − 1, 0) ≤ 0. We prove the contrapositive of
the first part of (6) similarly: if τ(K) ≥ 1 then ν(K) ≥ τ(K) ≥ 1 while

ν(K) ≤ τ(K) + 1 = −τ(K) + 1 ≤ 0,

so ν(K) > ν(K), and then (3.1) gives us ν̂(K) ≥ 2ν(K) − 1 ≥ 1. Moreover, if ν̂(K) = 0
then ν̂(K) = 0 as well, so we have just shown that τ(K) ≤ 0 and −τ(K) = τ(K) ≤ 0, hence
τ(K) = 0 as claimed. �
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Proposition 3.2 can also be proved by repeating arguments from [BS21] nearly verbatim,

but applied to ĤF (Y ) rather than I#(Y ). These arguments rely only on the fact that

dim ĤF (S3) = 1, together with the surgery exact triangle and adjunction inequality for

ĤF .

We note the following examples for later use.

Lemma 3.3. Suppose that K is one of the genus-1 knots appearing in Theorem 1.5 other
than 52 and its mirror. Then

(r̂0(K), ν̂(K)) = (4, 0).

We also have (r̂0(52), ν̂(52)) = (3, 1) and (r̂0(52), ν̂(52)) = (3,−1).

Proof. Proposition 2.11 applies to both K and K to tell us that

dim ĤF (S3
1(K)) = 5 and dim ĤF (S3

−1(K)) = dim ĤF (S3
1(K)) = 5.

By Proposition 3.1, these can only be equal if ν̂(K) = 0, and then

5 = dim ĤF (S3
1(K)) = 1 · r̂0(K) + |1− 0 · ν̂(K)|

implies that r̂0(K) = 4.

Similarly, we note from Proposition 2.10 and Lemma 2.12 that

dim ĤF (S3
1(52)) = 3 and dim ĤF (S3

−1(52)) = dim ĤF (S3
1(52)) = 5.

Now Proposition 3.1 only tells us that ν̂(52) ≥ 1, but Proposition 3.2 also bounds it above
by 1 and so ν̂(52) = 1 after all. It now follows immediately that r̂0(52) = 3, and similarly
for 52. �

3.2. Almost L-space knots. A nontrivial knot K ⊂ S3 is said to be an L-space knot

if S3
r (K) is an L-space for some rational slope r > 0, meaning that dim ĤF (S3

r (K)) =
|H1(S3

r (K);Z)|. This places strong restrictions on K.

Theorem 3.4 ([OS05, Ghi08, Ni07, Hed10, OS11]). If K is an L-space knot, then K is
fibered and strongly quasipositive, and r-surgery on K is an L-space if and only if r ≥
2g(K)− 1.

Remark 3.5. It follows quickly that a knot K of genus g ≥ 1 is an L-space knot if and
only if r̂0(K) = ν̂(K) = 2g − 1.

In this section, we develop similar restrictions on knots which fall just short of being
L-space knots. We recall the following from Definition 1.10.

Definition 3.6. A knot K ⊂ S3 is an almost L-space knot if

dimQ ĤF (S3
n(K)) = n+ 2

for some n ≥ 2g(K)− 1.

Lemma 3.7. A knot K ⊂ S3 is an almost L-space knot if and only if r̂0(K)− ν̂(K) = 2.

Proof. We note that K must be nontrivial since all surgeries on the unknot are L-spaces.
Using the inequality

ν̂(K) ≤ max(2g4(K)− 1, 0) ≤ 2g(K)− 1
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of Proposition 3.2, it follows that if n ≥ 2g(K)− 1 then

dim ĤF (S3
n(K)) = r̂0(K) + |n− ν̂(K)| = n+ (r̂0(K)− ν̂(K)).

By assumption the left side is n+ 2 for some such n, which proves the lemma. �

Lemma 3.8. If K ⊂ S3 is an almost L-space knot of genus g ≥ 1, then

ĤF (S3
2g−1(K), s) ∼=

{
Q3 s = 0

Q 1 ≤ |s| ≤ g − 1,

and similarly there is some n ≥ 1 such that

HF +(S3
2g−1(K), s) ∼=

{
T + ⊕Q[U ]/Un s = 0

T + 1 ≤ |s| ≤ g − 1

as Q[U ]-modules.

Proof. Let Y = S3
2g−1(K). By Lemma 3.7 and ν̂(K) ≤ 2g − 1 we have∑

s∈Z/(2g−1)Z

dim ĤF (Y, s) = dim ĤF (Y ) = 2g + 1.

Each ĤF (Y, s) has Euler characteristic 1 [OS04c, Proposition 5.1] and hence odd dimension.
Since the total dimension is 2g + 1 there must be a unique s0 with

dim ĤF (Y, s0) = 3

and dim ĤF (Y, s) = 1 for all other s 6= s0. But we have

ĤF (Y, s0) ∼= ĤF (Y,−s0)

by conjugation symmetry [OS04c, Theorem 2.4], recalling from Remark 2.4 that s and −s
determine conjugate Spinc structures, so −s0 ≡ s0 (mod 2g − 1) and therefore s0 = 0.

In order to pass from ĤF to HF +, we use the exact triangle (2.5) to see that if

HF +(Y, s) ∼= T + ⊕

(
k⊕
i=1

Q[U ]/Uni

)
as Q[U ]-modules for some k ≥ 0 and n1, . . . , nk ≥ 1, then

dim ĤF (Y, s) = dim coker(U) + dim ker(U) = k + (k + 1) = 2k + 1.

From this we conclude that k = 1 if s ≡ 0 (mod 2g − 1) and k = 0 otherwise, proving the
lemma. �

Proposition 3.9. Let K be an almost L-space knot of genus g ≥ 1. Then exactly one of
the following must hold.

• g = 1, and K is the left-handed trefoil, figure eight, or 52.
• g ≥ 2, and K is fibered with Vg−1(K) = 1.

Proof. According to Lemma 2.8 we have

(3.2) dim HF +
red(S3

2g−1(K), g − 1) = dim ĤFK (K, g)− Vg−1(K).

We also recall from Proposition 2.6 that Vg(K) = 0 and Vg(K) ≤ Vg−1(K) ≤ Vg(K) + 1, so
Vg−1(K) is either 0 or 1.
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Now suppose that g = 1. In this case, we know by Lemma 3.8 that

HF +(S3
1(K)) ∼= T + ⊕Q[U ]/Un

for some n ≥ 1, and Lemma 2.8 says that the U -action on HF +
red(S3

1(K)) ∼= Q[U ]/Un is

trivial, so n = 1. Then dim HF +
red(S3

1(K), 0) = 1, and (3.2) becomes

dim ĤFK (K, 1) =

{
1, V0(K) = 0

2, V0(K) = 1.

Thus if V0(K) = 0 then K is fibered [Ghi08], and the right-handed trefoil is an L-space
knot, so K must be the left-handed trefoil or the figure eight instead; and in the remaining

cases we have V0(K) = 1 and dim ĤFK (K, 1) = 2. In these cases, Propositions 2.10 and
2.14 tell us that

(3.3) V0(K) = −1

2
d(S3

1(K)) =

{
1, K ∼= 52

0, K 6∼= 52,

so K must be 52.

From now on we suppose that g ≥ 2. Here the Spinc structures 0 and g− 1 on S3
2g−1(K)

are different, so by Lemma 3.8 we have

HF +
red(S3

2g−1(K), g − 1) = 0

and so (3.2) becomes 0 = dim ĤFK (K, g)− Vg−1(K). Thus

dim ĤFK (K, g) = Vg−1(K) ≤ 1.

But this dimension must be positive [OS04a, Theorem 1.2], so it is equal to 1, and then this
implies that K is fibered [Ni07]. �

Proposition 3.10. If K is an almost L-space knot of genus g ≥ 2, then τ(K) = g and so
K is strongly quasipositive.

Proof. Proposition 3.9 says that K is fibered, and that Vg−1(K) = 1. Since K is fibered,
it is strongly quasipositive if and only if τ(K) = g [Hed10, Theorem 1.2]. Thus we will
suppose that τ(K) ≤ g − 1 and show that this leads to a contradiction.

The assumption that τ(K) ≤ g − 1 is equivalent to the assertion that the map

H∗(C{i = 0, j ≤ g − 1})→ H∗(C{i = 0}) ∼= ĤF (S3) ∼= Q

is surjective. In this case the short exact sequence of complexes

0→ C{i = 0, j ≤ g − 1} → C{i = 0} → C{0, g} → 0

gives rise to a long exact sequence in homology which splits as

0→ H∗+1(C{0, g})︸ ︷︷ ︸
∼=ĤFK (K,g)∼=Q

→ H∗(C{i = 0, j ≤ g − 1})→ H∗(C{i = 0})︸ ︷︷ ︸
∼=ĤF (S3)∼=Q

→ 0,

so H∗(C{i = 0, j ≤ g − 1}) ∼= Q2.

We now consider the short exact sequence of complexes

0→ C{i < 0, j = g − 1} ι−→ Âg−1 → C{i = 0, j ≤ g − 1} → 0,
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whose first term is equal to

C{−1, g − 1} ∼= C{0, g} ∼= ĤFK (K, g) ∼= Q.

The hat version of the large surgeries formula (Theorem 2.3) tells us that

H∗(Âg−1) ∼= ĤF (S3
2g−1(K), g − 1) ∼= Q

by Lemma 3.8, so we get a long exact sequence

· · · → H∗(C{−1, g − 1})︸ ︷︷ ︸
∼=Q

ι∗−→ H∗(Âg−1)︸ ︷︷ ︸
∼=Q

→ H∗(C{i = 0, j ≤ g − 1})︸ ︷︷ ︸
Q2

→ . . . ,

from which the map ι∗ : H∗(C{−1, g − 1})→ H∗(Âg−1) is zero.

Finally, the inclusion map C{−1, g − 1} ↪→ A+
g−1 factors through ι as

C{−1, g − 1} ι−→ Âg−1 ↪→ A+
g−1,

so the induced map

H∗(C{−1, g − 1})→ H∗(A
+
g−1)

on homology must be zero, since it factors through ι∗ = 0. But this map belongs to the
short exact sequence

0→ H∗(C{−1, g − 1})→ H∗(A
+
g−1)

(v+g−1)∗
−−−−−→ H∗(B

+)

of Lemma 2.8, so it must also be injective, and since H∗(C{−1, g − 1}) ∼= Q is nonzero, we
have a contradiction. Therefore τ(K) = g, as desired. �

Corollary 3.11. If K is an almost L-space knot of genus g ≥ 2, then (r̂0(K), ν̂(K)) =
(2g + 1, 2g − 1).

Proof. Proposition 3.10 says that τ(K) = g. The invariant ν(K) of [OS11, Definition 9.1]
is equal to either τ(K) or τ(K) + 1 by [OS11, Equation (34)], but it is also at most g by
definition, so we have

ν(K) = g and ν(K) ≤ τ(K) + 1 = −g + 1.

Since ν(K) > ν(K), we apply (3.1) to get ν̂(K) = max(2ν(K) − 1, 0) = 2g − 1. Then
r̂0(K) = 2g + 1 as well by Lemma 3.7. �

Remark 3.12. Let K be an almost L-space knot of genus g ≥ 2. Then Lemma 3.8 and
the large surgeries formula imply that H∗(Âs) ∼= Q for all s ≥ 1, and so one can repeat the
proof of [OS05, Theorem 1.2] to show, among other things, that

dim ĤFK (K, a) = 0 or 1 for all a ≥ 2,

hence by symmetry whenever |a| ≥ 2; the corresponding ta-coefficients of ∆K(t) must then
be either 0 or ±1. We will not pursue this further here.

We conclude by noting the following consequences, which we will not use in this paper.

Theorem 3.13. We have r̂0(K) ≤ 3 if and only if K has crossing number at most 5.
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Proof. We replace K with its mirror as needed to ensure that ν̂(K) ≥ 0, since this does
not change r̂0(K). Now by Proposition 3.2 the difference r̂0(K)− ν̂(K) is nonnegative and
even, and we have

0 ≤ r̂0(K)− ν̂(K) ≤ r̂0(K) ≤ 3,

so it must be either 0 or 2.

