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ABSTRACT
Additive manufacturing (AM) allows for the fabrication of custom orthopaedic implant devices
which have complex geometries and similar mechanical properties to bone. This paper reviews
the corrosion, fatigue and wear properties of AM Ti alloys to confirm their safety for use
in orthopaedic implants. Specifically, AM Ti lattice geometries are highlighted due to their
improved osseointegration and better modulus matching with that of bone, making them an
attractive option for more durable implant devices. Finally, the properties of current implants
made via AM are comparedwith thatmade via conventionalmanufacturingmethods to confirm
their overall safety.
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Introduction

Titanium alloys are commonly used in the biomedical
industry due to their compatibility with body tissue [1].
Specifically, orthopaedic implant devices require good
biocompatibility with the surrounding tissue, good cor-
rosion resistance and matching mechanical properties
with that of bone, all of which are fulfilled with the use
of Ti alloys [2]. Since the first joint arthroplasty involv-
ing Ti alloys in the 1940s [3], Ti orthopaedic implants
have become widespread, mostly as standardised, com-
mercially available devices [4] that are mass-produced
to address a specific clinical need. In the United States
alone, it is projected that 572,000 hip and 3.48 mil-
lion knee arthroplasties will be performed in 2030
[5], demonstrating the large market for orthopaedic
implants. Furthermore, as life expectancy and obesity
rates increase worldwide [6], so does the incidence of
arthritis requiring joint replacements [7].

In recent years, additive manufacturing (AM) of
orthopaedic implants is becoming increasingly popular
due to its ability to produce complex geometries, there-
fore overcoming the limitations of conventional man-
ufacturing techniques [8], such as shown in Figure 1.
It is predicted that the market for additively manu-
factured devices will reach USD 26 billion by 2022
[9]. Furthermore, AM allows for the production of
custom-shaped implants, as well as the production
of hollow structures, or lattices, to better mimic the
structure of porous bone. In cage-like lattice implants,
osseointegration and bone ingrowth determine their
long-term success and durability, ensuring bioadhesion
with surrounding bone which reduces the probability

of implant loosening and the need for revision
surgeries [10–12].

Porous orthopaedic Ti-based implants have been
extensively studied in the literature for a wide vari-
ety of applications. Bittredge et al. [11] have fabricated
and optimised Ti–6Al–4V lattices for total shoulder
implants, where 21% of orthopaedic revision surgeries
is caused by the loosening of shoulder implants from
the humerus bone [14]. Ramhamadany et al. [15] devel-
oped a lattice cage structure for talus replacements,
which allows 75–90% of its entire volume to be filled
with bone graft, enhancing osteogenic potential [16].
This is especially important to treat avascular necro-
sis of the talus which has very little blood supply [17].
Kuslich et al. [18] have successfully trialled an open-cell
lumbar cage in 196 patients presenting with degenera-
tive invertebral disc disease, with a 95.1% bone fusion
rate in four years. Popov et al. [19] have successfully
implanted a lattice structure to replace bone affected
by osteosarcoma resection in canines, thereby provid-
ing a viable alternative to amputation. These examples
show the breadth of applications of AM Ti implants,
which allow for a patient-specific design in a cost-time
competitive manner [20–22].

Moreover, current orthopaedic implants are
required to be approved by relevant regulatory bod-
ies, such as the Food and Drug Administration
in the United States [23] and the CE (Confor-
mite Europeenne) mark in the European Union [24].
Devices such as newly developed implants need to pass
pre-clinical testing through clinical studies to assess the
efficacy, safety and durability of the devices bymeans of

CONTACT J. Tjandra jt1516@ic.ac.uk Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, UK

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in anymedium, provided the original work is properly cited. The terms onwhich this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02670836.2023.2230417&domain=pdf&date_stamp=2023-10-20
http://orcid.org/0000-0002-7766-0934
http://orcid.org/0000-0001-7832-6383
http://orcid.org/0000-0002-1413-6932
http://orcid.org/0000-0002-4691-2991
mailto:jt1516@ic.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1080%2F02670836.2023.2230417&domain=pdf&date_stamp=2023-12-01


2952 J. TJANDRA ET AL.

Figure 1. Patient-specific AM Ti–6Al–4V implant. (Reproduced from [13].)

mechanical and biocompatibility testing. Furthermore,
post-market follow-up is also required, where patient
monitoring post-operation aims to minimise the need
for revision surgeries [25]. In contrast, there is a lack of
regulatory requirements for custom-made orthopaedic
implants using AM as they are not mass produced [26],
lowering the barriers to entry for AM companies in
producing orthopaedic implants. It remains the respon-
sibility of surgeons who implant these devices to ensure
that the quality and safety of the devices are adequate
[27].

