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A microstructure-sensitive analytical solution for short fatigue crack growth 
rate in metallic materials 

Daniel J. Long *, Yang Liu , Weifeng Wan , Fionn P.E. Dunne 
Department of Materials, Royal School of Mines, Imperial College London, SW7 2AZ, UK  

A B S T R A C T   

Short fatigue crack growth in engineering alloys is among the most prominent challenges in mechanics of materials. Owing to its microstructural sensitivity, 
advanced and computationally expensive numerical methods are required to solve for crack growth rate. A novel mechanistic analytical model is presented, which 
adopts a stored energy density fracture criterion. Full-field implementation of the model in polycrystalline materials is achieved using a crystallographic crack-path 
prediction method based on a local stress intensity factor term. The model is applied to a range of Zircaloy-4 microstructures and demonstrates strong agreement with 
experimental rates and crack paths. Growth rate fluctuations across individual grains and substantial texture sensitivity are captured using the model. More broadly, 
this work demonstrates the benefits of mechanistic analytical modelling over conventional fracture mechanics and recent numerical approaches for accurate material 
performance predictions and design. Additionally, it offers a significant computer processing time reduction compared with state-of-the-art numerical methods.   

1. Introduction 

The intricacy of the short fatigue crack growth (FCG) problem has 
meant that growth rates are not easily predicted, leaving a knowledge 
gap which can only be addressed through mechanistic understanding. 
This paper presents a deterministic analytical solution to overcome this 
obstacle. Since the beginning of the industrial revolution, conventional 
fracture mechanics methods for FCG have enabled the progressive 
improvement of engineering design through failure mechanism under-
standing [1]. For example, Paris’ Law [2], which relates crack propa-
gation rate to stress intensity factor (SIF) has been widely used to 
characterise the stage II FCG behaviour of metallic materials. However, 
for modern and future industrial applications (e.g., nuclear reactor fuel 
cladding [3], pressure vessels [4], aerospace turbine components [5,6], 
submarine power cables [7]), it is recognised that component lifetimes 
are dominated by stage I, viz., crack nucleation and short FCG, as 
illustrated in Fig. 1. Hence, since the length-scales for these processes are 
generally of the same order as microstructural features, and of the crack 
tip plastic zone size, microstructure variations and plasticity become 
crucial. Consequently, classical approaches are made redundant, and the 
necessity for new microstructure-sensitive fracture mechanics becomes 
clear. 

In this paper, microstructurally short fatigue cracks follow the defi-
nition adopted by McDowell [11], in which the length of the crack is of 
the same order as several microstructure features. In addition, only 
physically short cracks are considered, i.e., where crack length is less 

than 1 mm. Microstructural features such as grain boundaries add 
further complexity to short FCG modelling as they can strongly influence 
the local behaviour in terms of rate and path due to impedance of 
dislocation motion, pileup of dislocations, and stress localisation. For 
example, Wen et al. [12] quantified the resistance of grain boundaries 
(in terms of a change in FCG rate) as a function of tilt and twist angles 
between crack planes in an Al-Cu alloy. Results indicated that growth 
rate retardation was strongly linked with twist angle across boundaries, 
as there was a strong positive correlation. The authors also indicated 
that the distance over which microstructure features can affect rates of 
FCG is between 5 – 20 μm. Hence, for many engineering materials with 
grain sizes of this magnitude, grain boundary effects can be important to 
consider. These findings agree with earlier experimental work by Zhai 
et al. [13]. Atomistic modelling by Sangid et al. [14] was used to 
investigate the behaviour of a range of grain boundary types in terms of 
the energy barriers for and hence resistance against dislocation trans-
mission. Trends were compared with in-situ transmission electron mi-
croscopy (TEM) data at grain boundaries, showing strong agreement. 
However, approaches such as this demand significant computer pro-
cessing capabilities. Chowdhury et al. [15] used a similar approach in 
modelling the FCG resistance of other microstructural obstacles such as 
nanoscale twin boundaries. Atomistic modelling was used to generate 
energy barrier data, which was used as an input to a dislocation me-
chanics based FCG model; the methodology addresses key aspects of 
microstructure sensitive crack growth including slip irreversibility and 
the threshold SIF range but lacks direct validation against experimental 
data. Furthermore, the approach is inefficient as it relies on atomistic 
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modelling for specific microstructure interactions. Chowdhury et al. 
[16,17] also presented detailed mechanistic models for short FCG in 
nano-twinned materials based on twin-slip interactions, slip irrevers-
ibility and the Peierls-Nabarro model. A continuum model for FCG was 
developed based on the threshold SIF range; results compared favour-
ably with a range of experimental data, but the model could not be 
applied to explicitly predict rates of growth in real materials. 

To capture microscale material behaviour, crystal plasticity finite 
element (CPFE) modelling is a potential candidate. This approach was 
used in combination with the eXtended Finite Element Method (XFEM) 

by Zhang et al. [18] to simulate short FCG in a nickel-based superalloy. 
Crack path phenomena such as tortuosity were predicted using a 
maximum slip criterion, albeit using representative modelling, rather 
than direct simulation of experiments. Growth rate trends were 
reasonably captured, though not precisely, using critical cumulative 
shear strain. An arbitrary scaling factor was required to `fit’ simulated 
rates to experiment, demonstrating a lack of mechanistic understanding. 
XFEM enables simulation of crack paths in any direction without a priori 
specification, while minimising computational cost, since remeshing is 
not required. However, practically, linking the CPFE-XFEM approach 
with the component scale remains inaccessible due to the associated 
increase in processing requirements [19]. Recent modelling work by 
Shen et al. [20] aimed to bridge microstructural and component 
length-scales for crack nucleation in α/β Ti-64 microstructures; fatigue 
life predictions were found to be consistent with experimental data. 
However, an obvious drawback of the approach is that it requires 
extensive fitting and calibration for each material. Cohesive zones 
modelling linked with CPFE has been widely used [21–23] to predict 
microscale cracking but comes with the drawback of crack path 
confinement by mesh geometry. 

