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a b s t r a c t

The inclusion of stochastic terms in equations of motion for fluid problems enables a statistical
representation of processes which are left unresolved by numerical computation. Here, we derive
stochastic equations for the behaviour of surface gravity waves using an approach which is designed to
preserve the geometric structure of the equations of fluid motion beneath the surface. In doing so, we
find a stochastic equation for the evolution of a velocity potential and, more significantly, demonstrate
that the stochastic equations for water wave dynamics have a Hamiltonian structure which mirrors
that found by Zakharov for the deterministic theory. This involves a perturbation of the velocity field
which, unlike the deterministic velocity, need not be irrotational for the problem to close.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Due to its immediate visibility in the natural world, the free
pper surface of a body of water has long attracted attention from
eading thinkers. The inherent proximity of human settlements
o water has ensured that its behaviour has been culturally in-
rained across the world, and as such has been a mainstay of
cientific and artistic consideration. Describing the behaviour of
aves and currents is surprisingly challenging, since there is an
bundance of nonlinear features and interactions. Following John
cott Russell’s now famous observation of a ‘wave of translation’
n the Union Canal, there has been an interest in developing
n understanding of the behaviour of such waves from the per-
pective of hydrodynamics. The wave observed by Scott Russell
as propagating sufficiently fast to ensure that his horse could
ot keep up, yet the Union Canal is not known for a rushing
urrent. It was therefore well understood that disturbances on
he free surface can be distinct from material transport and have
heir own behaviour. The behaviour of surface gravity waves has
onsequently been a standard problem in mathematics for the
est part of two centuries.
When the fluid motion beneath the free surface is taken to be

rrotational, a closed system of equations may be found for the
ree surface elevation and the trace of the velocity potential on
he surface. As was shown by Zakharov [1], this system is Hamil-
onian and, as noted by Craig and Sulem [2], can be expressed in
erms of the Dirichlet to Neumann operator.

E-mail address: o.street18@imperial.ac.uk.
ttps://doi.org/10.1016/j.physd.2023.133689
167-2789/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
When modelling fluid problems, the incorporation of stochas-
ticity into the model equations permits a representation of un-
certainty. This has been motivated by applications to climate
and geophysical problems, where large scale numerical mod-
els are limited by computational resources. Uncertainty can be
inherited from a number of sources such as inexact observa-
tions, unresolvable physical processes, suboptimal model fitting,
or subgridscale motions. Consequently, approaches to deriving
stochastic equations of motion have been introduced [3,4] to
provide a statistical description of this uncertainty. These ap-
proaches have proven able to parametrise subgridscale dynamics
in numerical experiments [5–7].

One such methodology for incorporating stochasticity into
model equations for fluid problems is stochastic advection by Lie
transport [3], and is designed to preserve the variational structure
of the corresponding deterministic equation. Beginning with an
assumption that the fluid beneath a free surface is governed by a
fluid equation with stochastic advection by Lie transport, in this
paper we will derive stochastic equations for free surface motion.
As is the case for geophysical flows, uncertainty in inherent to
hydrodynamic descriptions of wave motion. Waves in nature are
forced in a multitude of ways, the inclusion of all such sources of
wave activity in a model is unreasonable. Moreover, irrotational
flow is assumed in the derivation of classical water wave theory,
whilst data is unlikely to support this approximation.

In this paper, it will be shown that the inclusion of structure
preserving noise in the three dimensional fluid equations will also
preserve the Hamiltonian structure of the free surface problem. In
particular, we will derive stochastic equations for the free surface
dynamics which have a Hamiltonian description in the style of

Bismut [8]. As such, this paper demonstrates that the ability of
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tochastic parameterisations to preserve the variational struc-
ures found in the deterministic theory is greater than previously
nown. Note that a stochastic perturbation of the water wave the-
ry has recently appeared in the literature [9]. Our approach here
iffers in that we will begin with a structure preserving approach
o the addition of noise in the underlying fluid model. Thus, rather
han fitting a Hamiltonian structure to a stochastic equation, this
pproach will have a variational structure by design.
The reader should note that, at each point in this paper,

he deterministic theory may be recovered exactly by setting
he stochastic perturbation terms to zero. As such, we have a
tochastic generalisation of the deterministic theory. It should
lso be noted that the findings presented in this paper can also
e found within my doctoral thesis [10].

. The Euler equations with transport noise

As in the case for the deterministic theory, we will be be-
inning with an assumption that the fluid is governed by the
uler equations with vertical gravitational forcing. As noted by
rnold [11], the Euler equations may be interpreted as a geodesic
low on the manifold of volume preserving diffeomorphisms with
espect to the right invariant kinetic energy metric. This observa-
ion would change the manner in which mathematicians consider
ontinuum dynamics, and led to the development of an Euler–
oincaré theory for continuum dynamics on the semidirect prod-
ct Lie algebra corresponding to the group of diffeomorphisms
nd the vector field of advected quantities [12].

