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We identify the free half shuffle algebra of Schützenberger [31]
with an algebra of real-valued functionals on paths, where 
the half shuffle emulates the integration of a functional 
against another. We then provide two, to our knowledge, new 
identities in arity 3 involving its commutator (area), and show 
that these are sufficient to recover the Zinbiel and Tortkara 
identities introduced by Dzhumadil’daev [11]. We then use 
these identities to provide a simple proof of the main result 
of Diehl et al. [8], namely that any element of the free half 
shuffle algebra can be expressed as a polynomial over iterated 
areas.
Moreover, we consider minimal sets of Hall iterated integrals 
defined through the recursive application of the half shuffle 
product to Hall trees. Leveraging the duality between this set 
of Hall integrals and classical Hall bases of the free Lie algebra, 
we prove using combinatorial arguments that any element 
of the free half shuffle algebra can be written uniquely as a 
polynomial over Hall integrals. We interpret this result as a 
structure theorem for streamed information, loosely analogous 
to the unique prime factorisation of integers, allowing to split 
any real valued function on streamed data into two parts: 
a first that extracts and packages the streamed information 
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into recursively defined atomic objects (Hall integrals), and a 
second that evaluates a polynomial function in these objects 
without further reference to the original stream. The question 
of whether a similar result holds if Hall integrals are replaced 
by Hall areas is left as an open conjecture.
Finally, we construct a canonical, but to our knowledge, 
new decomposition of the free half shuffle algebra as shuffle 
power series in the greatest letter of the original alphabet 
with coefficients in a sub-algebra freely generated by a new 
alphabet with an infinite number of letters. We use this 
construction to provide a second proof of our structure 
theorem.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

It is not too much to accept that, at least on some fine enough time scales, most 
instance of streamed information (text, sound, video, time series...) can be represented, 
as a path γ : [0, 1] → V with values in some finite dimensional vector space V � Rd. It 
was first shown by Chen [5], and then explored in greater detail and generality in the 
context of rough path theory in [15,2], that any path may be faithfully represented, up to 
reparameterisation, by the collection of its iterated integrals known as the signature. This 
non-commutative exponential maps a path to a grouplike element on the tensor algebra 
(A, ⊗), where A is the vector space spanned by words in d letters, including the empty 
word e, and ⊗ is the tensor product. For an arbitrary interval [a, b] ⊂ [0, 1], the signature 
S(γ)a,b := Xb where X is the unique solution to the control system dXt = Xt⊗dγt started 
at Xa = e. Furthermore, the range of the signature describes the set of characters G ⊂ A.

The half shuffle product ≺ was firstly introduced in [31], where it also showed that 
A is the free algebra over A with respect to ≺. We will later refer to this algebra as the 
free half shuffle algebra of Schützenberger. In the same article, the shuffle product � was 
subsequently defined as f � g = f ≺ g + g ≺ f + 〈f, e〉〈g, e〉e, so to emulate integration 
by parts.

It is well known that the shuffle algebra (A, �) is the algebraic dual of the tensor 
algebra (A, ⊗) [28]; it is automatic from this perspective to see that the restriction 
of linear functionals on A to the range of the signature G form a unital algebra of 
real-valued functions that separates points [23]. A straightforward application of the 
Stone-Weierstrass theorem yields that for any compact set of reparameterisation-reduced 
paths, linear functionals acting on their signatures are dense in the space of continuous, 
real-valued functions on this compact set under a suitable choice of topology [4].

Because G is the set of characters, the main result in Ree [26] implies that the restric-
tion of the shuffle product of two of elements of the shuffle algebra to G is the pointwise 
product of the two restrictions 〈f � g, S(γ)a,b〉 = 〈f, S(γ)a,b〉〈g, S(γ)a,b〉, the so-called 
shuffle identity. This interplay between algebraic and analytic operations can be extended 
to the half shuffle product, emulating integration of a path functional against another 
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〈f ≺ g, S(γ)a,b〉 =
∫ b

a
〈g, S(γ)a,s〉d〈f, S(γ)a,s〉, and to its commutator representing the 

area enclosed by the two dimensional curve t 	→ (〈f, S(γ)a,t〉, 〈g, S(γ)a,t〉) and the chord 
connecting the two end points

〈area(f, g),S(γ)a,b〉 =
b∫

a

〈g,S(γ)a,s〉d〈f,S(γ)a,s〉 −
b∫

a

〈f,S(γ)a,s〉d〈g,S(γ)a,s〉.

Thus, collectively iterated integrals provide an accurate description of the path and 
linear combinations of them can be determined easily by regression, making the coeffi-
cient of the signature an ideal feature set for machine learning applications on streamed 
data [13]; signature methods have been applied in a variety of contexts including deep 
learning for time series [18,25,6], kernel methods [29,21,20] quantitative finance [1,30,16]
and cybersecurity [7].

However, these integrals contain some redundancies, in the sense that some higher 
ones can be expressed using polynomial relations in lower ones. This represents a major 
scalability issue, particularly because the number of distinct and linearly independent 
iterated integrals grows exponentially with the degree of iteration in the integral. This 
raises a simple set of questions which we will answer positively in this paper:

Can we identify minimal sets of integrals so that each integral is an integral of two 
other integrals in the same class and so that every other integral can be expressed as a 
polynomial in them?

The minimal sets of integrals we identify in this paper are defined hierarchically 
using sets of binary planar rooted trees called Hall sets [28,3], and can be computed 
recursively in a localised way (to compute one, one must compute its ancestors but not 
others) which adds further value to the results. These minimal sets of integrals fully 
describe the information in the stream while the polynomials capture the nonlinearity 
in any function of interest. It is for this reason we call it a structure theorem, loosely 
analogous to the unique factorisation of integers as products of primes. In this way 
we see that identifying a basis for the space of smooth functions acting on pathspace 
splits the evaluation process into two parts: a) a first that engages with the underlying 
stream of information,1 systematically extracts and packages the relevant information 
into atomic objects whilst removing what’s irrelevant, b) a second that evaluates a unique 
polynomial function in these expensive but informative precomputed basis elements in 
order to deliver the desired function evaluation without further reference to the original 
stream γ.

Having established that polynomials in Hall integrals freely generate the half shuffle 
algebra (A, ≺), it is natural to ask whether a similar structure theorem holds when the 

1 This information extraction is done in practice via some physical integration process that responds 
to the underlying signal. Physical integration processes are intrinsically nasty as mathematical operators 
(controlled differential equations in general, and in particular the integration process here, are not closable 
in the uniform topology on γ - see [24]).
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half shuffle ≺ is replaced by its commutator area. This question has been, and still remain, 
a source of conjecture, well supported by calculation, for the last decade. Nonetheless, 
the search for an answer to this conjecture led us to consider an argument related to 
the well-known Lazard’s elimination [28] to construct a canonical, but to our knowledge, 
new decomposition of the algebra A as shuffle power series in the greatest letter of the 
original alphabet with coefficients in a sub-algebra freely generated by a new alphabet 
with an infinite number of letters. This construction, that we refer to as elimination 
trick, will enable us to provide a second proof of our structure theorem relying on an 
induction argument.

