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Neural network variational Monte Carlo for
positronic chemistry

Gino Cassella 1 , W. M. C. Foulkes 1, David Pfau 1,2 & James S. Spencer2

Quantum chemical calculations of the ground-state properties of positron-
molecule complexes are challenging. The main difficulty lies in employing an
appropriate basis set for representing the coalescence between electrons and
apositron.Here,we tackle this problemwith the recently developedFermionic
neural network (FermiNet) wavefunction, which does not depend on a basis
set. We find that FermiNet produces highly accurate, in some cases state-of-
the-art, ground-state energies across a range of atoms and small molecules
with awide variety of qualitatively distinct positronbinding characteristics.We
calculate the binding energy of the challenging non-polar benzene molecule,
finding good agreement with the experimental value, and obtain annihilation
rates which compare favourably with those obtained with explicitly correlated
Gaussian wavefunctions. Our results demonstrate a generic advantage of
neural network wavefunction-based methods and broaden their applicability
to systems beyond the standard molecular Hamiltonian.

The positron—the positively charged anti-particle of the electron—was
first postulated by Dirac1 almost a century ago. Today, the once exotic
notion of anti-matter is technologically relevant in a variety of fields,
such as medical physics2, astrophysics3, and materials science4,5.

Experimental apparatus for trapping large numbers of positrons
continues to grow in sophistication, offering a glimpse into a world of
exotic antimatter chemistry6. These advances motivate the develop-
ment of improved computational tools able to describe positronic
bound states and thus accelerate the continued development of new
antimatter-based technologies. In the present work, wemake progress
in this direction by developing a highly accurate method for the ab
initio calculation of the ground-state properties of bound states
between positrons and ordinary molecules.

Despite annihilating upon contact with an electron, positrons
readily form bound states with ordinary molecules. The formation of
these bound states, enabled by an incident positron exciting a vibra-
tional Feshbach resonancewhich subsequently decays to the vibrational
ground state, results in greatly enhanced annihilation rates. This process
has recently been successfully exploited in positron annihilation spec-
troscopy experiments7–14, where the energy-dependent annihilation rate
enables sensitive measurements of the positron binding energy15.

Theoretical calculations of positron binding energies and annihi-
lation rates have been performed using many of the standard tools of

computational chemistry. Positron binding to atoms and molecules
has been studied using wavefunction expansions in explicitly
correlated Gausians with the stochastic variational method (ECG-
SVM)16–24, configuration interaction (CI) methods25–31, and quantum
Monte Carlo (QMC) methods32–40. The annihilation rate and lifetime of
positrons in solids, particularly in the presence of defects, has been
studied using density functional theory41,42 and quantum Monte Carlo
methods43,44.

Despite the intense theoretical interest, describing the positronic
wavefunction remains challenging for several reasons. As a result of
the strong correlations enabled by the attractive interaction between
electrons and the positron, molecular bound states often resemble a
virtual positronium atom weakly bound to the molecule45. Due to the
repulsive potential between the nuclei of the host molecule and the
positron, these virtual atoms are localized away from the nucleus.
Accurately describing such a wavefunction (particularly the
electron–positron cusp) in a basis of single-particle orbitals centred on
the nuclei requires the inclusion of basis functions with very large
angular momenta46. This results in very slow convergence of CI cal-
culationswith themaximumangularmomentumof functions included
in the basis. Furthermore, the positronic density is typically highly
diffuse, requiring the augmentation of standard basis sets with addi-
tional diffuse basis functions27,29–31.
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Themost successful description of positron binding tomolecules
comes from a recent work that develops a many-body theory of
positron binding tomolecules andproduces positron binding energies
in close agreement with experimental measurements47. In their work,
Hofierka et al. highlight the shortcomings of QMCmethods applied to
positron binding, particularly the lack of calculations for large non-
polar molecules, which constitute the majority of experimentally stu-
died systems15. Here, we address this shortcoming.