he variational structure of fluid motion. For a fluid in a spatial
omain D ∈ R3, with coordinates denoted by (x, y, z) = (r, z),
configuration is taken to be an element of the group of dif-

eomorphisms from D to itself, denoted by G = Diff(D). The
corresponding Lie algebra to this group is the space of vector
fields, g = X(D). A vector field, u ∈ X, will be denoted by a
bold character, u, when written in terms of Euclidean coordinates,
i.e. u = u · ∇ , where ∇ = (∂x, ∂y, ∂z). We have a vector space1
of advected quantities, V ∗, which is a representation space of
Diff(D). The group acts linearly on tensor fields, G × V ∗

↦→ V ∗,
by pullback. The corresponding action of the vector fields on V ∗

is the Lie derivative. Indeed, for a vector field, u ∈ X(D), with
corresponding flow gϵ , we have

q ↦→ Luq =
d
dϵ

⏐⏐⏐⏐
ϵ=0

g∗

ϵ q ∈ V ∗ , for gϵ ∈ G , q ∈ V ∗.

n advected quantity, q ∈ V ∗, satisfies the following

∂t + Lu)q = 0 . (2.1)

s is explained fully in [12], an application of Hamilton’s principle
o an action, S =

∫
ℓ(u, q) dt , corresponding to a right invariant

agrangian, ℓ : X × V ∗
↦→ R, gives the following Euler–Poincaré

quation on X × V ∗

∂t + Lu)
δℓ

δu
=

δℓ

δq
⋄ q , (2.2)

here the diamond operation is the dual of the Lie derivative
hen considered as a map L(·)a : X(D) ↦→ V ∗, defined as

v ⋄ a, u⟩X∗×X = −⟨Lua, v⟩V∗×V . (2.3)

rom this description, an entire geometric structure emerges.
t can be shown that the Euler equations for incompressible

1 We will denote this as the dual of a vector space, V , to be consistent with
he literature [12].
 {

2

flow, with vertical gravitational forcing, correspond to the above
Euler-Poincaré equations where the Lagrangian is taken to be

ℓ(u,D) =

∫
D

D
2

|u|
2
− gz − p(D − 1) d3x , (2.4)

here g is the acceleration due to gravity.

tochastic advection by Lie transport. Following Holm [3], stochas-
ic equations of motion can be derived by making an assump-
ion that advection occurs with respect to a vector field de-
cribed as the sum of a drift velocity and stochastic processes
ntegrated in the Fisk–Stratonovich sense. Indeed, an advected
uantity satisfies

d+Ldxt )q = 0 , where dxt = u(x, t) dt+
∑

i

ξi(x)◦dW i
t , (2.5)

ndW i
t are independent Brownian motions. A stochastic analogue

f the geometric structure for deterministic fluid theories can be
erived from this assumption, where features such as the Kelvin–
oether circulation theorem are preserved by the addition of
oise. This variational principle through which the equations are
erived becomes stochastic, in the sense that the time evolution is
efined with respect to stochastic processes. For such a stochastic,
r semimartingale driven, action integral, it has been shown that
he fundamental lemma of the calculus of variations applies [13].

Within this framework, the stochastic Euler-Poincaré equa-
ions for incompressible fluid motion have been derived [13].
uring this process, the pressure appearing as a Lagrange mul-
iplier in the Lagrangian (2.4) becomes a stochastic Lagrange
ultiplier, dπ , and the equations of motion are

u + u · ∇u dt +

∞∑
i=1

(
ξi · ∇u +

3∑
j=1

uj∇ξ
j
i

)
◦ dW i

t + g dt = −∇dπ ,

(2.6)
∇ · dxt = 0 ,

(2.7)

here g = (0, 0, g) and we have denoted the components of ξi
s (ξ 1

i , ξ 2
i , ξ 3

i ).

otential flow. In classical water wave theory, the equations for
he dynamics of the free surface are closed by assuming that
he dynamics of the interior of the fluid is governed by the
omogeneous Euler equations under the additional assumption
hat the flow is irrotational. This translates mathematically to
n assumption that the curl of the (three dimensional) velocity
ield is zero, ∇ × u = 0. If we assume further that the spatial
omain is simply connected, then the velocity field is conservative.
e thus have the existence of the velocity potential, φ, which

s defined as the potential corresponding to the velocity field,
nd the incompressibility constraint implies that this satisfies
aplace’s equation

= ∇φ H⇒ ∆φ = 0 . (2.8)

In the stochastic equations of fluid motion, the perturbations,
i, mirror the structure of the deterministic velocity field in that
heir divergence is zero. In the case of irrotational fluids we
ill, for now, assume that the velocity field, u = ∇φ, is irrota-
ional and the perturbations are only incompressible. The Euler
omentum equation becomes

∇φ + (∇φ · ∇)∇φ dt +

∞∑
i=1

(
(ξi · ∇)∇φ +

3∑
j=1

(∂jφ)∇ξ
j
i

)
◦dW i

t

+ g dt + ∇dπ = 0 ,

here by the sum over the derivatives ∂j we mean a sum over

∂x, ∂y, ∂z}. Recall that the nonlinearity simplifies into a gradient
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∇φ · ∇)∇φ =
1
2
∇(|∇φ|

2),

but it is not immediately obvious that the same is true for each
nonlinear stochastic term. In order to simplify these terms, we
consider them in the coordinate free language of exterior calculus.
We notice that each stochastic term corresponds to a Lie deriva-
tive of u♭

= u ·dx with respect to the vector field ξi = ξi ·∇ . Using
Cartan’s formula, may relate this to the interior product by

Lξiu
♭
= ξi ⌟ du♭

+ d(ξi ⌟ u♭) . (2.9)

ince we have a potential flow, the vector field u ∈ X is related
to its potential φ by

u = (dφ)♯.