Despite being corrosion-resistant by means of a pro-
tective surface oxide layer, Ti alloys have been found
to corrode in vivo especially in the presence of fatigue
loading [28], shown in Figure 2. This is a non-trivial
issue as it often causes implant failure [29–31] as well as
the release of metallic ions and debris, which can lead
to tissue inflammation and infection [32]. Corrosion
in head-neck taper connections in femoral hip pros-
theses made from Ti alloys occurs in 16–35% of cases
according to Gilbert et al. [33]. Furthermore, there are
significant challenges in AM implants, such as the crit-
ical angle of overhanging structures [34] in addition to
inherent defects such as porosity and surface roughness
from the AM process [35].

This paper aims to review the corrosion, fatigue
and wear behaviour of AM Ti alloys for orthopaedic
implants by systematically looking at:

• Manufacturing methods of orthopaedic implants
using conventional methods as well as additiveman-
ufacturing

• Corrosion behaviour of conventionally manufac-
tured and AM Ti alloys for orthopaedic implant
applications

• Fatigue and corrosion fatigue behaviour of con-
ventionally manufactured and AM Ti alloys for
orthopaedic implant applications

• Wear and corrosion wear behaviour of convention-
ally manufactured and AMTi alloys for orthopaedic
implant applications

• Comparing AM and conventionally manufactured
orthopaedic implants

• Future prospects of AM orthopaedic implants.

Manufacturingmethods

Conventionally manufactured orthopaedic implants
are typically made via forging, where metal is shaped
using compressive forces through dies, presses and/or
hammers [37]. Most orthopaedic implants are manu-
factured using closed-die forging to its final shape [38].
Implant fixation is often necessary to provide stability
to the surrounding bone, such as using acrylic cement
[39]. Depending on the location and complexity of the
implant, it is also possible to have cementless fixation
which involves a press-fit between the bone and implant
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Figure 2. Schematic illustration showing the complex interactions between the material’s surface and the physiological environ-
ment. (Reproduced from [36].)

[40]. Fixation methods are highly dependent on the
implant design, patient’s age and surrounding bone
quality. However, in the past the use of cement fixation
has only proved successful in older patients and less so
in younger patients who tend to be more active [41].
Some implants, such as hip tapers, are manufactured
from wrought alloys [42, 43].

AMof implants

AM of orthopaedic implants is extremely lucrative as
it has the ability to produce components with mechan-
ical properties as similar to native bones [44, 45].
The complex structure of bone can be replicated, such
as its anisotropy [46] and specific internal architec-
ture containing macropores [47]. Moreover, the use
of computer-aided design (CAD) to manufacture the
implants allows for patient-specific components which
significantly reduces operation time while also cater-
ing for patients with unique implant requirements [27].
For example, AM of implants can often salvage the
joint, allowing joint preservation post-operation such
as shown in Figure 3.

Various types of experiments involving additively
manufactured Ti–6Al–4V implants have been per-
formed in the literature. These involve different
AM techniques, which include selective laser melting
(SLM), electron beam melting (EBM), laser powder
bed fusion (L-PBF) and wire arc additive manufactur-
ing (WAAM), among others. A few examples of pre-
vious work involving corrosion of AM Ti–6Al–4V for
biomedical applications are summarised in Table 1.

Different AM techniques produce different
microstructures which therefore influence corrosion
resistance. As such, studies involving different AM
techniques may not be directly comparable with each

Figure 3. Using additive manufacturing to produce complex
implant geometries allowing for joint preservation. (Repro-
duced from [48].)

other. For example, Bai et al. [49] showed that the cor-
rosion resistance of electron beam melted Ti–6Al–4V
is better than that of wrought Ti–6Al–4V due to a
more refined microstructure and a more compact pro-
tective oxide layer. Meanwhile, it has been found that
Ti–6Al–4Vmanufactured by SLM typically has a higher
corrosion rate in 3.5% NaCl compared to one conven-
tionally manufactured due to a highly strained marten-
sitic structure and therefore a more porous oxide layer
[50–52]. In contrast, the oxide film of SLM Ti–6Al–4V
has been found to be more protective in PBS and
SBF compared to EBMTi–6Al–4V [53–55].Metalnikov
et al. [56] also corroborated this finding by compar-
ing EBM and SLM Ti–6Al–4V, with the latter having
a slightly better corrosion resistance than the former.
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Table 1. Previous studies involving corrosion of additively manufactured Ti–6Al–4V in the literature.