Modern numerical methods used to predict short FCG are enor-
mously computationally expensive. A key factor responsible for the 
computational cost of XFEM is that the governing equations which solve 
for crack tip displacements are in differential form [24]. Bond-based 
peridynamics modelling of FCG offers a more rapid alternative to this, 
since it is formulated using spatial integrals. The method was first 
introduced by Silling [25], and has been successfully implemented to 
simulate FCG in numerous materials [26–28]. However, the approach 
accounts only for linear elasticity, and requires coupling with e.g., CPFE 
models, to capture the microscale plasticity associated with short FCG. 
Crystal plasticity code within phase field modelling (PFM) has also been 
used to capture micromechanical material behaviour [29,30]. Ai et al. 
[30] presented a multi-physics PFM approach to predict crack nucle-
ation and short FCG in battery electrode particles. Experimental obser-
vations including nucleation sites were captured, but not growth rate, 
and the scale of the model was not sufficiently large to predict realistic 
material performance. High fidelity PFM approaches, which are 
underpinned by mechanistic understanding, are inherently computa-
tionally expensive, as they require complex numerical integration 
schemes [31]. In summary, high fidelity analytical models, such as the 
one presented in this paper offer minimised computational expense 
compared with state-of-the-art numerical methods, all while remaining 

Nomenclature 

a Crack length 
ae Effective crack length 
b Burgers vector magnitude 
B Beam depth 
da/dN Crack growth rate 
dG/dN Cyclic stored energy density 
dγp Plastic shear strain increment 
G Stored energy density 
Gc Critical stored energy density 
Gr Residual stored energy density 
i Slip system number 
j Selected slip system for crack path 
KI Mode I stress intensity factor 
KII Mode II stress intensity factor 
Kθ In-plane shear stress intensity factor 
K⊥

θ In-plane dislocation shielding factor 
l Mean dislocation spacing 
ls Dislocation line length 

M Total number of slip systems 
n Number of dislocations per cycle 
P Applied load 
ravg Mean crack tip to dislocation distance 
R Cyclic loading ratio 
S Distance between support pins 
W Beam height 
γe Elastic shear strain 
γp Plastic shear strain 
Δa Crack length increment 
ΔKθ Cyclic shear stress intensity factor 
ΔK∞ Cyclic applied stress intensity factor 
θ Crack growth direction-slip trace angle 
μ Shear modulus 
ν Poisson’s ratio 
ξ Fraction of plastic strain energy stored 
ρGND Density of GNDs 
ρSSD Density of SSDs 
τc Critical resolved shear stress 
χ Residual energy fraction after cracking  

Fig. 1. Illustration showing evolution of FCG rate trends with increasing SIF 
range from stage I (short cracks) to stage III (unstable growth). The corre-
sponding and inversely proportional component service time trend is also 
shown, demonstrating that component lifetimes are dominated by stage I 
cracking. Stage II, denoted the `Paris regime’, is clearly strongly linked with 
SIF, and hence, is easily characterised. Conversely, stage I suffers from data 
scatter (when applying classical fracture mechanics) due to microstructure 
sensitivity. A stage I micrograph [8] also demonstrates microstructure sensi-
tivity of crack path (which is clearly linked with crystallography), while stage II 
paths [9] are typically orthogonal to the remote applied stress. The stage III 
figure of a fracture surface is from Milan et al. [10]. 
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deterministic. Evidently, numerical methods have the potential to offer 
reliable solutions to the short FCG problem but are stifled by a lack of 
physical understanding and computer processing limitations. Recently, 
several articles have been published by Zhou et al. [32–34] proposing a 
generalised multi-scale methodology for prediction of fatigue lives and 
performance of a range of steels with and without hierarchical micro-
structures. Using the crack tip sliding displacement range (ΔCTSD) as 
the driving force for crack growth, analytical models were used in 
combination with finite element modelling, incorporating important 
aspects of microstructure (e.g., grain size, morphology, local elastic 
properties) with high computational efficiency. The approach could 
capture microstructure-linked differences in fatigue life across a range of 
applied stresses. Similar work by Ito et al. [35] presented a model which 
could capture the influence of grain boundaries on the FCG driving 
force. However, the models have not been applied to explicitly predict 
aspects of microstructurally short FCG (i.e., path or rate), which is a key 
aim of the current work. In this paper, a novel mechanistic analytical 
model is presented, adopting a stored energy density (SED) fracture 
criterion, and a new crystallographic crack path prediction method, 
based on a local SIF (for full-field implementation). Experimental FCG 
rates and paths in Zircaloy-4 samples are used as a case study for com-
parison. To capture the ̀ starting’ FCG behaviour, a dislocation shielding 

model is also incorporated. Compared with classical elastic FCG driving 
forces, e.g., Griffith energy [36], SED offers much greater 
microstructure-sensitivity [37]. Furthermore, SED is non-singular at the 
crack tip [38], compared with stress and strain, which are singular [39]. 
SED is a measure of energy stored in inter-connected dislocation struc-
ture, i.e., lattice curvature, ahead of a crack tip for example. The cyclic 
accumulation of this elastically recoverable energy is argued in this 
paper to be the driving force for short FCG. Hence, when the energy 
ahead of a crack tip exceeds a critical value (sufficient to open a crack), 
crack growth will occur. It has been shown in previous work to be a key 
mechanistic driver for fatigue crack nucleation and growth [40]. 

2. Model development and implementation 

2.1. Development of an analytical model for cyclic stored energy density 
at a crack tip 

The FCG rate model is developed here based on a SED fracture cri-
terion, for which a critical value, Gc, is required to allow crack extension. 
The crack tip SED must therefore be calculated before determining 
growth rate. Xu et al. [38] derived a one dimensional (single slip line 
contribution) analytical solution for crack tip SED based on the 

Fig. 2. Overview of analytical modelling formulation within a polycrystal. a. Illustration of a microstructurally short crack within a polycrystal. b. Corresponding 
representation of crack tip within a single grain with sample slip line directions defined by θ1 and θ2. c. Illustration of mode I and II SIFs acting on a crystallographic 
slip plane with x, y, and z components. d. Polar stress around the crack tip, adapted from Gdoutos [42]. 
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accumulation of geometrically necessary dislocations (GNDs) due to 
strong local lattice curvature. The expression was derived by integrating 
over shear plastic strain increments along a given slip line, as G =
∫ls

0

τdγp
̅̅̅̅̅̅̅̅̅̅ρGND

√ , where τ is shear stress, dγp is plastic shear strain increment, 

ρGND is density of GNDs, and ls is the total slip line length, i.e., inte-
gration of SED is considered between the crack tip and the edge of the 
plastic zone. Note that in the current paper, SED is written in terms of 
local microstructural quantities, rather than the conventional 
mean-field approach [40], as described by Xu et al. [38]. When inte-
grated, the expression gives a non-singular solution for crack tip SED, 
which is linked with classical fracture mechanics through SIF as G =
[

4τcb(1− 2ν)
πμ

]1
2⋅Kθ. Kθ is a shear component of the remote mode I crack tip 

SIF (which is a function of remote loading and projected crack length, a 
only), acting on their respective slip systems. However, the key short-
comings of this formulation are (i) that it accounts for single slip only at 
the crack tip (assuming that a single slip system contributes to crack tip 
SED), and (ii) its failure to capture the influence of mode II shear on Kθ. 
To address (i), multiple slip system contributions are accounted for by 
summation. In addition, the fraction of total energy stored in dislocation 
structure [41], ξ, is incorporated as follows from Xu et al. [38]. 

