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Abstract. We present a high-level, differentiable, and com-
posable abstraction for the point evaluation of the solution
fields of partial differential equation models. The new func-
tionality, embedded in the Firedrake automated finite element
system, enables modellers to easily assimilate point data into
their models at the point locations, rather than resorting to
extrapolation to a computational mesh. We demonstrate the
expressiveness and ease with which more mathematically de-
fensible data assimilation can be performed with examples in
the fields of groundwater hydrology and glaciology.

In various geoscience disciplines, modellers seek to es-
timate fields that are challenging to directly observe using
measurements of other related fields. These measurements
are often sparse, and it is common practice to first extrapo-
late these measurements to the grid or mesh used for com-
putations. When this estimation procedure is viewed as a de-
terministic inverse problem, the extrapolation step is undesir-
able because the choice of extrapolation method introduces
an arbitrary algorithmic degree of freedom that can alter the
outcomes. When the estimation procedure is instead viewed
through the lens of statistical inference, the extrapolation step
is undesirable for the additional reason that it obscures the
number of statistically independent measurements that are
assimilated and thus makes it impossible to apply statistical
goodness-of-fit tests or model selection criteria. The intro-
duction of point evaluation into Firedrake, together with its
integration into the automatic differentiation features of the
system, greatly facilitates the direct assimilation of point data
and thus improved methodology for solving both determin-
istic and statistical inverse problems.

1 Introduction

Many disciplines in the earth sciences face a common prob-
lem in the lack of observability of important fields and quan-
tities. Fields that are not directly measurable at large scales
include rock density in seismology, aquifer conductivity in
groundwater hydrology, and the viscosity of ice in glaciol-
ogy. Nevertheless, these are necessary input variables to the
mathematical models that are used to make predictions. In-
verse problems or data assimilation have us estimating these
immeasurables through some mathematical model that re-
lates them to something measurable. For example, the large-
scale density (an immeasurable) and displacement (a mea-
surable) of the earth are related through the seismic wave
equation. Combining measurements of displacement or wave
travel time from active or passive seismic sources can then
give clues as to the density structure of the earth. Estimating
an unobservable field is often posed as an optimisation prob-
lem with a partial differential equation (PDE) as a constraint.
The objective consists of a model–data misfit metric1 and a
regularisation term to make the problem well-posed. This es-
timation procedure can be viewed either as a deterministic
inverse problem or through the lens of Bayesian inference,
where it amounts to finding the maximiser of the posterior
distribution.

Geoscientists use a wide variety of measurement tech-
niques to study the Earth system. Each of these techniques
yields data of different density in space and time. The num-
ber of independent measurements and their accuracy dictate

1In weather and climate models, this is referred to as variational
data assimilation.
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how much information can be obtained about unobservable
fields through data assimilation. The tools used to solve these
PDE-constrained optimisation problems do not always allow
the varied density in space and time of such measurements to
be taken into account. In such scenarios it is common prac-
tice to use a model–data misfit which treats such measure-
ments as a continuous field. Exactly how to create such a
field from discrete measurements is a choice the modeller
must make. Alternatively, if a tool allows it, one can create
a model–data misfit that is evaluated at the discrete points.
This distinction has important consequences. For example,
if observations are sparse, then using a misfit which treats
measurements as a continuous field requires significant as-
sumptions.

The models we are interested in are discretisations of dif-
ferential equations to which we find some numerical solu-
tion. Galerkin methods, here referred to generally as finite
element methods, are a popular approach with useful prop-
erties. Key among these properties is the high level of math-
ematical abstraction with which finite element models can
be expressed. This has enabled the creation of very high-
level finite element tools, such as Firedrake (Ham et al.,
2023; Rathgeber et al., 2016) and FEniCS (Logg, 2009; Al-
næs et al., 2015), in which the user writes symbolic mathe-
matical expressions of the PDEs to be solved in the Unified
Form Language (UFL) (Alnæs, 2012), a domain-specific lan-
guage. Parallelisable, scalable (Betteridge et al., 2021), and
efficient finite element C code implementing the model is
generated, compiled, and executed automatically. Here we
will employ Firedrake. The symbolic representation of the
PDE model also enables gradients and Hessian actions to be
automatically computed using the discrete adjoint generation
system dolfin-adjoint/pyadjoint (Mitusch et al., 2019). Fire-
drake supports a wide array of elements and has been used
to build the ocean model Thetis (Kärnä et al., 2018), atmo-
spheric dynamical core Gusto (Ham et al., 2017), glacier flow
modelling toolkit Icepack (Shapero et al., 2021), and the geo-
dynamics system G-ADOPT (Davies et al., 2022).

Firedrake already includes the ability to evaluate fields at
discrete point sets. To use model–data misfit functionals that
are evaluated at discrete points in PDE-constrained optimisa-
tion problems, we need to be able to compute a first or second
derivative of the point evaluation operation using reverse-
mode automatic differentiation. Here we will show how point
cloud data can be represented as a finite element field and
hence how point evaluation can be incorporated with the au-
tomatic code generation and automatic differentiation capa-
bilities of Firedrake and dolfin-adjoint/pyadjoint.

We will use these new capabilities to compare the two
model–data misfit approaches. We go on to demonstrate
their use for influencing experiment design in groundwater
hydrology, where measurements are generally very sparse.
Lastly we perform a cross-validation data assimilation ex-
periment in glaciology using Icepack (Shapero et al., 2021).
This experiment requires model–data misfit terms that use

point evaluations and allows us to infer information about
the statistics of our assimilated data.

We show how we can integrate point data into the finite-
element-method paradigm of fields on meshes and demon-
strate that this can be used to automate point evaluation such
that we can automatically solve these minimisation prob-
lems.

Point data assimilation is, of course, not new. In the field
of finite element models, it has been hand-coded into mod-
els on numerous occasions. For a previous example in the
Firedrake framework, see Roberts et al. (2022). Automated
systems from a higher-level user interface are less common,
but an important example is hIPPYlib (Villa et al., 2021),
which provides an inverse problem layer on top of FEniCS.
The distinction between that work and this is that hIPPYlib
implements point evaluation as a layer on top of UFL, while
this work extends UFL to support point data intrinsically.
The advantage of this approach is that it is fully composable:
the output of a point evaluation operation can be fed directly
back into another operator that expects a UFL input.