Source AMmethod Loading conditions Corrosion medium

Leon et al. [51] SLM N/A 3.5% NaCl
Ettefagh et al. [57] L-PBF N/A 3.5% NaCl
Yang et al. [58] SLM and WAAM N/A 3.5% NaCl
Jesus et al. [59] SLM Compression fatigue R = 0.05, f = 1 and 10 Hz with varying stresses up to 10 kN 3.5% NaCl and Ringer’s
Chen et al. [60] L-PBF N/A Hank’s
Sharma et al. [52] SLM N/A NaOH, NaCl, H2SO4, SBF
Gayathri et al. [61] SLM N/A PBS
Bai et al. [62] EBM N/A PBS
Lu et al. [63] SLM Wear test with ball-on-disc configuration SBF
Wu et al. [64] EBM N/A SBF
Wegner et al. [65] L-PBF Compression fatigue R = 10, f = 5 Hz with varying stresses SBF

AM lattice geometries

One of the main advantages of AM is the fabrica-
tion of lattice structures through CAD, allowing the
production of complex shapes requiring minimal post-
processing [66, 67]. A significant proportion of studies
[68–71] involving lattices utilised repeated unit cells
throughout the geometry. These geometries comprise
beams with a certain thickness, called struts, joined at
nodes throughout the lattice. An advantage of strut-
based lattices is the ease of design and manufacture,
as well as the simplicity of design which allows for
reliable computational modelling [70]. However, strut-
based structures have sharp curvatures [8], with nodes
acting stress concentration sites susceptible to fatigue
failure [71]. Additionally, thin struts (1 mm or thinner)
are more prone to edge effects [69] further reducing
fatigue life.

A better option than struts are surface-based lat-
tices, which have smooth curvatures [72, 73], there-
fore promotes improved cell attachment and bet-
ter osseointegration for orthopaedic implants. Among
surface-based lattices, triple-periodical minimum sur-
faces (TPMS), shown in Figure 4, have been found

to have zero mean curvature with a single intercon-
nected domain [8]. The lack of stress-concentration
sites also reduce fatigue initiation sites, prolonging
implant life. However, surface-based lattices are diffi-
cult to manufacture. Several studies have investigated
different TPMS geometries [74–76]. Kapfer et al. [77]
used finite element analysis to determine the mechan-
ical properties of different TPMS geometries, however,
it did not take into account surface roughness from the
partial sintering of unmelted powders typical of AM.

Lattice geometry is vital for bone regrowth. Zadpoor
[73] has studied this extensively, noting that the pores
within the lattice should allow for not only mechanical
support but also tissue invasion, cell nutrition and oxy-
genation, and that a minimum pore size of around 300
μmis essential for bone ingrowth and formation of cap-
illaries [79]. Similarly, Gotz et al. [80] noted aminimum
of 200 μm pore size is required for osseointegration.
Moreover, the curvature of pores also strongly influ-
ences bone growth rates [81, 82]. In particular, the rate
of bone regeneration process has been found to increase
with curvature [83, 84]. Most importantly, a lattice
geometry reduces the overall stiffness of the implant,
therefore reducing the extent of stress-shielding [85].