Supposing that the difference is 2, then K is an almost L-space knot by Lemma 3.7. If
g(K) ≥ 2 then Corollary 3.11 says that r̂0(K) = 2g(K) + 1 ≥ 5, which cannot happen. So
g(K) = 1, and then Proposition 3.9 says that K is either T−2,3, a figure eight, or 52.

Otherwise we have r̂0(K) = ν̂(K), so by Remark 3.5, if K is nontrivial then it must be
a nontrivial L-space knot satisfying r̂0(K) = 2g(K) − 1. But then r̂0(K) ≤ 3 implies that
g(K) is either 1 or 2, so K must be a right-handed trefoil [Ghi08] or a (2, 5) torus knot
[FRW22]. Up to mirroring we have now accounted for all knots of at most five crossings
and ruled out everything else, so this completes the proof. �

Theorem 3.14. If dimQ ĤF (S3
1(K)) = 3, then K is either the left-handed trefoil, figure

eight, or 52.

Proof. Proposition 3.1 says that

(3.4) 3 = dimQ ĤF (S3
1(K)) = r̂0(K) + |1− ν̂(K)|,

so r̂0(K) ≤ 3 with equality if and only if ν̂(K) = 1. If ν̂(K) > 1 then we have 3 > r̂0(K) ≥
ν̂(K) > 1, so ν̂(K) = 2 and this contradicts Proposition 3.2. Thus ν̂(K) ≤ 1 and now (3.4)
becomes r̂0(K)− ν̂(K) = 2. So K is an almost L-space knot, with genus 1 by Corollary 3.11,
and now Proposition 3.9 says that it must be one of the knots claimed above. �

4. The mirror of 52

Our goal in this section is to prove that not only are nonnegative slopes characterizing
for 52, but in fact the Heegaard Floer homology of such surgeries characterizes 52.

Theorem 4.1. Suppose for some rational number r ≥ 0 and knot K ⊂ S3 that there is an
isomorphism

HF +(S3
r (K)) ∼= HF +(S3

r (52))

of graded Q[U ]-modules. Then K is isotopic to 52.

We recall from Lemma 3.3 that r̂0(52) = 3 and ν̂(52) = 1. Thus if p and q are relatively
prime, with p 6= 0 and q > 0, then

(4.1) dim ĤF (S3
p/q(52)) = 3q + |p− q| =

{
p+ 2q, p ≥ q
4q − p, p ≤ q.

Throughout this section we will make implicit use of the fact that HF +(Y ) completely

determines ĤF (Y ).

Lemma 4.2. Suppose that 0 < p
q ≤ 1 and that there is an isomorphism

HF +(S3
p/q(K)) ∼= HF +(S3

p/q(52))

of graded Q[U ]-modules. Then K is an almost L-space knot of genus 1.
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Proof. By equation (4.1) we have

4q − p = q · r̂0(K) + |p− qν̂(K)|

=

{
p+ q(r̂0(K)− ν̂(K)), p

q ≥ ν̂(K)

q(r̂0(K) + ν̂(K))− p, p
q < ν̂(K).

In the case p
q ≤ ν̂(K) this simplifies to r̂0(K) + ν̂(K) = 4, and given that

r̂0(K) ≥ ν̂(K) ≥ p

q
> 0,

Proposition 3.2 says that this is only possible if r̂0(K) = 3 and ν̂(K) = 1.

Now we suppose instead that p
q > ν̂(K), and then we have

4q − p = p+ q(r̂0(K)− ν̂(K)),

or
p

q
= 2− r̂0(K)− ν̂(K)

2
.

Since 0 < p
q ≤ 1, and 1

2(r̂0(K) − ν̂(K)) is a nonnegative integer, it follows that p
q = 1 and

that r̂0(K) − ν̂(K) = 2. But then ν̂(K) < p
q = 1, and r0(K) ≥ |ν̂(K)| by Proposition 3.2,

so (r̂0(K), ν̂(K)) must be either (2, 0) or (1,−1).

In all cases we have shown that K is an almost L-space knot and |ν̂(K)| ≤ 1. According
to Corollary 3.11, if g(K) ≥ 2 then ν̂(K) = 2g(K) − 1 ≥ 3, which is impossible, so in fact
g(K) = 1 and the proof is complete. �

Lemma 4.3. Suppose that p
q > 1 and that there is an isomorphism

HF +(S3
p/q(K)) ∼= HF +(S3

p/q(52))

of graded Q[U ]-modules. Then K is an almost L-space knot of genus 1.

Proof. By equation (4.1) we have

p+ 2q = q · r̂0(K) + |p− qν̂(K)|

=

{
p+ q(r̂0(K)− ν̂(K)), p

q ≥ ν̂(K)

q(r̂0(K) + ν̂(K))− p, p
q ≤ ν̂(K).

Now if p
q ≥ ν̂(K) then this immediately reduces to

r̂0(K)− ν̂(K) = 2,

so K is an almost L-space knot by Lemma 3.7.

In the remaining case we have ν̂(K) > p
q > 1, and so the above equation becomes

p+ 2q = q(r̂0(K) + ν̂(K))− p,
or equivalently

(4.2)
p

q
=
r̂0(K) + ν̂(K)

2
− 1.

Now we combine this with p
q < ν̂(K) and rearrange to get

r̂0(K)− 2 < ν̂(K),
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and then by Proposition 3.2 it follows that r̂0(K) = ν̂(K) and so K is an L-space knot.
Remark 3.5 says that r̂0(K) = ν̂(K) = 2g(K)− 1, so in fact (4.2) becomes

p

q
= 2g(K)− 2.

By the assumption p
q > 1 it follows that g(K) ≥ 2.

Now in either case, if we suppose that g(K) = g ≥ 2, then we have Vg−1(K) = 1. Indeed,
if K is an almost L-space knot then this is part of Proposition 3.9. If instead K is an
L-space knot then it is strongly quasipositive by Theorem 3.4, so the invariant ν+(K) of
[HW16] is equal to g(K) by [HW16, Proposition 3]; this is by definition the least s such
that Vs(K) = 0, so in particular Vg−1(K) = 1 as claimed. Either way, we have V1(K) ≥ 1
by Proposition 2.6. But then Proposition 2.9 says that if p

q > 1 and

HF +(S3
p/q(52)) ∼= HF +(S3

p/q(K))

then Vs(K) = 0 for all s ≥ 1, so this is a contradiction. Thus g = 1.

We conclude that K cannot be an L-space knot, since that would have implied that
g(K) ≥ 2, and so K must be an almost L-space knot of genus 1 after all. �

Combining the above lemmas yields the following.

Proposition 4.4. Suppose that p
q > 0 and that there is an isomorphism

HF +(S3
p/q(K)) ∼= HF +(S3

p/q(52))

of graded Q[U ]-modules. Then K is isotopic to 52.

Proof. We know that K is an almost L-space knot of genus 1, by Lemma 4.2 if 0 < p
q ≤ 1

and by Lemma 4.3 if p
q > 1. Then its Alexander polynomial must have the form

∆K(t) = at+ (1− 2a) + at−1

for some a ∈ Z. We have ∆′′K(1) = 2a, whereas ∆′′
52

(t) = 4, so a = 2 by Proposition 2.9.

This proves that
∆K(t) = ∆52

(t) = 2t− 3 + 2t−1.

But none of the genus-1 knots in Proposition 3.9 have this Alexander polynomial except for
52 itself, so K ∼= 52. �

We can also handle zero-surgery by a somewhat different argument.

Proposition 4.5. Suppose for some knot K ⊂ S3 that there is an isomorphism

HF +(S3
0(K)) ∼= HF +(S3

0(52))

of graded Q[U ]-modules. Then K ∼= 52. Similarly, if we have an isomorphism

HF +(S3
0(K)) ∼= HF +(S3

0(52))

then K ∼= 52.

Proof. We show first that g(K) ≤ 1. Supposing instead that K has genus g ≥ 2, there
is a non-torsion Spinc structure sg−1 for which HF +(S3

0(K), sg−1) 6= 0, namely the one

specified by 〈c1(sg−1), [Σ̂]〉 = 2g − 2 for a capped-off Seifert surface Σ̂, by the isomorphism

HF +(S3
0(K), sg−1) ∼= ĤFK (K, g) of [OS04b, Corollary 4.5] together with the fact that ĤFK



CHARACTERIZING SLOPES FOR 52 23

detects genus [OS04a, Theorem 1.2]. On the other hand, since 52 and its mirror both have
genus 1, we have

HF +(S3
0(52), s) ∼= HF +(S3

0(52), s) ∼= 0

in all non-torsion Spinc structures, by the adjunction inequality [OS04c, Theorem 7.1]. Thus
g ≤ 1 as claimed.

Next, we recall from Lemma 3.3 that (r̂0(52), ν̂(52)) = (3, 1), so we have

dim ĤF (S3
1(52)) = 3, dim ĤF (S3

−1(52)) = 5

and so dim ĤF (S3
0(52)) = 4 by the surgery exact triangle for ĤF , since it differs by 1 from

each of these other dimensions. We also have dim ĤF (S3
0(52)) = 4 by the same argument,

so in either case dim ĤF (S3
0(K)) = 4, and then

dim ĤF (S3
1(K)) = 3 or 5

again by the surgery exact triangle. This means that K cannot be unknotted, so g(K) = 1.
We apply Corollary 2.13 to get

dim ĤFK (K, 1)− V0(K) =
dim ĤF (S3

1(K))− 1

2
= 1 or 2,

and g(K) = 1 implies that 0 ≤ V0(K) ≤ 1 by Proposition 2.6, hence dim ĤFK (K, 1) ≤ 3.

Now we use the fact that HF +(S3
0(K)) determines the Alexander polynomial ∆K(t), by

[OS04c, Proposition 10.14] and [OS04c, Theorem 10.17], to see that

∆K(t) = ∆52(t) = 2t− 3 + 2t−1.

But the linear coefficient 2 is equal to the Euler characteristic χ(ĤFK (K, 1)), so in particular

dim ĤFK (K, 1) must be even. It follows from the above bound that

dim ĤFK (K, 1) = 2

and so K must be one of the knots listed in Theorem 1.5.

Finally, we can read the correction terms d±1/2(S3
0(K)) off of HF +(S3

0(K)), since they are

defined as the grading of the bottom-most element of a tower T + in grading ±1
2 (mod 2).

According to [OS03a, Proposition 4.12], these are determined by the formulas

d1/2(S3
0(K)) = d(S3

1(K)) + 1
2 ,

d−1/2(S3
0(K)) = d(S3

−1(K))− 1
2 = d(−S3

1(K))− 1
2

= −d(S3
1(K))− 1

2 .

Now Theorem 2.7 tells us that

d1/2(S3
0(K)) = −2V0(K) + 1

2 , d−1/2(S3
0(K)) = 2V0(K)− 1

2

and so HF +(S3
0(K)) determines both V0(K) and V0(K). But we saw in (3.3) that if K is

one of the knots in Theorem 1.5, then

(V0(K), V0(K)) =


(1, 0), K ∼= 52

(0, 1), K ∼= 52

(0, 0), otherwise,
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so HF +(S3
0(52)) and HF +(S3

0(52)) are different from each other and from each of the in-
variants HF +(S3

0(K)) where K is another of the knots in Theorem 1.5. This completes the
proof. �

Combining Proposition 4.4 in the case r > 0 and Proposition 4.5 for r = 0, this completes
the proof of Theorem 4.1. �

5. The knot 52

In this section we start to consider whether positive slopes are characterizing slopes for
52. We will achieve partial results in this direction without using the mapping cone formula
(Theorem 2.5), which we then apply in Section 6.

Lemma 5.1. Suppose that there is some knot K and some rational r > 0 such that

HF +(S3
r (52)) ∼= HF +(S3

r (K))

as graded Q[U ]-modules. Then Vs(K) = 0 for all s ≥ 0. In addition, if g(K) = 1 then
∆K(t) = ∆52(t) = 2t− 3 + 2t−1.