The paper is laid out as follows. Sections 2, 3, and 4 de-
scribe how we integrate point data with finite element meth-
ods, while Sect. 5 shows our specific Firedrake implementa-
tion. In Sect. 6 we return to the topic of data assimilation and
pose the question of model–data misfit choice in more de-
tail; we investigate this in Sect. 7.1 using our new Firedrake
implementation. The further demonstrations in groundwater
hydrology and glaciology can be found in Sect. 7.2 and 7.3
respectively.

2 Finite element fields

In finite element methods the domain of interest is approx-
imated by a set of discrete cells known as a mesh �. The
solution of a PDE u is then approximated as the weighted
sum of a discrete number of basis or shape functions on the
mesh. For N weight coefficients and basis functions our ap-
proximate solution

u(x)=

N−1∑
i=0

wiφi(x) (1)

is called a finite element field. The set of basis functions
{φi(x)} is kept the same for a given mesh, but the weights
{wi} are allowed to vary to form our given u(x): these
weights are referred to as degrees of freedom (DoFs).

The set of all possible weight coefficients applied to the
basis functions on the mesh is called a finite element function
space FS(�), here referred to as a finite element space. A
finite element field is therefore a member of a finite element
space

u ∈ FS(�). (2)

The approximate weak solutions to PDEs produced by the
finite element method are finite element fields. As long as
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Figure 1. Point data consist of (a) a set of N spatial coordinates
{Xi}

N−1
i=0 (a “point cloud”) and (b) the scalar, vector, or (not shown)

tensor values {yi(Xi)}
N−1
i=0 at those coordinates. Maintaining this

distinction is key when trying to form a rigorous way of handling
point data for any numerical method, such as the finite element
method, which separates the idea of domain and values on the do-
main.

this field is continuous, we know its values unambiguously.
We can therefore evaluate the solution at the location of any
measurement so long as that location is within the boundaries
of the mesh. We will return to finite element spaces with dis-
continuities later.

3 Point data

In order to seamlessly integrate point data as a first-class ob-
ject in the finite element paradigm, it is necessary to look
carefully at what is meant by point data. Point data can be
separated into two parts: (a) the locations {Xi} of the N data
points at a given time (a point cloud) and (b) the N values
{yi(Xi)}

N−1
i=0 associated with the point cloud (see Fig. 1). Fi-

nite element fields have a similar distinction: (a) the discre-
tised shape of the domain of interest (the mesh�) and (b) the
values associated with that mesh (the weights applied to the
basis functions).

Applying the finite element distinction to the locations of
the data (a) suggests a “point cloud mesh” formed of N dis-
connected vertices at each location Xi :

�v = {Xi}
N−1
i=0 . (3)

We refer to this as a “vertex-only mesh”. This is an un-
usual mesh: a vertex has no extent (it is topologically zero-
dimensional) but exists at each location Xi in a space of ge-
ometric dimension dim(Xi). Fortunately, meshes with topo-
logical dimension less than their geometric dimension are not
unusual: 2D meshes of the surface of a sphere in 3D space are
commonly used to represent the surface of the earth. Such
domains are typically called “immersed manifolds”. Discon-
nected meshes are also not unheard of: the software respon-
sible merely needs to be able to iterate over all the cells of the

mesh. In this case each cell is a vertex Xi . We can therefore
legitimately construct such a mesh.

We now need to consider the values {yi(Xi)}N−1
i=0 (b). Only

one value, be it scalar, vector, or tensor, can be given to each
cell (i.e. each point or vertex). Fortunately, a finite element
space for this case exists: the space of zero-order discontinu-
ous Lagrange polynomials

y ∈ P0DG(�v), (4)

where P0DG stands for polynomial degree 0 discontinuous
Galerkin. Here, y is a single discontinuous field that contains
all of the point data values at all of the point locations (mesh
vertices)

y(x)=

{
y(Xi) if x =Xi,

undefined elsewhere.
(5)

Integrating this over the vertex-only mesh �v with respect to
the zero-dimensional point measure dxv gives∫
�v

y(x)dxv =

N−1∑
i=0

y(Xi) ∀y ∈ P0DG(�v). (6)

This definition enables direct and automated reasoning about
point data in finite element language and yields useful results.
So long as the locations of the vertices Xi of a vertex-only
mesh �v are within the domain of its “parent” mesh

�v ⊂� (7)

then it is possible to map from some field u in some finite
element space defined on the parent mesh

u ∈ FS(�) (8)

to one defined on the vertex-only mesh

uv ∈ P0DG(�v) (9)

by performing point evaluations at each vertex location
u(Xi) ∀ i.

The operator for this can be formulated as finite element
interpolation (known as “dual functional evaluation” or sim-
ply “dual evaluation”) into P0DG, i.e.

IP0DG(�v)(;u) : FS(�)→ P0DG(�v) (10)

such that

IP0DG(�v)(;u)= uv. (11)

This operator is linear in u, which we denote by a semicolon
before the argument. The construction of this operator is de-
scribed in the next section.
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4 Point evaluation as an interpolation operator

Most implementations of finite element methods distinguish
between a set of “global” coordinates covering the meshed
domain and a set of “local” coordinates defined on some
reference cell. Computations on each mesh cell are imple-
mented by transforming from global to local coordinates,
performing an operation, then transforming the result back.

This section describes the process of evaluating parent
mesh fields on the point cloud. We broadly follow the pro-
cess in Brenner and Scott (2008, Sect. 3.3). For a reference
cell K, local interpolation IP(K) for a set of k local basis
functions P = span({φ̃i}k−1

0 ) of some locally defined field f̃
is given by the linear operator

[
IP(K)(; f̃ )

]
(̃x)=

k−1∑
j=0

φ̃′j (; f̃ )φ̃j (̃x), (12)

where {φ̃′i}
k−1
0 are the local dual basis linear functionals (the

span of which are the nodes N ) and x̃ are the local coordi-
nates. This uses Ciarlet’s triple formulation (K,P,N ) (Cia-
rlet, 2002) as the definition of a finite element. Global inter-
polation over the entire mesh � for the complete finite ele-
ment space FS(�), which we denote as IFS(�), is the local
application (i.e. transformed to local reference coordinates)
of IP(K) to the globally defined field f ∈ FS(�).

Dual basis functionals are strictly a mapping from mem-
bers of P to a scalar; i.e. the global interpolation operator
for a given finite element space FS(�) is defined in all cases
for fields in that space (IFS(�) : FS(�)→ FS(�)). It is not
unusual, however, for finite element libraries to allow inter-
polation from fields which are defined in another finite ele-
ment space so long as the geometric dimension and meshed
domains are consistent2. Both Firedrake and FEniCS allow
this. This is a well-defined operation with understood ap-
proximation properties so long as the particular dual basis
functionals are well-defined on the finite element space from
which values are being interpolated (for more, see Maddison
and Farrell, 2012).