We propose a new approach to calculating the ground state
properties of molecular positronic bound states, based on recently
developed neural network wavefunction ansatze for QMC48. The Fer-
mionic neural network (FermiNet) models the many-body wavefunc-
tion without referencing a set of basis functions. This conveniently
sidesteps a number of the aforementioned difficulties in describing
positronic wavefunctions. We extend FermiNet to represent the posi-
tronic component of the wavefunction on an even footing with the
electronic component.With aminimal alteration to the neural network
architecture, we obtain a flexible and accurate ansatz for mixed
electron–positron wavefunctions. We calculate positron binding
energies and annihilation rates for a range of systemswith qualitatively
distinct mechanisms for positron binding and obtain state-of-the-art
accuracy for the ground-state energy in these systems. Our method
yields a positron binding energy for benzene in close agreement with
the experimental value and the many-body theory of Hofierka et al.47,
andwe obtain annihilation rateswhich compare favourablywith highly
accurate ECG-SVM calculations for alkali metal atoms and small
molecules.

Results
Webenchmark the accuracy of FermiNet in calculations of the ground-
state energy, the positron binding energy, and the positron annihila-
tion rate for a series of well-studied positronic systems. These are
presented here in (approximate) order of increasing complexity.
Unless otherwise specified, all results presented herein were obtained
using the network architecture and training protocol detailed by
Spencer49. We pre-train the electron functions to the Hartree-Fock
solution of the bare molecule and do not pre-train the positron func-
tions. Errors in energy expectation values are evaluated using a
reblocking approach50 to account for sequential correlations in the
Metropolis-Hastings sampling.

Binding energies
The positronium (Ps) atom (consisting of a bound electron and posi-
tron) and hydrogen form a stable molecule. Here we work within the
Born-Oppenhimer approximation, neglecting the proton’s motion.
Almost exact ECG calculations are available for this system16, yielding a
ground-state energy of E0 = −0.7891794 Hartrees. We obtain a ground
state energy of E0 = −0.789144(3) Hartrees.

The first ionization energy of sodium, 0.1886 Hartrees, is smaller
than the binding energy of the Ps atom, 0.25 Hartrees. The positronic
sodiumatom is thenmore accurately described as a bound complex of
a positronium atom and a sodium cation. The binding energy of this
complex is calculated as ϵ= E ½Na+ ,Ps �� �� EðNa+ Þ � 0:25. We fail to
predict binding without variance matching, obtaining ϵ = −0.37 milli-
Hartrees. Utilizing a variance matching procedure, we obtain
ϵ =0.32(15) milliHartrees, predicting binding in agreement with pre-
vious ECG-FCSVM (ϵFCSV M =0.473 milliHartrees51) calculations.

We obtain a positron binding energy of 0.01618(9) Hartrees for
the magnesium atom. This agrees with previous ECG-FCSVM
(0.016930 Hartrees28) and CI (0.017099 Hartrees28) results.

We have calculated the ground-state energy of LiH and its posi-
tronic complex for a range of interatomic separations (see Data Tables
in SupplementaryMaterial). Fitting these potential energy surfaces using
Nesterov’s algorithm, implemented in the MOLCAS package, we
obtain equilibrium bond distances of 3.0196 Bohr, with ground-state
energy -8.07050(1) Hartrees for LiH, and 3.371 Bohr with a ground
state energy of -8.10774(1) Hartrees for [LiH, e+]. These deviate very
slightly from the widely accepted literature values of 3.015 Bohr (LiH)
and 3.348 Bohr ([LiH, e+]). We have calculated ground-state energies at
the canonical separations for comparison with previous results, shown
in Table 1. Our calculations are not only in excellent agreement with
previous work but are seen to yield the most accurate variational result
for [LiH, e+].

We have calculated the ground-state wavefunction of BeO over a
range of interatomic separations—from below the equilibrium
separation to dissociation. We fit the potential energy surfaces using
MOLCAS and obtain an equilibrium bond distance of 2.515 Bohr with a
ground-state energy of -89.90572(4) Hartrees for BeO, and 2.530 Bohr
with a ground-state energy of −89.93082(3) Hartrees for [BeO, e+]. We
compare our results against previous calculations in Table 1 and find
that FermiNet yields the most accurate variational result for [BeO, e+].