Proof. We recall from Proposition 2.10 that

V0(52) = −1

2
d(S3

1(52)) = 0,

and then Propositions 2.9 and 2.6 say that V0(K) = 0 and that the sequence of Vs(K) is
nonincreasing, proving the first claim. The second claim also follows from Proposition 2.9,
once we use g(K) = 1 to write ∆K(t) = at + (1 − 2a) + at−1 for some a and then observe
that

a =
∆′′K(1)

2
=

∆′′52(1)

2
= 2. �

Lemma 5.2. Suppose for some knot K 6∼= 52 and some rational r > 0 that

HF +(S3
r (52)) ∼= HF +(S3

r (K))

as graded Q[U ]-modules. Then r̂0(K) = 4 and ν̂(K) = 0.

Proof. Write r = p
q for some coprime p, q > 0. We note that since p

q > 0 > ν̂(52), we have

dim ĤF (S3
p/q(52)) = q · r̂0(52) + |p− qν̂(52)|

= 3q + |p+ q| = p+ 4q,

and by hypothesis this is equal to dim ĤF (S3
p/q(K)).

We next observe that ν̂(K) ≤ 0: according to Proposition 3.2, it is enough to show that
V0(K) = 0, and this was already proved in Lemma 5.1. Thus p

q > ν̂(K), and we have

dim ĤF (S3
p/q(K)) = q · r̂0(K) + (p− qν̂(K))

= p+ q(r̂0(K)− ν̂(K)).

This is equal to dim ĤF (S3
p/q(52)) = p+ 4q, so we must have r̂0(K)− ν̂(K) = 4.

Now since 0 ≤ r̂0(K) = ν̂(K) + 4 ≤ 4 and r̂0(K) ≥ |ν̂(K)|, the only possibilities for these
invariants are

(r̂0(K), ν̂(K)) = (4, 0) or (3,−1) or (2,−2),
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and the last is impossible because Proposition 3.2 says that ν̂(K) must be 0 or odd. If
(r̂0(K), ν̂(K)) = (3,−1) then (r̂0(K), ν̂(K)) = (3, 1), so K is an almost L-space knot by
Lemma 3.7, and then it must have genus 1 by Corollary 3.11. Now Proposition 3.9 says that
either K ∼= 52, or ∆K(t) = ∆K(t) is different from ∆52(t). But the first option is ruled out
by the assumption K 6∼= 52, and the second by Lemma 5.1. We conclude that (r̂0(K), ν̂(K))
cannot be (3,−1), and so the only remaining possibility is (4, 0). �

Proposition 5.3. Suppose for some rational r > 0 and some knot K 6∼= 52 that

HF +(S3
r (K)) ∼= HF +(S3

r (52))

as graded Q[U ]-modules. Then τ(K) = 0, and the following must hold.

• If g(K) = 1 then K is either 15n43522 or Wh−(T2,3, 2), up to mirroring.
• If g(K) ≥ 2 then K is fibered, and

H∗(A
+
s (K)) ∼=

{
T + ⊕Q, |s| = g(K)− 1

T +, otherwise

for all |s| ≤ g(K)− 1. In this case the maps

v+
s : A+

s (K)→ B+(K) and h+
−s : A+

−s(K)→ B+(K)

are quasi-isomorphisms for 0 ≤ s ≤ g(K)− 2.

Proof. Let g = g(K). Lemma 5.2 tells us that r̂0(K) = 4 and ν̂(K) = 0, so τ(K) = 0 by
Proposition 3.2, and we also have

dim ĤF (S3
2g−1(K)) = 4 + |(2g − 1)− 0| = 2g + 3.

Lemma 5.1 says that Vg−1(K) = 0, so Corollary 2.13 becomes

(5.1) dim ĤFK (K, g) =
dim ĤF (S3

2g−1(K), g − 1)− 1

2
.

We will use this to bound dim ĤFK (K, g) from above.

We suppose first that g = 1. In this case we have

dim ĤF (S3
1(K), 0) = dim ĤF (S3

1(K)) = 2g + 3 = 5,

so (5.1) becomes dim ĤFK (K, 1) = 2. From Lemma 5.1 we have ∆K(t) = 2t − 3 + 2t−1,
so Theorem 1.5 now tells us that K must be one of 52, 15n43522, or Wh−(T2,3, 2) up to
mirroring. But we have assumed that K is not 52, and it cannot be 52 since V0(52) = 1, so
this leaves only the knots named in the proposition.

Now we suppose instead that g ≥ 2. In this case, the unique self-conjugate element of

Spinc(S3
2g−1(K)) ∼= Z/(2g − 1)Z

is identified with 0, and in particular it is different from g − 1, which is conjugate to 1− g.

Since dim ĤFK (S3
2g−1(K), s) is odd for all s, we use the conjugation symmetry of ĤF (see
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Remark 2.4) to show that

2g + 3 = dim ĤF (S3
2g−1(K))

=
∑

s∈Z/(2g−1)Z

dim ĤF (S3
2g−1(K), s)

= 2 dim ĤF (S3
2g−1(K), g − 1) +

∑
|s|≤g−2

dim ĤF (S3
2g−1(K), s)

≥ 2 dim ĤF (S3
2g−1(K), g − 1) + (2g − 3),

since there are 2g − 3 different summands on the right. This shows that

dim ĤF (S3
2g−1(K), g − 1) ≤ 3,

and then (5.1) becomes dim ĤFK (K, g) ≤ 1. But dim ĤFK (K, g) must be positive, so
equality holds, which implies that

• dim ĤFK (K, g) = 1, and then K must be fibered [Ni07]; and

• dim ĤF (S3
2g−1(K), s) is 3 if s ≡ ±(g − 1) (mod 2g − 1), and 1 otherwise.

Applying Lemmas 2.8 and 2.12, we conclude that

HF +
red(S3

2g−1(K), s) ∼=

{
Q, s = ±(g − 1)

0, 2− g ≤ s ≤ g − 2.

The large surgery formula (Theorem 2.3) says that

H∗(A
+
s ) ∼= HF +(S3

2g−1(K), s)

whenever |s| ≤ g − 1, so this completes the description of H∗(A
+
s ).

Now if 0 ≤ s ≤ g − 2 then v+
s : A+

s → B+ induces a map on homology of the form

(v+
s )∗ : T + ∼= H∗(A

+
s )→ H∗(B

+) ∼= T +,

and this map is multiplication by UVs(K), but Lemma 5.1 says that Vs(K) = 0 and so (v+
s )∗ is

an isomorphism. The map (h+
−s)∗ has the same form and is identified with multiplication by

UH−s(K), but Proposition 2.6 says that H−s(K) = Vs(K) = 0, so (h+
−s)∗ is an isomorphism

as well. �

5.1. ĤFK in the higher genus case. Suppose that we have a homeomorphism

S3
r (K) ∼= S3

r (52)

for some slope r > 0 and some knot K of genus g ≥ 2. Then Proposition 5.3 says that K
is fibered, that τ(K) = 0, and that

H∗(A
+
s ) ∼=

{
T + ⊕Q, |s| = g − 1

T +, otherwise.

In addition, Lemma 5.1 together with Proposition 2.6 tells us that

Vs(K) =

{
0, s ≥ 0

|s|, s < 0
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for all s ∈ Z. We will use all of this information to determine ĤFK (K) as a bigraded vector
space.

Lemma 5.4. There is some integer d ∈ Z such that

H∗(A
+
s ) ∼=


T +

(0) ⊕Q(d), s = g − 1

T +
(2−2g) ⊕Q(d+2−2g), s = 1− g
T +

(min(0,2s)), otherwise.

Proof. We consider each of the maps

(v+
s )∗ : H∗(A

+
s )→ H∗(B

+) ∼= T +
(0),

which are induced by projections at the chain level. For s ≥ 0 we have Vs(K) = 0, so
these maps restrict to graded isomorphisms on the towers T + ⊂ H∗(A+

s ); thus these towers
have their bottom-most elements in grading 0. By contrast, for s < 0 the maps (v+

s )∗ are

modeled on multiplication by UVs(K) = U |s|, so the element of T + ⊂ H∗(A
+
s ) in grading 0

is at height |s| in the tower, meaning that the bottom element has grading −2|s| = 2s.

Having determined the grading on each tower, we set d equal to the grading of the Q
summand of H∗(A

+
g−1). Then it only remains to identify the grading on the Q summand

of H∗(A
+
1−g). We apply the large surgery formula, Theorem 2.3, to get relatively graded

isomorphisms

HF +(S3
2g−1(K), g − 1) ∼= H∗(A

+
g−1),

HF +(S3
2g−1(K), 1− g) ∼= H∗(A

+
1−g).

By conjugation symmetry these HF + invariants are isomorphic to each other, so we also
have a relatively graded isomorphism

H∗(A
+
g−1) ∼= H∗(A

+
1−g).

But this means that the grading of the Q summand of H∗(A
+
1−g) must be d greater than

that of the bottom of the tower T +
(2−2g), so its grading is d+ 2− 2g as claimed. �

We now start with the top-most Alexander grading of ĤFK (K), which we already know
to be 1-dimensional because K is fibered.

Lemma 5.5. We have ĤFK (K, g) ∼= Q(d+2) and ĤFK (K,−g) ∼= Q(d+2−2g), where d is the
integer from Lemma 5.4.

Proof. Lemma 2.8 gives us a short exact sequence

0→ ĤFK ∗+2(K, g)→ T +
(0) ⊕Q(d)

(v+g−1)∗
−−−−−→ T +

(0) → 0,

where (v+
g−1)∗ has kernel Q(d). The grading on ĤFK (K,−g) now comes from the symmetry

ĤFKm(K, a) ∼= ĤFKm−2a(K,−a)

of [OS04b, Equation (3)]. �
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Throughout the remainder of this section we write

Fs = C{i = 0, j ≤ s}

to denote the filtration

0 ⊂ F−g ⊂ F1−g ⊂ · · · ⊂ Fg
of ĈF (S3) whose associated graded groups are the various ĤFK (K, a). In particular the
short exact sequence

0→ Fs−1 ↪→ Fs → C{0, s} → 0

of chain complexes gives rise to a long exact sequence

(5.2) · · · → H∗(Fs−1)→ H∗(Fs)→ ĤFK ∗(K, s)→ H∗−1(Fs−1)→ · · · .

Lemma 5.6. For all s ∈ Z, there is a long exact sequence

· · · → H∗−(2s−2)(F−s)→ H∗(A
+
s−1)

(πs)∗−−−→ H∗(A
+
s )→ H∗−(2s−1)(F−s)→ · · · ,

and (v+
s−1)∗ is equal to the composition

H∗(A
+
s−1)

(πs)∗−−−→ H∗(A
+
s )

(v+s )∗−−−→ H∗(B
+).

Proof. There is a short exact sequence of chain complexes

(5.3) 0→ C{i ≤ −1, j = s− 1} → A+
s−1

πs−→ A+
s → 0

in which πs is projection. Then v+
s−1 = v+

s ◦ πs at the chain level, hence (v+
s−1)∗ factors as

claimed. We also have a chain homotopy equivalence

C∗{i ≤ −1, j = s− 1} Us−1

−−−→ C∗−(2s−2){i ≤ −s, j = 0}
−−−→ C∗−(2s−2){i = 0, j ≤ −s}

so the long exact sequence of homology groups associated to (5.3) takes the form promised
by the lemma. �

Lemma 5.7. We have

H∗(F0) ∼=

{
Q(0), g ≥ 3

Q(0) ⊕Q(d), g = 2.

Proof. We apply Lemma 5.6 with s = 0: supposing for now that g ≥ 3, the composition

H∗(A
+
−1) H∗(A

+
0 ) H∗(B

+)

T +
(−2) T +

(0) T +
(0)

(π0)∗

∼=

(v+0 )∗

∼= ∼=

(π0)∗ UV0(K)=1

is equal to (v+
−1)∗ and hence identified with multiplication by UV−1(K) = U . In particular,

the map (π0)∗ is surjective and also identified with multiplication by U , so the long exact
sequence of Lemma 5.6 splits as

0→ Hi+2(F0)→ Hi(A
+
−1)

(π0)∗−−−→ Hi(A
+
0 )→ 0
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for each i, and we have

Hi+2(F0) ∼= ker((π0)∗) ∼=

{
Q, i = −2

0, otherwise

since −2 is the grading of the bottom-most element of H∗(A
+
−1) ∼= T +

(−2).