For uv = IP0DG(�v)(;u), where u(x) ∈ FS(�), we require
the point evaluation u(Xi) at each vertex cell Xi of the
vertex-only mesh �v. The implementation of the global in-
terpolation operator comprises the following for each vertex
cell Xi in our vertex-only mesh �v:

1. finding the cell of the parent mesh � that Xi resides in

2. finding the equivalent reference coordinate X̃i in that
cell

3. transforming the input field u to reference coordinates
on that cell giving ũ

2One usually also needs the finite element spaces to be contin-
uous at cell boundaries for the operator to be well-defined every-
where, but this is not always explicitly checked for.

4. performing the point evaluation3 ũ(X̃i), and

5. transforming the result back to global coordinates giv-
ing u(Xi).

This operation formalises the process of point evaluation
with everything remaining a finite element field defined on
a mesh. These fields can have concrete values or be symbolic
unknowns. If the symbolic unknown is a point, we can now
express that in the language of finite elements. Whilst it is
not the topic of this paper, we can now, for example, express
point-forcing expressions as∫
�v

IP0DG(�v)(;f (x))dxv =

N−1∑
i=0

f (xi)

=

N−1∑
i=0

∫
�

f (x)δ(x− xi)dxv. (13)

Given later discussion, note here that the “interpolation” op-
eration is exact and, excepting finite element spaces with dis-
continuities, unique: we obtain the value of u at the points
{Xi} on the new mesh �v. A concrete example is considered
in Sect. 7.

5 Firedrake implementation

Firedrake code for specifying and solving PDEs closely re-
flects the equivalent mathematical expressions. As an ex-
ample, see Listing 1, in which we solve Poisson’s equa-
tion−∇2u= f under strong (Dirichlet) boundary conditions
u= 0 on the domain boundary in just eight lines of code. We
specify the domain � and finite element space (here called
a function space) to find a field solution u ∈ P2CG(�) (here
called a function). Since Firedrake employs the finite element
method, we require a weak formulation of Poisson’s equation∫
�

∇u · ∇v− f v dx = 0 ∀v ∈ P2CG(�), (14)

where v is called a test function4. The specification of the
PDE, written in UFL on line 25, is identical to the weak for-
mulation. We apply our boundary conditions and then solve.
Firedrake uses PETSc (Balay et al., 2022b, 1997) to solve
both linear and nonlinear PDEs5.

3For vector- or tensor-valued function spaces, this becomes the
inner product of the point evaluation with a Cartesian basis vector
or tensor respectively.

4For those unfamiliar with the finite element method, this is stan-
dard nomenclature.

5Our solver functions are more flexible than this simple example
suggests. For example, PETSc solver options can be passed from
Firedrake to PETSc. See the PETSc manual (Balay et al., 2022a)
and Firedrake project website (https://www.firedrakeproject.org/,
last access: 26 June 2024) for more information.
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Listing 1. An example point evaluation in Firedrake: the last three lines are the new functionality. In Firedrake, as in much finite element
literature, fields and finite element spaces are known as functions and function spaces respectively.

The solution is next evaluated at the points the user pro-
vides. The final three lines of Listing 1 follow the mathemat-
ics of Sects. 3 and 4. A vertex-only mesh �v is immersed in
the parent mesh � (Eq. 7) using a new VertexOnlyMesh
constructor. The finite element space P0DG(�v) is then cre-
ated (Eq. 9) using existing Firedrake syntax. Lastly, the
cross mesh interpolation operation (Eq. 10) is performed; this
again uses existing Firedrake syntax.

The vertex-only mesh implementation uses the DM-
SWARM point cloud data structure in PETSc. The
P0DG finite element space is constructed on top of
VertexOnlyMesh in the same way as a finite element
space on a more conventional mesh.6 The interpolation oper-
ation follows the steps laid out in Sect. 4.

6Other mesh types in Firedrake use the DMPlex data structure
rather than DMSWARM, as explained in Lange et al. (2016). The
construction of a finite element space (a function space) proceeds

The implementation works seamlessly with Firedrake’s
MPI parallelism. Firedrake performs mesh domain decom-
position when run in parallel: vertex-only mesh points de-
compose across ranks as necessary. Where points exist on
mesh partition boundaries, a voting algorithm ensures that
only one MPI rank is assigned the point. The implementa-
tion supports both very sparse and very dense points, as we
will demonstrate in Sect. 7.

Where solutions on parent meshes have discontinuities, we
allow point evaluation wherever it is well-defined. Solutions
on parent meshes from discontinuous Galerkin finite element
spaces, which are not well-defined on the cell boundaries,
can still be point evaluated here: the implementation picks
which cell a boundary point resides in.

exactly as shown in Fig. 2 of Lange et al. but with DMPlex now a
DMSWARM.
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All interpolation operations in Firedrake can be dif-
ferentiated using a Firedrake extension to the dolfin-
adjoint/pyadjoint package, which allows us to solve PDE-
constrained optimisation problems. This was a key motivat-
ing factor for turning point evaluation into an interpolation
operation and one which will be repeatedly used later.

6 Assimilating point data

We start with some model and find u ∈ P2CG(�) such that

F(u,m)= 0, (15)

wherem is a set of parameters; u is the solution; and F is the
equation, such as a PDE, that relates m and u. Assume we
have a set of evaluation points {Xi} and data to assimilate at
each point, i, given by

uiobs at Xi . (16)

The objective is to solve the inverse problem of finding the
parameters m which yield these data.

A typical formulation involves running the model for some
m and employing a model–data misfit metric to see how
closely the output u matches the data {uiobs}. We then min-
imise the model–data misfit metric: the parameters m are
updated, using a method such as gradient descent, and the
model is run again. This is repeated until some optimum has
been reached.

The model–data misfit metric is a functional (often called
the “objective function”) J , with a typical form being

J = Jmisfit+ Jregularisation. (17)

The regularisation can be thought of as encoding prior infor-
mation about the function space in which the solution lies.
Often this uses known properties of the physics of the model
(such as some smoothness requirement) and, in general, en-
sures that the problem is well-posed given limited, typically
noisy, measurements of the true field u.