The electronic ground state of BeO transitions from the spin-
singlet configuration at the equilibrium interatomic separation to the
spin-triplet configuration at the dissociative limit. We enforce the
appropriate ground-state spin configuration by choosing Sz = 1 (as
FermiNet is a spin-assigned wavefunction) at wide interatomic
separations. The resulting potential energy surfaces are plotted in
Fig. 1. At ~4 Bohr, the electronic ground-state transitions between the
spin-singlet and spin-triplet, causing a sharp change in the ground-
state dipole moment and the resulting positron binding energy with
the molecular ground state, which vanishes almost completely. At ~6
Bohr, we see a smooth transition between two qualitatively distinct
bindingmodes between themolecule and the positron—binding to the
molecular dipole field below this separation and binding exclusively to
the lone beryllium atom beyond this separation. This is readily seen by
visualizing the ground-state positron density on either side of the

Table 1 | Ground state energy of LiH and BeO, and their positronic complexes, obtained via various computational methods at
equilibrium bond-length

LiH BeO

Method Bare Positronic Binding energy Bare Positronic Binding energy

FermiNet-VMC −8.07051(1) -8.10775(1) 0.03723(2) −89.90572(4) −89.93082(3) 0.02510(7)

SJ-VMC −8.06307(3)36 −8.08034(4)36 0.01727(7) −89.3173(25)32 −89.3365(13)32 0.0192(38)

SJ-FN-DMC −8.070045(38)36 −8.10718(11)36 0.03714(15) −89.7854(13)32 −89.8134(12)32 0.02800(25)

CISD −8.0383025 −8.0553025 0.017 – – –

MRD-CI −8.0682727 −8.0976427 0.02937 −89.75935229 -89.77313329 0.013781

ECG-SVM −8.0705423 −8.1074723 0.03693 – – –

Hofierka et al.47 – – 0.039(1)*47 – – –

Theoretical (not statistical) uncertainty estimated from the comparison between different levels of theory as described by Hofierka et al., caption of Table I.
Statistical errors are omitted where they are smaller than the reported precision or otherwise omitted in the referenced source. The lowest variational energy in each column is bolded.
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maximum, as shown in Fig. 1 for the triplet state, and corroborated by
the dipole moment falling below the critical threshold for binding
(~1.625 Debye) at the transition.

For the dilithium molecule, we obtain a positron binding energy
of 66.75(2) milliHartrees at an equilibrium bond length of 5.051 Bohr52.
The molecular binding energy of Li2 from our calculations is ~38 mil-
liHartrees, and the positron binding energy of a lone lithium atom is
known from the literature to be ~2milliHartrees53, meaning this system
is very stable against the [Li2, e

+]→ [Li, e+] + Li dissociation channel. The

one-particle density of the positronic ground state of dilithium is
shown in Fig. 2a.

The experimental positron binding energy of benzene is 5.51
milliHartrees15. Utilizing our variance-matching procedure (described
in detail for benzene in the SupplementaryMaterial), we obtain a finite
positron binding energy of 4.1(3) milliHartrees. This falls in very close
agreement with the binding energy obtained by Hofierka et al. of ~4.26
milliHartrees47. The one-particle density of the positronic ground state
of benzene is shown in Fig. 2b.

Fig. 1 | Positron binding characteristics of beryllium oxide. a Ground-state
positronic density, projected into the molecular plane, of a positron attached to a
beryllium oxide molecule over a range of interatomic distances, accumulated via
MCMC sampling. Image scale has been normalized by bondlength. The scale bar in
the bottom left of each panel indicates the relative size of one Bohr radius, a0. The
blue (red) marker indicates the position of the beryllium (oxygen) nucleus.
b Energy (of the bare molecule and positronic complex), dipole moment (of the
bare molecule), and positron binding energy of beryllium oxide over a range of

interatomic distances. Solid (dashed) lines in the dipole moment and positron
binding energy plots indicate values accumulated for the electronic singlet (triplet)
projected wavefunction. Error bars indicating standard errors in the Monte Carlo
estimate of each quantity are smaller than the markers. Dot markers in the dipole
moment plot indicate the corresponding values obtained by Buenker et al.29.
Horizontal red lines in the dipole moment and positron binding energy plots
indicate the mean-field critical value for positron binding to the molecular dipole
field and the positron affinity of a lone beryllium atom68, respectively.
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Annihilation rates
The largest contribution to the annihilation process betweenpositrons
and electrons is the two-photon (2γ) annihilation rate, which is pro-
portional to the positron-electron contact density. This quantity is
readily obtained fromour calculations.We have calculated 2γ positron
annihilation rates (according to the procedure detailed in the Supple-
mentary Material) for every system studied, listed in Table 2.