Now suppose that g = 2. Then we factor (v+
−1)∗ as

H∗(A
+
−1) H∗(A

+
0 ) H∗(B

+)

T +
(−2) ⊕Q(d−2) T +

(0) T +
(0)

(π0)∗

∼=

(v+0 )∗

∼= ∼=

(π0)∗ UV0(K)=1

where the gradings on H∗(A
+
−1) come from Lemma 5.4. In this case (π0)∗ is still surjective,

so once again we identify its kernel Q(−2) ⊕Q(d−2) with H∗+2(F0). �

Proposition 5.8. We have ĤFK (K,−g) ∼= Q(d+2−2g), and ĤFK (K, 1 − g) ∼= Q2
(d+3−2g).

If g ≥ 3 then

ĤFK (K, s) ∼=


Q(d+4−2g), s = 2− g
0, 3− g ≤ s ≤ −1

Q(0), s = 0.

If g = 2 instead, then ĤFK (K, 0) ∼= Q(0) ⊕Q2
(d).

Proof. The computation of ĤFK (K,−g) is Lemma 5.5. When s = g − 1, we can factor
(v+
g−2)∗ as

H∗(A
+
g−2) H∗(A

+
g−1) H∗(B

+)

T +
(0) T +

(0) ⊕Q(d) T +
(0),

(πg−1)∗

∼=

(v+g−1)∗

∼= ∼=

(πg−1)∗ UVs(K)=1

and the composition is an isomorphism T +
(0) → T

+
(0) since Vg−2(K) = 0. Thus (πg−1)∗ is

injective, with cokernel Q(d). Now the sequence of Lemma 5.6 splits as

0→ H∗(A
+
g−2)

(πg−1)∗−−−−−→ H∗(A
+
g−1)→ H∗−(2g−3)(F1−g)→ 0,

so we have H∗(F1−g) ∼= Q(d−(2g−3)). But we also know that

H∗(F−g) ∼= ĤFK (K,−g) ∼= Q(d+2−2g)

by Lemma 5.5, so the induced map H∗(F−g)→ H∗(F1−g) must be zero for grading reasons.
Thus when s = 1− g the exact sequence (5.2) splits and we have

ĤFK ∗(K, 1− g) ∼= H∗(F1−g)⊕H∗−1(F−g) ∼= Q2
(d+3−2g).
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Now if g ≥ 3 then we consider the map (v+
s−1)∗ for each of s = 1, 2, . . . , g − 2 in turn. In

each case (v+
s−1)∗ factors as

H∗(A
+
s−1) H∗(A

+
s ) H∗(B

+)

T +
(0) T +

(0) T +
(0),

(πs)∗

∼=

(v+s )∗

∼= ∼=

(πs)∗ UVs(K)=1

and is an isomorphism, since it is identified with multiplication by UVs−1(K) = 1 as a map
T +

(0) → T
+

(0). It follows that each (πs)∗ is an isomorphism, so the exact sequence of Lemma 5.6

tells us that

H∗(F−s) = 0, s = 1, 2, . . . , g − 2.

Applying the long exact sequence (5.2) for s = 3−g, 4−g, . . . , 0, we know that H∗(Fs−1) = 0
for each s, and so

ĤFK ∗(K, s) ∼= H∗(Fs) ∼=

{
Q(0), s = 0

0, 3− g ≤ s ≤ −1,

the case s = 0 having been computed in Lemma 5.7.

Similarly, if we take s = 2− g in (5.2) then we get a long exact sequence

(5.4) · · · → H∗(F1−g)→ H∗(F2−g)→ ĤFK ∗(K, 2− g)→ H∗−1(F1−g)→ · · · .

For g ≥ 3 we have seen that H∗(F2−g) = 0, and so

ĤFK ∗(K, 2− g) ∼= H∗−1(F1−g) ∼= Q(d+4−2g).

If g = 2 instead, then we have computed above that

H∗(F−1) = H∗(F1−g) ∼= Q(d−1)

while H∗(F0) ∼= Q(0) ⊕ Q(d) by Lemma 5.7, so it remains to be seen whether the map
ι : H∗(F−1)→ H∗(F0) is zero or not.

Assuming that g = 2, we now consider the inclusion-induced maps

H∗(F−1) H∗(F0) ĤF (S3)

Q(d−1) Q(0) ⊕Q(d) Q(0),

ι

∼= ∼= ∼=

where H∗(F−1) = H∗(F1−g) was computed above, and we used Lemma 5.7 to identify
H∗(F0). If ι is nonzero then for degree reasons we must have d = 1, and then its image is the

Q(0) summand of H∗(F0). But the map H∗(F0)→ ĤF (S3) is surjective since τ(K) ≤ 0, so
it must be nonzero on this Q(0) summand, in which case the composition across the top row
is also surjective. This would in turn imply that τ(K) ≤ −1, contradicting Proposition 5.3.
We conclude that ι = 0, so (5.4) splits as

0→ H∗(F0)→ ĤFK ∗(K, 0)→ H∗−1(F−1)→ 0.

Thus ĤFK ∗(K, 0) ∼= Q(0) ⊕Q2
(d), completing the proof. �
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6. The mapping cone formula and 52

Suppose for some knot K 6∼= 52 and some rational slope r > 0 that S3
r (K) ∼= S3

r (52). In
this section we will apply the mapping cone formula, Theorem 2.5, to compare HF +(S3

r (K))
to HF +(S3

r (52)).

Throughout this section we will assume that K has genus g ≥ 2. Then Proposition 5.3
says that K is fibered, and that we can write

H∗(A
+
g−1(K)) ∼= T +

(0) ⊕Q(d)

for some integer d ∈ Z. Proposition 5.8 then describes ĤFK (K) completely in terms of g
and d.

We also record from Lemma 5.1, together with Proposition 2.6, the values

Vs(K) =

{
0, s ≥ 0

−s, s < 0,
Hs(K) =

{
s, s ≥ 0

0, s < 0.

The values of Vs(52) and Hs(52) are identical, so we will refer to these throughout without
reference to the particular knot.

6.1. Preliminaries. We begin by recording some facts about the mapping cone formula
which will simplify our computations.

Proposition 6.1. Let K ⊂ S3 be a nontrivial knot of genus g ≥ 1, and let p, q > 0 be
relatively prime integers. Fix an integer i, and suppose there are some integers s ≤ s′ such
that

• h+

b i+pt
q
c

is a quasi-isomorphism for all t < s, and

• v+

b i+pt
q
c

is a quasi-isomorphism for all t > s′.

Define truncated complexes

A[s,s′]
i,p/q =

⊕
s≤t≤s′

(
t, A+

b i+pt
q
c

)
, B[s,s′]

i,p/q =
⊕
s<t≤s′

(
t, B+

)
,

and a map

D
[s,s′]
i,p/q : A[s,s′]

i,p/q → B[s,s′]
i,p/q

(t, at) 7→ (t, v+

b i+pt
q
c
(at)) + (t+ 1, h+

b i+pt
q
c
(at))

where we interpret (s, v+

b i+ps
q
c
(as)) and (s′ + 1, h+

b i+ps′
q
c
(as′)) as zero. Then there is an iso-

morphism

HF +(S3
p/q(K), i) ∼= ker

(
(D

[s,s′]
i,p/q)∗ : H∗(A

[s,s′]
i,p/q)→ H∗(B

[s,s′]
i,p/q)

)
of relatively graded Q[U ]-modules.
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Proof. Theorem 2.5 gives a relatively graded isomorphism between HF +(S3
p/q(K), i) and

the homology of the mapping cone X+
i,p/q, which we can write as

· · · A+

b i+(t−1)p
q

c
A+

b i+tp
q
c

A+

b i+(t+1)p
q

c
· · ·

· · · B+ B+ B+ · · ·

h+

v+
h+

v+
h+

v+ h+

where we understand each h+ or v+ with domain A+
j to mean h+

j or v+
j respectively. We

observe that the subcomplex

· · · A+

b i+(s−1)p
q

c

· · · B+ B+,

h+

v+
h+

consisting of all summands (t, A+

b i+tp
q
c
) with t < s and all (t, B+) with t ≤ s, is acyclic

because each of its h+ maps is a quasi-isomorphism. Similarly, the subcomplex

A+

b i+(s′+1)p
q

c
· · ·

B+ · · · ,

v+ h+

consisting of all summands (t, A+

b i+tp
q
c
) and (t, B+) with t > s′, is acyclic because each of

its v+ maps is a quasi-isomorphism. Thus we may take the quotient of X+
i,p/q by each of

these subcomplexes in turn, and the projection maps are both quasi-isomorphisms. But
this leaves the truncated complex

A+

b i+ps
q
c

A+

b i+p(s+1)
q

c
· · · A+

b i+p(s
′−1)
q

c
A+

b i+ps′
q
c

B+ · · · B+ B+,

h+
v+ h+

h+

v+
h+

v+

which is precisely the mapping cone X[s,s′]
i,p/q of D

[s,s′]
i,p/q, and so we have

HF +(S3
p/q(K), i) ∼= H∗(X

[s,s′]
i,p/q)).

The truncated mapping cone fits into a long exact sequence

· · · → H∗+1(X[s,s′]
i,p/q)→ H∗(A

[s,s′]
i,p/q)

(D
[s,s′]
i,p/q

)∗
−−−−−−→ H∗((B

[s,s′]
i,p/q)→ . . . ,
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and so it now suffices to prove that (D
[s,s′]
i,p/q)∗ is surjective, cf. [NW15, Lemma 2.8]. But the

restriction of (D
[s,s′]
i,p/q)∗ to all of the tower summands

T + ⊂ H∗(A+

b i+pt
q
c
) ⊂

⊕
s≤t≤s′

H∗(A
+

b i+pt
q
c
) ∼= H∗(A

[s,s′]
i,p/q)

has the form

T + T + · · · T + T + ⊂ H∗(A
[s,s′]
i,p/q)

T + · · · T + T + ∼= H∗(B
[s,s′]
i,p/q),

h+∗
v+∗

h+∗ h+∗
v+∗

h+∗
v+∗ (D

[s,s′]
i,p/q

)∗

and each of the v+
∗ and h+

∗ components are surjective, so it follows that the total map is

surjective as well. This identifies H∗(X
[s,s′]
i,p/q), and hence HF +(S3

p/q(K), i), with the kernel

of (D
[s,s′]
i,p/q)∗ up to an overall grading shift, as promised. �

Corollary 6.2. Let K ⊂ S3 be a nontrivial knot of genus g ≥ 1, and let p, q > 0 be relatively
prime integers. Fix an integer i, and suppose there is some s ∈ Z such that

• h+

b i+pt
q
c

is a quasi-isomorphism for all t < s, and

• v+

b i+pt
q
c

is a quasi-isomorphism for all t > s.

Then HF +(S3
p/q(K), i) ∼= H∗(A

+

b i+ps
q
c
) as relatively graded Q[U ]-modules.

Proof. We apply Proposition 6.1 to identify HF +(S3
p/q(K), i) with the kernel of the map

(D
[s,s]
i,p/q)∗ : H∗(A

+

b i+ps
q
c
)→ 0. �

Proposition 6.3. Let K ⊂ S3 be a knot of genus g ≥ 1, and fix i ∈ Z and p
q ≥ 2g − 1.

Then there is at most one s ∈ Z such that

1− g ≤
⌊
i+ ps

q

⌋
≤ g − 1,

and we have

HF +(S3
p/q(K), i) =

H∗(A
+

b i+ps
q
c
) if s exists

T + otherwise

as relatively graded Q[U ]-modules.

Proof. Suppose first that s exists. The desired inequality is equivalent to

q(1− g) ≤ i+ ps < qg.

