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Main findings

● Afghanistan and Pakistan are highly vulnerable to flooding due to factors such as limited
transboundary water management, unplanned urban expansion, and deforestation which are
contributing to increased flood risks, in combination with socio-economic conditions and
compounding natural hazards, e.g. earthquakes, landslides, and drought. While Iran is less
vulnerable than the other countries studied, urban infrastructure-related vulnerabilities in
some cities in the northeast contributed to the impacts.



● The floods also occurred on top of existing vulnerabilities linked to complex crises. Displaced
populations were particularly impacted, especially as limited essential infrastructure was
destroyed and already vulnerable populations were exposed to more waterborne diseases.

● The event, despite occurring outside the usual rainy season, is not a particularly rare event in
today’s climate that has been warmed by 1.2°C with a return time of about ten years under
the current El Niño Southern Oscillation (ENSO) conditions.

● The declining El Niño Southern Oscillation, a naturally occurring climate phenomenon, is
important to explain the variability in the observed rainfall, consistent with previous research.
In observations, as compared to a neutral ENSO year, the declining El Niño resulted in a
consistent increase across all datasets by a factor of about two in likelihood and about 8% in
intensity.

● To assess the role of human-induced climate change we combine observation-based products
and climate models that include the observed ENSO relationship and assess changes in the
likelihood and intensity for the heavy rainfall in the study region. While the last 40 years of
observational data show an increase, climate models have a very different signal, depending
on the model, with some showing an increase and some a decrease. Consequently, without
further analysis into why the models show such different behaviour we can not attribute the
observed increase, which is also not consistent across observation-based products, to
human-induced climate change.

● The disagreement between model results and observations prevents us from concluding with
certainty that human-induced climate change is the main driver making this event more likely.
However, given the observed trend over the last 40 years, the absence of evidence does not
mean that human-induced climate change is not a driver of increasingly heavier rainfall in this
region and season in a warmer climate.

● There are ample opportunities to improve climate adaptation and resilience through, for
example, investing in building resilient infrastructure and reinforcing existing structures to
withstand extreme events, implementing more comprehensive nature-based solutions,
increasing the coverage of early warning systems, and improving flood risk management
policy and planning.

1 Introduction

Since April 2024, large parts of central Asia have been hit by a series of storms resulting in heavy
downpours and multiple widespread flooding in the affected areas. These episodes were just outside
of the main rainfall season in these parts from November to early April (winter months). It is worth
noting that this year, the region had experienced a severe precipitation deficit from December to
March, before going on to receive higher than normal precipitation and multiple flooding events in the
subsequent two months that are unusual for this time of the year.

Heavy rainfall in various parts of Pakistan around April 12 affected the Khyber Pakhtunkhwa (KP)
and Balochistan provinces. Following this first wave that resulted in severe losses nationwide,
including 107 deaths, 130 injuries, 464 schools damaged, over 5,000 houses affected, and more than
500 livestock killed (ReliefWeb, 30 April, 2024), a second spell of heavy rains between April 28-29

https://reliefweb.int/report/pakistan/pakistan-flash-floods-flash-update-no3-30-april-2024#:~:text=The%20first%20wave%20(April%2012,than%20500%20livestock%20perished%20nationwide.


disproportionately affected the Khyber Pakhtunkhwa province, with flood-related losses in multiple
districts of KP (OCHA Pakistan, 30 April 2024). While provinces of KP and Balochistan received
multiple westerly waves resulting in a few moderate to heavy falls, May remained excessively dry in
the country overall (Pakistan Monthly Climate Summary, May 2024).

Similarly, torrential rains and river overflows on April 16 caused significant distruction in the
provinces of Sistan and Baluchestan, Kerman, and Hormozgan in southeast Iran (National Council of
Resistance of Iran, 18 April 2024). These floods led to power outages, isolating over 20 villages in
Chabahar alone, and disrupting communications to 300 other villages in the region. In Chabahar,
situated in the Sistan and Baluchestan province, river floods caused extensive damage to roads,
agriculture, and urban areas, severing access to 73 villages (National Council of Resistance of Iran, 18
April 2024). One of the last storm systems of the season around May led to heavy downpours
primarily over Afghanistan and Turkmenistan, and the eastern parts of Iran. Around 38 millimetres
(1.5 inches) of rain fell in one hour on 15 May on Mashhad, in northeast Iran, killing seven people
(Al-Monitor, 16 May 2024).

In Afghanistan, heavy rains and flash floods at the beginning of May affected the Herat and Sari Pul
provinces(Xinhua, 6 May 2024). This episode had followed storms and floods earlier in April that
killed more than 70 people and injured about 50 others elsewhere in Afghanistan (PBS, 13 May
2024). The last wave of storms resulted in flash floods on May 17, 2024, while the country was still
reeling from the previous deluges, and impacted the provinces of Ghor, Faryab, Sari Pul, Samangan,
Balkh, and Badghis (ReliefWeb, 20 May 2024).

The substantially warmer-than-usual western Indian Ocean likely played a key role in providing both
dynamical and thermodynamical forcing for excessive precipitation in the region, supplemented by
moisture from the warm tropical regions. El Niño is also known to influence the variability of
precipitation over the region. The prevalence of El Niño during April, in tandem with a warm western
Indian Ocean, points towards the possible influence of El Niño in exacerbating precipitation.
Literature suggests that the warm phase of ENSO is associated with enhanced precipitation in CSWA
(Central South West Asia) region in spring season especially after the mature phase of El Nino, which
is in-line with the 2024 conditions which saw ENSO going into a neutral phase in May (Mariotti,
2007). Considering the scale of precipitation being much higher than average, this points towards the
larger role of warm western Indian Ocean anomalies in resulting in higher April-May precipitation
over the region and the role of teleconnections besides El Nino.

1.1. Event Definition

As described above, multiple storm systems brought unusual rains over Afghanistan, western
Pakistan, and eastern Iran in April and May 2024, causing significant impacts. To conduct a formal
attribution analysis of this event, we first define the event to reflect its spatial and temporal extent,
extremeness, and the nature and extent of the impacts.

For the spatial definition of the event, we focus on a region centred on Afghanistan, along with the
Iranian provinces of Razavi Khorasan, Sistan and Baluchestan, Hormozgan, Kerman, and South
Khorasan in the west, and the Balochistan and KP provinces of Pakistan in the east. This area covers
the flood-impacted regions through April and May 2024. Due to the atypicality of this season,
occurring outside of the usual seasonal rainfall peak and featuring an unusual number of storms that
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made it wetter than normal, we choose the seasonal accumulated precipitation during April and May
for the temporal definition. Fig. 1 shows the total rainfall over the region during April-May 2024. The
study region is highlighted in red. Fig. 2 shows the absolute seasonal anomaly wrt to 1991-2020 for
the region, which was anomalously wet as a result of the multiple storms. Fig. 3 shows the annual
time series of April-May seasonal accumulated rainfall area-averaged over the study region. The 2024
event is the most extreme in these datasets.

Figure 1: (a) Observed total accumulated precipitation during April-May 2024. The red highlight
shows the study region comprising the most impacted regions. (b) same as (a) showing the anomaly

w.r.t 1991-2020 period. [Data source: MSWEP]



Figure 2: Time series of the accumulated rainfall during April-May, area-averaged over the study
region based on the MSWEP and ERA5 datasets.