G = ξ
∑M

i=1

[
4τi

cbi(1 − 2ν)
πμ

]1
2

⋅Ki
θ (1)  

where i is slip system number, τc is critical resolved shear stress (CRSS) 
of the slip system, b is Burgers vector magnitude, ν and μ are Poisson’s 
ratio and shear modulus, respectively, and ΔKθ is an orientation-specific 
shear SIF, linked with remote SIF by ΔKθ = 1

4
(
sin
( θ

2
)
+sin

( 3θ
2
))

⋅ΔK∞ (see 
Fig. 2). M is the total number of active slip systems. The localisation of 
slip, and hence dislocations at the crack tip is represented schematically 
in Fig. 2a and b. Based the 3D orientation of individual slip planes with 
respect to the remote loading direction (see Fig. 2c), a mode I local SIF, 
KI may be estimated by calculating the component of remote SIF acting 
along slip plane normal via a simple Mohr’s circle analysis. Similarly, 
the mode II component, KII is assumed equivalent to the in-plane shear 
component of remote SIF. This is described in Fig. 2c. 

By energy conservation and classical fracture mechanics, it follows 

that Eq. (1) is subject to the constraint 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

i=1Ki
θ

2
√

≤ K∞, since K∞2∝G 
[1]. This root-mean-square formulation links the local crystallographic 

SIF terms with the remote applied SIF. Unlike CPFE modelling, the 
current method does not capture explicit levels of slip, and hence, the 
local stress state is not updated directly as dislocation slip activity oc-
curs. Therefore, the constraint is an approximation which is essential for 
ensuring that the SED contributions of M slip systems are not 
over-predicted, and are relevant to the applied SIF, i.e., increasing the 
number of slip systems does not necessarily increase slip activity beyond 
a certain point In cases where the constraint is not met, Eq. (1) is 
rewritten as, 

G = ξ

⎛

⎜
⎝

K∞
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

i=1Ki
θ

2
√

⎞

⎟
⎠
∑M

i=1

[
4τi

cbi(1 − 2ν)
πμ

]1
2

⋅Ki
θ (2) 

Since the CRSS of the 2nd order <c+a> slip system is significantly 
larger than the other Zircaloy-4 slip systems, it is assumed that all crack 
tip deformation is accommodated by basal, prismatic, and 1st order 
pyramidal slip systems, i.e., M = 24. This constraint is also necessary to 
ensure SED is not over-estimated. To address (ii), the shear SIF term is 
modified to account for mode II contributions. Previously, it was 
assumed that only the remote mode I load contributed to shear along the 
slip line; hence, for a slip plane whose x-y trace lay parallel with the y- 
axis, there would be no shear SIF, and hence no SED. Here, the mode II 
contribution is incorporated by adding its effect to the polar shear stress, 
τrθ (see Fig. 7c and d). Assuming no slip step due to the presence of a 
dislocation free zone (DFZ) ahead of the crack tip, the plastic shear strain 
along a slip line is given by γp = − γe = − τrθ

μ . For mode I SIF on the slip 
plane, the polar shear stress contribution is given by 
τrθ,I =

KI̅̅̅̅̅
2πr

√
(

1
4 sin

(
θ
2

)
+1

4 sin
(

3θ
2

))
[42]. For mode II, the contribution is 

τrθ,II =
KII̅̅̅̅̅
2πr

√
(

1
4 cos

(
θ
2

)
+3

4 cos
(

3θ
2

))
[42]. Writing the shear stress, τrθ in terms 

of Kθ gives τrθ = Kθ̅̅̅̅̅
2πr

√ = τrθ,I + τrθ,II. Hence, the modified shear SIF, ac-
counting for modes I and II on the ith slip plane is given by, 

Ki
θ =

1
4

[(

sin
(

θi

2

)

+ sin
(

3θi

2

))

⋅Ki
I +

(

cos
(

θi

2

)

+ 3cos
(

3θi

2

))

⋅Ki
II

]

(3) 

The purpose of the current model is not to capture the precise crack 
tip stress-state or slip levels, but rather to capture, more generally, the 
influence of crystallography (discrete slip system orientation, elastic 
anisotropy, etc.) on the short FCG driving force (argued here to be SED), 
and hence growth rate. The evolution of SED with fatigue cycles or cyclic 
SED is approximated in this work for loading ratios of R ≥ 0 to avoid 
complications associated with fully reversed loading, including crack tip 

Fig. 3. Mechanistic understanding of single crystal crack propagation from CPFE simulation. a. CPFE-simulated SED field about a growing crack within a single 
crystal. The orientation selected for this enables crack growth perpendicular to the primary loading direction (x-direction). As shown, the crack path is straight and 
vertical, and propagates along prismatic slip planes perpendicular to their Burgers vector directions. The crack increment length, Δa is shown also, and is equal to the 
mesh size, 10 μm. The critical SED is arbitrarily selected to be 10 J/m2. b. Evolution of SED ahead of the growing crack tip with increasing cycle number, i.e., after the 
crack propagates, a new crack tip is defined. Concepts of cyclic SED, dG/dN and residual stored energy density fraction, χ , are introduced. 
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back-stresses, crack closure, etc.); hence, the static value for SIF in the 
static SED expression (Eq. (2)) is replaced by SIF range. Cyclic SED is 

then written as dG
dN = ξ

∑M
i=1

[
4τi

cbi(1− 2ν)
πμ

]1
2⋅ΔKi

θ. 

2.2. Analytical solution for crack growth rate 

To illustrate the behaviour of SED at a crack tip, a simple single 
crystal CPFE-XFEM simulation is performed. Figure 3a shows the pre-
dicted crack tip SED field for the single crystal orientation shown. 
Figure 3b shows the crack tip SED evolution during R = 0 fatigue 
loading. 