The Lie derivative then becomes

Lξi ((dφ)
♯)♭ = Lξidφ

= ξi ⌟ d2φ + d(ξi ⌟ dφ)

= d(ξi ⌟ dφ) , since d2φ = 0 .

(2.10)

eturning to Euclidean coordinates, we see that this corresponds
o

ξi · ∇)∇φ +

3∑
j=1

(∂jφ)∇ξ
j
i = ∇(ξi · ∇φ) , (2.11)

here the left hand side is the Lie derivative of a 1-form and the
ight hand side is the exterior derivative of the interior product
etween a vector field, ξi, and a 1-form, u♭, associated to another
ector field, u, through the musical isomorphism ♭. Whilst this
alculation follows immediately from Cartan’s formula in exterior
alculus, it may also be performed, with some difficulty, in Eu-
lidean coordinates using vector calculus. It is also a consequence
f the fact that the Lie derivative commutes with the exterior
erivative.
As a result of this calculation, we have that

φ +
1
2
|∇φ|

2 dt +

∞∑
i=1

ξi · ∇φ ◦ dW i
t + gz dt + dπ = 0 , (2.12)

where it should be noted that the stochastic term is the Lie
derivative of the scalar velocity potential along the vector
field ξi.

3. A free surface and the stochastic kinematic boundary con-
dition

A free boundary problem may be formulated by assuming that
our three dimensional spatial domain has an upper boundary,
z = ζ (r, t), which is a function of time and space. This will
be considered as a boundary condition on the fluid equations
(2.6)–(2.7) derived from the above variational principle, though
it is worth noting that it is possible to embed such conditions
into the variational principle itself [14]. We now introduce a con-
venient notation with which we will be able to cleanly represent
conditions on the free boundary.

Definition 1 (Evaluation on a Free Surface). The evaluation of a
time dependent object f (x, t) = f (r, z, t), which depends on all
hree spatial coordinates, on the free surface, z = ζ (r, t), is an
bject which is independent of the vertical coordinate, z, and is
enoted by the following

(r, t) := f (r, ζ (r, t), t) . (3.1)
3

efinition 2 (Evaluation on a Free Surface as a Pullback). The
valuation of a variable, f (x, t), on the free surface defined in
efinition 1 may be written in terms of the pullback by a time
ependent function Zt : R3

↦→ R3 as
∗

t f = (f ◦ Zt )(x, y, z) = f̂ , (3.2)

here Zt is defined by

t (x, y, z) = (x, y, ζ (t, x, y)) . (3.3)

The kinematic boundary condition governs the dynamic re-
sponse of the free surface to the velocity field. Namely, the free
boundary moves with a velocity normal to the surface. This will
be illustrated with the following vector, n, is normal to the surface

n =

(
−∇rζ

1

)
, (3.4)

where ∇r := (∂x, ∂y) is the two dimensional gradient operator in
the horizontal plane. In order to define the kinematic boundary
corresponding to the stochastic equations of motion where ad-
vection is defined to be stochastic, as in Eq. (2.5), we will define
the kinematic boundary condition in terms of advection.

Definition 3 (The Kinematic Boundary Condition). The kinematic
boundary condition states that a particle on the free surface
remains on the free surface. This is described mathematically as

(d + dxt · ∇)(z − ζ ) = 0 , on z = ζ .

In order to reinterpret this definition, we decompose the ve-
ocity field and stochastic terms into two dimensional horizontal
nd one dimensional vertical components

xt =

(
v
w

)
dt +

∞∑
i=1

(
ξ
(r)
i

ξ
(z)
i

)
◦ dW i

t =:

(
dr t
dzt

)
, (3.5)

here we have denoted the components of the perturbations as
i = (ξ(r)i , ξ

(z)
i ). The kinematic boundary condition is therefore

(d + dr t · ∇)ζ = dzt , on z = ζ , (3.6)

or, equivalently,

dζ = û · n dt +

∞∑
i=1

ξ̂i · n ◦ dW i
t . (3.7)

This last form of the kinematic boundary condition is a sensible
statement on how the rate of change of the free surface relates to
the velocity. When the velocity field is given by a potential flow,
as in Eq. (2.8), the kinematic boundary condition may be written
as

dζ = ∂̂zφ dt − ∇̂rφ · ∇rζ dt +

∞∑
i=1

(
ξ̂
(z)
i − ξ̂

(r)
i · ∇rζ

)
◦ dW i

t . (3.8)

4. The stochastic classical water wave equations (CWWE)

The Euler equations with gravitational forcing, augmented
with the kinematic boundary condition, are a complete three
dimensional fluid theory, when closed with the addition of a
dynamic boundary condition on the pressure. Should we wish to
consider the dynamics of the free surface itself, without solving
for the velocity field in the entirety of the fluid, the potential flow
assumption allows us to derive a closed system of equations of
variables evaluated on the free surface. The classical water wave
equations are a pair of boundary equations for the free surface
and the trace of the velocity potential on the surface. Here, we
will derive such equations from the stochastic Euler equations
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2.6)–(2.7) and the kinematic boundary condition (3.6). This in-
olves the evaluation of equations onto the free surface, and
xchanging the order of differentiation and evaluation on the
urface.

