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Abstract 

This puper introdirces n lieirristic to solve the combined 
schediiling, resoitrce binding, nncl worrllength selection 
problem for tnrrltiple tvordlength sjsterns. The nlgorithm in- 
volws an iterative rejnenient of  operotor wwrcllerigtli i n  for- 
mation. leacling to n scherliilerl and boiinrl tlnto-Jlobt’ grripli. 
Scherliiling is p@”d n3irIi incornpletr rvorc(1ength infor- 
iricitiori ~liirin~g the intertnetlitrtr sttigrs of tliis refinetnetit 
process. Rrsiilts s h o r r .  signiJicant area scit.irigs oivr kriottw 
nlternntive npproriclies. 

1 Introduction 

This paper presents a heuristic solution to the com- 
bined scheduling, resource binding, and wordlength selec- 
tion problem for multiple-wordlength systems, introduced 
as an ILP formulation in 151. 

Traditionally the wordlength problem for DSP applica- 
tions has been to find a single uniform system wordlength, 
which satisfies both the conflicting requirements of de- 
sign area/specd/power and acceptable rounding and trun- 
cation signal distortion. The idea of a single uniform 
wordlength is consistent with the DSP processor model 
of computation where a single, or multiple, pre-designed 
fixed-wordlength computational units are responsible for 
all operations. When synthesizing custom hardware imple- 
mentations, we are freed from such constraints. I t  is pos- 
sible to use different wordlength functional units for dif- 
ferent operations. in order to minimize the area require- 
ments [3, 141 or power consumption [SI. 

Recent research into multiple-wordlength systems has 
concentrated on deriving tixed-point implementations from 
floating-point or intinite-precision descriptions, and in- 
cludes [?, 3. 14. 161. However there has been l i t -  
tle research [4, 131 on high-level synthesis for multiple- 
wordlength systems. The use of multiple wordlengths has a 
significant impact on the traditional problems of high-level 
synthesis: scheduling, resource binding, and module selec- 
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tion. This arises from two factors. Firstly,.each computa- 
tional unit of a specific type, for example ‘multiplier’, can- 
not be assumed to have equal cost in a multiple precision 
system since area and power consumption scale with op- 
erator wordlength [4]. Secondly, the choice of wordlength 
for an operation can impact on the latency of that opera- 
tion. Larger bit-parallel multipliers may have longer la- 
tency, or need to be pipelined to a greater extent than smaller 
bit-parallel multipliers in order to maintain the same clock 
frequency. The existence of multiple wordlengths there- 
fore complicates the resource binding problem, and also in- 
creases the interaction between binding and scheduling of 
operations. 

One approach to high-level synthesis for multiple- 
wordlength systems is to modify the resource-binding stage, 
by altering a standard clique partitioning algorithm on the 
compatibility graph [14] to select cliques by sorting nodes 
in descending order of wordlength. Another approach to 
resource-binding for multiple-wordlength systems has been 
to perform a constructive ‘wordlength-blind’ colouring on 
the conflict graph (the complement of the compatibility 
graph) and then refine this colouring using pairwise opera- 
tions based on wordlength information [4]. Neither of these 
approaches consider adequately the effect of wordlength on 
operation latency, and therefore on scheduling. This prob- 
lem was first examined in [ 5 ] ,  where a formal description 
the problem was proposed, and an ILP model was derived. 
However i t  was also noted in [5]  that the size of this ILP 
grows rapidly with the number of operations. This is the 
motivation for the polynomial-complexity heuristic solution 
proposed in the present paper. I t  should also be noted that 
the scheduling, resource binding and wordlength selection 
problem can be recast as a scheduling, resource binding and 
module selection problem [ 7 ] ,  where different module types 
correspond to different wordlengths. However this is a very 
general expression of the problem, where the numberofdif- 
ferent operation types can be as large as the number of dif- 
ferent operations. Also the common assumption [I31 that 
in a module library area inversely scales with latency, is 
not true in our case, as latency and area both scale with 
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Figure 1. (a) A multiple wordlength sequenc- 
ing graph and (b) its scheduling, resource 
binding, and wordlength selection 

wordlength. 
A motivational example sequencing graph [ 7 ] .  repre- 

senting data-dependencies, together with an area-optimal 
scheduling, binding and wordlength selection is illustrated 
in Fig. 1. The latency of all adders is two cycles, whereas 
the latency of an I I  x m-bit multiplier is given by the em- 
pirical formula [ ( n  + m ) / 8 1  derived for implemenl.ation at 
a fixed clock-rate on the SONIC reconfigurable computing 
platform [ 121. Note that in Fig. 1 (b) resources can execute 
operations up to the wordlength of the resource, even if  im- 
plementation in a larger resource leads to a longer latency. 