Future projections of average rainfall in the region have large uncertainties and there are in general
few studies finding significant changes with little consensus on the sign and with a tendency for
reduction of rainfall in CMIP5 being reversed in CMIP6 across all warming levels (Gutierrez et al.,
2021). However, regardless of the sign of the precipitation change in the high-mountain regions of
Central Asia, the influence of the warming on the snowpack will cause important changes in the
timing and amount of the spring melt (Diffenbaugh et al., 2013) with large consequences for flooding
and fresh water availability. There is also strong agreement in the IPCC AR6 assessment, which
includes scientific literature available up to January 2021, that heavy rainfall on short timescales of 1
to 5 days has increased in a warmer world, and is projected to increase further with future warming
(Seneviratne et al., 2021), again with important consequences for flood risk. This does not necessarily
mean however that also more rain is falling over longer timescales, such as the period of 2 months
considered here that led to impacts in this region.

Studies focussing specifically on the affected countries are rare and show a similar uncertain picture
about current and future changes in spring rainfall over Afghanistan, with increases in some regions
and decreases in others, but overall no significant changes (Aich et al., 2017, Rahimi et al., 2024).
Short term rainfall events on the other hand, such as RX5-day, show an increasing trend (Suryavanshi
et al., 2022). For Pakistan the picture is very similar, with uncertain and highly varying trends
depending on timescale and region considered when looking at total precipitation but a comparable
strong increase in the most extreme precipitation (in this case the 99th percentile) especially in the
Western part of the country which is also the region assessed in this study (Khan et al., 2022). In Iran
across the country the short term heavy precipitation is likewise increasing (Zarrin and
Dadashi-Roudbari 2021) while spring precipitation is projected to decrease in some regions while
increasing in others (Doulabian et al., 2020).

2 Data and methods

2.1 Observational data

We use four gridded datasets in this study, for analysing the trends in the very wet rainfall during
April and May over the study region.

1. The European Centre for Medium-Range Weather Forecasts's 5th generation reanalysis
product, ERA5, is a gridded dataset that combines historical observations into global
estimates using advanced modelling and data assimilation systems (Hersbach et al., 2020).
This data is available from the year 1950 and at 0.5° × 0.5° from the Climate Explorer. We
use precipitation data from this product.

2. The Multi-Source Weighted-Ensemble Precipitation (MSWEP) v2.8 dataset (updated from
Beck et al., 2019) is fully global, available at 3-hourly intervals and at 0.1° spatial resolution,
available from 1979 to ~3 hours from real-time. This product combines gauge-, satellite-, and
reanalysis-based data.

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Atlas.pdf
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Atlas.pdf
https://www.nature.com/articles/nclimate1732
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https://www.cell.com/heliyon/fulltext/S2405-8440(24)04464-5
https://link.springer.com/article/10.1007/s00704-022-04257-4
https://link.springer.com/article/10.1007/s00704-022-04257-4
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271626
https://link.springer.com/article/10.1007/s00704-021-03568-2
https://link.springer.com/article/10.1007/s00704-021-03568-2
https://iwaponline.com/jwcc/article/12/1/166/71823/Evaluating-the-effects-of-climate-change-on
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3803
https://climexp.knmi.nl/selectdailyfield2.cgi?id=someone@somewhere
https://journals.ametsoc.org/view/journals/bams/100/3/bams-d-17-0138.1.xml


3. The CRU TS (Climatic Research Unit Timeseries; Schneider et al., 2013) monthly timeseries
of precipitation available for 1901-2022. The data set is gridded to 0.5x0.5 degree resolution,
based on analysis of over 4000 individual weather station records. Many of the input records
have been homogenized, but the data set itself is not strictly homogeneous.

As a measure of anthropogenic climate change we use the (low-pass filtered) global mean surface
temperature (GMST), where GMST is taken from the National Aeronautics and Space Administration
(NASA) Goddard Institute for Space Science (GISS) surface temperature analysis (GISTEMP, Hansen
et al., 2010 and Lenssen et al. 2019).

As a measure of the El Niño - Southern Oscillation (ENSO) cycle we use the detrended Niño3.4
index. This is the Niño3.4 index (average SST over 5° S–5° N, 120°–170° W) minus the SST between
20° S–20° N to adjust the index for climate change, as proposed in Van Oldenborgh et al., 2021, but
without rescaling each calendar month.

2.2 Model and experiment descriptions

We use 3 multi-model ensembles from climate modelling experiments using very different framings
(Philip et al., 2020): Sea Surface temperature (SST) driven global circulation high resolution models,
coupled global circulation models and regional climate models.

1. Coordinated Regional Climate Downscaling Experiment CORDEX-CORE over the West-Asia
domain with 0.22 km resolution (WAS-22) (Teichman et al., 2021). The ensemble consists of 2
regional climate models each downscaling 4 GCMs. These simulations are composed of historical
simulations up to 2005, and extended to the year 2100 using the RCP8.5 scenario.

2. CMIP6. This consists of simulations from 13 participating models with varying resolutions. For
more details on CMIP6, please see Eyring et al., (2016). For all simulations, the period 1850 to 2015
is based on historical simulations, while the SSP5-8.5 scenario is used for the remainder of the 21st
century.

3. HighResMIP SST-forced model ensemble (Haarsma et al. 2016), the simulations for which span
from 1950 to 2050. The SST and sea ice forcings for the period 1950-2014 are obtained from the
0.25° x 0.25° Hadley Centre Global Sea Ice and Sea Surface Temperature dataset that have undergone
area-weighted regridding to match the climate model resolution (see Table B). For the ‘future’ time
period (2015-2050), SST/sea-ice data are derived from RCP8.5 (CMIP5) data, and combined with
greenhouse gas forcings from SSP5-8.5 (CMIP6) simulations (see Section 3.3 of Haarsma et al. 2016
for further details).

2.3 Statistical methods

In this analysis we analyse time series from April-May accumulated precipitation for the study region
over Iran, Afghanistan and Pakistan (see event definition: Figure 2), where reasonably long records of
observed data are available. Methods for observational and model analysis and for model evaluation
and synthesis are used according to the World Weather Attribution Protocol, described in Philip et al.

https://climatedataguide.ucar.edu/climate-data/cru-ts-gridded-precipitation-and-other-meteorological-variables-1901
https://doi.org/10.1002/2013eo130001
https://doi.org/10.1029/2010RG000345
https://doi.org/10.1029/2010RG000345
https://doi.org/10.1029/2018JD029522
https://iopscience.iop.org/article/10.1088/1748-9326/abe9ed
https://ascmo.copernicus.org/articles/6/177/2020/#section4
https://gmd.copernicus.org/articles/9/1937/2016/
https://gmd.copernicus.org/articles/9/4185/2016/
https://doi.org/10.5194/ascmo-6-177-2020


(2020), with supporting details found in van Oldenborgh et al. (2021), Ciavarella et al. (2021) and
here.

The analysis steps include: (i) trend calculation from observations; (ii) model evaluation; (iii)
multi-method multi-model attribution and (iv) synthesis of the attribution statement.
We calculate the return periods, Probability Ratio (PR; the factor-change in the event's probability)
and change in intensity of the event under study in order to compare the climate of now and the
climate of the past, defined respectively by the GMST values of now and of the preindustrial past
(1850-1900, based on the Global Warming Index). To statistically model an event such as this one, we
usually use a Gaussian distribution that scales with GMST. Noting from previous evidence on links
between heavier precipitation in and around the study region with natural modes of variability-
primarily, El Nino Southern Oscillation and the Western Tropical Indian Ocean Sea surface
temperatures, among other factors (please see discussion in Section 3.1), we test four models to
consider these modes of variability, in addition to the influence of GMST. Based on goodness of fit, to
statistically model the event under study, we use a Gaussian distribution that scales with GMST and
NINO3.4, as also discussed in Section 3.1. Details of this approach can be found in Kimutai et al.
(2024) and Barnes et al. (2024). Next, results from observations and models that pass the evaluation
tests are synthesised into a single attribution statement.