Thus if there is a solution s, then for all integers t > s we have

i+ pt ≥ i+ p(s+ 1) ≥ q(1− g) + p ≥ q(1− g) + q(2g − 1) = qg,

while for all integers t < s we have

i+ pt ≤ i+ p(s− 1) < qg − p ≤ qg − q(2g − 1) = q(1− g).
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In either case t cannot be a solution, so if s exists then it is unique. But then we know that

• h+

b i+pt
q
c

is a quasi-isomorphism for all t < s, since b i+ptq c ≤ −g; and

• v+

b i+pt
q
c

is a quasi-isomorphism for all t > s, since b i+ptq c ≥ g.

So Corollary 6.2 tells us that HF +(S3
p/q(K), i) ∼= H∗(A

+

b i+ps
q
c
), as claimed.

Now if no such s exists, then we let σ be the least integer such that b i+pσq c ≥ 0. It follows

that b i+ptq c ≤ −g for all t < σ, and that b i+ptq c ≥ g for all t > σ, so now Corollary 6.2 says

that
HF +(S3

p/q(K), i) ∼= H∗(A
+

b i+pσ
q
c
).

But in fact b i+pσq c ≥ g, so H∗(A
+

b i+pσ
q
c
) ∼= H∗(B

+) ∼= T + and this completes the proof. �

6.2. Computations for 52. We begin by computing HF +(S3
p/q(52), i) for all slopes p

q ≥ 1.

We recall from (2.4) that

H∗(A
+
0 (52)) ∼= T +

(0) ⊕Q2
(0).

Lemma 6.4. If p
q ≥ 1 and 0 ≤ i ≤ p− 1, then we have

HF +(S3
p/q(52), i) ∼=

{
T +

(0) ⊕Q2
(0), i = 0, 1, . . . , q − 1

T +
(0), otherwise

as relatively graded Q[U ]-modules.

Proof. The condition b i+psq c = 0 is equivalent to

0 ≤ i+ ps < q,

so we can find such an s if and only if i ≡ 0, 1, . . . , q − 1 (mod p), or (since we assumed
0 ≤ i ≤ p− 1) if and only if 0 ≤ i ≤ q − 1. If s does not exist then HF +(S3

p/q(K), i) ∼= T +

by Proposition 6.3 (applied with g = g(52) = 1). If instead s exists, then we must have
0 ≤ i ≤ q − 1, and now Proposition 6.3, together with (2.4), says that

HF +(S3
p/q(52), i) ≡ H∗(A+

0 (52)) ∼= T +
(0) ⊕Q2

(0)

as relatively graded Q[U ]-modules. �

Proposition 6.5. Suppose that 0 < p
q < 1. Then

HF +(S3
p/q(52), i) ∼= T +

(0) ⊕Q2ni
(0)

as relatively graded Q[U ]-modules, where ni is the number of t ∈ Z such that 0 ≤ i+ pt < q.

Proof. We define a pair of integers s, s′ by

s = min{t ∈ Z | i+ pt ≥ 0},
s′ = max{t ∈ Z | i+ pt ≤ q − 1}.

Then p < q implies that s ≤ s′, and for all t ∈ Z we have⌊
i+ pt

q

⌋
= 0 ⇐⇒ s ≤ t ≤ s′,
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so ni = s′ − s+ 1.

Now Proposition 6.1 says that HF +(S3
p/q(52), i) is isomorphic to the kernel of (D

[s,s′]
i,p/q)∗.

Recalling again from (2.4) that H∗(A
+
0 ) ∼= T +

(0) ⊕Q2
(0), this map has the form

T +
(0) ⊕Q2

(0) T +
(0) ⊕Q2

(0) · · · T +
(0) ⊕Q2

(0) T +
(0) ⊕Q2

(0)

T +
(−1) · · · T +

(−1) T +
(−1).

h+∗
v+∗

h+∗
h+∗

v+∗
h+∗

v+∗

Here we are able to assign these gradings to each summand because V0(52) = H0(52) = 0,
and so each of the maps v+

∗ = (v+
0 )∗ and h+

∗ = (h+
0 )∗ gives a degree-(−1) isomorphism

between the respective towers.

We see by inspection that ker(D
[s,s′]
i,p/q)∗ contains a tower T + whose bottom-most element

is in grading 0, as an alternating sum of the bottom-most elements of the towers T +
(0) ⊂

H∗(A
+

b i+pt
q
c
), s ≤ t ≤ s′. The map (D

[s,s′]
i,p/q)∗ also sends

H0(A[s,s′]
i,p/q)

∼= Q3(s′−s+1)

onto

H−1(B[s,s′]
i,p/q)

∼= Qs′−s,

so its kernel has total dimension 2(s′ − s) + 3 in degree zero. We conclude that

HF +(S3
p/q(K), i) ∼= T +

(0) ⊕Q2(s′−s+1)
(0)

as relatively graded Q[U ]-modules. �

6.3. General facts about the kernel of U . We will show that under most circumstances,
a positive r-surgery on a knot of genus at least 2 cannot have the same Heegaard Floer
homology as the corresponding surgery on 52. We will handle the cases r < 1 and r ≥ 1
in the next few subsections; before that, we prepare for this work here by proving some
general facts about the kernel of the U -action on HF + of these surgeries.

Lemma 6.6. Let K be a knot of genus g ≥ 2, and suppose for some relatively prime integers
p, q > 0 that

HF +(S3
p/q(K)) ∼= HF +(S3

p/q(52))

as absolutely graded Q[U ]-modules. Fix an integer i, and lift the relative gradings on the
complexes A+

i,p/q and B+
i,p/q to absolute Z-gradings so that D+

i,p/q has degree −1. Let ds
denote the grading of the bottom-most element of the tower

T + ⊂ (s,H∗(A
+

b i+ps
q
c
)) ⊂ H∗(A+

i,p/q)

for each s.

(1) If b i+psq c ≥ 0, then ds+1 = ds + 2b i+psq c.
(2) If b i+psq c ≤ 0, then ds = ds−1 + 2b i+psq c.
(3) If b i+psq c ≤ 0 and b i+p(s+1)

q c ≥ 0, then ds = ds+1.
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Proof. If b i+psq c ≥ 0, then the map (D+
i,p/q)∗ on homology restricts to the sum of all of the

towers (s, T +
(ds)

) ⊂ H∗(A+
i,p/q) as

· · · t = s− 1 s s+ 1 . . .

· · · T +
(ds−1) T +

(ds)
T +

(ds+1) . . .

· · · T +
(es−1) T +

(es)
T +

(es+1) . . .

h+∗
v+∗

h+∗
v+∗

h+∗
v+∗

h+∗

for some integers es−1, es, es+1.

Let n = b i+psq c. If n ≥ 0 then Hn(K) = n, so the h+
∗ map with domain in column s

above has the form

(h+
n )∗ : T +

(ds)

Un−−→ T +
(es+1),

sending a generator in degree ds + 2n to one in degree es+1, so we have

(ds + 2n)− 1 = es+1.

But then b i+p(s+1)
q c ≥ n ≥ 0, so the v+

∗ map in column s+ 1 is identified with the identity

map T +
(ds+1) → T

+
(es+1) and thus

ds+1 = es+1 + 1 = ds + 2n.

Similarly, if n ≤ 0 then we have Hb i+p(s−1)
q

c = 0 and Vn = −n, hence

(ds + 2(−n))− 1 = es = ds−1 − 1,

or ds = ds−1 + 2n.

In the case where b i+psq c ≤ 0 and b i+p(s+1)
q c ≥ 0, we note that the h+

∗ and v+
∗ maps

into the T +
(es+1) tower in column s + 1 are both modeled on multiplication by 1, since

Hb i+ps
q
c(K) = 0 and Vb i+p(s+1)

q
c(K) = 0. Thus

ds = es+1 + 1 = ds+1,

completing the proof. �

Lemma 6.7. Assume the hypotheses and notation of Lemma 6.6, and let

s0 = min

{
t ∈ Z

∣∣∣∣ ⌊ i+ pt

q

⌋
≥ 0

}
.

Fix integers s and s′ satisfying the hypotheses of Proposition 6.1, and consider the map

(D
[s,s′]
i,p/q)∗ : H∗(A

[s,s′]
i,p/q)→ H∗(B

[s,s′]
i,p/q)

between the homologies of the corresponding truncated complexes. If s ≤ s0 ≤ s′, then

ker(D
[s,s′]
i,p/q)∗ ∩ ker(U)

contains a Q submodule in grading ds0.
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Proof. Consider the restriction of (D
[s,s′]
i,p/q)∗ to the sum of all the towers (t, T +

(dt)
) ⊂ H∗(A[s,s′]

i,p/q).

By hypothesis we have ⌊
i+ p(s0 − 1)

q

⌋
< 0 and

⌊
i+ ps0

q

⌋
≥ 0,

so Lemma 6.6 says that the sequence of gradings
(
dt
)

satisfies

· · · > ds > ds+1 > · · · > ds0−1 = ds0 ≤ ds0+1 ≤ · · · ≤ ds′ ≤ · · · .

Let

s1 = max{t ∈ Z | dt = ds0},
so that for all t ∈ {s, . . . , s′}, we have dt = ds0 if and only if s0− 1 ≤ t ≤ s1. Then near the

indices [s0 − 1, s1 + 1], the restriction of (D
[s,s′]
i,p/q)∗ has the form

t = s0 − 1 s0 · · · s1 s1 + 1

T +
(ds0 ) T +

(ds0 ) · · · T +
(ds0 ) T +

(ds1+1)

T + T +
(ds0−1) · · · T +

(ds0−1) T +

v+∗
1

1 1
1

1
h+∗

v+∗

in which we omit any columns at either end whose indices are not in [s, s′].

To see that the maps labeled “1” are indeed modeled on multiplication by U0 = 1, we
note that they are one of

• an h+
∗ map with domain in column s0 − 1, and then since b i+p(s0−1)

q c < 0 we have

Hb i+p(s0−1)
q

c(K) = 0;

• a v+
∗ map with domain in column t ≥ s0, and then since b i+ptq c ≥ 0 we have

Vb i+pt
q
c(K) = 0; or

• an h+
∗ map from column t ≥ s0 to column t + 1 where dt = dt+1 = ds0 , and then

Lemma 6.6 says that

0 = dt+1 − dt = 2

⌊
i+ pt

q

⌋
,

so that Hb i+pt
q
c(K) = H0(K) = 0.

Moreover, the v+
∗ map in column s0 − 1 is modeled on multiplication by Ua, where

a = Vb i+p(s0−1)
q

c(K) = −
⌊
i+ p(s0 − 1)

q

⌋
≥ 1.

Similarly the h+
∗ map in column s1 is modeled on multiplication by U b, where

b = Hb i+ps1
q
c(K) =

⌊
i+ ps1

q

⌋
= 1

2 (ds1+1 − ds1) > 0,

by Lemma 6.6 and the definition of s1.
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We now label generators at the bottom of each tower by

xt ∈ (t, T +
(dt)

) ⊂ H∗(A[s,s′]
i,p/q), yt ∈ (t, T +) ⊂ H∗(B[s,s′]

i,p/q),

so that Uxt = 0 and Uyt = 0 for all t, and the various v+
∗ and h+

∗ maps carry elements of
the form U ixt to elements of the form U jyt and Ukyt+1 respectively. We then define

z =

s1∑
t=s0−1

(−1)txt ⊂ Hds0
(A[s,s′]

i,p/q),

treating any terms whose indices are not in [s, s′] as zero, and it follows from the above
discussion that Uz = 0 and that

(D
[s,s′]
i,p/q)∗(z) = (−1)s0−1ys0 +

(
s1−1∑
t=s0

(−1)t(yt + yt+1)

)
+ (−1)s1ys1 = 0.

Thus z generates the desired Q summand. �

Lemma 6.8. Assume the hypotheses and notation of Lemma 6.6, and let s ≤ s′ be integers
satsifying the hypotheses of Proposition 6.1. Suppose that⌊

i+ ps′

q

⌋
= g − 1.

If d ∈ Z denotes the integer such that H∗(A
+
g−1) ∼= T +

(0) ⊕ Q(d), as in Lemma 5.4, then we

can write
(s′, H∗(A

+
g−1)) ∼= T +

(ds′ )
⊕Q(ds′+d)

as Q[U ]-modules such that the Q(ds′+d) summand lies in

ker(D
[s,s′]
i,p/q)∗ ∩ ker(U).