A key question to ask here is “what metric should be used
for the model–data misfit?” One approach taken, for exam-
ple, by Shapero et al. (2016) is to perform a field reconstruc-
tion: we extrapolate from our set of observations to get an
approximation of the continuous field we aim to measure.
This reconstructed field uinterpolated is then compared with the
solution field u

J field
misfit =‖ uinterpolated− u‖N , (18)

where ‖ ·‖N is some norm. We call the extrapolated recon-
struction uinterpolated, since, typically, this relies on some “in-
terpolation” regime found in a library such as SciPy (Virta-
nen et al., 2020) to find the values between measurements.
As we will see when we return to these methods in Sect. 7.1,
J field

misfit is not unique, since there is no unique uinterpolated field.

The method used to create uinterpolated is up to the modeller
and is not always reported.

An alternative metric is to compare the point evaluations
of the solution field u(Xi) with the data uiobs

J
point
misfit =‖ u

i
obs− u(Xi)‖N ∀ i. (19)

Importantly, J point
misfit is, with the previously noted discontinu-

ous Galerkin exception, unique and independent of any as-
sumptions made by the modeller.

It is the difference between minimising J field
misfit and

J
point
misfit which we investigate here. Previously we could

generate code to minimise a functional containing J field
misfit

using Firedrake and dolfin-adjoint/pyadjoint. The dolfin-
adjoint/pyadjoint performs tangent-linear and adjoint-mode
automatic differentiation (AD) on Firedrake operations7, in-
cluding finding the solutions to PDEs8 and performing in-
terpolation. Point evaluation operations have been a notable
exception. Now that Firedrake includes the ability to dif-
ferentiate point evaluation operations by recasting them as
interpolations, we can investigate minimising a functional
which contains J point

misfit. As Listing 2 in Sect. 7.1 shows, this
requires just a few lines of code. To the authors’ knowledge,
the technology needed to minimise J point

misfit using automated
code-generating finite element method technology has not
been readily possible until now.

7 Demonstrations

7.1 Unknown conductivity

We start with the L2 norm for our two model–data misfit
functionals

J field
misfit =

∫
�

(uinterpolated− u)
2dx (20)

and

J
point
misfit =

∫
�v

(uobs− IP0DG(�v)(u))
2dxv, (21)

where uobs ∈ P0DG(�v). Since integrations are equivalent to
the sums of point evaluations in P0DG(�v) (Eq. 6), the L2

norm is the same as the Euclidean (l2) norm. Our misfit is

7The current implementation of dolfin-adjoint/pyadjoint is a
general AD tool for the Python language using algorithms from
Naumann (2011). This is described in detail in Mitusch (2018).
Firedrake includes a wrapper around dolfin-adjoint/pyadjoint which
allows AD of Firedrake operations such as interpolation.

8This requires automated formulation of adjoint PDE systems.
See Farrell et al. (2013) and Sect. 1.4 of Schwedes et al. (2017) for
more detail.
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therefore evaluated as

J
point
misfit =

N−1∑
i=0

(uiobs− u(Xi))
2. (22)

We will apply this to the simple model

−∇ · k∇u= f (23)

for some solution field u and known forcing term f = 1 with
conductivity field k under strong (Dirichlet) boundary condi-
tions

u= 0 on 0, (24)

where 0 is the domain boundary. We assert conductivity k is
positive by

k = k0e
q , (25)

with k0 = 0.5.
Our inverse problem is then to infer, for our known forcing

field term f , the log-conductivity field q using noisy sparse
point measurements of our solution field u. This example has
the advantage of being relatively simple whilst having a con-
trol term q which is nonlinear in the model.

To avoid considering model discretisation error, we gen-
erate the log-conductivity field qtrue in the space of second-
order continuous Lagrange polynomials (P2CG) in 2D on a
32× 32 unit-square mesh � with 2048 triangular cells. We
then solve the model on the same mesh to get the solution
field utrue ∈ P2CG(�). N point measurements {uiobs}

N−1
0 at

coordinates {Xi}N−1
0 are sampled from utrue and Gaussian

random noise, with standard deviation {σi}N−1
0 added to each

measurement.
We use a smoothing regularisation on our q field which is

weighted with a parameter α. This helps to avoid over-fitting
to the errors in uobs which are introduced by the Gaussian
random noise. We now have two functionals which we min-
imise:

J point
[u,q] =

∫
�v

(uobs− IP0DG(�v)(u))
2dxv

︸ ︷︷ ︸
J

point
misfit

+α2
∫
�

|∇q|2dx

︸ ︷︷ ︸
Jregularisation

(26)

and

J field
[u,q] =

∫
�

(uinterpolated− u)
2dx

︸ ︷︷ ︸
J field

misfit

+α2
∫
�

|∇q|2dx

︸ ︷︷ ︸
Jregularisation

. (27)

Each available method in SciPy’s interpolation library is
tested to find uinterpolated:

– unear.
interpolated using scipy.interpolate.
NearestNDInterpolator,

– ulin.
interpolated using scipy.interpolate.
LinearNDInterpolator,

– uc.t.
interpolated using
scipy.interpolate.
CloughTocher2DInterpolator with
fill_value = 0.0, and

– u
gau.
interpolated using scipy.interpolate.Rbf with

Gaussian radial basis function.

Note that, since uinterpolated ∈ P2CG(�), each of the 6 de-
grees of freedom per mesh cell has to have a value estimated
given the available uobs.

The estimated log-conductivity qest, which minimise the
functionals, are found by generating code for the adjoint
of our model using dolfin-adjoint/pyadjoint and then using
the Newton-CG minimiser from the scipy.optimize li-
brary. To use Newton-CG, the ability to calculate Hessian-
vector products for Firedrake interpolation operations was
added to Firedrake’s pyadjoint plugin modules.9

To try and balance the relative weights of the model–data
misfit and regularisation terms in J point and J field, we per-
form an L-curve analysis (Hansen and O’Leary, 1993) to
find a suitable α following the example of Shapero et al.
(2016). The L-curves were gathered for N = 256 randomly
chosen point measurements, with the resultant plots shown
in Figs. A1 and A2. For low α, J field

misfit stopped being min-
imised, and solver divergences were seen due to the problem
becoming ill-formed. α = 0.02 was therefore chosen for each
method. For consistency, α = 0.02 was also used for J point.

An extract of the Firedrake and dolfin-adjoint/pyadjoint
code needed to minimise J point is shown in Listing 2.
Once again, the Firedrake expression for J point in the code
is the same as the mathematics in Eq. (26), given that
assemble performs integration over the necessary mesh.
The last three lines are all that are required to minimise
our functional with respect to q, with all necessary code
being generated. Note that we require a reduced functional
(firedrake_adjoint.ReducedFunctional), since
the optimisation problem depends on both q and u(q); for a
thorough explanation, see Sect. 1.4 of Schwedes et al. (2017).