Section 2 of this paper introduces the proposed heuris- 
tic, section 3 illustrates solution quality and execution time 
results compared to alternative approaches in the literature, 
and section 4 concludes this paper. A table of the notation 
introduced and used in this paper is shown in Table I .  

2 Proposed heuristic 

The proposed heuristic operates by exploiting the re- 
lationship between wordlength information and latency of 
each operation. The latency of each operation is refined 
downwards as the algorithm progresses, until the overall 
user-specified iteration latency constraint is satisfied. A 
pseudo-code overview of the heuristic is shown below. The 
intuition is that using the largest possible range of laten- 
cies at the start allows the greatest possible resource shar- 
ing. Latency information is only refined if the result vio- 
lates the overall latency constraint. Upper-bounds are used 
in scheduling as the resulting bindings will then never vi- 

L,, 

1. Selected mathematical notation 
set of operations 
set of resource wordlengths 
compatibility (directed) edges 
wordlength (undirected) edges 
sequencing graph (data-dependencies) 
wordlength compatibility graph 
compatibility subgraph 
set of operation types 
resource constraint on typey E Y operations 
the latency of the resource to which 
operation o E 0 is bound 
the upper-bound on the latency of operation 
o E 0 (from G ( V , E ) )  
user-specified overall latency constraint 

olate the schedule. The resource set R, introduced in sec- 
tion 2. I ,  is calculated from the set of operatiions 0. 

Algorithm DPAlloc 
Input: Sequencing graph P( 0,s). constraint h 
Output: Scheduling, binding, and wordlength information 

for each operation 

while( no feasible solution ) do 
calculate resource set covering each operation; 
find upper-bounds L,, on latency of each 

schedule P( 0, S )  using latency upper-bounds L,,; 
perform binding and wordlength selection; 
if( solution violates latency constraint ) 

refine wordlength information; 
else 

record this as a feasible solution; 
end while; 

operation o E 0; 

2.1 Wordlength compatibility graph 

The model underlying our heuristic algorithm is the 
kvordlengrlz cornparibilih graph G( V ,  E ) .  'This graph rep- 
resents information on wordlength sizes, resource types, 
and schedule-derived information on time-compatibility be- 
tween operation pairs. 

The vertex set can be partitioned into two subsets V = 
O U R ,  where 0 represents the set of operations, and R rep- 
resents the set of resource-wordlength types, for example 
'16 x 16-bit multiplier', '12-bit adder'. An algorithm for 
extracting all possible resource types from Ihe set of opera- 
tions is given in [ 5 ] .  

The edge set can also be partitioned into two subsets 
E = C U  H .  H is a set of undirected edges { o , r } ,  where 
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Figure 2. A wordlength compatibility graph 

o E 0 and r E R, indicating that operation o can be per- 
formed by resource-wordlength type r.  Initially, this simply 
corresponds to the resource being of sufficient wordlength 
to cover the operation and of the same type, i.e. ‘multi- 
plier’, or ‘adder’. Later, the edges reflect the refinement of 
wordlength information in Algorithm DPAlloc. C is a set 
of directed edges (o , ,o*) ,  where o1,oz E 0, indicating that 
0 1  is scheduled to complete execution before 0 2  is sched- 
uled to start execution. This is a transitive orientation on 
the subgraph G’(0,C) [ I  I] ,  which will become important 
in section 2.3. A simple wordlength compatibility graph is 
shown in Fig. 2(c), corresponding to the simple sequencing 
graph and schedule shown in Figs. 2(a,b). 

2.2 Scheduling with incomplete wordlengths 

Standard resource-constrained scheduling typically uses 
specified upper limits on the number of resources of each re- 
source type. In list scheduling [7 ] ,  this constraint is checked 
at each control step before deciding whether to schedule a 
new operation. Our scheduling algorithm is introduced by 
comparison with this standard approach. Let be defined 
as in (Eqn. I ) .  Then given a set of control steps T ,  a set of 
operations 0,. C_ 0 of type y E Y ,  and the maximum num- 
ber of resources N,. of type y ,  we can formally express this 
standard constraint in (Eqn. 2). 