We briefly outline the structure of the paper. Section 2 provides a brief background 
on the algebraic setup needed for the rest of the paper. In Section 3 we introduce the 
free half shuffle algebra of Schützenberger, we make precise the interplay between the 
algebraic operations ≺, �, area and the corresponding analytic operations on paths, and 
we provide two new identities in arity 3 involving the area product. In Section 4 we make 
use of these new identities to provide a simpler proof of the main result in [8], stating 
that polynomials in iterated areas generate the algebra A. In Section 5 we present our 
structure theorem for streamed information, providing a simple proof of the main result 
in [32] reported without proof also in [17,14] stating that polynomials in Hall integrals 
freely generate the algebra A. Finally, using the elimination trick we provide a second 
proof of our structure theorem.

2. Background

First, we remind the reader in a very terse form of the general collection of objects 
about which we write. Much more can be found by looking in [3] or (and we will follow 
this for the results we need) [28]. We hope the paper is self contained, and cites what is 
needed, but for the rest of this introduction, we will be very brief and assume the reader 
has familiarity with the general algebraic framework.

The starting point will be a finite alphabet A of d letters.

Definition 2.1. A word on the alphabet A is a finite sequence of letters from A, including 
the empty sequence, called the empty word and denoted by e. We denote by WA the set 
of all words, including the empty word. WA with the concatenation product is a monoid, 
that is free over A. The length |w| of a word w ∈ WA is the number of letters in w. 
Finally, we denote by A the vector space spanned by all words in WA.

Remark 2.2. The vector space A admits the unique direct sum decomposition

A = A>0 ⊕ 〈e〉, (1)

where 〈e〉 is the vector space spanned by the empty word and A>0 is its annihilator, i.e.

A>0 := {f ∈ A : 〈f, e〉 = 0}.
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Note that A>0 is the vector space spanned by all non-empty words. It follows that any 
f ∈ A admits the unique decomposition

f = (f − 〈f, e〉e) + 〈f, e〉e,

where (f − 〈f, e〉e) ∈ A>0 and 〈f, e〉e ∈ 〈e〉.

A is graded by word length. The words of length greater than n ∈ N span an ideal, 
and the quotient of A by this ideal is often referred to as the truncated tensor algebra
A(n).

Definition 2.3. Denote by (A, ⊗) the tensor algebra over A, that is the free associative 
R-algebra over A with the tensor product ⊗.

Remark 2.4. An infinite linear combination of words in WA is usually referred to as a 
series. There is a natural duality between A and the associative algebra of all series A∞

given by the pairing (·, ·) : A ×A∞ → R defined as

(a, b) =
∑

ω∈WA

aωbω (2)

where aω, bω denote the coefficients in front of the word ω in a, b respectively. Note that 
this sum is finite because a is a finite linear combination of words. With this pairing, 
A∞ can be identified as the algebraic dual space of A. When restricted to A ×A, this 
pairing yields a scalar product with basis WA and dual basis W ′

A. In the sequel we allow 
implicit and free conversion of letters and words, including the empty word e, according 
to context use the same notation WA for the word basis and its dual.

Definition 2.5. The free magma MA is the minimal non-empty set satisfying: i) A ⊂ MA, 
and ii) if t′, t′′ ∈ MA then (t′, t′′) ∈ MA. The degree of t is defined recursively as |t| = 1
if t ∈ A, otherwise if t′, t′′ ∈ MA then |t| = |t′| + |t′′|.

Remark 2.6. Let V be a vector space. The space B of bilinear maps V ×V → V naturally 
forms a magma, via composition. For a fixed bilinear map φ : V ×V → V and a set map 
ι : A → V we abuse notation and also write φ : MA → B for the unique morphism of 
magmas characterised by

φ(a) = ι(a), a ∈ A

φ((t′, t′′)) = φ(φ(t′), φ(t′′)).

Definition 2.7. The foliage map f : MA → WA is defined on a letter a ∈ A as f(a) = a

and on a tree t = (t1, t2) ∈ MA as f(t) = f(t1)f(t2) where the product is the tensor 
product (or concatenation of words).
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Remark 2.8. As noted in [28], MA can be equivalently identified with the set of binary, 
planar, rooted trees with leaves labelled in A. For a given element t ∈ MA we will refer 
to the collection of letters appearing in its leaves as its foliage.

3. The free half shuffle algebra of Schützenberger

In this section we follow [31] to define the half shuffle product and introduce the 
corresponding free algebra. We also provide two, to our knowledge, new identities in 
arity 3 involving the commutator of the half shuffle product. These identities will be 
used in the next section to prove one of the main results of this paper.

Definition 3.1 ([31]). The (left) half shuffle product ≺ : A × A → A is a bilinear form 
defined by extending uniquely, by linearity on the decomposition (1), the following rela-
tions

1. e ≺ f = 0 ≺ f = f ≺ 0 = 0 and f ≺ e = f , for any f ∈ A>0, and by induction
2. f ≺ f ′′ = a(f ′ ≺ f ′′ + f ′′ ≺ f ′), for any f = af ′, with a ∈ A, f ′ ∈ A>0, and f ′′ ∈ A.

Note that the above definition of ≺ is independent of the choice of basis of A.

Remark 3.2. Definition 3.1 differs slightly from the usual algebraic convention that 
chooses to not define e ≺ e, as seen e.g. in [12]. In this paper, we follow to the let-
ter [31] where the half shuffle product is defined on A>0 and 〈e〉, and then extended 
uniquely to a bilinear map on the direct sum (1) of these two spaces, that is to say the 
full algebra A. Schützenberger refers to this canonical extension as prolongment.

The following theorem is one the main results in [31].

Theorem 3.3. A is the free algebra over A with respect to the half shuffle product ≺.

We refer to this algebra as the free half shuffle algebra of Schützenberger.
The shuffle product � : A ×A → A is defined for any f, g ∈ A from the half shuffle 

≺ as

f � g = f ≺ g + g ≺ f + 〈f, e〉〈g, e〉e. (3)

The algebra (A, �) is an associative and commutative algebra known as the shuffle 
algebra.

Remark 3.4. Note that if f, g ∈ A>0 then (3) reduces to the more conventional relation

f � g = f ≺ g + g ≺ f.
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The area operator is defined as the commutator of the half shuffle product and will 
be a core component of the main result in the next section.

Definition 3.5. The operator area : A ×A → A is the bilinear form defined for f, g ∈ A
as

area(f, g) = f ≺ g − f ≺ g. (4)

In the next section we will provide concrete examples to demonstrate how Schützen-
berger’s definition of half shuffle is completely consistent with classical integration on 
paths.

3.1. Schützenberger’s half shuffle is consistent with calculus

Consider a smooth path γ : [0, 1] → Rd, an interval [a, b] ⊂ [0, 1] and three elements 
f, g, h ∈ A.

Define the following one-dimensional paths on [a, b]:

1 : t 	→ 〈e,S(γ)a,t〉, fγ : t 	→ 〈f,S(γ)a,t〉, gγ : t 	→ 〈g,S(γ)a,t〉, hγ : t 	→ 〈h,S(γ)a,t〉.

