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A thesis submitted in fulfilment of the requirements for the degree of Doctor of

Philosophy in Electrical and Electronic Engineering of Imperial College London and the

Diploma of Imperial College London





Abstract

Distributed computation is the process of breaking down computational tasks and execut-

ing them across multiple nodes, rather than relying on a single machine. This approach

is essential in the age of big data, where the large volume and variety of data can over-

whelm individual machines. However, preserving privacy remains a critical concern in

distributed computation, as there is a risk that adversarial nodes may attempt further

analysis of the data to learn about the individuals owning the data. Additionally, the in-

volvement of multiple nodes in the process can lead to arbitrary delays in computation if

any of the nodes’ service is unreliable. This dissertation aims to address specific research

problems in the areas of efficiency, security, and privacy in distributed computation and

federated learning.

The research presented in this dissertation is two-fold. First, we delve into the realm

of coded computation, a framework that has been extensively used to address reliability

and security issues in distributed computation. Our focus is on proposing a novel coding

scheme called bivariate polynomial codes that is designed to address two major prob-

lems in distributed matrix multiplication, namely, straggler mitigation and data security.

Unlike prior polynomial coding schemes, our scheme efficiently utilizes all worker nodes,

including stragglers, in a storage- and upload-cost-efficient manner.

Then, we shift our focus to private federated learning, which is a technique allowing

for private and collaborative training of models on decentralized data sources without

requiring to transfer the data to a central location. We first investigate privacy amplifi-

cation via client sampling using over-the-air computation to provide anonymity. We then

theoretically analyse the joint effect of client and local dataset sampling on privacy am-

plification in conventional federated learning settings. Finally, we propose a compression

scheme based on subtractive dithering, which provides differential privacy guarantees

and is communication-efficient for private federated learning.
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Chapter 1

Introduction

The concept of distributed computation has taken on an increasingly crucial role in our

data-driven age. Essentially, it refers to the process of breaking down computational

tasks and executing them across multiple machines or nodes, rather than relying on a

single machine. This approach has proven particularly essential in the age of big data,

where the sheer volume, velocity, and variety of data can overwhelm individual machines.

By utilizing distributed computation, large-scale data processing tasks can be efficiently

handled, including those required for machine learning applications. This approach en-

ables faster computations, enhances system reliability, and maximizes resource utiliza-

tion. In turn, it has become a pivotal component across a range of sectors, from academia

to industry.

Distributed computation takes various forms, each with its unique characteristics. One

such form involves a single client who employs multiple compute nodes to complete a

task. In this scenario, the client is responsible for providing all the necessary data to the

compute nodes to obtain the final result. In contrast, the second form entails a central

node that only coordinates the computations, while many clients utilize their own data

to compute, which is typical in federated learning.

However, regardless of the distributed computation form adopted, preserving privacy

remains a critical concern. In the former setting, where nodes receive the data, there is

a risk that adversarial nodes may attempt further analysis of the data to learn sensitive

information about the individual owning the data. Conversely, in the latter form, sharing

the result of local processing with the central node may reveal information about the

local dataset, even though local computations keep the data private. As a result, while

distributed computation is essential to process large-scale data at reasonable speeds, it

18
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poses a significant risk of privacy breaches. Thus, privacy in distributed computations

is a critical challenge that needs addressing.

Distributed computation is primarily designed to enhance processing speed. However, it

is paradoxical that the involvement of multiple nodes in the process can lead to arbitrary

delays in computation if any of the nodes are unreliable in terms of their service. The

primary challenges in such systems are slow machines and their failures, which affect

the dependability of the overall system. Therefore, in distributed computation, another

crucial problem to address is the issue of failed or slow nodes by ensuring that their

absence can be easily compensated by other nodes. This is essential to maintain the

efficiency and effectiveness of distributed computation systems.

This dissertation aims to address specific research problems in the areas of efficiency,

security, and privacy in distributed computation and federated learning. The research is

two-fold, with the first part of the dissertation focusing on coded computation, a frame-

work used to address reliability and security in distributed computation. Specifically, the

research focuses on realizing distributed matrix multiplication, which is one of the fun-

damental blocks of many data processing and machine learning frameworks. Chapters 3

and 4 present the results of this research.

The second part of the dissertation focuses on private federated learning. Federated learn-

ing can be seen as an application of distributed computation to the machine learning

domain. It is a paradigm that enables the collaborative training of models on decen-

tralized data sources without the need to transfer the data to a central location. This

approach has gained significant attention in recent years due to its potential to speed up

learning and address privacy concerns associated with centralized data storage and pro-

cessing. Hence, we focus on techniques to guarantee and enhance the privacy of clients

in various settings, including wireless edge training and communication efficiency. The

research in this area is particularly important given the increasing use of federated learn-

ing in various applications, including healthcare and finance, where privacy concerns are

paramount. In Chapters 5 to 7, we present the results of our research on this topic.

In the following sections, we provide an overview of the dissertation, presenting an outline

and short summaries of the problems considered, and list the papers published during

this Ph.D. course, relating them to the relevant chapters.

1.1 Overview

Firstly, in Chapter 2, we present the necessary background and related work, which are

necessary to follow our results in the subsequent chapters. Specifically, in Section 2.1, we
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introduce the notion of coded computation together with the most popular solution in

this area, namely polynomial codes. We also present several previous schemes from earlier

literature that use coded computation to mitigate stragglers, i.e., slow workers, and to

improve security. Then, in Section 2.2, we give an introduction to federated learning

and discuss some of the main challenges faced in this area by referring to related work.

Finally, in Section 2.3, we introduce differential privacy and its common variants. We

also discuss Gaussian mechanism, one of the most prominent techniques used to achieve

differential privacy guarantees.

In Chapter 3, we present our work on bivariate polynomial codes for straggler mitigation

in distributed matrix multiplication. We motivate our work by showing that previously

proposed univariate polynomial codes are suboptimal when it comes to effectively uti-

lizing all the resources in the distributed computation systems. That is because they

cannot adapt the multi-message schemes, which are essential to fully utilize the slow

computing nodes in the system. Then, to address these challenges, we introduce a novel

coding technique called bivariate polynomial codes. We theoretically show that the pro-

posed scheme efficiently utilizes the storage capacities of the worker nodes and reduces

the upload cost from the client to worker nodes significantly. We further demonstrate,

via experiments, that the proposed scheme speeds up the target matrix multiplication

task significantly under fixed storage capacities of the worker nodes.

The work presented in Chapter 3 has led to two conference and one journal publications,

which are listed below:

• Hasircioglu, B., Gómez-Vilardebó, J., and Gündüz, D. (2020). Bivariate Polyno-

mial Coding for Straggler Exploitation with Heterogeneous Workers. 2020 IEEE

International Symposium on Information Theory (ISIT), 251-256.

• Hasircioglu, B., Gómez-Vilardebó, J., and Gündüz, D. (2020). Bivariate Hermitian

Polynomial Coding for Efficient Distributed Matrix Multiplication. GLOBECOM

2020 - 2020 IEEE Global Communications Conference, 1-6.

• Hasircioglu, B., Gómez-Vilardebó, J., and Gunduz, D. (2020). Bivariate Poly-

nomial Coding for Efficient Distributed Matrix Multiplication. IEEE Journal on

Selected Areas in Information Theory, 2, 814-829.

Motivated by the significant improvement brought by the bivariate polynomial codes to

the straggler mitigation problem, in Chapter 4, we extend the setting such that the secu-

rity of the input data is ensured as well as the scheme still provides straggler mitigation

and efficient straggler utilisation. Such an extension of the requirements imposes the

condition that the employed coding scheme is defined over a finite field. Hence, in this
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section, we extend bivariate polynomial codes over a finite field and provide all necessary

proofs for the new setting, including the security proof. We further present extensive

experimental results demonstrating that the proposed scheme is superior to the existing

schemes in the literature in terms of overall computation time under fixed storage or

upload constraints.

Throughout this dissertation, we use the term "security" to refer to the prevention of

any information leakage to the worker nodes that are hired for distributed computations.

When computations are deemed "secure," it implies that the final result is not impacted

by this security guarantee. In other words, the resulting computation is exactly the

same as if no security measures had been taken. This differs from the concept of privacy,

which is used in federated learning in the subsequent chapters, in the sense that privacy-

preserving algorithms perturb the output irreversibly.

The results presented in Chapter 4 has led to the following publications:

• Hasircioglu, B., Gómez-Vilardebó, J., and Gunduz, D. (2021). Speeding Up Private

Distributed Matrix Multiplication via Bivariate Polynomial Codes. 2021 IEEE

International Symposium on Information Theory (ISIT), 1853-1858.

• Hasircioglu, B., Gómez-Vilardebó, J., and Gündüz, D. (2021). Bivariate Polyno-

mial Codes for Secure Distributed Matrix Multiplication. IEEE Journal on Selected

Areas in Communications, 40, 955-967.

In Chapter 5, we shift the focus of the dissertation to federated learning. Unlike conven-

tional federated learning, in this chapter, we consider a federated learning setting over a

wireless medium for edge devices. The chapter aims to use the interference phenomena

of the signals transmitted wirelessly to provide anonymity for the participating clients,

thereby enhancing the privacy guarantees of federated learning. We demonstrate that

when anonymity is ensured through certain techniques, the differential privacy guar-

antees of the client’s data against the parameter server are significantly amplified by

employing device and local dataset sampling.

The work presented in Chapter 5 has led to the following publication:

• Hasircioglu, B., and Gündüz, D. (2020). Private Wireless Federated Learning with

Anonymous Over-the-Air Computation. ICASSP 2021 - 2021 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 5195-5199.

In Chapter 6, we focus on conventional federated learning and investigate how jointly

sampling participating devices and their local datasets can amplify privacy. We point out
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that when we sample participating devices before sampling their local datasets, the data

sampling becomes non-uniform. This non-uniform data sampling invalidates the anal-

ysis of the privacy amplification effects of dataset sampling provided in previous work.

Therefore, in this chapter, we provide a theoretical analysis of the privacy amplification

effects of non-uniform sampling and present some experimental results that support our

theoretical claims.

The work presented in Chapter 6 has led to the following pre-print, which is still under

submission process:

• Hasircioglu, B., and Gunduz, D. (2022). Privacy Amplification via Random Par-

ticipation in Federated Learning. ArXiv, abs/2205.01556.

In Chapter 7, we study the communication efficiency of differentially private federated

learning, and we propose a compression technique that uses subtractive dithering and

quantization. The technique ensures that the distortion due to quantization provides

differential privacy of the client data against other clients. Additionally, the privacy

guarantees of our method remain valid even for the deployed model. We have both

theoretically and experimentally shown that the accuracy of the final model trained

using our technique matches that of the full-precision differentially private federated

learning setting.

The work presented in Chapter 7 has led to the following publication:

• Hasircioglu, B., and Gunduz, D. (2024). Communication Efficient Private Feder-

ated Learning Using Dithering. ICASSP 2024 - 2024 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP).

Finally, in Chapter 8, we conclude the dissertation by summarizing the achievements of

this Ph.D. course and by discussing the future directions of the problems studied.

Moreover, we would like to note that, during this Ph.D. course, the following papers were

also published but their content is not included in this dissertation:

• Malekzadeh, M., Hasircioglu, B., Mital, N., Katarya, K., Ozfatura, M.E., and Gun-

duz, D. (2021). Dopamine: Differentially Private Federated Learning on Medical

Data. The Second AAAI Workshop on Privacy-Preserving Artificial Intelligence

(PPAI-21).

• Yilmaz, S.F., Hasircioglu, B., and Gunduz, D. (2022). Over-the-Air Ensemble

Inference with Model Privacy. 2022 IEEE International Symposium on Information

Theory (ISIT), 1265-1270.
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1.2 Notation

Throughout the dissertation, we denote the set of consecutive integers, i.e., {a, a+1, a+

2, · · · , b− 2, b− 1, b}, by [a : b]. For matrices and vectors, we use bold lowercase letters

for vectors and bold uppercase letters for matrices. We use calligraphic letters for sets.

All other notation is introduced in the related chapters where necessary.



Chapter 2

Background

2.1 Coded Computation

Modern machine learning and computational tasks rely heavily on distributed comput-

ing to handle the enormous datasets and model sizes that require computational power

beyond that of a single machine. To tackle the most demanding computational tasks,

such as matrix multiplication, multiple dedicated servers known as workers are utilized.

However, computational processes can be hindered by stragglers which experience un-

predictable service times due to partial or complete failures, or concurrent computations

assigned to them, ultimately creating a bottleneck for distributed computation.

Apart from computational challenges, data security poses another obstacle in distributed

computing. Since computational tasks require sharing data chunks with worker nodes,

sensitive information may be contained in these chunks that the data owner needs to keep

private. Even partial sharing of this data with workers can result in a privacy breach. In

some cases, even if individual workers are not able to extract any information from the

data provided to them, a collaborative effort from workers exchanging information with

other workers, referred to as collusion, may result in a leakage.

Coded computation is a powerful framework that leverages concepts from channel cod-

ing to address the challenges of distributed computation, such as straggler mitigation

and security. The core idea behind coded computation is to introduce redundancy into

computation tasks, allowing for the failure or slowness of some worker nodes to be com-

pensated for by other worker nodes. This redundancy can also be used to enhance

security by ensuring that computations assigned to a worker do not reveal any sensitive

information, but when all necessary workers respond, the collective result is meaningful.

As such, coded computation is closely related to multi-party computation, which also

24
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aims to protect the privacy of data during distributed computation. By using coded com-

putation, researchers and practitioners can improve the efficiency, reliability, and security

of distributed computation systems, making them more suitable for various applications

in fields such as machine learning, data analytics, and cryptography.

In this dissertation, we primarily concentrate on matrix multiplication, utilizing this op-

eration to illustrate both existing and proposed coded computation solutions. We have

chosen to focus on matrix multiplication due to its pivotal role in numerous engineering

and data science challenges. For instance, in the realm of scientific computing, matrix

multiplication is employed to solve extensive linear systems of equations. Similarly, in

pattern recognition, procedures such as principal component analysis and linear discrim-

inant analysis incorporate matrix multiplication as a key subroutine. Furthermore, in

machine learning, operations like matrix factorization and neural network training fun-

damentally rely on matrix multiplication. Therefore, the development of techniques to

expedite this widely used subroutine not only enhances computational speed but also

bolsters data security in a multitude of engineering tasks.

The next subsection is dedicated to explaining the concept of coded computation by

providing a general framework. Then, we will delve into polynomial codes, which are a

specific type of error-correcting codes that can be employed to improve the computational

efficiency and security of matrix multiplication. We will explore the different variations of

polynomial codes, highlighting their advantages and disadvantages. Overall, this section

aims to provide a thorough understanding of how coded computation and polynomial

codes can be leveraged to optimize the performance of distributed computing systems.

2.1.1 A framework for coded computation

The process of distributed matrix multiplication through coded computation can be

broken down into three phases: encoding, computation, and decoding. Suppose a client

wishes to multiply two large matrices, A and B.

The first step is to encode matrices A and B using an encoder function, E(A,B),

resulting in p and r coded matrices of A and B, respectively, denoted as Ã1, Ã2, · · · ,
Ãp, and B̃1, B̃2, · · · , B̃r. The dimensions of coded matrices and the specific parameters

p and r depend on the coding schemes used, which vary and will be discussed in detail

later on. Assuming the client has N worker nodes available, the encoded matrices are

then assigned to these workers. Each worker node i is sent a subset of coded matrices

of A and B, indexed by the sets IA,i and IB,i. Specifically, to worker i, the client sends

the coded matrices Ãj , j ∈ IA,i and B̃k, k ∈ IB,i.



Background 26

During the computation phase, each worker node performs the local computations as-

signed to it by using the communicated matrix partitions. This process can be repre-

sented by a function, denoted as C
(

{Ãj | j ∈ IA,i}, {B̃k | k ∈ IB,i}
)

, which generates a

set of results for client i, referred to as Ci. Once the computations are completed, each

element in the result set Ci is sent back to the client.

Finally, during the decoding phase, the client waits for the workers to send a sufficient

number of their responses, which is denoted as the recovery threshold, Rth. These re-

sponses are represented by R ⊂ {∪i∈[1:N ]Ci} such that |R| = Rth. Once the required

number of responses have been received, the client decodes the final computation it needs

from these responses. Specifically, the decoding function D will be applied to R to decode

AB, i.e., AB = D (R).

To counteract the impact of stragglers, it’s crucial to assign redundant computations to

the workers. This redundancy ensures that slow or failed workers can be offset by other

computations, implying that the cardinality of {∪i∈[1:N ]Ci} should exceed that of R, and

their difference characterizes the straggler tolerance capability of the scheme. A similar

principle is also applicable to data security scenarios. In these instances, redundant

random matrices are incorporated and encoded alongside the original matrices. These

random matrices serve to obscure the original matrices from the workers, albeit at the

cost of a slight increase in the recovery threshold. Straggler mitigation and security

measures can also be implemented concurrently to achieve both reliable and secure matrix

multiplication. In the rest of this section, we will introduce polynomial codes and explore

their applications in straggler tolerance and security scenarios.

2.1.2 Polynomial Codes

Polynomial codes are a class of codes that are employed in coded computation as an

underlying coding scheme. In this family of codes, the encoding operation E(A,B)

first partitions the matrices A and B into smaller submatrices and then using these

submatrices, two encoding polynomials A(x) and B(x) are generated. In this background

chapter, we only consider univariate polynomial codes but in the following chapters, we

extend it to bivariate cases as well. Hence, throughout this chapter, both encoding

polynomials are expressed in terms of the same variable x. In a general form, when A is

divided into K, and B into L submatrices, these polynomials can be expressed as follows.

A(x) = A1x
α1 +A2x

α2 + · · ·+AKxαK (2.1)

B(x) = B1x
β1 +B2x

β2 + · · ·+BLx
βL . (2.2)
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Note that we do not specify yet how the matrices A and B are partitioned. Indeed, there

are several ways of doing that such as row-wise and column-wise partitioning, which we

elaborate on later. Moreover, we keep the exponents of the variable in a general form,

i.e., αi’s and βj ’s. The way of choosing these exponents depends on the specific coding

scheme employed.

To generate Ãi’s and B̃i’s, we evaluate encoding polynomials at a set of evaluation

points xi, where i belongs to the range [1 : p]. Each evaluation is then considered as

a coded matrix, i.e., Ãi = A(xi) and B̃i = B(xi). It is important to note that since

we use univariate polynomials, p is equal to r in this case since evaluating the encoding

polynomials at different evaluation points would not be useful for our purposes.

In the computation phase, each subtask is defined as a multiplication between A(xi) and

B(xi). Each worker may be assigned to compute one or more of such subtasks.

Finally, in the decoding phase, the client aims to interpolate the polynomial that is the

multiplication of the encoding polynomials,

A(x)B(x) =
∑

i∈[1:K]

∑

j∈[1:L]

AiBjx
αi+βj . (2.3)

To interpolate it, the number of evaluations required is equal to the number of coefficients

of this polynomial. Hence, the recovery threshold, Rth becomes the number of coefficients

of A(x)B(x), and it depends on K, L and the choice of αi’s and βj ’s.

Next, we investigate some primary polynomial coding schemes proposed to mitigate

stragglers.

2.1.3 Polynomial Codes for Straggler Mitigation

Assuming all workers start computing simultaneously, we define computation time as the

time from the start until the client collects sufficiently many computations (i.e., as many

as Rth) that allow for decoding AB. For brevity, this definition excludes communication

time, as well as encoding and decoding times. Stragglers can increase computation time

arbitrarily and hence, by employing polynomial codes, we aim to combat their effects.

As we discussed earlier, it can be done by assigning redundant computations to worker

nodes. In other words, stragglers can be considered as random erasures, and computation

time can be improved by utilizing these redundant computations in the case of slow or

failed worker nodes, similar to channel coding techniques for erasure channels.
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In the following, we present fundamental polynomial coding techniques differing in their

matrix partitioning routines, which results in differences in their several performance

metrics. Since, in general, the matrices to be multiplied for various scientific tasks are

in double precision by default, in this subsection, we assume that the matrices and the

polynomials under interest are all in real numbers, i.e., x ∈ R, A ∈ Rr×s and B ∈ Rs×c.

2.1.3.1 Univariate Polynomial Codes (UPC)

In [2], polynomial codes are proposed for combating stragglers during the distributed

multiplication of matrices A and B. In this scheme, a client partitions A row-wise and

B column-wise. That is, A =
[

AT
1 AT

2 · · · AT
K

]T
and B =

[

B1 B2 · · · BL

]

. In

this dissertation, we name this scheme as UPC. Given the partitions of A and B, their

multiplication AB can be expressed in terms of their submatrices as

AB =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A1B1 A1B2 · · · A1BL

A2B1 A2B2 · · · A2BL

...
...

...
...

AKB1 AKB2 · · · AKBL

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (2.4)

This implies all pairwise multiplications between submatrices of A and B are required

to be known for decoding AB. To keep, all the pairwise multiplication decodable, the

following encoding polynomials are constructed.

A(x) = A1 +A2x+ · · ·+AKxK−1, (2.5)

B(x) = B1 +B2x
K + · · ·+Bix

(i−1)K + · · ·+BLx
(L−1)K . (2.6)

Hence, the exponents of the encoding polynomials are designed such that αi = i − 1,

i ∈ [1 : K] and βj = (j − 1)K, j ∈ [1 : L].

To worker i, the client sends A(xi) and B(xi), i ∈ [1 : N ], for some distinct xi ∈ R.

Thus, every worker receives one coded partition of A and one coded partition of B,

and worker i is assigned to compute A(xi)B(xi). After completion of its assigned task,

worker i communicates the result to the client.

The encoding polynomials impose the following polynomial to be interpolated by the

client

A(x)B(x) =
K
∑

i=1

L
∑

j=1

AiBjx
i−1+K(j−1). (2.7)

A(x)B(x) has a degree KL− 1, and hence, it has KL distinct coefficients. This means

Rth, which is the number of computations required to decode AB, or equivalently, the
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number of workers that complete their assigned tasks in this case, is KL. Hence, the

fastest KL workers’ responses are enough to decode the desired multiplication AB.

Observe that with N > Rth, this scheme can tolerate up to N−Rth stragglers. It helps to

reduce the average computation time thanks to the parallelization afforded by redundant

workers.

In [2], it has been shown that this scheme is optimal in terms of the download rate,

which is defined as the ratio of the total number of bits needed to be downloaded from

the workers to the number of bits needed to represent the result of the multiplication.

This is indeed not difficult to see since any coded submatrix of AB is ÃiB̃i ∈ R
r
K
× c

L and

only KL of such coded multiplications are required to be downloaded from the workers.

Hence, in total, the client needs to download the same number of bits to represent

AB ∈ Rr×c, which results in a download rate of 1.

2.1.3.2 MatDot Codes

Instead of the matrix partitioning employed in UPC, alternatively, the matrices A and

B can be partitioned in a column-wise and row-wise manner, respectively. In [3], a cod-

ing scheme employing such partitioning called MatDot codes is proposed. In this coding

scheme, both matrices are partitioned into K submatrices, i.e., K = L and the parti-

tioning is carried as A =
[

A1 A2 · · · AK

]

and B =
[

BT
1 BT

2 · · · BT
K

]T
. Hence,

their multiplication can be expressed as AB =
∑

i∈[1:K]AiBi. Note that unlike UPC,

in MatDot codes, it is not required to know all pairwise multiplications AiBi separately

but instead, only their sum is sufficient. Using this fact, the encoding polynomials are

constructed as follows.

A(x) =
∑

i∈[1:K]

Aix
i−1 = A1 +A2x+ · · ·+AKxK−1 (2.8)

B(x) =
∑

j∈[1:K]

Bjx
K−j = B1x

K−1 +B2x
K−2 + · · ·+BK−1x+BK . (2.9)

That is, the exponents are designed to be αi = i− 1 and βj = K − j. Similarly to UPC

to worker i, the client sends A(xi) and B(xi) using distinct xi’s for each worker. After

computing A(xi)B(xi), client i communicates its result to the client. From the worker’s

responses, the client aims to interpolate the polynomial

A(x)B(x) =
∑

i∈[1:K]

∑

j∈[1:K]

AiBjx
i+K−j−1, (2.10)
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which has a degree 2K−2. Note that to decode AB, only the coefficient of the monomial

xK−1 is necessary. However, to solve for the required coefficient, one needs to interpolate

all coefficients from the worker’s responses. Hence, Rth = 2K − 1.

The authors of [3] show that, compared to [2], MatDot codes improve the recovery

threshold. This is because, compared to KL, which has a quadratic dependency on

K if K = L, now, MatDot codes require only 2K − 1 workers to respond. However,

in terms of the amount of computation each worker should carry out, referred to as

the computation cost, and the download rate, UPC of [2] outperforms MatDot codes.

That is because the matrix partitioning scheme employed in MatDot codes generates

matrices with larger dimensions if the same K parameter is used in both schemes. This

results in ÃiB̃i ∈ Rr×c, implying that, from each worker, the client must download the

same number of bits to represent the whole AB. Compared to UPC, this is a dramatic

increase. Similarly, this also implies that the amount of computation conducted by each

worker node is much larger. Still, for the scenarios in which the amount of computation

assigned to a worker and the download cost are not a concern, MatDot codes may be

useful since they have a smaller Rth.

2.1.3.3 PolyDot Codes

In [3], the authors also propose PolyDot codes as an interpolation between UPC and

MatDot codes. PolyDot codes trade-off between the recovery threshold and the com-

putation/download costs via a hybrid approach to the partitioning techniques. That is,

both matrices A and B are partitioned both row-wise and column-wise as follows.

A =

⎡

⎢

⎢

⎢

⎣

A1,1 A1,2 · · · A1,Kc

...
...

...
...

AKr,1 AKr,2 · · · AKr,Kc

⎤

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎣

B1,1 B1,2 · · · B1,Lc

...
...

...
...

BLr,1 BLr,2 · · · BLr,Lc .

⎤

⎥

⎥

⎥

⎦

(2.11)

where Kc,Kr, Lc and Lr are design parameters such that Kc = Lr. Then, the desired

multiplication becomes

AB =

⎡

⎢

⎢

⎢

⎣

∑

i∈[Kc]A1,iBi,1
∑

i∈[Kc]A1,iBi,2 · · ·
∑

i∈[Kc]A1,iBi,Lc

...
...

...
...

∑

i∈[Kc]AKr,iBi,1
∑

i∈[Kc]AKr,iBi,2 · · ·
∑

i∈[Kc]AKr,iBi,Lc

⎤

⎥

⎥

⎥

⎦

. (2.12)
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The encoding polynomials of PolyDot codes are constructed as

A(x) =
∑

i∈[Kr]

∑

j∈[Kc]

Ai,jx
i−1+Kr(j−1) (2.13)

B(x) =
∑

k∈[Kc]

∑

l∈[Lc]

Bk,lx
Kr(Kc−k)+Kr(2Kc−1)(l−1). (2.14)

As before, each worker i is sent distinct evaluations A(xi) and B(xi), and then worker i

sends the result A(xi)B(xi) back to the client. Hence, the client aims to interpolate

A(x)B(x) =
∑

i∈[Kr]

∑

j∈[Kc]

∑

k∈[Kc]

∑

l∈[Lc]

Ai,jBk,lx
i−1+Kr(Kc−k+j−1)+Kr(2Kc−1)(l−1), (2.15)

which has a degree of 2KrKcLc −KrLc − 1, implying Rth = 2KrKcLc −KrLc.

Observe that in PolyDot codes, similarly to MatDot codes, not all pairwise multipli-

cations between Ai,j and Bk,l are required to decode AB, but also similarly to UPC,

not all such multiplications are accumulated under the same monomial. In this sense,

PolyDot codes are a generalization of these two coding schemes. Note that by choosing

Kr = Lc = 1, PolyDot codes reduce to MatDot codes and by choosing Kc = 1, they

reduce to UPC. Hence, by tweaking Kr,Kc and Lc, the recovery threshold can be traded

off for the computation and download costs.

2.1.3.4 Related Literature

Numerous studies have investigated the case where both A and B can be partitioned row-

wise and column-wise simultaneously. One notable example is the proposal of entangled

polynomial codes in [4], which improves the recovery threshold of PolyDot codes [3] while

maintaining a fixed computation cost and download rate. Additionally, [5] introduces

generalized PolyDot codes that achieve the same recovery threshold as the entangled

polynomial codes presented in [4].

Another area of research, as detailed in [6], pertains to the batch multiplication of ma-

trices, specifically AiBi for i ∈ [1 : L] where L > 1. This study proposes cross subspace

alignment (CSA) codes that provide an improved trade-off between upload-download

cost when compared to the separate application of entangled polynomial codes for each

multiplication task within the batch.

Polynomial codes pose a challenge in terms of numerical stability, given that polynomial

interpolation forms the basis of the decoding process. As a result, ensuring numerical

stability is of utmost importance for practical implementations. In order to address this

concern, several schemes have been proposed for distributed coded matrix multiplication
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in [7–10] that offer numerically stable polynomial coding solutions. These solutions can

be considered as important contributions towards enhancing the robustness of polynomial

codes in practical applications.

2.1.4 Polynomial Codes for Security

In this section, we provide an overview of the polynomial coding techniques proposed for

secure distributed matrix multiplication. It is worth noting that the matrices used in such

computations often contain sensitive information that the client may not want to disclose.

While the polynomial coding techniques presented in previous sections typically involve

sharing coded matrix partitions instead of the matrices themselves, even partially sharing

coded matrices can lead to information leakage to the workers. In certain scenarios, a

group of workers can collude to exchange information with one another, thereby gaining

insights into the multiplied matrices. Such collusion can result in information leakage

even if no information is revealed to individual workers. In coded computation literature,

it is common to assume an upper bound on the number of workers that can collude,

denoted by T . This upper bound implies that among N available workers, no more

than T can collaborate to share their received coded matrix partitions and gain access

to sensitive data.

In order to tackle all these challenges, in distributed matrix multiplication, a stringent

security model is employed, in which no leak of information about the matrices is allowed

under the honest but curious workers. An honest but curious worker adheres to the

protocol but may utilize the received coded matrices to gain knowledge about the original

matrices A and B. Given that at most T workers can collude, it is required that a mutual

information constraint be satisfied, which ensures that there is no information leakage

from the matrices. Specifically, this constraint is expressed as follows:

I
(

A,B; {Ãi, B̃i | i ∈ T , T ⊂ [1 : N ], |T | = T}
)

= 0, (2.16)

where I(·) is the mutual information, and T is any subset with cardinality T of available

worker indices. Hence, polynomial codes for data security aim to achieve this mutual

information constraint while introducing as low delays as possible.

Due to the no-leakage nature of the mutual information constraint, similar to the secure

multi-party computation literature, in secure polynomial coding, the matrices and the

polynomials are assumed to be in a finite field, F. That is, we have x ∈ F, A ∈ Fr×s and

B ∈ Fs×c. Hence, before encoding the matrices, we assume they are properly quantized

such that they are mapped to some element of the underlying finite field.
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2.1.4.1 Secure Univariate Polynomial Codes (S-UPC)

A direct extension of UPC codes to the secure distributed matrix multiplication is

proposed in [11], which we refer to as Secure Univariate Polynomial Codes (S-UPC)

in this dissertation. In this work, to hide the matrices from the workers, random

matrix partitions are created, and linearly encoded together with the true matrix

partitions using polynomial codes. That is, as in UPC, matrices are partitioned as

A =
[

AT
1 AT

2 · · · AT
K

]T
and B =

[

B1 B2 · · · BL

]

, where Ai ∈ F
r
K
×s and

Bj ∈ F
s× c

L . In addition, to mask A and B, the client uniform randomly draws T ran-

dom matrix partitions independently, Ri ∈ F
r
K
×s and Si ∈ F

s× c
L , i ∈ [1 : T ], respectively.

Then, the encoding polynomials are constructed as follows.

A(x) =
∑

i∈[1:K]

Aix
i−1 +

∑

i∈[1:T ]

Rix
K+i−1 (2.17)

B(x) =
∑

i∈[1:L]

Bix
(K+T )(i−1) +

∑

i∈[1:T ]

Six
(K+T )(L+i−1). (2.18)

The client sends to the worker i, the evaluations A(xi) and B(xi) such that the evaluation

points xi’s are distinct for different workers. The worker i computes A(xi)B(xi) and

communicates the result to the client.

In [11], it has been shown that the sets {A(xi) | i ∈ T , |T | = T} and {B(xi) | i ∈
T , |T | = T} do not leak any information about the matrices A and B, respectively,

implying Equation (2.16) is satisfied. This is because linear combinations of T indepen-

dent uniformly random Ri’s and Si’s are added to the encoded matrix partitions and at

least T + 1 linear equations are required to eliminate the effect of these random matrix

partitions. Hence, the system is secure against the collusion of T workers.

From the responses collected from the workers, the client aims to interpolate

A(x)B(x) =
∑

i∈[1:K]

∑

j∈[1:L]

AiBjx
i−1+(K+T )(j−1) +

∑

i∈[1:T ]

∑

j∈[1:L]

RiBjx
K+i−1+(K+T )(j−1)

+
∑

i∈[1:K]

∑

j∈[1:T ]

AiSjx
i−1+(K+T )(L+j−1) +

∑

i∈[1:T ]

∑

j∈[1:T ]

RiSjx
K+i−1+(K+T )(L+j−1).

(2.19)

Hence, A(x)B(x) has a degree of (K + T )(L+ T )− 1, implying Rth = (K + T )(L+ T )

workers are required to respond to interpolate it and to decode AB.

Compared to the Rth of UPC, which is KL, Rth of S-UPC has an extra term T (K+L)+

T 2. That is because of the random matrix partitions introduced to guarantee security.

However, note that the ultimate goal of the coded distributed matrix multiplication is
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to decode AB. Hence, only the multiplications AiBj are required. All other products

involving random matrix partitions do not have to be necessarily decodable. Hence, it is

not required that all distinct RiBj ’s, AiSj ’s and RiSj ’s are the coefficients of distinct

monomials, implying that there is room for improving the Rth.

2.1.4.2 Gap Additive Secure Polynomial (GASP) Codes

The recovery threshold of S-UPC has been improved in subsequent works [12], [13], by

carefully choosing the degrees of the encoding monomials so that the resultant decoding

polynomial contains the minimum number of additional coefficients. Since GASP codes

proposed in [13] provide fewer additional coefficients via a more sophisticated method

for choosing the degrees of the monomials, in this section, we prefer to present this work.

If we extend the general model presented in Equation (2.1) and Equation (2.2) to the

secure case, we obtain

A(x) =
∑

i∈[1:K]

Aix
αi +

∑

i∈[1:T ]

Rix
αK+i (2.20)

B(x) =
∑

i∈[1:L]

Bix
βi +

∑

i∈[1:T ]

Six
βL+i . (2.21)

Like S-UPC, in GASP codes, the A is partitioned row-wise and B is partitioned column-

wise. The aim of GASP codes is to design αi’s and βi’s such that all the pairwise

multiplications between actual matrix partitions AiBj are decodable at the A(x)B(x),

while minimizing the number of monomials whose coefficients include any random matrix

partition, i.e., Ri’s or Si’s. In this way, Rth is aimed to be improved and fewer workers

are needed to realize the task.

For this purpose, different strategies to choose αi’s and βi’s are proposed in [13] depending

on the values of K,L and T . For T ≥ min{K,L}, the strategy is called GASPbig, and

given by

αi =

⎧

⎪

⎨

⎪

⎩

i− 1 if i ∈ [1 : K]

K + L+ t− 1 if i = K + t, t ∈ [1 : T ]

βi =

⎧

⎪

⎨

⎪

⎩

K(i− 1) if i ∈ [1 : L]

K + L+ t− 1 if i = L+ t, t ∈ [1 : T ]
(2.22)
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when K ≥ L, and by

αi =

⎧

⎪

⎨

⎪

⎩

L(i− 1) if i ∈ [1 : K]

K + L+ t− 1 if i = K + t, t ∈ [1 : T ]
(2.23)

βi =

⎧

⎪

⎨

⎪

⎩

i− 1 if i ∈ [1 : L]

K + L+ t− 1 if i = L+ t, t ∈ [1 : T ]
(2.24)

otherwise. On the other hand, when T < min{K,L}, the exponents are chosen as follows,

which is named as GASPsmall,

αi =

⎧

⎪

⎨

⎪

⎩

i− 1 if i ∈ [1 : K]

KL+K(t− 1) if i = K + t, t ∈ [1 : T ]
(2.25)

βi =

⎧

⎪

⎨

⎪

⎩

K(i− 1) if i ∈ [1 : L]

KL+ t− 1 if i = L+ t, t ∈ [1 : T ]
(2.26)

when K ≤ L, and

αi =

⎧

⎪

⎨

⎪

⎩

L(i− 1) if i ∈ [1 : K]

KL+ t− 1 if i = K + t, t ∈ [1 : T ]
(2.27)

βi =

⎧

⎪

⎨

⎪

⎩

i− 1 if i ∈ [1 : L]

KL+ L(t− 1) if i = L+ t, t ∈ [1 : T ]
(2.28)

otherwise.

It is important to note that the reason behind selecting αi’s and βi’s as specified is to

create gaps in the degrees of the monomials in A(x)B(x). These gaps result in monomials

with zero coefficients. In [13], the authors demonstrate that the presence of such zero-

coefficient monomials helps to decrease the recovery threshold and they do not pose any

issue in terms of decodability.

Similarly to the previous schemes, using these exponents, the client sends to the client

i the evaluations A(xi) and B(xi). Note that since Ri’s and Si’s are generated inde-

pendently and uniform randomly, and each Ri and Si has a corresponding monomial

at A(x) and B(x), respectively, the evaluations A(xi) and B(xi) do not leak any infor-

mation about A and B as long as the maximum number of colluding workers does not

exceed T . A formal proof is provided in [13].
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From the worker’s responses, the client interpolates

A(x)B(x) =
∑

i∈[1:K]

∑

j∈[1:L]

AiBjx
αi+βj +

∑

i∈[1:K]

∑

j∈[1:T ]

AiSjx
αi+βL+j

+
∑

i∈[1:T ]

∑

j∈[1:L]

RiBjx
αK+i+βj +

∑

i∈[1:T ]

∑

j∈[1:T ]

RiSjx
αK+i+βL+j . (2.29)

It has been shown in [13], the recovery threshold becomes

RGASP
th (K,L, T ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

KL+K + L, 1 = T < L ≤ K

KL+K + L+ T 2 + T − 3, 1 < T < L ≤ K

(K + T ) (L+ 1)− 1, L ≤ T < K

2KL+ 2T − 1, L ≤ K ≤ T.