7.1.1 Consistent point data assimilation

Our first experiment aims to check empirically that solutions
of the inverse problem using point data (1) can give apprecia-
bly different results from first interpolating to the finite ele-
ment mesh and (2) can have errors that are smaller than those
from first interpolating to the mesh for a sufficient number of
observations.

It is clear that this ought to happen for J point, the point
evaluation approach, since increasing N increases the num-

9pyadjoint uses a forward-over-reverse scheme to calculate
Hessian-vector products via an implementation of Eq. (3.8) in Nau-
mann (2011).
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Listing 2. Firedrake code for expressing J point (Eq. 26) and dolfin-adjoint/pyadjoint code (inside a Firedrake wrapper) for minimising it
with respect to q. The omitted PDE solve code is very similar to that in Listing 1; for more, see Code and data availability.

ber of terms in the model–data misfit sum (i.e. the integral
over �v gets bigger: see the equivalency of Eqs. 21 and 22).
There is no such mechanism for J field, the field reconstruc-
tion approach, since adding more data merely ought to cause
uinterpolated to approach utrue without increasing the relative
magnitude of the misfit term. The interpolation approach in-
troduces an inconsistent treatment of the point observation
errors.

Figure 2 demonstrates that the problem formulated with
J point produces a qest which is closer to qtrue for all but the
lowest N when compared to our formulations with J field.10

The point evaluation approach therefore gives us consistent
point data assimilation when compared to the particular field
reconstruction approach we test.

It is possible, were an L-curve analysis repeated for each
N , that errors in our field reconstruction approach could be
reduced. The lack of convergence would not change due to
there being no mechanism for growing the misfit term with
the number of measurements.

We could attempt to enforce consistency on the field re-
construction approach (minimising J field) by introducing a
term in the model–data misfit which increases with the num-
ber of measurements. Example calculated fields are shown in

10Note that we have not optimised our α for minimising J point,
so it is not unreasonable to assume that the prior is dominating the
solution for low N .

Figs. 3 and 4. These demonstrate that the choice of interpola-
tion method changes our field reconstruction. When attempt-
ing to enforce consistency, we would also need to ensure that
our field reconstruction method approaches the true field as
more measurements are performed. There is no obvious way
to do this which is universally applicable, particularly since
measurements are always subject to noise.

7.2 Groundwater hydrology

Our next example comes from groundwater hydrology. The
key field of interest is the hydraulic head φ, which has units
of length. In the following, we will apply the Dupuit approx-
imation, which assumes that the main variations are in the
horizontal dimension.

The first main equation of groundwater hydrology is the
mass conservation equation

S
∂φ

∂t
+∇ ·u= q, (28)

where S is the dimensionless storativity, u is the water flux,
and q is the sources of water. The second main equation is
Darcy’s law, which states that the water flux is proportional
to the negative gradient of the hydraulic head:

u=−T∇φ, (29)
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Figure 2. Error change as number of points N is increased for min-
imising J point (uinterpolated and qest method “point” – see Eq. 26)
and Jfield (the other lines – see Eq. 27) with different methods
for estimating uinterpolated, where α = 0.02 throughout (see main
text for justification). The L-curves for α = 0.02 with N = 256 are
shown in Figs. A1 and A2. Not all methods allowed uinterpolated
to be reconstructed either due to there being too few point measure-
ments or due to the interpolator requiring more system memory than
was available.

where T has units of length2 per unit time and is known as
the transmissivity. The transmissivity is the product of the
aquifer thickness and the hydraulic conductivity, the latter
of which measures the ease with which water can percolate
through the medium. Clays have very low conductivity, sand
and gravel have much higher conductivity, and silty soil is in
between.

A typical inverse problem in groundwater hydrology is to
determine the storativity and the transmissivity from mea-
surements. The measurements are drawn at isolated obser-
vation wells, where the hydraulic head can be measured di-
rectly. To create a response out of steady state, water is re-
moved at a set of discrete pumping wells.

In the following, we will show a test case based on exer-
cises 4.2.1–4.2.3 from Sun (2013). The setup for the model is
a rectangular domain with the hydraulic head held at a con-
stant value on the left-hand side of the domain and no outflow
on the remaining sides. The transmissivity is a constant in
three distinct zones. The hydraulic head is initially a uniform
100 m, and a pumping well draws 2000 m3 d−1 towards the
right-hand side of the domain. The exact value of the trans-
missivity and the final value of the hydraulic head are shown
in Fig. 5.

For the inverse problem, the goal is to estimate the un-
known values of the transmissivity in each zone, assuming
that the boundaries between the zones of distinct transmissiv-
ity are known. To create the synthetic observations, we use a
finite set of observation wells that take measurements at reg-

Figure 3. Summary plot of fields for N = 256. Rows correspond to
the method used, where column 1 is the necessary u, column 2 is
the corresponding q at the optimum solution, and column 3 is the
error. Row 1 shows the true u and q, row 2 shows the results of
minimising J point (Eq. 26), whilst rows 3–6 show the result of min-
imising Jfield (Eq. 27). The regularisation parameter α is equal to
0.02 throughout. The field we obtain after minimising J point, qpoint

est ,
manages to reproduce some features of qtrue. For minimising Jfield,
the solutions fail to reproduce any features of qtrue, and the error is
therefore higher. Each of the uinterpolated fields is also visibly dif-
ferent from one another. For comparison see Fig. 4.

ular time intervals and perturb the exact values with normally
distributed errors with a standard deviation of 1 cm. In other
words, the observations are

φobs
kl = φ(xk, tl)+ εkl, (30)

where {xk} and {tk} are the observation points and times, εkl
are the measurement errors, and φ is the true solution. We ex-
amine two scenarios: (1) there are 6 observation wells in each
zone that take measurements every 12 h, and (2) there are 2
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Figure 4. Summary plot of fields for N = 32768. Rows and
columns correspond to those in Fig. 3. The regularisation parameter
α is equal to 0.02 throughout. We would expect the larger number of
measurements to correspondingly reduce the error; this only occurs
to a significant degree when solving J point. This cannot be entirely
blamed on a lack of mechanism in Jfield for having the misfit term
outgrow the regularisation term: the uinterpolated fields do not ap-
proximate utrue, with ugau.

interpolated being particularly poor.

observation wells in each zone that take measurements every
3 h. There are three zones and thus only three parameters to
infer, but we have 18 observations. Consequently, computing
the maximum likelihood estimate (MLE) of the transmissiv-
ities is well-posed. We could instead think of this as comput-
ing the MAP estimate in a Bayesian inference problem using
the improper uniform prior; the posterior is still proper and
unimodal.