Proof. The rightmost portion of the truncated mapping cone complex has the form

· · · t = s′ − 1 s′

· · · H∗(A
+

b i+p(s
′−1)
q

c
) T +

(ds′ )
⊕Q(ds′+d)

· · · T + T +
(ds′−1),

h+∗
v+∗

h+∗ (v+g−1)∗

where the grading on the bottom T + in column s′ follows from Vg−1(K) = 0. Let xs′ and
ys′ be bottom-most elements of the towers at the top and bottom of column s′, chosen so
that (v+

g−1)∗(xs′) = ys′ .

Let z generate the Q(ds′+d) summand in column s′, so that Uz = 0. If (v+
g−1)∗(z) = 0

then we are done, since z generates the desired submodule. Otherwise, we observe that

U · (v+
g−1)∗(z) = (v+

g−1)∗(Uz) = (v+
g−1)∗(0) = 0,

so (v+
g−1)∗(z) must be a nonzero element at the bottom of the T +

(ds′−1) tower. In this case,

we can write
(v+
g−1)∗(z) = λys′ = λ · (v+

g−1)∗(xs′)
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for some nonzero λ ∈ Q. For grading reasons it now follows that d = 0, since z must lie in
grading ds′ , and so

z − λxs′ ∈ ker(v+
g−1)∗.

Now we can write the H∗(A
+
g−1) in column s′ as the Q[U ]-module

T +〈xs′〉 ⊕Q〈z − λxs′〉,

and the Q summand is in ker(v+
g−1)∗ = ker(D

[s,s′]
i,p/q)∗ as well as ker(U), as desired. �

6.4. Small positive surgeries. In Proposition 6.5 we showed that if 0 < r < 1, then there
is a relatively graded isomorphism of the form

HF +(S3
r (52), i) ∼= T +

(0) ⊕Q2ni
(0)

for all i. We will show that this cannot be the case for HF +(S3
r (K)) if K is a knot of genus

at least 2 that satisfies the hypotheses of Proposition 5.3.

Proposition 6.9. Let K be a knot of genus g ≥ 2, and fix relatively prime positive integers
q > p > 0. Then

HF +(S3
p/q(K)) 6∼= HF +(S3

p/q(52))

as absolutely graded Q[U ]-modules.

Proof. If HF +(S3
p/q(K)) ∼= HF +(S3

p/q(52)), then K satisfies the conclusions of Proposi-

tion 5.3. In this case, Proposition 6.5 says that for all i, the submodule

ker(U) ⊂ HF +(S3
p/q(52), i)

lies in a single homological grading. Thus the same must be true for

ker(U) ⊂ HF +(S3
p/q(K), i),

so we will find an integer i for which this is not the case, giving a contradiction.

We fix an integer i between 0 and p− 1, inclusive, such that

i ≡ gq − 1 (mod p).

We then define

s = min{t ∈ Z | i+ pt ≥ (1− g)q}, s′ =
gq − 1− i

p
.

By construction we have⌊
i+ ps′

q

⌋
= g − 1 and

⌊
i+ p(s′ + 1)

q

⌋
≥ g,

and since 1 ≤ p+ 1 ≤ q we have⌊
i+ p(s′ − 1)

q

⌋
=

⌊
gq − (p+ 1)

q

⌋
= g − 1

as well. We also observe that b i+ptq c ≥ 0 if and only if t ≥ 0, and so s ≤ t ≤ s′.
According to Proposition 6.1, we can identify HF +(S3

p/q(K), i) with the kernel of

(D
[s,s′]
i,p/q)∗ : H∗(A

[s,s′]
i,p/q)→ H∗(B

[s,s′]
i,p/q)
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up to an overall grading shift, so it will suffice to show that

ker(D
[s,s′]
i,p/q)∗ ∩ ker(U)

does not lie in a single homological grading. Supposing otherwise, we choose an arbitrary

lift of the relative gradings on A[s,s′]
i,p/q and B[s,s′]

i,p/q to an absolute Z-grading, and let dt ∈ Z
denote the bottom-most grading in each tower

T +
(dt)
⊂ (t,H∗(A

+

b i+pt
q
c
)) ⊂ H∗(A[s,s′]

i,p/q).

Lemma 6.7 now says that there is a Q-submodule of ker(D
[s,s′]
i,p/q)∗ in grading ds0 , and

Lemma 6.8 says that there is also a Q-submodule in grading ds′ + d, hence

ds′ + d = ds0

by hypothesis. But according to Lemma 6.6, we also have

ds′ = ds′−1 + 2

⌊
i+ p(s′ − 1)

q

⌋
= ds′−1 + 2(g − 1)

≥ ds0 + 2(g − 1),

so then d = ds0 − ds′ ≤ 2− 2g.

We now examine the rightmost portion of the truncated complex X[s,s′]
i,p/q. Since b i+p(s

′−1)
q c =

g − 1, the last two columns have the form

· · · t = s′ − 1 s′

· · · T +
(ds′−1) ⊕Q(ds′−1+d) T +

(ds′ )
⊕Q(ds′+d)

· · · T +
(ds′−1−1) T +

(ds′−1),

h+∗
(v+g−1)∗

(h+g−1)∗
(v+g−1)∗

with ds′ = ds′−1 + 2(g − 1) as above. Since d ≤ 2 − 2g ≤ −2, the map (v+
g−1)∗ in column

s′−1 must send the Q(ds′−1+d) submodule to zero for grading reasons. That same submodule

must be sent by (h+
g−1)∗ into column s′, in grading

ds′−1 + d− 1 = (ds′ − 2(g − 1)) + d− 1

= (ds′ + d) + (1− 2g)

≤ ds′ − 1− 2g.

This is strictly less than the bottom-most grading of the corresponding tower, so this image
also must be zero, and it follows that in column s′ − 1 we have

Q(ds′−1+d) ⊂ ker(D
[s,s′]
i,p/q)∗ ∩ ker(U)

as well. Since
ds′−1 + d = (ds′ + d)− (2g − 2) < ds′ + d,

it follows that ker(D
[s,s′]
i,p/q)∗ ∩ ker(U) is not supported in a single grading, and so we have a

contradiction. �
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6.5. Large positive surgeries. In this subsection we attempt to understand when there
can be a homeomorphism

S3
r (K) ∼= S3

r (52)

for some slope r ≥ 1 and some knot K of genus at least 2. We implicitly identify

Spinc(S3
p/q(K)) ∼= Z/pZ

throughout, as in the statement of Theorem 2.5.

The following lemma will help us find Spinc structures s where HF +(S3
p/q(K), s) differs

from HF + of any Spinc structure on S3
p/q(52).

Lemma 6.10. Let g ≥ 2 be an integer, and let p > q > 0 be relatively prime positive
integers such that p does not divide 2g− 2. Then there exists an integer i ∈ Z for which the
equation ⌊

i+ ps

q

⌋
= g − 1

has an integer solution s ∈ Z, but the equation⌊
i+ ps

q

⌋
= 1− g

does not.

Proof. We note that b i+psq c = g − 1 admits a solution s ∈ Z if and only if

q(g − 1) ≤ i+ ps ≤ qg − 1,

or equivalently if and only if

(6.1) i ≡ qg − j (mod p) for some j ∈ {1, 2, . . . , q}.

Similarly, the equation b i+psq c = 1− g has a solution s ∈ Z if and only if

q(1− g) ≤ i+ ps ≤ q(2− g)− 1,

or equivalently if and only if

(6.2) i ≡ q(2− g)− k (mod p) for some k ∈ {1, 2, . . . , q}.

Each of (6.1) and (6.2) is solved by exactly q residue classes modulo p, and these solutions
coincide if and only if

qg ≡ q(2− g) (mod p),

which is equivalent to 2g− 2 ≡ 0 (mod p) since p and q are coprime. But we have assumed
that this is not the case, so the set of i in (6.1) is not a subset of the set in (6.2), and hence
there is some i which satisfies (6.1) but not (6.2). This is the desired i. �

Proposition 6.11. Let K ⊂ S3 be a nontrivial knot of genus g ≥ 2, and let p ≥ q > 0 be
relatively prime positive integers. If there is an isomorphism

HF +(S3
p/q(K)) ∼= HF +(S3

p/q(52))

of graded Q[U ]-modules, then p divides 2g − 2.
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Proof. We suppose that p - 2g − 2. Then Lemma 6.4 says that

dimQ HF +
red(S3

p/q(52), i) ∼= 0 or 2 for all i,

so for the sake of a contradiction it will suffice to find i such that HF +
red(S3

p/q(K), i) is

1-dimensional. We start by applying Lemma 6.10 to find i ∈ Z and s′ ∈ Z such that⌊
i+ ps′

q

⌋
= g − 1

and such that b i+ptq c = 1− g has no solutions t ∈ Z; this will be the desired i.

Let s be the least integer satisfying ⌊
i+ ps

q

⌋
≥ 0.

Then h+

b i+pt
q
c

is a quasi-isomorphism for all t < s, since then b i+ptq c is negative but not equal

to 1− g; if 1− g < b i+ptq c < 0 then this is part of Proposition 5.3, and if b i+ptq c < 1− g then

this is true for arbitrary genus-g knots. Likewise v+

b i+pt
q
c
(K) is a quasi-isomorphism for all

t > s′, since then b i+ptq c ≥ g. Thus Proposition 6.1 says that HF +(S3
p/q(K), i) is isomorphic

to the kernel of the truncated map

(D
[s,s′]
i,p/q)∗ : H∗(A

[s,s′]
i,p/q)→ H∗(B

[s,s′]
i,p/q).

The domain is a sum of relatively graded Q[U ]-modules of the form

H∗(A
+

b i+pt
q
c
) ∼=

{
T +, s ≤ t < s′

T + ⊕Q, t = s′,

and we know that H∗(B
+) ∼= T +, so (D

[s,s′]
i,p/q)∗ has the form

t = s s+ 1 . . . s′ − 1 s′

T + T + · · · T + T + ⊕Q

T + · · · T + T +.

h+∗
v+∗

h+∗ h+∗
v+∗

h+∗
(v+g−1)∗

Lemma 6.8 says that we can arrange for the Q summand in column s′ above to belong

to ker(D
[s,s′]
i,p/q)∗. Having done so, we see that ker(D

[s,s′]
i,p/q)∗ is isomorphic as a Q[U ]-module to

the direct sum of that Q with the kernel of

t = s s+ 1 . . . s′ − 1 s′

T + T + · · · T + T +

T + · · · T + T +.

h+∗ 1
h+∗ h+∗

1
h+∗

1
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(Here each v+
∗ map is identified with multiplication by U0 = 1, since t ≥ s implies that

b i+ptq c ≥ 0 and hence Vb i+pt
q
c(K) = 0.) But this kernel can be identified with the T + in

column s, so now we apply Proposition 6.1 to conclude that

HF +(S3
p/q(K), i) ∼= ker(D

[s,s′]
i,p/q)∗

∼= T + ⊕Q

up to an overall grading shift. This says that HF +
red(S3

p/q(K), i) ∼= Q, which gives the desired

contradiction. �

Proposition 6.11 takes care of most slopes r ≥ 1 (for knots of a fixed genus g) without
making use of gradings on the mapping cone complex. By being careful about gradings, we
can handle the remaining non-integral cases as well.

Proposition 6.12. Let K be a nontrivial knot of genus g ≥ 2, and let p ≥ q > 0 be
relatively prime positive integers. If there is an isomorphism

HF +(S3
p/q(K)) ∼= HF +(S3

p/q(52))

of graded Q[U ]-modules, then q = 1 and p divides 2g − 2.

Proof. Proposition 6.11 tells us that p divides 2g − 2, so it remains to be seen that q = 1.
We will assume to the contrary that q ≥ 2. If we write e = 2g−2

p then p
q = 2g−2

qe , and the

assumption q ≥ 2 means that p
q is neither 2g − 2 nor g − 1, so it follows that qe ≥ 3, or

p
q ≤

2g−2
3 .