roposition 1. The difference between exchanging the order of
patial differentiation and evaluation on the free surface is as follows,

∇r̂ f − ∇̂r f = ∂̂z f∇rζ ,

r · f̂ − ∇̂r · f = ∂̂z f · ∇rζ ,

here f (x, t) and f (x, t) = (f1(x, t), f2(x, t)) are used to denote
arbitrary variables with values in R and R2 respectively.

Remark 4.1. The equations above are a comment on exchanging
the order of differentiation and pullback, when the evaluation
on the free surface is interpreted as in Definition 2. Using the
notation from this definition, the equations are equivalent to

∇r (Z∗

t f ) − Z∗

t (∇r f ) = (Z∗

t ∂z f )∇rζ ,

r · (Z∗

t f ) − Z∗

t (∇r · f ) = (Z∗

t ∂z f ) · ∇rζ .

roof. The proof of the first identity follows immediately by the
hain rule, viz.

r̂ f = ∇r f (r, ζ (r, t), t)
= [∇r f (x, t)]

⏐⏐
z=ζ

+ ∂̂z f∇rζ = ∇̂r f + ∂̂z f∇rζ .

he second identity follows applying this method twice, as fol-
ows

r · f̂ = ∂x̂f1 + ∂ŷf2

= ∂̂xf1 + ∂̂z f1∂xζ + ∂̂yf2 + ∂̂z f2∂yζ = ∇̂r · f + ∂̂z f · ∇rζ . □

In the case of deterministic equations of motion, an analogous
relationship exists for time derivatives

∂t̂ f − ∂̂t f = ∂̂z f ∂tζ .

In the case where time evolution is given partially by stochas-
tic integration, the proof of an analogous relationship is more
involved. In particular, it involves the interpretation of the eval-
uation on the free surface as a pullback and an application of the
stochastic Kunita–Itô–Wentzell formula [15].

Proposition 2. For a function, f , which satisfies an equation of the
form

df = F0 dt +

∑
i

Fi ◦ dW i
t ,

the evaluation of the function on the free surface, f̂ , satisfies

d̂f − ∂̂z f dζ = F̂0 dt +

∑
i

F̂i ◦ dW i
t . (4.1)

Remark 4.2. This is a stochastic generalisation of the relationship
from Proposition 1 corresponding to the derivative in the time
variable.

Proof. Recall that the free surface, in the stochastic case, satis-
fies Eq. (3.7) and Z therefore satisfies

dZt = G0 dt +

∑
Gi ◦ dW i

t =:

( 0
0

)
dt +

∑⎛⎝ 0
0ˆ
⎞⎠ ◦ dW i

t ,
i v̂ · n i ξi · n
4

where the vector field G = G · ∇ is defined through the above
equation. The Kunita–Itô–Wentzell formula is therefore

d(Z∗f ) = Z∗F0 dt +

∞∑
i=1

Z∗Fi ◦ dW i
t

+ Z∗LG0 f dt +

∞∑
i=1

Z∗LGi f ◦ dW i
t .

(4.2)

In this case, the Lie derivative of a function is a directional
derivative, and hence

d(Z∗f ) = Z∗F0 dt +

∞∑
i=1

Z∗Fi ◦ dW i
t

+ Z∗ (̂u · n ∂z f ) dt +

∞∑
i=1

Z∗(ξ̂i · n ∂z f ) ◦ dW i
t .

Returning to the hat notation, we have that

d̂f = F̂0 dt +

∑
i

F̂i ◦ dW i
t + ∂̂z f dζ , (4.3)

and we have proven our claim. □

The momentum equation. We may now take the relevant steps
towards deriving the stochastically perturbed water wave equa-
tions, which are a generalisation of the standard deterministic
theory of Zakharov [1]. At each step of the calculations, a sanity
check may be performed by taking the stochastic terms to be
zero, which will revert the equations back to their deterministic
counterparts. We first note that the pressure in the equation for
the potential, dπ , will be assumed to be zero. In the deterministic
theory, the assumption is made that the pressure is constant in
time and space along the free surface. This is since atmospheric
pressure is less variable than that within the fluid, and is taken
to be constant. Since pressure must not be discontinuous across
the surface, the pressure is taken to be constant on the free
surface. In the stochastic generalisation, the pressure term has
deterministic and stochastic contributions. In the language of a
recent contribution on this matter [13], the pressure is compatible
with the driving semimartingale. That is, there exist some functions
{P0, P1, . . . }, such that dπ = P0 dt +

∑
Pi ◦ dW i

t . Assuming
that this pressure is zero can be interpreted as suggesting that
deterministic part of the pressure inherits its structure from the
deterministic assumption, and we have assumed that there is
no perturbation around this. We therefore wish to evaluate the
following equation for the potential onto the free surface

dφ +
1
2
|∇φ|

2 dt +

∞∑
i=1

ξi · ∇φ ◦ dW i
t + gz dt = 0 . (4.4)

s an immediate consequence of Proposition 2, we have

φ̂ − ∂̂zφ dζ +
1
2
|∇̂φ|

2 dt +

∞∑
i=1

ξ̂i · ∇̂φ ◦ dW i
t + gζ dt = 0.