Figure 4. Various TMPS geometries. (Reproduced from [78].)
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Besides lattices with repeating unit cells, some
studies have looked at stochastic lattices, which are
anisotropic and therefore more similar to bone. These
types of lattices are much less studied than periodic
ones.One type of stochastic lattices isVoronoi, based on
a mathematical model initially described by Dirichlet
and Voronoi in the early twentieth century. This model
started as ‘seeds’ in a three-dimensional shape and a
circle is drawn around each seed, expanding in radius
at the same rate until two circles touch. This results
in a three-dimensional diagram of circle boundaries
which correspond to lattice scaffolds. Voronoi struc-
tures therefore are random lattices, dependent on the
number of seeds initially used, which in turn is related
to a target pore size [86]. Another type of stochastic lat-
tices can be generated using a Poisson disk algorithm
which populates a three-dimensional volume with ran-
dom points, studied by Ghouse et al. [87]. These points
are later joined with lines to form struts. This struc-
ture is therefore governed by the minimum proxim-
ity between points which determines the strut lengths
[88]. For stochastic lattices, it is even more difficult to
predict the mechanical properties of these structures,
however some models have described a relationship
between density and mechanical properties of porous
structures. One such model was developed by Gibson
andAshby [89], which show that the strength andmod-
ulus of a porous material increase with density by a
power law. This has been found to apply to additively
manufactured lattices by Yan et al. [90].

Subsequently, orthopaedic implant applications
comprising different AM lattice geometries have vary-
ing corrosion properties. The following section aims
to investigate corrosion mechanisms and properties of
AM Ti alloys for orthopaedic implants.

Corrosion

Ti alloys are generally considered to be corrosion resis-
tant owing to the spontaneous formation of a protective
oxide layer on the metal surface, acting as a physical
barrier between corrosive species and titanium metal
[91]. However, Ti alloys are not immune to corrosion
once the passive layer is compromised [92], and many
studies have investigated the mechanism and extent of
corrosion of Ti alloys under different environmental
conditions, such as in Ringer’s solution [93], in NaCl
solution [94] and in HCl solution [95].

The most direct way to measure the extent of
corrosion is via electrochemical experiments such as
potentiodynamic polarisation curves. Cyclic potentio-
dynamic polarisation (CPP) curves directly measure
the corrosion potential, Ecorr, the corrosion current
density, icorr and the corrosion rate. In Ti–6Al–4V,
this measurement involves a three-electrode polarisa-
tion cell with Ti–6Al–4V as the working electrode,
Ag/AgCl as the reference electrode, a Pt mesh counter

electrode and the corrosion medium as the electrolyte.
A more negative Ecorr value, a larger icorr value and a
higher corrosion rate suggest amore corrosive environ-
ment. ASTM F2129-19a states that breakdown poten-
tials of implant devices should be at least 800mVwithin
a physiological environment [96]. Cyclic potentiody-
namic polarisation measurements can accurately assess
the extent of corrosion, however, this is limited to a sta-
tionary sample and not for corrosion wear or fretting
corrosion [97–99].

The protective TiO2 layer on the surface of Ti alloys
can undergo dissolution, therefore resulting in localised
corrosion (i.e. pitting corrosion) [58]. This dissolution
of TiO2 layer occurs at high enough potential, termed
critical pitting potential, which have been well docu-
mented to have a linear function of the logarithm of
chloride ion concentration in metals [100]. The mech-
anism of corrosion therefore occurs by adsorption of
chloride ions into the metal substrate and subsequent
dissolution reactions occurring at the metal/oxide
interface [101, 102]. Soltis [103] has reviewed this
mechanism and showed agreement between computa-
tional models and experiments in Ti alloys.

Sivakumar et al. [104] found that the corrosion
potential is also further influenced by kinetic param-
eters, and once fretting removes the passive oxide film
on the implant surface, there is a potential difference
which further increases corrosion rate. This is owing to
the fretting contact being the anode and the large area
outside the fretting zone being the cathode, the former
increasing in area as fretting worsens.

Corrosionmedium

There have been many attempts to determine the cor-
rosion mechanism of Ti alloys in the presence of stress
and exposure to the body fluid environment, such as
by Dimah et al. [105] using phosphate buffered solu-
tion (PBS), Yaya et al. [106] using 0.9% NaCl solution,
Cvijovic-Alagic et al. [93] with Ringer’s solution and
Bidhendi and Pouranvari [107] with Hank’s solution.
Since these solutions contain different concentrations
of various chemical species, it is difficult to elucidate
the exact mechanism of corrosion by comparing these
studies. Table 2 highlights a few studies involving corro-
sion of AMTi alloys using a variety of corrosionmedia.
Furthermore, these solutions are not similar to body
fluid in composition. For a more systematic study of
body fluid corrosion, a solution which has similar ionic
concentrations to that of body fluid is crucial. Such
solutionwas developed byKokubo andTakadama [108]
in 2006, which has very similar ionic concentrations
to blood plasma. The chemical composition of these
solutions as well as human blood plasma is shown in
Table 2.