Since this is a synthetic problem, we can generate multi-
ple statistically independent realisations of the observations
φobs, compute a maximum likelihood estimator from each
realisation, and then explore the sampling distribution of

the estimates. Here we use 30 independent realisations, for
which the distribution about the mean is approximately nor-
mal. Figure 6 shows the obtained densities for the transmis-
sivity in each zone for the two different observation scenar-
ios. In this case, we can observe that using more observa-
tion wells but fewer measurement times resulted in a smaller
variance in the inferred transmissivity values than using the
same number of total observations but with fewer obser-
vation wells and more measurement times. While this is a
highly idealised problem, these kinds of experiments can in-
form real practice – in this case, how to balance spatial and
temporal density of measurements under limited resources.

The experiment above can only be conducted when the
finite element modelling API includes support for assimilat-
ing point data. In this case, the measurements are so sparse
that they cannot be meaningfully interpolated to a densely
defined field. Nonetheless, we can still compute a maximum
likelihood estimate for the unknown parameters.

7.3 Ice shelves

7.3.1 Physics model

Our final example comes from glaciology; the main field of
interest is the ice velocity. At lengths and timescales greater
than 100 m and several days, glaciers flow like a viscous
fluid. The most principled equation set determining the ve-
locity of a viscous fluid is the full Navier–Stokes equations,
but the equation set we will work with uses several simplifi-
cations. Firstly, ice flow occurs at a very low Reynolds num-
ber, and the ratio of the thickness to the length of the spatial
domain is usually on the order of 1/20 or less. Secondly, we
will focus on ice shelves – areas where a glacier floats on
the open ocean. Most of the drainage basins of the Antarc-
tic ice sheet terminate in floating ice shelves. As far as the
dynamics are concerned, ice shelves experience almost no
friction at their beds. As a consequence, the horizontal ve-
locity is nearly constant with depth, so we can depth-average
the equations. The resulting PDE is called the shallow shelf
equations, which we describe below. For complete deriva-
tions of all the common models used in glacier dynamics,
see Greve and Blatter (2009).

The main unknown variable in the shallow shelf equations
is the depth-averaged ice velocity u, which is a 2D vector
field. The other key unknown is the ice thickness h. Since an
ice shelf is floating on the ocean, by matching the pressures at
the base of the ice we find that the surface elevation of an ice
shelf is s = (1− ρI/ρW)h, where ρI and ρW are respectively
the density of ice and ocean water.

A key intermediate variable is the membrane stress tensor,
which we will write as M. The membrane stress tensor has
units of stress and has rank 2; i.e. it is a 2× 2 matrix field.
Physically, the membrane stress plays the same role for this
simplified 2D problem as the full-stress tensor does for the
full Stokes equations. The shallow shelf equations are a con-
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Figure 5. Exact transmissivity of the synthetic aquifer (a) and the final value of the hydraulic head (b).

Figure 6. Probability densities for the inferred transmissivities in
each zone. The blue curves show the results obtained with a larger
number of observation wells but fewer measurement times, while
the orange curves show fewer observation wells but more measure-
ment times.

servation law for membrane stress:

∇ · (hM)−
1
2
ρI(1− ρI/ρW)g∇h

2
= 0, (31)

where g is the acceleration due to gravity.
To obtain a closed system of equations, we need to supply

a constitutive relation – an equation relating the membrane
stress tensor to the depth-averaged velocity. Firstly, strain
rate tensor is defined to be the rank-2 tensor

ε̇ =
1
2

(
∇u+∇u>

)
, (32)

i.e. the symmetrised gradient of the depth-averaged velocity.
The membrane stress tensor is then proportional to the strain
rate tensor:

M= 2µ(ε̇+ tr(ε̇)I) , (33)

where I is the 2× 2 identity tensor and µ is the viscosity
coefficient, which has units of stress × time.

One of the more challenging parts about glacier dynam-
ics is that the viscosity also depends on the strain rate. This
makes the shallow shelf equations nonlinear in the veloc-
ity. The most common assumption is that the viscosity is a
power-law function of the strain rate tensor:

µ=
A−

1
n

2

√
ε̇ : ε̇+ tr(ε̇)2

2

1
n
−1

, (34)

where n is an exponent and A is a prefactor called the fluid-
ity. Laboratory experiments and field observations show that
n≈ 3; this is referred to as Glen’s flow law (Greve and Blat-
ter, 2009). The fact that n > 1 makes ice a shear-thinning
fluid; i.e. the resistance to flow decreases at a higher strain
rate. The fluidity coefficient A has units of stressn× time.
(This unit choice and the exponent of −1/n on A in Eq. (34)
reflect the fact that historically glaciologists have, by conven-
tion, written the constitutive relation as an equation defining
the strain rate as a function of the stress. For solving the mo-
mentum balance equations, we have to invert this relation.)
Several factors determine the fluidity, the most important of
which is temperature – warmer ice is easier to deform.

Putting together Eqs. (31), (32), (33), and (34), we get a
nonlinear second-order elliptic PDE for u. The last thing we
need to complete our description of the problem is a set of
boundary conditions. We fix the ice velocity along the in-
flow boundary, i.e. a Dirichlet condition. Along the outflow
boundary, we fix the normal component of the membrane
stress:

hM · ν =
1
2
ρI(1− ρI/ρW)gh

2ν, (35)

where ν is the unit outward-pointing normal vector to the
boundary of the domain. This is a Neumann-type boundary
condition.
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7.3.2 Inverse problem

The key unknowns in the shallow shelf equations are the
thickness, velocity, and fluidity. The ice velocity and surface
elevation are observable at large scales through satellite re-
mote sensing. Assuming that a floating ice shelf is in hydro-
static equilibrium, the thickness can then be calculated from
the surface elevation given the density of ice and seawater
and some estimate for the air content in the snow and firn on
top of the ice. The fluidity, on the other hand, is not directly
measurable at large scales. The goal of our inverse problem
is to estimate the fluidity from measurements of ice velocity.

As a test case, we will look at the Larsen C Ice Shelf
on the Antarctic Peninsula. We will use the BedMachine
map of Antarctic ice thickness (Morlighem et al., 2020) and
the MEaSUREs InSAR phase-based velocity map (Mouginot
et al., 2019).