Substituting in the kinematic boundary condition equation (3.8),
written in terms of the velocity potential, we have

dφ̂ − ∂̂zφ

(
∂̂zφ dt − ∇̂rφ · ∇rζ dt +

∞∑
i=1

(
ξ̂
(z)
i − ξ̂

(r)
i · ∇rζ

)
◦ dW i

t

)

+
1
2
|∇̂φ|

2 dt +

∞∑
ξ̂i · ∇̂φ ◦ dW i

t + gζ dt = 0 .
i=1



O.D. Street Physica D 447 (2023) 133689

A

d

a
a

S
o
t
e
t

5

a
t
t
a
h
p

5

a
t
E

d

H

t

R
o
t
y
t
o
s
i
t
p

P
H
t

δ

i

ζ

f
t

φ

T
v
d
b
f

S
h

φ

w
t
b
φ

c

T

H

R
H
f
i
d
t
c
f
a

P
v

fter cancellations we have

φ̂ +
1
2
|∇̂rφ|

2 dt −
1
2
∂̂zφ

2 dt + ∂̂zφ(∇̂rφ · ∇rζ ) dt + gζ dt

+

∞∑
i=1

(
ξ̂
(r)
i · ∇̂rφ + ∂̂zφ

(
ξ̂
(r)
i · ∇rζ

))
◦ dW i

t = 0 ,

(4.5)

nd we see that the deterministic part of this equation is equiv-
lent to the classical deterministic theory [1].

tochastic classical water wave equations. We have derived a pair
f equations, (3.8) and (4.5), for the free surface elevation, ζ , and
he trace of the potential on the surface, φ̂. We will refer to these
quations as the stochastic classical water wave equations, and
heir deterministic parts are exactly as in the standard theory [1].

. A variational structure for stochastic water waves

It has been shown that ζ and φ̂ are canonically conjugate vari-
bles when the equations of motion are deterministic. In this sec-
ion, we will show that a stochastic analogue of this exists. Note
hat, by design, the addition of stochasticity preserved the vari-
tional structure of continuum dynamics. The results presented
ere will demonstrate that this preservation extends further than
reviously acknowledged.

.1. A Hamiltonian formulation

We claim that our stochastic equations, (3.8) and (4.5), have
Hamiltonian formulation in the spirit of Bismut [8]. That is,

here is a family of Hamiltonians, {H,H1,H2, . . .}, such that the
qs. (3.8) and (4.5) can be expressed as

ζ =
δH
δφ̂

dt+
∞∑
i=1

δHi

δφ̂
◦dW i

t , and dφ̂ = −
δH
δζ

dt−
∞∑
i=1

δHi

δζ
◦dW i

t .

As we will substantiate with the proof of Theorem 1, these
Hamiltonians are given by

H =

∫ ∫ ζ

−∞

1
2
|∇φ|

2 dz d2r +
1
2

g
∫

ζ 2 d2r ,

i =

∫ ∫ ζ

−∞

ξi · ∇φ dz d2r .

To demonstrate that this is true, we must first consider how
o take variations of Hamiltonians of this form.

emark 5.1. The key feature which complicates the calculation
f variational derivatives of the above Hamiltonians is the fact
hat a variation of the free surface elevation deforms the potential
et, for ζ and φ̂ to be canonically conjugate variables, we wish
o keep one constant whilst taking variations with respect to the
ther. By the definition of evaluation of the potential on the free
urface, φ̂ = φ(r, ζ (r, t)), it is evident that the variation in ζ will
nduce a variation in φ̂, and it can be proposed that the form of
his variation is (∂φ/∂z)δζ . This will be explored in the following
roposition.

roposition 3. When considering variations of the water wave
amiltonians with respect to the free surface ζ , we must also vary
he potential according to

φ = −
∂φ

∂z
δζ , on z = ζ , (5.1)

n order to ensure that the canonically conjugate variable, φ̂, is
untouched by the variation in ζ .
5

Proof. The aim is to vary φ and ζ in such a manner that Z∗
t φ = φ̂

is constant. Considering φϵ(r, z) = φ(r, z)+ϵδφ(r, z) and ζϵ(r) =

(r)+ϵδζ (r), where the time dependence is not explicitly notated
or brevity, then the composition φϵ(r, ζϵ) = Z∗

t,ϵφϵ must be such
hat

ϵ(r, ζϵ) = φ(r, ζ ) = φ̂ , for each ϵ . (5.2)

his is equivalent to the assertion that the canonically conjugate
ariable, φ̂, should not be altered by the variation of ζ . We can
etermine the form of the variation in φ̂ induced by that of ζ

y considering the Taylor expansions of φ(r, ζϵ) and δφ(r, ζ ) as
ollows

φ(r, ζϵ) = φ(r, ζ ) + ϵ
d
dϵ

⏐⏐⏐⏐
ϵ=0

φ(r, ζϵ) + O(ϵ2) , (5.3)