Note that the path 1 ≡ 1 is constantly equal to 1.
Notice how the relation e ≺ f = 0 in Definition 3.1 is consistent with the basic fact

〈e ≺ f,S(γ)a,t〉 =
t∫

a

fγ
s d1s = 0 = 〈0,S(γ)a,t〉,

while the relation f ≺ e = f − 〈f, e〉e is consistent with the fundamental theorem of 
calculus

〈f ≺ e,S(γ)a,t〉 =
t∫

a

1s dfγ
s =

t∫
a

dfγ
s = fγ

t − fγ
a = 〈f − 〈f, e〉e,S(γ)a,t〉 .

All other classical rules of calculus follow. For example integration by parts

〈f�g−〈f, e〉〈g, e〉e,S(γ)a,t〉 = fγ
t g

γ
t −fγ

a g
γ
a =

t∫
a

fγ
s dgγs +

t∫
a

gγs dfγ
s =〈f≺g+g≺f,S(γ)a,t〉,

follows from the definition of shuffle product in equation (3).
Another classical example is provided by chain rule reads

〈f ≺ (g� h),S(γ)a,t〉 =
t∫
fγ
s g

γ
s dhγ

s =
t∫
fγ
s d

⎛
⎝

s∫
gγu dhγ

u

⎞
⎠ = 〈(f ≺ g) ≺ h,S(γ)a,t〉,
a a a
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which matches the algebraic relation

f ≺ (g� h) = (f ≺ g) ≺ h. (5)

Equation (5) can be easily verified to hold for letters, and hence for all elements of A by 
freeness.

Next we present known and, to our knowledge, new identities on A involving ≺, �
and area.

3.2. Identities

The first identity is a direct application of the chain rule and integration by parts. 
When restricted to A>0 it is known in the literature as Zinbiel identity [11].

Lemma 3.6. For any f, g, h ∈ A the following identity holds

(f ≺ g) ≺ h = f ≺ (g ≺ h) + f ≺ (h≺ g) + 〈g, e〉〈h, e〉f ≺ e. (6)

Proof. A direct application of the chain rule and integration by parts yields

(f ≺ g) ≺ h = f ≺ (g� h)

= f ≺ (g ≺ h + h≺ g + 〈g, e〉〈h, e〉e)
= f ≺ (g ≺ h) + f ≺ (h≺ g) + 〈g, e〉〈h, e〉(f − 〈f, e〉e),

and the result follows from equation (3). �
Remark 3.7. When f, g, h ∈ A>0 equation (6) reduces to the Zinbiel identity

(f ≺ g) ≺ h = f ≺ (g ≺ h) + f ≺ (h≺ g).

Remark 3.8. Using Lemma 3.6 it is possible to obtain the following identity

f1 � ...� fn =
∑

σ∈Sn

(...(fσ(1) ≺ fσ(2)) ≺ ...) ≺ fσ(n)

for any n ≥ 2 and f1, ..., fn ∈ A>0, where Sn is the symmetric group of order n.

Remark 3.9. We note an important result obtained by [11] stating that the area operator 
satisfies no further identity in arity three, but it does satisfy the so-called Tortkara 
identity in arity four. While the Tortkara identity will play no further role in this paper, 
we mention it here for completeness: for any f, g, h, i ∈ A>0, we equivalently have

area(area(f, g), area(f, h)) = area(f, vol(f, g, h))
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and

area(area(f, g), area(i, h)) + area(area(h, g), area(i, f))

= area(f, vol(g, h, i)) + area(h, vol(g, f, i))

where vol(f, g, h) := area(area(f, g), h) + area(area(g, h), f) + area(area(h, f), g).
We furthermore note that Tortkara algebras have been studied more in [10], where it 

has been shown that the span inside A of iterated areas of letters forms a free Tortkara 
algebra for |A| = 2, while the question remains open for larger alphabets.

Remark 3.10 (Left/right areas). In this paper, area is defined as the commutator of the 
left half shuffle. In [8], the right half shuffle is introduced and area is defined as the 
commutator of the right half shuffle. Although closely connected, these are not identical. 
The left half shuffle is consistent with [28] and matches the conventions for Hall basis used 
there (see later sections). The right half shuffle is more consistent with the convention 
used in integration as the integrand is on the left and the integrator is on the right. 
The reversed order of terms within equation (5) reflects this dissonance. The proofs of 
our main results imply equivalent results with the other definition of area, by reversing 
everything.

Contrary to the Lie bracket [·, ·], area does not satisfy the Jacobi identity. However, 
it satisfies the following two non-trivial and, to our knowledge, new identities that will 
be leveraged to prove one of the main results of this paper in the next section.

Lemma 3.11 (Shuffle-pullout identity). For any f, g, h ∈ A the following relation holds

3 area(h, f � g) = f � area(h, g) + g� area(h, f) − f � g� h + 〈f, e〉〈g, e〉〈h, e〉e
+ area(area(h, g), f) + area(area(h, f), g).

Proof. It’s easy to check that the relation holds for the empty word e and for letters 
a, b, c ∈ A

3 area(c, a� b) = −3 abc− 3 acb− 3 bac− 3 bca + 3 cab + 3 cba

= a� area(c, b) + b� area(c, a) − a� b� c

+ area(area(c, b), a) + area(area(c, a), b).

By Theorem 3.3 we know that A is free, as a half shuffle algebra over A, therefore the 
above relation extends to any triple of elements in A. �
Remark 3.12. When f, g, h ∈ A>0 the shuffle-pullout identity in Lemma 3.11 reduces to

3 area(h, f � g) = f � area(h, g) + g� area(h, f) − f � g� h
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+ area(area(h, g), f) + area(area(h, f), g).

Lemma 3.13 (Area-Jacobi identity). For any triple f, g, h ∈ A the following relation is 
satisfied

area(area(f, g), h) + area(area(g, h), f) + area(area(h, f), g)

= −f � area(g, h) − g� area(h, f) − h� area(f, g).

Proof. As before, the relation can be easily verified to hold for e and for letters a, b, c ∈ A:

area(area(a, b), c) + area(area(b, c), a) + area(area(c, a), b)

= −abc + acb + bac− bca− cab + cba

= −a� area(b, c) − b� area(c, a) − c� area(a, b). �
Remark 3.14. On A>0, starting only from the identities 1) f�g = g�f , 2) area(f, g) =
− area(g, f), 3) shuffle-pullout, 4) area-Jacobi, it follows from simple calculations that 
one can recover associativity for � and the (left) Zinbiel identity for the left half shuffle 
≺, now defined by f ≺ g := 1

2 (f � g + area(f, g)). Through the Zinbiel identity one then 
can show the Tortkara identity for area(f, g) = f ≺ g − g ≺ f as usual.

4. Polynomials in iterated areas

In this section we present our first main result, namely that polynomial in iterated 
areas generates the free half-shuffle algebra. We note that this result already appears in 
[8], however our proof is significantly shorter and based on induction.

4.1. Polynomials in iterated areas are a generating set

Recalling Remark 2.6, we extend area to MA.

Definition 4.1. f ∈ A is an iterated area if there exists a tree t ∈ MA so that f = area(t).
A shuffle monomial of shuffle-degree n is the shuffle product of n iterated areas

A1 � ...�An. (7)

The empty monomial e has shuffle-degree 0. A shuffle polynomial of shuffle-degree n is 
a non-degenerate linear combination of such shuffle monomials. Its shuffle-degree is the 
maximal shuffle-degree of the monomials in the expression.