The cyclic SED, dG
dN is shown to increase with cycle number. For small 

numbers of cycles, SED increases approximately linearly until the crit-
ical value is reached. At this point, the crack extends by some increment, 
Δa (Fig. 3a). This gives a SED discontinuity as a new crack tip is created. 
However, it is clear (for the current Δa) that crack tip SED remains 
greater than zero after extension. Hence, there is residual SED, Gr, which 
is shown to vary with crack length. Gr is characterised here as a fraction 
of the critical value by χ = Gr

Gc
. The FCG rate may be written in terms of 

crack length increment as da
dN = Δa

ΔN, where ΔN is the number of cycles 
required to reach Gc. For stable FCG, the cumulative SED required to 
achieve this is ΔG = (1 − χ) ⋅ Gc. For small numbers of cycles (small ΔN), 
cyclic SED is expressed as dG

dN = ΔG
ΔN. Therefore, ΔN = ΔG

dG/dN. FCG rate is 
thereby expressed as, 

da
dN

=
Δa

(1 − χ)⋅Gc
⋅
dG
dN

(4)  

where Δa is an arbitrarily selected crack extension increment, and χ is 
dependent upon Δa. dG

dN varies depending on loading conditions, crack 
length, and material. Incorporation of the expression for cyclic SED 
gives, 

da
dN

=
Δa

(1 − χ)⋅Gc
⋅ξ
∑M

i=1

[
4τi

cbi(1 − 2ν)
πμ

]1
2

⋅ΔKi
θ (5) 

A drawback of the model in this form is that for some arbitrary Δa, 
the residual SED fraction, χ, is unknown. Since SED accumulates under 
plastic deformation, it may be assumed that residual SED equals zero at 
the plastic zone edge, such that Δa = ls (slip line length), i.e., where Δa 
= ls, Gr = χ = 0. Hence, the evolution of residual SED with increasing 

crack length can effectively be captured using slip line length evolution. 
An expression for slip line length can be derived from fracture mechanics 

methods for estimating plastic zone radius [43] as ls = (1− 2ν)
2π

(
Kθ
τc

)2 
[38]. 

Hence, crack length increment, Δa, is given mechanistic basis, and the 
residual SED term, χ, can be reduced to zero at the end of the slip line. 
The value of ls will depend on crack direction, which is confined to the 
set of M slip systems, where the selected slip system for crack path is i =
j, i.e., j represents the slip system index number which controls crack 
propagation direction. Since the crack length considered for remote SIF 
calculation is projected length, the crack length increment is now 
written in terms of crack direction and slip line length as Δa = lscos(θ) 
(see Fig. 2 for details). FCG rate is now therefore dependent on crack 
propagation direction and is given by, 

da
dN

=
lj
scosθj

Gc
⋅ξ
∑M

i=1

[
4τi

cbi(1 − 2ν)
πμ

]1
2

⋅ΔKi
θ (6)  

2.3. Incorporation of a dislocation shielding parameter 

For predicting microstructure sensitive FCG rate, it is useful to link 
microstructural parameters with classical fracture mechanics ap-
proaches, i.e., via SIF. However, crack tip SIF alone describes only the 
elastic behaviour of the material, and therefore does not account for the 
effects of cyclic plasticity on the local stress field. Due to the vast number 
of cycles often required to propagate short or stage I fatigue cracks, this 
is an important consideration. At the microstructural level, this effect is 
referred to as dislocation shielding [44,45], as individual dislocations 
contribute towards the diminution of stress. Experimental observations 
of dislocation emission from crack tips using TEM show that shielding 
dislocations, which make up the plastic zone, first cross the DFZ [45,46]; 
this is consistent with the theory of the current analytical model. While it 
may seem that dislocations have no shielding effect at the crack tip due 
to the DFZ, it is argued here that compared with the length scale over 
which SED is relevant to FCG (i.e., slip line length, micron-scale), the 
size and hence the effect of the DFZ (sub-micron scale) is trivial. 
Figure 4a and b illustrate this point. Based on the early work of Rice and 
Thomson [47], Wang et al. [48] presented an expression to quantify the 
impact of a single dislocation on local SIF, which is given by K⊥

θ = −

3μb
2(1− ν)

(
2πr−

1
2

avg

)
, where ravg is an averaged distance from the crack tip for 

n emitted dislocations, approximated in this paper as the slip line length, 

Fig. 4. Depiction of dislocation shielding model with mean emitted crack tip dislocations strategy. a. Schematic representation of cyclic dislocation shielding 
mechanism. After several fatigue cycles, dislocations accumulate ahead of the static crack tip, affecting the local shear SIF. The comparatively small DFZ is also 
shown. b. TEM image showing crack tip dislocations and DFZ in a nickel-based super alloy [45,49]. This indicates that for a physically and microstructurally short 
tensile crack, the DFZ is of the order of 0.5 μm. c. Sample dislocation number calculation showing relationship with initial number of cycles and total number of 
dislocations before crack extension. Maximum number of dislocations is selected such that dislocation shielding is maximised for the initial crack length, as shown. 
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ls. It is assumed that shielding dislocations only affect the SED contri-
bution of slip system j due to the discrete nature of this model. The 
number of shielding dislocations, n is taken as an average of the number 
of dislocations emitted per cycle, such that the total dislocation shield-
ing contribution for a given crack length is ΔK⊥, total

θ = ΔN⋅n⋅K⊥
θ , where 

ΔN = Δa⋅
( da

dN
)− 1. Accounting for dislocation shielding, Eq. (6) is now 

written as, 

da
dN

=
lj
scos

(
θj)

Gc
⋅ξ

(
∑M

i=1

[
4τi

cbi(1 − 2ν)
πμ

]1
2

⋅ΔKi
θ +

[
4τj

cbj(1 − 2ν)
πμ

]1
2

⋅ΔK⊥, total
θ

)

(7) 

Since values for n correspond to the mean number of dislocations 
emitted from the crack tip per cycle, i.e., not accounting for pile-up ef-
fects, n is selected to maximise the cyclic dislocation shielding effect (for 
the initial crack length) in each case. Since the total shielding SIF is 

inversely proportional to FCG rate 
(

ΔK⊥, total
θ ∝

(
da
dN

)− 1
)

, rearrangement of 

Eq. (7) gives a quadratic relationship between the mean number of 
emitted dislocations, n and ΔK⊥, total

θ . There are two roots of such a 
relationship which give (i) a positive and (ii) a negative gradient, 

∂n
∂ΔK⊥, total

θ
. Naturally, a negative gradient is illogical since this suggests 

there is an increased shielding effect with decreasing n. Therefore, to 
maximise the shielding effect in a physically sensible manner, the in-
flection point is selected, for n, where ∂n

∂ΔK⊥, total
θ

= 0, as described in 

Fig. 4c. 

Mean dislocation spacing is calculated as l =
ljs

ΔN0 ⋅n, and is used to 
estimate corresponding crack tip dislocation density assuming uniform 
dislocation spacing in 2D. ΔN0 is the initial number of cycles before the 
crack propagates. Dislocation density is given by ρdis =

̅̅̅̅̅̅̅
1/l

√
for com-

parison with experimental crack tip measurements. Hence, the final 
model for FCG rate (Eq. (7)) is highly microstructure sensitive as it ac-
counts for key microstructural material properties including crystal 
orientation, corresponding anisotropic elastic constants, slip properties, 
discrete slip directions, crack direction, and dislocation shielding effects. 
As noted in the previous section, unlike CPFE modelling, the analytical 
model does not account for grain-grain or crack-GB interactions but is 
instead aimed at capturing FCG rate trends in polycrystals, based on 
local crystallography and crack length alone. In addition, local crack 
path oscillations within individual grains are not captured using the 
current model, since the local stress state is unknown. In this paper, it is 
hypothesised that the dominant factors affecting FCG rate are related to 

crystallography, and hence, that local crack path oscillations and in-
teractions with microstructural features have little or no overall effect 
on the FCG rate trend. 