δφ(r, ζϵ) = δφ(r, ζ ) + ϵ
d
dϵ

⏐⏐⏐⏐
ϵ=0

δφ(r, ζϵ) + O(ϵ2) . (5.4)

The derivative in ϵ in Eq. (5.3) is given by

d
dϵ

⏐⏐⏐⏐
ϵ=0

φ(r, ζϵ) =
∂φ

∂z
(r, ζ )

d
dϵ

⏐⏐⏐⏐
ϵ=0

ζϵ =
∂φ

∂z
(r, ζ )δζ (r) . (5.5)

ubstituting Eq. (5.5) into (5.3), and Eqs. (5.3)–(5.4) into (5.2), we
ave

(r, ζ ) + ϵ

(
∂φ

∂z

)
(r, ζ )δζ + ϵδφ(r, ζ ) + O(ϵ2) = φ̂ , (5.6)

hich implies Eq. (5.1) and we have proven our claim. Note
hat Eq. (5.6) illustrates that the first variation of φ̂ = Z∗

t φ, when
oth φ and ζ are varied, has a contribution from the variation in
directly as well as a contribution from the variation in ζ . □

This proposition may be used to prove that our stochastic
lassical water wave system is Hamiltonian.

heorem 1. Eqs. (3.8) and (4.5) have a Hamiltonian structure

dζ =
δH
δφ̂

dt +

∞∑
i=1

δHi

δφ̂
◦ dW i

t , (5.7)

dφ̂ = −
δH
δζ

dt −

∞∑
i=1

δHi

δζ
◦ dW i

t , (5.8)

where the family of Hamiltonians are given by

H =

∫ ∫ ζ

−∞

1
2
|∇φ|

2 dz d2r +
1
2

g
∫

ζ 2 d2r , (5.9)

i =

∫ ∫ ζ

−∞

ξi · ∇φ dz d2r . (5.10)

emark 5.2 (Conserved Quantities). In the deterministic case, the
amiltonian H is the conserved energy. In the new stochastic
ormulation, neither H nor Hi are conserved for any i. Indeed, this
s to be expected since stochastic advection by Lie transport is
esigned to maintain Kelvin’s circulation theorem and preserve
he conservation of helicity. Thus, the stochastic equations for the
ontinuum, (2.6) and (2.7), do not conserve the energy of the
luid. For energy conserving stochastic equations of motion for
fluid continuum, see [16] or [4].

roof. For this to be true, we will need to demonstrate that the
ariational derivatives of these Hamiltonians are as follows
δH
δφ̂

= n · ∇̂φ , (5.11)

δH
=

1
|∇̂rφ|

2
−

1
∂̂zφ

2
+ ∂̂zφ∇̂rφ · ∇rζ + gζ , (5.12)
δζ 2 2
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H

δHi

δφ̂
= n · ξ̂i , (5.13)

δHi

δζ
= ξ̂

(r)
i · ∇̂rφ + ∂̂zφ

(
ξ̂
(r)
i · ∇rζ

)
. (5.14)

Notice that the first two variational derivatives are akin to
those found by Zakahrov [1], we will use the same method here.
We begin with the variation of H with respect to φ̂. Since the
velocity potential, φ, is a harmonic function, we may use Green’s
first identity on the kinetic energy term

1
2

∫ ∫ ζ

−∞

|∇φ|
2 dz d2r =

1
2

∫
φ(∇φ · n) d2r . (5.15)

ote that the normal, n, given by Eq. (3.4) is not a unit normal,
ut the factor through which it may be transformed into a unit
ormal also appears in the following expression for an infinitesi-
al region of the free surface, ds =

√
1 + |∇rζ |

2 d2r . The integral
n the right hand side is taken to be over the free surface since
he normal component of velocity is assumed to vanish on all
ther boundaries. The existence of a symmetric Green’s function
elating φ̂ and ∇̂φ · n follows from the Dirichlet to Neumann
ap and, as in Zakharov [1], this implies the variational derivative

5.11).
The variational derivative of H with respect to ζ is trivial for

he potential energy, and for the kinetic energy follows from the
pproach discussed in Proposition 3. A variation of the kinetic
nergy gives

1
2

∫ ∫ ζ+δζ

−∞

|∇(φ + δφ)|2 =
1
2

∫ [
|∇φ|

2] δζ d2r

+

∫ ∫ ζ

−∞

∇φ · ∇δφ dz d2r

by Green’s second identity) =
1
2

∫ [
|∇φ|

2]
z=ζ

δζ d2r

+

∫
[δφ(∇φ · n)]z=ζ d2r

(by Proposition 3) =
1
2

∫ [
|∇φ|

2]
z=ζ

δζ d2r

−

∫
∂̂zφ δζ (∂̂zφ − ∇̂rφ · ∇rζ ) d2r

=

∫ (
1
2
|∇̂rφ|

2
−

1
2
(∂̂zφ)2

+ ∂̂zφ∇̂rφ · ∇rζ

)
δζ d2r .