(2.30)

Note that this recovery threshold considerably improves that of S-UPC due to the so-

phisticated design of exponents of the monomials in the encoding polynomials.

2.1.4.3 Related Literature

Similar to the relation between UPC, MatDot and PolyDot codes, in the secure case,

via employing different matrix partitioning techniques, the recovery threshold can be

improved. In [14], the extension of the PolyDot and entangled polynomial codes to secure

distributed matrix multiplication is studied, and the trade-off between the download rate

and the recovery threshold is explored. In [15], CSA codes [6] are used for the secure

distributed batch multiplication problem, and the scheme is shown to be optimal in terms

of the download rate. [16] is another work CSA codes are utilized for secure distributed

matrix multiplication and similarly to [6], it has been shown that a low download rate can

be achieved at the price of a large upload rate. In these works, lower recovery threshold

values than [13] are obtained by using different matrix partitioning techniques but this

comes at the expense of a considerable increase in the other metrics like download rate

and upload rate.

Another novel coding approach is proposed in [17] for distributed matrix multiplication,

based on polynomial evaluation at the roots of unity in a finite field. It has constant time

decoding complexity and a lower recovery threshold than the aforementioned traditional

polynomial-type coding approaches. However, in this approach, the sub-tasks assigned

to the workers are not one-to-any replaceable, i.e., the failure of one worker cannot be
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compensated by any other worker. Hence, these codes lack straggler mitigation capabil-

ity. Since, in this dissertation, we focus on codes which both have straggler mitigation

and security properties simultaneously, we do not discuss this scheme in more detail.

2.2 Federated Learning

Machine learning (ML) has traditionally relied on a centralized approach, where data is

stored and processed in a central entity or a cluster belonging to a single organization.

This framework operates under the assumption that the central entity is the owner of

the data and can freely access and distribute it in any way that is convenient for learning

purposes. However, in modern ML systems, there are situations where the assumptions

of such a centralized model are hard to satisfy.

One of the main challenges in centralised ML is the collection of data. In many cases,

the amount of data available is massive, making it difficult to collect and store in a single

entity. This requires substantial communication and storage resources that may not be

feasible. Additionally, if the data originates from independent parties, privacy concerns

may prevent direct sharing with a central entity.

Another challenge is the central entity’s computational resources. As the demand for

processing power increases, the central entity may not have the necessary resources to

handle the massive demand. This is especially true in scenarios where the data is con-

stantly changing, and the model needs to be updated frequently.

To tackle the challenges of centralized ML settings, it is imperative to explore alternative

approaches. FL has emerged as a promising solution in recent years, owing to its ability

to overcome the limitations of traditional methods [18]. FL is a framework that enables

multiple clients to collaboratively train a model with the aid of a central server, known

as the parameter server (PS), without the need to share their local datasets. Instead,

clients share their local model updates with the PS after each training round, and the

PS aggregates these updates to generate an improved global model.

FL is typically categorized into two settings based on the application scenario: cross-

device and cross-silo settings. In the cross-device setting, there are usually a large num-

ber of clients, ranging from thousands to millions, and only a small fraction of them are

available to participate in each round. These clients are typically edge devices with lim-

ited capabilities, such as being battery-powered, having poor communication resources,

and limited computation power. Personal AI assistants, like Alexa [19], mobile device

keyboards, like Gboard [20], and vehicular networks [21] are examples of real-world ap-

plications of this setting. In contrast, in the cross-silo setting, there are usually fewer
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clients, typically tens to hundreds, and they have better capabilities than edge devices.

They are mostly available to participate during the learning rounds, and are more reliable

than edge devices. Collaborative learning among different institutions for the common

good, such as collaboration among financial institutions, or training a diagnostic model

on patient data from different hospitals [22, 23] are among typical use cases for this

setting.

In the following, we present a more formal description of the FL framework by introducing

basic terminology, which is necessary for the rest of the dissertation.

2.2.1 FL framework

In this section, we aim to explain the general framework of FL. The FL framework

involves N clients participating in a learning task. Each client has a local dataset Di.

The aim is to train a global model fw(·) with parameters w ∈ Rm, where m is an integer,

using the local datasets of the clients. Each client, represented by i ∈ [1 : N ], has a local

loss function ℓi(·, ·) that measures the discrepancy between the model output and the

ground truth for each sample. The goal of training is to find the optimal model parameter

w that minimizes the average of the local loss functions across all clients, which is given

by

w = argmin
1

N

∑

i∈[1:N ]

1

|Di|
∑

d∈Di

ℓi(fw(d), d). (2.31)

The training process comprises several rounds T , which can either be predetermined or

dependent on certain system parameters, as well as the precision of the current model

predictions. In each of the rounds, denoted by t ∈ [1 : T ], the PS begins by broadcasting

the current global model wt to all available clients, represented by Pt ⊂ [1 : N ]. Subse-

quently, each client i ∈ Pt uses its local dataset Di to compute a model update gt
i. The

update is the result of a local optimization procedure, such as stochastic gradient descent

(SGD), which can involve one or several local iterations, depending on the problem’s na-

ture and constraints. Afterwards, each participating client sends its local update gt
i to

the PS. Once the PS has collected all the responses from each client i ∈ Pt, it aggregates

the local updates and updates the global model as follows

wt+1 = wt − ηt · Agg(gt
i | i ∈ Pt), (2.32)

where Agg(·) is the function aggregating the model updates, and ηt is the learning rate

at round t. The aggregating function can be customized based on the requirements
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of the problem or the optimization algorithm used for training. The simplest form

of this function is basic averaging, which is commonly known as federated averaging

(FedAvg) [18]. However, it might not perform well in certain cases where there is a

considerable difference in the data distributions among the clients or when there are

adversarial clients present. In such scenarios, some modifications to the function might

be necessary.

In some settings, for efficiency purposes, without waiting for all the available workers’

responses, the PS may decide to proceed to the update phase. For example, if there

are some stragglers in the system and sufficiently many responses are collected, the PS

may ignore the rest of the clients and proceed with what it already received. Although

Equation (2.32) does not involve such a scenario, it is worth noting that such cases are

possible and in these cases, Pt is replaced by the set of responded clients’ indices.

2.2.2 Challenges in FL

In this subsection, we briefly describe the main challenges in FL, which are communica-

tion efficiency, heterogeneity across clients and data privacy.

2.2.2.1 Communication efficiency

It’s important to recall that one of the main reasons why the FL framework was created

is to tackle the communication bottleneck of central ML systems. In these systems, local

datasets of the clients need to be uploaded to a central entity, which can be quite time-

consuming. While FL solves this issue partially by only requiring model updates from the

clients to be uploaded to the PS, it still involves several rounds of training, which means

that the communication cost of uploading model updates should be as low as possible.

This is especially important in cross-device settings where clients have limited resources,

and high communication overhead may cause excessive power usage and generate large

delays.

There are two main approaches to improving communication efficiency in FL: minimising

the number of communication rounds and compressing client updates.

The first approach involves clients not sending updates to the PS after every local it-

eration. Instead, they update their own local model by selecting a subset of data from

their local dataset. In the following local iteration, they use their updated local model

without any communication with the PS. The number of local iterations required varies

depending on the problem and the convergence properties of the optimization algorithm

used. If the number of iterations is too large, then the local models may diverge from
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each other, leading to a decrease in the accuracy of the global model. However, if the

number of iterations is properly selected, it can speed up the convergence of the global

model, resulting in fewer global communication rounds and less communication cost.

This approach is an effective way of reducing communication overhead and conserving

resources while still achieving high accuracy.

Another popular approach to reduce the communication cost of FL is compressing the

client updates. This is especially important when the model size of the trained model is

large. In each global round, the update with the same size of the model is transmitted

from each participating client to the PS, creating a large communication overhead. As

a solution, techniques involving low-precision gradients, such as quantization and gradi-

ent sparsification, are actively researched. These techniques are effective in making FL

communication-efficient, and they include solutions such as [24–29].

2.2.3 Heterogenity across clients

In FL, there can be various sources of heterogeneity across clients. Firstly, since each

client may represent different users or user groups, and these users’ behaviours may differ

depending on factors such as their location, time zone, daily routines, or socioeconomic

status, the data stored on the clients may have non-identical distributions. This is

known as non-independently and identically distributed (i.i.d.). data in FL. In addition

to non-i.i.d. data, such heterogeneities in users may also result in heterogeneities at the

devices themselves, implying differences in their computational power, communication

capabilities, availability rate, and power constraints, among others.

The issue of non-i.i.d. data is a critical challenge faced by machine learning models in

achieving good global performance. This problem arises due to the highly heterogeneous

distribution of data present across clients, which can cause local models to diverge from

each other and result in a poorly performing global model. As an example, consider a

classification problem where a specific label exists only in the dataset of one client. In

such a scenario, the local models of other clients may not learn to classify such examples

accurately, leading to a minimal contribution of the client having that label during the

averaging process. In order to tackle the non-i.i.d. data problem, several solutions

have been proposed, such as data centralization, personalisation, multi-task learning,

and meta-learning. However, this topic remains an active area of research with ongoing

developments and advancements. For a comprehensive review of the works related to

this subject, we refer the readers to [22].

On the other hand, the heterogeneity of the devices leads to challenges such as failures,

errors, and straggling behaviour. These challenges can result in inaccurate results or a
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significant delay in the training process. Several potential solutions have been proposed

to address these issues, including asynchronous training, device sampling, and gradient

coding techniques [30–34]. and the topic is still an active research area to develop more

effective and efficient approaches for FL in the face of device heterogeneity.

2.2.4 Data privacy

The preservation of privacy is a crucial concern in the realm of ML, as the very solutions

depend on data that can potentially reveal sensitive information about the individuals

who own it. Therefore, while training ML models, it is of paramount importance to

prevent any sensitive features from the training set from leaking. One of the core promises

of FL is preserving privacy, as data never leaves clients and only local model updates are

shared. Unfortunately, research has shown that such updates, their average, and even

the final trained model are sufficient to reveal sensitive information about the training

set [35–43]. Hence, privacy concerns remain a significant area of research.

To ensure privacy in FL, various techniques can be employed, including secure multi-

party computation (S-MPC), homomorphic encryption (HE), and differential privacy

(DP) mechanisms. S-MPC-based solutions allow the PS to learn the summation of the

client updates without revealing any individual client update. This technique has been

successfully implemented in various studies, [44], to eliminate attacks based on individual

client updates. Similarly, HE enables the computation of functions of encrypted data,

as demonstrated in [45,46] to preserve privacy.

However, in both approaches, the final aggregated update may still be visible to the

PS, which opens up the possibility of attacks utilizing aggregated models and the final

global model. Thus, while S-MPC and HE are effective in preventing attacks based

on individual client updates, these techniques do not offer complete protection against

attacks utilizing aggregated models.

DP is a strong privacy notion that adds irreversible disturbance to the training procedure,

ensuring all local and aggregate updates, and the final deployed model have some degree

of protection. Though this technique adds noise to the process and may hurt the accuracy,

it remains an active research topic to develop mechanisms that satisfy a desired level of

privacy while having a less harmful effect on accuracy. It is worth noting that the

techniques based on S-MPC and HE can be used in conjunction with DP mechanisms

to further enhance their privacy guarantees.

In this dissertation, we mainly focus on DP mechanisms. Hence, in the next section, we

provide a detailed background on this topic.
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2.3 Differential Privacy

Differential privacy (DP) has emerged as a widely accepted and highly regarded privacy

notion in various privacy-preserving data analysis tasks. It serves as a gold standard for

privacy preservation in such scenarios. When a data-processing algorithm is designed

to respect the privacy of users whose data is contained in the input dataset, the output

must not reveal substantial information about any individual in the dataset. In order

to formalize this, DP quantifies the degree of indistinguishability, from the algorithm’s

output, between the presence and the absence of a single individual in the input dataset.

DP is a robust and rigorous concept of privacy that provides a strong foundation for

privacy-preserving data analysis. Unlike other privacy definitions that rely on specific at-

tack scenarios or assumptions about adversaries, DP is based on an information-theoretic

characterization that holds true for any attack model or adversary with arbitrary compu-

tational power. In essence, DP mathematically quantifies the privacy protection provided

by a data analysis algorithm. Specifically, it provides an upper bound on the increase

in an adversary’s certainty about whether a particular individual is present in the input

dataset after the algorithm has run, regardless of the adversary’s background knowledge.

Furthermore, DP exhibits a composition property that allows it to quantify the total

amount of privacy loss from multiple accesses to a dataset. This makes it a preferred

notion for measuring privacy leakage in practical applications. Since its introduction by

Dwork et al. in [47], DP has become a cornerstone of privacy research and has found

numerous applications in various fields such as healthcare, finance, and social sciences.

In the following, we give the formal definition of DP.

2.3.1 Pure differential privacy

Definition 2.1. A randomized mechanism M : D → S is ε-differentially private (ε-DP)

if

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S], (2.33)

for all neighbouring datasets D and D′, i.e., sets differing in only one element, and

∀S ⊂ S, where ε > 0.

This notion is also referred to as pure differential privacy. The definition refers to a

concept that datasets D and D′ are considered neighbours if they differ in only one

element. The meaning of this, however, depends on the context. For instance, if the goal

is to protect the privacy of a user, then the datasets differ by only one user. Furthermore,

this difference can occur in two possible ways. The first option is that the cardinalities
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of the datasets may differ by one. That is, D can be obtained by removing one element

from D′, or vice versa. This relationship is called the add-remove relation. Alternatively,

D can be obtained by replacing one user in D′ with another user, or vice versa. This

relationship is called the replacement relation.

Note that the definition of DP suggests that the relation in Equation (2.33) is valid for

all D and D′ pairs and for all possible outputs S. Hence, the notion of DP is indeed

two-sided, implying

e−ε Pr[M(D′) ∈ S] ≤ Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S]. (2.34)

Hence, an algorithm or mechanism that satisfies DP does not leak information about an

individual that would increase the odds of an adversary correctly identifying one user’s

participation by more than a multiplicative factor of eε. Hence in DP, smaller ε values

imply better privacy protection. Moreover, since this guarantee is for the participation

of a user, any other specific attribute of the user is protected at least by the parameter

ε. This is because the presence of a user in a dataset is its simplest feature, and learning

any other feature of a user first requires learning its presence in the dataset.

There are many examples of DP mechanisms proposed in the literature including ran-

domized response [48], Laplace mechanism [47] and staircase mechanism [49]. We do not

discuss them here since we do not utilize them in the following chapters and hence, they

are out of the scope of this dissertation. However, depending on the nature of the prob-

lem, in general, satisfying ε-DP exactly requires adding too much noise to the output,

hence, harming the accuracy.

In the next subsection, we present a relaxation of pure DP, which allows the use of much

smaller noise variances compared to pure DP despite a small probability of failure.

2.3.2 Approximate differential privacy

Definition 2.2. A randomized mechanism M : D → S is (ε, δ)-DP if

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ, (2.35)

for all neighbouring datasets D and D′, and ∀S ⊂ S, where ε > 0 and δ ∈ [0, 1).

Compared to the definition of pure DP, in the above definition, we have δ, which, loosely

speaking, characterises the failure probability of pure DP. This is clearly a relaxation

of pure DP and setting δ = 0 reduces the guarantee to pure DP, which is (ε, 0)-DP.
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The exact characterization of δ is better understood via an alternative but equivalent

definition of (ε, δ)-DP, which is expressed in terms of hockey stick divergence, which we

introduce next.

Definition 2.3 ( [50]). We define the hockey stick divergence between two probability

measures µ and µ′ as

Dα(µ||µ′) !

∫

Z

[

dµ(z)− αdµ′(z)
]

+
d(z) (2.36)

where [·]+ ! max{0, ·}.

Based on hockey stick divergence, (ε, δ)-DP can be expressed as follows.

Theorem 2.1 ( [51], Theorem 1 in [52]). A mechanism M is (ε, δ)-DP if and only if

sup
D,D′

Dα
(

M(D)||M(D′)
)

≤ δ, (2.37)

where D and D′ are two neighbouring datasets and α = eε.

Theorem 2.1 characterizes the trade-off between ε and δ, and hence, δ can be considered

as a function of ε. Therefore, δ is not exactly the failure probability but rather a measure

of how much the condition Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] is violated by using hockey

stick divergence. Hence, δ provides more information than just the probability of failure.

It also indicates the severity of the failure. Hence, like ε, smaller δ values are more

desirable in DP.

DP has several desirable properties which makes it an appropriate choice for many

privacy-preserving data processing tasks, including post-processing property and com-

position. When a mechanism provides an output using a mechanism with some DP

guarantees, then transformation of this output via any other function still provides at

least as strong DP guarantees as the original output as long as the dataset is not accessed

again by this transformation.

Another intriguing property of DP is composition. In certain scenarios where a particular

dataset needs to be accessed multiple times T , it is important to consider the amount

of total privacy lost with each access. For example, in machine learning (ML) models,

a dataset might be accessed multiple times during the training process, and with each

access, the mechanism learns and outputs some information about the dataset. In such

cases, it becomes essential to quantify the loss of privacy incurred due to these repeated

accesses. The naive approach to quantifying privacy loss is to use the (T · ε, T · δ)
[53]. However, this characterization is too loose for large values of T . To address this
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limitation, the advanced composition theorem [53, Theorem 3.20], based on concentration

inequalities, provides a tighter characterization.

Luckily, the use of Rényi divergence has been shown to lead to even more significant

improvements in composition. In this regard, in the following subsection, we present a

formal definition of Rényi differential privacy (RDP) and proceed to discuss its notewor-

thy composition properties.

2.3.3 Rényi differential privacy (RDP)

Definition 2.4. Rényi divergence between two probability distributions is defined as

Rα(P ||Q) !
1

α− 1
logEx∼Q(x)

(

P (x)

Q(x)

)α

, (2.38)

where α ∈ [1,∞), and Rα for α = 1 and α = ∞ is defined by continuity.

Definition 2.5. (α, ε)-Rényi DP [54]: A randomized mechanism M : D → S satisfies

(α, ε)-RDP if

Rα
(

Pr (M(D) = s) ||Pr
(

M(D′) = s
))

≤ ε, (2.39)

where D and D′ are neighbouring datasets.

As we stated in the previous subsection, RDP has a quite useful composition property,

which we state in the next lemma.

Lemma 2.1 ( [54]). If a dataset is accessed T times with (α, εi)-RDP mechanisms

where i ∈ [1 : T ], then the overall composite application of these mechanisms satisfy

(α,
∑

i∈[1:T ] εi)-RDP.

In addition to being quite simple to compute, for some important mechanisms RDP-

based composition is tighter than advanced composition theorem.

Next, we present a lemma which provides a conversion formula from RDP to approximate

DP. Note that this result is not the optimal conversion but it is close to the optimal and

easier to characterise. The optimal conversion is proposed in [55].

Lemma 2.2. RDP to DP [54]: A mechanism satisfying (α, ε)-RDP also satisfies (ε +

log(1/δ)/(α− 1), δ)-DP.



Background 46

2.3.4 Gaussian Mechanism

In this subsection, we present the Gaussian mechanism, which is widely used to achieve

approximate DP guarantees for various data processing tasks. The application of this

mechanism is quite simple, which consists of adding a Gaussian noise with a specified

mean and variance. Thanks to the mathematically desirable properties of Gaussian dis-

tribution, it makes analysis of the resulting DP guarantees also easier. The following

theorem formally characterizes the DP guarantees that can be achieved using the Gaus-

sian mechanism.

Theorem 2.2 (Theorem 8 in [36]). Let f : D → Rm be a function satisfying ||f(D) −
f(D′)||2 ≤ C, for all neighbouring datasets D and D′, where || · ||2 denotes the L2 norm.

A mechanism M(D) = f(D) +N (0,σ2) is (ε, δ)-DP if and only if

Φ

(

C

2σ
− εσ

C

)

− eεΦ

(

− C

2σ
− εσ

C

)

≤ δ, (2.40)

where Φ is the cumulative distribution function (CDF) of the standard normal distribu-

tion.

In the following theorem, we also present the RDP guarantees of the Gaussian mecha-

nism.

Theorem 2.3 (Proposition 7 in [54]). The Gaussian mechanism with sensitivity C sat-

isfies (α,αC2/σ2)-RDP.

Therefore, the Gaussian mechanism is a versatile tool that can be applied to a wide

range of tasks, thanks to its robust RDP guarantees and tight composition guarantees.

Moreover, RDP guarantees can be easily converted to DP guarantees, further enhancing

the mechanism’s applicability. Of particular interest is its use in differentially private

deep learning, which has numerous potential applications. In the upcoming chapters,

we will explore the application of the Gaussian mechanism to various problems in the

context of FL, highlighting its effectiveness and versatility.

2.3.5 Local and Central Differential Privacy

In this section, we discuss two contextual models of differential privacy. Although both

models adhere to the formal definitions of differential privacy introduced earlier in this

chapter, they specify the context in which the privacy guarantees are valid.

In the local model of differential privacy, an entity that wants to keep its data private

doesn’t rely on any other party to protect its privacy. Hence, before releasing a response
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to any query about its local dataset, it randomizes it properly using a suitable method

to achieve the desired DP guarantees, e.g., Gaussian mechanism. The DP guarantees

achieved by such a local randomization are called local differential privacy guarantees [53].

On the other hand, in the central model of differential privacy, we assume a federated

setting, where there is a central entity and several participating entities that trust the

central entity. The primary goal is to keep the datasets of the participating entities

private. When given a query, such as requesting gradients in an iteration of FL, the

participating entities can either locally randomize their individual responses or provide

noiseless responses. The central entity can access these individual responses to generate

an aggregate response. Before releasing it to third parties or other participating entities,

it can further randomize the aggregate response or release only the aggregation if the

individual responses are already locally randomized. In this setting, any adversary can

only see the aggregate response, and the differential privacy guarantees that the aggregate

response has against an adversary are referred to as central differential privacy guarantees

[53].



Chapter 3

Bivariate Polynomial Coding for

Straggler Mitigation

3.1 Abstract

Coded computing is an effective technique to mitigate stragglers in large-scale and dis-

tributed matrix multiplication. In particular, univariate polynomial codes have been

shown effective in straggler mitigation by making the computation time depend only

on the fastest workers. However, these schemes completely ignore the work done by the

straggling workers resulting in a waste of computational resources. To reduce the amount

of work left unfinished at workers, one can further decompose the matrix multiplication

task into smaller sub-tasks, and assign multiple sub-tasks to each worker, possibly het-

erogeneously, to better fit their particular storage and computation capacities. In this

chapter, we present a novel family of bivariate polynomial codes to efficiently exploit the

work carried out by straggling workers. We show that bivariate polynomial codes bring

significant advantages in terms of upload communication costs and storage efficiency,

measured in terms of the number of sub-tasks that can be computed per worker. We

propose two variants of bivariate polynomial codes. The first one exploits the fact that

bivariate interpolation is always possible on a rectangular grid of evaluation points. We

obtain such points at the cost of adding some redundant computations. For the second

scheme, we relax the decoding constraints and require decodability for almost all choices

of the evaluation points. We present interpolation sets satisfying such decodability con-

ditions for certain storage configurations of workers. Our numerical results show that

bivariate polynomial coding considerably reduces the average computation time of dis-

tributed matrix multiplication. We believe this work opens up a new class of previously

unexplored coding schemes for efficient coded distributed computation.

48
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3.2 Introduction

In this chapter, we delve into the crucial problem of mitigating stragglers in distributed

matrix multiplication. Stragglers, which are slow or failed worker nodes, can significantly

impede the performance of the overall system. To address this issue, one promising ap-

proach is to assign redundant computations to the worker nodes. Under this framework,

the stragglers are treated as random erasures, and the computation time can be improved

by creating redundant computations using coding techniques similar to those used for

erasure channels.

In Chapter 2, we provide a comprehensive review of various coding schemes that have

been proposed to mitigate the straggler problem, including univariate polynomial codes

(UPC) [2], MatDot codes, and PolyDot codes [3]. Additionally, we discuss further ad-

vancements in the field, including solutions proposed in [4], [5], and [6].

However, in all of these approaches, the client node receives the result of the work assigned

to a worker only after it has been completed in its entirety, regardless of the scale of the

computations allocated. Workers that fail to complete their assigned tasks by the time

as many computations as the recovery threshold are collected by the client are treated as

erasures. Consequently, all the work done by these workers is deemed invalid and ignored

by the client. This approach is sub-optimal, particularly when the speeds of the workers

are similar. In such cases, the ignored workers may have already completed a substantial

part of the assigned task, resulting in wasted computational resources. Therefore, there

is a need to investigate more efficient approaches that account for the partially completed

work by the workers.

To exploit the partially completed work done by stragglers, a multi-message approach is

considered in several works such as [56–58]. These approaches involve dividing workers’

tasks into smaller sub-tasks, and communicating the result of each sub-task to the master

as soon as it is completed without waiting for the other tasks.

The same approach can be also employed in polynomial coding schemes. However,

unfortunately, it turns out that the univariate polynomial coding schemes, such as [2–6,

59] do not scale well with the number of assigned tasks per worker in terms of storage

efficiency and upload costs. As we show in the following sections, under fixed storage

capacities at the workers, in univariate polynomial coding, dividing a task into sub-tasks

by a given factor reduces the fraction of work that can be done by the workers in the

same factor, resulting in inefficient use of workers’ storage capacity and upload costs.

The approaches in [56, 58] are based on uncoded computation and a hybrid of uncoded

and coded computation, respectively. It has been shown that uncoded computation may
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be more beneficial if the workers’ computation speeds are similar. However, in scenar-

ios where workers have heterogeneous computation speeds, as encountered in serverless

computing, peer-to-peer applications, or edge computing, coded computation with multi-

message communication is still relevant and helps speed up the target task.

On the other hand, the approach in [57] is based on fully coded computation, where a

coding scheme called product codes is employed. Product codes are constructed based on

the product of two MDS codes. They partially address the scalability issues of univariate

polynomial coding schemes, which do not scale well with the number of assigned tasks per

worker in terms of storage efficiency and upload costs. However, computations at workers

in product codes are not one-to-any replaceable, which results in poor performance in

various scenarios. Moreover, both univariate polynomial codes and product codes impose

certain constraints preventing fully heterogeneous workloads across workers.

In [60], a hierarchical coding framework for the straggler exploitation problem is pro-

posed, also taking into account the decoding complexity. This work is extended to

matrix-vector and matrix-matrix multiplications in [61]. However, the benefits of hierar-

chical coding are significant mainly if the decoding time is comparable to the computation

time.

Another line of work which has the potential to efficiently address the straggler ex-

ploitation problem is rateless codes. Previously, the use of rateless codes for distributed

matrix-matrix and matrix-vector multiplication is proposed in [62–64]. Rateless codes

are not based on polynomial codes and the matrix partitions are encoded by using ran-

dom coefficients. Hence, unlike univariate polynomial codes, they do not suffer from

inefficiencies in terms of upload cost and storage when it comes to straggler exploitation

while also providing low numerical errors. However, these types of codes have non-zero,

and sometimes notably high, failure probabilities in their decoding due to their stochastic

nature in the encoding phase [64], and this might limit their usage in some settings.

Hence, although the issue of straggling workers and their efficient utilization in dis-

tributed computing has been a subject of active research, with several coding schemes

proposed to tackle the problem, there is still a continued need for scalable and efficient

solutions.

To address these challenges, in this chapter, we present bivariate polynomial codes.

Bivariate polynomial codes aim to improve the computation time of distributed matrix-

matrix multiplication under limited storage at the workers while improving the upload

cost from the client to the workers. The main contributions of this chapter can be

summarized as follows:
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• We first show the limitation of univariate polynomial codes in terms of both com-

putational and storage efficiency when extended to the multi-message setting.

• We introduce bivariate polynomial coding schemes to address these limitations.

Interpolation of bivariate polynomials cannot be guaranteed by simply requiring all

evaluation points to be distinct. Here, we introduce the concepts of regular (always

invertible), and almost regular (almost always invertible) interpolation matrices.

• We first extend the product coding scheme of [57] to bivariate polynomial coding,

which leads to a regular interpolation matrix by imposing a particular rectangular

grid structure on the interpolation points. This strategy attains maximum storage

efficiency, but the computation efficiency can be limited due to redundant compu-

tations.

• We propose two novel bivariate coding schemes. We demonstrate that unlike uni-

variate schemes, for bivariate coding, the order by which the computations are

done at the workers has a non-trivial impact on decodability; and hence, we im-

pose a special computation order for the tasks assigned to each worker. These

schemes achieve maximum computation efficiency by completely avoiding redun-

dant computations. Their storage efficiency is limited, yet higher than that of

univariate schemes. We further propose two alternative bivariate polynomial codes

with higher storage efficiency at the cost of a slight decrease in computation effi-

ciency.

• We numerically validate our findings assuming a shifted exponential model for

computation speeds, and show the superiority of the proposed bivariate schemes

compared to univariate alternatives and product codes.

• While polynomial codes have been extensively studied with numerous applications

in practice, to the best of our knowledge, our work provides the first examples of

bivariate polynomial code constructions with superior performance compared to

their univariate counterparts.

3.3 System Model and Problem Formulation

Our system, as illustrated in Figure 3.1, involves a master server that aims to multiply

two matrices A ∈ Rr×s and B ∈ Rs×c, where r, s, and c are positive integers, by

offloading partial computations to N workers with heterogeneous storage capacities and

computation speeds.
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Figure 3.1: Overview of distributed matrix multiplication employing N workers.

The master server divides matrix A row-wise and matrix B column-wise into K and L

partitions respectively. Thus, A = [AT
1 AT

2 . . . AT
K ]T and B = [B1 B2 . . . BL], where

Ai ∈ R
r
K
×s for i ∈ [1 : K] and Bj ∈ R

s× c
L for j ∈ [1 : L].

Based on A and B, The master server generates and sends to each worker i ∈ [1 : N ],

coded matrix partitions Ãi,k ∈ R
r
K
×s for k ∈ [1 : mA,i], B̃i,l ∈ R

s× c
L for l ∈ [1 : mB,i]

where mA,i and mB,i are positive integers. Hence, each worker i is assumed to store

a fraction of A and B, denoted by MA,i =
mA,i

K and MB,i =
mB,i

L , respectively. In

general, the way these coded matrix partitions are generated depends on the specific

coding scheme employed. In polynomial coding schemes, they are obtained as linear

combinations of the original matrix partitions.

Depending on the coding scheme employed, worker i can compute all, or a subset of

the products of coded matrix partitions assigned to it, i.e., Ãi,kB̃i,l, k ∈ [1 : mA,i],

l ∈ [1 : mB,i] in a prescribed order, which is also specific to the coding scheme. We

denote by ηi the maximum number of computations worker i can provide, which can be

possibly used by the master for decoding AB. Thus, ηi ≤ mA,imB,i, and the specific

value of ηi depends on the coding scheme.

In order to exploit the partial work done by straggling workers, the results of these

individual products are sent to the master as soon as they are finished. The master

collects the responses from the workers until the received set of computations allows

the master to uniquely recover AB. Then, the master instructs all the workers to stop

computing and decodes AB. Note that the recovery threshold, which is defined as the

minimum number of computations that guarantee the decodability of AB, does not have

to be a fixed quantity in our setting. Depending on the coding scheme, Rth can be a

function of the collected computations by the master.
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As is common in the related literature, we specify the storage capacity at workers sepa-

rately for each of the two matrices, i.e., MA,i and MB,i. However, in practice, it is more

appropriate to assume a total storage capacity at each worker, which can be freely allo-

cated between the partitions of the two matrices. Since they are composed of the same

number of real numbers, we assume that the rows of A and the columns of B require

the same amount of storage. We define the storage capacity of worker i, denoted by

si ∈ N+, as the sum of the total number of rows of A and the total number of columns

of B that it can store. Accordingly, for a given K, L, and si, we allocate mA,i and mB,i

to maximize ηi subject to MA,ir +MB,ic = si. Defining Cpart ! 1
KL as the fraction of

work corresponding to a single partial product Ãi,jB̃i,l, the maximum fraction of work

that can be done by worker i is given by

Cmax,i ! ηiCpart =
ηi

mA,imB,i
MA,iMB,i. (3.1)

Under the same storage constraints, a code that can provide more fraction of work uses

its storage more efficiently; hence, Cmax,i will be used to measure the storage efficiency.

We define Cwasted as the worst-case fraction of wasted computations with respect to the

full product, AB. There are two sources of wasted computations. Firstly, depending on

the coding scheme, some of the computations completed by the workers may not be used

in decoding AB. Secondly, when Rth is reached, the master instructs all the workers to

stop their computations and the ongoing computations of the workers are wasted. We

assume that the communication time for the stop signal to reach from the master to the

workers is short enough that the workers receive this instruction before finishing their

ongoing computations. In the following sections, we compute the fraction of the wasted

computations of the second type based on this assumption. If this assumption does not

hold, the wasted computations of the second type may increase.

For a fixed N and fixed storage capacities si’s at workers, our objective is to minimize

the average computation time of AB. This depends on the statistics of the computation

speeds of the workers and is difficult to obtain in closed form. Instead, we use Cmax,i

and Cwasted as proxies for the performance of a code. These metrics do not depend on

the worker’s speeds and provide general indicators on the code performance. Note that,

especially in heterogeneous settings, in which some workers may be much faster than

others, the higher fraction of work provided by faster workers helps to finish the task

earlier. Therefore, storage efficiency, or Cmax,i, is a factor to be optimized to improve

the average computation time. Moreover, low Cwasted implies that more of the available

computation capacity across the workers is exploited towards completing the desired

computation. Therefore, to minimize the average computation time, we are interested in
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maximizing Cmax,i and minimizing Cwasted. Table 3.1 summarizes the key code param-

eters Cmax,i, Cwasted and system constraints for the schemes considered in this work. A

detailed discussion on these parameters is postponed to the later sections.

Scheme Cmax,i Cwasted System constraints

UPC MAMB NMAMB − 1 mA,i = mB,i = 1

UPC-PC
MA,iMB,i

mi

∑N−1
i=1

MA,iMB,i

m2
i

mA,i = mB,i = mi ∈ [1 : min(K,L)]

B-PROC MAMB

∑N−1
i=1

MA,iMB,i

mA,imB,i

+(nAMB − 1)(1− MA
mA

)

+(nBMA − 1)(1− MB
mB

)

N = nAnB

mA,i = mA, mB,i = mB

K ≤ nAmB , L ≤ nBmA

BPC-VO MA,iMB,i
∑N−1

i=1
MA,iMB,i

mA,imB,i

mA,i = 1 and mB,i ≤ L or

mA,i ≥ 1 and mB,i = L

BPC-HO MA,iMB,i
∑N−1

i=1
MA,iMB,i

mA,imB,i

mB,i = 1 and mA,i ≤ K or

mB,i ≥ 1 and mA,i = K

BPC-NZO MA,iMB,i

∑N−1
i=1

MA,iMB,i

mA,imB,i

+(µB − 2)( L
µB

− 1) 1
KL

µB | L, µB | mB,i, mA,i = K and mB,i ≤ L or

mB,i = µB,µB | L, mB,i ≤ L and mA,i ≤ K or

mA,i = 1, mB,i < µB and µB | L

BPC-ZZO MA,iMB,i

∑N−1
i=1

MA,iMB,i

mA,imB,i

+(µA − 2)( K
µA

− 1) 1
KL

µA | K, µA | mA,i, mA,i ≤ K and mB,i = L or

mA,i = µA,µA | K, mA,i ≤ K and mB,i ≤ L or

µA | K, mA,i < µA and mB,i = 1

Table 3.1: Comparison of the key performance metrics and system constraints of
polynomial coding schemes for straggler mitigation.

3.4 Univariate Schemes

In this section, we review the codes based on univariate polynomial interpolation and

their performance metrics.

3.4.1 Performance metrics of UPC

First, we investigate the performance metrics of UPC, which is discussed in detail in

Section 2.1.3.1. Recall that in the UPC, the encoding polynomials A(x) and B(x) given

in Equation (2.5) and Equation (2.6), respectively, are evaluated at a distinct xi ∈ R and

sent to worker i by the master. Thus, every worker receives one coded partition of A and

one partition of B, i.e., mA,i = mB,i = 1 and MA,i = MA = 1/K, MB,i = MB = 1/L,

∀i ∈ [1 : N ].

Worker i is assigned only one computation A(xi)B(xi) and hence, it computes and returns

the result to the master, implying ηi = mA,imB,i = 1. Once the master receives any

Rth = KL results, it can interpolate the polynomial A(x)B(x) of degree KL−1. Observe

that the coefficients of the interpolated polynomial correspond to the KL sub-products
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AiBj , ∀i ∈ [1 : K], ∀j ∈ [1 : L] of AB. Finally, notice that

Cmax,i = Cpart =
1

KL
= MAMB. (3.2)

Observe that with N > Rth, this scheme can tolerate up to N−Rth stragglers. It helps to

reduce the average computation time thanks to the parallelization afforded by redundant

workers. However, all the work done by the N − Rth slowest workers is ignored. In the

worst case, where the N −Rth + 1 slowest workers finish simultaneously, we have

Cwasted = (N −Rth)Cpart = (N −Rth)
1

KL
= NMAMB − 1. (3.3)

We observe from Equation (3.3) that without changing the number of workers N or the

storage capacities of workers MA, MB, it is not possible to improve Cwasted, and thus

reduce the amount of work lost at workers.

3.4.2 Univariate Polynomial Codes with Partial Computations (UPC-

PC)

In this section, to exploit the partial work done at slower workers, we present an ex-

tension of UPC called Univariate Polynomial Codes with Partial Computations (UPC-

PC), which is based on the multi-message approach and also allows heterogeneous stor-

age capacities at workers. In Univariate Polynomial Codes with Partial Computations

(UPC-PC) the encoding polynomials are constructed the same as in UPC, i.e., as in

Equation (2.5) and Equation (2.6).

UPC-PC is based on the idea of dividing the task assigned to a worker into smaller

sub-tasks, represented by larger K and L values, and assigning multiple tasks to each

worker, thereby allowing them to store several partitions. Specifically, we allow worker

i to store mi = mA,i = mB,i coded partitions of A and B, i.e., MA,i = mi/K and

MB,i = mi/L. For worker i, the master evaluates A(x) and B(x) at mi different points

{xi,1, . . . , xi,mi} such that xi,k ̸= xj,l if (i, k) ̸= (j, l), ∀i, j ∈ [1 : N ] and ∀k, l ∈ [1 : mi].