2.4. Crack path selection and full-field implementation in polycrystalline 
materials 

To utilise the current model for full-field (2D free surface) crack path 
and FCG rate prediction within polycrystalline materials, a computer 
program is developed, whereby grain structure is defined using an 
image-based method. It is assumed that 2D grain structure information 
is sufficient for prediction of short FCG, and hence that substructural 
morphological variation is negligible, since the experimental crack 
growth rates and paths considered here were measured at the sample 
free surfaces. This assumption is further reinforced here by application 
to blocky alpha microstructures, which minimise substructural varia-
tions. Despite this assumption, full 3D grain orientations obtained from 
electron backscatter diffraction (EBSD) are used to account for crystal-
lographic slip plane directions with respect to the loading conditions. In 
the experiments, notched beam samples measuring 3 × 3 × 12 mm were 
loaded in cyclic 3-point bending. Hence, in the bulk of the sample, rates 
of crack propagation are likely to vary in 3D (since even blocky alpha 
grains measuring 100 – 300 μm are much smaller than total sample 
thickness). However, due to the strongly textured large-grain micro-
structures considered, it is reasonable to assume that substructural 
morphological variations are low (with respect to crack length), and 
hence, based on St. Venant’s principle, that free-surface crack growth 
rates may be adequately described using 2D grain morphologies. The 
same assumptions apply to crack path prediction. Using CPFE model-
ling, criteria for short crack path are often controlled by maximum slip 
[37] or some related energy term [50]. However, since slip levels are not 
quantified using the current method, three crystallographic SIF-based 
criteria are proposed: (i) maximum shear SIF, combining modes I and 
II, max(Ki

θ), (ii) maximum mode I SIF, max(Ki
I), and (iii) maximum mode 

II SIF, max(Ki
II) (see Section 2.1 for details). The implementation of the 

maximum SIF method(s) is described in Fig. 5a. These new methods are 
compared in this paper to find a solution which gives greatest agreement 
with experimental crack paths. Hence, prediction of crack paths within 
polycrystalline microstructures will enable full-field implementation of 
the crack growth rate model for direct comparison with experiments. As 
shown in Fig. 5b., the method used here involves point-wise calculation 
of FCG rate within individual grains, tracking the spatial position of the 
crack tip as it extends. 

A single crack propagation direction is defined for each crystal 

Fig. 5. Method for full-field polycrystalline implementation of analytical solution for FCG rate. a. Selection of crack path at the initiation stage based on (selected) 
crystallographic SIF-based criterion for short crack path. Since the crack path is simplified to be controlled by remote loading and crystallography alone, a single 
crack direction is assigned to each grain. b. Progression of crack along pre-defined path; at equally spaced intervals, the growth rate is computed. c. Upon traversing a 
grain boundary, a new crack direction is assigned and the process repeats. 
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orientation (or grain). Hence the crack growth rate will be governed by 
projected crack length, and crystallographic quantities (orientation, 
discrete slip etc.) corresponding to the crack tip position until such a 
point that the crack is detected to have traversed a grain boundary 
(Fig. 5c). Accordingly, grain-grain interactions and crack-grain-grain 
interactions are unaccounted for using the current method (which, of 
course are accounted for, using CPFE modelling, for example). While 
such interactions are likely to have an effect, they are considered 
negligible in large-grain, strongly textured microstructures, such as 
those presented in this paper. 

The program computes relevant in-plane elastic properties (μ and ν) 
before the solver begins. This requires rotation of the 6 × 6 compliance 
matrix, C according to the Euler angles of individual grains, using C′ =

MCMT, where C′ is the rotated compliance matrix, and M is the 6 × 6 

rotation matrix. For rotations about the a- and c-axis directions, M is 
given by Auld [51]. The solution for da

dN in Eq. (7) requires an explicit or 
iterative solving approach due to the self-dependence of input param-
eter, ΔK⊥, total

θ on crack growth rate. Newton-Raphson iterative solving is 
used for this purpose. Lastly, for comparison with experiments, FCG is 
modelled in notched blocky alpha polycrystalline Zircaloy-4 samples 
which were loaded cyclically in 3-point bending (loading ratio, R = 0). 
Hence, the remote SIF range is calculated using ΔK∞ = P

B
̅̅̅̅
W

√ f
( ae

W
)

from 
Anderson [52], where W and B are the sample width and thickness, P is 
the maximum applied force, S is the distance between the support pins 
and ae is the effective crack length (notch length + projected crack 
length). The function, f

( ae
W
)

is given by, 

Fig. 6. Comparison of experimental crack path and CPFE simulation results with local SIF crack path prediction methods for a – e. Sample a. f – j, Sample b. k – o, 
Sample c. and p – t, Sample D. Maximum SIF criteria from left to right are maximum in-plane shear SIF, maximum mode I SIF, and maximum mode II SIF. CPFE 
simulations were carried out in previous work for Samples A and B [54] and C and D [37]. Local SIF criteria crack paths are presented alongside corresponding slip 
plane for each relevant grain. 
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f
(ae

W

)
=

3
(

S
W

) ̅̅̅ae
W

√

2
(
1+2ae

W

)(
1− ae

W

)3
2

{

1.99−
ae

W

(
1−

ae

W

)[

2.15− 3.93
(ae

W

)
+2.7

(ae

W

)2
]}

(8) 

Equation (8) was derived from classical fracture mechanics test 
standards [53], with numerical coefficients corresponding to poly-
nomial best-fitting. The method involved correlation of non-linearity of 
load-displacement data in 3-point bending with the known fracture 
toughness of various metallic materials. A summary of Zircaloy-4 ma-
terial properties used within the FCG rate solution are provided in 
Appendix A. 

3. Results and discussion 

3.1. Case study: crack path prediction and comparison with experiments 

In this section, three crack path prediction methods based on local 
slip plane SIF are compared. Specifically, results from maximum SIF 

crystallographic deformation mode (ΔKi
θ, ΔKi

I, and ΔKi
II) criteria are 

compared with experiments and corresponding full-field CPFE-simu-
lated crack paths (which use a maximum slip criterion) for selection of 
an optimal method which is subsequently used to compare FCG rates in 
polycrystalline Zircaloy-4. In Fig. 6, a comparison is made between the 
three candidate methods and experiments and CPFE simulation results. 
Samples were loaded in three-point bending, under cyclic R = 0 loading 
conditions. Note that the CPFE contour fields presented in Fig. 6 
represent the distribution of SED about the crack. ΔKi

I and ΔKi
II represent 

local slip plane mode I and mode II SIF ranges, as described in Fig. 2. 
The CPFE maximum shear strain (slip) results [37,54] in Fig. 6b, g, l, 

q, demonstrate overall strong agreement with experiments. One excep-
tion to this rule, however, is for sample B, shown in Fig. 6g., where the 
maximum slip criterion predicts a very different crack path from the 
experiment (Fig. 6f). While the maximum slip criterion cannot be 
replicated within the new method (since the full-field stress state is 
unknown), the local SIF criterion which is most closely related to the 
maximum slip criterion is maximum ΔKi

θ. This term accounts for both 

Fig. 7. Assessment of microstructural sensitivity of analytical solution. a. Comparison of analytical solution for FCG rate and experimental data for samples A and B. 
Comparison of predicted crack path using maximum mode I SIF criterion with experiment in b. sample A and c. sample B. 