This implies the required variational derivative (5.12).
The variational derivatives of the stochastic Hamiltonians, Hi,

re performed similarly. Beginning with the variational derivative
f Hi with respect to φ̂. Rather than Green’s identity, we use the
ivergence theorem. Noting that

· (φξi) = ξi · ∇φ + φ∇ · ξi = ξi · ∇φ,

here we have used the fact that ξi are divergence free. The
ivergence theorem implies that

i =

∫ ∫ ζ

−∞

ξi · ∇φ dz d2r =

∮
z=ζ

φ(ξi · n)
1√

1 + |∇rζ |
2
ds

=

∫
φ(ξi · n) d

2r .

(5.16)

The justification of this is the same as for the variation of H
and, since ξi are independent of φ, this immediately implies the
variational derivative (5.13).

It only remains to calculate the variational derivative of Hi
with respect to ζ . This again invokes Proposition 3 and closely
6

follows the deterministic case, indeed∫ ∫ ζ+δζ

−∞

ξi · ∇(φ + δφ) dz d2r =

∫
ξ̂i · ∇̂φ δζ d2r

+

∫ ∫ ζ+δζ

ζ

ξi · ∇δφ dz d2r

=

∫
ξ̂i · ∇̂φ δζ d2r +

∫ [
δφ(ξi · n)

]
z=ζ

d2r .

The final line of this calculation follows again from divergence
theorem, since the divergence of ξi is zero. Continuing the calcu-
lation, we see that∫ ∫ ζ+δζ

−∞

ξi · ∇(φ + δφ) dz d2r =

∫
ξ̂i · ∇̂φ δζ d2r

−

∫
∂̂zφ δζ (ξ̂ (z)

i − ξ̂
(r)
i · ∇rζ ) d2r

=

∫ (
ξ̂
(r)
i · ∇̂rφ + ∂̂zφ

(
ξ̂
(r)
i · ∇rζ

))
δζ d2r ,

which gives our result. □

Remark 5.3. Notice that if we set ξi to be zero, this recovers the
deterministic theory exactly.

5.2. The Dirichlet to Neumann map

We will rearrange the equations such that they are written in
terms of the free surface and trace of the potential on the free
surface only. To do so, we use relationships from Proposition 1 to
rewrite the deterministic part of Eq. (4.5) as

1
2
|∇̂rφ|

2
−

1
2
∂̂zφ

2
+ ∂̂zφ(∇̂rφ · ∇rζ ) + gζ

=
1
2
|∇r φ̂ − ∂̂zφ∇rζ |

2
−

1
2
∂̂zφ

2

+ ∂̂zφ(∇r φ̂ − ∂̂zφ∇rζ ) · ∇rζ + gζ

= gζ +
1
2
|∇r φ̂|

2
−

1
2
∂̂zφ

2(1 + |∇rζ |
2) .

The stochastic part of Eq. (4.5) may be rearranged as

ξ̂
(r)
i · ∇̂rφ + ∂̂zφ

(
ξ̂
(r)
i · ∇rζ

)
= ξ̂

(r)
i · (∇r φ̂ − ∂̂zφ∇rζ ) + ∂̂zφ

(
ξ̂
(r)
i · ∇rζ

)
= ξ̂

(r)
i · ∇r φ̂ .

As in Craig and Sulem [2], both the deterministic part of
Eq. (4.5) and the kinematic boundary condition can be written in
terms of the Dirichlet to Neumann map. This is convenient since
it enables numerical integration, as well as allowing the consid-
eration of an asymptotic expansion of the map. Given that the
potential satisfies Laplace’s equation in the bulk of the fluid, the
map takes the Dirichlet boundary data and returns the Neumann
boundary condition which corresponds to the same solution. This
map therefore takes the trace of the potential, φ̂, and returns the
velocity in the normal direction at the surface, n · û. The map can
be written in multiple equivalent forms as

G(ζ )̂φ := (−∇rζ , 1) · ∇̂φ = −∇rζ · ∇̂rφ + ∂̂zφ

= −∇rζ · ∇r φ̂ + ∂̂zφ|∇rζ |
2
+ ∂̂zφ .

(5.17)

The stochastic kinematic boundary condition (3.8) may be rewrit-
ten as

dζ = G(ζ )̂φ dt +

∞∑(
ξ̂
(z)
i − ξ̂

(r)
i · ∇rζ

)
◦ dW i

t . (5.18)

i=1
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he stochastic Bernoulli boundary equation (4.5) becomes

φ̂ + gζ dt +
1
2
|∇r φ̂|

2 dt

−
1

2
(
1 + |∇rζ |

2) (G(ζ )̂φ + ∇rζ · ∇r φ̂
)2 dt

+

∞∑
i=1

(
ξ̂
(r)
i · ∇r φ̂

)
◦ dW i

t = 0 .

(5.19)

he pair of Eqs. (5.18) and (5.19) is a closed system of SPDEs
or the water wave problem, which is a stochastic generalisation
f that found by Craig and Sulem [2]. As has been noted in the
eterministic case, the Hamiltonian (5.9) found by Zakharov may
e rewritten in terms of the Dirichlet to Neumann map as

=
1
2

∫
φ̂ G(ζ )̂φ + gζ 2 d2r . (5.20)

The equivalence of these Hamiltonians follows from applying
Green’s first identity to the kinetic energy term. Indeed, since φ

is a harmonic function, we have

1
2

∫ ∫ ζ

−∞

|∇φ|
2 dx d2r =

1
2

∫
φ̂(∇̂φ · n) d2r,

oting the relationship between the normal vector, n, its asso-
ciated unit normal, and the infinitesimal surface element, ds =

1 + |∇rζ |
2 d2r , as discussed in the proof of Theorem 1.