The sequence defined in the following lemma will play a role in what follows.
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Lemma 4.2. The sequence of negative rationals βk = −(k − 1)/(k + 1) with k ≥ 1 is 
monotone decreasing to −1 and satisfies the following recursion

β1 = 0, βk = βk−1 − 1
βk−1 + 3 . (8)

Exploiting the identities we introduced in the previous section we give a short and 
direct proof of the main result in [8].

Theorem 4.3. [8, Corollary 5.6] Any element in (A, ≺) can be written as a shuffle poly-
nomial in iterated areas {area(t) | t ∈ MA}.

Before reproving the theorem we establish the following fundamental re-writing rule 
that allows one to rewrite the area of a shuffle polynomial in iterated areas with a single 
iterated area as a new shuffle polynomial in iterated areas, and provides an explicit 
expression for the monomial of highest shuffle-degree. The proof will crucially depend 
on both Lemmas 3.11, 3.13.

Theorem 4.4. For any n ≥ 1 and any n + 1 iterated areas A1, ..., An, A, the following 
relation holds

area(A,A1 � ...�An) = βnA�A1 � ...�An + Q, (9)

where βn = −(n − 1)/(n + 1), and Q is a shuffle polynomial in iterated areas of shuffle-
degree at most n.

Remark 4.5. Note that it remains an open problem whether α = βn is the only real 
number such that

area(a, a1 � ...� an) − αa� a1 � ...� an

can be expressed as a shuffle polynomial in iterated areas of shuffle-degree at most n for 
any letters a, a1, . . . , an. This question arises due to the fact that iterated areas do not 
freely generate the shuffle algebra. However, for the example n = 2, β2 = −1/3 is indeed 
the only such coefficient because the area-Jacobi identity is the only relation between 
iterated areas on level 3.

Proof. We prove the statement (9) by induction on n. If n = 1 then the statement is 
trivially true, with β1 = 0 and Q = area(A1, A).

Suppose the statement (9) holds for any n < k. Consider k iterated areas A1, ..., Ak

and an additional iterated area A. We recall that the shuffle product � is associative 
and commutative on A. By the shuffle-pullout identity we have
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3 area(A,A1 � ...�Ak) = A1 � area(A,A2 � ...�Ak)

+ A2 � ...�Ak � area(A,A1)

−A1 � ...�Ak �A

+ area(area(A,A1), A2 � ...�Ak)

+ area(area(A,A2 � ...�Ak), A1).

By induction (n = k − 1) we have that

A1 � area(A,A2 � ...�Ak) = A1 � (βk−1A�A2 � ...�Ak + Q′
1)

= βk−1A�A1 � ...�Ak + A1 �Q′
1

where A1�Q′
1 is a shuffle-polynomial of shuffle-degree k. By definition area(A, A1) is a 

iterated area and so

Q′
2 = A2 � ...�Ak � area(A,A1)

is a shuffle monomial of shuffle-degree k. Similarly, the induction hypothesis implies that

Q′
3 = area(area(A,A1), A2 � ...�Ak)

is a shuffle-polynomial of shuffle-degree k, where Q̂′
3 is a shuffle-polynomial of shuffle-

degree k− 1. Hence, Q′ = Ak�Q′
1 +Q′

2 +Q′
3 is a shuffle polynomial of shuffle-degree k 

and

3 area(A,A1 � ...�Ak) = Q′ + (βk−1 − 1)A1 � ...�Ak �A (10)

+ area(area(A,A2 � ...�Ak), A1).

It remains to consider the last term area(area(A, A2 � ... �Ak), A1).
By the area-Jacobi identity and the anticommutativity of area we can rewrite this 

term as follows

area(area(A,A2 � ...�Ak), A1) = area(area(A1, A2 � ...�Ak), A)

− area(area(A1, A), A2 � ...�Ak)

+ A� area(A1, A2 � ...�Ak)

−A2 � ...�Ak � area(A1, A)

−A1 � area(A,A2 � ...�Ak).

Again, area(A1, A) is a iterated area, and by induction the term

Q′′
1 = − area(area(A1, A), A2 � ...�Ak)
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is a polynomial in iterated areas of shuffle-degree at most k. The term

Q′′
2 = −A2 � ...�Ak � area(A1, A)

is clearly a monomial in iterated areas of shuffle-degree k. By induction we have that

P1 = area(A1, A2 � ...�Ak) = βk−1A1 � ...�Ak + P ′
1

where P ′
1 is a polynomial in iterated areas of shuffle-degree k − 1. Similarly

P2 = area(A,A2 � ...�Ak) = βk−1A�A2 � ...�Ak + P ′
2

where P ′
2 is a polynomial in iterated areas of shuffle-degree k − 1. Therefore

Q′′
3 = A� area(A1, A2 � ...�Ak) = βk−1A�A1 � ...Ak + A� P ′

1.

Similarly

Q′′
4 = −A1 � area(A,A2 � ...�Ak) = −βk−1A�A1 � ...Ak −A1 � P ′

2.

Combining terms we get a cancellation and degree reduction so that

Q′′
3 + Q′′

4 = βk−1A1 � ...Ak �A + A� P ′
1 − βk−1A1 � ...Ak �A−A1 � P ′

2

= A� P ′
1 −A1 � P ′

2

is a polynomial in iterated areas of shuffle-degree k. Setting Q′′ = Q′′
1 + Q′′

2 + Q′′
3 + Q′′

4
(which is a polynomial in iterated areas of shuffle degree k) and substituting in equation 
(10) we get

3 area(A,A1 � ...�Ak) = (βk−1 − 1)A1 � ...�Ak �A (11)

+ area(area(A1, A2 � ...�Ak), A) + Q′ + Q′′

= (βk−1 − 1)A1 � ...�Ak �A + area(P1, A) + Q′ + Q′′

P1 being a polynomial in iterated areas of shuffle-degree k − 1, we have by induction 
that area(P1, A) is a polynomial in iterated areas of shuffle-degree k. Hence, by con-
struction Q = Q′ + Q′′ + area(P1, A) is a polynomial in iterated areas of shuffle-degree 
k. Therefore equation (11) becomes

3 area(A,A1 � ...�Ak) = (βk−1 − 1)A1 � ...�Ak �A

− βk−1 area(A,A1 � ...�Ak) + Q.
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Rearranging the terms we get the following final expression

area(A,A1 � ...�Ak) = βk−1 − 1
βk−1 + 3A1 � ...�Ak �A + 1

βk−1 + 3Q.

Setting βk = βk−1−1
βk−1+3 and noting that β1 = 0 the result follows from Lemma 4.2. �

Proof of Theorem 4.3. Since linear combinations of polynomials are polynomials, it suf-
fices to prove that words in WA are polynomial in iterated areas. We prove by induction 
that every word w ∈ WA of length |w| = n can be expressed as polynomial in iterated 
areas of shuffle-degree n. The result is trivial for n = 0. Let n ≥ 1. We assume that w is 
a word of length n > 0 and that any word of length < n can be written as a polynomial 
in iterated areas of the appropriate degree.