As usual, we will take d ∈ Z such that

H∗(A
+
g−1) ∼= T +

(0) ⊕Q(d),

as guaranteed by Lemma 5.4. This integer d depends only on K, which is the key fact we
will use below to rule out any case where q ≥ 2.

Fixing some choice of

i = q(g − 1) + j, j = 0, 1, . . . , q − 1,

we take s = −qe and s′ = 0, and then we have⌊
i+ ps

q

⌋
=

⌊
(q(g − 1) + j)− pqe

q

⌋
=

⌊
g − 1− pe+

j

q

⌋
= 1− g

and
⌊
i+ps′

q

⌋
= g − 1, while (since p

q ≥ 1) b i+p(s−1)
q c ≤ −g and b i+p(s

′+1)
q c ≥ g. Thus

HF +(S3
p/q(K), i) ∼= ker

(
(D

[s,s′]
i,p/q)∗ : H∗(A

[s,s′]
i,p/q)→ H∗(B

[s,s′]
i,p/q)

)
by Proposition 6.1. We put an absolute Z-grading on the truncated mapping cone com-

plex X[s,s′]
i,p/q, with dt denoting the bottom-most grading for the tower in each summand

(t,H∗(A
+

b i+pt
q
c
)) as usual, and we let

s0 = min

{
t ∈ Z

∣∣∣∣ ⌊ i+ pt

q

⌋
≥ 0

}
.

Then Lemmas 6.7 and 6.8 tell us that

ker(D
[s,s′]
i,p/q)∗ ∩ ker(U)
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contains Q submodules in gradings ds0 and ds′ + d respectively. But by Proposition 6.4
these gradings must be the same, so we have

−d = ds′ − ds0 .

We remark that since p
q ≤

2g−2
3 , it follows that s0 ≤ s′ − 1.

We now attempt to work out this value in more detail. According to Lemma 6.6, we have

−d = ds′ − ds0 =

s′−1∑
t=s0

(dt+1 − dt) = 2
s′−1∑
t=s0

⌊
i+ pt

q

⌋
,

which, since i = q(g − 1) + j, can be written as

(6.3) − d = 2

s′−1∑
t=s0

(
(g − 1) +

⌊
j + pt

q

⌋)
.

We note that ⌊
i+ pt

q

⌋
≥ 0⇐⇒ (q(g − 1) + j) + pt ≥ 0

⇐⇒ t ≥ −q
(
g − 1

p

)
− j

p
= −q

(e
2

)
− j

p

and so we have

(6.4) s0 =

⌈
−qe

2
− j

p

⌉
= −

⌊
qe

2
+
j

p

⌋
,

while s′ − 1 = −1 since s′ = 0 by definition. This makes it clear that while the various dt
may have depended on our choice of i and on the absolute grading on X[s,s′]

i,p/q, the expression

(6.3) for d depends only on p, q, g, and our choice of j ∈ {0, 1, . . . , q − 1}. But we have
already remarked that d depends only on K, so we will show that different choices of j lead
to different values of d and thus get a contradiction.

Supposing first that q · e is even, we have qe
2 ∈ Z while 0 ≤ j

p ≤
q−1
p < 1, and so

s0 = −q
(e

2

)
for j = 0, 1, 2, . . . , q − 1.

In particular, the indices in the sum (6.3) are the same for each such choice of j, and
the individual summands are monotonically increasing in j. But the value of d must be
independent of j, so the sum in (6.3) must be the same term-by-term for j = 0 as it is for
j = q − 1. Thus we have⌊

0 + pt

q

⌋
=

⌊
(q − 1) + pt

q

⌋
for s0 ≤ t ≤ s′ − 1.

And this in turn requires that 0 + pt be a multiple of q: otherwise, there will be some
j ∈ {1, . . . , q − 1} such that j + pt is a multiple of q, and then we have⌊

0 + pt

q

⌋
≤
⌊
j − 1 + pt

q

⌋
<

⌊
j + pt

q

⌋
≤
⌊

(q − 1) + pt

q

⌋
.

In the case t = −1 it follows that −p is a multiple of q, but since p and q are coprime and
q ≥ 2 this is impossible.
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In the remaining case both q and e = 2g−2
p are odd, so in particular p must be even. In

this case qe
2 is a half-integer, with floor qe−1

2 ≥ 1 since q > 1, so we compute from (6.4) that

s0 =

{
−b qe2 c, 0 ≤ j ≤ p

2 − 1

−b qe2 c − 1, p
2 ≤ j ≤ q − 1.

(We note that q − 1 < p, so that 0 ≤ j
p < 1 for all such j.) If the second possibility occurs

then the t = s0 term in the sum (6.3) is

g − 1 +

⌊
j + ps0

q

⌋
= g − 1 +

⌊
j + p(− qe+1

2 )

q

⌋

= g − 1 +

⌊
j − q(g − 1)− p

2

q

⌋
=

⌊
j − p

2

q

⌋
= 0,

so we may as well omit it and begin with t = s0 +1 = −b qe2 c. Thus either way (6.3) becomes

−d = 2

−1∑
t=− qe−1

2

(
(g − 1) +

⌊
j + pt

q

⌋)
for any of j = 0, 1, . . . , q − 1. Now by exactly the same argument as in the case qe

2 ∈ Z, we
set t = −1 and let j be either of 0 and q − 1, and we conclude that⌊

−p
q

⌋
=

⌊
(q − 1)− p

q

⌋
and then that −p is a multiple of q, giving a contradiction.

We have now found a contradiction in all cases where p | 2g−2 and q ≥ 2, so we conclude
that q = 1 after all. �

6.6. Conclusion. Combining earlier results throughout this section and Section 5, we have
nearly proved the following.

Theorem 6.13. Let K 6∼= 52 be a knot of genus g ≥ 2 in S3, and suppose for some rational
r > 0 that

S3
r (K) ∼= S3

r (52).

Then r is an integer dividing 2g − 2. Moreover, in these cases ĤFK (K) is completely
determined by the integers g and

d =

−(g − 1)
(
g−1
r − 1

)
, r | g − 1

− (2g−2−r)2
4r , r - g − 1

as in Proposition 5.8. In particular, K has Alexander polynomial

∆K(t) = tg − 2tg−1 + tg−2 + 1 + t2−g − 2t1−g + t−g.

Proof. We have shown that

HF +(S3
r (K)) 6∼= HF +(S3

r (52))

in each of the following cases:
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• when 0 < r < 1, by Proposition 6.9;
• when r = p

q ≥ 1 with p - 2g − 2, by Proposition 6.11;

• when r = p
q ≥ 1 is non-integral and p | 2g − 2, by Proposition 6.12.

This leaves only the cases where r is an integer dividing 2g − 2.

In the remaining cases, we once again write H∗(A
+
g−1) ∼= T +

(0)⊕Q(d), and then ĤFK (K) is

determined by g and d according to Proposition 5.8. Following the argument and notation
from the proof of Proposition 6.12, with (p, q, i, j) = (r, 1, g − 1, 0), we set s′ = 0 and

s0 = −
⌊e

2

⌋
= −

⌊
g − 1

p

⌋
as in (6.4). Then by (6.3) we see that d is even, hence Proposition 5.8 determines the
Alexander polynomial of K as promised; and we have

−d = 2

−1∑
t=s0

(
(g − 1) +

⌊
j + pt

q

⌋)

= (2g − 2)|s0|+ 2

|s0|∑
t′=1

r · (−t′)

= (2g − 2)|s0| − r|s0|(|s0|+ 1).

When p divides g − 1 we have |s0| = g−1
r , and thus

−d =
2(g − 1)2

r
− (g − 1)

(
g − 1

r
+ 1

)
= (g − 1)

(
g − 1

r
− 1

)
.

Otherwise, since p divides 2g − 2 it follows that g−1
p is a half-integer; then

s0 = −
(
g − 1

p
− 1

2

)
= −2g − 2− p

2p

and p is an even integer. Since r = p we have

−d =
(2g − 2)(2g − 2− r)

2r
−
(

2g − 2− r
2

)(
2g − 2 + r

2r

)
= 1

4r

((
2(2g − 2)2 − 2r(2g − 2)

)
−
(
(2g − 2)2 − r2

))
=

(2g − 2− r)2

4r
.

Thus d is exactly as claimed. �

Remark 6.14. We can collapse the Alexander–Maslov bigrading (a,m) on ĤFK (K) into
a single grading δ = m − a. If S3

r (K) ∼= S3
r (52) for some r > 0, then according to Propo-

sition 5.8, all of ĤFK (K) except for a Q(0) summand in Alexander grading 0 must be
supported in δ-grading d+ 2− g. Using Theorem 6.13 (for which we recall the assumption
g ≥ 2), we see that if r | g − 1 then

d ≤ 2− 2g < g − 2,
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whereas if r - g − 1 then

d ≤ 0 ≤ g − 2

with equality on the left and on the right if and only if r = 2g − 2 and g = 2, respectively.

In any case ĤFK (K) is supported in non-positive δ-gradings, and it is thin if and only if
g(K) = r = 2.

7. Quantum obstructions to surgery

Ito [Ito20] used the LMO invariant of closed 3-manifolds to produce obstructions to
cosmetic and other surgeries in terms of finite type invariants. These include the coefficients
a2n(K) of the Conway polynomial

∇K(z) = a0(K) + a2(K)z2 + a4(K)z4 + . . . ,

as well as an invariant v3(K) ∈ 1
4Z which is determined by the Jones polynomial of K. In

particular, he proved the following, which we will apply to improve Theorem 6.13.

Theorem 7.1 ([Ito20, Corollary 1.3(iv)]). Suppose for some knots K,K ′ ⊂ S3 and rational
r 6= 0 that S3

r (K) ∼= S3
r (K ′). Then either

(1) a4(K) = a4(K ′) and v3(K) = v3(K ′), or
(2) a4(K) 6= a4(K ′) and v3(K) 6= v3(K ′), in which case

(7.1) r = −5(a4(K)− a4(K ′))

4(v3(K)− v3(K ′))
.

Remark 7.2. The sign in front of the right side of (7.1) was omitted in [Ito20]. In fact,
[Ito20, Theorem 1.2] gives a surgery formula for the degree-2 part λ2(S3

r (K)) of the LMO

invariant, in which one of the terms is −5a4(K)
4 · 1

r2
. In the proof of [Ito20, Corollary 1.3(iv)]

this term appears without the minus sign, which accounts for the discrepancy.

In order to apply Theorem 7.1 to a potential surgery S3
r (K) ∼= S3

r (52), we first recall that
the Conway polynomial can be recovered from the Alexander polynomial by the relation

∆K(t2) = ∇K(t− t−1).

In particular, we have

∇52(t− t−1) = 2t2 − 3 + 2t−2 = 1 + 2(t− t−1)2,

so ∇52(z) = 1 + 2z2 and thus a4(52) = 0. The computation of a4(K) is more involved.

Lemma 7.3. Suppose for some knot K 6∼= 52 and r ∈ Q that S3
r (K) ∼= S3

r (52). If g(K) ≥ 2,
then a2(K) = 2 and a4(K) = (g(K)− 1)2.

Proof. Theorem 6.13 tells us that r is a positive integer dividing 2g(K)− 2, and that if we
write

fg(t) = tg − 2tg−1 + tg−2 + 1 + t2−g − 2t1−g + t−g

for all integers g ≥ 2, then ∆K(t) = fg(K)(t). These polynomials satisfy the relation

(fg(t)− 1)(t+ t−1) = (fg+1(t)− 1) + (fg−1(t)− 1)

for all g ≥ 3, and if we write t = s2 then this becomes

(7.2) (fg(s
2)− 1)

(
(s− s−1)2 + 2

)
= fg+1(s2) + fg−1(s2)− 2.
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Define polynomials pg(z) for all g ≥ 2 such that

pg(s− s−1) = fg(s
2).

We can check that

p2(z) = 1 + 2z2 + z4

p3(z) = 1 + 2z2 + 4z4 + z6,

and then (7.2) becomes(
pg(s− s−1)− 1

)(
(s− s−1)2 + 2

)
= pg+1(s+ s−1) + pg−1(s+ s−1)− 2.