Worker i computes A(xi,j)B(xi,j) consecutively for j ∈ [1 : mi] and sends each result

to the master as soon as it is completed. Observe that multiplications are only allowed

between the same-point evaluations of A(x) and B(x), i.e, at xi,j , and thus ηi = mi,

∀i ∈ [1 : N ].
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The master can interpolate A(x)B(x) as soon as it receives Rth = KL responses from

the workers. Thus,

Cpart =
1

KL
=

MA,iMB,i

m2
i

, (3.4)

Cmax,i = miCpart =
MA,iMB,i

mi
. (3.5)

The total fraction of wasted work in the worst case, in which all the workers were up to

finish its ongoing partial multiplication once the Rth-th result is received by the master,

is given by

Cwasted = (N − 1)Cpart = (N − 1)
1

KL
=

N−1
∑

i=1

MA,iMB,i

m2
i

. (3.6)

In contrast to UPC, UPC-PC can improve Cwasted by increasing K and L while main-

taining N or MA,i and MB,i constant, as shown in Equation (3.6). That is because

once the master collects sufficiently many computations from the workers, all the not-

yet-completed tasks at the stragglers correspond to a lesser fraction of the full task since

now these computations are smaller subtasks compared to UPC. This implies that the

smaller the sub-tasks executed at workers, the smaller the work that can be lost at a

straggler. On the other hand, since only the multiplications between the same point

evaluations of A(x) and B(x) are allowed, UPC-PC makes quite an inefficient use of the

storage capacity at workers. For example, even if a worker has enough storage to fully

store A and B, i.e., MA,i = 1 and MB,i = 1, it, alone, can only provide min{K,L} partial

computations. Indeed, for a fixed storage capacity at the workers, i.e., MA,i and MB,i are

kept constant, the maximum fraction of work done at a worker, Cmax,i, decreases while

K and L increase to improve Cwasted, which results in less efficient use of the storage

capacities of the workers.

In the next section, we introduce the bivariate polynomial codes to address this problem.

3.5 Bivariate Polynomial Codes

Bivariate polynomial codes for straggler mitigation share many similarities with their

univariate counterparts UPC and UPC-PC. In both cases, matrix A is partitioned row-

wise and matrix B is partitioned column-wise. However, in bivariate polynomial codes,

two variables are used to construct the encoding polynomials, as opposed to one variable

in univariate codes. Specifically, the encoding polynomials are generated as follows:

A(x) = A1 +A2x+ · · ·+AKxK−1, (3.7)
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B(y) = B1 +B2y + · · ·+BLy
L−1. (3.8)

Depending on the coding scheme, coded matrix partitions Ãi,k and B̃i,l are either direct

evaluations of the encoding polynomials A(x) and B(y), respectively, or the evaluations

of their derivatives. After receiving these, the workers calculate their subtasks by multi-

plying the coded matrix partitions Ãi,k and B̃i,l’s, and obtain evaluations of the bivariate

polynomial

A(x)B(y) =
K
∑

i=1

L
∑

j=1

AiBjx
i−1yj−1 (3.9)

or of its derivatives. From the results communicated by the workers, finally, the master

interpolates the bivariate polynomial A(x)B(y).

Bivariate coding schemes not only enable heterogeneous storage capacities across workers

but also allow for different numbers of stored coded partitions of A and B for each

worker, i.e., mA,i ̸= mB,i in general. The maximum number of computations a worker

can generate is ηi = mA,imB,i, resulting in Cmax,i = mA,imB,iCpart = MA,iMB,i.

In contrast to univariate polynomial coding schemes, the maximum amount of work done

at worker i, Cmax,i, does not decrease with mA,i and mB,i for a given storage capacity

MA,i and MB,i in bivariate schemes. In univariate schemes, workers can only use each

evaluation of A(x) and B(x) for one partial computation, resulting in storage ineffi-

ciency. For instance, A(xi,k)B(xi,l), for k ̸= l, cannot be used to interpolate A(x)B(x)

in a univariate scheme. Bivariate polynomial coding eliminates this limitation and allows

workers to provide additional useful computations at no additional storage cost. Fur-

thermore, similar to UPC-PC, bivariate polynomial codes can leverage the computational

power of the stragglers.

As previously discussed, A(x)B(y) has KL coefficients, and thus, KL partial computa-

tions are required to interpolate it. However, in bivariate polynomial coding schemes,

additional computations may be necessary to ensure decodability in some cases. We will

discuss the decodability conditions that lead to this issue in the following sections. For

now, we note that in bivariate schemes, the number of computations required to guar-

antee decodability satisfies Rth ≥ KL. Consequently, we have a new source of wasted

computations: Rth −KL redundant computations that have been received by the mas-

ter to ensure decodability but are not used for the actual interpolation, as well as all

ongoing computations at the workers when the Rth-th computation is received by the

master. When calculating Cwasted, we consider the worst-case scenario and assume that

all ongoing computations at the remaining N − 1 workers are close to completion, and

thus, we count them as wasted computations. As a result, the maximum fraction of

wasted computations is given by:
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Cwasted = (N − 1)Cpart + (Rth −KL)Cpart

= (N − 1)
1

KL
+

Rth

KL
− 1. (3.10)

Before presenting the bivariate schemes, next, we introduce some basic concepts and

definitions from polynomial interpolation theory.

Definition 3.1. The interpolation of a bivariate polynomial of the form A(x)B(y) can

be expressed as a system of linear equations, where the unknowns are AiBj ’s, where

i ∈ [K], j ∈ [L]. We define the interpolation matrix as the coefficient matrix of this

linear system, denoted by M. Depending on the coding scheme, the entries of M are

determined by the monomials of A(x)B(y) or their derivatives evaluated at specific

points. Hence, each row corresponds to a different evaluation of A(x)B(y).

The rules imposed by coding schemes on computations, such as the order in which com-

putations are conducted and the types of computations assigned to workers, may cause

det(M) to become an identically zero polynomial, regardless of the chosen evaluation

points. This is an undesirable situation, and it is important to demonstrate that a pro-

posed scheme does not exhibit such behaviour. To this end, we introduce two notions

that ensure that undesirable structures are not imposed on the interpolation matrix.

Definition 3.2. [65, Definition 3.1.3] An interpolation scheme is considered regular if

det(M) ̸= 0 for every set of distinct and non-zero evaluation points. On the other hand,

if det(M) ̸= 0 for almost all choices of the evaluation points, the interpolation scheme is

referred to as almost regular. The property of almost regularity implies that det(M) is not

the zero polynomial in general, and the set of evaluation points for which det(M) = 0 has

Lebesgue measure zero in R2. The notion of almost regularity is weaker than regularity

but still guarantees that the interpolation matrix does not exhibit undesirable structures

almost surely.

To gain insight into the practical implications of almost regularity, we consider a scenario

where evaluation points are uniformly sampled from the interval [l, u], where l, u ∈ R

and l < u. Since the Lebesgue measure of the set of evaluation points that result in

det(M) = 0 is zero, the probability of sampling such evaluation points is exactly zero.

This is due to the use of an uncountable set to sample evaluation points, and the fact

that there are infinitely many possible choices of evaluation points. Even if there are

countably many bad choices of evaluation points, the invertibility of M is guaranteed

almost surely.
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Univariate polynomial interpolation is regular when the evaluation points are distinct and

non-zero, as the corresponding interpolation matrix is a Vandermonde matrix, which

is known to be invertible. However, for bivariate interpolation, there are few known

sufficient conditions for regularity. In the following section, we explore one such case.

3.5.1 Bivariate Polynomial Interpolation on Rectangular Grids

It is well-established that the interpolation of A(x)B(y), where A(x) and B(y) have

degrees K − 1 and L − 1, respectively, is regular for any rectangular grid of evaluation

points x1, x2, . . . , xK × y1, y2, . . . , yL, provided that all xi’s and yi’s are distinct. In the

following subsection, we present an interpolation scheme that leverages this fact called

B-PROC. The scheme was originally introduced in [57] using product codes, and we

present it here using bivariate polynomial codes, which are equivalent to the product-

code form in terms of all the performance metrics considered in this study. Furthermore,

we generalize the scheme to allow for mA ̸= mB and nA ̸= nB, where N = nAnB.

3.5.1.1 Bivariate Product Coding (B-PROC)

In this coding scheme, we impose that all workers can store the same number of A

partitions, i.e., mA,i = mA for all i ∈ [1 : N ], and the same number of B parti-

tions, i.e., mB,i = mB for all i ∈ [1 : N ]. Additionally, the number of workers must

satisfy the factorization N = nAnB, where K ≤ mAnA and L ≤ mBnB. For encod-

ing, the master generates nA disjoint sets of evaluation points for A(x), denoted by

X i = xi, 1, xi,2, . . . , xi,mA
for i ∈ [1 : nA], and nB disjoint sets of evaluation points for

B(y), denoted by Yj = yj, 1, yj,2, . . . , yj,mB
for j ∈ [1 : nB], where all elements are

distinct. The master then enumerates the workers as (i, j), where i ∈ [1 : nA] and

j ∈ [1 : nB], and sends A(xi,k) for k ∈ [1 : mA] and B(yj,l) for l ∈ [1 : mB] to worker

(i, j). Worker (i, j) can compute all the products A(xi,k)B(yj,l) for k ∈ [1 : mA] and

l ∈ [1 : mB].

The set of evaluation points at workers forms a rectangular grid of size mAnA ×mBnB.

Notably, nA workers have the evaluation B(ŷ) for any ŷ ∈ Yj, and each of them can

compute mA distinct evaluations of the univariate polynomial A(x)B(ŷ), which has

degree K − 1 with respect to x. Once the first K of these evaluations are received at

the master, A(x)B(ŷ) can be interpolated. Similarly, for a given x̂ ∈ Xi, A(x̂)B(y) can

be interpolated from any L evaluations, as it is a univariate polynomial in y with degree

L− 1. Consequently, once we have the evaluations of A(x)B(y) on any rectangular grid

of size K × L, either directly received from the workers or via univariate interpolation,

the bivariate interpolation problem can be solved.
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However, computations that are simultaneously received from workers and that are al-

ready interpolated from previous results are redundant. Such computations may increase

the recovery threshold. To minimize such computations, [57] proposed different heuristics

to schedule computations at the workers for the specific case of mA = mB and nA = nB.

In the following example, we illustrate a case where more than KL computations are

collected by the master, but decoding is still not possible by using random computation

orders at the workers.

Example 3.1. Consider a scenario where both matrices A and B are divided into

K = L = 10 partitions, and there are N = 15 workers, each capable of storing MA = 3/10

of A and MB = 5/10 of B. We take nA = 5 and nB = 3, and worker (i, j) stores

{A(xi,1),A(xi,2),A(xi,3)} and {B(yj,1),B(yj,2),B(yj,3),B(yj,4),B(yj,5)}.

Assuming that the order of computations is random within a worker, Figure 3.2 shows

an instance of the received responses from the workers. Each worker is represented by a

3 × 5 rectangle, and each filled circle represents a received computation by the master.

To illustrate how a worker’s finished computations look, worker (4, 2) is emphasized in

the figure. All elements in the columns and rows coloured green can be interpolated,

i.e., decoded, using the received responses on the same column or row. Note that there

are columns/rows coloured green even if they have less than 10 computations, such as

the column of x4,1. These rows and columns can be decoded after decoding rows and

columns with at least 10 computations by utilizing all elements in these columns and

rows after decoding. Since there must be at least 10 green columns and 10 green rows

to decode A(x)B(y), the received responses in our example are insufficient, even though

the master has received 110 > KL = 100 responses.

Next, we aim to compute the total fraction of work wasted in the worst-case scenario,

which is dependent on the heuristics employed for computation order. To achieve this,

we consider a uniform random computation order at the workers, as reported to perform

well in [57], and also discussed in Example 3.1. Under this computation order, the

computations can be received in any order by the master. In the worst-case scenario,

which is depicted in Figure 3.3 for the case in Example 3.1, there may be K − 1 fully

computed columns, where each column contains exactly nBmB computations, except for

one column with exactly L computations. Consequently, nBmB − L computations in

each of the K − 1 fully computed columns are wasted. Similarly, there may be L − 1

fully computed rows and one row with exactly K computations. In this case, nAmA−K

computations in each of the L− 1 fully computed rows are wasted. Therefore, the total

number of wasted computations is given by (nBmB −L)(K − 1) + (nAmA −K)(L− 1).
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Figure 3.2: An example instance of the received responses at the master for B-PROC
under random computation order.
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Figure 3.3: A worst-case instance of the received responses at the master for B-PROC.
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Finally, using this information the worst-case Rth of B-PROC is determined as

RB−PROC
th = KL+ (nBmB − L)(K − 1) + (nAmA −K)(L− 1). (3.11)

It is important to note that this expression represents a worst-case value. Depending

on the received responses, the actual number of computations required to guarantee

decodability may be much lower. By substituting Equation (3.11) into Equation (3.10),

we can determine the fraction of wasted computations for B-PROC in the worst-case

scenario. The resulting expression is as follows:

Cwasted, B-PROC = (N − 1)
1

KL
+ [(nBmB − L)(K − 1)

+ (nAmA −K)(L− 1)]
1

KL

= (N − 1)
1

KL
+ (nBMB − 1)

(

1− MA

mA

)

+ (nAMA − 1)

(

1− MB

mB

)

. (3.12)

It is worth noting that this expression is highly dependent on how nA and nB are al-

located. Increasing the storage, i.e., MA and MB, while K and L remain constant, or

increasing K and L while the storage remains constant, both increase Cwasted. How-

ever, it is important to keep in mind that the value of Cwasted calculated here is for the

worst-case scenario, and the actual situation may not be as bad most of the time.

B-PROC requires additional constraints on the system, i.e., N = nAnB, K ≤ nAmA,

L ≤ nBmB and homogeneous storage capacities at workers, and yet it is not possible

to ensure that the first KL results arriving at the master form a regular interpolation

problem. To address these issues, in the next subsection, we propose novel bivariate

polynomial codes. However, showing the regularity of these schemes is a hard problem,

if not impossible. Therefore, instead, we use the notion of almost regularity, which is a

relaxation of regularity and propose almost regular bivariate interpolation schemes.

3.5.2 Almost Regular Bivariate Interpolation Schemes

In this section, we propose several almost regular bivariate interpolation schemes such

that the polynomial A(x)B(y) is interpolated from its evaluations as well as its deriva-

tives. Such an interpolation is known as Hermite interpolation in the literature [66, Chap-

ter 3.6].
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3.5.2.1 Encoding Phase

All the almost regular interpolation schemes described in this section have the following

encoding procedure in common. Consider the polynomials in Equation (3.7) and Equa-

tion (3.8). To each worker i ∈ [1 : N ] the master assigns a distinct evaluation point

(xi, yi) ∈ R2, and sends the evaluations of A(x) and B(y), and their derivatives up to

order mA,i − 1 and mB,i − 1, respectively, at (xi, yi). That is, the set of coded matrix

partitions sent to the worker i by the master are

Ai !

{

A(xi),
dA(xi)

dx
, . . . ,

d(mA,i−1)A(xi)

dx(mA,i−1)

}

, (3.13)

Bi !

{

B(yi),
dB(yi)

dy
, . . . ,

d(mB,i−1)B(yi)

dy(mB,i−1)

}

. (3.14)

For brevity, in the sequel, we use ∂kA(xi) and ∂lB(yi) to denote dk

dxkA(xi)and dl

dyl
B(yi),

respectively.

3.5.2.2 Computation Phase

Although the encoding procedures are the same for all proposed almost regular interpola-

tion schemes, they differ in the order in which the assigned computations are conducted.

In general, after receiving Ai and Bi from the master, each worker i begins computing

all the cross products between elements in Ai and Bi, one by one, and sends the result of

each computation to the master as soon as it is completed. To ensure decodability, each

worker must follow a specific computation order while conducting their assigned multi-

plications. To specify such computation orders, we define a quantity called the priority

score for each scheme, whose value is uniquely defined for each assigned computation.

The computations with a lower priority score are conducted before the ones with a higher

score.

Specifically, for any worker i, each computation ∂kA(xi)∂lB(yi) for k ∈ [0 : K − 1]

and l ∈ [0 : L − 1] is assigned a priority score denoted as S(k, l). Worker i computes

∂kA(xi)∂lB(yi) only after all the computations ∂k̃A(xi)∂l̃B(yi), where k̃ ∈ [0 : K−1] and

l̃ ∈ [0 : L−1] such that S(k̃, l̃) < S(k, l), have already been computed. It is important to

note that priority scores S(k, l) are defined for computations that may not be available

at worker i, i.e., K > k ≥ mA,i or L > l ≥ mB,i. Whenever such a computation has the

lowest priority score among all the remaining computations at worker i, the worker must

discard all the remaining computations and stop.
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To better characterize the assigned computations to the workers, we define the notion of

derivative order space in the following.

Definition 3.3. Derivative Order Space. The derivative order space of a bivariate

polynomial A(x)B(y) is defined as the 2-dimensional space of all its possible derivative

orders. When A(x) and B(y) have degrees K − 1 and L− 1, respectively, the derivative

order space becomes {(k, l) : 0 ≤ k < K, 0 ≤ l < L}, where the tuple (k, l) represents

the derivative ∂kA(x)∂lB(y).

Hence, in each worker, elements of the derivative order space of A(x)B(y) correspond to

computations assigned to that worker.

In the following, we introduce four different almost regular interpolation schemes which

differ in their computation orders.

3.5.2.3 Bivariate Polynomial Coding with Vertical Computation Order

(BPC-VO)

The Bivariate Polynomial Coding with Vertical Computation Order (BPC-VO) scheme

is named after the vertical computation order that workers follow, as illustrated in Fig-

ure 3.4a for K = L = 6. In the vertical computation order, a worker completes the

computations in a column k in the derivative order space, i.e., all the computations in

{∂kA(xi)B(yi), ∂kA(xi)∂1B(yi), . . . , ∂kA(xi)∂L−1B(yi)} before moving on to the com-

putations from column k + 1. Specifically, for worker i, the priority score for the com-

putation ∂kA(xi)∂lB(yi), where k ∈ [0 : K − 1] and l ∈ [0 : L− 1], is defined as

SV(k, l) ! (K − 1)L

(⌈

l

L

⌉

− 1

)

+ L(k − 1) + l. (3.15)

Due to the storage constraints, since only the computations ∂kA(xi)∂lB(yi), k ∈ [0 :

mA,i − 1], and l ∈ [0 : mB,i − 1] can be computed by worker i, in order to satisfy

the vertical computation order without discarding any computations, worker i can store

either:

1. a single coded partition of A, and any number of coded partitions of B less than

L, i.e., mA,i = 1 and 1 ≤ mB,i < L, or

2. coded partitions of B equivalent to the full matrix B in size, and not more than

K coded partitions of A, i.e., 1 ≤ mA,i ≤ K and mB,i = L.
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(d) Z-zig-zag order

Figure 3.4: Illustration of computation orders the workers follow for the proposed
almost regular interpolation schemes.

3.5.2.4 Bivariate Polynomial Coding with Horizontal Computation Order

(BPC-HO)

In Bivariate Polynomial Coding with Horizontal Computation Order (BPC-HO) scheme,

workers follow the horizontal computation order, as illustrated in Figure 3.4b for

K = L = 6. In the horizontal computation order, a worker first completes the

computations in a row l in the derivative order space, i.e., all the computations in

{A(xi)∂lB(yi), ∂1A(xi)∂lB(yi), . . . , ∂K−1A(xi)∂lB(yi)} before moving on to the compu-

tations from row l+1. Specifically, for any worker i, the priority score for the computation

∂kA(xi)∂lB(yi), k ∈ [0 : K − 1], l ∈ [0 : L− 1] is defined as

SH(k, l) ! K(L− 1)

(⌈

k

K

⌉

− 1

)

+K(l − 1) + k. (3.16)
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Similar to the vertical computation order, due to the storage constraints, since only

computations ∂kA(xi)∂lB(yi) k ∈ [0 : mA,i − 1], and l ∈ [0 : mB,i − 1] can be computed

by worker i, in order to satisfy the horizontal computation order without discarding any

computations, worker i can store either:

1. a single coded partition of B, and any number of coded partitions of A not more

than K, i.e., 1 ≤ mA,i ≤ K and mB,i = 1, or

2. coded partitions of A equivalent to the full matrix A, and any number of coded

partitions of B not more than L, i.e., mA,i = K and 1 ≤ mB,i ≤ L.

3.5.2.5 Bivariate Polynomial Coding with N-zig-zag Computation Order

(BPC-NZO)

In Bivariate Polynomial Coding with N-zig-zag Computation Order (BPC-NZO) scheme,

we relax the vertical computation order by dividing the derivative order space into L/µB

equal horizontal blocks, where µB is a design parameter such that µB | L. For the

computation ∂kA(xi)∂lB(yi), k ∈ [0 : K − 1] and l ∈ [0 : L − 1], we define the priority

score

SN (k, l) ! (K − 1)µB

(⌈

l

µB

⌉

− 1

)

+ µB(k − 1) + l, (3.17)

which we refer to as N-zig-zag order. In Figure 3.4c, we illustrate the N-zig-zag order

for K = L = 6 and µB = 3. For this computation order, we simply apply vertical

computation order inside each horizontal block in the derivative order space starting

from the lowermost block. Only when all the computations in a block are completed,

the computations from the next block can start.

Although it is more relaxed than the vertical computation order, in order to satisfy the

N-zig-zag order without discarding any computations at worker i, one of the following

conditions must be imposed on mA,i and mB,i:

1. mB,i is a positive integer multiple of µB, and mA,i = K, or

2. mB,i = µB and 1 ≤ mA,i ≤ K, or,

3. mA,i = 1 and 1 ≤ mB,i ≤ µB

Observe that by setting µB = L, the N-zig-zag order reduces to the vertical computation

order.
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3.5.2.6 Bivariate Polynomial Coding with Z-zig-zag Computation Order

(BPC-ZZO)

In Bivariate Polynomial Coding with Z-zig-zag Computation Order (BPC-ZZO) scheme,

we relax the horizontal computation order by dividing the derivative order space into

K/µA equal vertical blocks, where µA is a design parameter such that µA | L. For the

computation ∂kA(xi)∂lB(yi), k ∈ [0 : K − 1] and l ∈ [0 : L − 1], we define the priority

score as

SZ(k, l) ! (L− 1)µA

(⌈

k

µA

⌉

− 1

)

+ µA(l − 1) + k, (3.18)

which we refer to as Z-zig-zag order. In Figure 3.4d, we visualize the Z-zig-zag com-

putation order when K = L = 6 and µA = 3. For this computation order, we apply

horizontal computation order inside each vertical block starting from the leftmost block.

Similarly to N-zig-zag order, only when all the computations in a block are completed,

the computations from the next block can start.

In order to satisfy the Z-zig-zag computation order without discarding any computations

at worker i, we need to impose one of the following constraints on mA,i and mB,i:

1. mA,i is a positive integer multiple of µA, and mB,i = L, or

2. mA,i = µA and 1 ≤ mB,i ≤ L, or

3. mB,i = 1 and 1 ≤ mA,i ≤ µA

Observe that setting µA = K, we recover the horizontal computation order conditions.

3.5.2.7 Decoding Phase

Common to all almost regular interpolation schemes defined in this section, the master

receives responses from the workers and decodes AB by solving a bivariate polyno-

mial interpolation problem. That is, A(x)B(y) is interpolated from the evaluations of

A(x)B(y) and its derivatives. Since the degree of A(x)B(y) is KL, to solve the interpo-

lation problem, the master needs at least KL computations returned from the workers.

The condition for such an interpolation uniquely exists is that the interpolation matrix

M is invertible.

To better illustrate the concept of interpolation matrix, in Equation (3.19), we provide

an example interpolation matrix for a case in which the responses are received from all N

workers. In this example, the master received 3 responses from worker 1, and 2 responses

from worker N . Note that, in the observed rows, the derivatives are taken with respect
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M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 x1 x21 x31 · · · xK−1
1 · · · xK−1

1 yL−1
1

0 1 2x1 3x21 · · · (K − 1)xK−2
1 · · · (K − 1)xK−2

1 yL−1
1

0 0 2 6x1 · · · (K − 1)(K − 2)xK−3
1 · · · (K − 1)(K − 2)xK−3

1 yL−1
1

...
...

...
...

. . .
...

. . .
...

1 xN x2N x3N · · · xK−1
N · · · xK−1

N yL−1
N

0 1 2xN 3x2N · · · (K − 1)xK−2
N · · · (K − 1)xK−2

N yL−1
N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(3.19)

to x, and hence, it can be concluded that this interpolation matrix belongs to either

BPC-HO scheme or BPC-ZZO scheme.

The next theorem and the following corollary characterise the number of computations

needed to guarantee the invertibility of the interpolation matrix, and hence, the unique

interpolation of A(x)B(y), in the worst-case scenario.

Theorem 3.1. a) For BPC-NZO, the worst-case recovery threshold is RNZO
th ! KL +

max
{

0, (µB − 2)( L
µB

− 1)
}

.

b) For BPC-ZZO, the worst-case recovery threshold is RZZO
th ! KL +

max
{

0, (µA − 2)( K
µA

− 1)
}

.

Thus, if the number of computations received by the master is at least RNZO
th and RZZO

th

for BPC-NZO and BPC-ZZO, respectively, then det(M) ̸= 0 for almost all choices of the

evaluation points.

The proof of Theorem 3.1 is given in Section 3.7.

Corollary 3.1. BPC-VO and BPC-HO can be obtained by setting µB = L and µA = K

in BPC-NZO and BPC-ZZO, respectively. Therefore, the recovery thresholds of BPC-VO

and BPC-HO are RV O
th = RHO

th ! KL, meaning any KL computations received by the

master results in det(M) ̸= 0 for almost all choices of the evaluation points.

According to Corollary 3.1, for BPC-VO and BPC-HO, every partial computation sent

by the workers to the master is useful, i.e., Rth = KL. Therefore, for these schemes, the

computations are one-to-any replaceable. Thus, according to Equation (3.10), we have

Cwasted, BPC-VO = Cwasted, BPC-HO = (N − 1)
1

KL
. (3.20)

Compared to Cwasted, B-PROC given in Equation (3.12), Cwasted, BPC-VO and

Cwasted, BPC-HO are much lower, and this is the main advantage of BPC-VO and BPC-HO

over B-PROC. On the other hand, while in the BPC-HO and BPC-VO, ηi is limited by

the constraints imposed on mA,i and mB,i, in B-PROC, all the available storage can be
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fully exploited. Therefore, B-PROC has a better storage efficiency Cmax,i compared to

BPC-VO and BPC-HO. The main motivation of introducing BPC-NZO and BPC-ZZO

is to relax these constraints. According to Theorem 3.1, this can be done at the cost

of potentially introducing redundant computations; however, the number of redundant

computations needed is still much less than those needed for B-PROC. Specifically, from

Equation (3.10), we obtain

Cwasted, BPC-NZO = (N − 1)
1

KL
+ (µB − 2)

(

L

µB
− 1

)

1

KL
,

Cwasted, BPC-ZZO = (N − 1)
1

KL
+ (µA − 2)

(

K

µA
− 1

)

1

KL
. (3.21)

The following example further illustrates the storage efficiency of bivariate polynomial

codes.

Example 3.2. Let us consider a scenario where K = L = 8, i.e., the size of partitions

of A and B are equal, and each worker can store 8 coded matrix partitions in total,

i.e., mA,i + mB,i = 8. Firstly, we note that univariate schemes can only carry out

ηi = mA,i = mB,i = 4 computations. On the other hand, while keeping mA,i = mB,i = 4,

B-PROC can achieve ηi = 16 computations. However, in BPC-VO and BPC-HO, the

same worker can generate at most ηi = 7 computations by setting mA,i = 1,mB,i = 7 for

BPC-VO, or mA,i = 7,mB,i = 1 for BPC-HO since it is not possible to satisfy condition

2 of BPC-VO and BPC-HO under this storage capacity. Finally, for BPC-NZO or BPC-

ZZO, by setting µA = µB = 4 and mA,i = mB,i = 4, we can also reach ηi = 16. It

is worth noting that, although it is the case in this specific example, BPC-NZO and

BPC-ZZO may not always achieve the same storage efficiency as B-PROC. Still, they

can usually perform very close to it.

Remark 3.1. Note that RNZO
th and RZZO

th provided in Theorem 3.1 are worst-case values.

Depending on the number of computations each worker sends to the master, smaller

values, even KL computations may be enough. In Section 3.7, Lemma 3.3 presents

certain conditions under which the computations received from the workers are useful.

If the number of computations provided by all workers satisfies these conditions, then all

computations are useful and KL computations are enough. Otherwise, we need to discard

some computations and since we need to compensate for these discarded computations,

the recovery threshold may increase up to the values presented in Theorem 3.1. In

Section 3.7, the discussion following Lemma 3.3 explains what kind of computations we

discard to guarantee almost regular decodability.

Remark 3.2. When the conditions of Theorem 3.1 are satisfied, the bivariate polyno-

mial interpolation problem has a unique solution. The interpolation problem can be
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solved by inverting the interpolation matrix and multiplying it with the vector of re-

sponses collected from the workers. This has a complexity of O(rc(KL)2). However,

such an interpolation strategy may result in large numerical errors, and hence, more

sophisticated methods, such as Newton interpolation, may be needed in practice [67,68].

Moreover, given the complexity of univariate polynomial interpolation can be reduced

to O(n log2 n log log n), where n is the degree of the polynomial [69], by choosing the

interpolation points carefully, we conjecture that the complexity of our decoding scheme

can be also reduced to almost linear complexity. Although investigating this aspect is

beyond the scope of this dissertation, we note that it is an interesting future research

direction.

Remark 3.3. We note the similarity between the proposed bivariate polynomial codes and

Reed-Muller codes [70,71]. In Reed-Muller codes, codewords are generated by evaluating

a multivariate polynomial in a similar way to our scheme. This means that our scheme

can be considered a variant of Reed-Solomon codes. However, there is a difference in the

structure of the decoding polynomial A(x)B(y). In our coding scheme, it is generated by

multiplying two other polynomials, A(x) and B(y), which results in all the monomials

xi−1yj−1, where i is in the range [1 : K] and j is in the range [1 : L].

On the other hand, bivariate Reed-Muller codes rely on generator polynomials that

have monomials of the form xiyj , such that i + j ≤ r, where r is the code parameter

determining the polynomial degree. Another difference is that the generator polynomial

of Reed-Muller codes is evaluated at every possible element of the field in which the

code is defined, which determines the block length of the code. However, in our matrix

multiplication problem, it is not feasible to evaluate the polynomial A(x)B(y) since we

aim to cover a large real space. Even if we use a finite field, as we will do in Chapter 4,

our field size is typically much larger than the total number of evaluations of the decoding

polynomial that we obtain from the workers, in order to cover large real intervals.

3.5.2.8 Selecting between computation orders

In this subsection, we provide a guideline on how to choose the most appropriate com-

putation order to employ depending on the dimensions, i.e., c and r and the number of

partitions, i.e., K and L, of the multiplied matrices.

When the partitions of B are smaller than those of A, i.e., c/L < r/K, under a fixed

storage capacity, reducing mA,i by 1 will increase mB,i at least by 1. Since, in this

case, the constraints of vertical-type computation orders BPC-VO and BPC-NZO can

be satisfied more easily than those of BPC-HO and BPC-ZZO, the schemes having a
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vertical-type computation order should be chosen. On the other hand, when r/K ≤ c/L,

we should prefer horizontal ordering schemes BPC-HO or BPC-ZZO.

Choosing between BPC-HO and BPC-ZZO when r/K < c/L, or between BPC-VO and

BPC-NNO when c/L < r/K, depends on the storage capacity per worker and is discussed

further in Section 3.6.

3.5.2.9 Alternative formulation of almost regular interpolation schemes

The reason we formulate almost regular interpolation schemes in terms of Hermite inter-

polation is to shorten the proof of Theorem 3.1. Alternatively, instead of interpolating

A(x)B(y) from the evaluations of its derivatives, i.e., Hermite interpolation, almost

regular interpolation schemes can also be formulated as the interpolation of A(x)B(y)

directly from its evaluations, as done in B-PROC. Such an approach is equivalent to the

Hermite interpolation-based formulation, under the almost regularity condition. A more

technical discussion on this topic is presented in Section 3.11.

3.6 Numerical Results

The purpose of this section is to compare the schemes presented throughout this chapter

in terms of their average computation time. We focus solely on computation time since

the bivariate polynomials to be interpolated in B-PROC, BPC-VO, BPC-HO, BPC-NZO,

and BPC-ZZO schemes have the same number of coefficients. Therefore, variations in the

encoding and decoding times of these schemes are considered negligible. Additionally,

we assume that the communication time is negligible.

We model the computation speed of the workers by the shifted exponential model [59,72],

which is commonly used in the literature to analyze the performance of coded computa-

tion schemes. In this model, the probability that a worker finishes at least p computations

by time t is

F (p, t) =

⎧

⎪

⎨

⎪

⎩

1− e−λ( t
p
−ν), if t ≥ pν

0, otherwise.
(3.22)

Thus, the probability that a worker completes exactly p computations by time t is given

by P (p, t) = F (p, t)−F (p+1, t) assuming F (0, t) = 1, and F (pmax+1, t) = 0, where pmax

is the maximum number of computations a worker can complete. In Equation (3.22), ν

represents the minimum duration required to complete one computation, while the scale

parameter λ controls the variance of computation times. A smaller value of λ indicates

more variance and thus more heterogeneous computation speeds among the workers.
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Figure 3.5: Average computation times of univariate and bivariate polynomial codes
as a function of available storage when partitions of A and B have equal sizes.

Throughout our experiments, to cover more heterogeneous cases, we choose ν = 0.01

and λ = 0.1.

To compute the expected computation time for each scheme under different storage

availability, we run Monte Carlo simulations. We consider two scenarios: one in which

the partitions of A and B have equal sizes, i.e., c
L = r

K , and another in which the

partitions of B are twice as large as the partitions of A, i.e., c
L = 2r

K . In both cases, we

assume that the workers have the same storage capacity, as required by B-PROC. Thus,

MA,i = MA and MB,i = MB, ∀i ∈ [1 : N ]. We set K = L = 10 and assume N = 15. In

both scenarios, we set µB = 5 and µA = 5 for BPC-NZO and BPC-ZZO, respectively.

For each storage value, we run 104 experiments. The results of the first scenario and the

second scenario are given in Figure 3.5 and Figure 3.6, respectively. For each scheme, the

minimum storage required to complete KL = 100 computations with N = 15 workers

is different. Therefore, we plot each scheme starting from a different minimum storage

value.

We first consider the scenario in which the partitions of A and B have equal size. In this

case, since we also have K = L and µA = µB = 5, there is no difference between BPC-HO

and BPC-VO, and also no difference between BPC-NZO and BPC-ZZO. In Figure 3.5,

we observe that BPC-NZO and BPC-ZZO result in a much lower expected computation

time than the other schemes for low storage capacities. Even though we allow partial
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computations, the univariate polynomial coding, which is UPC-PC, performs far worse

than all the others due to inefficient use of the storage resulting in a much smaller fraction

of work done per worker compared to other schemes.

In B-PROC, despite the optimality in the storage allocation between mA,i and mB,i, we

see that the higher number of useless computations aggravates the average computation

time. For the same reason, increasing the storage capacity does not improve the average

computation time beyond a certain point. While simulating B-PROC, we use a random

computation order at the workers, which is reported to perform well in [57], and stop

the computation as soon as the master is able to decode.

On the other hand, for BPC-NZO and BPC-ZZO, we consider the worst-case scenario, in

which the master starts decoding only after (µB−2)( L
µB

−1) computations for BPC-NZO

or (µA − 2)( K
µA

− 1) computations for BPC-ZZO are collected. Thus, we can expect the

performance of BPC-NZO and BPC-ZZO to be even better than what we observe in

Figure 3.5.

We also observe that BPC-VO and BPC-HO perform significantly better than B-PROC

and UPC-PC for intermediate and large storage values. For this storage regime, we also

observe that BPC-HO and BPC-VO perform slightly better than BPC-ZZO and BPC-

NZO due to the first constraint of these schemes. For instance, in BPC-NZO, when

mA,i = K, we need mB,i to be a multiple of µB. Therefore, increasing storage capacity

while keeping mA,i = K improves the expected computation time at some specific storage

values. This is the reason for the improvement we observe in the expected computation

time of the BPC-NZO in Figure 3.5 when the storage is 20.

On the other hand, in the low storage regime, there is significant performance degradation

of BPC-VO and BPC-HO due to the restrictive constraints of these schemes at small

storage values. Since in BPC-NZO and BPC-ZZO, the constraints of BPC-VO and

BPC-HO are relaxed especially for small storage values, we observe that BPC-NZO and

BPC-ZZO are superior in low storage regimes.

To evaluate the performance of our schemes, we also plot a lower bound on the average

computation time of any bivariate polynomial-based coding scheme, assuming there are

no redundant computations and the storage allocation between mA,i and mB,i is optimal.

We observe that the average computation time of the proposed bivariate schemes is quite

close to this lower bound, especially for the intermediate and high storage regimes. In a

low storage regime, we observe that BPC-NZO and BPC-ZZO perform close to the lower

bound, although for very low values of storage, the gap between BPC-NZO/ZZO and the

lower bound increases. This is due to the third constraint of these schemes, which forbids

optimal storage allocation between mA,i and mB,i. This suggests that there might be
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Figure 3.6: Average computation times of univariate and bivariate polynomial codes
as a function of storage capacity, when partitions of B are twice larger than partitions

of A.

still room for improvement in the trade-off between the expected computation time and

the storage capacities of the workers.

Next, we consider the scenario in which the partitions of B are twice as large as those of

A. In Figure 3.6, we observe that neither BPC-NZO and BPC-ZZO nor BPC-VO and

BPC-HO are equivalent. Referring to the discussion in Section 3.5.2, since the partitions

of B are larger in this case, decreasing mB,i by one may increase mA,i more than one,

making it easier to satisfy the constraints of horizontal-type schemes, i.e., BPC-ZZO and

BPC-HO. Therefore, we expect they perform better than the schemes with vertical-type

order. We verify this in Figure 3.6, in which the performances of BPC-ZZO and BPC-HO

are superior, especially in the low storage regime.

We also observe that for low and intermediate values of storage, the performance of BPC-

VO degrades close to that of UPC-PC. This is because computations are done column-

by-column in BPC-VO, as shown in Figure 3.4a, and assigning one more computation

requires twice as much storage availability compared to BPC-HO and BPC-ZZO. BPC-

NZO suffers from the same problem, but since the constraints are relaxed in the zig-zag

order, i.e., the computation grid is divided into blocks, its performance stays reasonable.