To ensure positivity of the fluidity field that we estimate,
we will, as in Sect. 7.1, write

A= A0e
θ (36)

and infer the dimensionless log-fluidity field θ instead.
The first paper to consider inverse problems or data assim-

ilation in glaciology was MacAyeal (1992), which referred to
the formulation of a functional to be minimised as the control
method. Since then, most of the work in the glaciology liter-
ature on data assimilation has assumed that the observational
data can be interpolated to a continuously defined field and
used in the misfit functional defined as the 2-norm difference
between the interpolated velocity and the computed veloc-
ity (Joughin et al., 2004; Vieli et al., 2006; Shapero et al.,
2016). Assuming that the target velocity field to match is de-
fined continuously throughout the entire domain, however,
obscures the fact that there is only a finite number of data
points. A handful of publications have taken the number of
observations into account explicitly in order to apply further
statistical tests on goodness of fit, for example, MacAyeal
et al. (1995). We argue that making it possible to easily as-
similate sparse data will improve the statistical interpretabil-
ity of the results. Moreover, one of the main uses for data
assimilation is to provide an estimate of the initial state of
the ice sheet for use in projections of ice flow and extent into
the future. Improving the statistical interpretability of the re-
sults of glaciological data assimilation will help to quantify
the spread in model projections due to uncertainty in the es-
timated initial state.

Virtually all existing work on glaciological inverse prob-
lems assumes that the measurement error variance σ is
known. These errors are estimated by experts in remote sens-
ing, but different data products use different methodologies
for error estimation. For example, the documentation for the
Inter-mission Time Series of Land Ice Velocity and Eleva-
tion (ITS_LIVE) states explicitly that their reported errors
are “unrealistically low” (Gardner et al., 2019). If the only
goal is to compute a single best estimate of an unknown field,

then the provided error estimates can be used as a qualitative
weighting which encodes the fact that the velocity is better
estimated in some regions than in others. Under some as-
sumptions, it is possible to get a better sense of what the true
errors are. The assumptions are as follows:

1. The physics model relating the unknown parameters and
observable fields is correct.

2. The errors σk that the observationalists provide are cor-
rect in a relative sense but not an absolute sense. To be
precise, we assume that for any two measurements σj
and σk , the ratio σk/σj is known, but the exact magni-
tude of σj or σk is not.

Our goal is then to estimate not just the unknown parame-
ters θ but also a uniform scaling factor c such that the true
measurement errors σ̂ can be written as

σ̂ = cσ. (37)

We note that these assumptions might not be justified. For
example, our ice flow model might be inadequate. Alterna-
tively, the true measurement errors might not even be cor-
rect in a relative sense, in which case the simple relation (37)
does not hold. Nonetheless, if we do make these assumptions,
we can estimate the scaling parameter c through a cross-
validation experiment.

The idea of cross-validation is to use only a subset of the
observational data uo to estimate the unknown field. The data
that are held out are then used to determine the goodness of
fit. Rather than using, for example, Morozov’s discrepancy
principle (Habermann et al., 2012) or the L-curve method
to select the regularisation parameter, we can choose it as
whichever value gives the smallest misfit on the held-out
data. Crucially, the total misfit on the held-out data can then
be used to estimate the error scaling factor c. This exper-
iment would be meaningless using the field reconstruction
approach because, at points where we have held out data, we
would be matching the computed velocity field to interpo-
lated values, when the whole point of the exercise is not to
match the computed velocity field to anything where we have
no data. A common approach is to leave out only a single data
point; for linear problems, there are analytical results that
allow much easier estimation of the best value of the regu-
larisation parameter using leave-one-out cross-validation (Pi-
card and Cook, 1984). Here we will instead randomly leave
out some percentage of the observational data.

Formally, let {uo(xk)} be a set ofN observations of the ve-
locity field at points {xk}. Let f be some parameter between
0 and 1 and select uniformly at random a subset I of size
f ×N of indices between 1 and N . The model–data misfit
functional for our problem is

E(u)=
∑
k∈I

|u(xk)− u
o(xk)|

2

2σ 2
k

, (38)
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where σk is the formal estimate of the error of the kth mea-
surement as reported from the remote-sensing data. Note that
we sum over only the data points in I and not all of the obser-
vational data. The regularisation functional is, again, similar
to Sect. 7.1

R(θ)=
α2

2

∫
�

|∇θ |2dx. (39)

We can then minimise the functional

E(u)+R(θ) (40)

subject to the constraint that u is a solution of the momentum
balance Eqs. (31), (32), (33), and (34) for the given θ .

We now let θα and uα be the log-fluidity and velocity ob-
tained by minimising Eq. (40) using a regularisation param-
eter α. We then compute the misfit against the held-out data:

E′(α)=
∑
k 6∈I

|uα(xk)− u
o(xk)|

2

2σ 2
k

. (41)

The key difference here is that we sum over the indices not
in the training set (k 6∈ I ) instead of those in the training set
(k ∈ I ). The right choice of α is the minimiser of E′.

This experiment was performed using Icepack (Shapero
et al., 2021), which is built on top of Firedrake. As our target
site, we used the Larsen C Ice Shelf on the Antarctic Penin-
sula. There are a total of 235 510 grid points within the do-
main; we used 5 % or 11 775 of these as our training points.
11 To pick the right value of α, we used a regular sampling
from 2.5 km to 5 km. The results of the cross-validation ex-
periment are shown in Fig. 7. We found a well-defined min-
imum at α = 3.25 km. Figure 7 shows the log-fluidity fields
obtained at 3.25 km, which is the appropriate regularisation
level, and 5 km, which is over-regularised. With α = 5 km,
several features are obscured or blurred out.

Having found the optimal value of the regularisation pa-
rameter, we can now estimate the scaling factor c in Eq. (37).
The normalised sum of squared cross-validation errors of the
regularisation parameter was roughly 11.8, which suggests
that the formal errors underestimate the true errors by a fac-
tor of about 3.4 by taking square roots.

To summarise, this experiment demonstrates the new point
data assimilation features of Firedrake on a problem using
real observational data. The cross-validation approach that
we use here is one possible alternative to other methods for
picking the regularisation parameter, such as the L-curve or
Morozov’s discrepancy principle. Cross-validation is only

11Note that the gridded velocity data are the result of several steps
of post-processing and interpolation from an unstructured point
cloud of raw displacements. The raw displacements are obtained
via repeat-image feature tracking but are not usually made avail-
able; an ideal version of this experiment would use this point cloud
instead of the gridded velocity data.

possible with point data assimilation as opposed to interpo-
lating the data and fitting to the interpolated field. An advan-
tage of cross-validation is that, under certain assumptions, it
can provide an independent estimate of the standard devia-
tion of the measurement errors. Pinning down the degree to
which the formal errors under- or overestimate the true er-
rors is difficult by any other means. Morozov’s discrepancy
principle, for example, assumes that the measurement errors
used in the objective functional are the true measurement
errors (Habermann et al., 2012), and it breaks down when
this assumption is violated. Finally, although fitting to point
data is an improvement on the standard approaches used in
glaciological data assimilation, many further improvements
are possible on the problem formulation shown here. For ex-
ample, a formal Bayesian treatment would be able to address
uncertainty quantification in a way that the approach used
here cannot.