I ,  
0, otherwise 

if operation o executes during control step r 

(1) 

eo,l = 

In the case of multiple wordlength systems, this con- 
straint is too relaxed to guarantee that no more than N ,  
resources of type y will be used. As an example, con- 
sider an iteration of the wordlength refinement process on 
Fig. 2 ,  where due to latency constraints the undirected edge 
(01, ‘20 x 18 mult’} has been deleted. Under these circum- 
stances, we cannot schedule the graph using one multiplier 
even though (Eqn. 2) can be satisfied for = 1. We pro- 
pose the following alternative resource constraint calcula- 
tion, which utilizes the incomplete wordlength information, 
inherent in any wordlength compatibility graph where there 
is at least one o E 0 with more than one edge ( o , r }  E H .  

Before any scheduling, a minimum cardinality subset 
S R is found such that Vo E 0 : 3s E S : (0,s) E H .  We 
refer to the set S as the scheduling set. Define O ( r )  = 
{ o  E 013{o,r} E H }  and similarly S(o)  = {s E S13{o,s} E 
H } .  Then our proposed scheduling constraint is given in 
(Eqn. 3). 

(3) 

Note that (Eqn. 3) is at least as strict as (Eqn. 2), which 
is a degenerate case of the former under the condition 1x1 = 
IYI, the smallest possible scheduling set. This corresponds 
to the case when each operation of typey E Y could be per- 
formed by a single resource of type y with large enough 
wordlength. Under these conditions, (Eqn. 3) gives an ex- 
act bound on the number of resources. Similarly if there is 
a single edge in H from each operation, representing full  
wordlength information, then Vo E 0 : IS(o)l = 1, and the 
bound is exact. 

As the possibilities for the wordlengths are refined dur- 
ing algorithm execution, so the ‘balance’ on the left-hand- 
side of (Eqn. 3) shifts from the “ax’ operator to the outer 
‘E’ operator, to reflect this tighter constraint. Operations 
belonging to more than one scheduling-set member, i.e. 
those o E 0 with IS(o)l > 1 are accounted for by ‘sharing’ 
their usage equally between each of the elements of S(o ) ,  
hence the division in (Eqn. 3). 

2.3 Combined binding and wordlength selection 

Once a start control step has been assigned for each opcr- 
ation, resource binding and complete wordlength selection 
can go ahead. Any derived resource binding will not violate 
scheduling latency constraints, since the upper bounds were 
used in performing the scheduling. 

The problem is therefore to choose a set of resources, 
and a mapping from operations to resources that covers all 
operations o E 0 while incurring minimum cost. We ap- 
proach this problem by partitioning the subgraph GI( 0,C)  
into a set of cliques K ,  where each clique k E K satisfies the 
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constraint given in (Eqn. 4). This constraint captures the in- 
formation that there must be a single resource-wordlength 
capable of performing all operations in the clique. The cost 
of this resource binding binding is given in (Eqn. 5). 

3r E R : Vo E k : 3{o,r} E H (4) 

This is a special case of the well known set-covering or 
weighted unate covering problem [IO], defined by (Eqn. 6). 
In our case there is one row of A = {ak,,} for each o E 0, and 
one column for each possible clique k E K + ,  K t  = (01 C_ 
013 E R : Vo E 01 : 3{o , r }  E H } .  An entry akO = 1 @ o E 
k ,  and the cost ck defined is as the corresponding summation 
term in (Eqn. 5) .  

(6) 
minimize c*x 

subject to Ax 2 1 

We therefore extend a known heuristic for solving the 
unate covering problem in polynomial time [ I ] .  We do 
not explicitly construct the matrix A, since the number of 
columns can be exponential in 101. Instead, we use an im- 
plicit approach, polynomial in 101 shown below. 

Algorithm Bindselect 
Input: A scheduled wordlength compatibility graph 
Output:  A set of cliques { k , }  with their associated 

resource types r, 

i t  I ;  
while( still uncovered nodes ) do  

Find a maximum clique pr of uncovered nodes 

Choose r E R such that Iprl/cost(r) is maximum; 
Set k; := pr; 
Determine whether k;  can be ‘grown’ to cover k,t, 

satisfying (Eqn. 4) for each r E R; 

i‘= I ,  ..., i- I 
I f  so, delete k,,  from the set of cliques; 

i t i + l ;  
end while; 

At each iteration, the choice of clique is restricted to only 
those that are of maximum size with respect to (Eqn. 4). 
These can be found in linear time [ 1 I], since the subgraph 
of G’(0 ,C)  induced by the vertex set O ( r )  C 0 is a tran- 
sitively oriented graph for all r E R. Since all cliques of 
a given r E R are of equal cost, only those with maximum 
size are candidates for selection in Algorithm Bindselect. 
The other modification to the heuristic presented in [ I ]  is a 
compensation for the greedy nature of the selections. After 
each selection is made, i t  is checked whether the selected 
clique could be grown to cover any other cliques previously 

selected, in which case those superfluous cliques are now 
deleted. 