We observe that it performs similarly to BPC-HO in the intermediate and large storage

values. Finally, similar to Figure 3.5, we observe that for the large storage regime,
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almost regular schemes perform similarly to each other and much better than B-PROC

and UPC-PC.

3.7 Proof of Theorem 3.1

In this section, we provide the proof of Theorem 3.1. First, without loss of generality, we

assume [1 : n], 1 ≤ n ≤ N is the set of workers which provide at least one computation by

the time the master collects sufficient responses to decode AB. Consider an interpolation

matrix M as defined in Definition 3.1. To prove its invertibility, we use Taylor series

expansion of det(M). Note that det(M) is a polynomial in the evaluation points zi !

(xi, yi), i ∈ [1 : n]. We can write the Taylor series expansion of det(M) around (xi, yi)

by taking the evaluation point (xj , yj) as the variable, as:

det(M) =
∑

(α1,α2)∈N2

1

α1!α2!
(xj − xi)

α1(yj − yi)
α2Dα1,α2

(Z̃), (3.23)

where Z̃ ! {(xk, yk), k ∈ [1 : n]} \ {(xj , yj)}, and

Dα1,α2
(Z̃) !

∂α1+α2

∂xα1

j ∂yα2

j

det(M)

∣

∣

∣

∣

xj=xi,yj=yi

. (3.24)

We call (xi, yi) the pivot node and (xj , yj) the variable node in this expansion.

When none of the monomials in the set {xα1yα2 | (α1,α2) ∈ N2} can be expressed as

a linear combination of any of the other monomials in the set, then the monomials are

said to be linearly independent. In this sense, the monomials (xj − xi)α1(yj − yi)α2 in

Equation (3.23) are linearly independent for different (α1,α2) pairs, as long as there is

no dependence between xi, xj and yi, yj . Consequently, det(M) = 0 for all values of

(xj , yj) ∈ R2, if and only if Dα1,α2
(Z̃) = 0, ∀(α1,α2) ∈ N2. That is, to show that M is

non-singular, it suffices to show that there exists an (α1,α2) pair such that Dα1,α2
(Z̃) is

nonzero.

Let us choose some (α1,α2) pair, and analyse Dα1,α2
(Z̃). Notice that, Dα1,α2

(Z̃) is a

polynomial in the evaluation points that compose Z̃. Specifically, it does not depend

on xj and yj since the derivatives were taken with respect to these variables, and then

evaluated at xj = xi and yj = yi. We call this procedure the coalescence of the evaluation

points (xi, yi) and (xj , yj) into (xi, yi). Next, to show Dα1,α2
(Z̃) ̸= 0, we do a new

coalescence, i.e., we write the Taylor series expansion of Dα1,α2
(Z̃) on a new variable

point, choose a new (α1,α2) pair, and coalescence them into (xi, yi). Our proof technique

is based on such recursive Taylor series expansions until all evaluation points are coalesced
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into one. We will present a technique to choose (α1,α2) pairs for each of these recursive

steps, which guarantees to obtain a non-zero polynomial at the final coalescence step.

In the following, we first present some preliminaries which are needed to present our

technique for choosing (α1,α2).

3.7.1 Preliminaries

In order to choose an appropriate (α1,α2) pair at each coalescence step, we need to

analyze Dα1,α2
(Z̃). Since Dα1,α2

(Z̃) is derived from the Taylor series expansion of a

determinant, in some cases, we can write it, again, in terms of the determinants of other

matrices, which turns out to be more insightful than using its polynomial form. Before

showing this, we introduce the notions of derivative set and shift, which will be useful in

the rest of the proof.

Definition 3.4. Associated to every evaluation point zi ! (xi, yi), i ∈ [1 : n], there

may be one or more rows in M each corresponding to a different derivative order of

A(x)B(y) evaluated at zi, i.e., different computation received from worker i. We define

the derivative set, Uzi,M , of node zi as the multiset1 of derivative orders associated with

zi in M, i.e., we say (dx, dy) ∈ Uzi,M , if M has a row corresponding the evaluation

∂dxA(xi)∂dyB(yi) or equivalently the master received the evaluation ∂dxA(xi)∂dyB(yi)

from worker i.

Definition 3.5. Let M ∈ RKL×KL be an interpolation matrix such that at least one

of its rows depends on (xj , yj), and let ri denote the ith row in M. We define a simple

shift2 as

∂i,xjM !

[

rT1 , . . . ,
∂

∂xj
rTi , . . . , r

T
KL

]T

or

∂i,yjM !

[

rT1 , . . . ,
∂

∂yj
rTi , . . . , r

T
KL

]T

.

Assume that the ith row of M corresponds to ∂di,xA(xj)∂di,yB(yj). Then, the derivative

sets of node zi associated to matrices ∂i,xjM and ∂i,yjM are shifted versions of the ones

associated to M, in the sense that, Uzj ,∂i,xjM
= {(di,x + 1, di,y)} ∪ Uzj ,M \ {(di,x, di,y)}

and Uzj ,∂i,yjM
= {(di,x, di,y + 1)} ∪ Uzj ,M \ {(di,x, di,y)}. Note that if the multiplicity of

any element in a derivative set is greater than one, then the corresponding interpolation

1We use the notion of multiset instead of the notion of set as we allow multiple instances for each of
its elements. The number of instances of a given element is called the multiplicity of that element in the
multiset.

2The term shift referring to derivatives of interpolation matrices highlights the fact that derivatives
applied to interpolation matrices correspond to shifts in their derivative sets when depicted in the
derivative order space, as shown in Figure 3.7
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matrix has at least two identical rows making the matrix singular. ∂i,xj is called a regular

simple shift, if all elements in Uzj ,∂i,xjM
have a multiplicity of one. Similarly, ∂i,yj is a

regular simple shift if all elements in Uzj ,∂i,yjM
have a multiplicity of one.

Definition 3.6. Let k and l be vectors such that k ∈ {0, 1, · · · ,K − 1}Rth and l ∈
{0, 1, · · · , L− 1}Rth . We define the composition of simple shifts as

∇xj ,yj
k,l M = ∂k(1)1,xj

∂k(2)2,xj
· · · ∂k(Rth)

Rth,xj
∂l(1)1,yj

∂l(2)2,yj
· · · ∂l(Rth)

Rth,yj
M. (3.25)

That is, the ith element of k denotes the order of the derivative of ith row of M with

respect to the variable xj , and the ith element of l denotes the order of the derivative of

ith row of M with respect to the variable yj . In fact, Equation (3.25) is not the only way

to compute ∇xj ,yj
k,l M since the derivative operation is commutative. One can compute

∇xj ,yj
k,l M in any other order. Each of these possible orders is referred to as a derivative

path. If a derivative path involves only regular simple shifts, i.e. after each derivative

there are not two equal rows, then it is called a regular derivative path. We denote the

number of regular derivative paths by Ck,l(M).

The following lemma provides an expression for the derivatives of the determinant of an

interpolation matrix in terms of a weighted sum of determinants of other interpolation

matrices.

Lemma 3.1. Let k ∈ [0 : K − 1]KL, l ∈ [0 : L − 1]KL and α1 =
∑KL

i=1 k(i) and

α2 =
∑KL

i=1 l(i). Then, we have

∂α1+α2

∂xα1

j ∂yα2

j

det(M)

∣

∣

∣

∣

xj=xi,yj=yi

=
∑

(k,l)∈RM(α1,α2)

Ck,l(M) det
(

∇xj ,yj
k,l M

)

∣

∣

∣

∣

xj=xi,yj=yi

(3.26)

where RM(α1,α2) is the set of (k, l) pairs satisfying Ck,l(M) ̸= 0, i.e., there is at least

one derivative path for which ∇xj ,yj
k,l can be applied by using only regular simple shifts.

We defer the proof of Lemma 3.1 to Section 3.8.

3.7.2 Choosing an (α1,α2) pair in a coalescence

Recall that our objective is to find an (α1,α2) pair for each step in the successive coa-

lescence procedure. While Lemma 3.1 is an important step in this direction as it allows

us to express Dα1,α2
(Z̃) as a sum of determinants of interpolation matrices, it still does

not provide us with a clear clue on how to choose (α1,α2) so that Dα1,α2
(Z̃) ̸= 0.

To address this issue, we define a structure over the derivative sets of the interpolation

matrices, similar to the ones defined for the computation orders in Section 3.5.2. This
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Figure 3.7: Illustrations of N-zig-zag ordered (a,b), Z-zig-zag ordered (c,d) and neither
N-zig-zag ordered nor Z-zig-zag ordered derivative sets. (e).

structure will eventually help us to define the quasi-unique shift pairs (α1,α2), which

satisfy the conditions needed for completing a coalescence procedure successfully.

Definition 3.7. A derivative set Uz,M is said to be N-zig-zag ordered with param-

eter µB if (i, j) ∈ Uz,M implies that all the derivatives with order (k, l) such that

SN (1, 1) ≥ SN (k + 1, l + 1) ≥ SN (i + 1, j + 1) are also in Uz,M, where SN (k, l) =

(K − 1)µB

(⌈

l
µB

⌉

− 1
)

+ µB(k − 1) + l, which is the priority score for N-zig-zag order

defined in Equation (3.17). Similarly, Uz,M is Z-zig-zag ordered with parameter µA if

(i, j) ∈ Uz,M implies that all (k, l) such that SZ(1, 1) ≥ SZ(k+1, l+1) ≥ SZ(i+1, j+1)

are in Uz,M, where SZ(k, l) = (L − 1)µA

(⌈

k
µA

⌉

− 1
)

+ µA(l − 1) + k as defined in

Equation (3.18).

Example 3.3. Consider the derivative sets for K = L = 4. The derivative sets illus-

trated in Figure 3.7a and Figure 3.7b are N-zig-zag ordered for µB = 2, and the sets in

Figure 3.7c and Figure 3.7d are Z-zig-zag ordered for µA = 2. The set in Figure 3.7e is

neither N-zig-zag nor Z-zig-zag ordered.

For brevity, we will use the N-zig-zag order in the following discussion. This will allow us

to prove part a of Theorem 3.1. The proof of part b follows similarly using the Z-zig-zag

order instead, and thus, we omit it here.

Definition 3.8. Suppose that (xj , yj) is the variable node and (xi, yi) is the pivot

node. Let Uzj ,M obey the N-zig-zag order, and (k∗, l∗) ∈ RM(α1,α2). We define

M∗ ! ∇xj ,yj
k∗,l∗M

∣

∣xj = xi, yj = yi. For an (α1,α2) pair, if (k∗, l∗) is the only element

of RM(α1,α2) such that Uzj ,M∗ obeys the N-zig-zag order, then (α1,α2) is called quasi-

unique.
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Figure 3.8: Depictions of derivative sets in Example 3.4.

Example 3.4. Let us consider (α1,α2) = (2, 2) and take K = 3, L = 6, and µB = 3.

We assume that the derivative sets of the pivot and variable nodes are as depicted in

the derivative order space in Figure 3.8a and Figure 3.8b, respectively. We observe that

the interpolation matrix has two rows that depend on the variable node, which are the

numbered elements in Figure 3.8b, and four rows that depend on the pivot node, which

are the elements depicted by circles in Figure 3.8a. Without loss of generality, we assume

rows 1 and 2 of the interpolation matrix depend on the variable node. In this example,

we stick to the definition in Equation (3.24), i.e., we take derivatives of the interpolation

matrix first with respect to the y component of the variable node and then the x compo-

nent. Therefore, RM (2, 2) = {([1, 1,0KL−2], [1, 1,0KL−2]) , ([2, 0,0KL−2], [0, 2,0KL−2])},
where 0KL−2 is the all-zero vector with dimension KL − 2. Note that there is no

other (k, l) pair such that ∇xj ,yj
k,l can be applied by using only regular simple shifts.

When we apply ∇xj ,yj
k,l with (k, l) = ([1, 1,0KL−2], [1, 1,0KL−2]), we obtain a deriva-

tive set as depicted in Figure 3.8c, and obtain the one in Figure 3.8d with (k, l) =

([2, 0,0KL−2], [0, 2,0KL−2]). Note that the derivative set in Figure 3.8c obeys the N-

zig-zag order while the one in Figure 3.8d does not. Since there is only one (k, l) pair

resulting in an N-zig-zag ordered derivative set, (α1,α2) = (2, 2) is quasi-unique.

Next, we describe, in detail, the first two iterations of the recursive coalescence procedure,

and then generalize the result to any iteration. Without loss of generality, we choose

(xn, yn) as the pivot node for all the coalescences in the recursion, and coalesce it with

the variable node zi in the ith coalescence where i ∈ [1 : n− 1]. Let us define the set of

remaining nodes before applying the jth coalescence as Zj ! {(xi, yi) | i ∈ [j : n]}. For

the first coalescence, let M1 = M, and suppose we find a quasi-unique shift for order

(α∗
1,α

∗
2). We denote by M2 ! Ck∗,l∗(M1)∇x1,y1

k∗,l∗M1

∣

∣

x1=xn,y1=yn
the unique matrix such

that Uzn,M2
satisfies the N-zig-zag order, and define the set of matrices containing the
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rest of the interpolation matrices as

Φ2 !
{

Ck,l(M1)∇x1,y1
k,l M1

∣

∣

x1=xn,y1=yn
|(k, l) ∈ RM1

(α∗
1,α

∗
2) \ (k∗, l∗)} . (3.27)

Then, from Equation (3.26), we can write

D2(Z2) =
∂α

∗
1+α∗

2

∂x
α∗
1

1 ∂y
α∗
2

1

det(M1)

∣

∣

∣

∣

x1=xn,y1=yn

= det (M2) +
∑

M̄∈Φ2

det
(

M̄
)

. (3.28)

For the second coalescence, taking (xn, yn) as the pivot node and (x2, y2) as the variable

node, we write the Taylor series expansion of D2(Z2) as

D2(Z2) =
∑

(α1,α2)∈N2

1

α1!α2!
(x2 − xn)

α1(y2 − yn)
α2Dα1,α2

(Z3) (3.29)

where

Dα1,α2
(Z3) =

∂α1+α2

∂xα1

2 ∂yα2

2

det(M2)

∣

∣

∣

∣

x2=xn,y2=yn

+
∑

M̄∈Φ2

∂α1+α2

∂xα1

2 ∂yα2

2

det
(

M̄
)

∣

∣

∣

∣

x2=xn,y2=yn

.

(3.30)

Next, we apply Equation (3.26) to Equation (3.30). This time, we find a quasi-unique

shift (α∗
1,α

∗
2) by only considering matrix M2. Note that, the (α∗

1,α
∗
2) pair is different for

each recursion but for a clearer notation, we omit the recursion index. Since the choice

of (α∗
1,α

∗
2) only considers M2, it does not imply the existence of quasi-unique shifts for

all the other matrices in Φ2. We denote by M3 ! Ck∗,l∗(M2)∇x1,y1
k∗,l∗M2

∣

∣

x2=xn,y2=yn
the

unique matrix satisfying that Uzn,M3
follows the N-zig-zag order, and define the set of

matrices containing the rest of weighted interpolation matrices, originated from M2 or

from M̄ ∈ Φ2, as

Φ3 !
{

Ck,l(M2)∇x2,y2
k,l M2

∣

∣

x2=xn,y2=yn
|(k, l) ∈ RM2

(α∗
1,α

∗
2) \ (k∗, l∗)}

∪
{

Ck,l(M̄)∇x2,y2
k,l M̄

∣

∣

x2=xn,y2=yn
|(k, l) ∈ RM2

(α∗
1,α

∗
2), M̄ ∈ Φ2

}

.

Then, we can write

D3(Z3) = Dα∗
1,α

∗
2
(Z3) = det (M3) +

∑

M̄∈Φ3

det
(

M̄
)

. (3.31)

We follow the same procedure until all nodes are coalesced with the pivot node and we

reach Dn(Zn). In general, the expressions in this procedure are defined recursively as

follows.

Mi+1 ! Ck∗,l∗(Mi)∇xi,yi
k∗,l∗Mi

∣

∣

xi=xn,yi=yn
, i ∈ [1 : n− 1] (3.32)
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Di(Zi) ! Dα∗
1,α

∗
2
(Zi) = det(Mi) +

∑

M̄∈Φi

det(M̄). (3.33)

Di(Zi) =
∑

(α1,α2)∈N2

1

α1!α2!
(xi − xn)

α1(yi − yn)
α2Dα1,α2

(Zi+1). (3.34)

Φi+1 !
{

Ck,l(Mi)∇xi,yi
k,l Mi

∣

∣

xi=xn,yi=yn
|(k, l) ∈ RMi(α

∗
1,α

∗
2) \ (k∗, l∗)} (3.35)

∪
{

Ck,l(M̄)∇xi,yi
k,l M̄

∣

∣

xi=xn,yi=yn
|(k, l) ∈ RMi(α

∗
1,α

∗
2), M̄ ∈ Φi

}

.

Lemma 3.2. Consider the recursive Taylor series expansion procedure on a fixed pivot,

(xn, yn). If, for every step i ∈ [1 : n], we can find a quasi-unique shift (α∗
1,α

∗
2) for Mi in

Equation (3.32) , then

Dn(Zn) = det(Mn), (3.36)

where Mn depends only on Zn = {(xn, yn)}. Therefore, the associated interpolation

matrix Mn, and hence, M1 are invertible for almost all choices of evaluation points.

The proof of Lemma 3.2 is given in Section 3.9.

In the following lemma, we present a set of situations for which a quasi-unique shift

exits in a coalescence step between a pivot node and a variable node. These are not the

only situations for which quasi-unique shifts exit but are sufficient to derive the recovery

threshold presented in Theorem 3.1, as shown in the next subsection.

Lemma 3.3. Assume that in the ith coalescence step we have the variable node zi =

(xi, yi) and the pivot node zn = (xn, yn). Define rf ! |Uzi,Mi | mod µB and le ! µB −
|Uzn,Mi | mod µB. That is, when depicted in the derivative order space, rf is the number

of elements in the rightmost partially-occupied column of the derivative set of the variable

node, and le is the number of empty places in the rightmost partially-occupied column of

the derivative set of the pivot node. Then, if |Uzi,Mi | + |Uzn,Mi | ≤ µBK or |Uzi,Mi | +
|Uzn,Mi | > µBK and one of the following conditions is satisfied:

1. rf = 0,

2. rf = le,

3. le = 0,

then there exists a quasi-unique shift for the coalescence of these nodes.

The proof of Lemma 3.3 is given in Section 3.10.
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3.7.3 Derivation of the Recovery Threshold Expression

The existence of a quasi-unique shift depends on the joint structure of the derivative

sets of the pivot and the variable nodes. If the derivative sets of the pivot node and the

variable node satisfy the conditions in Lemma 3.3, then, in a coalescence step, i.e., recur-

sive Taylor series expansion, it is possible to find a quasi-unique shift for this recursive

step and we can proceed to the next recursion. Otherwise, by simply ignoring specific

computations provided by the worker whose evaluation point corresponds to the variable

node under consideration, we can have the structure of the remaining computations sat-

isfy the conditions in Lemma 3.3. This adds an overhead of ignored computations to the

recovery threshold expression. In the following lemma, we provide an upper bound on

the total number of computations we may need to ignore throughout the whole recursion

process by analysing the worst-case scenario.

Lemma 3.4. Assume that the conditions of Lemma 3.3 hold in none of the coalescences

in the recursive Taylor series expansion process. Then, in the worst case, by ignoring

at most (µB − 2)( L
µB

− 1) computations throughout all the recursion steps suffices to

guarantee decodability for almost all choices of evaluation points.

Proof. Assume that none of the conditions of Lemma 3.3 hold. If rf > le, we can satisfy

condition 2, i.e., rf = le, in Lemma 3.3 by ignoring rf−le computations received from the

worker whose evaluation point is the variable node. Thus, in the worst case, we ignore

max(rf − le) = (µB − 1)− 1 = µB − 2 computations since the minimum value of le not

satisfying the conditions of Lemma 3.3 is 1 and the maximum value of rf not satisfying

the conditions of Lemma 3.3 is µB − 1. On the other hand, if rf < le, we can ignore

rf computations and satisfy the condition 1 in Lemma 3.3. Since rf < le < µB, in the

worst case, we need to ignore max(rf ) = µB − 2 computations. Thus, in either case, the

maximum number of computations we ignore is µB − 2. Observe that generating a new

block in the derivative order space as a result of a coalescence and not satisfying any of

the conditions in Lemma 3.3 are possible only if when |Uzi,Mi |+ |Uzn,Mi | > µBK. Given

that there are L/µB blocks in the whole derivative order space, the maximum number

of coalescences for which |Uzi,Mi |+ |Uzn,Mi | > µBK is at most (L/µB − 1). Thus, in the

worst case, the total number of ignored computations is (µB − 2)( L
µB

− 1).

Since the polynomial we need to interpolate, A(x)B(y), has KL coefficients, in the worst

case, the recovery threshold becomes KL+ (µB − 2)( L
µB

− 1). This number guarantees

the existence of a quasi-unique shift in every recursive Taylor series expansion, as shown

in Lemma 3.2. Therefore, we can conclude that our original interpolation matrix is

invertible for almost all choices of the evaluation points. This completes the proof of

Theorem 3.1.
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3.8 Proof of Lemma 3.1

Given an interpolation matrix M, we first prove

∂

∂xj
det (M) =

KL
∑

i=1

det(∂i,xjM), (3.37)

and
∂

∂yj
det (M) =

KL
∑

i=1

det(∂i,yjM). (3.38)

They follow directly from the chain rule. Let mi,j ’s denote the elements of M, and

SKL the set of all permutations of the columns of M. We use the fact det(M) =
∑

π∈SKL
sgn(π)

∏KL
i=1mi,π(i) [73, Definition 7.4], where π is a permutation, and sgn(π) is

its parity. Then,

∂

∂xj
det(M) =

∑

π∈SKL

sgn(π)
∂

∂xj

KL
∏

i=1

mi,π(i)

=
∑

π∈SKL

sgn(π)
KL
∑

i=1

(

∂

∂xj
mi,π(i)

)

∏

j∈[1:KL]\{i}

mj,π(j)

=
KL
∑

i=1

∑

π∈Sn

sgn(π)

(

∂

∂xj
mi,π(i)

)

∏

j∈[1:KL]\{i}

mj,π(j)

=
KL
∑

i=1

det(∂i,xjM). (3.39)

The proof of Equation (3.38) can be done similarly. Next, consider part of a derivative

path s ! ∂il,yj · · · ∂i2,yj∂i1,yj of length l < α2 such that it has two identical rows or at least

one zero row, resulting in det(sM) = 0. Now let us consider the other sequences having

s as the suffix, i.e., the sequence s is applied before them. Applying Equation (3.38)

m ≤ α2 − l times, we obtain

∂

∂ymj
det(sM) =

KL
∑

il+m=1

· · ·
KL
∑

il+1=1

det(∂il+m,yj · · · ∂il+1,yjsM). (3.40)

However, ∂
∂ymj

det(sM) = 0 since det(sM) = 0. The same applies to x directional

derivatives as well. This implies that while taking the derivatives of det(M), i.e., applying

∇xj ,yj
k,l , if we encounter a sub-sequence s resulting in det(sM) = 0, then the sum of

determinants of all matrices having sM as the suffix adds up to zero. Thus, only the

sequences in which all simple shifts are regular contribute to Equation (3.26), while
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applying ∇xj ,yj
k,l . Given a (k, l) pair, if Ck,l denotes the number of sequences composed

of only regular simple shifts, we obtain Equation (3.26).

3.9 Proof of Lemma 3.2

We start by stating the following lemma that will be useful in the rest of the proof.

Lemma 3.5. No derivative set corresponding to the evaluation points zi in Φi+1, ∀i ∈
[1 : N − 1], defined in Equation (3.35) obeys N-zig-zag order.

Proof. From the definition of quasi-unique shift, it is clear that no elements of the first

set in Equation (3.35) obey the N-zig-zag order. To show the same for the second set,

consider the elements of the variable node at the coalescence step i. (α∗
1,α

∗
2) is chosen

such that there is only one (k∗, l∗) such that when the elements of the variable node

are shifted according to (k∗, l∗), and evaluated at (xn, yn), the resulting derivative set

obeys the N-zig-zag order. Assume now that no element in Φi obeys the N-zig-zag order.

Take any M̄ ∈ Φi and apply ∇xi,yi
k,l M̄ for some (k, l). If (k, l) ̸= (k∗, l∗), then at least

one of the elements of the variable node will be placed to a location whose priority

score is larger than those of all the locations to which the elements of the variable node

would be placed if (k∗, l∗) were applied. This is because ∃j such that k(j) > k∗(j)

or ∃j such that l(j) > l∗(j). In ∇xi,yi
k,l M̄|xi=xn,yi=yn , if the derivative set of (xn, yn)

obeyed the N-zig-zag order, the variable node would have to have more elements than it

originally had since the largest priority score whose corresponding location is occupied

is larger for ∇xi,yi
k,l M̄|xi=xn,yi=yn than ∇xi,yi

k∗,l∗Mi|xi=xn,yi=yn . Therefore, it is not possible

that the derivative set of the pivot node for ∇xi,yi
k,l M̄|xi=xn,yi=yn obeys the N-zig-zag

order when (k, l) ̸= (k∗, l∗). On the other hand, if (k, l) = (k∗, l∗), since we assume

that no element of Φi obeys the N-zig-zag order, the derivative set of the pivot node for

∇xi,yi
k∗,l∗M̄|xi=xn,yi=yn does not obey the N-zig-zag order. Since we know that no element

in Φ2 obeys the N-zig-zag order by definition, by induction, we conclude that none of

the elements in Φi+1, ∀i ∈ [2 : N ] obeys the N-zig-zag order.

The rows of Mn only depend on the pivot node (xn, yn), and thus, the derivative set

associated with (xn, yn) has KL elements and satisfies the N-zig-zag order. Similarly,

for all matrices in Φn, the derivative sets of the pivot node have KL elements. However,

as Lemma 3.5 suggests, in this case, no elements of Φn satisfy the N-zig-zag order.

This implies that all matrices in Φn have at least one duplicate row, or a zero row.

Therefore,
∑

M̄∈Φn
det(M̄)|xn−1=xn,yn−1=yn = 0. This proves Equation (3.36). The proof

of det(Mn) ̸= 0 follows, directly, from the fact that, for Mn, the derivative set of the pivot
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node obeys the N-zig-zag order. This means that each row of Mn uniquely corresponds

to one of the computations ∂kA(xn)∂lB(yn), ∀k ∈ [0 : K−1], ∀l ∈ [0 : L−1]. Therefore,

Mn can be written as an upper triangular matrix, and therefore, invertible, implying

Dn(Zn) ̸= 0. Remember that Di+1(Zi+1) ̸= 0 implies Di(Zi) ̸= 0 for all i ∈ [0 : n − 1]

due to the linear independence between (xi−xn)α1(yi−yn)α2 for different (α1,α2) pairs.

Thus, Dn(Zn) ̸= 0 implies D1(Z1) ̸= 0 recursively, and thus, M1 is invertible. This

proves the claim of the lemma.

3.10 Proof of Lemma 3.3

First, note that the existence of a quasi-unique shift is only related to the structure of

the uppermost blocks of the pivot and variable nodes’ derivative sets. Therefore, even if

the derivative sets of the pivot and variable nodes occupy more than one block, in the

derivative order space, it is sufficient to consider only the uppermost blocks since the

fully occupied blocks can be handled only by additional y-directional derivatives. Thus,

we proceed as if there exist only the uppermost blocks of the derivative sets of the pivot

and variable nodes.

Our proof is based on determining some sufficient conditions for the existence of a quasi-

unique shift, which will reduce to the conditions claimed in the lemma. We first state

our problem visually in the derivative order space in terms of the derivative sets and

the derivatives of the evaluations, then we find the sufficient conditions on this visual

problem statement.

In this first part of the proof, we take all the y-directional derivatives before the x-

directional ones. We depict the elements in the derivative set of the pivot node, zn =

(xn, yn), in the derivative order space by the filled circles in Figure 3.9a. The unfilled

circles, on the other hand, in Figure 3.9a represent the locations of the elements of the

variable node, denoted by zi = (xi, yi), to be placed after the coalescence with the pivot

node. If the sum of the number of elements in the derivative sets of the pivot and

variable nodes is larger than the size of one block, i.e., |Uzn,Mi | + |Uzi,Mi | > µBK, the

coalescence generates a new block. Since we are interested in finding quasi-unique shifts,

the locations of the variable node’s elements after coalescence are determined such that

the resulting derivative set obeys the N-zig-zag order. Therefore, from the structure in

the figure, we write |Uzi,Mi | = le + (ce,b + ce,u)µB + re.

After determining the locations to which the elements of the variable node are placed,

we no longer need the elements of the pivot node. Therefore, in Figure 3.9b, we remove

the elements of the pivot node from the picture, and, instead, we depict the elements of



Bivariate Polynomial Coding for Straggler Mitigation 86

0
k

l

K

0

µB − 1

2µB − 1

1

...
...

...

...
...

...

...
...

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

ce,u

re

ce,b

le

(a)

0
k

l

Kcf

0

µB − 1

2µB − 1

rf − 1

...

...

...

...

...

...

...

...
...
...

...

...

...
...

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

ce,u

re

ce,b

le

α1

αµB

ψ1

ψµB

ω1

ωrf

(b)

0
k

l

Kcf

0

µB − 1

2µB − 1

rf − 1

...

...

...

...

...

...

...

...

...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

ce,b

le

α1

α2

αµB

ψ1

ψµB

ω1

ωrf

θ1

θ2

θµB

λrf

λrf+1

λµB

λ1

λl̃f

φ1

φµB

l̃f

ce,u

re

c̃f

(c)

Figure 3.9: Visualization of the derivative sets of the pivot and variable nodes.

the variable node in their original places such that they obey N-zig-zag order. Note that

in this proof, our goal is to find a quasi-unique shift (α∗
1,α

∗
2) such that there is only one

unique placement, characterized by (k∗, l∗), of the elements of the variable node along

with the elements of the pivot node. Therefore, we need to track the final location of

each element of the variable node and make sure that to that location, it is not possible

to place another element from the variable node. To distinguish the elements of the

variable node, we denote each of them by Greek letters and their subscripts. Note that

the letters used for this purpose should not be mixed with the other uses of the Greek

letters throughout the chapter.

Given the depictions in Figure 3.9b, the next step is to determine y-directional shifts

such that all elements of the variable node are placed to the correct row in the derivative

order space. Since, according to Lemma 3.1, only regular simple shifts are considered,
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while taking y-directional derivatives, the sequence of the elements having the same x-

directional derivative order cannot change. Therefore, for example, αµB
stays always

above the elements denoted by αi, i ∈ [1 : µB − 1]. Thanks to this property, shifts of the

variable node elements via y-directional derivatives that will fill the locations denoted

by unfilled circles in the new block are straightforward to determine. That is because

shifting the block composed of the variable node’s elements with the same shape as the

locations to be filled in the new block uniquely determines the elements to be moved to

the new block. After such shifts in the y-direction, the remaining elements of the variable

node will fill the unfilled circles in the lower block. In Figure 3.9c, we both depict the

shifted elements to the new block and the remaining elements together.

Whenever we fill a row composed of unfilled circles in the lower block, to have y-

directional shifts which generate quasi-unique shifts, the elements to be placed there

must be uniquely determined. For example, while filling the top le rows, for each row,

there must be exactly ce,b +1 columns among the elements of the variable node that are

available to provide their top-most element. If there are more than that many candi-

date columns, then the elements to be placed in the top le rows are not unique. In the

same way, after filling the top le rows, in the remaining rows, there must be exactly ce,b

columns of the elements of the variable node that can provide their top-most element.

Therefore, to guarantee this, a sufficient condition is to have c̃f = ce,b and the remaining

elements of the variable node have only one partially-occupied column with le elements.

There might be several structures satisfying this condition. One of them is when rf = 0,

implying l̃f = le. This is condition 1 in Lemma 3.3. Another way to satisfy the sufficient

condition is to have rf = le, implying l̃f = 0, and this is condition 2 in Lemma 3.3.

After the elements are aligned with their final rows via y-directional derivatives, necessary

x-directional shifts can be easily applied such that the elements of the variable node are

finally placed in their intended locations. Again, due to Lemma 3.1, we consider only

regular simple shifts and therefore, while taking x-directional derivatives, the sequence

of the elements having the same y-directional derivative order cannot change.

To show other instances in which a quasi-unique shift exists, i.e., either le = 0 when

|Uzn,Mi |+ |Uzi,Mi | > µBK, or |Uzn,Mi |+ |Uzi,Mi | ≤ µBK, in the rest of the proof, we take

all x-directional derivatives before y-directional derivatives. However, since we are taking

x-directional derivatives first, we first align all the elements of the variable node that are

to stay in the lower block with their intended columns. We start filling with the rightmost

column of the lower block, which is column K. When |Uzn,Mi |+ |Uzi,Mi | ≤ µBK, there

will not be any element at the upper block and column K will not be fully occupied, and

instead it will contain only l̃e elements after the coalescence for l̃e < µB. Therefore, the

rows of the elements of the variable node that will provide elements to these locations
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are uniquely determined, namely the rows [0 : l̃e−1] of the elements of the variable node.

On the other hand, if |Uzn,Mi |+ |Uzi,Mi | > µBK, then l̃e = µB, and still the elements of

the variable node to be placed in those locations are from the rows [0 : µB − 1]. Hence,

in both cases, the elements to be placed in the rightmost column of the lower block

are uniquely determined. After the rightmost elements from the rows [0 : l̃e − 1] of the

elements of the variable node are shifted to column K column via x-directional shifts,

next, we fill the columns starting from column K − 1 to column K − ce,b − 1. Note that

since each of these columns is intended to be fully occupied, they are directly filled with

the remaining rightmost elements of each row via x-directional shifts. Finally, we fill

column K − ce,b, which has le locations intended to be occupied after the coalescence.

If |Uzn,Mi | + |Uzi,Mi | ≤ µBK, then the upper block is not generated and the number of

remaining elements of the variable node is equal to le, each on different rows. Thanks to

the property that the sequence of the elements having the same y-directional derivative

orders cannot change by x-directional shifts, the elements to be placed to the le empty

locations are uniquely determined. This proves that when |Uzn,Mi | + |Uzi,Mi | ≤ µBK,

a quasi-unique shift exists. On the other hand, when |Uzn,Mi |+ |Uzi,Mi | > µBK, a new

block is generated, so there will be always more than le remaining elements of the variable

node. In this case, the elements to be placed in the column K− ce,b will not be uniquely

determined. Therefore, to have a unique shift, in this case, we need le = 0, which is

condition 3 of Lemma 3.3.

3.11 Alternative Formulation of Almost Regular Interpola-

tion Schemes

In this section, we discuss an alternative formulation of almost regular interpolation

schemes based on the interpolation of A(x)B(y) from its evaluations only, as done in

B-PROC. In such an approach, for worker i, A(x) would be evaluated at the distinct

evaluation points {xi,k : k ∈ [0 : mA,i − 1]} and B(y) would be evaluated at the distinct

evaluation points {yi,l : l ∈ [0 : mB,i− 1]}. In this case, computations assigned to worker

i would be A(xi,k)B(yi,l), where k ∈ [0 : mA,i − 1] and l ∈ [0 : mB,i − 1].

Remember that in all almost regular interpolation schemes, we have a priority score which

determines the order in which the computations will be carried out by each worker. Each

priority score is a function of the computation index, which is (k, l). For our alternative

formulation, we can use the same priority scores defined for Hermite interpolation-based

schemes such that (k, l) is the index for the computation A(xi,k)B(yi,l). Then vertical,

horizontal, N-zig-zag and Z-zig-zag order definitions follow. Thus, the two formulations
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are equivalent to each other, under the almost regularity condition, and Theorem 3.1

and Corollary 3.1 are also valid for this case.

Before proving this claim, we first present two useful lemmas. Note that we only provide

proof for the N-zig-zag order. It can trivially extend to the Z-zig-zag order case.

Lemma 3.6. From any worker i, assume all the responses obey N-zig-zag order. Con-

sider all the nodes, i.e., evaluation points of the received responses at the master, of the

form (xi,k, yi,1) and (xi,k, yi,2) for k ∈ [1 : p] where 1 ≤ p ≤ mA,i depending on the num-

ber of responses received from worker i. Without losing generality, assume the first p rows

of the interpolation matrix M depends on the evaluation points (xi,k, yi,2), k ∈ [1 : p].

Let U(xi,k,yi,1),M = {(0, 0), (0, 1), · · · , (0, l − 1)} for any l satisfying 1 ≤ l ≤ L − 1,

and U(xi,k,yi,2),M = {(0, 0)}. Consider yi,1 as the pivot and yi,2 as the variable. Then

(α1,α2) = (0, lp) is a quasi-unique shift and |RM(α1,α2)| = 1. Hence,

∂lp

∂ylpi,2
det(M)

∣

∣

yi,2=yi,1
= Ck̃,l̃(M) det(∇y

k̃,l̃
M)
∣

∣

yi,2=yi,1
(3.41)

by Definition 3.8, where k̃ = 0, l̃(k) = l, ∀k ∈ [1 : p] and l̃(k) = 0, ∀k ∈ [p + 1 : KL].

After such a coalescence, we obtain U(xi,k,yi,1),M̃
= {(0, 0), (0, 1), · · · , (0, l − 1), (0, l)},

where ∀k ∈ [1 : p] and M̃ = ∇y

k̃,l̃
M
∣

∣

yi,2=yi,1
.

Proof. For any k ∈ [1 : p], consider two nodes (xi,k, yi,1) and (xi,k, yi,2). While tak-

ing the derivative of det(M) with respect to yi,2, the minimum derivative order to be

applied to the row corresponding to the node (xi,k, yi,2) row is l since U(xi,k,yi,1),M =

{(0, 0), (0, 1), · · · , (0, l − 1)} has all the orders up to l. Otherwise, we would get two

identical rows in ∇y

k̃,l̃
M. Since we have p rows depending on yi,2, and α2 = lp, we must

have l̃(i) = l, ∀i ∈ [1 : p] and l̃(k) = 0, ∀k ∈ [p+ 1 : KL]. This is the only possible l̃ and

proves the claim.