3 Observational analysis

3.1 Influence of modes of natural variability

During the wet season, which lasts from November to April, the ENSO has a large positive effect on
precipitation variability in the CSWA area. The North Atlantic Oscillation (NAO) and El Niño
Southern Oscillation (ENSO) influence winter precipitation in Central Southwest Asia, with positive
NAO and warm ENSO phases leading to increased precipitation through intensified western
disturbances (Syed et al., 2006). In another study, Abid et al (2020) found that ENSO influences wet
season precipitation in CSWA through a combination of direct effects, involving a Rossby wave-like
pattern influencing the region in the tail months, and indirect effects, through an atmospheric dipole of
diabatic heating anomalies in the tropical Indian Ocean that generate persistent Rossby wave-like
forcing throughout the season, with the strongest impacts occurring when both the direct and indirect
effects align, crucial for hydroclimate predictability. Kamil et al. (2019) showed that over the Western
Himalaya–Karakoram–Hindukush region that encompasses our study region, there is a significant
increase in the correlation between the frequency of midlatitude storms that are responsible for the
regional winter precipitation (December–April) and precipitation after the 1980s, highlighting the
modulating influence of ENSO on storm tracks and precipitation anomalies. Mariotti (2007) showed
that the warm phase of ENSO is associated with enhanced precipitation in the CSWA region in the
spring season especially after the mature phase of El Nino, which is in-line with the 2024 conditions
which saw ENSO going into a neutral phase in May. There are also studies that show that SST
variations in the Western Indian Ocean (WIO) are correlated with precipitation anomalies in large
parts of Asia including CSWA. In general, when SSTs are above average in the WIO, CSWA tends to
experience wetter spring seasons. We test four statistical models for determining the best-fitting model
that is representative of the observed variable distribution-

1. Model 1: 𝑋 ~ 𝑁𝑜𝑟𝑚(µ, σ| µ
0
,  σ

0
, α,  𝑇)
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2. Model 2: 𝑋 ~ 𝑁𝑜𝑟𝑚(µ, σ| µ
0
,  σ

0
, α, β,  𝑇,  𝑁𝑖𝑛𝑜)

3. Model 3: 𝑋 ~ 𝑁𝑜𝑟𝑚(µ, σ| µ
0
,  σ

0
, α,  λ,  𝑇,  𝑊𝐼𝑆𝑆𝑇)

4. Model 4: 𝑋 ~ 𝑁𝑜𝑟𝑚(µ, σ| µ
0
,  σ

0
, α, β,  λ,  𝑇,  𝑁𝑖𝑛𝑜,  𝑊𝐼𝑆𝑆𝑇)

where is the time series of the April-May accumulated precipitation area-averaged over the study𝑋
region, is the 4-year smoothed annual global mean surface temperature anomaly, is the𝑇 𝑁𝑖𝑛𝑜
detrended Nino3.4 index for the DJF season, is the detrended Western Tropical Indian Ocean𝑊𝐼𝑆𝑆𝑇
sea surface temperature anomaly for Apr-May. and are the location and scale and parameters ofµ

0
σ

0

the nonstationary distribution; and , , are the trends due to GMST, ENSO and the Westernα β λ
Tropical Indian Ocean SSTs, respectively. As a result, the location and scale of the distribution have a
different value in each year, determined by both the GMST, Niño3.4 states and the Western Indian
Ocean SSTs. Maximum likelihood estimation is used to estimate the model parameters, with

and for Model 1µ = µ
0
𝑒𝑥𝑝 α𝑇

µ
𝑜

( ) σ = σ
0
𝑒𝑥𝑝 α𝑇

µ
𝑜

( )
and for Model 2µ = µ

0
𝑒𝑥𝑝 α𝑇+β.𝑁𝑖𝑛𝑜

µ
𝑜

( ) σ = σ
0
𝑒𝑥𝑝 α𝑇+β.𝑁𝑖𝑛𝑜

µ
𝑜

( )
and for Model 3 andµ = µ

0
𝑒𝑥𝑝 α𝑇+λ.𝑊𝐼𝑆𝑆𝑇

µ
𝑜

( ) σ = σ
0
𝑒𝑥𝑝 α𝑇+λ.𝑊𝐼𝑆𝑆𝑇

µ
𝑜

( )
and for Model 4.µ = µ

0
𝑒𝑥𝑝 α𝑇+β.𝑁𝑖𝑛𝑜+λ.𝑊𝐼𝑆𝑆𝑇

µ
𝑜

( ) σ = σ
0
𝑒𝑥𝑝 α𝑇+β.𝑁𝑖𝑛𝑜+λ.𝑊𝐼𝑆𝑆𝑇

µ
𝑜

( )
Table 1 shows the Akaike Information Criterion values for each of the tested models for the time
series from the three observed datasets identified for the study- MSWEP, ERA5 and CRU-TS. As
highlighted in the table, Model 2 that accounts for the ENSO state and GMST is found to be the
best-fitting model for all three datasets. Therefore, section 3.2 discusses the trends due to GMST and
Nino3.4 during DJF from fitting this model to the three observed datasets.

Table 1: Akaike Information Criterion values for the four tested models. The best-fitting model based
on the lowest AIC values is highlighted in green.

Model 1 Model 2 Model 3 Model 4

MSWEP 396.8153 378.8029 394.1164 380.1447

ERA5 651.3454 645.2207 653.1562 647.1433

CRU-TS 516.9998 513.3576 518.4029 513.0314

3.2 Trend-fitting and Return period

Fig. 3(a-c) shows the responses of April-May seasonal precipitation over the study region to the
global mean temperature (left) and Nino3.4 (right), based on the MSWEP, ERA5 and CRU-TS
datasets, respectively. It should be noted that while the MSWEP and ERA5 datasets include the 2024



event, these are relatively shorter starting from 1979 and 1950, respectively. The CRU-TS dataset is
longer with data since 1901, but runs only until 2022. When considering all of the data, there is no
discernible trend in this variable in ERA5 (left panel, Fig. 3(b)) and a slightly decreasing trend in
CRU-TS with respect to increase in GMST (left panel, Fig. 3(c)). On the contrary, the shorter
MSWEP dataset shows an increasing trend with increase in GMST (left panel, Fig. 3(a)). All three
datasets show an increasing response to Nino3.4- in other words, if the ENSO phase during the DJF
season is positive (El Nino), the precipitation during April-May over the study region tends to be
more, and progressively lesser if the ENSO phase is neutral or in the La Nina state(right panels; Fig.
3).

Figure 3: Trend in April-May precipitation over the study region as a function of GMST (left) and as a function
of Nino3.4 (right) for (a) MSWEP (b) ERA5 and (c) CRU-TS datasets. The thick black line denotes the location
parameter of the fitted distribution, and the blue lines show estimated 6- and 40-year effective return levels for

each year.

Fig. 4(a-c) shows the return period curves for the 2024 climate and a 1.2 °C cooler climate based on
the MSWEP, ERA5 and CRU-TS datasets. The 2024 event has a return period of 11 years
(uncertainty: 4 - 1136 years) in the MSWEP dataset. The event is rare in the longer ERA5 dataset with
a return period of 180 years (uncertainty: 24 -516743 years). At the time of this study, we do not have



access to the station data to validate the reliability of the data before the satellite-era (before 1980).
Therefore, we define the event as a 1-in-10 year event (based on MSWEP) for the remainder of the
analysis.

The best estimates for probability ratio between the present 2024 climate vs. 1.2 °C cooler climate
centres on no change in the ERA5 and CRU-TS datasets, but with large uncertainty (1.2 for ERA5
(uncertainty: 0 to 150) and 1 for CRU-TS (uncertainty: 0.2 to 3)), along with best estimates for
intensity change of 1.8% and 0.9% increase in rainfall amounts as compared to an event of the same
rarity as the observed event, respectively, albeit with large uncertainties (30% decrease to 30%
increase in both datasets). In the MSWEP dataset, the event is around 1664 times more likely
(uncertainty: 0.5 to 4.67E+07) and 53% wetter (uncertainty: 4% drier to 109% wetter) now compared
to the 1.2 °C cooler climate of the past.