Since |w| > 0, w can be written as follows

w = av = a≺ v (12)

where v ∈ WA is of word of length |v| = n − 1 and a ∈ A ⊂ A is a letter. Moreover for 
any elements of A

a≺ v = 1
2(area(a, v) + a� v − (a, e)(v, e)e) (13)

= 1
2(area(a, v) + a� v) (14)

since a is a letter. The length of the word v in (13) is equal to n − 1, so by induction 
it can be written as a polynomial in iterated areas of shuffle-degree n − 1. Hence, the 
term a � v is a shuffle polynomial in iterated areas of shuffle-degree n. By Theorem 4.4
the term area(a, v) is also a polynomial in iterated areas of shuffle-degree n, and so w
a polynomial in iterated areas of shuffle-degree n. This concludes the induction and the 
proof. �
5. A structure theorem for streamed information

To present our structure theorem we will need to introduce the free Lie algebra LA

over A.

5.1. The free Lie algebra

(A, [·, ·]) is also a Lie algebra with Lie bracket [x, y] = x ⊗ y − y ⊗ x for x, y ∈ A.

Definition 5.1. Denote by (LA, [·, ·]) the Lie algebra generated by A in A, i.e. the inter-
section of all Lie algebras in A containing A.
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Lemma 5.2. [28, Theorem 0.5] (LA, [·, ·]) is the free Lie algebra over A.

Remark 5.3. The maps exp and log are classically defined as power series mapping A∞

to A∞. The truncated power series for exp(n) and log(n) provide good meaning for these 
operators as maps from A into A. Those elements in A that are, at each truncated level 
n ∈ N, in LA are known as Lie elements and denoted by L(n)

A . Those elements in A
that are, at each truncated level, exponentials of Lie elements, or equivalently, whose 
truncated logarithm is in LA, are known as grouplike elements (and they form a group). 
The maps log and exp provide a one to one correspondence between group-like elements 
and Lie elements.

We report the following three classical results about the shuffle product � and the free 
Lie algebra LA: the first states that the shuffle product characterises grouplike elements 
[23, Lemma 2.17], the second provides a characterisation of Lie elements in LA [28, 
Theorem 3.1 (iv)], and the third states that the exponential of Lie elements span the 
tensor algebra in a way that respects degrees of truncation [9, Lemma 3.4].

Theorem 5.4. Let � ∈ LA be a Lie element.

1. 〈f, exp(�)〉〈g, exp(�)〉 = 〈f � g, exp(�)〉 for any f, g ∈ A.
2. 〈f � g, �〉 = 0 for any f, g ∈ A>0.
3. A(n) = Span{exp(n)(�) : � ∈ L(n)

A } for any degree of truncation n ∈ N.

In light of Theorem 5.4 and of the following Lemma, the shuffle algebra (A, �) can 
be identified with the algebra of Q-polynomial functions on LA with pointwise multipli-
cation, denoted by Q[LA].

Lemma 5.5. For any f ∈ A, the map � 	→ 〈f, exp(�)〉 is in Q[LA]. Furthermore, the map 
f 	→ 〈f, exp(·)〉 from A to Q[LA] is bijective.

Proof. This result is classical, so we provide only a sketch of the proof. Any element 
x ∈ A is a finite sum of words in WA of some maximal length d(x). Fix some basis 
(�i)i for LA that respects dimension and let � =

∑
li�i. Then the map (s, exp(�)) =

(s, exp(
∑

d(�i)≤d(x) li�i)) and the right hand side, truncated at degree d(x) is clearly a 
polynomial in the li. The exponentials of truncated Lie elements are linearly dense in 
the truncated tensor algebra, therefore x is completely determined by its inner product 
with the (x, exp(�)) as � varies. �
Remark 5.6. It is an immediate corollary of these results, and of the Stone Weierstrass 
Theorem, that any finite collection of distinct grouplike elements form the vertices of 
a simplex, and therefore that there is a linear functional that is one on any one of the 
elements and zero on the others.
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Remark 5.7. An analogy can be drawn with the Fourier transform seen as a change of 
basis for signals from time to frequency domain that turns point-wise multiplication 
into convolution. In our case, we can view (A, �) as polynomial functions on LA with 
pointwise multiplication, or as an algebra spanned by words, with the shuffle product, 
depending on our viewpoint.

Next we introduce special subsets of Hall trees in MA classically used to construct 
bases for LA. Recall Remark 2.6 stating that any binary operator defined on words 
over A automatically extends to an operator acting on trees from the magma MA. In 
particular, this extends the Lie bracket, the half shuffle ≺, and the operation area, to 
maps from MA to A.

5.2. Hall sets

Definition 5.8. A total order < on a subset M of MA is an ancestral order if for any tree 
t = (t′, t′′) of degree ≥ 2 one has t < t′′.

This definition of ancestral order makes other constructions more transparent. It is 
obvious that ancestral orders exist on any magma and their restrictions to a subset are 
also ancestral.

Definition 5.9. A subset H of MA together with an order < on H is a Hall set if the 
following conditions hold

1. < is an ancestral order on H;
2. A ⊂ H;
3. for any tree h = (h1, h2) ∈ MA of degree ≥ 2, h ∈ H if and only if:

(a) h1, h2 ∈ H and h1 < h2
(b) either h1 ∈ A or h2 ≤ h′′

1 where h1 = (h′
1, h

′′
1).

We note that, since < is assumed to be ancestral, point 3.a implies h < h2, which is a 
condition needed in the general definition of Hall sets. As pointed out in [28, Proposition 
4.1] and the surrounding discussion, Hall sets exist, any ancestral order on the full magma 
leads in a canonical way to a unique Hall set, and that Hall sets are closed, i.e. each 
subtree of a Hall tree is again a Hall tree.

Example 5.10. The Hall set H set used in the esig package [22] is defined as follows: 
elements are ordered so that they respect degree, and for any equal-length Hall trees 
h = (h1, h2), h′ = (h′

1, h
′
2) their order is defined recursively as follows: h < h′ if either 

h1 < h′
1 or h1 = h′

1 and h2 < h′
2.

Example 5.11. Consider a total order on letters in A and suppose that words in WA are 
ordered alphabetically. A Lyndon word on WA is a non-empty word such that for any 
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factorisation ω = uv with u, v ∈ WA non-empty one has ω < v. Then, the set of Lyndon 
words ordered alphabetically is a Hall set [28, Theorem 5.1].

Example 5.12. Let H0 = A and order it totally. Define Hn+1 as the set of trees of the 
form

h = (...((h1, h2), h3), ..., hk)

where k ≥ 2 and h1, ..., hk ∈ Hn with

h1 < h2 ≥ h3 ≥ ... ≥ hk.

Now order Hn+1 totally. Finally let H = ∪n≥0Hn and extend the order in Hn to H by 
the condition

h1 = Hm, h2 ∈ Hn,m < n =⇒ h1 > h2.

Then H is a Hall set [28, Theorem 5.7].

Lemma 5.13. [28, Corollary 4.14] Let A be an alphabet of q letters. The number of Hall 
trees of degree n is equal to

DH = 1
n

∑
d|n

μ(d)qn/d (15)

where μ is the Möbius function.

5.3. The Poincaré-Birkhoff-Witt basis and its dual

The Jacobi identities are linear relations between degree-three Lie brackets arising 
from associativity of the underlying group operation. They make the derivation of a 
basis for the free Lie algebra LA a deep and classic challenge.