It is important to note that body fluid compositions
do not remain constant throughout and also vary from
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Table 2. Typical chemical composition of human blood plasma
[112] and different physiological solutions [108, 113].

Ionic concentrations (mM)

Ion Blood plasma Hank’s Ringer’s SBF

Na+ 142.00 142.00 113.60 142.00
K+ 5.00 5.00 1.88 5.00
Mg2+ 1.50 1.50 0.00 1.50
Ca2+ 2.50 2.50 1.08 2.50
Cl− 103.00 103.00 115.30 147.80
HCO−

3 27.00 27.00 2.38 4.20
HPO2−

4 1.00 1.00 0.00 1.00
SO2−

4 0.50 0.50 0.00 0.50
pH 7.20-7.40 6.82 5.92 7.40

person to person [97]. For example, studies involving
pH of body fluid before and after a metal implant is
placed in vivo have found that it can drop from 7.4
to 5.5 due to the disruption of blood supply to the
bone [109] while a bacterial infection post-surgery can
result in a pH of between 4.0 and 9.0 in the vicinity of
implant surface. A localised decrease in pH can result
in severe pitting corrosion of the implant. This has also
been verified in in vitro experiments [110]. Moreover,
oxygen content in blood is lower than that of artifi-
cial physiological solutions in air due to the presence
of haemoglobin in blood, thus repassivation of implant
surface, once corroded, is much more difficult in the
body [28, 111].Meanwhile, carbondioxide in bloodwill
reduce its pH which accelerates corrosion.

Corrosion in AM lattices

There has been very few studies involving corrosion of
additivelymanufactured Ti–6Al–4V lattices in the liter-
ature. Sharp et al. [114] studied the effect of porosity on
LPBF Ti–6Al–4V Gyroid structures and found out that
a lower porosity lattice is more susceptible to pitting
corrosion. This suggests a trade-offbetween lattice opti-
misation and corrosion behaviour and thus a potential
link between void volume, surface area and corrosion.
As expected, corrosion appeared to initiate at corners
and raised edges, and breakdown potentials for all sam-
ples tested were above that found in a physiological
environment showing that the implants should not cor-
rode in the body. Losiewicz et al. [115] investigated the
severity of corrosion among different TPMS lattices and
found that Gyroid lattices are most corrosion resistant.
Gabay et al. [116] studied AM Ti–6Al–4V lattice that
is infiltrated with a biodegradable Zn–2%Fe alloy and
determined adequate corrosion resistance, improved
osseointegration and satisfactory bonding between the
two materials.

The lifetime of orthopaedic implants containing AM
lattices is therefore difficult to predict accurately. In
addition to corrosion due to exposure to body fluid
environment, the application of mechanical loading
will likely reduce their overall lifetime. The next section

aims to investigate the effect of fatigue in AM Ti alloys
for orthopaedic implants.

Fatigue

Fatigue is well known to be the most common cause
of premature orthopaedic implant failure [117], where
the application of cyclic stress leads to the initiation and
growth of cracks. Upon reaching a critical crack length,
catastrophic failure occurs [118]. Fatigue properties of
Ti alloys are well studied and are greatly influenced
by microstructure types and grain sizes, with bimodal
microstructures possessing the highest fatigue strength,
followed by lamellar and equiaxed [119]. Inmanymate-
rials including titanium alloys, fatigue cracks often ini-
tiate at stress concentration sites such as inclusions,
pores, residual surface stresses and grain boundaries. In
dual-phase alloys such as Ti–6Al–4V, the softer phase is
more prone to fatigue crack nucleation compared to the
harder phase [120].

Corrosion fatigue

Corrosion fatigue is a well-known behaviour in alloys
where failure occurs under cyclic loadingwhen exposed
to corrosive species [121]. Typical fatigue crack initia-
tion in Ti alloys occurs as a result of plastic deforma-
tion during cyclic loading, resulting in regions termed
persistent slip bands [122].