Figure 4: Gaussian fit with fixed dispersion, and location parameter scaling proportional to GMST
of the index series. (a) Return time plots for the climate of 2024 (red) and a climate with GMST 1.2 ºC
cooler (blue), based on MSWEP observations. The past observations are shown twice: once shifted up

to the current climate and once shifted down to the climate of the pre-industrial era. The markers
show the data and the lines show the fits and uncertainty from the bootstrap. The magenta line shows
the magnitude of the 2023/24 event analysed here. (b) same as (a) for ERA5 dataset, (c) same as (a)
for CRU-TS dataset. Given that the event is not in the CRU-TS dataset, the vertical magenta line goes

through the return period of 10 years, to highlight the change in intensity of such an event due to
climate change.



For testing whether this difference in trends between the three datasets is an artefact of the length of
data, we repeated the analysis with the data from the year 1979, for the ERA5 and CRU-TS datasets.
shows the return period curves, for the 2024 climate and a 1.2 °C cooler climate for the recent 45
years for ERA5 (42 years for CRU-TS). Fig. 5(a-c) shows the return period curves based on the data
from the recent ~40 years for these datasets. Consistent with MSWEP, there is a stronger increasing
trend in April-May accumulated rainfall due to increase in GMST in this period in both ERA5 and
MSWEP datasets. The best estimates for Probability Ratio are 360 (uncertainty: 0.013 to 8.15E+06))
and 71 (uncertainty: 0.7 ro 1.9E+07) ) for ERA5 and CRU-TS , respectively, with intensity changes
of 36% (uncertainty: 17% drier to 90% wetter) and 33% (4% drier to 84% wetter), respectively.

Figure 5: Same as Figure 4, but with data from 1979 to 2024.

The non-availability of long and quality-controlled station-based observations in the rapid timeframe
of this study renders it difficult to explain the increase in trends in the last~40 years (and the lack
thereof in the longer datasets) in the context of anthropogenic climate change; however, the agreement
between the datasets in the last 40 years (Fig. 6) unequivocally points to an increasing trend in
precipitation with increase in GMST. The event has probability ratios of 66 (0.6 to 4000), 35(0.3 to
3570) and 13(0.8 to5000) in the 2024 climate as compared to the 1979 climate, and 35% (-2.5% to
68%), 24% (-12% to57%) and 22% (-3% to 54%) wetter.



Figure 6: Same as Figure 4, showing the return period plots for the 2024 climate and the 1979
climate, and demonstrating the trend over the last ~40 years.

4 Model evaluation



In this section we show the results of the model evaluation for the study region over Afghanistan, Iran
and Pakistan (see Fig.1). The climate models are evaluated against the observations in their ability to
capture:

1. Seasonal cycles: For this, we qualitatively compare the seasonal cycles based on model outputs
against observations-based cycles. We discard the models that exhibit multi-modality and/or
ill-defined peaks in their seasonal cycles.

2. Spatial patterns: Models that do not match the observations in terms of the large-scale precipitation
patterns during April-May are excluded.

3. Parameters of the fitted Gaussian Models (dispersion parameter). We discard the model if the model
and observation parameter ranges do not overlap.

4. Correlation between April-May seasonal precipitation and the detrended Niño3.4 index. We discard
the model if the model and observation parameter ranges do not overlap.

The models are labelled as ‘good’, ‘reasonable’, or ‘bad’ based on their performances in terms of the
three criteria discussed above. We evaluate 9 models from HighResMIP, 5 models from CORDEX
and 14 models from CMIP6, as listed in Table 2.

Table 2: Evaluation results of the climate models considered for attribution analysis of April-May accumulated
precipitation over the region. For each model, the expected temperature of a 1-in-10 -year event is shown, along
with the best estimate of the Sigma and Shape parameters and a 95% confidence interval for each, obtained via
bootstrapping. Based on overall suitability, the models are classified as good, reasonable or bad, shown by

green, yellow and red highlights, respectively.

Model / Observations
Seasonal
cycle

Spatial
pattern Dispersion

Correlation with
Nino3.4

Event magnitude
(mm)

MSWEP 0.291 (0.229 ... 0.342) 0.54 (0.30 ... 0.57) 95.09

ERA5 0.318 (0.261 ... 0.362) 0.31 (0.090 ... 0.47) 108.64

CRUTS 0.273 (0.232 ... 0.305) 0.28 (0.10 ... 0.44)

does not have
the event.

Threshold for
1-in-10 year
event (mm)

HighResMIP

CMCC-CM2-HR4 bad good 0.450 (0.346 ... 0.507) 0.24 (0.0073 ... 0.45) 89.77

CMCC-CM2-VHR4 bad good 0.391 (0.305 ... 0.439) 0.012 (-0.20 ... 0.24) 114.21

EC-Earth3P-HR good good 0.356 (0.277 ... 0.401) 0.31 (0.12 ... 0.49) 66.20

EC-Earth3P reasonable good 0.401 (0.301 ... 0.462) 0.32 (0.17 ... 0.46) 76.32

HadGEM3-GC31-HM good good 0.371 (0.298 ... 0.424) 0.25 (0.063 ... 0.42) 59.88



HadGEM3-GC31-LM bad reasonable 0.522 (0.383 ... 0.593) 0.49 (0.32 ... 0.65) 102.92

HadGEM3-GC31-MM bad good 0.466 (0.366 ... 0.535) 0.30 (0.12 ... 0.46) 81.75

MPI-ESM1-2-HR good good 0.593 (0.466 ... 0.673) 0.023 (-0.19 ... 0.25) 80.26

MPI-ESM1-2-XR reasonable good 0.712 (0.458 ... 0.819) -0.0062 (-0.22 ... 0.20) 54.17

CORDEX ( ... ) ( ... )

MIROC5_rcp85_r1i1p1_R
egCM4-7 bad good 0.329 (0.247 ... 0.386) 0.32 (0.11 ... 0.50) 168.60

MPI-ESM-LR_rcp85_r1i1p
1_COSMO-crCLIM-v1-1 reasonable reasonable 0.389 (0.303 ... 0.444) 0.34 (0.18 ... 0.49) 70.99

MPI-ESM-MR_rcp85_r1i1
p1_RegCM4-7 bad good 0.323 (0.262 ... 0.362) 0.14 (-0.091 ... 0.34) 91.07

NorESM1-M_rcp85_r1i1p
1_COSMO-crCLIM-v1-1 reasonable reasonable 0.319 (0.238 ... 0.369) 0.34 (0.15 ... 0.51) 93.98

NorESM1-M_rcp85_r1i1p
1_RegCM4-7 bad good 0.281 (0.220 ... 0.320) 0.23 (0.025 ... 0.40) 172.37

CMIP6

ACCESS-CM2 good reasonable 0.367 (0.276 ... 0.431) 0.40 (0.27 ... 0.52) 94.89

ACCESS-ESM1-5 bad bad 0.292 (0.225 ... 0.331) 0.36 (0.24 ... 0.47) 155.89

CanESM5 reasonable reasonable 0.600 (0.470 ... 0.705) 0.54 (0.42 ... 0.65) 51.93

CMCC-ESM2 reasonable reasonable 0.427 (0.320 ... 0.516) 0.37 (0.24 ... 0.47) 123.54

EC-Earth3 reasonable good 0.411 (0.303 ... 0.477) 0.39 (0.26 ... 0.52) 92.77

EC-Earth3-Veg reasonable good 0.330 (0.266 ... 0.374) 0.43 (0.29 ... 0.55) 80.14

EC-Earth3-Veg-LR reasonable good 0.389 (0.291 ... 0.445) 0.40 (0.29 ... 0.50) 101.92