Lemma 3.7. From any worker i, assume all the responses obey the N-zig-zag or-

der. Without losing generality, consider the nodes (xi,1, yi,1) and z = (xi,2, yi,1). Let

U(xi,1,yi,1),M = {(i, j) : i ∈ [0 : k − 1], j ∈ [0 : m − 1]}, that is, it contains k columns

with exactly m ≤ L elements, and U(xi,2,yi,1),M = {(0, 0), (0, 1), · · · , (0, l − 1)}, for any

l ∈ [0 : m− 1], i.e., one column with l elements. Consider xi,2 as a variable and xi,1 as

the pivot. Then, (α1,α2) = (lk, 0) is a quasi-unique shift with |RM(α1,α2)| = 1. That

is,
∂lk

∂xlki,2
det(M)

∣

∣

xi,2=xi,1
= Ck̃,l̃(M) det(∇x

k̃,l̃
M)
∣

∣

xi,2=xi,1
(3.42)
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by Definition 3.8, where k̃(j) = k, ∀j ∈ [1 : l], k̃(j) = 0, ∀j ∈ [l + 1 : KL] and l̃ = 0.

After such a coalescence, we obtain U(xi,1,yi,1),M̃
= {(i, j) : i ∈ [0 : k − 1], j ∈ [0 :

m− 1]} ∪ {(k, 0), (k, 1), · · · , (k, l − 1)} where M̃ = ∇x
k̃,l̃

M
∣

∣

xi,2=xi,1
.

Proof. While taking the kl-th order derivative of det(M) with respect to x, we need

to allocate these kl shifts into those rows of M that depend on xi,2, each of which

corresponds to one element in the U(xi,2,yi,1),M. Recall that U(xi,1,yi,1),M = {(i, j) : i ∈ [0 :

k−1], j ∈ [0 : m−1]}. After the shift with the order (α1,α2) = (kl, 0), there should not be

any duplicate element in U(xi,1,yi,1),M. Thus, to each element of U(xi,2,yi,1),M, we will assign

a derivative order of k, i.e., k̃(j) = k, ∀j ∈ [1 : l] and k̃(j) = 0, ∀j ∈ [l+1 : KL]. All other

allocations would generate duplicate elements in U(xi,1,yi,1),M after the coalescence.

Next, we state the equivalency between the alternative formulation we give in this section

and the formulation in Section 3.7.

Lemma 3.8. Assuming the alternative formula we have introduced is employed, if the

set of evaluation points, or nodes, assigned to a worker has N-zig-zag order, then by a

series of unique shifts, it can be reduced to a single node whose derivative set has also

N-zig-zag order.

Proof. Assume the master receive k̃i l̃i evaluations of A(x)B(y) from worker i. That

is, the master receives the evaluations {A(xi,k)B(yi,l) : k ∈ [1 : k̃i], l ∈ [1 : l̃i]}
where k̃i ≤ mA,i and l̃i ≤ mB,i such that they are in accordance with the constraints

imposed by N-zig-zag order. Thus, we have derivative sets Ũ(xi,k,yi,l),M = {(0, 0)},
∀k ∈ [1 : k̃i], ∀l ∈ [1 : l̃i], ∀i ∈ [1 : N ] assuming each worker sent at least one re-

sponse. Then, if we apply the coalescence procedure described in Section 3.7, and

if we take y-directional derivatives first, according to Lemma 3.6, we can always find

unique shifts in the coalescence procedure. Assume, without losing generality, during

the y-directional derivatives, yi,1 is taken as the pivot. After taking all y- directional

derivatives, the derivative sets become U(xi,k,yi,1),M2
= {(0, l) : l ∈ [1 : l̃i]}, ∀i ∈ [1 : N ],

∀k ∈ [1 : k̃i]. Then, according to Lemma 3.7, by only taking x-directional deriva-

tives, we can find unique shifts in every coalescence step. Without losing general-

ity, assuming xi,1 is taken as pivot for the x-directional derivatives, we end up with

U(xi,1,yi,1),M3
= {(k, l) : k ∈ [k̃i], l ∈ [l̃i]}, ∀i ∈ [1 : N ], as claimed by the lemma.

Observe that these derivative sets are equivalent to the derivative sets obtained as a result

of Hermite interpolation-based bivariate polynomial codes. This proves the equivalency

under the almost regularity condition.
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3.12 Conclusion

In this chapter, we have proposed storage-efficient straggler exploitation techniques for

distributed matrix multiplication with heterogeneous computation and storage capaci-

ties. Our proposed bivariate polynomial coding schemes efficiently utilize the workers’

storage capacities. However, bivariate polynomial coding poses the problem of invertibil-

ity of an interpolation matrix, which is highly non-trivial, unlike univariate polynomial

codes. To tackle this issue, we first proposed B-PROC based on the fact that the in-

terpolation matrix of bivariate interpolation is always invertible if the evaluation points

form a rectangular grid. However, in this scheme, some computations the master receives

may not be useful since the information they provide is already obtained from previous

responses. In order to avoid such redundant computations, we showed that as long as

the workers follow a specific computation order, the interpolation matrix is invertible

for almost every choice of the interpolation points. Based on this, we proposed BPC-

VO and BPC-HO, which fully avoid the problem of redundant computations. However,

although still much better than univariate schemes, the constraints imposed by the com-

putation orders in BPC-VO and BPC-HO limit the efficiency of storage utilization and

hence, may increase the average computation time when the storage capacities of the

workers are limited. To overcome this, in BPC-NZO and BPC-ZZO, we relax these con-

straints by allowing a few redundant computations, which are still much less than those

of B-PROC. We have shown that these proposed schemes’ ability to exploit the workers’

storage capacities is close to optimal. For different storage capacities, we numerically

demonstrated that in terms of the average computation time, the proposed schemes in

the chapter outperform existing schemes in the literature.

The almost regularity of bivariate polynomial coding schemes is itself a theoretically

interesting result, which may guide proofs of other multivariate interpolation schemes

for distributed matrix multiplication in more general situations. Additionally, we have

identified the potential application of bivariate polynomial coding to secure matrix mul-

tiplication, which we have investigated in the next chapter.

Overall, our proposed techniques demonstrate close-to-optimal exploitation of workers’

storage capacities and outperform existing schemes in the literature in terms of average

computation time. These findings contribute significantly to the field of distributed

matrix multiplication and have the potential to trigger future research in this area.



Chapter 4

Bivariate Polynomial Codes for

Security

4.1 Abstract

In this chapter, we consider the problem of SDMM. Coded computation has been shown

to be an effective solution in distributed matrix multiplication, both providing privacy

against workers and boosting the computation speed by efficiently mitigating stragglers.

We present a non-direct secure extension of the bivariate polynomial codes. In the previ-

ous chapter, we have shown that bivariate polynomial codes are able to further speed up

distributed matrix multiplication by exploiting the partial work done by the stragglers

rather than completely ignoring them while reducing the upload communication cost

and/or the workers’ storage’s capacity needs. In this chapter, especially for upload com-

munication or storage-constrained settings, the proposed approach reduces the average

computation time of SDMM compared to its competitors in the literature.

4.2 Introduction

In this chapter, we aim to tackle two major challenges in distributed matrix multiplica-

tion, namely straggler mitigation and security.

Regarding the straggler mitigation problem, we have previously discussed various ap-

proaches based on univariate polynomial coding, including UPC, MatDot codes, and

PolyDot codes in the Chapter 2 section. However, we have demonstrated that these

approaches do not fully utilize the work done by straggling workers, resulting in subop-

timal performance. While multi-message approaches such as those proposed in [56–58]

92
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partially address the problem by assigning multiple sub-products to each worker and

communicating the result of each sub-product to the master as soon as it is completed,

they suffer from increased upload communication costs and inefficient use of workers’

storage.

To address these issues, we have introduced bivariate polynomial codes in the previous

chapter, achieving a better trade-off between upload cost, storage efficiency, and average

computation time. In this chapter, we aim to extend this solution to SDMM.

Hence, the second challenge we tackle in this chapter is ensuring the security of the

multiplied matrices, which is of utmost importance in many practical applications.

In our earlier discussion in Chapter 2, we have reviewed two prominent approaches for

SDMM: S-UPC [11] and GASP codes [13]. These approaches employ random matrix

partitions during the encoding phase to mask the original matrix partitions, with the

aim of keeping them hidden from the workers. While GASP codes are known to achieve

a smaller recovery threshold than S-UPC, neither approach considers the joint problem

of straggler mitigation and security. Moreover, they suffer from a lack of straggler ex-

ploitation and other issues associated with univariate polynomial codes. As a result,

more efficient solutions are required to address these challenges.

The previous approach to address these challenges in [74] used rateless codes and a multi-

message approach. In this work, computations are assigned adaptively in rounds, and in

each round, workers are classified into clusters depending on their computation speeds.

However, computations were not one-to-any replaceable, and results from a worker in a

cluster were useful for decoding only if the results of all the sub-tasks assigned to that

cluster and also to the fastest cluster were collected. Still, the proposed approach ex-

hibited good average computation times by estimating and adapting to the computation

speeds of the workers.

To overcome these limitations, in this work, for the multi-message, straggler-resistant,

SDMM task, we propose a novel approach based on bivariate polynomial codes, which

we call Secure Bivariate Polynomial (SBP) codes. We show that SBP codes outperform

other schemes in the literature in terms of average computation time, when the upload

cost budget is limited and when the number of fast workers is limited. Furthermore,

we demonstrate that SBP codes exhibit low average computation times even in hetero-

geneous or homogeneous scenarios, where workers have significantly different or similar

computation speeds, respectively.

In addition to SBP codes, we also propose an extension of GASP codes to the multi-

message setting and evaluate its performance. Our results show that when the upload
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cost budget is sufficiently high, the proposed extension can considerably lower the average

computation time of the SDMM task.

Overall, our proposed approaches address the challenges of straggler mitigation and

security in the context of distributed matrix multiplication, and offer better performance

than existing solutions in the literature.

4.3 Problem Setting

We study distributed matrix multiplication with strict security requirements. Unlike

Chapter 3, and like the schemes in Section 2.1.4, in this chapter, the elements of our

matrices are in a finite field F, and we denote the size of the finite field by q. This is

necessary due to our security requirements, which we will introduce and elaborate on

shortly.

The master wants to multiply statistically independent matrices A ∈ Fr×s and B ∈ Fs×t,

r, s, t ∈ Z+, with the help of N dedicated workers, which possibly have heterogeneous

computation speeds and storage capacities.

To offload the computation, the master divides the multiplication task into smaller sub-

tasks, which are then assigned to workers. The master partitions A into K sub-matrices

as A =
[

AT
1 AT

2 · · · AT
K

]T
, where Ai ∈ F

r
K
×s, ∀i ∈ [1 : K], and B into L sub-

matrices as B =
[

B1 B2 · · · BL

]

, where Bj ∈ F
s× t

L , ∀j ∈ [1 : L]. The master

sends coded versions of these partitions to the workers. In this section, unlike the setting

discussed in Section 2.1.4, we allow multiple tasks assigned per worker, which is the

multi-message setting considered in Chapter 3. We assume that there is an upload cost

constraint per worker, denoted by ui for worker i, which limits the maximum number

of bits that can be transmitted from the master to each worker. This upload cost is

a limiting factor on the number of coded partitions of A, denoted by mA,i, and of B,

denoted by mB,i, that can be sent to each worker. Equivalently, this constraint can be

seen as the storage constraints considered in Chapter 3. More specifically, for worker

i, mA,i and mB,i must satisfy (mA,irs/K +mB,ist/L) log2(q) ≤ ui. Provided that they

comply with the upload cost constraint, mA,i and mB,i are chosen depending on the

underlying coding scheme and the master sends coded partitions Ãi,k and B̃i,l to worker

i, where i ∈ [1 : N ], k ∈ [1 : mA,i] and l ∈ [1 : mB,i]. For simplicity, we describe a

static setting, in which all the coded matrices are sent to the workers before they start

computations. In a more dynamic scenario, matrix partitions can be delivered when

they are needed, which would reduce the storage required by the workers. The workers

multiply the received coded partitions of A and B as instructed by the underlying coding
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scheme and send the result of each computation to the master as soon as it is completed.

Once the master receives a number of computations equal to the recovery threshold, Rth,

it can decode the desired multiplication AB.

We follow the same threat model discussed in Section 2.1.4, in which the workers are

honest but curious. They follow the protocol, but they can use the received encoded

matrices to obtain information about A and B. We assume that up to T workers can

collude. Hence, our security requirement is that no T workers are allowed to gain any

information about the content of the multiplied matrices. That is,

I
(

A,B; {Ãi,k, B̃i,l | k ∈ [mA,i], l ∈ [mB,i], i ∈ T , T ⊂ [1 : N ], |T | = T}
)

= 0, (4.1)

where T is any subset with cardinality T of available worker indices.

As mentioned earlier, due to this strict security requirement, we use finite fields instead

of real numbers, unlike Chapter 3. This is because sharing the matrix partitions in the

case of real numbers would leak some information about them [75, 76] and it would not

be possible to achieve zero mutual information between the coded partitions and the

original matrices as required by Equation (4.1). Therefore, we choose to use finite fields.

Under this setting, the main problem we attempt to solve is minimizing the average com-

putation time, which is defined as the time required for the master to collect sufficiently

many computations to decode the desired computation AB. We allow the workers’ com-

putation speeds to be homogeneous, i.e., the average speed of each available worker is

close to each other, or heterogeneous, in which the average speeds of the workers vary.

Workers can also straggle, i.e., become unresponsive temporarily.

4.4 Extension of Bivariate Polynomial Codes for SDMM

As a first attempt to improve the upload cost efficiency of SDMM, we provide the naive

extension of bivariate polynomial codes proposed in Chapter 3 to the secure case. Con-

sider the partitioning of matrices A and B as in Section 4.3. Recall from Equation (3.7)

and Equation (3.8) that in bivariate polynomial codes, the encoding polynomials are

constructed as

A(x) = A1 +A2x+ · · ·+AKxK−1, (4.2)

B(y) = B1 +B2y + · · ·+BLy
L−1. (4.3)
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Therefore, at the master, the goal is to interpolate the following polynomial.

A(x)B(y) =
K
∑

i=1

L
∑

j=1

AiBjx
i−1yj−1. (4.4)

Since worker i ∈ [1 : N ] can store mA,i partitions of A and mB,i partitions of B, the

master sends to worker i the first mA,i derivatives of A(x) and first mB,i derivatives of

B(y), evaluated at distinct xi and yi, respectively. Each worker multiplies the received

encoded partitions of A(x) and B(y) following either BPC-HO, BPC-VO, BPC-NZO or

BPC-ZZO and sends the results of each computation as soon as it is finished. Then, once

the master collects a sufficient number of computations from the workers, it instructs all

the workers to stop and starts decoding A(x)B(y).

In order to provide a simple direct extension of this scheme to SDMM in which up to T

workers collude, for brevity, we limit the analysis to the case mA,i = mA and mB,i = mB,

∀i ∈ [1 : N ]. Thus, from a security point of view, each worker gets mA and mB coded

partitions of A and B, respectively. Since up to T workers collude, in total, mAT coded

partitions of A and mBT coded partitions of B are leaked to the workers. To protect

such a leakage, we need to add mAT and mBT random matrix partitions to A(x) and

B(y), respectively. Thus, the encoding polynomials for this naive extension of bivariate

polynomial codes to SDMM are constructed as

A(x) = A1 +A2x+ · · ·+AKxK−1 +
mAT
∑

i=1

Rix
K+i−1, (4.5)

B(y) = B1 +B2y + · · ·+BLy
L−1 +

mBT
∑

i=1

Six
L+i−1, (4.6)

where Ri ∈ F
r
K
×s and Si ∈ F

s× t
L are matrix partitions whose elements are chosen

uniformly at random from the elements of Fq. Hence, the amount of randomness required

for this scheme is Ts(mA
r
K + mB

t
L) elements of Fq. Therefore, the polynomial to be

interpolated at the master becomes

A(x)B(y) =
K
∑

i=1

L
∑

j=1

AiBjx
i−1yj−1 +

K
∑

i=1

mBT
∑

j=L+1

AiSjx
i−1yj−1

+
mAT
∑

i=K+1

L
∑

j=1

RiBjx
i−1yj−1 +

mAT
∑

i=K+1

mBT
∑

j=L+1

RiSjx
i−1yj−1. (4.7)

Therefore, considering the number of monomials of A(x)B(y) in Equation (4.7), Rth =

(K + mAT )(L + mBT ) evaluations of A(x)B(y) are needed to interpolate it, which is

O(T 2) and hence, has a quadratic dependence on T .
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Observe that in this naive extension, for a worker to provide m = mAmB computations,

uploading mA coded partitions of A and mB coded partitions of B are enough. This

means that the upload cost of the scheme is on the order of
√
m. However, the price we

pay for such a reduced upload cost is a quadratic dependence of the recovery threshold on

the number of colluding workers. Such dependence on T may quickly become restrictive

for typical T values and hence, the benefits of the naive extension of bivariate polynomial

codes to SDMM may be outweighed by its drawbacks. Thus, we need more sophisticated

schemes that can keep this low upload cost with a better scaling behaviour for the

recovery threshold with respect to m and T . In the next section, we present our proposed

solution for such a problem.

4.5 Secure Bivariate Polynomial (SBP) Codes

The objective of this section is to design a more sophisticated extension of bivariate

polynomial codes for SDMM, which we call Secure Bivariate Polynomial (SBP) codes, in

order to maintain the upload cost efficiency of bivariate polynomial codes while reducing

the quadratic dependence of the recovery threshold on T .

4.5.1 Encoding Phase

In SBP coding scheme, the encoding polynomials are constructed as

A(x) =
K
∑

i=1

Aix
i−1 +

T
∑

i=1

Rix
K+i−1, (4.8)

B(x, y) =
L
∑

i=1

Biy
i−1 +

T
∑

i=1

m
∑

j=1

Si,jx
K+i−1yj−1, (4.9)

where m ≤ L is the maximum number of sub-tasks any worker can complete. Matrices

Ri ∈ F
r
K
×s

q and Si,j ∈ F
s× t

L
q are independent and uniform randomly generated from their

corresponding domain for i ∈ [1 : T ] and j ∈ [1 : m]. This implies that the amount of

randomness required for SBP scheme is Ts( r
K +m t

L) elements of Fq.

For each worker i, the master evaluates A(x) at xi and the derivatives of B(x, y)

with respect to y up to the order m − 1 at (xi, yi). We require that these eval-

uation points be distinct. Thus, to worker i, the master sends A(xi) and Bi =

{B(xi, yi), ∂1B(xi, yi), . . . , ∂m−1B(xi, yi)}, where ∂i denotes the ith partial derivative

with respect to y. Thus, in this coding scheme, we impose the storage or equivalently

upload constraints that mA,i = 1 and mB,i = m.
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In Equation (4.8) and Equation (4.9), the role of Ri’s and Si,j ’s is to mask the actual

matrix partitions for security. The following theorem states that the coded matrix par-

titions sent to the workers do not leak any information about A and B as long as not

more than T workers collude.

Theorem 4.1. For the encoding scheme described above, we have

I(A,B; {A(xi),Bi : i ∈ T , T ⊂ [1 : N ], |T | = T}) = 0. (4.10)

Proof. Consider any T such that T ⊂ [1 : N ] and |T | = T . Since A and B are

independent, we have

I(A,B; {A(xi),Bi : i ∈ T }) = I(A; {A(xi) : i ∈ T }) + I(B; {Bi : i ∈ T }). (4.11)

Let us first bound I(A; {A(xi)|i ∈ T }) as follows.

I (A; {A(xi) : i ∈ T })

= H ({A(xi) : i ∈ T })−H ({A(xi) : i ∈ T }|A) (4.12)

= H ({A(xi) : i ∈ T })−H ({Ri : i ∈ [1 : T ]}|A) (4.13)

(a)
= H ({A(xi) : i ∈ T })− T

rs

K
log(q) (4.14)

(b)
≤

|T |
∑

i=1

H(A(xi))− T
rs

K
log(q) (4.15)

= T
rs

K
log(q)− T

rs

K
log(q) = 0, (4.16)

where (a) follows from the fact that Ri’s are independent of each other and of A, (b) is

due to the fact that the joint entropy of several random variables is upper bounded by

the sum of the individual entropies of these random variables.

We can bound I(B; {Bi : i ∈ T }) similarly as follows.

I (B; {Bi : i ∈ T })

= H ({Bi : i ∈ T })−H ({Bi : i ∈ T }|B) (4.17)

= H ({Bi : i ∈ T })−H({Si,j : i ∈ [1 : T ], j ∈ [1 : m]}|B) (4.18)

= H ({Bi : i ∈ T })− Tm
st

L
log(q) (4.19)

≤
|T |
∑

i=1

m
∑

j=1

H(B(xi, yj))− Tm
st

L
log(q) (4.20)

= Tm
st

L
log(q)− Tm

st

L
log(q) = 0. (4.21)
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The claim follows by substituting Equation (4.16) and Equation (4.21) into Equa-

tion (4.11).

4.5.2 Computation Phase

After receiving A(xi) and Bi, with the increasing order of j ∈ [1 : m], worker i multiplies

A(xi) with ∂j−1B(xi, yi). That is, the jth completed computation is A(xi)∂j−1B(xi, yi).

Then, as soon as each multiplication is completed, its result is communicated back to

the master.

4.5.3 Decoding Phase

After collecting sufficiently many computations from the workers, the master aims to

interpolate

A(x)B(x, y) =
∑

i∈[1:K]

∑

j∈[1:L]

AiBjx
i−1yj−1 +

∑

i∈[1:K]

∑

t∈[1:T ]

∑

j∈[1:m]

AiSt,jx
K+i+t−2yj−1

+
∑

i∈[1:T ]

∑

j∈[1:L]

RiBjx
K+i−1yj−1 +

∑

i∈[1:T ]

∑

t∈[1:T ]

∑

j∈[1:m]

RiSt,jx
2K+i+t−2yj−1.

(4.22)

Note that, in this scheme, every computation is equally useful; that is, the sub-tasks are

one-to-any replaceable. In the following theorem, we give the recovery threshold expres-

sion, which specifies the minimum number of required computations and characterizes

the probability that decoding fails, i.e., bivariate polynomial interpolation fails, due to

the use of a finite field.

Theorem 4.2. Assume the evaluation points (xi, yi) are chosen uniform randomly over

the elements of F. If the number of computations of sub-tasks received from the workers,

which obey the computation order specified in Section 4.5.2 is greater than the recovery

threshold Rth ! (K + T )L + m(K + T − 1), then with probability at least 1 − d/q, the

master can interpolate the unique polynomial A(x)B(x, y), where

d !
m

2

(

3(K + T )2 +m(K + T )− 6K − 6T −m+ 3
)

+
(K + T )L

2
(K + L+ T − 2) .

(4.23)

We give the proof of Theorem 4.2 in Section 4.8. Theorem 4.2 states that we can make

the probability of failure arbitrarily small by increasing the order q of the finite field.
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Theorem 4.3. The total upload cost of the SBP coding scheme is

N (rs/K +mst/L) log2(q) bits.

Proof. The SBP coding scheme assigns m computations to each worker, by sending

one coded partition of A and m coded partitions of B. Remember that each coded

partition of A is a matrix of size r
K × s and each coded partition of B is a matrix

of size s × t
L . Since there are N workers, the master uploads N (rs/K +mst/L) ele-

ments of the field F. Since, in total, there are q elements in F, the total upload cost is

N (rs/K +mst/L) log2(q) bits.

Remark 4.1. The SBP scheme does not exploit any parameter of the underlying sta-

tistical model of the workers’ speeds. Under a total upload cost constraint, if no prior

information about the computation speeds of the workers is available, then assigning

more computation load, m, to every worker is a favourable approach. Although this

increases the recovery threshold, i.e., the term m(K + T − 1), the faster workers do not

run out of computations easily, avoiding the slowest workers dominating the computation

time. The benefit of this prevails over the detriment due to the increase in the recovery

threshold. Surely, if prior information about the computation speeds of the workers is

available, we could exploit it by assigning more, but still less than L, computations to

faster workers, which would result in fewer coded partitions leaked to the colluding work-

ers. In this case, the recovery threshold would be lower, further increasing the protection

against stragglers. However, the SBP scheme has been designed as agnostic to the delay

model of the workers and specifically to maximize the number of sub-tasks delivered by

a worker under an upload cost constraint. Thanks to the extra computations at workers,

we show in our simulation results that a model-independent version of SBP is enough to

beat model-dependent schemes such as the one in [74]. Thus, we expect the SBP scheme

to work for large varieties of statistical models of the worker’s speeds.

Remark 4.2. Similarly to Chapter 3, the decoding procedure of SBP scheme can be

conducted by inverting the interpolation matrix and multiplying it with the vector of

responses collected from the workers, which has a complexity of O(rc(KL)2). Still, like

the non-secure version of bivariate polynomial codes in Chapter 3, we conjecture that

the decoding complexity of SBP can be reduced to almost linear by carefully choosing

the evaluation points. Such an investigation is beyond the scope of this dissertation, and

we leave it as an interesting future research direction.
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4.6 Extension of GASP codes to multi-message setting

As one of the state-of-the-art schemes for SDMM, GASP codes are discussed in detail

in Section 2.1.4. However, originally, GASP codes are designed for the single-message

scenario, in which each worker is assigned a single computation task. In this section,

we extend the GASP codes to the multi-message setting, which we call multi-message

GASP (MM-GASP) scheme.

For the extension of GASP codes to the multi-message setting, i.e., MM-GASP, we

assign m > 1 tasks to each worker. Thus, a worker can see m evaluations of A(x) and

B(x), and any T colluding workers can see mT evaluations. Thus, to make the scheme

secure against T colluding workers, we need to add mT random matrix partitions to

each encoding polynomial, instead of T . Thus, for MM-GASP, we modify the encoding

polynomials of GASP codes given in Equation (2.20) and Equation (2.21) such that

A(x) =
K
∑

i=1

Aix
αi +

mT
∑

i=1

Rix
αK+i , (4.24)

B(x) =
L
∑

i=1

Bix
βi +

mT
∑

i=1

Six
βL+i . (4.25)

The elements of matrices Ri ∈ F
r
K
×s

q and Si,j ∈ F
s× t

L
q are independently and uniform

randomly generated from Fq. Therefore, the amount of randomness required for MM-

GASP is Tsm( r
K + t

L) elements of Fq.

Based on these encoding polynomials, the following theorem characterizes the recovery

threshold of MM-GASP.

Theorem 4.4. The recovery threshold of MM-GASP is given by

RMM−GASP
th (K,L, T ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

KL+K + L, 1 = mT < L ≤ K

KL+K + L+ (mT )2 +mT − 3, 1 < mT < L ≤ K

(K +mT ) (L+ 1)− 1, L ≤ mT < K

2KL+ 2mT − 1, L ≤ K ≤ mT.

(4.26)
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Proof. We can define T̃ = mT and write

A(x) =
K
∑

i=1

Aix
αi +

T̃
∑

i=1

Rix
αK+i , (4.27)

B(x) =
L
∑

i=1

Bix
βi +

T̃
∑

i=1

Six
βL+i . (4.28)

Now, let us consider

A(x)B(x) =
K
∑

i=1

L
∑

j=1

AiBjx
αi+βi +

K
∑

i=1

T̃
∑

j=1

AiSjx
αi+βL+i

+
T̃
∑

i=1

L
∑

j=1

RiBjx
αK+i+βi +

T̃
∑

i=1

T̃
∑

j=1

RiSjx
αK+i+βL+i . (4.29)

In the proof of Equation (2.30) in [13], αi’s and βi’s are chosen such that from the evalua-

tions of A(x)B(x), AiBj ’s ∀i ∈ [K], j ∈ [L] are decodable and the number of monomials

in A(x)B(x) whose coefficients are undesired terms is minimized. For this, we only need

to consider the structure of A(x)B(x) and m itself is not related other than determining

the value of T̃ . Therefore, the problem reduces to deriving the recovery threshold of

a classical GASP coding scheme when T̃ workers collude, which is RGASP
th (K,L, T̃ ) by

Equation (2.30). If we substitute T̃ = mT , then we obtain Equation (4.26).

Remark 4.3. In multi-message univariate polynomial coding schemes, such as in MM-

GASP codes, if a worker is assigned m sub-tasks, then m coded partitions of both A and

B are required. Thus, the total upload cost of MM-GASP is Nm (rs/K + st/L) log2(q)

bits, which is larger than that of SBP coding scheme.

The recovery thresholds of the MM-GASP codes and SBP codes can be compared as

a function of the number of coded partitions m, by direct inspection of the recovery

thresholds in Equation (4.26) and Theorem 4.2. Observe that SBP coding scheme’s

recovery threshold is smaller than that of the MM-GASP code if L ≤ mT < K, and

K ≤ TL+1, which is satisfied as K and L become close to each other, or, if L ≤ K ≤ mT ,

and (K − T )(L − m) ≥ (1 − m) is satisfied. In Figure 4.1, we provide the recovery

thresholds of the two schemes as a function of the number of computations allocated to

each worker for K = L = 100 and T = 30.

We note that such a comparison may only be meaningful in the unlimited upload cost

budget scenario. Otherwise, comparing the recovery thresholds for the same m might

be misleading since, for a given upload cost constraint, each scheme provides a different
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Figure 4.1: Rth vs. the number of computations assigned to each worker for SBP
coding scheme and the MM-GASP scheme for K = L = 100 and T = 30.

number of sub-tasks, m, to workers, as detailed in Theorem 4.3 and Remark 4.3, for SBP

and for MM-GASP, respectively. We provide further discussion on this issue in the next

section, see Figure 4.3, where we show the recovery thresholds as a function of the total

upload cost budget for a scenario with K = L = 100 and T = 30.

Similarly, for a fixed m, MM-GASP also requires more randomness compared to the

bivariate schemes, which is Tsm( r
K + t

L) compared to Ts( r
K +m t

L) and Ts(ma
r
K +mB

t
L)

for SBP and direct extension of bivariate codes, respectively.

4.7 Simulation Results and Discussion

In this section, we compare SBP codes with MM-GASP and the rateless coding scheme

proposed in [74] in terms of the trade-off between the average computation time (ACT)

and the total upload cost budget (UCB), under the scenarios with heterogeneous and

homogeneous workers.

The comparison between the MM-GASP scheme and SBP coding scheme is direct, as

both are based on the same set of assumptions. They achieve different recovery thresholds

as a function of the L,M, T and m, but they both assume that the coded submatrices are

uploaded only once before the computations start, no prior knowledge of the computation

speeds of workers is needed or can be exploited, and the first Rth results received from

any subset of the workers allow recovering the desired computation. However, the setting

and the assumptions in [74] are slightly different. In the rateless coding scheme proposed

in [74], computations are organized in rounds. If the speeds of the workers are not

already known, in the first round, every worker is assigned one computation to estimate

their speeds. Then, based on the known or estimated speeds, workers are grouped

into c clusters, such that the workers with similar speeds are in the same cluster. We
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denote by nu the number of workers belonging to cluster u, u ∈ [c]. In each round, for

any computation within a cluster to be useful for decoding, we need all the workers in

that cluster and also all workers in cluster 1, which is special, to finish their assigned

tasks. Once all the workers in cluster u and cluster 1 finish their tasks, they provide

du, and d1 useful computations to the master, where d1 = ⌊(n1 − 2T + 1)/2⌋ and du =

⌊(nu − T + 1)/2⌋ for 2 ≤ u ≤ c. No further synchronization is needed among clusters,

and a new task can be assigned to a worker as soon as it finishes its assigned task. Once

KL(1+ ϵ) useful computations are collected by the master from different clusters across

multiple rounds, the decoding procedure can start. Here, ϵ is the overhead due to the

Fountain codes used in [74], which is set to 0.05 in our simulations. The performance

of this scheme depends critically on how well the distribution of the workers’ speeds

can be estimated. Observe that, if a worker in a fast cluster becomes a straggler, the

finishing time of the overall cluster can be arbitrarily delayed. This is the main drawback

of this scheme in comparison with SBP coding scheme and the MM-GASP, for which

any computation at any worker is equally useful. However, the clear advantage of the

rateless coding scheme is that the computation load mi, i.e., the number of tasks assigned

to worker i, does not need to be specified in advance, and tasks can be dynamically

allocated to workers in each cluster across rounds. Moreover, the recovery threshold is not

dominated by the maximum computation load m = maxmi, as is the case for SBP coding

and the MM-GASP schemes. Therefore, in order to allow the rateless coding scheme to

benefit from this flexibility, in our simulations, we consider a total upload cost for [74], i.e.,

the computations are assigned to clusters until the total upload communication budget is

met, while for MM-GASP and SBP we impose an upload cost constraint per worker. We

emphasize that this is a relaxation of the problem formulation introduced in Section 4.3,

and is only applied to the rateless coding scheme. Although SBP coding scheme and the

MM-GASP code can also benefit from this relaxation when the computation statistics

of the workers are known, such optimization is out of the scope of this dissertation and

left as a potential future work.

In our simulations, following the literature [59,72], and similarly to Chapter 3, we assume

that the time for a worker to finish one sub-task is distributed as a shifted exponential

random variable with probability density function

f(t) =

⎧

⎪

⎨

⎪

⎩

λe−λ(t−ν) if t ≥ ν,

0 otherwise,
(4.30)

where the scale parameter λ controls the speed of the worker and the shift parameter

ν is the minimum time duration for a task to be completed. Smaller λ implies slower

workers and more tendency to straggle.
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In each scenario considered in the following subsections, we run 1000 experiments in-

dependently with the given parameters and present the average computation time. We

assume that the partitions of matrices A and B have the same size, i.e., r
K = t

L , in all

of the scenarios considered. Given that each sub-task is a fraction 1
KL of the complete

task, to facilitate the comparison between different configurations, we choose λ ∝ KL,

and ν ∝ 1
KL , in all simulation setups.

4.7.1 Heterogeneous Workers

In this subsection, we assume that the computation speeds of the workers are het-

erogeneous. Specifically, we assume six heterogeneity classes, with scale parameters

λ1 = 10−1×KL, λ2 = 10−1.5×KL, λ3 = 10−2×KL, λ4 = 10−2.5×KL, λ5 = 10−3×KL

and λ6 = 10−3.5 ×KL, and a common shift parameter of ν = 10/(KL) seconds. There

are 75 workers for each class summing up to N = 450 workers in total, and assume that

any subset of at most T = N/15 workers can collude. We divide both matrices A and

B into K = L = 100 partitions. We evaluate the scheme in [74] for several numbers of

clusters, c, to observe the effect of the mismatch between the actual number of hetero-

geneity classes and the chosen c value. While generating the clusters, we simply assign

around N/c workers to each cluster, according to the estimated speeds in the first round.

We do not change the parameter c across rounds.

First, we assume that workers’ scale parameters do not deviate at all from the given

parameters across the rounds. We call such workers as stable workers. In Figure 4.2, we

plot the ACT of the compared schemes versus the total UCB by assuming stable workers.

In Figure 4.3, we also show the actual recovery thresholds of SBP codes, MM-GASP

codes, and the average recovery threshold of the rateless coding scheme for different c

values. As the name suggests, the rateless scheme does not have a constant recovery

threshold and its actual value depends on the computation speeds of the workers, the

number of clusters, and the number of workers assigned to them. Therefore, we present

the average recovery threshold for this scheme.

As observed in Figure 4.2, the SBP coding scheme is able to finish the overall task for

much lower UCB values than the other two schemes. This is thanks to the fact that SBP

is able to provide more computations, m, to workers for the same UCB, as highlighted

in Remark 4.1. In SBP, increasing the total UCB leads to an increase in both m and

Rth, as seen in Figure 4.3. This means that workers have to provide more computations

to the master in order to attain Rth. However, the benefit of workers’ ability to provide

more computations outweighs the increase in Rth, and as a result, the ACT decreases

when UCB increases. The reason for this is the heterogeneity of the workers’ speeds.
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Figure 4.2: ACT vs. total UCB trade-off of the compared schemes with heterogeneous
and stable workers.

That is, for a low total UCB, m is so small that the master cannot complete all Rth

computations from only fast workers. When we increase m, the maximum number of

computations the fast workers can provide also increases, and the benefit of this increase

dominates over the increase in the Rth. For the SBP scheme, this is so until we reach a

total UCB value corresponding to m = L i.e., total UCB of L ×N = 45000. After this

point, the ACT of SBP coding scheme stays constant. This is an inherent limitation of

SBP coding scheme since the maximum value of m is L. Beyond that value, we cannot

benefit from the additional UCB.

For MM-GASP codes, we observe that, although their recovery threshold is close to that

of SBP coding scheme in the low UCB regime, as seen in Figure 4.3, the minimum total

UCB for which MM-GASP codes are able to complete the overall task is larger than SBP

coding scheme. That is because the MM-GASP scheme is a univariate scheme; and thus,

for the same total UCB, the maximum number of computations a worker can provide

is less than the one in SBP coding scheme. For the same reason, at intermediate total

UCB availability, i.e., values less than 9 × 104 partitions, the ACT of the MM-GASP

scheme is quite large compared to SBP coding scheme. However, for larger values of total

UCB, we observe in Figure 4.2 that MM-GASP’s ACT decreases rapidly, substantially

outperforming the other two schemes. However, after a critical point, if the total UCB

further increases, then the ACT starts to increase again. That is because, beyond that

point, the increase in the recovery threshold is not compensated by the additional com-

putations at workers. Unfortunately, operating at this point may not be always possible.
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Figure 4.3: Average Rth of the compared schemes with heterogeneous and stable
workers

Especially when we do not have any prior information about the statistics of the workers’

speeds. Nevertheless, some heuristics can still be useful to approximate it and even if the

optimal point cannot be found, a sufficiently close point can still be beneficial. Thus, we

can conclude that, if a good heuristic can be found to identify a near-optimal m value,

for large UCB values, MM-GASP codes can complete the overall task faster than SBP

coding scheme as well as the rateless coding scheme. This makes MM-GASP codes a

good alternative for the scenarios with high UCB availability.

Finally, similarly to MM-GASP codes, we observe that the rateless codes start being able

to complete the overall task only at a relatively high total UCB value. That is because

the rateless coding scheme assigns a new sub-task to a worker as soon as it finishes its

task without waiting for the other clusters to finish. Thus, the UCB is greedily invested

in the fastest cluster. However, despite its speed, in terms of the number of useful

computations provided, the fastest cluster is less efficient than the other clusters. Recall

that d1 = ⌊(n1 − 2T + 1)/2⌋, but du = ⌊(nu − T + 1)/2⌋ for 2 ≤ u ≤ c. Therefore, if

the number of workers in the fastest cluster is limited, then for the low UCB values,

the rateless scheme cannot complete the overall task since it runs out of the necessary

upload resources before the master receives the minimum number of useful computations

to decode AB, which is KL(1 + ϵ).
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Moreover, we observe in Figure 4.3 that when the number of clusters is low, the recovery

threshold is also lower, and the rateless scheme starts completing the overall task at a

lower value of total UCB. That is because when c is low, since we assign N/c workers

per cluster, there are more workers in the fastest cluster. However, as observed in

Figure 4.2, a smaller recovery threshold does not always imply a lower ACT. In general,

we expect that the rateless coding scheme performs well when c is equal to the number

of heterogeneity classes, but, in this case, we also observe that it performs equally well

for c = 3. That is because, for c = 3, there is no λi, i ∈ [6] appearing in more than one

cluster, i.e., workers in the same heterogeneity class are allocated to the same cluster.