Ti alloys are generally considered to be corrosion
resistant owing to its protective TiO2 film that spon-
taneously forms in air on its surface [123]. However,
while this oxide film is resistant to chemical attack
and corrosive environments under static conditions,
it is not sufficiently stable under loading conditions
[124] when exposed to body fluids [125]. Corrosion
fatigue behaviour of conventionally manufactured Ti
alloys is relatively well studied, especially owing to
its widespread use in aero-engine and other indus-
trial applications [126]. Dawson and Pelloux [127]
studied the different crack propagation behaviours
in Ti–6Al–4V when immersed to different environ-
ments. Similarly, Baragetti and Arcieri [128] found
that Ti–6Al–4V exposed to 3.5% NaCl solution has
a 20% reduction in stress concentration factors in
fatigue tests compared to that exposed to laboratory
air.

Vallittu and Kononen [129] also found that crack
propagation in Ti alloys under cyclic loading is rel-
atively rapid compared to cobalt-chromium and gold
alloys. In the field of metallic implants, pitting corro-
sion is common owing to the dissolution of protec-
tive passive film due to contact with aggressive species
such as chloride ions [117]. Fatigue cracks have been
found to nucleate near these pits, which continue to
grow until fracture occurs. Studies by Azevedo [130]
and Magnissalis et al. [131] have shown that metallic
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implants have reduced fatigue lives and faster fatigue
crack propagation due to corrosion.

Corrosion fatigue behaviour in Ti alloys is strongly
influenced by microstructure. This has been studied by
Bache and Evans [132], who found that the lamellar
microstructure is the most sensitive to environmen-
tal conditions, presenting with a significant increase
in crack growth rates, as compared to bimodal and
mill annealedmicrostructures. Similarly, Gregory [133]
found that corrosion fatigue behaviour is influenced by
crystal orientation (texture), showing only significant
reduction in fatigue life when the basal planes of the
hexagonal α phase are perpendicular to tensile stress.
In contrast, Roach et al. [134] found that the presence
of a notch, rather than environmental conditions, con-
tributes more to a reduced fatigue lifetime of Ti alloys,
due to higher tri-axial stress state at the notch.

It is important to note that to date, there have
been no studies to determine the relationship between
microstructure, surface finish and fatigue crack growth
in Ti alloy implants under body fluid environments
[117], owing to the difficulty in replicating these
conditions in laboratory conditions, i.e. physiological
medium containing proteins, enzyme and ions at 37◦ C
with varying wear and cyclic loading conditions.

Fatigue in AM lattices

Fatigue behaviour in AM components is notoriously
difficult to predict and is highly dependent on the sam-
ple geometry, surface finish and defect concentration.
Typical AM components contain porosity which gen-
erally reduce their overall fatigue strength compared to
conventionally manufactured components of the same
geometry [135]. The fatigue resistance ofGyroid lattices
has been extensively studied by Yang et al. [136], who
found that the internal strut topology of lattices play a
crucial role in its fatigue resistance. Specifically, lattices
such asGyroidwith helical surfaces and roundpores are
effective in reducing tensile stress around nodes driv-
ing crack initiation and propagation.Other studies have
presented that fatigue resistance improves with lower
internal defect percentage. Specifically, Kelly et al. [137]
found that void defects within struts are typical sites for
crack initiation, whereas Mahmoud et al. [138] found
that thicker struts require more laser exposure, leading
to worse heat accumulation and unstable melt pools.
These yield internal defects thereby decreasing fatigue
resistance. Similarly, Li et al. [139] investigated the com-
pression fatigue behaviour of lattices with high porosi-
ties (60–85%), showing that fatigue failure in highly
porous lattices is mainly dominated by cyclic ratcheting
leading to fatigue crack initiation and propagation. An
improved fatigue strength is observed in lattices with
higher relative density.

Burton et al. [140] performed finite element analy-
sis on different lattice geometries and found that the

Schwartz primitive (pinched) lattice has the strongest
unit cell, with a 10% volume fraction sample displaying
good fatigue properties. Moreover, controlling the vol-
ume fraction the overall stiffness of the implant which
can be tuned to match that of the surrounding bone.
In fact, it has been widely hypothesised that having a
slightly lower Young’s modulus than bone is beneficial
for bone ingrowth and having some implant deforma-
tion promotes better bone formation [141, 142]. In the
study of stochastic lattices, Mhurchadha et al. [143]
have found that strut thickness in Voronoi structures
has a significant influence on fatigue lifetime.

Few studies have studied the combined effect of cor-
rosion and fatigue in AM Ti–6Al–4V. Jesus et al. [59]
found that fatigue crack propagation rate increased by
290% in Ringer’s solution and more than 330% in 3.5%
NaCl solution in comparison to an air environment.