Positron annihilation rates are highly sensitive to the accurate
description of the coalescence between the positron and electrons.
This sensitivity, and the fact that annihilation rates are not a variational
quantity, hinders the comparison between annihilation rates calcu-
lated by different methods. However, of the other methods compared
in Table 2, ECG-SVM captures this feature of the wavefunction best by
construction. We see that our FermiNet-VMC annihilation rates are in
close agreement with ECG-SVM results for positronium hydride,
lithium hydride, and the alkali metal atoms. On this basis, we reason
that our approach produces accurate annihilation rates, and therefore
offers an accurate description of electron–positron correlations. We
note that the many-body theory results of Hofierka et al. appear to
overestimate the annihilation rate in lithium hydride compared to
ECG-SVM, suggesting that FermiNet-VMCmaybemore suitable for the
calculation of annihilation rates.

Discussion
The selection of systems presented here spans a broad range of
positron binding phenomena: positronium formation, binding with an

induced atomic dipolemoment, binding with a staticmolecular dipole
moment, and binding due to correlations with covalent bonding
electrons in molecules. In all cases where benchmarks are available,
FermiNet-VMC produces excellent and, in some cases, state-of-the-art
results for the positron binding energy. From the density plots pre-
sented, it is clear that this performance is consistent between wave-
functions with very different qualitative characteristics. An identical
ansatz is used for every system studied—we have not employed any
fine-tuning or system-specific treatments. An important aspect of our
approach is that, due to being a basis-set-free method, we do
not provide any information about the nature of the positron binding
in the input to the calculation (e.g., via the placement of basis set
functions). Rather, the location and nature of the positron binding
emerges naturally during optimization of the wavefunction. The high
level of accuracy achieved across various systems shows that FermiNet
offers a flexible and accurate ansatz for mixed electron–positron
wavefunctions.

To date, quantum Monte Carlo calculations of positron binding
have focused on small, polar molecules. As pointed out by Hofierka
et al.47, accurate quantum Monte Carlo results for large non-polar
organics, which comprise the majority of experimentally relevant
systems, are lacking.Webelieve that thepresentworkfills this gap.Our
results for positronium hydride, sodium and magnesium atoms, and
small diatomic molecules demonstrate that our approach can achieve
state-of-the-art accuracy compared with previous work. Further, our
results for the non-polar dilithium and benzene molecules demon-
strate that this accuracy is retainedwhendescribingmodes of positron
binding governed entirely by strong electron–positron correlation
effects. The results in Fig. 2 offer an intuitive understanding of the
binding mechanism between non-polar molecules and positrons:
correlation-dominated binding is facilitated by the presence of a cen-
tre of increased electronic density away from the atomic nuclei of a
molecule. In dilithium, this is the covalent bond, and in benzene, this is
the increased electronic density in the centre of themolecule from the
delocalization of the π-bonds in the ring.

Our result for the positron binding energy of benzene fall within
chemical accuracy (~1.6 milliHartrees) of the experimental value, but
this level of accuracy is insufficient for other species of experimental
interest. Many chemical species possess positron binding energies
below chemical accuracy (see, e.g., the experimental binding energies
in ref. 11, where 15 small organic molecules are found to possess
binding energies below chemical accuracy), and obtaining this level of
accuracy for relative energies represents a significant challenge to
computational chemistry methods. We believe that the necessary
improvement in accuracy, and obviationof our need to utilize variance
matching, can be achieved by adopting the recently introduced Psi-
Former architecture54, an improvement upon the FermiNet archi-
tecture utilizing Transformer networks55, given that the PsiFormer

Fig. 2 | Ground-state one-particle densities of positronic lithium and benzene.
Orthographic projections of the ground-state one-particle density for positronic
(a) dilithium and (b) benzene molecules. Left/right columns show the electronic/
positronic density. In the dilithium molecule, the positron is seen to be strongly
localized to a torus wrapping the covalent bond. In the benzene molecule, the
positronic component of the wavefunction is highly diffuse, resulting in a much
noisier Monte Carlo estimate of the one-particle density. The positronic density
resembles a p-orbital sandwiching the aromatic ring. The scale bar in the bottom
left of each subfigure indicates the relative size of one Bohr radius, a0.