Therefore, for rateless codes, it is important to choose the design parameter c carefully.

Although for some c values and for some large UCB availabilities, it may perform better

than SBP and MM-GASP, in practice, we may not know the number of heterogeneity

classes, and hence, such a clear grouping of computation statistics may not be possible.

For such cases, SBP coding scheme or the MM-GASP may be preferable over the rateless

coding scheme.

In addition to choosing c optimally, estimating the instantaneous speeds of the workers

is another issue that needs to be addressed in rateless codes. In real-world scenarios,

the speeds of the workers can occasionally change due to temporary failures, parallel

job assignments, etc. To model this, we introduce another simulation scenario, in which

workers’ scale parameters can deviate from their original values with a very low prob-

ability ρ. We refer to such workers as mostly-stable workers. That is, in any round, a

worker with λi sticks to λi with probability 1 − ρ, but with a small probability ρ, it

draws its scale parameter uniform randomly from {λj | j ∈ [1 : 6]}. We consider such

a scenario to model the instantaneous changes in workers’ speeds since the detection of

such changes by the master and putting this worker to the correct cluster takes at least

one round. Taking ρ = 0.001, we plot the ACT of the compared schemes in Figure 4.4.

We observe that even with such a small probability deviation from the estimated scale

parameters, the performance of [74] degrades considerably. Thus, we can argue that, in

addition to the substantial improvement in the low and the intermediate UCB values,

SBP coding scheme can be advantageous over [74] even when high UCB is available

depending on the statistics of the workers’ speeds.

4.7.2 Homogeneous Workers

In this subsection, we consider the case in which the computation speeds of the workers

are homogeneous, and we compare the ACTs of the considered schemes with respect to

the available total UCB. That is, we have 450 workers as in Section 4.7.1, but this time,
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Figure 4.4: ACT vs. total UCB trade-off of the compared schemes with heterogeneous
and mostly-stable workers.

all the workers follow the same statistics with λ = 10−2 × KL and ν = 10/(KL). We

assume at most T = N/15 workers can collude, and we divide A and B into K = L = 100

partitions. Although homogeneous workers’ speeds are considered, for the rateless scheme

in [74], we consider different numbers of clusters c ∈ [1 : 3] in order to analyse its effect.

In Figure 4.5, we present the ACT versus UCB plot for this setting.

Similarly to the heterogeneous case discussed in Section 4.7.1, due to the upload cost

efficiency of the bivariate polynomial codes, we observe that the minimum UCB for which

SBP can complete the overall task is smaller than for the other schemes. Moreover, in

this homogeneous case, we observe that the ACTs of SBP and MM-GASP only increase

with the total UCB. That is because, due to the similarity in workers’ speeds, there is

no need for the faster workers to compensate for the slower ones. Therefore, rather than

improving the ACT, increasing m beyond the minimum value, for which the schemes

complete the overall task, results in a higher ACT since it also increases Rth. Therefore,

we depict the best ACT for SBP and MM-GASP coding schemes in Figure 4.5 and

Figure 4.6 by flat dashed lines.

On the other hand, for the rateless codes, we observe that, regardless of the number of

clusters, c, considered, they perform significantly worse than SBP coding scheme for all

UCB values. That is because, while the sub-tasks are one-to-any replaceable in SBP

coding scheme, i.e, the result of any sub-task can compensate for the absence of any

other sub-task, this is not the case in the rateless coding scheme. Since we consider the
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Figure 4.5: ACT vs. total UCB trade-off of the compared schemes with homogeneous
and stable workers.

homogeneous workers in their speeds, there is not much difference between the clusters in

the rateless coding scheme. Since to decode the sub-tasks in a cluster, all of the workers

in that cluster must finish their sub-tasks, the ACT increases.

As we stated in Section 4.7.1, in a real-world scenario, the speeds of workers can occa-

sionally change. To model this effect, in Figure 4.6, we provide the ACT versus UCB

trade-off in the scenario in which the workers are mostly-stable with a transition proba-

bility ρ = 0.001. Since there is only one heterogeneity class in the homogeneous case, to

simulate mostly-stable workers, we assume that a worker sticks to λ = 10−2 ×KL with

probability 1 − ρ, but with probability ρ, its λ parameter is chosen uniformly between

λ = 10−3 ×KL and λ = 10−4 ×KL.

We observe that the effect of such a low probable deviation from the original parameters

is considerable in the rateless codes since in order to utilize the computations in a cluster,

all the workers in that cluster must complete their sub-tasks. If some of these workers

straggle even only for one round, it can delay the overall computation significantly.

To conclude, we observe that, in the cases in which the workers’ speeds are known to be

close to each other, i.e., homogeneous, SBP coding scheme is preferable over both the

rateless coding and the MM-GASP schemes.
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4.8 Proof of Theorem 4.2

Firstly, we visually show that the degree of A(x)B(x, y) is equal to the recovery threshold

expression in Theorem 4.2. In Figure 4.7, we visualize the degrees of the monomials of

A(x)B(x, y) in the deg(x)−deg(y) plane. That is, each filled circle represents a monomial

of A(x)B(x, y). If we count them, we see that on the left rectangle, there are (K + T )L

elements and on the right rectangle, there are m(K+T−1) elements. Hence, we conclude

that the number of monomials of A(x)B(x, y) is (K + T )L+m(K + T − 1).

In the rest of the proof, we need to show that every possible combination of (K +

T )L+m(K + T − 1) responses collected at the master interpolates a unique polynomial

A(x)B(x, y), implying Rth = (K + T )L+m(K + T − 1).

As done in Chapter 3, the bivariate polynomial interpolation problem can be formu-

lated as solving a linear system of equations, whose unknowns are the coefficients of

A(x)B(x, y) and whose coefficient matrix, or interpolation matrix, consists of the mono-

mials of A(x)B(x, y) and their derivatives with respect to y evaluated at the evaluation

points of the workers, (xi, yi), i ∈ [1 : N ]. Different from Chapter 3, instead of KL, the

dimension of the interpolation matrix in this case is (K+T )L+m(K+T − 1) since this

is the number of monomials of A(x)B(x, y).
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Figure 4.7: The visualization of the degrees of the monomials of A(x)B(x, y) in the
deg(x)− deg(y) plane.

In Equation (4.31), we give an example interpolation matrix formed by any 5 workers,

each of which provides m = 2 computations, when K = L = 2, m = 2 and T = 1.

Observe that the first row represents the direct evaluation A(x1)B(x1, y1) from worker

1, and the second row represents A(x1)∂1B(x1, y1), again from worker 1. In general,

any interpolation matrix formed by Rth = 10 computations received from any subset of

workers is also valid, as long as the workers follow the computation order specified in

Section Section 4.5.2.

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 x1 x21 x31 x41 y1 x1y1 x21y1 x31y1 x41y1

0 0 0 0 0 1 x1 x21 x31 x41
...

...
...

...
...

...
...

...
...

...

1 x5 x25 x35 x45 y5 x5y5 x25y5 x35y5 x45y5

0 0 0 0 0 1 x5 x25 x35 x45

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (4.31)

The problem of showing that any Rth responses from the workers interpolate to a unique

polynomial is equivalent to showing that the corresponding interpolation matrix is non-

singular. The theorem claims that this is the case with high probability. First, we

need to show that there exist some evaluation points for which the determinant of the

interpolation matrix is not zero. That is equivalent to showing that det(M) is not the

zero polynomial of the evaluation points. In Chapter 3, such a result for the same type

of interpolation matrices is shown for the real field R. In this section, we extend this

proof to F. We show there exists some evaluation points such that det(M) is not zero by

using the Taylor series expansion of det(M), in a similar manner done in Chapter 3, by

using the fact that Taylor series expansion is also applicable in F, as long as the degree

of the polynomial A(x)B(x, y) is smaller than the field size q. This can be guaranteed
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by choosing a large q. For further details on the applicability of Taylor series expansion

in finite fields, we refer the readers to [77] and [78].

Without losing generality, let us assume first that n workers with n ≤ N , provide, to-

gether, enough responses, i.e., as many as Rth, to interpolate A(x)B(x, y). We further

assume that (xi, yi) and (xj , yj) are two evaluation points at which the evaluations and

derivatives of A(x)B(x, y) are received by the master. We write the Taylor series ex-

pansion of det(M) by taking (xi, yi) as the pivot node and (xj , yj) as the variable node

as

det(M) =
∑

(α1,α2)∈N2

1

α1!α2!
(xj − xi)

α1(yj − yi)
α2Dα1,α2

(Z̃), (4.32)

where Z̃ ! {(xk, yk) : k ∈ [1 : n]} \ {(xj , yj)} and

Dα1,α2
(Z̃) =

∂α1+α2

∂xα1

j ∂yα2

j

det(M)(xj , yj)

∣

∣

∣

∣

xj=xi,yj=yi

. (4.33)

Following similar reasoning in Chapter 3, since the monomials (xj − xi)α1(yj − yi)α2

are linearly independent for different (α1,α2), if there is no relation between x and y

coordinates of the evaluation points, i.e., xi and xj do not depend on yi and yj , det(M)

is a zero polynomial of all evaluation points, if and only if Dα1,α2
(Z̃) = 0, ∀(α1,α2) ∈ N2.

Hence, in order to show that M is non-singular, it suffices to show that there exists at

least one (α1,α2) making Dα1,α2
(Z̃) nonzero.

Before showing that we define the notion of the unique shift in the following definition.

Definition 4.1. Recall from Lemma 3.1 that

∂α1+α2

∂xα1

j ∂yα2

j

det(M)

∣

∣

∣

∣

xj=xi,yj=yi

=
∑

(k,l)∈RM (α1,α2)

Ck,l(M) det
(

∇xj ,yj
k,l M

)

∣

∣

∣

∣

xj=xi,yj=yi

,

(4.34)

In this expression, if RM (α1,α2) has only one element, i.e., there is only one (k, l)

resulting in regular derivative paths, then (α1,α2) is called unique shift order and (k, l)

is called a unique shift.

Note that the notion of unique shift is closely related to the notion of quasi-

unique shift defined in Chapter 3 but more restrictive. While for an (α1,α2) pair

to qualify as a unique shift order, it is required that there is only one possible

(k, l) making det
(

∇xj ,yj
k,l M

)

∣

∣

∣

∣

xj=xi,yj=yi

̸= 0, it is sufficient that the derivative set of

∇xj ,yj
k,l M

∣

∣

∣

∣

xj=xi,yj=yi

obeys N-zig-zag order to qualify the pair as a quasi-unique shift.

To show that there exists at least one (α1,α2) making Dα1,α2
(Z̃) nonzero, first, observe

that Dα1,α2
(Z̃) in Equation (4.32) does not depend on (xj , yj) since after taking the
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derivatives with respect to (xj , yj), the resulting expression is evaluated at xj = xi, yj =

yi. If (α1,α2) is a unique shift order, implying |RM (α1,α2)| = 1, then we can write

Equation (4.34) as

∂α1+α2

∂xα1

j ∂yα2

j

det(M)

∣

∣

∣

∣

xj=xi,yj=yi

= Ck,l(M) det
(

∇xj ,yj
k,l M

)

∣

∣

∣

∣

xj=xi,yj=yi

, (4.35)

such that (k, l) is the only element of RM (α1,α2). If we define M1 !

∇xj ,yj
k,l M |xj=xi,yj=yi , then it is enough to show that det (M1) is not the zero polyno-

mial. Notice that, M1 no longer depends on the evaluation point (xj , yj). We call such a

procedure of transforming an interpolation matrix into another interpolation matrix via

unique shifts as the coalescence of the variable node and the pivot node. After obtaining

M1, we can employ the same idea to show M1 is non-singular. Namely, we can write

the Taylor series expansion of det(M1) by choosing a new variable node and keeping the

same pivot node (xi, yi). If there is a unique shift for this new coalescence, the resul-

tant matrix M2 will not depend on neither the previous variable node (xj , yj) nor the

current variable node. We can apply such coalescences successively as long as we can

find a unique shift order (α1,α2) at each coalescence, until Mfinal depends only on one

evaluation point, which is the pivot node, (xi, yi). In Mfinal, the derivative set of (xi, yi)

has all possible elements of the derivative order space of A(x)B(x, y). Thus, Mfinal is a

triangular matrix, implying its non-singularity.

To summarize, to prove that all possible interpolation matrices, M, generated from our

coding scheme and the corresponding computation order at the workers, are non-singular

in general, we need to show that we can always find at least one unique shift for all the

steps of the coalescence procedure. Our strategy to show that is based on the idea of

keeping the derivative set of the pivot node to be a lower set. A lower set is defined as a set

in which the presence of an element implies the presence of all possible elements smaller

than this element. To decide if an element is smaller than any other element, we need

to define an ordering rule. For our case, we define such an ordering as follows. Assume

we denote our pivot node as zi = (xi, yi) and take two derivative orders (a, b) ∈ Uzi,M

and (c, d) ∈ Uzi,M , where a and c are the orders of the derivative with respect to x and

b and d are the orders of the derivative with respect to y. We say (a, b) < (c, d) if and

only if a < c or a = c and b < d.

Before its formal statement, we illustrate our strategy to find a unique shift in all the

coalescence steps in the following two examples.

Example 4.1. Assume K = L = 5, T = 1 and m = 3 and we are at the beginning

of p-th coalescence step. Let us choose zi as the pivot node and zj as the variable

node. Further, assume at the beginning we have Uzi,Mp−1
= {(a, b) : (a, b) ≤ (1, 2)}
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Figure 4.8: Depictions of the derivative sets in Example 4.1.

and Uzj ,Mp−1
= {(a, b) : (a, b) ≤ (0, 2)}. We depict the derivative sets of Uzi,Mp−1

and

Uzj ,Mp−1
in Figure 4.8a and Figure 4.8b. We will take smallest possible shift (α1,α2)

such that the resultant Uzi,Mp after the coalescence is a lower set. Knowing the number

of elements in Uzi,Mp after the coalescence, its shape is uniquely determined under the

condition that it must be a lower set and we depict this set in Figure 4.8c. In Figure 4.8b

and Figure 4.8c, we assign to each element of Uzj ,Mp−1
either the letter a, b or c so that

we can track its location during and after the coalescence procedure. Recall that taking

derivatives corresponds to shifting the elements of the derivative set in the derivative

order space. Thus, in order to shift the elements of Uzj ,Mp−1
to their locations in the

final shape in Figure 4.8c, we need to the total number of shifts in both x and y directions

is 4, implying we need to choose (α1,α2) = (4, 4). For this choice, we have k(ia) = 2,

k(ib) = 1, k(ic) = 1, l(ia) = 0, l(ib) = 2 and l(ic) = 2 where ia, ib and ic are the row-

index of the elements a, b and c, respectively. Given this choice of (α1,α2), there is no

other possible resulting shape for Uzi,Mp resulting a non-singular Mp. To see this, observe

that, if we write the derivative sets of Uzi,Mp after-the-coalescence for all possible (k, l)

such that
∑

i k(i) = α1 and
∑

i l(i) = α2, then all, except the one depicted in Figure 4.8c

will have overlapping elements making the corresponding interpolation matrix singular.

Therefore, (α1,α2) = (4, 4) is a unique shift order.

Example 4.2. Let us consider the same setting in Example 4.1, except Uzi,Mp−1
=

{(a, b) : (a, b) ≤ (6, 1)}. Since the maximum number of computations a worker can

provide is m = 3, the cardinality of the derivative set of the variable node Uzj ,Mp−1
, in

this example, is at its maximum. Thus, we can directly follow the same procedure as in

Example 4.1. Note that after the coalescence, UziMp will have 34 elements, and the lower
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Figure 4.9: Depiction of Uzi,Mp
after coalescence in Example 4.2
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Figure 4.10: Visualization of the pivot node and the variable node during a coales-
cence

set having 34 elements is unique and well-defined. To obtain the shape in Figure 4.9, we

need (α1,α2) = (0, 19) with k(ia) = 7, k(ib) = 6 and k(ic) = 6, and it is a unique shift

order since any other assignment of 19 shifts to a, b and c results in a non-singular Mp.

Next, we formally state our strategy for an arbitrary coalescence step p. Since we choose

one pivot node and use it for every coalescence step, we guarantee that the variable node’s

derivative set has always at most m elements. To generalize the procedure in Example 4.1

and Example 4.2, let us assume (px, py) is the largest element of the derivative set of the

pivot node zi, i.e., Uzi,Mp−1
= {(a, b) : (0, 0) ≤ (a, b) ≤ (px, py)} and (0, vy) is the largest

element of the derivative set of the variable node zj , i.e., Uzj ,Mp−1
= {(0, b) : 0 ≤ b ≤ vy}
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such that vy ≤ m. While calculating (α1,α2) pair, we first determine α2, which is the

total derivative order with respect to yj , or equivalently the number of shifts towards

y-direction in the derivative order set. This means that we first take the derivatives

with respect to yj , and then with respect to xj . In Figure 4.10a, in the derivative

order space, for px ≤ K + T − 1, we depict the derivative set of the pivot node, i.e.,

Uzi,Mp−1
, by filled circles, and the locations to which the elements of Uzj ,Mp−1

will be

placed after the coalescence by unfilled circles. Note that we determine these locations

by inserting the elements of Uzj ,Mp−1
into Uzi,Mp−1

such that the derivative set of the

pivot after the coalescence, i.e., Uzi,Mp , satisfies the lower set property. In Figure 4.10b,

instead of the elements of Uzi,Mp−1
, we depict the elements of Uzj ,Mp−1

together with

the locations they will be placed after the coalescence to facilitate visualization of the

necessary shifts. To be able to keep track of the elements, we depict each one of them by

Ψi, i ∈ [1 : vy + 1]. We denote the number of elements in Uzj ,Mp−1
to be shifted towards

y-direction, by µ. We further define ξ ! vy +1−µ. As shown in Figure 4.10a, when the

number of empty spaces in the rightmost partially occupied column of Uzi,Mp−1
, which

is L− py − 1 is smaller than |Uzj ,Mp−1
| = vy + 1, µ becomes µ = L− py − 1, since these

spaces must be filled. Otherwise, to fill as many as spaces possible, all elements of the

derivative set of the pivot node are shifted towards y-direction and µ becomes vy + 1.

Thus, µ = min{L− py − 1, vy +1} if px ≤ K +T − 1 as this is the case considered in the

figures. On the other hand, when px > K + T − 1, the same logic also applies but the

maximum number of elements that can be placed in a column in Figure 4.10a would be

m instead of L. Thus, the expression for µ is modified as µ = min{m− py − 1, vy + 1},
which is obtained by replacing L with m.

Next, recall that only regular simple shifts are considered for unique shifts. Thus, while

taking y-directional derivatives, i.e., shifts towards y-direction in Figure 4.10b, the se-

quence of the elements in the y-axis does not change. For instance, Ψvy+1 stays always

on top of the elements denoted by Ψi, i ∈ [1 : vy]. If, for example, as a result of some

shifts, Ψvy is placed on top of Ψvy+1, then this would be possible only if the element Ψvy

is located in the same location as Ψvy+1 at some point, and this would contradict the

assumption of regular simple shifts. Hence, there is only one resulting order after shifting

the uppermost µ elements towards the y-direction. We show the elements of the variable

node’s derivative set after y-directional shifts in Figure 4.10c. All the remaining shifts,

now, are the ones towards the x-direction so that the elements of Uzj ,Mp−1
are located

in their intended locations, i.e., unfilled circles in Figure 4.10c. Notice that each Ψi is

already aligned with its final location in the y-direction, and hence, each one of them

will be shifted towards the x-direction by a sufficient amount. Therefore, these shifts

also result in a unique shape. From these observations, we can conclude that whenever
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the derivative sets of the pivot node and the variable node are lower sets, there exists a

unique shift for their coalescence.

From this discussion, we conclude that det(M) is not a zero polynomial for large enough

q. Next, we need to find the upper bound on the probability det(M) = 0, when the

evaluation points are sampled uniform randomly from F.

Lemma 4.1. [79, Lemma 1] Assume P is a non-zero, v-variate polynomial of vari-

ables αi, i ∈ [1 : v]. Let d1 be the degree of α1 in P (α1, . . . ,αv), and P2(α2, . . . ,αv)

be the coefficient of αd1
1 in P (α1, . . . ,αv). Inductively, let dj be the degree of αj in

Pj(αj , . . . ,αv) and Pj+1(αj+1, . . . ,αv) be the coefficient of αj in Pj(αj , . . . ,αv). Let

Sj be a set of elements from a field F, from which the coefficients of aj’s are cho-

sen. Then, in the Cartesian product set S1 × S2 × · · · × Sv, P (α1, . . . ,αv) has at most

|S1 × S2 × · · ·× Sv|
(

d1
|S1|

+ d2
|S2|

+ · · ·+ dv
|Sv |

)

zeros.

In our case, det(M) is a multivariate polynomial of the evaluation points (xi, yi) since the

elements of M are the monomials of A(x)B(x, y) and their derivatives with respect to y,

evaluated at some (xi, yi). Thus, in our case, v in Lemma 4.1 is the number of different

evaluation points in M. We choose the evaluation points from the whole field F. Thus,

Sj = F and |Sj | = q, ∀j ∈ [1 : v], and |S1 × S2 × · · ·× Sv| = qv. Then, the number of

zeros of det(M) is at most qv−1(d1 + d2 + · · ·+ dv). If we sample the evaluation points

uniform randomly, then the probability that det(M) = 0 is (d1 + d2 + · · ·+ dv)/q, since

we sample a v-tuple of evaluation points from S1×S2× · · ·×Sv. To find d1+d2+ · · ·+dv,

we resort to the definition of determinant, that is det(M) =
∑Rth

i=1(−1)1+im1,i det(M1,i),

where m1,i is the element of M at row 1 and column i and M1,i is the minor of M when

row 1 and column i are removed [73, Corollary 7.22]. Thus, to identify the coefficients in

Lemma 4.1, in the first row of M, we start with the monomial with the largest degree.

Assuming the monomials are placed in an increasing order of their degrees, the largest

degree monomial is at column Rth. If that monomial is univariate, then d1 is the degree of

the monomial and the coefficient of αd1
1 is P2(x2, . . . , xv) = det(M1,Rth

). If the monomial

is bivariate, then we take the degree of the corresponding evaluation of x, i.e., α1, as

d1, and the degree of the corresponding evaluation of y, i.e., α2, as d2. In this case, the

coefficient of αd2 is P3(α3, . . . ,αv) = det(M1,Rth
). Next, we take M1,Rth

, and repeat the

same procedure. We do so until we reach a monomial of degree zero. In this procedure,

since we visit all the monomials of A(x)B(x, y) evaluated at different evaluation points,

i.e., αi’s, the sum d1 + d2 + · · ·+ dv becomes the sum of degrees of all the monomials of

A(x)B(x, y). The next lemma helps us in computing this.

Lemma 4.2. Consider the polynomial P (x, y) =
∑a

i=0

∑b
j=0 cijx

iyj, where ci,j’s are

scalars. The sum of the degrees of all the monomials of P (x, y) is given by ξ(a, b) !

1
2(a+ 1)(b+ 1)(a+ b).
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Proof. The sum of the degrees of all the monomials is given by

a
∑

i=0

b
∑

j=0

(i+ j) =
a
∑

i=0

i(b+ 1) +
a
∑

i=0

b
∑

j=0

j =
a(a+ 1)

2
(b+ 1) +

b(b+ 1)

2
(a+ 1)

=
1

2
(a+ 1)(b+ 1)(a+ b). (4.36)

To calculate the sum of degrees of A(x)B(x, y), we use the depiction in Figure 4.7. By

using Lemma 4.2, the sum of monomial degrees in the diagonally shaded rectangle in

Figure 4.7 is

ξ(K + T − 1, L− 1) =
1

2
L(K + T )(K + L+ T − 2). (4.37)

Moreover, the sum of monomial degrees in the rectangle shaded by crosshatches is given

by

ξ(2K + 2T − 2,m− 1)− ξ(K + T − 1,m− 1)

=
1

2
m(2K + 2T − 1)(2K + 2T +m− 3)− 1

2
m(K + T )(K + T +m− 2)

=
m

2

(

3(K + T )2 +m(K + T )− 6K − 6T −m+ 3
)

. (4.38)

By summing them we obtain d1 + d2 + · · · + dv =
m
2

(

3(K + T )2 +m(K + T )− 6K − 6T −m+ 3
)

+ (K+T )L
2 (K + L + T − 2), which

concludes the proof.

4.9 Conclusion

In this chapter, for straggler exploitation and security in distributed matrix multiplica-

tion, we have proposed a storage- and upload-cost-efficient bivariate polynomial coding

scheme named SBP codes. Although the previous works usually assume the availability

of at least as many workers as the recovery threshold, the multi-message approach allows

the completion of the task even if the number of workers is less than the recovery thresh-

old. Compared to univariate polynomial coding-based approaches including MM-GASP

codes, SBP coding scheme has a lower upload cost and less storage requirement, mak-

ing the assignment of several sub-tasks to each worker more resource efficient. Thanks

to these properties, SBP codes considerably improve the average computation time for

SDMM, especially when the number of workers, the upload cost budget, or the storage

capacity is limited.



Chapter 5

Private Wireless Federated Learning

with Anonymous OAC

5.1 Abstract

In conventional FL, DP guarantees can be obtained by injecting additional noise to

local model updates before transmitting to the PS. In the wireless FL scenario, we show

that the privacy of the system can be boosted by exploiting over-the-air computation

(OAC) and anonymizing the clients. In OAC, clients transmit their model updates

simultaneously and in an uncoded fashion, resulting in a much more efficient use of the

available spectrum. We further exploit OAC to provide anonymity for the transmitting

clients. The proposed approach improves the performance of private wireless FL by

reducing the amount of noise that must be injected.

5.2 Introduction

FL [18] allows multiple clients, each with its own local dataset, to train a model collab-

oratively with the help of a PS without sharing their datasets. At each iteration of FL,

the PS shares the most recent global model with the clients, which then use their local

datasets to update the global model. Local updates are aggregated and averaged at the

PS to update the global model. The fact that data never leaves the clients is considered

to protect its privacy. However, many recent works including [37,38,40] show that model

updates or gradients also leak a lot of information about the dataset. This calls for

additional mechanisms to guarantee privacy. In this chapter, we consider DP, as it is a

widely-adopted rigorous notion of privacy [53]. Given an algorithm which outputs some

120
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statistics about a dataset, if the change in the output probability distribution is tolera-

bly small when the input database is changed with a very close neighbouring one, then

the algorithm is deemed as differentially private. Many recent works exploit DP-based

algorithms to provide rigorous privacy guarantees in machine learning [80–85].

We consider a FL setting with co-located clients communicating with the PS over a wire-

less multiple access channel (MAC). Recent work has shown that rather than conventional

digital communication, the clients can transmit their local updates simultaneously in an

uncoded fashion to enable OAC [86–88]. This results in a much more efficient use of

the available resources, and significantly improves the learning performance. It is also

remarked in [87] that the analog computation in a wireless domain makes privacy more

easily attainable. A common method to provide DP guarantees is adding noise to the

output with a variance proportional to the maximum change in the output under neigh-

bouring datasets [53]. In the digital implementation of FL, where each client separately

communicates with the PS, noise is separately added to each client’s gradients in every

local iteration [83] to ensure DP; whereas in analog computation, the PS only sees the

sum of the updates together with the channel noise, which effectively protects all the

updates. Thus, the same amount of protection can be achieved with less perturbation,

improving the final accuracy.

Privacy in wireless FL through OAC has been recently studied in several works [89–92].

In [89], distributed SGD is studied with quantized gradients and privacy constraints.

In [90], if the channel noise is not sufficient to satisfy the target DP guarantees, a subset

of the clients add additional noise to their updates, benefiting all the clients. In [91]

and [92], transmit power is adjusted for the same privacy guarantee. We note that,

in [90–92], estimating channel state information (CSI) from the clients to the PS is

for aligning their computations at the PS and ensuring the target privacy guarantee.

However, in practice, clients estimate CSI from pilots transmitted by the PS. Hence, as

an adversary, the PS can adjust the pilots to degrade the privacy level. Additionally,

in [90], clients depend on others for privacy, which introduces additional point-of-failure.

Differently from the works cited above, our aim in this chapter is to achieve DP guarantees

in wireless FL by exploiting the anonymity of the transmitters via OAC. Our main

contributions can be summarized as follows.

• We study the effects of randomly sampling the clients and batching, on privacy. By

forcing a constant receive power at the PS across iterations, we provide anonymity

to the transmitting clients, and employ it for privacy.

• By distributing the noise generation process amongst the workers, we make the

privacy guarantee resilient against the failure of transmitting nodes.
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• We ensure that the proposed protocol is robust against pilot attacks.

5.3 System Model

We consider N wireless clients. Each client i ∈ [1 : N ] hosts their local dataset Di, which

are i.i.d. across the clients. A PS orchestrates these clients to learn a global model w by

minimizing a global loss function L = 1
N

∑

i∈[1:N ]
1

|Di|

∑

d∈Di
ℓ(w, d), where ℓ(w, d) is an

application-specific empirical loss function. We employ distributed SGD to iteratively

minimize L across the clients. At the beginning of iteration t, the PS broadcasts the

global model wt to all the clients. Then, the clients participating in the learning process

in that iteration transmit their gradient estimates over a Gaussian MAC. In round t, the

PS receives the superposition of the signals transmitted by the participating clients as

y[t] =
∑

i∈At

ci,txi[t] + z[t],

where z[t] ∼ N (0, N0I) is the channel noise, At is the set of participating clients, xi[t]

is the signal transmitted by client i, and ci,t is the channel coefficient from client i to

the PS. We assume that the transmitters perfectly know and correct the phase shift in

their channels. Therefore, for simplicity, we assume real channel gains in the rest of the

chapter, i.e., ci,t ∈ R+.

We assume that ci,t is independent across the users and rounds, but remains constant

within one round. We further assume that only the agents with sufficiently good channel

coefficients participate in each round to increase power efficiency. We assume this hap-

pens with probability p ∈ (0, 1] for each client, independently of other clients. We leave

the analysis of this probability for different fading distributions as future work. If the

client i participates in a round, then it samples uniformly from its own local dataset such

that every data point is sampled independently from the other samples with probability

q ∈ (0, 1]. Let Bi,t denote the set of samples in the batch used by the ith client if it is

participating in round t. Let at ! |At| and bi,t ! |Bi,t|. Both at and bi,t are binomial

random variables with parameters p and q.

Each participating client computes a gradient estimate based on the random samples in

its batch. We clip gradients such that L2-norm of every per-sample gradient does not

exceed a threshold C. That is, as done in [83], for a sample d, the gradient for that

sample is calculated as

gt(d) ! ∇ℓ(wt, d)×max

{

1,
C

∥∇ℓ(wt, d)∥2

}

. (5.1)
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After gradients are calculated and clipped, client i transmits

xi[t] = hi,t

⎛

⎝ξi,t
∑

d∈Bi,t

gt(d) + βi,tni,t

⎞

⎠ , (5.2)

where ni,t ∼ N (0,σ2i,tI), ξi,t and βi,t are scaling factors, and hi,t ! (c̃i,t)−1. c̃i,t is the

CSI which can be manipulated by the PS by a multiplicative factor of k ∈ (0, 1], i.e.,

c̃i,t = k · ci,t.

For brevity, throughout this chapter, we assume that the local datasets are of the same

size, although our analysis can be easily extended by adding another scaling factor to

the gradient if this is not the case.

After receiving the signals simultaneously transmitted by the clients, using the received

signal y[t], the PS updates the model as wt+1 = wt− ηy[t], where η is the learning rate.

We assume that the number of participating clients at and the batch sizes bi,t are known

to the clients but not to the PS. This can be achieved by keeping a common random

number generator seed across the clients, or alternatively by encrypted communication

between the clients. Since this is only sharing two real numbers, the communication

overhead is negligible.

5.3.1 Threat Model

We assume that the PS is semi-honest and curious. It is honest in the sense that it wants

to correctly acquire the final trained model, and thus, follows the model averaging step

accurately, but it also would like to acquire all possible sensitive information about single

individual data points. Therefore, it can attack the CSI estimation process to encourage

the clients to increase their transmit power or to add less noise to their transmissions

by suggesting that their channel quality is worse than it is in reality. We note that, if a

common pilot signal is used to learn the CSI by all the clients, the CSI values can only

be scaled by the same parameter across the clients.

We assume that the clients are honest and trusted. They do not intentionally attack

the learning process; however, we also do not depend on a few clients for privacy as the

clients may fail to transmit unintentionally. We further assume that the PS has only one

receiving antenna, due to which it is unable to determine the spatial directions of the

incoming signals. Consequently, the PS cannot differentiate between the sources of the

received signals based on the transmission direction. In case the PS server is unable to

determine whether a client is active or not during a specific time, the client is considered

anonymous to the PS for that corresponding round.
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5.4 Main Results

As we discussed in the previous section, we sample the participating clients and the local

datasets to be used in each iteration. It is well known that the privacy of randomized

mechanisms can be amplified via subsampling [52, 93, 94]; however, these results are for

the centralized setting. To take advantage of sampling in the distributed setting, we

make sure that all of the data samples are chosen independently and uniformly with

probability pq. However, the challenge is that since the local datasets of different clients

are distinct, the conditional probability of a data point being chosen given some other

data point is already sampled may not be the same as the marginal probability of the

same event. For example, if two data points are hosted by the same client, then the

conditional probability of the second data point being chosen given the first point is

already chosen is q, instead of pq. One way of overcoming this problem is shuffling

the whole dataset across the clients after each iteration to cancel the effect of locality.

However, this would incur a large communication cost. A better way is to exploit the

wireless nature of the protocol as we explain next.

5.4.1 Ensuring the anonymity of clients

Since the PS can only see the aggregated signal, it lacks the information on which clients

have transmitted. Still, if the PS knows the number of participating clients, then it can

collect some information across the iterations and infer some dependency between the

samples, such as two samples being hosted by the same client. In such cases, the i.i.d.

assumption on the sampling probability of data points does not hold. Next, we show

how we mask the number of participating clients.

Lemma 5.1. If ξi,t = 1/bt, ∀i ∈ At, where bt !
∑

i∈At
bi,t, the PS cannot infer the

number of clients actively transmitting in round t.

Proof sketch: Since the clients scale their local gradients by bt before transmitting, and

the PS can only see the average gradient at each round, the received power level at the

PS is independent of the number of the transmitting clients or their identities. Thus, by

utilizing the information about the power level, it is not possible to infer any information

about the number of transmitting clients.

Due to Lemma 5.1, knowing that any set of data is already sampled does not convey

any information to the PS about the identities of the remaining sampled data points

unless it learns the identities of the transmitting clients. Therefore, batching local sam-

ples independently with probability q and similarly sampling the transmitting clients
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independently with probability p is equivalent to subsampling in the centralized setting

with probability pq.

5.4.2 Robustness to transmission failures

As we have stated, we want our scheme to be robust against transmission failures of

clients that are scheduled to transmit at a certain iteration but failed to do so for some

reason. This is achieved by distributing the noise generation across the clients.

Lemma 5.2. If we choose βi,t = 1/
√
at and σi,t = σ̂t, ∀i ∈ At, then the received signal

at the PS becomes

y[t] =
∑

i∈At

1

bt

∑

j∈Bi,t

gt(j) + n[t] + z[t], (5.3)

where n[t] ∼ N (0,σ2t I), and σt = σ̂t. When k < at clients in At fail to transmit, the

noise variance degrades to σt = σ̂t
√

(at − k)/at.

Proof sketch: If k clients fail, there are at − k remaining clients transmitting. Since

the noise added by the clients is independent and each has the variance σ̂2t /at, we have

σ2t = σ̂2t (at − k)/at. If there is no failure, k = 0, and we obtain σt = σ̂t.

As we see in Lemma 5.2, in case of transmission failures in At, the variance of the total

noise degrades gracefully, and so does the privacy. Hence, such transmission failures are

not catastrophic.

5.4.3 Robustness to manipulated CSI values

In practice, given a channel noise variance N0, we need to tune σ so that the total

noise variance N0 + σ2 is sufficient to meet the desired privacy level, i.,e, (ε, δ)-DP.

However, if we rely on the channel noise and our channel is better than we think, i.e.,

less N0 than anticipated, then, the total noise variance may be less than it should be

to guarantee the desired privacy levels. This results in larger ε and δ values than their

target values, resulting in a possible privacy breach. To avoid this, while calculating the

privacy guarantees, we simply ignore the channel noise since CSI values are prone to

attacks by the PS. Then, the ε value we get is the upper bound of the real ε value in the

presence of channel noise.

5.4.4 Privacy analysis

In the next theorem, we present a result which shows the boosting effect of sampling on

the overall privacy.
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Theorem 5.1. Each round t in our FL scheme with OAC is (α, 2p
2q2α
σ̃2
t

)-RDP, where

σ̃t !
σtbt
2C , if pq ≤ 1/5, σ̃t ≥ 4 and the following inequalities are satisfied

1 < α ≤ 1

2
σ̃2t log

(

1 +
1

pq(α− 1)

)

− 2 log(σ̃t), (5.4)

and

α ≤
1
2 σ̃

2
t log

2(1 + 1
pq(α−1))− log 5− 2 log(σ̃t)

log
(

1 + 1
pq(α−1)

)

+ log(pqα) + 1
2σ̃2

t

. (5.5)

Proof. Consider Equation (5.3) and define f [t] ! y[t] − n[t] − z[t] =
1
bt

∑

i∈At

∑

j∈Bi,t
gt(j). Let us define ∆f ! maxD,D′ ∥f(D)− f(D′)∥2, where D and D′

are two datasets with the same size, differing only in one data point. For the same realiza-

tion of random batching and client selection processes, the batch sizes Bi,t(D) and Bi,t(D′)

also differ at most in one element. Since ∥gt(j)∥2 ≤ C, we find ∆f = 2C
bt

. With Gaussian

Mechanism (GM), according to Theorem 2.3, our mechanism is (α,α(∆f)2/(2σ2t ))-RDP

without sampling. Moreover, by Lemma 5.1, the sampling probability of each sample

is pq. The remaining of the lemma follows from the direct application of [94, Theorem

11].