Premature failure from corrosion and fatigue is com-
mon in orthopaedic implants. Another common cause
for early failure of implants is due to fretting/wear lead-
ing to the release of metal debris harmful to tissue
health. The following section aims to investigate the
effect of wear onAMTi alloys for orthopaedic implants.

Wear

Ti alloys are known to have relatively poor wear resis-
tance [144]. This is largely due to the low protection of
the surface oxide layers againstmechanical wear; oxides
of Ti easily spall and fragment [145]. This is especially
the case for Ti on Ti contact.

Orthopaedic implants, especially joint replacements,
may contain bearing surfaces which may wear during
its lifetime. Metal on metal bearing surfaces typically
cause less wear over time compared to metal on poly-
mer and ceramic on polymer surfaces [146], hence are
preferable for younger patients [147]. However, metal
wear debris and metal ion release are detrimental to
human health [148]. Furthermore, the release of metal
ions due to tribocorrosion can also negatively affect the
mechanical stability of the implants, causing implant
loosening [105]. An example of bone loss due to wear
debris causing implant loosening is shown in Figure 5.

Corrosionwear

Tribocorrosion is the combined effect of interactions
between corrosion and mechanical wear [150]. Tribo-
corrosion studies usually perform wear tests with and
without body fluid solutions, such as that following
ASTM G77-83 using block-on-disc configuration [93],
using pin-on-plate tribometer [151] or using ball-on-
disc tribometer [105]. Thesemethods produce different
wear tracks and are not directly comparable with each
other.

In the case of Ti–6Al–4V, Dimah et al. [105] have
found that the protective oxide layer formed when
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Figure 5. Bone loss surrounding a hip implant. (Reproduced
from [149].)

exposed to body fluid solution consists of mainly TiO2,
with TiO and Ti2O3 in the metal/TiO2 interface and
Al2O3 in the TiO2/solution interface. Milosev et al.
[152] found that the wear resistance of the alloy there-
fore depends on themechanical properties of the oxides
on the surface layer. This is due to the slow regeneration
of the passive film once damaged by wear [93]. Wear of
implant devices can lead to implant loosening as well
as surrounding tissue inflammation due to wear debris,
which is highly undesirable [40].

Wear in AM lattices

Tribocorrosion studies in AM Ti–6Al–4V lattices
are limited and have generally shown worse wear
properties compared to conventionally manufactured
Ti–6Al–4V. This is mainly owing to the increased sur-
face roughness in AM Ti–6Al–4V components. The
inherent irregularities on the surface of AM compo-
nents are due to the solidification of themelt pool, lead-
ing to partially melted powder particles [153] on the
component surface, which are in the range of 10–60μm
in diameter for SLM powders and 50–150 μm for EBM
powders [154]. Furthermore, the layer-by-layer deposi-
tion in AM causes surface defects such as the stair-step
effect [155]. Both these factors contribute to poorer tri-
bocorrosion properties as surface irregularities can act
as initiation sites for pitting corrosion [156].

Interestingly, Shahsavari et al. [154] found that cor-
rosion resistance in AM Ti–6Al–4V is improved with
decreasing surface roughness, which can be achieved
using techniques such as electron beam surface remelt-
ing. However, this may be undesirable as a decreased
surface roughness will be detrimental in aiding bone
ingrowth and decrease bone adhesion.

Furthermore, tribocorrosion studies are only appli-
cable in cases where the Ti implant has an articulat-
ing surface such as to replace ball-and-socket joints.
However, where articulating surfaces are required,

orthopaedic implants are often highly polished to
remove surface roughness and coated with a ceramic
layer such as titaniumnitride (TiN)which has very high
wear resistance, hardness and smoothness [32]. Where
articulating surfaces are not required, corrosion wear is
unlikely to occur as there is no friction experienced by
the implant. In these cases, bone fusion is amore signif-
icant issue to prevent implant loosening [157], hence a
porous implant such as open-cell lattices is beneficial.
The pore size and shape can be optimised by varying
the geometry of the lattice to ensure maximised bone
ingrowth and adhesion to the implant [72].