Table 2 | 2γ annihilation rates for positronic atoms andmolecules accumulated with FermiNet wavefunctions, compared with
those obtained via various other computational methods

2γ annihilation rate [ns−1]

Method HPs [Na+, Ps] [Mg, e+] [LiH, e+] [BeO, e+] [Li2, e+] [Benzene, e+]

CI 2.018326 – 1.00099128 0.8947a31 – – –

FN-DMC 2.3233 – – 1.3602a34 – – –

ECG-SVM 2.436116, 2.472217,
2.468519

1.89820 0.95522, 1.024928 1.37523 – – –

Hofierka et al.47 – – – 2.083 – – 0.666

FermiNet-VMC 2.440(1) 1.870(1) 1.076(1) 1.3391(7) 0.9533(8) 1.962(2) 0.5247(6)
aContact density at equilibrium bond length of 3.348 bohr obtained by quadratic interpolation of three values around the minimum in the potential energy surface.
Statistical errors are omitted where they are smaller than the reported precision, or otherwise omitted in the referenced source. ECG results for all species besides HPs utilize the fixed-core
approximation.
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obtains more accurate total energies for the ground-state energy of
the bare benzene molecule than FermiNet.

As with previous work utilizing FermiNet, computational scaling
remains an issue. Calculations involving ≳50 particles are too expen-
sive for presently available computational resources, prohibiting the
application of the method to large molecules. One approach to cal-
culating the ground-statewavefunctions of largemolecules is to utilize
pseudopotentials to remove core electrons from the calculations.
The positronic component of the wavefunction is often small near the
atomic nuclei, so we would expect the correlation effect between
the core electrons and the positron to be small. Pseudopotentials have
been successfully employed in previous QMC calculations of positron
lifetimes in solids44. As the architecture employed herein only extends
the original FermiNet architecture to treat different particle types
separately, we expect that future advances in the computational effi-
ciency of FermiNet and related neural network wavefunctions will be
able to be combined with our approach to model positron binding.

These results demonstrate a general advantage of neural network
wavefunction methods: the lack of a dependence on a basis set sim-
plifies the treatment of systems which are not well described by tra-
ditional notions of atom-centered, low angular momentum basis
functions. Highly accurate calculations can be carried out without
foreknowledge of the appropriate features of the ground-state wave-
function, lowering the degree of inductive bias in the method. As a
result, we believe that neural network variational Monte Carlo offers a
highly performant, generic method for obtaining ground-state prop-
erties of any continuous-space Hamiltonian.

We have shown that the FermiNet ansatz for VMC calculations can
be extended to include positrons naturally, treating positrons on an
equal footing to electrons. Because this ansatz does not depend on a
basis set, our treatment sidesteps traditional methods’ issues in
selecting and converging an appropriate basis set for describing
positronic wavefunctions. Our method produces highly accurate
results for several molecules with various binding mechanisms for
positrons without any system-specific tuning. We expect that
the simplicity of this method will lend itself to many challenging
applications beyond those presented here, e.g., calculations involving
multiple positrons. With additional computational effort, this method
can provide accurate predictions for positron annihilation
experiments.

Methods
We find the ground-state wavefunction and corresponding ground-
state energy of the many-body Coulomb Hamiltonian in the Born-
Oppenheimer clamped nuclei approximation,

H= � 1
2

X
i

∇2
i +

X
i,j

qiZ j

jri � Rj j
+
X
i>j

qiqj
jri � rjj

+
X
i>j

Z iZ j

jRi � Rj j
, ð1Þ

where qi, ri are the particle charges and positions, and Zi,Ri are the
charges and positions of fixed nuclei. Here, and throughout, we utilize
Hartree atomic units: ℏ = e =me = 1. For the mixed electron–positron
systems considered here, qi = ± 1. We solve for the many-body ground-
state wavefunction using the variationalMonte Carlo (VMC)method56:
a many-body wavefunction Ψθ, parameterized by θ, is continuously
updated via a gradient descent procedure to minimize the energy
expectation value,

hEiθ =
R
Ψ*

θðrÞHΨθðrÞdrR
Ψ*

θðrÞΨθðrÞdr
, ð2Þ

where r = (r1,…, rN). This integral, and its gradientwith respect to θ, are
evaluated via Monte Carlo integration. Particle configurations, r(i), are
sampled from the probability density ∣Ψθ(r)∣2 via the Metropolis-
Hastings algorithm. The expectation value of the energy and its