Fig. 8. Assessment of microstructural sensitivity of analytical solution. a. Comparison of analytical solution for FCG rate and experimental data for samples C and D. 
Comparison of predicted crack path using maximum mode I SIF criterion with experiment in b. sample C and c. sample D. 
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mode I and II SIF on the ith slip plane and is a measure of SIF along a slip 
line, constrained to lie on the free surface plane. For samples B and D, 
there is reasonable agreement between this method (Fig. 6h, r.) and the 
maximum slip criterion Fig. 6g, q), but much less so for samples A and C. 
This is because the Burgers vector directions of the dominant slip planes 
in samples B and D lie approximately within the free surface plane. 
Clearly, this is not true for samples A and C, since the CPFE-predicted 
crack paths are almost perpendicular to the remote loading direction. 
The maximum ΔKi

θ criterion also tends to favour planes whose traces 
give θ ∼ 45∘; this inadvertently results in grain boundary (GB) crack 
path oscillations in sample C (Fig. 6m). The maximum mode I SIF (ΔKi

I) 

criterion for crack path demonstrates strong agreement with experi-
ments. Indeed, this method gives more precise predictions than CPFE for 
samples B and C, but of course fails to capture clear crack path tortuosity 
within a single grain in sample D. Lastly, the maximum mode II SIF 
(ΔKi

II) predictions are shown in Fig. 6e, j, o, t and compare poorly with 
experimental paths. In some regards, ΔKi

II performs better than ΔKi
θ (e. 

g., grain 4 of sample A in Fig. 6e) but is clearly not the main driver for 
crack path. Hence, the maximum ΔKi

I criterion will be used for subse-
quent crack path and corresponding FCG rate predictions. 

Fig. 9. a. Comparison of analytical solution for FCG rate and CPFE simulated data [54] for samples A and B. Comparison of predicted crack path using maximum 
mode I SIF criterion with CPFE maximum slip criterion in b. sample A and c. sample B. b.c, also display corresponding SED fields. 

Fig. 10. Single crystal simulation results. a. Influence of crystal orientation and dislocation shielding model on SIF range-FCG rate relationship. Dashed lines 
correspond to the model with shielding included. Loading direction is indicated by arrows. Projected crack growth direction is vertical, relative to these crystal 
orientations. The vertical axis is presented in logarithmic scale. b. Comparison of single crystal (denoted SC) analytical model (with and without shielding) with 
experimental FCG rate data from literature [56–58]. Single crystal simulation results are based on the mean growth rates for orientations 1 – 5. Grey shaded region 
covers the total range of growth rates predicted for orientations 1 – 5 without dislocation shielding. Both axes are in logarithmic scale. 
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3.2. Case study: simulated crack growth rates and comparison with 
experiments 

The analytical model for FCG rate, given by Eq. (7), is applied to 
samples A-D for comparison with experiments (using the property data 
in Appendix A), using the maximum ΔKi

I for crack path. Figure 7a shows 
that due to the strongly differing textures in samples A and B, there are 
vast differences in FCG rate. Reasons for this are discussed in the next 
section. The model effectively captures these differences. For sample A, 
there are also substantial growth rate fluctuations as the crack interacts 
with and crosses various microstructural features GB2 and GB3. These 
fluctuations are reflected by the analytical model, but rather subtly 
(compared with experiment), since the effect of the GB is not explicitly 
captured, as discussed previously. While it is clear that grain boundaries 
have a local effect (in the context of the current blocky alpha micro-
structures), the overall crack growth rate trends are reasonably well 
captured, which is the aim of the current work. Incorporation of grain- 
grain interactions is non-trivial, as there are morphological and crys-
tallographic effects, as well as cyclic plasticity to consider. For example, 
depending on the orientation of one grain, i.e., set of crystallographic 
slip systems, with respect to another, slip blockage or transmission may 
occur. The Luster and Morris slip transfer parameter was used by Sudha 
et al. [55] to identify common slip transfer pairs between neighbouring 
grains based on TEM data after static tensile testing in a titanium alloy. 
Some such method could be applied here to capture microstructure 
interaction effects but would require sufficient statistical data for a given 
alloy, and hence, the model would no longer be deterministic. 

Moreover, the growth rate transition across a GB is coarser than in 
the experiment since the model has no knowledge of the GB until it is 
crossed. In the final grain of sample A, a substantial drop in FCG rate is 
predicted, which reflects the experimental data, though not entirely for 
the reasons outlined above. While the link between FCG rate and GBs is 
less clear for sample B, the growth rate trend is effectively captured 
using the model, despite under-predicting it somewhat. 

In terms of texture, samples C and D are very similar to samples A and 
B, respectively, and hence, rates of growth are significantly higher in C 
than D, as shown in Fig. 8a. As before, the analytical model captures the 
general trend for each sample but does not capture substantial FCG rate 
fluctuations. The larger fluctuations here are likely due to greater 
anisotropy between neighbouring grains in sample C, than in A. Inter-
estingly, after the crack crosses GB3 of sample C, there is a substantial 
increase in rate due to the orientation of the fourth grain, increasing to 
values comparable with the experiment. FCG rates are partially under- 
predicted by the model for each of these samples. This could be cor-
rected by adjusting the critical SED, Gc, but is not, in order to maintain 
consistency with CPFE modelling [54]. Adjusting Gc is unlikely to reflect 
the true mechanistic driver of these differences, since localisation of SED 
along GBs is anticipated to be the dominant factor. 

The overall growth rate magnitude in sample D is captured by the 
model, but as with previous samples, fluctuations are not. In this case, 
crack path tortuosity is likely to be the driver of these fluctuations, 
which cannot be captured using the current technique. An important 
factor to consider in these results, as with the CPFE results, is that all 

crack path and crack growth rate results are determined using free 
surface EBSD data. Hence, there are potentially 3D, i.e., substructure 
effects, which contribute towards differences between experiment and 
model. Despite this, the 2D approximation is valid at the free surface, 
assuming plane stress conditions, and enables reasonably accurate pre-
dictions of short crack growth rate and path. 