To improve tribocorrosion properties in AM Ti
alloys, many studies have investigated various surface
finishing methods, such as sandblasting [158], chemi-
cal etching [159], passivation and electropolishing [64].
For example, adding diamond like coating (DLC) on
the surface of implants has been found to improve
the overall wear resistance, as well as encouraging cell
growth [146]. However, it is important to note that
for orthopaedic implant applications, increased surface
roughness is favourable for bone ingrowth to prevent
loosening.

Discussion

Additive manufacturing inherently produces compo-
nents withmore defects than conventionalmanufactur-
ing owing to its high cooling rate [160], high residual
stresses [161], porosity [162] and surface roughness
from partially melted metal powders [155]. As such,
AM implants are more susceptible to localised corro-
sion as well as tribocorrosion [53]. Subsequently, metal
ion release to body fluid is a safety concern as these can
cause toxic and allergic symptoms [163]. In Ti–6Al–4V
implants, there is a preferential release of Ti ions but
also significant amounts of Al and a small amount of V
ions, the latter being a concern as it is toxic to humans
[164].

The fatigue properties of AM lattices are challeng-
ing to predict due to its complicated geometries. This
is in comparison with conventionally manufactured Ti
implants for which corrosion fatigue behaviours have
been extensively studied. In AM lattices, modelling
fatigue crack growth is tricky as there are significant
variations in strut surfaces betweenmanufactured com-
ponents and CAD data [87]. Consequently, predicting
the fatigue behaviour of stochastic AM lattices is even
more difficult, however, some studies have attempted
this and compared their results with experimental data
[88] with good consistency. Even so, AM artefacts such
as residual stress and surface roughness are known to
reduce the fatigue life of AM components. Under cor-
rosive environments such as body fluid, fatigue life of
these lattices is expected to be further reduced [133],
although the extent of this remains a gap in literature
that needs to further studied.
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In terms of wear, Chiu et al. [165] have investigated
and compared the performance of both convention-
ally manufactured and AM Ti–6Al–4V and showed
worse corrosion wear behaviour in the AM speci-
men. This has been attributed tomicrostructure defects
and porosity on the AM specimen causing an enrich-
ment in oxygen vacancies on the surface layer when
exposed to body fluid solution. Interestingly, the for-
mation of passivating TiO2 layer on the surface of AM
Ti–6Al–4V has been found to be faster in specimens
with a finer grain structure. This suggests that the cor-
rosionwear behaviour in AMTi alloys can be improved
through specific heat treatment cycles aimed at grain
refinement.

Future prospects

The demand for orthopaedic implants is
ever-increasing for a variety of medical needs. While
the corrosion, fatigue and wear behaviour of AM
implants are challenging to predict, this paper has
shown the breadth of experiments conducted in the lit-
erature to determine these properties in AM implants,
ensuring they are safe for clinical use. With its inher-
ent defects and complicated geometries, the lifetime
of AM implant devices might be reduced. However,
with its lattice geometries, the devices allow for faster
bone ingrowth, ensuring that the surrounding bone can
quickly bear load thus reducing the reliance on implant
devices themselves.

AM of orthopaedic implants will also continue to be
the lucrative option especially in specialised cases such
as oncology and paediatric cases, where commercially
available modular implants are not appropriate and
limb salvage is a priority [48]. Furthermore, revision
surgeries for patients with bone loss surrounding exist-
ing implant devices require custom-shaped implants
which is only possible with AM [166].

Conclusion

The development of AM technology allows for the fab-
rication of complex implant geometries, opening new
opportunities in the field of custom-made implants.
This paper reviews the corrosion, fatigue and wear
behaviour of Ti alloys for orthopaedic implants fabri-
cated by additive manufacturing.

• AM lattice geometries enable implants to have
mechanical properties that are similar to surround-
ing bone while allowing bone ingrowth, both of
which are desirable for implant durability.

• There are limited studies on the behaviour of these
lattices under both mechanical loading and body
fluid environment.However, due to fast cooling rates
and poor surface finish in AM components, it is

expected that both corrosion fatigue and wear prop-
erties of AM Ti–6Al–4V orthopaedic implants to be
worse.

• There is therefore a trade-off between osseointe-
gration of implant and surrounding bone and their
long-term mechanical and corrosion properties.

Overall, this opens up possibilities for research in the
promising area of AM lattice geometry optimisation for
optimum mechanical properties, enhanced osseointe-
gration and corrosion resistance.
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