IPSL-CM6A-LR good reasonable 0.408 (0.323 ... 0.466) 0.079 (-0.075 ... 0.24) 125.18

KACE-1-0-G good reasonable 0.502 (0.386 ... 0.578) 0.43 (0.31 ... 0.54) 92.06

MIROC6 reasonable bad 0.234 (0.173 ... 0.274) 0.10 (-0.057 ... 0.25) 131.83

MRI-ESM2-0 reasonable reasonable 0.379 (0.288 ... 0.426) 0.23 (0.10 ... 0.36) 173.59

NorESM2-LM bad reasonable 0.390 (0.316 ... 0.444) 0.50 (0.40 ... 0.60) 99.61

NorESM2-MM reasonable reasonable 0.316 (0.249 ... 0.354) 0.52 (0.42 ... 0.62) 110.67

5 Multi-method multi-model attribution

Table 3 lists the probability ratios (PR) and relative changes in intensity (ΔI) based on the
observations and those models that passed the evaluation described in Section 4, for a moderately
extreme 10-year event, between the current climate and a pre-industrial (1.2degC cooler climate).



Table 4 shows the probability ratios and the intensity changes, but between a Nino year having the
same Nino3.4 as the observed 2023/24 Nino year vs. a neutral Nino year with Nino3.4 value of 0.

Table 3: Probability ratio and change in intensity for 10-year April-May precipitation over the study region for
each model that passed evaluation: (a) from the preindustrial climate to the present and (b) from the present to

2°C above pre industrial temperatures.

Model /
Observations

(a) -1.2C vs present (b) Present vs +0.8C

Probability ratio
PR [-]

Change in
intensity ΔI [%]

Probability ratio
PR [-]

Change in intensity
ΔI [%]

MSWEP
1.7e+3 (0.45 ...
4.6e+7) 53 (-3.6 ... 1.1e+2)

ERA5
1.2 (0.00034 ...
1.5e+2) 1.8 (-28 ... 31)

CRUTS 0.98 (0.19 ... 3.0) 0.90 (-28 ... 30)

EC-Earth3P-HR 0.44 (0.15 ... 8.4) -14 (-40 ... 25) 1.8 (0.86 ... 2.9) 9.9 (-2.2 ... 19)

EC-Earth3P
0.99 (0.17 ...
1.1e+2) -0.18 (-38 ... 50) 1.5 (0.55 ... 3.0) 7.2 (-8.5 ... 21)

HadGEM3-GC31-H
M 0.15 (0.12 ... 0.30) -43 (-59 ... -21) 0.89 (0.37 ... 1.7) -1.7 (-14 ... 8.2)

MPI-ESM-LR_rcp85
_r1i1p1_COSMO-cr
CLIM-v1-1 0.58 (0.21 ... 6.1) -8.4 (-30 ... 20) 0.35 (0.13 ... 0.70) -13 (-23 ... -4.5)

NorESM1-M_rcp85
_r1i1p1_COSMO-cr
CLIM-v1-1 0.36 (0.16 ... 1.5) -15 (-35 ... 4.6)

0.15 (0.049 ...
0.37) -19 (-28 ... -10)

ACCESS-CM2 1.2 (0.44 ... 6.7) 2.1 (-13 ... 23) 0.63 (0.28 ... 1.2) -6.3 (-16 ... 3.0)

CMCC-ESM2 1.4 (0.39 ... 14) 5.1 (-18 ... 33) 0.42 (0.13 ... 0.81) -13 (-26 ... -3.2)

EC-Earth3 0.55 (0.24 ... 2.6) -11 (-32 ... 14) 0.29 (0.13 ... 0.61) -18 (-28 ... -7.7)

EC-Earth3-Veg 0.27 (0.18 ... 0.74) -28 (-42 ... -4.8) 0.26 (0.11 ... 0.61) -19 (-30 ... -7.1)

EC-Earth3-Veg-LR 0.25 (0.15 ... 0.86) -28 (-45 ... -2.2)
0.18 (0.039 ...
0.50) -22 (-36 ... -9.6)

IPSL-CM6A-LR 1.2 (0.38 ... 11) 2.9 (-18 ... 28) 0.64 (0.23 ... 1.2) -6.7 (-19 ... 2.9)

MRI-ESM2-0 0.93 (0.31 ... 5.1) -0.91 (-18 ... 18) 1.1 (0.61 ... 1.8) 1.5 (-5.7 ... 7.6)

NorESM2-MM 6.7 (0.85 ... 2.8e+2) 20 (-2.2 ... 45) 1.4 (0.77 ... 2.2) 4.1 (-3.0 ... 11)

Table 4: Probability ratio and change in intensity for 10-year April-May precipitation over the study region for
each model that passed evaluation: (a) from the preindustrial climate to the present and (b) from the present to

2°C above pre industrial temperatures.

Model / Observations

2023/24 El-Nino year vs a neutral Nino year

Probability ratio PR [-] Change in intensity ΔI [%]

MSWEP 2.9 (1.9 ... 8.7) 11 (5.8 ... 15)



ERA5 3.0 (1.5 ... 8.0) 6.0 (1.5 ... 9.9)

CRUTS 1.4 (1.1 ... 1.9) 3.5 (0.83 ... 6.1)

EC-Earth3P-HR 3.3 (1.4 ... 18) 16 (4.5 ... 31)

EC-Earth3P 5.4 (2.0 ... 28) 22 (9.2 ... 37)

HadGEM3-GC31-HM 1.5 (0.74 ... 4.3) 5.3 (-4.5 ... 18)

MPI-ESM-LR_rcp85_r1i1p1_COS
MO-crCLIM-v1-1 2.9 (1.0 ... 18) 13 (0.42 ... 30)

NorESM1-M_rcp85_r1i1p1_COS
MO-crCLIM-v1-1 4.4 (1.8 ... 17) 16 (6.7 ... 26)

ACCESS-CM2 1.6 (0.84 ... 4.1) 6.3 (-2.7 ... 17)

CMCC-ESM2 2.7 (1.4 ... 8.9) 14 (5.0 ... 27)

EC-Earth3 8.8 (2.5 ... 50) 30 (15 ... 44)

EC-Earth3-Veg 27 (6.3 ... 5.8e+2) 40 (25 ... 60)

EC-Earth3-Veg-LR 2.8e+2 (55 ... 3.2e+3) 56 (43 ... 71)

IPSL-CM6A-LR 2.2 (1.0 ... 7.1) 11 (0.47 ... 23)

MRI-ESM2-0 3.7 (1.8 ... 9.8) 14 (7.0 ... 23)

NorESM2-MM 5.3 (2.1 ... 27) 17 (8.2 ... 30)