For samples A and B, CPFE simulated crack paths and rates are 
compared with the analytical model. Figure 9a shows strong agreement 
between both simulation methods in terms of rate for both samples, 
despite differences in crack path, which are shown clearly in Fig. 9b and c. 

Given the simplicity of the current crack path prediction method, it is 
surprising that it achieves much greater agreement with experiment 
than the CPFE result. However, full-field CPFE predictions are more 
sensitive than the current method to microstructure interactions, 
enabling more precise growth rate predictions (where the crack path is 
successfully captured). Furthermore, it is important to note that to 
generate the CPFE data presented, it took between 5,000–10,000 CPU 
hours, compared with mere seconds for the analytical model. Both nu-
merical and analytical simulations were carried out using Intel Gold 
6152 processors at 2.10 GHz. 16 cores and 8 GB of RAM were assigned to 
each job. 

3.3. Influence of crystal orientation and dislocation shielding with 
application to stage II cracks 

The model is applied to Zircaloy-4 single crystals to study the in-
fluence of orientation on FCG rate. Five orientations are selected to 
broadly capture the material behaviour. The influence of dislocation 
shielding is studied by comparing rates of FCG with and without 
shielding, i.e., where K⊥

θ = 0, in the SIF range 10–15 MPa
̅̅̅̅
m

√
. A com-

parison of these results is presented in Fig. 10. 
Figure 10a shows that the model predicts very strong microstructural 

sensitivity in terms of growth rate, with rates in orientation 3 greater 
than orientation 5 by more than a factor of 6. Growth rate is highest in 
orientation 3 due to its elastic properties contributing to highest cyclic 
SED and favourable orientation and length of the dominant slip line. 
While the in-plane elastic properties are the same for orientation 5, 
growth rate is compromised due to there being no basal or prismatic 
contribution to SED since basal planes lie perpendicular to the remote 
loading direction, and prismatic planes lie parallel. This leaves highly 
inclined pyramidal planes to control crack direction, meaning that the 
projected crack extension (Δa) is relatively low. FCG rates for orienta-
tion 1 are comparably low due to elastic properties giving low cyclic SED 
as well as high prismatic slip plane inclination. Orientations 2 and 4 are 
predicted to have similar growth rate trends due to a combination of the 
factors discussed. Results also highlight the influence of dislocation 
shielding on FCG rate. Within the SIF range studied, dislocation 
shielding reduces growth rate by approximately 20%. More importantly, 
the model captures that shielding has the greatest influence initially (at 
lowest SIF). Values for mean number of dislocations emitted per cycle 
range between 6 and 42. Equivalent dislocation densities are estimated 
to be between 4000 – 5000 μm− 2. These estimates are consistent with 
experimental X-ray diffraction (XRD) measurements of dislocation 
densities at crack tips [59] (~2500 μm− 2). 

To understand the influence of the various HCP slip systems in 
Zircaloy-4, their contributions to cyclic SED are presented in Table 1, as 
fractions of total cyclic SED for a given crack length and loading con-
ditions. The variation of contributions is compared across the five single 
crystal orientations considered in Fig. 10. 

Table 1 shows that on average, according to the current model, the 
greatest contributors to cyclic SED in HCP Zircaloy-4 are the <a> py-
ramidal slip systems, followed by <c+a> pyramidal, prismatic, and 
basal. The pyramidal contributors are largest due (primarily) to there 
being 6 <a and 12 <c+a> systems, while there are just 3 prismatic and 
basal systems, respectively. Hence, normalised results would indicate 

Table 1 
Contributions of slip system groups to cyclic SED for a static crack with a SIF of 
10 MPa√m under R = 0 loading (without dislocation shielding). Contributions 
are represented as fractions of the total cyclic SED for each crystal orientation, i. 
e., as Ġsys/Ġtotal. Five single crystal orientations are considered with numbering 
and loading direction corresponding to those outlined in Fig. 10.  

Orientation Prismatic Basal Pyramidal <a> Pyramidal <c+a>

1 0.2513 0 0.4754 0.2732 
2 0.2608 0 0.4694 0.2698 
3 0.1549 0 0.5367 0.3084 
4 0.2053 0.2708 0.3327 0.1912 
5 0 0 0.6350 0.3650  
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that on average, prismatic systems make the greatest individual con-
tributions to cyclic SED, i.e., undergo maximum slip activity, which is 
consistent with experiments [60] and modelling [38]. The relatively low 
combined contribution of <c+a> slip systems to cyclic SED is due to the 
comparably high CRSS (see Appendix A: Material properties). 

The universality of the model is assessed through comparison with 
experimental FCG rate data over a wide SIF range. Wisner et al. [57] 
tested the fatigue behaviour of Zircaloy-4 at low SIF values (in the range 
1–2 MPa

̅̅̅̅
m

√
). Precise crystallographic details of samples are unavai-

lable, but Kearns factors [61] were of the order of 0.7. Logsdon and Liaw 
[58] tested a Zr-Cu alloy (Zr content >99%) in the SIF range 5–30 
MPa

̅̅̅̅
m

√
with loading ratios 0.1 and 0.8. James [56] carried out room 

temperature tests on Zircaloy-2 in the range 10–60 MPa
̅̅̅̅
m

√
in samples 

where the crack direction was either orthogonal to or parallel to the 
sheet rolling direction. Minimal growth rate variation was observed 
between samples, particularly for high SIFs, indicating low 
microstructure-sensitivity. A comparison of the experimental FCG data 
mentioned above with the analytical model (with and without shielding) 
is presented in Fig. 10b, using generalised mean single crystal results. 
The comparison shows strong agreement between the model and ex-
periments, despite obvious differences in microstructure and composi-
tion. Unsurprisingly, strongest agreement is attained with Zircaloy-4 
data from Wisner et al. [57], excluding for lower SIF ranges. However, 
application of the dislocation shielding model is shown to capture some 
of the experimental `starting’ FCG behaviour, while somewhat 
under-predicting magnitude. Similarly, Zr-Cu FCG rates are 
over-predicted, but application of the shielding model also captures the 
transition from `starting’ to Paris’ law [2] behaviour. This crack growth 
starting behaviour is captured for a range of initial SIF values and is akin 
to the asymptotic thresholding behaviour observed in many materials, 
whereby for decreasing values of SIF range, cracks cease to propagate 
[62]; the threshold SIF range is denoted ΔKth. Fig. 10b demonstrates that 
as the initial or starting value for SIF range is decreased, the shielding 
behaviour becomes more dramatic. However, this does not indicate that 
there is some threshold value which can be predicted using the current 
model; rather, it captures the phenomenon to an extent, as predicted 
growth rates reach as low as single atomic lattice spacings per cycle. 
Incorporation of additional physics-based understanding of dislocation 
emission from the crack tip, rather than the mean approach incorpo-
rated here, may however allow for this behaviour to be captured more 
precisely. 