It is worth noting that if the conditions in Theorem 5.1 are not satisfied, the RDP of

the sampled Gaussian mechanism can still be computed numerically using the procedure

given in [94, Section 3.3], and improvement due to sampling is still valid.

Process to compute (ε, δ)-DP after T iterations: According to Lemma 2.1, if the

received message at round t is (α, ϵt)-RDP, then after T iterations, the mechanism is
(

α,
∑

t∈[T ] ϵt
)

-RDP. According to Lemma 2.2, it is (
∑

t∈[T ] ϵt + log(1/δ)/(α− 1), δ)-DP.

We observe that although ϵt depends on the parameters in our mechanism, α does not. It

is a parameter we choose to minimize (
∑

t∈[T ] ϵt+log(1/δ)/(α−1), δ), which we compute

for several α values and take the best α among them. Since both the analytical (if it

exists) and the numerical computations of the composed (α, ε)-RDP is computationally

cheap, this is feasible.

We note that employing RDP-based composition, we obtain a much tighter bound on

the final ε value compared to the advanced composition theorem [53], which is used

in [90,92].
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Figure 5.1: Total privacy measured by ε for different sampling rates across iterations.

5.5 Numerical Results

In this section, we numerically calculate the DP guarantees, i.e., ε values of a learning

task for δ = 10−5, for different sampling rates given by pq. Note that pq = 1 means there

is no sampling, implying all the clients participate and they use all their local datasets.

We assume ∆f = 1 and σt = 1, ∀t ∈ [T ]. For pq = 1, we compute the total privacy spent,

i.e., the composite ε by using both the advanced composition theorem [53, Theorem 3.20],

which is denoted by ‘act’ in the figure, and the RDP approach given in Lemma 2.1. Since

we numerically verify that RDP accounting performs much better for pq = 1, we use it

to calculate the composite ε for all the other values of pq. For numerically computing

the composition with RDP, we used Opacus library [95]. We tested α values from 1 to

64, and picked the one minimizing the composite ε value.

We observe in Figure 5.1 that for pq = 1 and pq = 0.5, the resultant ε values are very

high, namely more than 100, which is quite a weak privacy level. Roughly speaking,

it means that the output distribution of the final learned model may change up to a

factor of e100 when only one element is changed in the dataset. However, when we have

smaller sampling rates, the privacy guarantee comes into an acceptable range. In an

edge network setting, we expect many clients to participate in learning, with substantial

local datasets. Therefore, pq values on the order of 0.01 are not difficult to achieve.

5.6 Conclusion

In this chapter, we proposed a framework which utilizes anonymity in wireless transmis-

sions to enable private wireless FL across edge clients. This is achieved by employing

OAC instead of orthogonal transmissions, which would reveal the identity of the clients.
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In particular, we exploit random subsampling of both the clients and the local data sam-

ples to achieve reasonable DP guarantees. As opposed to recent works on the topic, we

do not depend on the channel gain or the noise at the PS for privacy guarantees as these

values are prone to attacks; although our method is orthogonal to these techniques and

can be combined with them. Our results demonstrate yet another favourable property

of OAC in wireless edge learning.



Chapter 6

Privacy Amplification via Random

Participation in Federated Learning

6.1 Abstract

Running a randomized algorithm on a subsampled dataset instead of the entire dataset

amplifies differential privacy guarantees. In this work, in a federated setting, we consider

the random participation of the clients in addition to subsampling their local datasets.

Since such random participation of the clients creates a correlation among the samples of

the same client in their subsampling, we analyze the corresponding privacy amplification

via non-uniform subsampling. We show that when the size of the local datasets is small,

the privacy guarantees via random participation are close to those of the centralized

setting, in which the entire dataset is located in a single host and subsampled. On the

other hand, when the local datasets are large, observing the output of the algorithm may

disclose the identities of the sampled clients with high confidence. Our analysis reveals

that, even in this case, privacy guarantees via random participation outperform those

via only local subsampling.

6.2 Introduction

FL framework allows several clients to collaboratively and iteratively learn from each

other’s data with the coordination of PS [18]. In a typical scenario, the PS averages the

model updates received from clients based on their local data. Then, it updates the global

model and broadcasts the updated global model back to clients for the next iteration. In

this learning model, since the data itself never leaves the participating clients, in terms

129
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of privacy, the FL framework is usually perceived as superior to centralized training,

in which entire data is offloaded to a central server. Although this is true to some

extent, as discussed in Chapter 2 and Chapter 5, many recent works [37–41] have shown

that the model updates from the clients, as well as the final deployed model, can leak

many features of the clients’ local datasets, including reconstruction of some data samples

used for training. Therefore, additional mechanisms with formal and quantifiable privacy

guarantees need to be employed in FL.

Hence, as the gold standard quantifying the privacy leakage in privacy-preserving data

analysis tasks, in this chapter, we consider the notion of DP to quantify privacy guar-

antees. A deterministic algorithm can be made differentially private by randomizing its

output as long as the introduced randomness is independent of the input and secret to

the adversary. Output perturbation via an additive noise such as Gaussian or Laplace

noise [47] is a common example of such randomization techniques. However, there exist

other sources of randomness that do not guarantee indistinguishability alone, but they

can amplify the final DP guarantees when they are cascaded with techniques already

guaranteeing DP. Subsampling [52, 93, 94, 96] and shuffling [97, 98] are among the most

prominent of such tools. In subsampling, a random subset from the original dataset is

sampled to be used as the input to the privacy-preserving mechanism. In shuffling, on

the other hand, the outputs resulting from different inputs are randomly shuffled so that

mapping between the inputs and the outputs is masked, resulting in anonymized out-

puts. Such privacy amplification techniques further confuse an adversary when used in

conjunction with output perturbation techniques, and the amplified privacy guarantees

are achieved without sacrificing utility.

In this chapter, we consider a FL setting with distributed SGD using a trusted PS, in

which formal DP guarantees are achieved for all intermediate models including the final

deployed one. For this, we update the global model by the average of the gradients

collected from participating clients, which is perturbed via an additive Gaussian noise,

following the seminal work of Abadi et al. [83].

To further amplify the privacy guarantee, we consider two types of sampling, which

are client sampling and local dataset sampling. In each iteration, first, available clients

during that iteration randomly decide whether to participate or not, independently from

the decisions of other clients. Then, each client that decides to participate samples a

subset from its local dataset such that each element is sampled independently from the

other elements in the local dataset. Such a sample technique, in which every element is

sampled independently and with identical probability, is called Poisson sampling. Hence,

while sampling both the participating clients and their local datasets, we employ Poisson

sampling. Analysing the privacy amplification guarantee of this sampling technique in a
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federated setting is challenging. More specifically, the random participation of the clients

introduces a correlation between the elements located in a single client in their sampling.

For example, given an element is sampled from a specific client, the probability of another

element being sampled from the same client is larger than the probability of another

element from another client being sampled. Therefore, employing random participation

of clients and local dataset sampling together poses a non-uniform sampling problem,

and in this work, we analyse the central DP guarantees of such a setting.

Note that this problem is closely related to the one discussed in Chapter 5, where we

assume that when the PS does not know the number of sampled clients, it is not able

to infer the correlation between the sampled examples. This is due to the anonymity

provided by OAC. However, such an assumption may be unrealistic for some settings

considering OAC may require special hardware to realize the analog and simultaneous

transmission of gradients. Moreover, note that the setting in Chapter 5, we do not trust

the PS, while in the setting in this chapter, we assume a trusted PS.

6.2.1 Related Work and Motivation

For FL scenarios with many participants, sampling the participating clients is essential

for efficient use of the power and the communication resources even when privacy is not

a constraint. Consider a learning problem with millions of mobile devices. Thousands of

iterations are carried out in a typical learning task, and if each mobile device participates

in every iteration, the power spent on the computations and the extra communication to

transmit the results to the PS will result in a very large overall energy cost. In addition,

the communication overhead of such a dense participation may cause congestion in the

communication networks; and thus, is not scalable. Moreover, for the learning tasks

employing mini-batch optimization techniques, a limited number of samples per iteration

is preferable. Hence, client sampling can help to reach the targeted batch size in addition

to the local dataset sampling. All these aforementioned benefits make client sampling

one of the indispensable components of FL, whose effect on the convergence and final

performance of FL algorithms have been widely studied [99–101]. In addition to these

benefits, since it brings additional randomness to the training procedure, it is expected to

bring some additional amplification to the DP guarantees. Hence, rather than proposing

the inclusion of a new mechanism to amplify DP guarantees, in this chapter, our goal is

to utilize an already-employed mechanism for efficiency purposes for also improving the

privacy guarantees of the task.

Differentially private deep learning in a centralized setting is studied in [83]. The au-

thors employ Poisson subsampling of the dataset and the gradient of every sample is
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clipped and Gaussian noise is added to it. They further introduce the moments’ ac-

countant technique to calculate the composition of the total privacy leakage throughout

the iterations. Similar techniques to those in [83] are extended to the federated setting

in [84, 85, 90]. In these works, similarly to our approach, client sampling is considered,

but the achieved DP guarantees are at the client-level, which means the participation of

a client is indistinguishable from its non-participation. Although client-level DP guaran-

tees are meaningful when the local dataset is composed of elements from the same source,

e.g., personal photos stored in a mobile phone, in some cases, it might be too conserva-

tive. To achieve DP guarantees protecting all the elements in a client, a larger amount

of noise must be introduced compared to sample-level guarantees, and hence, client-level

guarantees result in a larger loss in utility. Moreover, in some cases, the datasets stored

by the clients may be comprised of samples from different individuals, and hence, it may

not be necessary to protect client-level privacy. For instance, while learning from med-

ical data, in a cross-silo setting, each client may represent a hospital and sample-level

DP guarantees would suffice to protect the privacy of individual patients similar to the

setting considered in [23].

Sample-level DP in the federated setting with client sampling is studied in [1, 102, 103]

together with shuffling. In the analysis carried out in [1], each client is assumed to store

only one sample, in which case the client-level guarantees are equivalent to sample-level

guarantees. While each client is allowed to store more than one sample in [102, 103],

the number of sampled elements is determined in advance. In [103], only one element

is sampled from the local dataset at each iteration, while more than one but a constant

number of elements are sampled in [102]. It is also worth noting that different from [1]

and the setting of this chapter, in [102,103], communication efficiency is studied together

with privacy, and a random compression mechanism is used as the randomizer. In all

of these works [1, 102, 103], the clients are assumed to employ a local randomizer that

satisfies pure DP, and the privacy analysis is based on shuffling the local responses.

Such an assumption of pure DP for the local randomizers turns out to be useful while

jointly analysing client sampling and shuffling. However, if the local randomizers provide

approximate DP guarantees instead of pure DP, which is the case when Gaussian noise

is used as the randomizer, central privacy guarantees may be substantially degraded.

Therefore, novel methods to jointly analyze privacy amplification via client sampling and

local dataset sampling that does not rely on shuffling are needed, and this constitutes

the main motivation and contribution of our work.
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6.2.2 Our Contributions

The major contributions of our work presented in this chapter and its novelty with

respect to the current literature can be summarized as follows:

• We propose a client sampling algorithm for privacy amplification in FL. Each avail-

able client randomly decides to participate or not at each iteration. Having decided

to participate, each client then samples its local dataset randomly.

• Since each client decides to participate or not independently from any other external

factor, it can account for its own privacy loss after each iteration without requiring

any other iteration-specific information about the system, such as the number of

available clients, the number of sampled clients, or the number of sampled elements

by the participating clients. This local sampling and privacy accounting mechanism

makes the implementation of our algorithm feasible in practice.

• We provide a theoretical analysis of the central privacy guarantees of the proposed

algorithm. Since random client participation leads to a non-uniform sampling

among the data points stored at different clients, the analysis is non-trivial and

cannot be directly obtained from the standard privacy amplification results via

subsampling. Unlike the literature, our analysis does not rely on shuffling, and we

do not need local randomizers with pure DP guarantees. This is especially useful

when Gaussian noise is used as a randomizer.

6.3 Problem Setting

In our setting, we consider a FL scenario with N clients and a PS. Each client i, i ∈ [1 :

N ], holds a dataset Di such that they form D = ∪i∈[1:N ]Di. For simplicity, we assume

that each client holds the same number of data samples, i.e., |Di| = d, ∀i ∈ [1 : N ],

but our analysis applies to different |Di| values as well. However, we allow one of the

clients to violate this assumption to satisfy the remove-add neighbouring relation, which

is the neighbouring relation assumed throughout this chapter. That is, at most one of

the clients can store a dataset of size d + 1. During training, we consider differentially

private distributed stochastic gradient descent (DP-DSGD). Namely, the clients and the

PS collectively learn a model w ∈ Rm through T ∈ Z+ iterations by minimizing the loss

function

ℓ̂(w,D) =
1

N

∑

i∈[1:N ]

1

|Di|
∑

s∈Di

ℓ(w, s), (6.1)
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where ℓ is a general loss function depending on the nature of the learning problem. In

general, we allow it to be non-convex; hence, our results are applicable to deep neural

networks. Since clients can go offline for several reasons in FL, in each iteration t, we

assume Nt ≤ N clients are available and Nt is known to the PS but not necessarily to

the clients.

6.3.1 Threat Model

Following [1, 102,103], we assume a trusted PS and honest but curious clients, i.e., they

do not deviate from the protocol but they can try to learn about the local datasets

of other clients. We further assume the presence of a secure communication channel

between each client and the PS such that neither the presence of communication nor the

content of the transmitted messages are disclosed to third parties. Therefore, in the case

of random participation, for an adversary, it is not possible to infer the participating

clients by tapping into the channels.

Trusted PS assumption may sound strong, but due to the nature of the client sampling

problem, it is essential. Keeping the identities of the participating clients secret from

the PS is difficult without employing a trusted third party. Hence, as done in similar

works [1, 102, 103], we make this assumption. This assumption is valid for the scenarios

in which the training is done with the help of a trusted PS, and the model is publicly

deployed after training. If the PS is not trusted, client sampling can still be employed

for a price of increased communication cost, and our analysis still holds. We elaborate

on this in Section 6.5.5.

6.4 Main Results

In this section, we first present the details of the proposed algorithm and then we state

its privacy guarantees.

6.4.1 Algorithm Description

At the beginning of each iteration t ∈ [1 : T ], independently from other clients, each client

randomly decides whether to participate or not in that iteration, with probability p. If a

client decides to participate, then it further samples a subset from its local dataset such

that each element is sampled i.i.d. with probability q. Let the set of sampled clients in

iteration t be Pt and the set of sampled elements in client i ∈ Pt be Si,t. After sampling,

client i ∈ Pt computes the gradients ∇ℓ(w, s) for all s ∈ Si,t. If the L2 norm of the
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gradient of any sample is greater than a predetermined constant C, then it is scaled

down to C to guarantee ||∇ℓ(w, s)||2 ≤ C. Then, the client i aggregates all the sample

gradients, and sends the sum to the PS. The PS further aggregates all the summations

from the participating clients and adds a Gaussian noise N (0,σ2Im) to the sum, where

Im is the identity matrix with dimension m. Then, it scales the noisy sum by 1
pNtqd

to

have an unbiased estimate of the gradient. The final expression after these operations at

the PS is

ĝt =
1

pNtqd

⎛

⎝

∑

i∈Pt

∑

s∈Si,t

∇ℓ(w, s) +N (0,σ2Im)

⎞

⎠ . (6.2)

Finally, the PS updates the model as wt+1 = wt − ηtĝt, where ηt is the learning rate for

the iteration t. The pseudo-code for our procedure is given in Algorithm 1.

Algorithm 1 DP-DSGD with random participation
Protocol in client i:

for t ∈ [1 : T ] do

Sample B ∼ Bern(p)
if B = 1 then

Inform the PS that B = 1
Receive wt from the PS
Initialize gi = 0
Sample Si from Di, w.p. q, i.i.d. for each sample
for s ∈ Si do

Increment gi by ∇ℓ(wt, s)/max
{

1, ||∇ℓ(wt,s)||2
C

}

end for

Send gi to PS
end if

end for

Protocol in the PS:

for t ∈ [1 : T ] do

Learn Pt from the clients
Broadcast wt to ∀i ∈ Pt

Receive gi from ∀i ∈ Pt

Aggregate, randomize and scale:
ĝt =

1
pNtqd

(
∑

i∈Pi
gi +N (0,σ2Im)

)

Update wt+1 = wt − ηtĝt

end for

6.4.2 Privacy Guarantees

First, we note that the exact analysis of DP guarantees of the proposed scheme due

to non-uniform sampling is challenging. Instead, in the following, we provide upper and

lower bounds, which provide useful insights into the behaviours of the privacy guarantees.

In the following theorem, we present an upper bound of DP guarantees of DP-DSGD

with random participation.
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Theorem 6.1. Each iteration of DP-DSGD with random participation algorithm is

(ε, δ)-DP, where for any ε > 0,

δ <
d
∑

i=0

(

d

i

)

qi(1− q)d−i
(

(1− p)(1− eε)Φ̄0,σ(zi)

+ p(1− q − eε)Φ̄iC,σ(zi) + pqΦ̄(i+1)C,σ(zi)
)

, (6.3)

where Φ̄µ,σ(z) is the complementary cumulative distribution function (C-CDF) of the

Gaussian distribution with mean µ and standard deviation σ at z, and zi, i ∈ [0 : d], is

the solution of the following equation for variable z:

(

(1− p)(1− eε)N (z, 0,σ2) + p(1− q − eε)N (z, iC,σ2) + pqN (z, (i+ 1)C,σ2)
)

= 0.

(6.4)

Next, we present also the lower bound.

Theorem 6.2. Each iteration of DP-DSGD with random participation algorithm is

(ε, δ)-DP, where for any ε > 0,

δ > max
−C≤µ≤C

(1− p)(1− eε)Φ̄0,σ(z
∗)

+
d
∑

i=0

(

d

i

)

qi(1− q)d−ip(1− q − eε)Φ̄iµ,σ(z
∗) + pqΦ̄iµ+C,σ(z

∗), (6.5)

where z∗ is the smallest solution of the following equations for variable z:

(1−p)(1−eε)N (z, 0,σ)+
d
∑

i=0

(

d

i

)

qi(1−q)d−ip(1−q−eε)N (z, iµ,σ)+pqN (z, iµ+C,σ) = 0.

(6.6)

Note that although the analytical solutions of Equation (6.4) and Equation (6.6) are not

tractable, they can be efficiently solved numerically. We provide a more detailed discus-

sion on this and the proofs of Theorems 6.1 and 6.2 in Section 6.7.1 and Section 6.7.2,

respectively.

6.5 Discussion and Numerical Results

Firstly, we emphasize that the number of available clients Nt are needed only at the

PS to correctly scale the average of the gradients. The clients do not need Nt or any

other parameter neither to execute their algorithms nor to calculate their own privacy
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losses. Moreover, the noise is added by the PS centrally, and its variance is publicly

known and does not depend on any iteration-specific information such as the number of

sampled clients. Since the parameters in Equations (6.3) and (6.5) are all available locally,

each client can keep track of its own privacy loss without needing any iteration-specific

information about the system, which eliminates the need for central coordination.

Central noise addition might be seen as a disadvantage of our scheme since there are no

local randomizers at the clients, but in the case of a trusted PS, our privacy guarantees

are central and this does not constitute a limitation.

In the following, we introduce three baselines and compare their privacy guarantees with

those of the proposed upper and lower bounds. Since the previous works on random

client participation provide client-level DP guarantees, a comparison of these schemes

with our work would not be fair since client-level privacy guarantees are much more

restrictive. Nevertheless, in Section 6.5.3, we provide some comparisons to emphasize

what improvement our scheme brings upon previous work.

6.5.1 Baselines

6.5.1.1 Only Local Sampling (OLS)

The first setting we consider is the one in which there is no randomness in client partici-

pation, i.e., p = 1, and each client samples from its local dataset such that each element

is sampled with probability q in an i.i.d. fashion. We consider Only Local Sampling

(OLS) to demonstrate the benefits of random participation. The privacy guarantees of

local subsampling in OLS is given by the following theorem.

Theorem 6.3. Each iteration of OLS scheme is (ε, δ)-DP, where, for any ε′ > 0,

ε = log
(

1 + q
(

eε
′−1
))

, (6.7)

δ = q

(

Φ

(

C

2σ
− σε′

C

)

− eε
′

Φ

(

− C

2σ
− σε′

C

))

. (6.8)

The proof of Theorem 6.3 is given in Section 6.7.3.

6.5.1.2 Weak Client Sampling (WCS)

In this setting, our sampling procedure is the same as in Algorithm 1, i.e., we both

employ client and local dataset sampling. However, we assume that when the clients
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randomly decide whether to participate or not, the identities of the participating clients

are disclosed. Hence, in Weak Client Sampling (WCS), random participation of clients

helps amplify DP guarantees only since when some clients are not sampled, no informa-

tion is leaked from them. This results in weaker privacy guarantees compared to the case

where the identities of participating clients are hidden, and we consider this setting as

another upper bound. Note that unlike Theorem 6.1, this upper bound does not depend

on d, the number of elements each client hosts. To elaborate WCS, let us assume D′

has the same elements as D except for an additional element x′. If the client storing x′

is sampled, then the privacy leakage is the same as OLS. On the other hand, when this

specific client is not sampled, no information is leaked at all about the existence of x′.

This implies that the privacy guarantees of WCS should still be better than OLS. In the

following theorem, we present the formal privacy guarantees of WCS.

Theorem 6.4. Each iteration of WCS scheme is (ε, δ)-DP, with, for any ε′ > 0

ε = log
(

1 + q
(

eε
′−1
))

, (6.9)

δ = pq

(

Φ

(

C

2σ
− σε′

C

)

− eε
′

Φ

(

− C

2σ
− σε′

C

))

. (6.10)

The proof of Theorem 6.4 is given in Section 6.7.4.

6.5.1.3 Centralized Shuffling (CS)

In Centralized Shuffling (CS), we have the same client sampling and dataset sampling

procedure with probabilities p and q, respectively, but at the beginning of each iteration,

the elements stored in all the clients are shuffled centrally and uniformly. This is too

costly and far from practice, but we consider this case as a lower bound to measure the

performance of our scheme. The privacy guarantees of CS are derived in the same way

as in Theorem 6.3. Notice that the case in Theorem 6.3 and CS are the same except for

the probability of an element being sampled, which is pq in CS and q in OLS. Hence, the

next corollary follows.

Corollary 6.1. Each iteration of the CS scheme is (ε, δ)-DP where, for any ε′ > 0,

ε = log
(

1 + pq
(

eε
′−1
))

, (6.11)

δ = pq

(

Φ

(

C

2σ
− σε′

C

)

− eε
′

Φ

(

− C

2σ
− σε′

C

))

. (6.12)
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Figure 6.1: δ vs ε trade-off for the considered schemes.

6.5.2 Comparison to Baselines

For a single iteration of the learning task, we present the trade-offs ε vs. δ, ε vs. σ and

δ vs. σ, in Figures 6.1 to 6.3, respectively, for the proposed analysis technique and the

baselines we consider. We denote the upper bound from Theorem 6.1 by UB and the

lower bound from Theorem 6.2 by LB in the figures. While generating the plots, we use

C = 1 and p = q = 0.1. For ε vs. δ trade-off, we take σ = 1, for ε vs. σ trade-off, we

take δ = 10−6 and for δ vs. σ trade-off, we take ε = 1.

We observe that the privacy guarantees of DP-DSGD with client sampling lie in between

CS and WCS. Inferring whether a client is sampled or not by observing the correspond-

ing model update is easier if the participation of one client changes the model update

significantly, i.e., large sensitivity to the addition or removal of one client. From all fig-

ures, we see that as d increases, the privacy amplification due to client sampling becomes

weaker. This applies to both the upper bound in Theorem 6.1 and the lower bound in

Theorem 6.2. This can be explained by the fact that the sensitivity of the gradient sum

received by the PS with respect to one element is bounded by C and the number of sam-

pled elements from a client i, i.e., |Si,t|, determines how easy it is to make an inference

about the participation of that client. That is, more sampled elements from a client may

generate more opportunities for the adversaries to determine if this client is sampled or

not, hence weakening the privacy amplification due to random client participation. Since

smaller d · q values imply smaller expected values of |Si,t|, in the figures, we observe that

smaller d · q values result in stronger privacy guarantees, and our scheme performs quite
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Figure 6.2: ε vs σ trade-off for the considered schemes when δ = 10−6.

close to the CS when d · q is small. For example, for d = 1, CS and our scheme are

almost identical since it is quite hard to distinguish if the sole element of each client is

sampled or not and hence, it is hard to make inferences about the participation of any

client. Increasing d gives more information to an adversary about the identities of the

sampled clients, but for d = 10 the privacy amplification via client sampling may be still

considerably effective and results in better privacy guarantees than OLS and WCS. As

the value of d · q increases, so does the privacy leakage of our scheme as we observe in

all three figures, and the privacy guarantees of the proposed scheme converge to those

of WCS as d → ∞. For the considered set of parameters, since there are no significant

differences between the privacy guarantees of WCS and the proposed scheme for values

d · q > 3, for clarity, we do not show the results beyond d = 30, which is almost the same

curve as WCS. Such a convergence of our scheme to WCS is intuitive since when d is

large, an adversary can gain a significant amount of information about the number of

sampled clients and their identities. Since the assumption in WCS is that the identities

of the sampled clients are known, our scheme becomes very close to the WCS, when d is

large.

Note that in many practical cases, the dataset sizes may be much larger than those

considered in this section. This does not necessarily mean that for the cases d > 30, the

proposed scheme will be always equivalent to WCS. If the local dataset sizes of the clients

are large, then much smaller q values can be employed. In fact, smaller d · q values result
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Figure 6.3: δ vs σ trade-off for the considered schemes when ε = 1.

in better privacy guarantees in general. This is the essence of what we have observed in

this section. We consider an example with larger datasets in Section 6.6.2.

6.5.3 Comparison to Prior Work

Previous works on random participation provide client-level guarantees and assume local

randomized with pure ε-DP guarantees. Hence, the comparison of these schemes with

our work would not be fair for these works since the conversion from ε-DP guarantees

to (ε, δ)-DP considerably degrades the privacy guarantees. Further, these guarantees are

client-level, which is a more powerful privacy guarantee, so they may not be directly

comparable with our results. Nevertheless, here we provide the comparison of our results

with those of [1] in Figure 6.4 for a region where we are able to get meaningful privacy

guarantees for the scheme in [1]. We used p = q = 0.1, C = 1.0, and σ = 3.0. We

observe that in terms of approximate DP guarantees, the proposed analysis achieves a

much better ε vs. δ trade-off than [1].

6.5.4 Local Sampling vs. Client Sampling

Both Theorems 6.1 and 6.2 imply that smaller p and q values improve the DP guarantees

of DP-DSGD with client sampling. However, we may have some constraints that limit the

minimum values p and q can take. For example, the batch size is a critical hyperparameter
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that significantly impacts the convergence of learning algorithms. While smaller values

can lead to noisy updates, larger values may hinder the model’s ability to learn details

from the dataset. Hence, using a fixed batch size, which is determined by the value of

pq and the size of the whole dataset, imposes a constraint on pq. In this section, we

investigate how the DP guarantees of DP-DSGD with client sampling and our baselines

are affected by the choice of p and q values while pq is kept fixed.

In Figure 6.5, given pq = 10−4, we plot the ε vs. q trade-off for δ = 10−6, when C = 1 and

σ = 1. We observe that, while we increase q, which corresponds to decreasing p at the

same rate, the DP guarantees of all the schemes degrade. When all clients participate,

i.e., p = 1.0, all the schemes become equivalent and ε is at its best value. Although this

implies that we should rely only on local sampling to meet our target batch size, in most

real-world scenarios, this is not possible for the reasons we have discussed in Section 6.2.1.

Hence, the DP guarantees in the presence of client sampling are sandwiched between the

bounds dictated by Theorems 6.1 and 6.2.

In accordance with the observations in Section 6.5.2, we further observe that as q in-

creases, smaller dataset sizes at the clients, i.e., smaller d, become more favourable since

they result in smaller ε values.

6.5.5 Modification of the proposed scheme when the PS is not trusted

When the PS is not trusted, client sampling can still be applied, and our theoretical

analysis is still valid. In Algorithm 1, since Gaussian noise is added by the PS, the same
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noise protects all the clients’ updates at the same time. In the case of an untrusted

PS, we cannot rely on the noise addition by the PS; and hence, each client must add

Gaussian noise to protect its own privacy. This causes a higher variance of the effective

noise added to the total update received by the PS; and hence, reduces the accuracy

compared to the trusted PS case.

On the other hand, the sampling can still be done in the following manner. First, each

client decides to participate or not independently with probability p, and if a client

decides not to participate, it sends pure noise to the PS without processing its local

dataset since we do not want the PS to learn if a client is sampled or not. If it decides

to participate, then it samples its local dataset, calculates the gradients of the sampled

elements, and sends the average of the gradients by adding Gaussian noise. This way, the

PS will always receive a message from all the available clients, and our analysis on client

sampling is still valid. One disadvantage of this modified protocol is that an available

client sends a message to the PS at each iteration, even when it is not participating, and

hence, the communication efficiency of the scheme degrades, which is one of the main

motivations of the client sampling. Note that the reduction in the computational costs

due to client sampling is still valid.

If the communication costs are scarce in a setting, alternatively, we may prefer a client

communicates via the PS only if it decides to participate in a round. In this case, the

PS would clearly learn if a client is participating or not, and our privacy guarantees
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are reduced to the one provided by WCS. Although it provides weaker guarantees than

the proposed analysis method, we have seen in Section 6.5 and Section 6.6 that WCS

considerably improves upon OLS, and can still provide meaningful privacy amplification

due to client sampling.

6.6 Empirical Evaluation

In this section, we consider two different experimental settings to empirically show the

improvements in the accuracy when the variance of the Gaussian noise added for DP

guarantees is determined according to Theorems 6.1 and 6.2. In both experimental

settings, we use EMNIST dataset [104], which is an extension of the MNIST dataset [105],

where, in addition to the handwritten digits, uppercase and lowercase letters are also

included. Although there are different possible splits in this dataset, we use the split

based on digit and letter classification, referred to as ByClass in [104]. Hence, we have 62

possible classes. This dataset includes 814255 data samples in total, and we use 697932

of them as the training set and the rest as the test set, which is the standard partition

employed in PyTorch [106]. In both scenarios, we use a simple deep neural network called

LeNet [105], which is composed of two layers of convolutional neural networks (CNNs)

followed by three fully connected layers. In Figure 6.6, we give the visualization of the

network with all necessary details.
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Figure 6.6: Network Architecture Used in the Experiments

6.6.1 Many Clients and Small Datasets Scenario

In the first scenario, we assume there are a large number of users while each user has only

a few number of samples. Motivated by the findings in Figure 6.1, we choose that each

client has d = 10 samples and we equally split the training set across 69793 clients. Since

we have a relatively large number of clients, we choose the client sampling probability as

p = 0.001, and each sampled client subsamples its local dataset with probability q = 0.1.

These sampling rates correspond to an average batch size of 70, which we verify to provide

a good accuracy via hyperparameter search. For each iteration of Algorithm 1, we aim

to achieve a fixed privacy guarantee such that ε = 0.015 and δ = 10−6. These values

may seem too conservative but note that training deep learning models is an iterative

procedure, and at the end of the training, the total privacy leakage should be reasonably
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Figure 6.7: Many clients and small datasets scenario.

low. To match these guarantees to the upper bound in Theorem 6.1, the server should

add Gaussian noise with a standard deviation of σ = 1.52. On the other hand, we use

σ = 1.395 to match these guarantees to the lower bound in Theorem 6.2. Similarly,

for WCS, according to Theorem 6.4, we should have σ = 7.65, and for OLS, according

Theorem 6.3, we should have σ = 22.4. Moreover, to provide a baseline, we also train

our model ignoring privacy constraints, i.e., σ = 0. For the proposed method, WCS and

OLS, we use a gradient clipping value of C = 1, while no such restriction is imposed in

the non-private case.

For training, we use SGD optimizer with a momentum of 0.9. We use the learning rate

of 0.002 for the non-private case and for the DP-DSGD. For WCS and OLS, we observed

the learning rate should be smaller due to a higher noise addition. Hence, the learning

rate of 0.0001 is used for these schemes.

In Figure 6.7, we present the test accuracies of the proposed scheme and all the baselines

with respect to the number of iterations. We observe that by using our analysis of privacy

amplification via client sampling, we can attain a much higher accuracy than the other

analysis methods. We further observe that, although it constitutes an upper bound on

(ε, δ), WCS still brings a non-trivial improvement over OLS. In fact, this shows that

even if the identities of the sampled clients can be inferred with high confidence from the

gradients, the analysis provided in Theorem 6.4 for client sampling still provides useful

privacy guarantees. Finally, we observe that the analysis based on only local sampling,

i.e., OLS, has quite a poor performance due to the very high noise addition in this scheme,

in order to attain ε = 0.015.
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6.6.2 Few Clients and Large Datasets Scenario

Next, we consider the scenario with fewer clients, but each client has a larger dataset.

We assume each client stores d = 1000 data points and there are 697 clients. Each client

is independently sampled with a probability of p = 0.1 and each participating client

samples its data points independently each with a probability of q = 0.001. Similar to

the scenario in Section 6.6.1, we have an average batch size of 70. Again, we fix per-

iteration privacy guarantees as ε = 0.015 and δ = 10−6. To match them to the upper

bound in Theorem 6.1, the server should add Gaussian noise with σ = 0.815, and to

match them to the lower bound in Theorem 6.2, the server should add Gaussian noise

with σ = 0.697. For WCS and OLS, we have σ = 0.873 and σ = 1.103, according

to Theorem 6.4 and Theorem 6.3, respectively. While we use C = 1 for the gradient

clipping parameter in the private cases, we do not clip the gradients or add any noise in

the non-private case.

During the training, we used SGD optimizer with a momentum of 0.9. The learning rate

is 0.002, for all schemes.
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Figure 6.8: Few clients and large datasets scenario.

In Figure 6.8, we present the results of our experiments. Again, we observe that the

accuracy of each scheme is inversely proportional to the amount of added noise; and

hence, the proposed analysis scheme results in the best accuracies. However, compared

to the setting in Section 6.6.1, in this setting, the performances of the schemes are closer

to each other. As discussed in Section 6.5.4, that is because we have a smaller value of

q although pq value is the same. Hence, a smaller amount of noise is enough to attain

ε = 0.015.
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6.7 Proofs

6.7.1 Proof of Theorem 6.1

Without loss of generality, we assume that D′ has one more element than D and this

extra element is stored by the first client, i.e., D′
1 = D1 ∪ {x′}. Thus, the distribution of

the model update in a single iteration when user 1 stores D′
1 is

ξ(z) = (1− p) ξ0(z) + p ((1− q) ξ1(z) + qξ2(z)) (6.13)

and the distribution when user 1 stores D1 is

ξ′(z) = (1− p) ξ0(z) + pξ1(z) (6.14)

where ξ0 is the distribution when user 1 is not sampled, ξ1 is the distribution when user 1

is sampled but x′ is not sampled, ξ2 is the distribution when both user 1 and x′ are sam-

pled and z is the observed model update, and hence, z ∈ Rm. In the proposed algorithm,

all these distributions are multivariate Gaussian mixture distributions of dimension m.

For clearer notation, we omit z in the rest of the section.

Remember from Definition 2.3 that the hockey-stick divergence between two distributions

is written as

Dα(ξ||ξ′) !
∫

Z

[

ξ(z)− αξ′(z)
]

+
dz. (6.15)

Hence,

δ = Deε(ξ||ξ′) =
∫

Z

[

(1− p)ξ0(z) + p(1− q)ξ1(z)

+ pqξ2(z)− eε ((1− p)ξ0(z) + pξ1(z))
]

+
dz

=

∫

Z
[(1− p)(1− eε)ξ0(z) + p(1− q − eε)ξ1(z) + pqξ2(z)]+ dz. (6.16)

Observe that there is a coupling between ξ0, ξ1 and ξ2 such that except sampling of user

1 and x′, the other sampled users and the sampled elements are the same. Therefore,

ξ1 has a set of elements sampled from user 1 except x′ and the same sampled users and

elements sampled in ξ0. Similarly, ξ2 has x′ sampled as well as all the users and the

elements sampled in ξ1. As we stated previously, ξ0, ξ1 and ξ2 are multivariate Gaussian

mixture distributions. Next, let us define P be the set of all possible samplings of clients

given client 1 is not sampled. Similarly, let us define SI as the set of all possible samplings

of elements from the clients in the set I given these clients are sampled. Moreover, let
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S1 be the set of all possible samplings of the elements stored in client 1 given x′ is not

sampled.

Thus, given P ∈ P, S ∈ SP and S1 ∈ S1 are actual samplings of clients and the elements,

respectively, we can write ξ1(P,S,S1) ∼ N (µ(P ∪ {1},S ∪ S1),σ2Im), ξ2(P,S,S1) ∼
N (µ(P ∪ {1},S ∪ S1 ∪ {x′}),σ2Im) and ξ0(P,S) ∼ N (µ(P,S),σ2Im) where µ(P,S) is

the observed model update when the set of sampled clients is P and the set of sampled

elements is S.