6 Hazard synthesis

For the event definition described above we evaluate the influence of anthropogenic climate change
on the event by calculating the probability ratio as well as the change in intensity using
observation-based products and climate models. Models which do not pass the evaluation described
above are excluded from the analysis. The aim is to synthesise results from models that pass the
evaluation along with the observations-based products, to give an overarching attribution statement.
Fig. 7 shows the changes in probability and intensity for the observations (blue) and models (red) and
Fig. 8 shows the same, but only using observations since the beginning of the satellite era (1979).
Before combining them into a synthesised assessment, first, a representation error is added (in
quadrature) to the observations, to account for the difference between observations-based datasets that
cannot be explained by natural variability. This is shown in these figures as white boxes around the
light blue bars. The dark blue bar shows the average over the observation-based products. Next, a
term to account for intermodel spread is added (in quadrature) to the natural variability of the models.
This is shown in the figures as white boxes around the light red bars. The dark red bar shows the
model average, consisting of a weighted mean using the (uncorrelated) uncertainties due to natural
variability plus the term representing intermodel spread (i.e., the inverse square of the white bars).
Observation-based products and models are combined into a single result in two ways. Firstly, we
neglect common model uncertainties beyond the intermodel spread that is depicted by the model
average, and compute the weighted average of models (dark red bar) and observations (dark blue bar):
this is indicated by the magenta bar. As, due to common model uncertainties, model uncertainty can
be larger than the intermodel spread, secondly, we also show the estimate of an unweighted, direct
average of observations (dark red bar) and models (dark blue bar) contributing 50% each, indicated by
the white box around the magenta bar in the synthesis figures. As especially when only considering
the last 40 years observations show a strong increase in the event considered, while models overall



show a decrease the weighted and unweighted means are qualitatively and quantitatively very
different. The synthesised results are not qualitatively different when only considering the last 40
years of observations that show a trend in all datasets. While the trend across the observed datasets is
not statistically significant, the best estimate changes are large compared to increasing rainfall on
other timescales and in other regions (e.g., Brazil, the UK or South Africa) with a best estimate PR of
about 350 and an intensity increase of 40% compared to a 1.2°C cooler climate. Furthermore,
considering the global warming between 1979 and today with the world having warmed
approximately by 0.84degC, the 2024 event is 31 times more likely (uncertainty: 1.77 to 550) and
27% wetter (uncertainty: 6.44% to 44.7%) compared to the 1979 climate.

Figure 7: Synthesis of (a) change in intensity and (b) probability of a one-in-10-year April-May season over the
study region between a 1.2°C cooler preindustrial climate and the 2024 climate, for all models that were judged
‘reasonable’ or ‘good’ in the model evaluation step and using all available observational data. Details of how
to interpret the synthesis plots are given in the text.

https://www.worldweatherattribution.org/climate-change-made-the-floods-in-southern-brazil-twice-as-likely/
https://www.worldweatherattribution.org/autumn-and-winter-storms-over-uk-and-ireland-are-becoming-wetter-due-to-climate-change/
https://www.worldweatherattribution.org/climate-change-exacerbated-rainfall-causing-devastating-flooding-in-eastern-south-africa/


Figure 8 as Figure XX, but with trends in the observational datasets (blue bars) estimated using only
observational data from 1979 onwards, showing the stronger trend over this period. Note that the estimated
changes in the observations are shown only for comparison with Figure XX, to highlight the difference in trend
over the shorter time period; the estimated values are therefore not expected to accurately represent the actual
change in intensity or likelihood in similar events with respect to a 1.2C cooler climate.

The model results are very different in individual models, with some showing an increase and some a
decrease. Lacking a clear physical reason of why climate change should lead to a decrease or an
increase of 2-month precipitation in the April-May season, we cannot exclude models on the basis of
the trend from the analysis. Thus, we do not provide a quantitative assessment of the attribution
analysis but note that all the observational datasets tested show a strong trend in the last 40 years, that
is only represented in few models and thus cannot be attributed to human-induced climate change. We
also highlight, though, that there is also no known driver of a trend other than human-induced climate
change that could explain the observed trend. For any planning purposes it is thus important to treat
this absence of evidence from the models not as evidence for a small role of climate change in
explaining the observed trend over the last 40 years, but on the contrary, given that this could be a
climate change driven trend, that it could get even stronger with continued burning of fossil fuels.

In contrast to the role of climate change, models and observation based-products agree quantitatively
and qualitatively on the role of the DJF El Nino in increasing the likelihood and intensity of this event
(Fig. 9). For the observations, the probability ratio is 4.65 (0.417-53), and the change in intensity is
6.72% (-1.41% to 15.3%). The probability ratio and intensity changes from the models are 2.3
(0.870- 7.43) and 19.3% (-2.42% to 45.9%), respectively. We thus communicate the numbers as a
doubling in likelihood (PR= 2.58 (1.05- 7.44)) and an increase in intensity of about 8% (deltaI=8.29%
(0.6% to 16.4%).



Figure 9: Synthesis of (a) change in intensity and (b) probability of a one-in-10-year April-May season over the
study region when following a year with neutral Niño conditions vs the 2023-24 El Niño event, for all models
that were judged ‘reasonable’ or ‘good’ in the model evaluation step and using all available observational data.
Details of how to interpret the synthesis plots are given in the text.

7 Vulnerability and exposure

While there are significant differences between Afghanistan, Pakistan, and Iran, the provinces of the
respective countries included in the spatial domain of the study are highly vulnerable to floods, due to
their geographical locations and socio-economic conditions. An assessment of flood risk (as a product
of hazard, exposure, vulnerability, and coping capacity) in these countries is crucial for learning from
the disaster and effective flood risk management going forward.

Scoring 0,780 at the Human Development Index, Iran exhibits a higher level of development
compared to Pakistan and Afghanistan and Pakistan (0.540 and 0.462, respectively) (UNDP, 2022).
This is, in part, explained by better healthcare infrastructure, educational attainment, and a more
diversified economy (UNDP, 2022). However, despite development gains across all three countries,
recurring floods and compounding hazards erode infrastructure and disrupt socio-economic stability.
In Afghanistan, provinces located near major river basins exhibit the highest flood risk, with notable
vulnerability in provinces like Nimroz, Helmand, Jawzjan, and Kunduz (Ikram et al., 2024). Similarly,
in Pakistan, the densely populated Indus River basin, and its transboundary tributary Kabul and Kunar
rivers, face significant flood risk. In Iran, major cities situated along rivers flowing into the Persian
Gulf, such as Tehran, Isfahan, and Shiraz, are vulnerable to floods.

Vulnerabilities intersect along socio-economic and demographic lines, with women, children, and
marginalized communities disproportionately affected by floods. Further, studies reveal that factors
like socio-economic status, housing construction material, and past flood experiences significantly
influence household vulnerability (Shah et al., 2020).

https://hdr.undp.org/data-center/country-insights#/ranks
https://hdr.undp.org/data-center/country-insights#/ranks
https://www.sciencedirect.com/science/article/pii/S2666592123000884
https://link.springer.com/article/10.1007/s11069-018-3293-0


The impact of these floods is compounded by other natural hazards such as landslides and droughts.
The frequency and intensity of these events, some of which were exacerbated by human-induced
climate change (Otto et al., 2023), pose significant challenges to disaster response and recovery
efforts. Conflict-related large-scale displacement (IDMC, 2021; IDMC, 2024) further exacerbates
vulnerabilities, with displaced populations often settling in flood-prone areas with inadequate
infrastructure (Noori, 2024; Taraky et al., 2021). Floods also have health-related impacts as flood
water serves as ideal breeding grounds for pathogens that result in diarrhea and other waterborne
infections.

In light of these challenges, effective flood risk management strategies must integrate multi-
dimensional approaches that address vulnerabilities, enhance infrastructure resilience, and promote
sustainable practices. By understanding the complex interplay of socio-economic factors,
environmental dynamics, and compounding events, policymakers can develop targeted interventions
to mitigate flood risk and build resilient communities in Afghanistan, Pakistan, and Iran. Many such
interventions have been identified and developed over the years, however funding remains an obstacle
for implementation.

7.1 Transboundary water management

Limited transboundary water management between Afghanistan, Pakistan, and Iran is a driver of
increased flood risk. Issues primarily arise from inadequate cooperation, insufficient data sharing,
unilateral flood mitigation measures, and upstream development activities.

The lack of effective transboundary water agreements between Afghanistan and Pakistan hinders
coordinated flood risk management efforts. Both countries share at least nine rivers, including the
Kabul River, yet there are no formal agreements on joint management (Thomas et al., 2016).
Insufficient data sharing and joint monitoring make it difficult to implement Early Warning Systems
(EWS) and prepare for floods and droughts; hazards at the opposite ends of water-related extremes
that both frequent the studied area (Taraky et al., 2021).