Theorem 5.14. [28, Theorem 4.9 (i)] For any Hall set H, the collection of elements 
{[h] : h ∈ H} form a linear basis for the free Lie algebra LA.

This basis admits a canonical extension to a basis of the tensor algebra (A, ⊗).

Theorem 5.15. [28, Theorem 4.9] The decreasing products

[h1]⊗k1 ⊗ ...⊗ [hn]⊗kn , hi ∈ H, h1 > ... > hn (16)

are a basis of the tensor algebra (A, ⊗). This basis is called the Poincaré-Birkhoff-Witt 
(PBW) basis.
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Definition 5.16. A word ω ∈ WA is called a Hall word if ω is the image of a Hall tree 
h ∈ H by the foliage map, i.e. ω = f(h).

Remark 5.17. The foliage map is injective when restricted to a Hall set H and there are 
efficient algorithms for recovering the Hall tree from a Hall word.

Lemma 5.18. [28, Corollary 4.7] Every word ω ∈ WA can be written uniquely as a de-
creasing product of Hall words

ω = f(h1)⊗k1 ⊗ ...⊗ f(hn)⊗kn , hi ∈ H, h1 > ... > hn. (17)

Remark 5.19. If ω ∈ WA is a word decomposed into its unique decreasing product of 
Hall words according to equation (17), then Pω is the corresponding PBW basis element 
as per Theorem 5.15

Pω = [h1]⊗k1 ⊗ ...⊗ [hn]⊗kn , hi ∈ H, h1 > ... > hn.

{Pω}ω∈WA
is thus an enumeration of the PBW basis indexed by words. The next 

theorem provides exact formulae for the dual basis to the PBW basis.

Theorem 5.20. [28, Theorem 5.3] The dual basis {Sω}ω∈WA
to the PBW basis {Pω}ω∈WA

has the following properties:

1. If e is the empty word then Se = e.
2. If ω = f(h1)⊗k1 ⊗ ... ⊗ f(hn)⊗kn is the unique factorisation of the word ω in a 

decreasing product of Hall trees h1 > ... > hn ∈ H, then

Sω = 1
k1!...kn!S

�k1
f(h1) � ...� S�kn

f(hn). (18)

3. If h ∈ H, then the word f(h) = av for some letter a ∈ A and word v ∈ WA; moreover

Sf(h) = a⊗ Sv. (19)

Theorem 5.20 is an important result due to Schützenberger and it is the structure 
theorem mentioned in the introduction. However, in the next section we provide our 
version of this theorem (which agrees with the version in [32] but with a completely 
different proof) which consists of a more explicit recursive formula for the dual PBW 
basis elements {Sω}ω∈WA

and identify them as Hall integrals. We note that this result 
is reported without proof also in [17,14].

5.4. Polynomials in Hall integrals are a free generating set

Definition 5.21. An element x of A is called a Hall integral if it is the image under the 
operator ≺ : MA → A of a Hall tree. That is to say, there exists a Hall tree h ∈ H ⊂ MA



C. Salvi et al. / Journal of Algebra 634 (2023) 911–938 929
so that x = ≺(h). A (shuffle) polynomial in Hall integrals is a sum of shuffle monomials 
in Hall integrals.

The following Lemma follows immediately from the definition of a Hall tree.

Lemma 5.22. Any Hall tree h ∈ H can be uniquely decomposed as

h = (h1h
k
2) = (...((h1, h2), h2), ...h2) (20)

with h1, h2 ∈ H, and either h1 is a letter or h′′
1 �= h2 and where the h2 bracketing is 

repeated k times. This is often referred to as the Lazard decomposition of h.

Definition 5.23. If h = (h1h
k
2) is the Lazard decomposition of a Hall tree h ∈ H then 

we define the Lazard depth αh of h to be 1/k. The accumulated Lazard depth of a 
Hall tree h ∈ H is defined recursively: Ah = 1 if h ∈ A, otherwise h = (h′, h′′) and 
Ah = αhAh′Ah′′ .

The following are the main results of this section.

Theorem 5.24. For any Hall tree h ∈ H \A one has h = (h′, h′′) and

Sf(h) = αh

(
Sf(h′) ≺ Sf(h′′)

)
(21)

where αh ∈ Q is the Lazard depth of h.

Theorem 5.25. For any Hall tree h ∈ H one has

Sf(h) = Ah(≺(h)) (22)

where Ah ∈ Q is the accumulated Lazard depth of h.

Theorem 5.26. Consider all decreasing sequences hi ∈ H, h1 > ... > hn, and strictly 
positive integers ki > 0; then the elements

Sω =
Ak1

h1
. . .Akn

hn

k1!...kn! (≺(h1))�k1
� ...� (≺(hn))�kn (23)

are the dual basis in A to the PBW basis {Pω = [h1]⊗k1 ⊗ ... ⊗ [hn]⊗kn}ω∈WA
.

Before proving Theorem 5.24 we need the following combinatorial lemma.

Lemma 5.27. [28, Corollary 5.14] Let h = (h′, h′′) ∈ H be a Hall tree. Now f(h) = av, 
where a ∈ A and v ∈ WA. Let v = f(h1)⊗k1 ⊗ ... ⊗ f(hn)⊗kn be the unique factorisation
of the word v in a decreasing product of Hall trees h1 > ... > hn ∈ H. Then
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h′′ = hn. (24)

Proof of Theorem 5.24. We write f(h) = av, with a ∈ A and v ∈ WA. Let v =
f(h1)⊗k1 ⊗ ... ⊗ f(hn)⊗kn be the unique factorisation of the word v in a decreasing 
product of Hall trees h1 > ... > hn ∈ H. By Lemma 5.27 h′′ = hn. By Theorem 5.20 we 
also know that

Sf(h) = a⊗ Sv (25)

= Sa ≺ Sv (26)

= 1
k1!...kn!Sa ≺ (S�k1

f(h1) � ...� S�kn

f(hn)) (27)

= 1
k1!...kn!Sa ≺ ((S�k1

f(h1) � ...� S�kn−1
f(hn) )� Sf(hn)) (28)

= 1
k1!...kn!Sa ≺ ((S�k1

f(h1) � ...� S�kn−1
f(hn) )� Sf(h′′)) (29)

= 1
k1!...kn! (Sa ≺ (S�k1

f(h1) � ...� S�kn−1
f(hn) )) ≺ Sf(h′′). (30)

Equation (25) is a restatement of (19) in Theorem 5.20. Equation (26) is immediate from 
the definition of ≺. Equation (27) follows from (37) in Theorem 5.20. Equation (28)
is simply the associative property of shuffle. Equation (29) follows from Lemma 5.27. 
Equation (30) follows from the chain rule (5). Note that the inner term in equation (30)
can be reinterpreted as Sf(h′) (up to scalar) because

Sf(h′) = 1
k1!...(kn − 1)!Sa ≺ (S�k1

f(h1) � ...� S�kn−1
f(hn) ). (31)

Substituting this into equation (30) and recalling the definition of the Lazard depth αh

we obtain

Sf(h) = 1
kn

(Sf(h′) ≺ Sf(h′′)) (32)

= αh(Sf(h′) ≺ Sf(h′′)). � (33)