gradient are then evaluated by the Monte Carlo estimators,

hEiθ = limN!1
1
N

XN
i= 1

HΨθðrðiÞÞ
ΨθðrðiÞÞ

" #
= Er∼ jΨθ j2

HΨθðrÞ
ΨθðrÞ

� �
ð3Þ

∇θhEiθ =2Er∼ jΨθ j2
HΨθðrÞ
ΨθðrÞ

� hEiθ
� �

∇θ log jΨθðrÞj
� �

ð4Þ

The FermiNet represents the many-body wavefunction as a sum of
block-diagonal determinants containing many-particle functions
which depend upon the coordinates of all particles in a permutation
equivariant manner. This is written

ΨðrÞ=
Xndet

k

Y
χ

det ψkχ
i rχj ; rχ=j

n o
; r=χj
n o� 	h i

, ð5Þ

where the set {r/j} includes all particle coordinates except rj, and
χ = (σ, q) labels species of particles which are distinguished by their
spin σ∈ (↑,↓) and chargeq∈ ( + , − ).Herewehavemade a slight abuse
of notation for the sake of brevity: permutation invariance for the set
fr=χj g is only maintained between particles of the same species. We
emphasize that these are not the dense determinants discussed in
recent works extending FermiNet57, except the benzene calculation for
which dense determinants were used for the electronic component of
the wavefunction. In this case, the determinant is not block-diagonal
between the two electronic spin species. The many-particle functions
ψi are represented by a deep neural network48 (architecture described
in the SupplementaryMaterial). Multiplicative coefficients are omitted
from the sum as they are trivially absorbed into the entries of the
determinant. Gradient descent is performed via the Kronecker-
factored approximate curvature (KFAC) algorithm, an approximation
of natural gradient descent58 which scales well to large neural
networks59. Natural gradient descent is closely related to the stochastic
reconfiguration method, well-known in the quantum Monte Carlo
literature60. The present work introduces two alterations to the
original FermiNet architecture. Firstly, we have included positronic
functions as additional species, i.e. additional blocks in the determi-
nant. Secondly, we utilize distinct weights in the neural network layers
for every species (unlike the original FermiNet, where spin up and
down electronic orbitals shared weights).

A single determinant of the form in Eq. (5) can represent any
fermionicmany-bodywavefunction61. In practice, the argument for the
universality of FermiNet determinants depends upon the representa-
tion of discontinuous functions which cannot be constructed using
realistic neural networks. Despite this, FermiNet-VMC calculations
obtain state-of-the-art accuracy in ground state energy calculations for
a range ofmolecules and solids48,49,57,62–64 with a linear combination of a
small number of determinants. We utilize 32 determinants for all cal-
culations in the present work.

We only consider calculations involving a single positron in the
present work. We have discussed the treatment of the positronic spin
coordinate only to demonstrate how our technique may be extended
to calculations involving many positrons, as such systems have
recently attracted theoretical interest.

Ground-state wavefunctions for bare and positronic molecules
are not guaranteed to be similarly converged after an equal number of
gradient descent steps. This introduces uncontrolled error in calcu-
lating positron binding energies via VMC. Previous work has shown
that FermiNet-VMC calculations yield ground-state energies within
chemical accuracy (~1.5 milliHartrees) of exact results for many small
molecules48,49. With this level of accuracy, the uncontrolled error will
be negligible for molecules with a large positron binding energy.
However, for molecules with very small binding energies, or large
molecules for which the uncontrolled error may become large
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compared to thepositronbinding energy, there is noguarantee that an
accurate estimate of the positron binding energy will be obtained by
comparing ground-state calculations of different quality. In these
cases, we employ the variance matching technique described by
Entwistle et al.65, addressed in the Supplementary Material.

Data availability
Source data has been deposited in Figshare under accession code
https://doi.org/10.6084/m9.figshare.2510933066. Ground-state ener-
gies used to produce other results (e.g. equilibrium bond lengths)
which are not directly quoted in the main text are provided in
the Supplementary Material.

Code availability
The results presented in this study were obtained using a private fork
of the public FermiNet repository67, available under the Apache-2.0
license. The modifications to the code required to reproduce the
results in this paper are being prepared for release in the public
repository.
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