Unilateral flood mitigation measures also exacerbate the problem. Due to the lack of basin-wide
cooperation, countries have to resort to costly and insufficient unilateral measures. For example,
Pakistan and Afghanistan have undertaken independent flood mitigation projects along shared rivers,
which are often inadequate for managing large-scale floods (Taraky et al., 2021). Upstream
development activities in Afghanistan further complicate the situation. Afghanistan's construction of
dams and expansion of agricultural activities on the Helmand River have reduced water flows into
Iran, impacting the Hamun wetlands and increasing flood risks downstream (Climate Diplomacy,
n.d.). Iran faces significant challenges due to diminished water flow into the Hamun wetlands, located
in the Helmand/Hirmand River Basin shared by Iran and Afghanistan, which exacerbates flood risks
and leads to biodiversity loss, land degradation, and displacement of local communities (reportedly
30% of the Sistan-Baluchestan population) (Maleki et al., 2019; Daryani, 2018). In addition, Pakistan
is concerned about Afghanistan's potential future dam construction on shared rivers like the Kabul,
which could alter water flows and increase flood risks in Pakistan (Climate Diplomacy, n.d.).

https://spiral.imperial.ac.uk/bitstream/10044/1/107370/6/WWA%20Scientific%20report_%20Syria%2c%20Iran%2c%20Iraq%20drought-1.pdf
https://www.sciencedirect.com/science/article/pii/S2212096323000359#b0135
https://api.internal-displacement.org/sites/default/files/publications/documents/IDMC-GRID-2024-Global-Report-on-Internal-Displacement.pdf
https://odihpn.org/publication/climate-change-conflict-and-displacement-perspectives-from-afghanistan/
https://www.mdpi.com/2073-4441/13/11/1513
https://www.refworld.org/reference/countryrep/areu/2016/en/110206
https://www.mdpi.com/2073-4441/13/11/1513
https://www.mdpi.com/2073-4441/13/11/1513
https://climate-diplomacy.org/case-studies/transboundary-water-disputes-between-afghanistan-and-iran
https://climate-diplomacy.org/case-studies/transboundary-water-disputes-between-afghanistan-and-iran
https://journals.ametsoc.org/view/journals/wcas/11/3/wcas-d-18-0070_1.xml
https://phmuseum.com/projects/in-the-desert-of-irans-wetlands
https://climate-diplomacy.org/case-studies/transboundary-water-disputes-between-afghanistan-and-iran


The strained relationship between Iran and Afghanistan over the Helmand River basin also highlights
the risks of inadequate transboundary water management. Despite a 1973 treaty aimed at allocating
water shares, the agreement has been criticized as inadequate and has never been fully implemented
(Climate Diplomacy, n.d.).

Addressing these challenges requires integrated and cooperative transboundary water management
strategies. The case of the Kabul River Basin demonstrates that collaborative efforts in flood risk
management can yield significant socio-economic benefits for both Afghanistan and Pakistan (Taraky
et al., 2021). Adopting equitable water resource utilization, and developing specific agreements as
well as comprehensive flood hazard models for shared basins could help mitigate flood risks and
promote regional stability and development (Allafta & Opp, 2021).

7.2 Urban development

Across the countries, flood risk is largely concentrated in urban areas, characterized by unplanned
expansion, inadequate infrastructure, and poor drainage systems. In Iran, the expansion of paved
surfaces associated with rapid urbanization exacerbates flood risks by reducing water infiltration
(Arabameri et al., 2019). Urban areas like Mashhad, which is bearing the brunt of the 2024 floods,
also suffer from deteriorated infrastructure and the destruction of natural landscapes such as
waterways, both of which leading to higher flood risk (Darabi et al., 2020). Inefficient maintenance
and blockage of drainage systems further contribute to flooding, where sediment accumulation
hampers drainage capacity (Allafta & Opp, 2021).

In Afghanistan, particularly in Kabul, urban expansion has led to a dramatic increase in impervious
surfaces - from 7.1% to 58.57% between 1960 and 2009 - significantly reducing green spaces and
increasing runoff volumes, which results in frequent flooding (Manawi et al., 2020). Additionally,
Kabul’s flood resilience is compromised by limited community awareness, insufficient institutional
support, and a lack of a comprehensive flood management policy (Mushwani et al., 2024).

Pakistan faces similar challenges, where urban planning is often reactive and short-term, focusing on
constructing dikes and levees rather than implementing integrated flood risk management strategies
(Rana et al., 2020). The rapid, unplanned urbanization leads to inadequate drainage systems, which
are unable to handle heavy rains, causing urban flooding (Zia et al., 2023). Encroachment on natural
waterways and the reduction of green infrastructure further exacerbate flood risk, as these areas lose
their natural capacity to absorb excess water (Arshad et al., 2022). The neglect of topographical
consideration in urban planning also places low-lying areas at heightened risk (Waseem et al., 2023).

Overall, the interplay between rapid urbanization, poor planning, and inadequate infrastructure
significantly heightens flood risks in these regions, necessitating comprehensive urban planning and
effective flood management policies.

7.3 Deforestation

Land use management in Iran, Afghanistan, and Pakistan significantly contributes to increased flood
risk through agricultural expansion, deforestation, and inadequate water management practices.
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In Afghanistan, between 1990 and 2005, the country lost a third of its trees, largely driven by conflict
and illegal logging as part of the "war economy" (Bodetti, 2019). By 2013, half of Afghanistan's
forests had vanished (Ibid.), with the largest tree losses recorded in the provinces of Kunar, Paktya,
and Nangarhar (World Rainforests, n.d.). Since 2011, the deforestation rate has declined, without any
reported tree loss during 2015 and 2017, which subsequently increased yet remained at a 20-year low
(Ibid.). Pakistan faces one of the highest deforestation rates in Asia, with up to 0.5% annually and
only 5.7% of its land under forest cover (Iqbal, 2019; Shahid, 2020). Deforestation in Pakistan,
especially in Khyber Pakhtunkhwa, is driven by dependence on forests for fuelwood and timber,
exacerbated by unemployment, poverty, and population growth (Tariq & Aziz, 2015; Mehmood et al.,
2018). Ineffective forest management, illegal logging, and unregulated grazing further worsen the
issue, compounded by weather-related disasters and a lack of alternative resources and awareness
among local communities (WWF Pakistan, n.d.; Tariq & Aziz, 2015; Mehmood et al., 2018). In Iran,
deforestation, driven by factors such as agricultural expansion, urban development, overgrazing and
forest fires (Katiraie, 2019; Bodetti, 2019), resulted in the loss of over 45,000 hectares between 2020
and 2022, accounting for 70% of the deforestation rate in the past five years (IOD, 2023). Loss of
forest cover reduces the land’s water absorption capacity and exacerbates soil erosion (see e.g. Hajian
et al., 2019), while agricultural expansion reduces natural water retention (see e.g. Sugianto et al.,
2022), increasing the volume and velocity of surface runoff during times of heavy rainfall.

Reforestation efforts in Afghanistan are focused on reducing dependency on wood and provide
alternative livelihoods including subsidized fuel-efficient stoves and replanted pistachio forests
(Pikulicka- Wilczewska, 2019). In Iran, the One Billion Tree Planting Project was launched with a
2.27 trillion rials (about $4.5 million USD) budget to plant 300 million trees until 2025 (Tehran
Times, 2023). While updates on progress are yet to be published, the project sends a clear signal that
the government is prioritizing the issue of deforestation. Similarly, in Pakistan, notably the
Khyber-Pakhtunkhwa province, reforestation efforts are ambitious. Its Billion Tree Tsunami project,
launched in 2014, exceeded its target by planting 1.06 billion trees, meanwhile generating thousands
of jobs (Prisco, 2018). Building on the project’s success, the federal government launched the 10
Billion Tree Tsunami, through which another billion trees have been planted to date, in addition to
creating about 84,000 daily wagers benefiting from the project (Root, 2021; Hess, 2021).