Proof of Theorem 5.25. We may proceed by induction. For any Hall tree h ∈ A one has 
Sf(h) = h ∈ A, ≺(h) = h, and Ah = 1 and so the theorem is true. On the other hand if 
h = (h′, h′′) then, assuming the result holds for h′, h′′:

Sf(h) = αh

(
Sf(h′) ≺ Sf(h′′)

)
(34)

= αh ((Ah′(≺(h′))) ≺ (Ah′′(≺(h′′)))) (35)

= Ah(≺(h)) (36)
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where we use Theorem 5.24 for the first step, the truth of the result for h′ and h′′ for 
the second, and the recursive definitions of ≺(h) and Ah for the third. So the result is 
true for h. �
Proof of Theorem 5.26. Recall from Schützenberger’s theorem (Theorem 5.20 in this 
paper) that any element Sw in the dual basis to the PWB basis can be expressed uniquely 
as a shuffle monomial in Sf(h). More precisely, consider the unique factorisation of the 
word w as a decreasing product of Hall words w = f(h1)⊗k1 ⊗ ... ⊗ f(hn)⊗kn where 
h1 > ... > hn ∈ H, then the dual basis element

Sw = 1
k1!...kn!S

�k1
f(h1) � ...� S�kn

f(hn) ∈ A. (37)

Theorem 5.25 allows for i = 1...n the substitution of Ahi
(≺(hi)) for Sf(hi) in these 

formulae which gives the specified expression for the dual basis element in terms of Hall 
integrals. �

In this section we have provided formulae for the dual PBW basis elements alternative 
but equivalent to the ones to be found in the book [28].

5.5. A conjecture

Theorem 5.26 states that polynomials in Hall integrals freely generate the half shuffle 
algebra (A, ≺) as an associative and commutative algebra. A natural question is whether 
a similar structure theorem holds in the case where the half shuffle ≺ on Hall trees is 
replaced by the commutator area as basic operation. This question has been, and still 
remain, a conjecture well supported by calculation for the last decade.

Conjecture. Any element of A can be written uniquely as a polynomial over Hall areas 
{area(h)}h∈H .

Trying to solve this conjecture led us to consider an argument related to the well-
known Lazard’s elimination [28] to construct a canonical, but to our knowledge, new 
decomposition of the half shuffle algebra (A, ≺) as shuffle power series in the greatest 
letter c of the alphabet A with coefficients in a sub-algebra X freely generated by a new 
alphabet X with an infinite number of letters defined in terms of c and all other letters 
in A. This construction, that we refer to as elimination trick, allows us to provide, in the 
next section, a second proof relying on an induction argument of our structure theorem.

5.6. Another proof of the structure theorem

The following simple and concrete observation will be expanded in this section.
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If (A, ≺) is the free half shuffle algebra over A, and c ∈ A, and X is the subset of A
comprising 1

k≺((ack)), a ∈ A \ c, and Z is the space spanned by words that do not begin 
with c; then (Z, ≺) is a half shuffle algebra generated by X in A; moreover, Z is freely 
generated as a half shuffle algebra by X, and therefore canonically isomorphic as a half 
shuffle algebra to the free half shuffle algebra (X , ≺) over X. In characteristic zero, Z is 
the half shuffle sub-algebra of A spanned by the words that do not begin with c. It is 
complimentary to A � c and we have

A = Z ⊕ (A� c)

= Z ⊕ (Z � c) ⊕ (A� c� c) (38)

= . . .

and any element in A can be expressed canonically as a shuffle power series in c with 
coefficients in the half shuffle subalgebra Z. One can repeat this process by choosing a 
letter d ∈ X, and expanding every coefficient as a power series in d with coefficients in 
the half shuffle subalgebra generated by the elements { 1

k≺((adk)), a ∈ X \ d}. In what 
follows we will make this precise.

Definition 5.28. Let c be the greatest element of A with respect to an ancestral ordering 
<. Define the subset of trees

X = {(acn), a ∈ A \ {c}, n ≥ 0} ⊂ MA. (39)

With this choice of (infinite) alphabet, the following spaces and operators are auto-
matically defined in the same way as their A counterparts:

• MX the free magma;
• WX the space of words in the alphabet X;
• X the vector space spanned by words in WX ;
• ⊗X , [·, ·]X , ≺X , areaX , (·, ·)X the products and pairing on these spaces;
• LX the free Lie sub-algebra of (X , ⊗X);
• expX , logX the tensor series for the respective maps.

Remark 5.29. Note that the elements of WX are words whose letters are particular words 
in A.

Theorem 5.30. [28, Theorem 0.6] The Lie algebra LA is the semi-direct product of LX

and Rc

LA = LX � Rc. (40)

As a result of Theorem 5.30, LX is a Lie ideal and sub-algebra of co-dimension one 
in LA and in particular LA = LX ⊕Rc.
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Next we report an important lemma from [28] which provides a very simple relation 
between Hall sets in MA and Hall sets in MX .

Lemma 5.31. [28, Lemma 4.19 & Section 5.6.3] The unique homomorphism of magmas 
φ : MX → MA that sends x = (acn) ∈ X to (acn) ∈ MA is an injection of magmas and 
its range is the free magma over X. Furthermore φ(HX) = H ∩ φ(MX) is the Hall set 
in MX associated with the ordering <, H = {c} ∪ φ(HX), and c is the greatest element 
of H.

Remark 5.32. MX is a sub-magma and inherits an ancestral ordering from MA. It 
follows that the image by φ of the Hall set HX in MX associated to the ordering < is 
H ∩ φ(MX) (Lemma 5.31).

When switching back and forth between the X- and A-spaces, the first objects one 
needs to have control over are letters from the two alphabets X and A. In the next 
lemma we express the images under the various operators discussed so far of letters in 
X, seen as trees in MA, in terms of words from WA.

Lemma 5.33. For any x ∈ X, the image φ(x) in MA is of the form (acn) for some a ∈ A

and n ≥ 0. The image of (acn) under the operators [ ], ≺, area in A, expressed in terms 
of words in WA is given by

[φ(x)] = [(acn)] =
(
n

0

)
ac...c−

(
n

1

)
cac...c + ... + (−1)n

(
n

n

)
c...ca (41)

≺(φ(x)) = ≺((acn)) = n!ac...c (42)

area(φ(x)) = area((acn)) = n!(ac...c− cac...c) (43)

where all the words are of length n + 1 and contain exactly once the letter a.

The proof is left as an exercise to the reader.
The next lemma tells the relationship between integrals and areas on letters from X.

Lemma 5.34. For any tree (acn) ∈ MA one has

≺((acn)) = 1
n + 1area((acn)) + n

n + 1c �≺((acn−1)). (44)

Proof. From Lemma 5.33 we deduce the following identity

area((acn)) + (c� n≺((acn−1))) = (n + 1)≺((acn))

which after rearranging yields equation (44). �
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Lemma 5.35. For any (acn) ∈ MA one has

≺((acn)) = 1
n + 1

n∑
k=0

c�k
� area((acn−k)). (45)

Proof. This follows immediately from Lemma 5.34 and an induction on n. �
Remark 5.36. Recall that the Lie bracket operator [·] is defined on MA with values in 
LA. The restriction of [·] defined on MA to MX agrees with the natural definition of 
[·] on MX . It is also a simple exercise to prove that this compatibility between the 
restriction and the intrinsically defined operators holds for the tensor product and the 
Lie bracket.