For the Hamiltonians corresponding to the stochastic terms,
Hi, we have that

Hi =

∫
φ̂(ξ̂i · n) d

2r . (5.21)

his follows from the divergence theorem, and can also be found
n the proof of Theorem 1.

We have therefore found that our stochastic extension of the
lassical water wave equations can be written purely in terms
f the canonically conjugate variables, φ̂ and ζ . Furthermore, its
amiltonians may also be expressed in this way.

.3. On the structure of the noise

Thus far, we have been working under the assumption that
he deterministic part of the transport, u, is irrotational. We have
ade no further comment on the structure of the stochastic per-

urbations, ξi, which are assumed to have the same divergence-
ree form as in the Euler equations. Whilst this means that the
arge scale flow is irrotational, the whole dynamical portrait
ncompasses small scale stochastic motions which may have
onzero vorticity. This is desirable, since the lack of vorticity
n the deterministic picture is a significant limiting factor and
ircumventing its ommision is challenging [17].
If we make a further assumption that the noise terms are also

rrotational, and each can be written in terms of a potential as

i = ∇ϕi,

hen we see that the stochastic terms can, too, be written in terms
f the Dirichlet to Neumann operator. Indeed, the stochastic
erms in Eq. (5.19) become

(̂r)
i · ∇r φ̂ = ∇̂rϕi · ∇r φ̂

= ∇r φ̂ · (∇r ϕ̂i − ∂̂zϕi∇rζ )

∇r φ̂ · ∇r ϕ̂i −
∇r φ̂ · ∇rζ

1 + |∇rζ |
2

(
G(ζ )̂ϕi − ∇r ϕ̂i · ∇rζ

)
.

7

he stochastic classical water wave equation (5.19) can therefore
e rewritten, fully in terms of the Dirichlet to Neumann map, as

φ̂ + gζ dt +
1
2
|∇r φ̂|

2 dt

−
1

2
(
1 + |∇rζ |

2) (G(ζ )̂φ + ∇rζ · ∇r φ̂
)2 dt

+

∞∑
i=1

(
∇r φ̂ · ∇r ϕ̂i −

∇r φ̂ · ∇rζ

1 + |∇rζ |
2

(
G(ζ )̂ϕi

− ∇r ϕ̂i · ∇rζ
))

◦dW i
t = 0 .

(5.22)

imilarly, the kinematic boundary condition (3.7) is

ζ = G(ζ )̂φ dt +

∞∑
i=1

G(ζ )̂ϕi ◦ dW i
t . (5.23)

To further illustrate that this stochastic perturbation of the water
wave problem preserves the geometric structure of the determin-
istic case, we note that the Hamiltonians, Hi, defined in Eq. (5.10)
can be rewritten in terms of the Dirichlet to Neumann map in
the same manner as the deterministic Hamiltonian (5.9) was
transformed into an equivalent form (5.20). Indeed, again using
Green’s first identity we have

Hi =

∫
φ̂ G(ζ )̂ϕi d2r . (5.24)

Due to the properties of the Dirichlet-to-Neumann map, this
may be beneficial in some cases. It should be noted that this
further assumption on the structure of the noise is not required
for a Hamiltonian structure to exist, and making this assumption
destroys the hope of vorticity within the stochastic terms. This
should be considered carefully since if we are calibrating the
stochastic terms using data, then it is unlikely that these will be
irrotational.

6. Concluding remarks

There is a rich geometric structure present in fluid mechanics,
and in this problem in particular. The derivation of classical
water wave theory begins with a fluid equation with a geometric
structure, involves manipulation of the system at the level of
the equations, and produces equations which are a Hamiltonian
system. Here, we have introduced stochastic terms into this field
of study which preserve both of these geometric structures, that
of the fluid by design, and that of the waves by consequence. This
was achieved by making the simple assumption that advected
quantities evolve stochastically in time.

The work presented in this paper opens a plethora of further
research questions. In particular, the stochastic perturbation was
designed to enable the calibration of fluid equations to data. Is it
possible to achieve this for wave dynamics using these equations,
using data gathered either numerically or experimentally? For
example, a stochastic perturbation of a variational model for
wave-current interaction introduces data assimilation possibili-
ties for satellite observations [18]. Moreover, the well-posedness
properties of the deterministic classical water wave theory are
known [19]. This raises the question of whether the inclusion
of stochastic terms preserves these properties, diminishes them,
or enhances them. This question has been answered for the
Euler equations without a free surface [20], but remains open for
water waves. When considering the variational structure of the
wave dynamics, we considered Zakharov’s Hamiltonian formula-
tion. An interesting further question is whether this approach is
compatible with Luke’s variational principle [21]. Equally, there
are alternative methodologies for the addition of noise in the
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ariational principle, which could also be considered in a future
ork.
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