In addition, the model appears to capture loading ratio effects, 
despite not accounting for loading ratio explicitly. Effectively, the SIF 
range helps to capture the cyclic behaviour, while the slip line length, ls, 
accounts for the peak SIF magnitude. In combination, these factors 
represent a loading ratio effect. Lastly, Zircaloy-2 FCG data is shown to 
lie within the growth rate range (shaded grey region), even for high 
values of ΔK∞, demonstrating that the model has the potential to cap-
ture stage II FCG behaviour. 

4. Conclusion 

A deterministic analytical model has been developed, which is a 

prospective candidate for prediction of short crack growth rates in a 
range of ductile metallic materials. It is evident that SED, which forms 
the basis for the model, can effectively capture the effect of key micro-
structural characteristics (elastic anisotropy, discrete slip, etc.) on FCG 
rate. The development of a new crack path prediction tool based on 
maximum (slip plane-based) mode I SIF, in combination with the 
analytical solution was shown to capture overall FCG rate trends and 
crack paths in a range of Zircaloy-4 polycrystals, and to even out- 
perform CPFE (maximum slip-based) crack path predictions in some 
instances. Furthermore, a distinct advantage of the analytical model 
over numerical, e.g., CPFE calculations, is the substantial reduction in 
computer processing requirements; solving times using the analytical 
approach are of the order of CPU-seconds, compared with thousands of 
CPU-hours required using numerical methods. Finally, application of the 
model to stage II FCG data from the literature demonstrates its versa-
tility, as it showed strong agreement with the data within a broad range 
of ΔK values. The comparison also demonstrates the ability of the 
dislocation shielding term to capture the transition from fatigue `start-
ing’ behaviour through to stage I or II crack growth. 
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Appendix A. Material properties 

The Zircaloy-4 material properties used in the FCG rate model are summarised in Table A1. The key parameters for crack growth are the critical 
SED, Gc, and the fraction of plastic strain energy stored in dislocation structure, ξ. The critical SED was obtained by Long et al. [54] using CPFE 
modelling of crack growth through Zircaloy-4 microstructures. By scaling the arbitrarily selected CPFE value for Gc against the ratio of experimental to 
simulated crack growth rates, an estimate for the true critical SED was obtained. The fraction of plastic strain energy density, which is assumed 
constant, is taken as 5%, and is consistent with previous modelling work [54]. The remaining 95% of plastic strain energy is assumed to disperse into 
the environment as heat etc. [41]. 
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The crystallographic slip strengths are also given in Table A1 and were adopted from pillar test measurements of pure Zirconium by Gong et al. 
[63]. Further, direct CPFE modelling of experimental creep tests [64] were used to validate these slip properties at the microstructural scale. Due to 
non-availability of the <a> pyramidal slip strength, its value is assumed equal to the prismatic value, which was demonstrated to give agreement with 
experiments [64]. 

Appendix B. Full-field implementation of model in polycrystals 

Simulations using the analytical solution are carried out within commercial software, MATLAB. Several user inputs including grain orientation, 
initial crack length, and position are required before the program can run, as outlined in Fig. B1. 

Rotations of the anisotropic 6 × 6 compliance matrix, C according to the Euler angles of individual grains, are carried out about the a-directions 
using the rotation matrix given by Supplementary Equation (B1). 

Table A1 
Key quantities used in analytical solution for crack growth rate for Zircaloy-4.  

Parameter Value Unit HCP crystallography 

Gc 250 J / m2 

ξ 0.05 - 
τc,prism〈a〉 153 MPa 
τc,pyramid〈a〉 153 MPa 
τc,pyramid〈c + a〉 532.4 MPa 
τc,basal〈a〉 203.5 MPa 
b〈a〉 3.2 • 10− 4 μm 
b〈c + a〉 5.1 • 10− 4 μm 
νa 0.4006 - 
νc 0.2375 - 
μa 35.1 GPa 
μc 32.0 GPa 

Subscripts 〈a〉 and 〈c〉 represent hexagonal close packed (HCP) a- and c-axis directions, respectively. 

Fig. B1. Flowchart describing algorithm and full-field implementation of analytical FCG rate solution with crack path prediction.  
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where ψ is an Euler angle. For c-axis (crystal coordinate system) rotations through angle φ, M is given by, 
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Appendix C. CPFE modelling description 

The CPFE modelling methodology for some of the work presented in this paper has been presented in greater detail previously [37,54]. A brief 
summary of the methodology is provided here. CPFE modelling is used to capture micro-scale elastic-plastic deformation. A user-material (UMAT) 
subroutine code is implemented within commercial finite element software, Abaqus. The key equation which links dislocation slip activation with 
plastic deformation at the microstructural level is given by, 

γ̇i = ρmνb2exp
(
− ΔF
kBT

)

sinh
(( τi − τi

c

)
ΔV

kBT

)

(C1)  

where γ̇i is the slip rate on the ith slip system, ρm is the density of mobile dislocations, ν is the frequency of attempts of dislocations to surmount the 
thermal energy barrier, ΔF is the activation energy, T is temperature, τi is the local resolved shear stress of the ith slip system, and ΔV is activation 
volume. Using Schmid’s Law, the plastic velocity gradient is calculated via the contributions of each slip system. In addition, Eq. (C1) is used to predict 
crack path within the CPFE modelling methodology, as it is the slip system with maximum shear strain (slip) which controls crack path. 

Since CPFE is a numerical method, quantities such as total slip for a given slip system are computed locally and incrementally, using numerical 
integration, giving spatial and temporal resolution. Similarly, SED is calculated within the CPFE code using numerical integration of SED increments as 
follows, 

G = ξ
∫ σ : dεp

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ρSSD + ρGND
√ (C2)  

where σ is the 3D stress tensor and dεp is the plastic strain increment tensor. ρSSD and ρGND represent the densities of sessile and geometrically necessary 
dislocations, respectively. Implementation of the above methodology is performed via the UMAT subroutine also. For simulation of polycrystalline 
materials, the orientation of each grain is represented explicitly. An example is given in Fig. C1 below. 

Figure C1 describes the methodology used to represent real microstructures from experiments. In the current and previous work, 2D EBSD data 
were used to represent microstructures of free surfaces. While CPFE modelling is technically 3D, the free surface microstructures are simply extruded 
in the out-of-plane direction over a sufficient thickness to represent plane stress conditions. Similarly, although crystallographic plane orientations 
were used to control crack path direction, only the free surface components are accounted for in this work. Crack growth is enabled here using XFEM, 
with the SED fracture criterion. 
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