As a result, we can write Equation (6.15) as

Deε
(

ξ||ξ′
)

=

∫

Z

∑

P∈P

∑

S∈SP

Pr(P,S)
[

(1−p)(1−eε)
∑

P∈P

∑

S∈SP

Pr(P,S)N (z,µ(P,S),σ2Im)

+ p(1− q − eε)
∑

P∈P

∑

S∈SP

∑

S1∈S1

Pr(P,S) Pr(S1)N (z,µ(P ∪ {1},S ∪ S1),σ
2Im)

+ pq
∑

P∈P

∑

S∈SP

∑

S1∈S1

Pr(P,S) Pr(S1)N (z,µ(P ∪ {1},S ∪ S1 ∪ {x′}),σ2Im)
]

+
dz, (6.17)

Since P and S are common client and local dataset samplings to all ξ0, ξ1 and ξ2, we take

ξ0 as the reference point, i.e., N (z,µ(P,S),σ2Im) = 0, and get rid of the dependence on

P and S. That is,

Deε
(

ξ||ξ′
)

=

∫

Z

[

(1− p)(1− eε)N (z, 0,σ2Im)

+ p(1− q − eε)
∑

S1∈S1

Pr(S1)N (z, µ̄(1,S1),σ
2Im)

+ pq
∑

S1∈S1

Pr(S1)N (z, µ̄(1,S1 ∪ {x′}),σ2Im)
]

+
dz. (6.18)

Notice that now, we use µ̄ as the center of the normal distributions relative to

N (z,µ(P,S),σ2Im). Since first term does not depend on S1, we can write

Deε
(

ξ||ξ′
)

=

∫

Z

[

(1− p)(1− eε)
∑

S1∈S1

Pr(S1)N (z, 0,σ2Im)

+ p(1− q − eε)
∑

S1∈S1

Pr(S1)N (z, µ̄(1,S1),σ
2Im)

+ pq
∑

S1∈S1

Pr(S1)N (z, µ̄(1,S1 ∪ {x′}),σ2Im)
]

+
dz. (6.19)
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Due to the joint convexity of hockey-stick divergence, we can use Equation (6.19) to

upper bound Deε(ξ||ξ′) as

Deε
(

ξ||ξ′
)

≤
∑

S1∈S1

Pr(S1)

∫

Z

[

(1− p)(1− eε)N (z, 0,σ2Im)

+ p(1− q − eε)N (z, µ̄(1,S1),σ
2Im)

+ pqN (z, µ̄(1,S1 ∪ {x′}),σ2Im)
]

+
dz. (6.20)

In general, µ̄(1,S1) and µ̄(1,S1 ∪ {x′}) depend on the sample gradients generated from

the sampled elements in S1 and x′. However, since we are interested in the worst-case

analysis, we want to maximize the distance between the centers of N (0,σ2Im) and

N (µ̄(1,S1 ∪ {x′}),σ2Im). For this, we assume that each sampled element changes the

mean µ̄ exactly by the maximum possible amount, i.e., C, at the same direction with

all other elements. Hence, if |S1| = i, 0 ≤ i ≤ d, then we can write Equation (6.20), in

terms of univariate normal distributions, as

Deε
(

ξ||ξ′
)

≤
d
∑

i=0

(

d

i

)

qi(1−q)d−i
∫

Z

[

(1−p)(1−eε)N (z, 0,σ2)+p(1−q−eε)N (z, iC,σ2)

+ pqN (z, (i+ 1)C,σ2)
]

+
dz. (6.21)

For a specific i, in Equation (6.21), the expression inside [·]+ goes to zero when z → ∞
and z → −∞. Other than these, the expression has only one zero-crossing zi and for all

finite z > zi, it is positive. Therefore, taking the integral z ≥ zi is enough. Moreover,

since there is only one zero-crossing for the expression, it is easy to numerically solve it,

i.e.,

(1− p)(1− eε)N (z, 0,σ2) + p(1− q − eε)N (z, iC,σ2) + pqN (z, (i+ 1)C,σ2) = 0 (6.22)

for z, where zi is the solution. If we put the solutions zi, i ∈ [0 : d] in place, we can write

Equation (6.21) as

Deε
(

ξ||ξ′
)

≤
d
∑

i=0

(

d

i

)

qi(1− q)d−i
(

(1− p)(1− eε)Φ̄0,σ(zi)

+ p(1− q − eε)Φ̄iC,σ(zi) + pqΦ̄(i+1)C,σ(zi)
)

, (6.23)

which proves the claim of Theorem 6.1.
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6.7.2 Proof of Theorem 6.2

Since Theorem 6.2 claims a lower bound on Deε (ξ||ξ′), we start from Equation (6.19).

To evaluate this expression, we need µ̄(1,S1) and µ̄(1,S1 ∪ {x′}), which depend on the

sample gradients generated from the sampled elements in S1 and x′. To obtain the worst

case divergence, for each element indexed by i stored at client 1, we should consider

a sensitivity vector variable, µi such that the gradient of sample i affects the total

gradient by that amount. Then, Deε (ξ||ξ′) should be maximized over these variables µi.

Unfortunately, this is a difficult optimization problem to solve making also difficult to

estimate the worst-case achievable value of Deε (ξ||ξ′).

Instead, we employ a proxy by restricting the values of µi to be the same and pointing

to the same direction for all elements of client 1, except x′. Since they point to the same

direction, without losing generality, we assume only the first coordinate of the vector

µi is non-zero and denote it by the scalar µ. For the effect of x′ on the total gradient,

we take it as at the maximum possible value C but still keeping the same direction of

the others. Hence, from Equation (6.19), for any −C ≤ µ ≤ C, Deε (ξ||ξ′) can be lower

bounded as

Deε
(

ξ||ξ′
)

≥
∫

Z

[

(1−p)(1−eε)N (z, 0,σ2)+
d
∑

i=0

(

d

i

)

qi(1−q)d−i
(

p(1−q−eε)N (z, iµ,σ2)

+ pqN (z, iµ+ C,σ2)
)]

+
dz. (6.24)

This is a lower bound since we restrict µi’s to be the same for all elements of client

1. Still, we can have a tighter lower bound on Deε (ξ||ξ′) by optimizing the expression

Equation (6.24) over µ. Hence, we have

Deε
(

ξ||ξ′
)

≥ max
−C≤µ≤C

∫

Z

[

(1− p)(1− eε)N (z, 0,σ2)+

d
∑

i=0

(

d

i

)

qi(1− q)d−i
(

p(1− q − eε)N (z, iµ,σ2) + pqN (z, iµ+ C,σ2)
)]

+
dz. (6.25)

This time, although the expression inside []+ may have more than one zero crossings,

since the lower bound is already an underestimation of Deε (ξ||ξ′), we can take its smallest

zero crossing and integrate the expression inside []+ from that point to the infinity to

have a lower bound on hockey-stick divergence. Hence, for a given µ, if z∗ is the smallest
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solution of

(1− p)(1− eε)N (z, 0,σ2)

+
d
∑

i=0

(

d

i

)

qi(1− q)d−i
(

p(1− q − eε)N (z, iµ,σ2) + pqN (z, iµ+ C,σ2)
)

= 0, (6.26)

we have

Deε
(

ξ||ξ′
)

≥ max
−C≤µ≤C

(1− p)(1− eε)Φ̄0,σ(z
∗)

+
d
∑

i=0

(

d

i

)

qi(1− q)d−i
(

p(1− q − eε)Φ̄iµ,σ(z
∗) + pqΦ̄iµ+C,σ(z

∗)
)

, (6.27)

which proves Theorem 6.2.

6.7.3 Proof of Theorem 6.3

Before the proof, we present the following theorem from [52], which will be useful in our

proof.

Theorem 6.5 (Theorem 8 in [52]). Let M be a randomized mechanism satisfying

(ε, δM (ε))-DP. We define M ′ as the randomized mechanism when the input is first sam-

pled from a larger dataset with Poisson sampling with probability q, then M is applied on

the sampled subset. Then, we have δM ′(ε′) ≤ qδM (ε), where ε′ = log (1 + q(eε − 1)).

According to Theorem 6.5, if a mechanism M satisfying (ε, δ)-DP takes as the input a

subset sampled from the entire dataset with Poisson sampling, we have δM ′(ε′) ≤ qδM (ε)

and ε′ = log (1 + q(eε − 1)), where M ′ is the mechanism M cascaded with sampling.

Moreover, from Theorem 2.2, we know ε vs δ trade-off for Gaussian mechanism. The

claim follows from combining Theorem 6.5 and Theorem 2.2. "

6.7.4 Proof of Theorem 6.4

The proof can be obtained by following the same steps as in the proof of Theorem 6.1

until Equation (6.19). In Equation (6.19) if we ignore the first term, i.e. (1 − p)(1 −
eε)
∑

S1∈S1 Pr(S1)N (0,σ2), then we obtain a looser upper bound with larger resulting δ.

Moreover, ignoring this expression is equivalent to ignoring the contribution of the client
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sampling when client 1 is sampled. This results in

Deε
(

ξ||ξ′
)

=

∫

Z

[

p(1− q − eε)
∑

S1∈S1

Pr(S1)N (z, µ̄(1,S1),σ
2Im)

+ pq
∑

S1∈S1

Pr(S1)N (z, µ̄(1,S1 ∪ {x′}),σ2Im)
]

+
dz

= p

∫

Z

[

(1− q − eε)
∑

S1∈S1

Pr(S1)N (z, µ̄(1,S1),σ
2Im)

+ q
∑

S1∈S1

Pr(S1)N (z, µ̄(1,S1 ∪ {x′}),σ2Im)
]

+
dz

≤ p max
S1∈S1

∫

Z

[

(1− q − eε)N (z, µ̄(1,S1),σ
2Im)

+ qN (z, µ̄(1,S1 ∪ {x′}),σ2Im)
]

+
dz. (6.28)

Note that N (z, µ̄(1,S1),σ2Im) and N (z, µ̄(1,S1 ∪ {x′}),σ2Im) are two normal distri-

butions whose mean differs at most by C. Hence, in Equation (6.28), without p, the

expression represents OLS. That is, by Theorem 6.3,

max
S1∈S1

∫

Z

[

(1− q − eε)N (z, µ̄(1,S1),σ
2Im)

+ qN (z, µ̄(1,S1 ∪ {x′}),σ2Im)
]

+
dz

= q

(

Φ

(

C

2σ
− σε′

C

)

− eε
′

Φ

(

− C

2σ
− σε′

C

))

, (6.29)

where

ε = log
(

1 + q
(

eε
′−1
))

. (6.30)

Hence, we obtain,

Deε ≤ pq

(

Φ

(

C

2σ
− σε′

C

)

− eε
′

Φ

(

− C

2σ
− σε′

C

))

, (6.31)

which proves the claim of Theorem 6.4. "

6.8 Conclusion

Client sampling is widely accepted as a core aspect of FL to reduce the energy consump-

tion of clients and to limit the communication load. In this chapter, we have analyzed

the privacy amplification provided by client sampling in FL to amplify sample-level DP

guarantees. While the privacy amplification effect of local data sampling has been well

studied, to the best of our knowledge, the work presented in this chapter is the first to
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study the approximate DP implications of client sampling in FL. Previous works em-

ploying client sampling either provide user-level DP guarantees, or their analyses rely

on shuffling. Although shuffling provides strong central privacy guarantees when local

randomizers with pure DP guarantees are available, when the local randomizers sat-

isfy approximate DP, the central privacy guarantees degrade considerably. This poses a

challenge when Gaussian noise is used as a randomizer in FL settings. Instead, we have

provided an analysis that does not rely on shuffling and allows the use of Gaussian noise

without degrading the privacy guarantees. We have also shown that when the number of

samples available at each client is small, we obtain privacy guarantees close to those of

centralized training, in which uniform sampling is possible. Moreover, even if the local

dataset sizes are very large, we have shown that client sampling is still quite beneficial

compared to only local dataset sampling. Moreover, since available clients locally decide

to participate or not, independently from each other and from any other system param-

eter, they can keep track of their own privacy losses; and therefore, our scheme trivially

scales to large systems, and is feasible to apply in practice.



Chapter 7

Communication Efficient Private

Federated Learning Using Dithering

7.1 Abstract

The task of preserving privacy while ensuring efficient communication is a fundamental

challenge in federated learning. In this work, we tackle this challenge in the trusted

aggregator model, and propose a solution that achieves both objectives simultaneously.

We show that employing a quantization scheme based on subtractive dithering at the

clients can effectively replicate the normal noise addition process at the aggregator. This

implies that we can guarantee the same level of differential privacy against other clients

while substantially reducing the amount of communication required, as opposed to trans-

mitting full precision gradients and using central noise addition. We also experimentally

demonstrate that the accuracy of our proposed approach matches that of the full preci-

sion gradient method.

7.2 Introduction

FL framework allows multiple clients to collaboratively learn a model with the help of a

PS, without sharing their local datasets [18]. Instead, clients share their local updates

with the PS after the local training round and the PS broadcasts the aggregated model

back to the clients. Given the size of modern neural network architectures, this brings

a massive amount of communication overhead. Hence, one core challenge in FL is the

communication cost.

154
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Privacy is a significant concern when it comes to ML since the solutions depend on

data that can reveal sensitive information about its owner. Hence, while training ML

models, it is vital to prevent any sensitive features from the training set from leaking.

Although privacy is one of the core promises of FL since data never leaves clients and

only the local model updates are shared, as discussed in the previous chapters, it has

been shown that such updates, and even the final trained model are enough to reveal

sensitive information about the training set [36,39,40,43]. This calls for the necessity of

additional privacy-preserving mechanisms in FL.

In this chapter, we jointly address privacy and communication efficiency in the trusted

aggregator model. Privacy-wise, our aim is to provide central DP guarantees; that is,

we want the average of the client updates to satisfy the DP guarantees. The trusted

aggregator model covers the scenarios in which the PS is trusted by the clients. This

can be the case when the clients give their data to a trusted organization, such as a

government agency, an independent regulator, or a research institution while they do

not want to reveal their data to other clients via model updates, or to third parties via

the final deployed model. However, a trusted aggregator model may not always require

a trusted PS. For example, trusted execution environments (TEE) can be employed at

the PS and data encryption between TEE and the clients and the code run at the TEE

can be formally verified [107,108]. Another application area of our scheme is distributed

learning, such as the settings in [29]. In such settings, a massive amount of data belonging

to the same entity is used to train a model. So, the training task is distributed across

many GPUs or servers, called worker terminals owned by the same entity. In order to

avoid privacy leakage from the final deployed model, which can be accessed by third

parties either via white-box or black-box access, the training procedure must satisfy DP.

In such cases, our scheme significantly reduces the communication cost from GPUs or

the worker terminals to the PS. Hence, the trusted aggregator model we consider is only

an abstraction but not a stringent system requirement, and applies to many scenarios

encountered in practice.

Communication-efficient FL has been an active research area [26,27,29]. However, when

it comes to DP guarantees, directly extending these techniques is suboptimal since both

compression for communication efficiency and privacy introduce separate errors. Works

such as [109–115] consider tackling these two problems jointly. However, they mostly

aim at guaranteeing local DP, in which each update from clients is separately protected.

Unfortunately, such a stringent requirement considerably hurts the final model’s perfor-

mance. Moreover, due to the use of specially designed mechanisms to satisfy local DP,

the aforementioned methods are not directly extendable to central DP.
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The main idea of our proposed method is that the randomization required for privacy

hurts the accuracy, and hence, it may not be necessary for clients to send full precision

updates since they will be already destroyed by the PS to some extent after adding

noise. Instead, we propose using subtractive dithering quantization on the client updates

prior to sending them to the PS. This reduces the communication cost while keeping

the same accuracy. We show that if the quantization step size is randomly generated

following a particular distribution, with the help of shared randomness between each

client and the PS, the noise in the reconstructed update at the PS follows a normal

distribution for any third party that does not have access to the common randomness.

By employing dithered quantization, we simulate the normal noise addition process to

ensure DP and avoid adding noise twice for quantization and DP, while significantly

reducing the communication overhead.

7.3 Problem Setting

We consider FL with N clients and a PS. Each client i has its own dataset, Di and they

collaboratively learn a model fw with parameter w ∈ Rm by minimizing a cumulative

loss function,

1

N

∑

i∈[1:N ]

1

|Di|
∑

d∈Di

ℓ (fw (df ) , dl) , (7.1)

where ℓ is the local loss function, df and dl are the features and the label of the data

point d, i.e, d = (df , dl). In the sequel, for brevity, we write ℓ(w, d) ! ℓ (fw (df ) , dl).

For training, we consider distributed SGD optimization. That is, at each iteration t, each

available client i samples a small batch, Bi,t ∈ Di, of average size B, and for each sample

in the batch, computes the gradients of the loss function with respect to the current

model parameters, i.e., ∇ℓ(wt, d), d ∈ Bi,t. Then, each client sends the average of the

sample gradients, i.e., ∇ℓti ! 1
B

∑

d∈Bi,t
∇ℓ(wt, d), to the PS, where these gradients are

further averaged to obtain the global average, denoted by g. Finally, the new global

model, which is updated by g, is broadcast to all available clients for the consecutive

update round.

Threat Model: In this chapter, we stick to the trusted aggregator model, i.e., the

PS is trusted. Moreover, for compression, we assume that there are separate sources

of common randomness shared between each client and the PS. Clients are assumed

to be honest but curious. That is, they adhere to the protocol but may try to infer

sensitive client information from average updates received from the PS. Hence, one of
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our goals is to protect the privacy of each client’s local dataset from other clients since

the updated model across rounds may reveal important sensitive information. Besides,

once the training is completed, the final deployed model may leak sensitive information

as well. Hence, we also aim to protect privacy leakage from the final deployed model,

which makes our model and solution relevant even when the clients are trusted, as in

distributed learning.

7.4 Proposed Method

In our proposed solution, we reduce the communication cost of each client update to

the PS by quantizing them using subtractive dithering. We choose the step size of the

quantization and the dithering parameters based on a gamma random variable. Such a

trick achieves a quantization error that follows a Gaussian distribution, and hence, results

in (ε, δ)-DP guarantees, as shown in Theorem 7.4. Our solution uses the following fact

about the scale mixture of uniform distributions, which appears in [116].

Lemma 7.1. If (X|V = v) ∼ Unif(µ− σ
√
v, µ+ σ

√
v), and V ∼ Γ[3/2, 1/2], then X ∼

N (µ,σ2), where Γ[3/2, 1/2] is the gamma distribution with shape and rate parameters

3/2 and 1/2, respectively.

This lemma states that if the realization of V , which follows a gamma distribution

Γ[3/2, 1/2], is not known, then the distribution of X becomes a normal distribution.

Our solution also utilizes the following fact about subtractive dithering [117,118].

Lemma 7.2. Let Y be the scalar to be quantized and Ŷ = Q (Y + U) − U , where U ∼
Unif

(

−∆
2 ,

∆
2

)

and Q is the quantization function with step size ∆. Then, Ŷ = Y + U ′,

where U ′ ∼ Unif
(

−∆
2 ,

∆
2

)

and independent from U .

We summarize our proposed method in Algorithm 2. To generate batches Bi,t, each

client i employs Poisson sampling, that is, each sample in the local dataset Di is sam-

pled independently with probability p. Hence, B = p|Di|. To achieve formal privacy

guarantees, at each client, we clip each sample gradient in the batch so that its L2-norm

is bounded by a parameter C. Then, the client computes the average of the sample

gradients, ∇ℓti. Since ||∇ℓ(wt, d)||2 ≤ C, each element of the vector ∇ℓti also lies within

the range [−C,C].

The client quantizes ∇ℓti prior to sending it to the PS. Before quantization, for each

element (∇ℓti)j , j ∈ [m], the client samples Vi,j = vi,j from the gamma distribution

Γ[3/2, 1/2], and set the quantization step size ∆i,j = 2σ
√
vi.j . Hence, the client uses a
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Algorithm 2 Proposed Algorithm
Protocol in client i:

for t ∈ [1 : T ] do

Receive wt−1 from the PS
Sample Bi,t from Di

for d = (df , dl) ∈ Bi,t do

Calculate ∇ℓ(wt, d)

Clip: ∇ℓ(wt, d) = ∇ℓ(wt, d)/max
{

1,
||∇ℓ(wt,d)||2

C

}

end for

Calculate average gradient ∇ℓti = 1
B

∑

d∈Bi,t
∇ℓ(wt, d)

for j ∈ [m] do

Sample vi,j ∼ Γ[3/2, 1/2]
Calculate ∆i,j = 2σ

√
vi,j

Sample Ui,j ∼ Unif
(

−∆i,j

2 , ∆i,j

2

)

Quantize: mi,j = Q ((∇ℓti)j + Ui,j) mapping it to the closest value in

{· · · ,− 3∆i,j

2 ,−∆i,j

2 , ∆i,j

2 , 3∆i,j

2 , · · · }.
Send the mi,j by using 2C/∆i,j bits to the PS.

end for

end for

Protocol in the PS:

for t ∈ [1 : T ] do

for i ∈ [1 : N ] do

for j ∈ [m] do

Sample vi,j ∼ Γ[3/2, 1/2] and Uj ∼ Unif
(

−∆i,j

2 , ∆i,j

2

)

using the shared randomness

with client i.
Receive mi,j and decode as Q ((∇ℓti)j + Ui,j)

Estimate (∇̂ℓti)j = Q ((∇ℓti)j + Ui,j)− Uj

end for

end for

Average gradients gt =
1
N

∑

i∈[1:N ](∇ℓti)j
Update the model wt+1 = wt − ηgt

Broadcast wt+1 to all clients
end for

separate step size parameter for every element of ∇ℓti. Accordingly, the representative

quantization points are set as {· · · ,−3∆i,j

2 ,−∆i,j

2 , ∆i,j

2 , 3∆i,j

2 , · · · }. Then, for each element

of (∇ℓti)j , j ∈ [m], it samples Ui,j from Unif
(

−∆i,j

2 , ∆i,j

2

)

and quantizes (∇ℓti)j + Ui,j .

To be precise, we use the quantization function Q(x) !
⌈

x−∆/2
∆

⌋

∆+ ∆
2 , where ⌈·⌋ is the

function rounding its argument to the nearest integer.

To transmit the quantized gradients to the PS, client i encodes each element (∇ℓti)j
using bi,j !

⌈

log2

(

2 ·
⌈

C
∆i,j

+ 1
⌋)⌉

bits since |(∇ℓti)j | ≤ C, resulting in
∑

j∈[m] bi,j bits

of communication from client i to the PS in round t. We denote the message sent by

client i in round t by mi,j .

Using the common randomness shared between client i and the PS, the same realizations

of Vi,j ’s and Ui,j ’s generated by client i can also be obtained by the PS. From mi,j , the
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PS can decode the value of Q
(

(∇ℓti)j + Ui,j
)

, ∀i ∈ [1 : N ] and ∀j ∈ [m]. Via subtractive

dithering, the PS estimates (∇ℓti)j as (∇̂ℓti)j ! Q
(

(∇ℓti)j + Ui,j
)

− Ui,j = (∇ℓti)j + U ′
i,j ,

where U ′
i,j ∼ Unif

(

−∆i,j

2 , ∆i,j

2

)

. Finally, from (∇̂ℓti)j , ∀i ∈ [1 : N ], the PS calculates the

global gradient average g, and updates the global model accordingly. Then it broadcasts

the new global model to the clients for the next round. The global gradient average

satisfies central DP requirement as stated by the following theorem.

Theorem 7.3. Global gradient average g is a noisy estimate of the averages of the local

gradients such that

g =
1

N

∑

i∈[1:N ]

(∇ℓti)i +N
(

0,
σ2

N
Im

)

. (7.2)

Hence, ∀ε′ > 0, g satisfies (ε, δ)-DP in sample-level against clients for ε =

log
(

1 + p(eε
′ − 1)

)

and

δ = p · Φ
(

C

σB
√
N

− ε′σB
√
N

2C

)

− p · eε′Φ
(

− C

σB
√
N

− ε′σB
√
N

2C

)

, (7.3)

where Φ denotes the CDF of the standard normal distribution.

Proof. For jth element of (∇ℓti)i, i ∈ [1 : N ], since ∆i,j = 2σ
√
vi,j , U ′

i,j is distributed as

Unif(−σ√vi,j ,σ
√
vi,j). Since vi,j is a sample from Γ[3/2, 1/2], according to Theorem 7.1,

U ′
i,j is distributed as N (0,σ2) when the realization of vi,j is unknown. Since this is the

case for any client k ̸= i, the quantization noise of one client is normally distributed from

the perspective of any other client. When we consider the averaging operation at the

CS, we obtain Equation (7.2). For the (ε, δ)-DP guarantee, we use the following lemma,

which is the joint statement of Theorem 8 in [36] and Theorem 8 in [52].

Lemma 7.4. Let f be a function satisfying ||f(X)− f(X ′)||2 ≤ L and g be the Poisson

sampling function with propability p. Then, for any ε ≥ 0 and δ ∈ [0, 1], the subsampled

Gaussian mechanism M(X) = f ◦ g(X) +N (0,σ′2) is (ε, δ)-DP if and only if, ∀ε′ > 0,

ε = log
(

1 + p(eε
′ − 1)

)

and

p · Φ
(

L

2σ′
− ε′σ′

L

)

− p · eε′Φ
(

− L

2σ′
− ε′σ′

L

)

≤ δ. (7.4)

Since every client divides the sum of its sample gradients by B, and the PS also averages

them over N clients, the effect of the gradient of a single sample is at most C/(BN).

This makes the L2 sensitivity of the signal 1
N

∑

i∈[1:N ](∇ℓti)i to be 2C/(BN). If we put

this quantity in place of L in Equation (7.4), and set σ′ = σ/
√
N from Equation (7.2),

we obtain Equation (7.3).
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Dataset Baseline Final ε Accuracy Epochs σ/
√
N C BN

MNIST
Proposed Scheme 1.45 91.39±1.04 10 0.05 2.0

32Uncomp-DP 1.45 91.97±0.76 10 0.05 2.0

Non-private ∞ 98.90±0.09 10 0 ∞

EMNIST
Proposed Scheme 0.95 70.17±0.26 10 0.05 2.0

32Uncomp-DP 0.95 70.02±0.47 10 0.05 2.0

Non-private ∞ 85.11±0.13 10 0 ∞

CIFAR-10
Proposed Scheme 7.03 51.66±0.03 100 0.01 1.0

64Uncomp-DP 7.03 50.92±1.35 100 0.01 1.0

Non-private ∞ 80.95±0.64 50 0 ∞

Table 7.1: Experimental Results

7.5 Experiments

In this section, we conduct numerical experiments using the proposed method and two

other baselines, namely Uncomp-DP and non-private. In both baselines, we use an

uncompressed transmission from the clients to the PS using double precision. In Uncomp-

DP, the PS adds the required amount of noise to the sum of received client updates to

achieve the target (ε, δ)-DP guarantees. On the other hand, in the non-private case, we

do not impose any privacy requirements and the PS only averages the client updates.

We evaluate the proposed scheme and the baselines on the MNIST, EMNIST (ByClass

partition) and CIFAR-10 datasets. We employ LeNet architecture [105] for MNIST and

EMNIST, and ResNet-18 [119] for CIFAR-10. For DP training, we use the Opacus

library [120] and employ the privacy accounting techniques based on Renyi-DP [83, 94].

To simulate FL, we evenly distribute the dataset among N clients, i.e., same |Di|’s
∀i ∈ [1 : N ]. We determine the Poisson sampling probability p by simply dividing

the expected total batch size at the PS, i.e., BN , by the number of data points in the

whole dataset, |Di|N . We keep BN constant across different N ’s and we consider it as

a hyperparameter to tune independent of N . Similarly, we tune the value of σ so that

σ/
√
N remains constant so that the same DP guarantees hold regardless of the number of

clients. While, for the non-private cases, we train until convergence, for the private cases,

we determine the number of epochs to reach reasonable privacy and accuracy levels.

We repeat each experiment 10 times and report the average accuracies in Table 7.1 along

with the final ε value after composition for δ = 10−6, length of the gradient vector per

round, communication cost per round and some related training hyperparameters. In

general, in the experiments with all three datasets, we observe that the accuracies of

the proposed method and the Uncomp-DP match. This verifies our theory claiming

that subtractive dithering quantization is equivalent to adding Gaussian noise at the PS.

Hence, the privacy accounting of these methods also matches.
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Figure 7.1: Communication cost vs. number of clients for the proposed scheme.

Since we tune B and σ so that σ/
√
N and BN remain constant with N , the accuracies

of our experiments does not depend on the number of clients involved, which means that

the same accuracies in Table 7.1 applies to different N values. However, since now σ

depends on N , the communication cost per client increases with the number of clients

involved. Fortunately, we observe that the communication cost scales logarithmically

with the number of clients; and hence, even with a very large number of clients, our

scheme still uses significantly less communication. We plot the average communication

cost per gradient element via numerical simulations in Figure 7.1. We observe that in

MNIST and EMNIST experiments per-element costs match since we use the same C

and σ parameters. For CIFAR-10, to have good accuracy, we tune the hyperparameters

differently, and hence, we end up with a slightly larger communication cost. In all the

cases, however, compared to double precision, which uses 64 bits per element, we use 12

to 5.5 times less communication depending on the number of clients without sacrificing

accuracy. This observation shows that the proposed scheme saves a significant amount

of communication for free in DP training.

7.6 Conclusion

In this chapter, through both theoretical analysis and experimental demonstrations, we

have shown that using subtractive dithering quantization in the trusted aggregator model

of FL can produce the same level of DP and accuracy guarantees as Gaussian noise

addition, while utilizing fewer communication resources. This technique may prove useful

in speeding up privacy-sensitive learning in communication-scarce scenarios such as edge



Communication Efficient Private Federated Learning Using Dithering 162

training or time-critical industrial applications. Although the trusted aggregator model

has many real-world applications, one possible area of future exploration is extending our

methods to situations where trust in the PS is difficult to achieve. Additionally, exploring

the possibility of extending the proposed technique to joint quantization would be an

interesting future research direction.



Chapter 8

Conclusion

In this dissertation, we studied several research problems in the field of distributed com-

puting. Common to all the problems studied, the ultimate goal was to make distributed

computing and learning more accessible to all parties requiring it.

Our first objective was to expedite large-scale computations, even in the presence of

unreliable computing nodes. For organizations with limited computational resources

and financial constraints, accessing high-quality computing nodes can pose significant

challenges. Therefore, we aimed to ensure that even with such constraints, entities

can leverage their resources effectively and complete their tasks within a reasonable

timeframe. However, in doing so, data sharing is inevitable, which raises concerns about

data privacy. Our secondary objective was to ensure that privacy breaches are avoided

even when organizations with limited resources need to outsource their computations to

external nodes. Thus, we extended our methods to provide a framework for reliable and

fast computations while guaranteeing data privacy. Our research in Chapters 3 and 4

has tackled these concerns via coded computation techniques.

Another primary objective of our research was to ensure that clients who participate

in FL are not adversely affected in terms of their privacy and resources. This is cru-

cial because clients should not have to choose between the benefits of modern machine

learning and their privacy. By providing opportunities for clients to participate in FL

without compromising their privacy, we can ensure that machine learning techniques

benefit society as a whole, rather than just economically powerful entities. Our research,

as presented in Chapters 5 to 7, aligns with these goals and aims to contribute to the

development of privacy-preserving FL techniques.

In the subsequent sections, we provide a more detailed account of the challenges we en-

countered, the achievements we made, and the future directions of the research problems
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we focused on. Through this discussion, we hope to contribute to the ongoing efforts to

address the challenges associated with our research area and to inspire further progress

towards our shared goals.

8.1 Challenges, Achievements and Future Directions

8.1.1 Coded, Secure Distributed Matrix Multiplication

More than half of this dissertation is dedicated to addressing the problem of secure,

storage- and upload-cost-efficient straggler exploitation for distributed matrix multipli-

cation, as discussed in Chapters 3 and 4. At the outset of our research, we identified the

issue of inefficient straggler exploitation, whereby widely adopted univariate polynomial

codes were limited to using only the same-point evaluations of the encoding polynomials.

As a result, the number of computations that workers can provide was linear with their

storage capacity, despite the potential for a quadratic number of computations due to

the multiplication of different matrices’ partitions.

To address this issue, we proposed a simple solution: using bivariate polynomials to

ensure that the encoding polynomials’ evaluations are independent. However, this ap-

proach posed a new challenge in the form of the invertibility of the interpolation matrix,

which was highly non-trivial compared to univariate polynomial codes. Furthermore,

this problem had not been studied in the context of coding theory, necessitating a deep

dive into polynomial interpolation theory and proof techniques in this domain.

To build the necessary theoretical foundation, we consulted the book [65], which provided

valuable insights despite its challenging nature. With this background knowledge, we

were able to obtain several invertibility results and develop a range of schemes, including

B-PROC, BPC-VO, BPC-HO, BPC-NZO, and BPC-ZZO, for which the invertibility

proof holds. We believe that the proof technique we developed is itself a theoretically

interesting result that may guide the proofs of other multivariate interpolation schemes

for distributed matrix multiplication in more general situations.

Moreover, as demonstrated in Chapter 3, the proposed schemes can exploit the workers’

storage capacities in a way close to optimal, and for different storage capacities, they

outperform existing schemes in the literature in terms of the average computation time.

Subsequently, we shifted our focus towards extending the proposed bivariate polynomial

coding schemes to ensure the security of the multiplied matrices. To achieve this, we

adopted techniques similar to those used in existing univariate polynomial coding-based

schemes from the literature. Specifically, we extended the coding to be defined over a
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finite field, introduced random terms to the encoding polynomials to mask the input ma-

trices, and employed techniques to minimize the number of monomials whose coefficients

include undesired multiplications among random terms in the final decoding polynomial.

The primary challenge in this endeavour was to extend the invertibility proof such that

it is valid in finite fields. This required some literature research on the Taylor series

expansion on finite fields. However, compared to the initial challenge of developing the

proof technique, this extension was relatively less demanding.

We note that our proposed secure scheme, as demonstrated in Chapter 4, achieves a

significant improvement in the average computation time over the rival schemes in the

literature.

Despite the significant progress made in the development of bivariate polynomial coding

for secure distributed matrix multiplication, there remain several open problems that

require further investigation. Notably, the secure version of the scheme does not utilize

the storage or upload cost budget in a near-optimal manner, unlike the initial construc-

tion without security guarantees. However, it is still considerably more efficient than

the secure univariate counterparts. Addressing this limitation represents a promising

direction for future research, with the potential to further enhance the performance of

secure distributed matrix multiplication.

In conclusion, while coding theoretical approaches hold great potential for accelerating

large-scale computations, their widespread adoption may be hindered by the encoding

and decoding complexity, as well as the development efforts required. Although the

encoding and decoding complexity does not necessarily outweigh the speedup benefits,

the improvements may be incremental. However, in the context of security concerns,

coded computation is likely to emerge as one of the popular solutions in the future. This

is because coded computation can accelerate computations while incurring less overhead

compared to secure multi-party computation-based solutions. As such, further research

and implementation are needed to explore the potential of coded computation in practical

frameworks addressing their data security and dependability concerns.

8.1.2 Privacy-Preserving Federated Learning

With the goal of preserving the privacy of clients participating in training in FL, we

initially focused on the problem of ensuring privacy in a wireless medium. This setting

is motivated by the need to enable edge devices, which have limited power, computation,

and communication resources, to participate efficiently in the training process. In Chap-

ter 5, we demonstrate that the scarcity of communication resources can be leveraged to

advantage by applying the concept of OAC. OAC utilizes simultaneous transmissions to
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efficiently use bandwidth, and we show that this approach can also provide anonymity

to the transmitting clients. This allows us to apply previous results on privacy ampli-

fication via sampling to client sampling, as the receiver does not know the identities of

the transmitting clients by nature. Therefore, we demonstrate another useful property

of OAC, namely anonymity, in addition to its communication benefits.

However, it is important to note that the assumptions made in this scheme may be too

strong. Firstly, the scheme requires specialized hardware that enables clients to transmit

their updates simultaneously in an analog fashion. While this is technically feasible, the

current infrastructure is designed and optimized for digital communications, making it

difficult to apply this scheme in practice. Therefore, more practical and system-oriented

research is required in OAC to make such schemes applicable.

Furthermore, in terms of privacy, the assumption that the PS cannot learn any informa-

tion about the sampled clients due to the lack of knowledge of the number of participating

clients is also too strong. Although it may be challenging in practice, a powerful adver-

sary with knowledge of all the sampled devices except one in all training rounds may

eventually learn some information about the participation of this secret client. Assuming

otherwise is somewhat against the strong adversary assumption of differential privacy.

Therefore, it is necessary to consider the possibility of such an adversary and develop

more robust privacy-preserving mechanisms.

Motivated by this, we studied the leakage of the sampled devices directly from the

aggregated client updates. To this end, we conducted a theoretical investigation of the

joint privacy amplification effect of client sampling and local dataset sampling in each

participating client, as detailed in Chapter 6. Unlike the setting described in Chapter 5,

we considered a conventional FL setting with a trusted PS.

Our analysis focused on the correlation generated among the samples of the same client

in their subsampling due to the joint sampling of clients and local datasets. We provided

a theoretical analysis of such non-uniform subsampling, which revealed that when the

size of the local datasets is small, the privacy guarantees via random participation are

close to those of the centralized setting. However, when the local datasets are large,

observing the output of the algorithm may disclose the identities of the sampled clients

with high confidence. This finding is in accordance with the intuition, as clients with

larger datasets provide more sample gradients when sampled than clients with smaller

datasets, making them easier to detect.

Our work provides a rigorous analysis of the proposed sampling method, as detailed in

Theorem 6.1 and Theorem 6.2. However, in terms of theoretical elegance, the corre-

sponding expressions for ε and δ are somewhat complex and not in closed form. To
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find values of ε and δ, numerical methods are required. Fortunately, these methods are

relatively easy and numerically efficient to implement.

One limitation of our current analysis is the lack of composition results, which are crucial

in iterative algorithms that require multiple accesses to the datasets, such as FL. While

we could use the advanced composition theorem to provide a result, the composition

analysis provided by this theorem is usually not tight. Since the composition analysis

of the plain Gaussian mechanism without sampling is quite tight, the analysis via the

advanced composition theorem would fail to demonstrate the superiority of the proposed

sampling method.

Therefore, a tight analysis of the proposed sampling method is still an important open

problem that requires further investigation. In our continued research on the topic, we

will aim to address this issue and provide a more comprehensive analysis of the proposed

sampling method.

Finally, in Chapter 7, we shift our focus to the important topic of communication effi-

ciency in private FL, which is currently a very active research area. Our contribution

to this area is the suggestion that, via an existing channel simulation technique based

on subtractive dithering, we can use much fewer communication resources. This is made

possible by random quantization, where the quantization levels are determined by a

gamma-distributed random variable. Remarkably, the marginal distribution of the final

distortion on the original signal becomes a Gaussian random variable, which is a perfect

source for differential privacy guarantees.

However, it is important to note that the random quantization level must be known by

the PS to decode the noisy client update. Therefore, the scheme does not provide privacy

against the PS. Nevertheless, the clients’ data are still kept private against other clients

and all adversaries who can only see the final deployed model. Although the trusted PS

may be criticized by the privacy community, such scenarios are already applied in many

real-world applications, and our scheme can be very beneficial in these scenarios. We

provide a detailed discussion of these settings in Chapter 7.

Despite our proposed solution, there is still a fundamental open question in the area of

communication-efficient FL: "What is the minimum required distortion to achieve (ε, δ)-

DP in both local or central sense, and what is the compression technique to achieve this

distortion?". This question remains a challenge for researchers in the field, and fully or

partially answering it will be a future endeavour for us and others working in this area.
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