Definition 5.37. We denote by Jc : X → A the unique ≺-homomorphism that, by freeness 
of (X , ≺X) over X, extends to X the map

(acn) 	→ 1
n

(≺((acn))), n > 0. (46)

Denote by (Z, ≺) the half shuffle subalgebra of (A, ≺) generated by the elements

{Jc(x) : x ∈ X}.

Next we prove that the algebra (Z, ≺) is closed under ≺ and provide a characterisation 
of Z as the linear span of words in WA that do not begin with the letter c.

Lemma 5.38. Z is the span of words in WA that do not begin with the letter c

Z = Span{w = a ≺ v ∈ WA | a �= c, a ∈ A, v ∈ WA}.

In particular Z is closed under ≺.

Proof. Let Z ′ be the linear span in A of the w �= cv ∈ WA. It is immediate from the 
definitions of � and ≺ on words that Z ′ is closed under both operations. If t = (t1, t2) ∈
MA and if, for i = 1, 2, ≺(φ(ti))) ∈ Z ′ then ≺(φ(t)) = (≺(φ(t1))) ≺ (≺(φ(t2))) is also in 
Z ′ because Z ′ is closed under ≺. Let x ∈ X, then by equation (42)

≺(φ(x)) = ≺((acn)) = n!ac...c ∈ Z ′. (47)

We may proceed recursively to see that every ≺(t) contained in Z is also an element 
of Z ′; since Z is generated by {Jc(x) : x ∈ X} we conclude that Z ⊂ Z ′. The unique 
decomposition of words into decreasing sequences of Hall words shows that the dimension 
of Z ′ and Z are equal, hence Z = Z ′. �
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Lemma 5.39. The half shuffle algebra A has the following decomposition

A = Z ⊕ (Z � c) ⊕ (Z � c�2) + ... (48)

Proof. Consider any word w ∈ WA beginning with n number of c’s.

w = c ≺ (c ≺ (... ≺ (c ≺ v)...))

where v = av′ ∈ Z is a word that doesn’t begin with c, i.e. a ∈ A, a �= c, v′ ∈ WA. If 
n = 0 then w ∈ Z. By induction on n

c ≺ (c ≺ (... ≺ (c ≺ v)...)) − αnc
�n
� v = L

where αn ∈ R and L is a linear combination of words that begin with k < n number of 
c’s. Hence, by induction on the number of c’s in front of the words, the word w can be 
written as a shuffle polynomial in c with coefficients in Z. �
Lemma 5.40. Jc maps polynomials in Hall integrals ≺X(h), h ∈ HX to polynomials in 
Hall integrals ≺(φ(h)).

Proof. This follows immediately because Jc is a half shuffle (and so shuffle) homomor-
phism. �

We now repeat our structure theorem and provide an alternative proof based on the 
elimination trick discussed so far in this section.

Theorem 5.41. The half shuffle algebra (A, ≺) is freely generated by polynomials in Hall 
integrals ≺(h) for h ∈ H.

Proof. We can assume by induction that the theorem holds for X , i.e. that (X , ≺X)
is freely generated by polynomials in ≺X(h) for h ∈ HX . By Lemma 5.40, Z is freely 
generate by polynomials in ≺(h) with h ∈ φ(HX). By Lemma 5.31, H = {c} ∪ φ(HX)
and with the decomposition (48) we conclude that A is freely generated by polynomials 
in ≺(h), h ∈ H. �
5.7. Scalable computations of path signatures

As mentioned in the introduction, instances of streamed information can be repre-
sented as a path γ : [0, 1] → V with values on some finite dimensional vector space 
V � Rd, such a path is faithfully represented, up to reparameterisation, by the signature 
Sγ ∈ (A, ⊗). Furthermore, since the extended tensor algebra (A, ⊗) is the algebraic dual 
of the half shuffle algebra (A, ≺), it is automatic to see that the restriction of linear func-
tionals on A to the range of the signature form a unital algebra of real-valued functions 
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that separates signatures. Hence, by the Stone-Weierstrass theorem linear functionals 
acting on the signatures are dense in the space of continuous, real-valued functions on 
compact sets of unparameterised paths. Thus, non-linear regression on pathspace can 
be realised by linear regression on the terms of the signature. However, terms in the 
signature contain some redundancy, which represents a major scalability issue, particu-
larly because the number of distinct and linearly independent iterated integrals grows 
exponentially in the truncation level. In this paper, and in particular in Theorems 5.26
and 5.41, we identified sets of Hall integrals that can be used to compute any term in 
the signature with a minimal amount of computations.

To illustrate this we consider a simple example. Let d = 3 and let us identify the 
3-dimensional vector space V as the space spanned by an alphabet of three letters A =
{1, 2, 3}. Let ω = 233212222111; note that |ω| = 12. Then, computing the coefficient 
(Sω, Sγ) in the signature using existing software [19,22,27] (based on the Chen’s relation) 
involve evaluating the level-12 truncated tensor exponential of increments exp(12)(γt−γs). 
This operation has space and time complexities of O(312).

Instead, considering for example the Lyndon basis, one can precompute the factori-
sation of ω into decreasing product of Lyndon words and find

ω = f(1)⊗3 ⊗ f(((((1,2),2),2),2)) ⊗ f(2) ⊗ f(((2,3),3))

Therefore, by Theorem 5.26 one has

Sω = ≺(1)�3
�

1
4!≺(((((1,2),2),2),2))�≺(2)� 1

2!≺(((2,3),3)).

Using the interplay between algebraic operations ≺ and � and the rules of calculus on 
paths outlined in Section 3 we obtain

(Sω,Sγ) = 1
48α1α2α3α4

where

α1 =
1∫

0

dγ
(1)
t

α2 =
1∫

0

⎛
⎝

v∫
0

⎛
⎝

u∫
0

⎛
⎝

t∫
0

γ(1)
s dγ(2)

s

⎞
⎠ dγ

(2)
t

⎞
⎠ dγ(2)

u

⎞
⎠ dγ(2)

v

α3 =
1∫

0

dγ
(2)
t

α4 =
1∫ ⎛
⎝

t∫
γ(2)
s dγ(3)

s

⎞
⎠ dγ

(3)
t .
0 0
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6. Conclusion

In this paper, we identified the free Zinbiel algebra introduced by [31] with an algebra 
of real-valued functions on paths. We provided two, to our knowledge, new basic identities 
in arity 3 involving its symmetrisation � and its anti-symmetrisation area. We showed 
that these are sufficient to recover the Zinbiel and Tortkara identities introduced by 
Dzhumadil’daev [11]. We then used these identities to provide a direct proof of the 
main result in [8] stating that polynomials in iterated areas generate the free Zinbiel 
algebra [32]. Subsequently, we introduced minimal sets of Hall integrals and showed, 
with two different proof techniques, that polynomial functions on these Hall integrals 
freely generate the half shuffle algebra. This result can be interpreted as a structure 
theorem for streamed information, allowing to split real valued functions on streamed 
data into two parts: a first that extracts and packages the streamed information into Hall 
integrals, and a second that evaluates a polynomial in these without further reference to 
the original stream.
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