Substituting z = s− s−1, we have

(7.3) pg+1(z) = (z2 + 2)(pg(z)− 1)− pg−1(z) + 2

for all g ≥ 3, and moreover pg(K)(z) is the Conway polynomial ∇K(z).

We now claim by induction that

pg(K) = 1 + 2z2 + (g − 1)2z4 +O(z6)

for all g ≥ 2. It is certainly true for g = 2 and g = 3, and then for g ≥ 3 we examine (7.3)
modulo z6 to get

pg+1(z) ≡ (z2 + 2)
(
2z2 + (g − 1)2z4

)
−
(
1 + 2z2 + (g − 2)2z4

)
+ 2

≡
(
(2g2 − 4g + 4)z4 + 4z2

)
−
(
(g2 − 4g + 4)z4 + 2z2

)
+ 1

≡ g2z4 + 2z2 + 1 (mod z6)

exactly as claimed. But this means that the coefficients a2(K) and a4(K) of z2 and z4 in
∇K(z) = pg(K)(z) are 2 and (g(K)− 1)2 respectively, proving the lemma. �

We can evaluate v3(K) in terms of the Jones polynomial VK(q) as follows.

Lemma 7.4. We have 4v3(K) = − 1
36(V ′′′K (1) + 3V ′′K(1)).

Proof. We note from [Ito20, Lemma 2.1] that if we evaluate the Jones polynomial

VK(q) =
∑
i∈Z

ciq
i

at q = eh and write the corresponding power series as

∞∑
n=0

jn(K)hn = VK(eh) =
∑
i∈Z

ci

( ∞∑
n=0

(ih)n

n!

)
,

then v3(K) = − 1
24j3(K). Comparing h3-coefficients gives us

4v3(K) = −1

6
j3(K) = − 1

36

∑
i∈Z

ci · i3.

At the same time, we have

V ′′′K (1) + 3V ′′K(1) + V ′K(1) =
∑
i∈Z

ci ·
(
(i3 − 3i2 + 2i) + 3(i2 − i) + i

)
=
∑
i∈Z

ci · i3,

and we know that V ′K(1) = 0 [Jon87, §12], so the lemma follows. �
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Example 7.5. We know that

V52(q) = q−1 − q−2 + 2q−3 − q−4 + q−5 − q−6

and since V ′′′52
(1) = 144 and V ′′52(1) = −12, we get 4v3(52) = −3.

We can use this obstruction to prove that non-characterizing slopes for 52 cannot arise
from other knots of genus 1.

Proposition 7.6. Suppose for some knot K of genus 1 and some r ∈ Q that S3
r (K) ∼=

S3
r (52). Then K is isotopic to 52.

Proof. If K 6∼= 52 then Proposition 5.3 says that K is either 15n43522 or Wh−(T2,3, 2), up to
mirroring. But in these cases we have

a4(K) = a4(52) = 0,

since ∆K(t) = ∆52(t) = 2t− 3 + 2t−1, and yet we can compute from Lemma 7.4 that

4v3(K) = ±7 or ± 1

respectively, while 4v3(52) = −3. Thus Theorem 7.1 says that S3
r (K) 6∼= S3

r (52) after all. �

We can now use Lemmas 7.3 and 7.4 to identify potentially non-characterizing slopes.

Proposition 7.7. Suppose that S3
r (K) ∼= S3

r (52) for some integer r ≥ 1, and that K is not
isotopic to 52. Then the Jones polynomial VK(q) satisfies 1

36V
′′′
K (1) ∈ Z, and we have

r =
5(g(K)− 1)2

1
36V

′′′
K (1)− 4

.

Moreover, if g(K) is even then r divides g(K)− 1.

Proof. Write g = g(K). We know that g ≥ 2 by Proposition 7.6, hence Lemma 7.3 says
that a4(K) = (g − 1)2, which is different from a4(52) = 0. We thus apply Theorem 7.1 to
see that

r = −5(a4(K)− a4(52))

4(v3(K)− v3(52))
= − 5(g − 1)2

4v3(K) + 3
.

Proposition 2.9 tells us that ∆′′K(1) = ∆′′52(1) = 4, so V ′′K(1) = −3∆′′K(1) = −12, again by
[Jon87, §12]. Thus

4v3(K)− 4v3(52) = − 1

36
(V ′′′K (1)− 36) + 3 = 4−

V ′′′K (1)

36
,

which must be an integer since 4v3(K) is, and this completes the determination of r.

Now supposing that g is even, we have expressed r as a divisor of the odd integer 5(g−1)2.
Thus r is odd, and it divides 2g − 2 by Theorem 6.13, so it must in fact divide g − 1 as
claimed. �

This last result allows us to complete the proof of Theorem 1.7.

Proof of Theorem 1.7. If S3
r (K) ∼= S3

r (52) but K 6∼= 52, then Proposition 7.6 says that K
has genus g ≥ 2. In this case Theorem 6.13 says that r is a positive integer dividing 2g− 2,

and that ĤFK (K) has the claimed form. The only remaining claim is that if g is even then
r divides g − 1, and this is part of Proposition 7.7. �
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n

−→

n

∼=
n

−→
n+8

Ln

Figure 4. A link Ln whose branched double cover is S3
n(52). We quotient 52

by a rotation τ around the indicated axis of symmetry, simplify the resulting
diagram by an isotopy, and then replace the arc 52/τ by a rational tangle.
The box labeled “n+ 8” corresponds to n+ 8 signed half-twists.

Remark 7.8. As a final example of the effectiveness of Proposition 7.7, let us suppose that
S3
r (52) ∼= S3

r (P (−3, 3, 2n)) for some integers r ≥ 1 and n. Since P (−3, 3, 2n) has genus 2,
Proposition 7.7 says that r = 1. Moreover, an exercise with the skein relation for the Jones
polynomial shows that

VP (−3,3,2n)(q) = q−2nVP (−3,3,0)(q) + (1− q−2n)

= −q−2n−3 + q−2n−2 − q−2n−1 + 2q−2n − q−2n+1 + q−2n+2 − q−2n+3 + 1.

(We note that P (−3, 3, 0) ∼= T2,3#T−2,3.) From this one can show that

1
36V

′′′
P (−3,3,2n)(1)− 4 = 2n− 3,

so r = 1 = 5
2n−3 implies that 2n = 8.

In Section 8 we will see that S3
1(52) is in fact homeomorphic to S3

1(P (−3, 3, 8)).

8. Non-characterizing slopes for 52

In this section we prove that 1 is not a characterizing slope for 52.

Proposition 8.1. For any integer n ∈ Z, the 3-manifold S3
n(52) is the branched double

cover of the link Ln shown in Figure 4.

Proof. The knot 52 is strongly invertible, meaning that there is an involution τ : S3 → S3

such that τ(52) = 52, and the fixed set of τ is an unknot U meeting 52 in two points. In the
quotient S3/τ ∼= S3, we remove a neighborhood of 52/τ ; this turns U/τ into a tangle with
four endpoints, whose branched double cover is S3 \ N(52), and we can fill in this tangle
by gluing in a rational tangle to get a link Lr whose branched double cover is any Dehn
surgery S3

r (52).

This process is illustrated in Figure 4. In order to determine that the box with n + 8
twists actually corresponds to S3

n(52), we observe that replacing it with the rational tangle

turns Ln into an unknot, whose branched double cover S3 is the result of 1
0 -surgery on 52.

Then each possible number of half-twists corresponds to a surgery with slope at distance 1
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1

4

4

−→
4

1

−→
4

∼=

K

Figure 5. Identifying S3
1(P (−3, 3, 8)) as a branched double cover Σ2(K).

We quotient P (−3, 3, 8) by a rotation τ around an axis of symmetry and
simplify by an isotopy, following [BS21, Figure 7]. We then replace a neigh-
borhood of the arc P (−3, 3, 8)/τ with a rational tangle, and isotope further
to get the desired knot K.

from 1
0 , so these are exactly the integral slopes. We can finally compute that det(Ln) = |n|,

so that Σ2(Ln) is identified with S3
n(52) as claimed. �

Remark 8.2. Another construction of links with branched double cover S3
n(52) was given in

[BS21, Lemma 8.3], where the argument was specialized to n = −3 but works for arbitrary
integers. That construction uses a different involution, and hence produces different links
(illustrated in [BS21, Figure 12]) in general.

Proposition 8.3. There is an orientation-preserving homeomorphism

S3
1(52) ∼= S3

1(P (−3, 3, 8)).

Proof. Let P = P (−3, 3, 8) for convenience. Then P is strongly invertible, and we can adapt
the proof of [BS21, Proposition 7.6], which was originally due to Ken Baker, to realize S3

1(P )
as the branched double cover of a knot K ⊂ S3, as shown in Figure 5.

We now claim that K is isotopic to the knot L1 from Figure 4, and so

S3
1(P ) ∼= Σ2(K) ∼= Σ2(L1) ∼= S3

1(52)

by Proposition 8.1. Rather than find this isotopy explicitly, we observe that SnapPy recog-
nizes each of K and L1 as either 14n14254 or its mirror, so that

S3
1(P ) ∼= Σ2(K) and S3

1(52) ∼= Σ2(L1)

are homeomorphic up to orientation. But we cannot have S3
1(52) ∼= −S3

1(P ), since their
Casson invariants satisfy

λ(S3
1(52)) = 1

2∆′′52(1) = 2,

λ(−S3
1(P )) = λ(S3

−1(P )) = −1
2∆′′

P
(1) = −2.

(This computation follows from ∆P (t) = t2− 2t+ 3− 2t−1 + t−2.) Thus S3
1(52) ∼= S3

1(P ) as
oriented 3-manifolds. �

9. The Σ(2, 3, 11) realization problem

Let Y = −Σ(2, 3, 11). Then we have orientation-preserving homeomorphisms

Y ∼= S3
1/2(T2,3) ∼= S3

1(52).
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(Up to an overall orientation reversal, the latter identification is the case S3
−1(K(2, 4)) ∼=

S3
−1/2(K(2, 2)) of [BS21, Proposition 7.2], for example.) Our goal in this section is to prove

that these are the only ways to express Y as Dehn surgery on a knot in S3.

Theorem 9.1. Suppose for some knot K ⊂ S3 and some rational r ∈ Q that

S3
r (K) ∼= −Σ(2, 3, 11).

Then (K, r) is either (T2,3,
1
2) or (52, 1).

This is equivalent to Theorem 1.4, as can be seen by the identity S3
r (K) ∼= −S3

−r(K).

Proof of Theorem 9.1. Since Y is a homology sphere, we can write r = 1
n for some nonzero

n ∈ Z. If n = 1 and hence r = 1, we have

HF +(S3
1(K)) ∼= HF +(Y ) ∼= HF +(S3

1(52)).

We then apply Theorem 1.6 to conclude that K ∼= 52. Similarly, if r = 1
2 then we must

have K ∼= T2,3, since all slopes are characterizing slopes for the right-handed trefoil [OS19].

Supposing from now on that n is neither 1 nor 2, we first claim that n ≥ 3. Indeed, we
know that

d(S3
1/(−n)(K)) = d(−S3

1/n(K)) = d(−Y ) = 2,

where we have read d(Y ) = d(S3
1(52)) = −2 off of Proposition 2.10. But if n < 0, or

equivalently −n > 0, then Theorem 2.7 says that

d(S3
1/(−n)(K)) ≤ d(S3

1/(−n)(U)) = d(S3) = 0.

This would be a contradiction, so we must have n > 0 and hence n ≥ 3 as claimed.

Now that we have n ≥ 3, we compute that dim ĤF (Y ) = dim ĤF (S3
1(52)) = 3 from

Proposition 2.10 and Lemma 2.12. Thus

3 = dim ĤF (S3
1/n(K)) = n · r̂0(K) + |1− nν̂(K)|

≥ 3 · r̂0(K) + 1,

since r̂0(K) ≥ |ν̂(K)| ≥ 0 and since 1−nν̂(K) ≡ 1 (mod n) is nonzero. This is only possible

if r̂0(K) = 0, in which case ν̂(K) = 0 as well and then dim ĤF (S3
1/n(K)) must be 1 rather

than 3, so we have a contradiction. This completes the proof. �
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