8 Future point data extensions

The representation of point data as a function in a finite ele-
ment space and its implementation in Firedrake provide the
basis on which a range of further abstractions and function-
ality might be built.

A clear limitation of the work presented is that the points
are static. A logical next step would be to implement mov-
ing points. The underlying concepts of interpolating from a
parent mesh onto a vertex-only mesh remain unchanged: the
vertex-only mesh would now move over time. An unresolved
question is the optimal differentiable abstraction for particle
movement. In particular, should the differentiation go inside
or outside the ODE solver used to move the particles?

Moving points could be used for assimilating data from
Lagrangian points, such as data from weather buoys which
follow ocean currents. For static experiments, we could in-
clude uncertainty in the location of measurements through a
differentiable point relocation operator. Moving points could
allow particle-in-cell methods to be introduced to Firedrake,
as has been done for FEniCS (Maljaars et al., 2021).

The functionality presented here has enabled cross-mesh
parallel compatible interpolation between meshes in Fire-
drake.12 This provides users with numerous data analysis
possibilities, including the ability to compute arbitrary flux
and line integrals of solution fields. It also has the potential
to be employed to assimilate data produced by models using
other (not finite element) discretisations.

More generally, the fact that any dual functional can be
approximated by a quadrature rule could be exploited to cre-
ate a general model-coupling capability. Where both models
are written in Firedrake, this could even be extended to sup-
port tight coupling in which implicit linear operators span the
coupled components.

12Prior work on supermeshing (Maddison and Farrell, 2012; Far-
rell et al., 2009) provides a mathematical framework.
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Figure 7. Normalised cross-validation errors (E′(α)) and inferred log-fluidity fields with the regularisation parameter set to 3.25 and 5 km.
The log-fluidity background image is the MODIS Mosaic of Antarctica (Scambos et al., 2007; Haran et al., 2021), courtesy of the NASA
National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC).

9 Conclusions

This work makes two key points. Firstly, a finite element
representation of point data enables the automation of point
evaluations. This feature then makes it possible to solve
PDE-constrained optimisation problems where the objective
functional contains point evaluations. Secondly, assimilating
point data directly instead of using field reconstruction has
several benefits: it (1) avoids the need for ambiguously de-
fined inter-measurement interpolation, (2) allows assimila-
tion of very sparse measurements, and (3) enables more in-
depth statistical analysis. Moreover, using point data directly
is beneficial, whether one views the procedure as solving a
deterministic inverse problem or as a component of Bayesian
inference.

The second result is both a demonstration of new func-
tionality and a general call for all scientific communities who
face these kinds of inverse problems to carefully consider if
point evaluation misfit functionals would be appropriate for
their use case. This is particularly salient for users of finite
element methods, where point evaluation of fields is always
well-defined over the whole domain. For data assimilation
problems where this is not possible, ensuring that the model–
data misfit grows with the number of measurements could
also be considered.
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Appendix A: L-curves

Figure A1. L-curves from minimising Jfield (Eq. 27) with different methods for estimating uinterpolated. For low α, Jfield
misfit stopped being

minimised, and solver divergences were seen for ugaussian
interpolated. The problem was likely becoming overly ill formed, and the characteristic “L”

shape (with sharply rising Jregularisation for low α and a tail-off for large α) is therefore not seen. To keep the problem well-formed without
the regularisation parameter being too big, α = 0.02 is chosen for each method.
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Figure A2. L-curve for minimising J point (Eq. 26). The charac-
teristic “L” shape is seen, and α = 0.02 is seen to be close to the
turning point and is therefore chosen for consistency with the other
L-curves (Fig. A1).

Code and data availability. The demonstrations use publicly avail-
able code in a GitHub repository which is archived with Zenodo
(https://doi.org/10.5281/zenodo.7950441; Nixon-Hill and Shapero,
2023). All figures can be generated using that repository. The ver-
sion of Firedrake used for the unknown conductivity demonstration
is archived on Zenodo (https://doi.org/10.5281/zenodo.7741741;
firedrake-zenodo, 2023a). The version of Firedrake used for
the groundwater hydrology and ice shelf demonstration is simi-
larly archived (https://doi.org/10.5281/zenodo.7801478; firedrake-
zenodo, 2023b). The ice shelf demonstration uses Icepack (Shap-
ero et al., 2021), specifically this Zenodo-archived version
(https://doi.org/10.5281/zenodo.7897023; Shapero et al., 2023).

The BedMachine thickness map
(https://doi.org/10.5067/FPSU0V1MWUB6; Morlighem et al.,
2020; Morlighem, 2022) and the MEaSUREs InSAR phase-based
velocity map (Mouginot et al., 2019) used in the ice shelf demo are
publicly hosted at the US National Snow and Ice Data Center.
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E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J.,
Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python, Na-
ture Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-
0686-2, 2020.

Geosci. Model Dev., 17, 5369–5386, 2024 https://doi.org/10.5194/gmd-17-5369-2024

http://hdl.handle.net/10852/63505
http://hdl.handle.net/10852/63505
https://doi.org/10.21105/joss.01292
https://doi.org/10.5067/FPSU0V1MWUB6
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.5281/zenodo.7950441
https://doi.org/10.1145/2998441
https://doi.org/10.5194/gmd-15-8639-2022
https://doi.org/10.5194/gmd-15-8639-2022
https://doi.org/10.1016/j.rse.2006.12.020
https://doi.org/10.1007/978-3-319-59483-5
https://doi.org/10.5281/zenodo.7897023
https://doi.org/10.5194/gmd-14-4593-2021
https://doi.org/10.1098/rsta.2006.1800
https://doi.org/10.1145/3428447
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

	Abstract
	Introduction
	Finite element fields
	Point data
	Point evaluation as an interpolation operator
	Firedrake implementation
	Assimilating point data
	Demonstrations
	Unknown conductivity
	Consistent point data assimilation

	Groundwater hydrology
	Ice shelves
	Physics model
	Inverse problem


	Future point data extensions
	Conclusions
	Appendix A: L-curves
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