Effective reforestation initiatives and land use management are crucial to mitigate flood risks and
enhance environmental resilience in these countries.

7.4 Disaster risk management

7.4.1 Flood protection

Flood protection efforts in Afghanistan, Pakistan, and Iran have evolved throughout the past decades,
reflecting both the challenges and progress each country has faced in addressing flood risks.

In Afghanistan, the International Organization for Migration (IOM) has constructed flood protection
walls in Nangarhar and Kunar provinces, safeguarding thousands of homes and agricultural lands.
These projects were part of a broader disaster risk reduction strategy that included training local
communities in emergency response and flood management (IOM, 2013; IOM, 2015). Similarly, the
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World Bank supported the construction of a flood wall in Kabul Province, which has become a model
for flood management across the country (World Bank, 2019). Collaborative efforts involving the
IOM and Afghanistan's National Disaster Management Authority have been crucial in building local
capacities for flood risk management. Additionally, the United Nations Development Programme
(UNDP) and the Asian Development Bank (ADB) have contributed through community- based
approaches and structural measures, respectively, to enhance flood resilience (UNDP, n.d.; ADB,
2008). The private sector has also played a role, with companies such as Guru Krupa Wires providing
essential flood protection materials including gabions and wire mesh, commonly used for constructing
flood barriers as well as reinforcing riverbanks (Guru Krupa Wires, n.d.).

In Pakistan, flood protection primarily involves structural solutions such as embankments, dikes, and
diversion channels, which are part of the National Flood Protection Plan (NFPP-IV) for 2015-2025
(Government of Pakistan, n.d.). Despite their high cost, research suggests that these measures offer
significant returns on investment. For instance, upgrading Pakistan's flood protection system could
yield $11.90 in avoided damages for every dollar spent (WRI, 2023; Aqueduct Floods, n.d.). Specific
initiatives, like the rebuilding of flood protection walls in Dera Ismail Khan, have effectively used
local materials and community involvement to ensure durability and cost-effectiveness (Anum, 2023).
A recent $77 million USD project focused on building Pakistan’s resilience to climate change through
Ecosystem-based Adaptation (EbA) and Green Infrastructure for integrated flood risk management
has been launched with support of the GCF (2023).

In Iran, flood management has been addressed through projects like the project HoWaMan - Flood
Risk Management in Semi-Arid and Arid Areas, which evaluated current practices and highlighted the
need for better administrative coordination and hazard mapping (Mohajeri, n.d.). Technical studies
have emphasized the modernization of Iran's flood protection infrastructure to ensure sustainability
and resilience (Fadaeifard et al., 2022). Further, the need to integrate health considerations into flood
management plans has been highlighted due to the significant health impacts of floods (Sharifi &
Bokaie, 2019). Advanced modeling techniques are also advocated to enhance predictive capabilities
and preparedness for future floods (Zainudini & Sardarzaei, 2022).

7.4.2 Risk awareness and community coping capacity

Risk perception is crucial for the adoption of risk mitigating behavior, while playing a vital role in
flood risk management and communication (Rana et al., 2020). While there is limited research on risk
awareness in Afghanistan, a study by Mushwani et al. (2024) indicates that 31.3% of Kabul City
residents have engaged in flood preparedness activities. Albeit limited in scope, this highlights a
growing awareness and proactive stance towards flood risk.

In Pakistan, past flood experiences and proximity to hazards significantly shape risk perception,
which, in turn, motivates risk mitigating behavior (Rana et al., 2020). Research shows that flood risk
perception is influenced by socioeconomic factors such as age, education, house ownership, family
size, past experiences, and proximity to rivers (Shah et al., 2022). Institutional factors like access to
credit and weather forecasts also play a role. Notably, 51.47% of individuals with 1-10 years of
education, 52.83% of those over 40 years old, and 73.02% of lower-income groups perceive high
flood risk (Shah et al., 2022). Spatial differences in risk perception are evident, with inadequate public
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protection measures and limited private mitigation actions contributing to high risk and lower
mitigation in flash flood-prone areas (Ahmad & Afzal, 2022).

In Iran, social capital significantly impacts community resilience, with bonding capital enhancing
resilience capacity. Important social criteria include respect for neighbors' rights, public green spaces,
playgrounds, and tree planting (Panahandeh Khan et al., 2023). However, the overall risk perception
in Iran is low, with many residents inadequately prepared for disasters, leading to higher damages and
losses (Heidari et al., 2020). The Shiraz flood incident exemplifies this, where prior warnings were
reportedly largely ignored and not used to inform actions such as evacuation, resulting in significant
casualties (Heidari et al., 2020).

Understanding and improving flood risk perception in these regions requires addressing institutional,
socioeconomic, and social factors, thereby enhancing community coping capacities and resilience.

7.4.3 Early warning systems

Flood early warning systems (EWS) play a pivotal role in mitigating the impacts of floods. In Iran,
while the Iran Meteorological Organization has monitoring and warning capacity, and early warnings
were issued for the 2024 floods, failure to heed these warnings and mobilise appropriate response
mechanisms highlights significant gaps in Iran's flood preparedness (Etemad, 2024). Other recent
flood incidents, such as the 2019 Shiraz floods, also underscore the deficiencies in the existing EWS
(Heidari et al., 2020). Despite meteorological warnings issued, the lack of coordination among
response organisations and human resource constraints within the Incident Command System
structure hindered effective disaster response (Dizaji et al., 2019). Furthermore, low risk perception
among local authorities exacerbated the vulnerability of flood-affected regions (Heidari et al., 2020).

In Pakistan, efforts have been made to enhance disaster management capabilities, including the
development of a multi-hazard early warning system (MHEWS) as part of the national disaster
management plan (NDMA, 2012). However, challenges persist regarding the clarity and effectiveness
of delivery systems for early warnings (Ali & Iqbal, 2021). Despite improvements reported in the
Sindh Resilience project, the flash nature of floods and limitations in warning dissemination continue
to pose challenges (World Bank, 2021).

Afghanistan faces similar challenges with its relatively weak EWS, characterised by short lead times
and deficiencies in data integration and dissemination (Morshed et al., 2024). WMO (n.d.) suggests
that the Afghanistan Meteorological Department (AMD) currently lacks the necessary capacity for
effective data analysis and dissemination. While province-scale flood warnings are issued, they often
fail to translate into actionable measures at the local level (Manandhar et al., 2023).

To address these shortcomings, concerted efforts are required to improve coordination among
stakeholders, enhance data quality and accessibility, and increase community engagement. Further,
investing in technology and capacity building initiatives is essential for strengthening EWS and
reducing vulnerability to floods in Iran, Pakistan, and Afghanistan.
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V&E conclusions

Afghanistan, Pakistan, and Iran are highly vulnerable to flooding due to their geographical locations
and socio-economic conditions. Floods exacerbated existing vulnerabilities and deepens the complex
crises by displacing populations, destroying essential infrastructure and increasing the prevalence of
waterborne diseases. In particular, limited transboundary water management, unplanned urban
expansion, and deforestation are contributing to increased flood risks in the three countries. Limited
coverage of early warning systems have resulted in varying levels of preparedness and response
within the countries and within exposed groups. There are actions to address flood risk through
investments in infrastructure and Nature-based Solutions in each of the three countries. However,
there are ample opportunities to improve climate adaptation and resilience through, for example,
investing in building resilient infrastructure and reinforcing existing structures to withstand extreme
events, implementing more comprehensive nature-based solutions, increasing the coverage of early
warning systems, and improving flood risk management policy and planning.
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