2.4 Refining wordlength information 

If the scheduling described in section 2.2 results viola- 
tion of the user-specified latency constraints, then the next 
phase of Algorithm DPAlloc is to refine the wordlength in- 
formation in order to meet the violated constraint. The first 
step of this process is to find a subset of nodes for which 
reducing their latency may lead to a reduction of the overall 
latency. This subset is determined by both scheduling and 
binding information, hence we refer to this subset as the 
bound critical path, Qh to distinguish it from the standard 
critical path which is determined completely by sequencing 
precedence [7]. 

In order to determine the bound critical path, we aug- 
ment the edge set S of the sequencing graph P ( 0 , S )  with 
an additional set of edges Sb, as defined i n  (Eqn. 7), where 
starr(o) represents the scheduled start step of operation 
o E 0 and !(o) represents the latency of the resource to 
which o is bound. The bound critical path is then defined to 
be the subset Qb of operations with equal ALAP and ASAP 
times with respect to the augmented sequencing graph. 

Sh = { {(o1,02)} : s tar t (o l )+ t (o , )  ==start(o2) and 
0 1  and 02 are bound to the same resource } 

(7) 
Once the bound critical path Qh is established, we find 

the candidate subset of the bound critical path W = {o E 
@‘lstart(o) + L, 5 h }  which finishes before the iteration 
constraint h. At least one operation in this set must have 
its upper-bound latency reduced in order to schedule within 
the iteration period constraint. Reducing 1 he latency of op- 
erations that are not members of this set but are members of 
@‘ may be necessary, but will not be sufficient to schedule 
the entire sequencing graph within the time required. 

If there is more than one operation within this candidate 
set W,  the operation o is chosen which would, on reduction 
of its latency upper-bound, lose the smallest proportion of 
edges in the set { { o l , r }  E H 1 3 { o , r }  E H ) .  Ties are broken 
by favouring those operations currently bound to a resource 
with latency less than the operation’s upper-bound latency 
L,, . 

Once an operation o is selected for refinement, all edges 
{ { o , r }  E Hlt?(r )  = Lo}  are deleted from the edge set H ,  
before rescheduling. 

3 Results 

To our knowledge, this is the first heuristic in the lit- 
erature to address the combined scheduling, binding, and 
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Figure 3. Variation of area penalty for [4] (over 
our heuristic) with number of operations and 
latency constraint 

wordlength selection problem. In this section, we compare 
the quality of results obtained and execution times to the 
optimum solution achieved by [5]. We also compare solu- 
tion quality to the optimal branch-and-bound approach for 
resource binding and wordlength selection presented in [4]. 
This is a two-stage schedulinglbinding approach based on 
sharing only resources that can be grouped together without 
increasing the latency of the operation. 

For comparison of solution quality, we have generated 
200 random sequencing graphs for each problem size 101 
between 1 and 24 using an adaptation of the TGFF al- 
gorithm [8]. The minimum possible latency h,,,,,, was 
found for each graph, from which various latency con- 
straints were created, corresponding to a 0% to 30% re- 
laxation of A,,,,,. A datapath was then generated for each 
of these graphkonstraint combinations. The increase in 
implementation area of using the two-stage approach [4] 
solution over the heuristic presented in the present paper 
was found for each graphkonstraint combination, assum- 
ing the area model presented in [SI. These data are plot- 
ted in Fig. 3. Each point represents the mean of the two 
hundred representative designs. These results illustrate that 
for designs with even a small ‘slack’ in terms of latency 
constraints, signi ticant improvements can be made by per- 
forming the schcduling, binding, and wordlength selection 
in an intertwined manner. The area improvements come 
from increased resource sharing due to implementing small 
wordlength operations in larger wordlength resources with 
longer latency. Even for relatively small graphs, area im- 
provements of tens of percent are possible. 

Fig. 4 illustrates the increase in implementation area of 
using the heuristic presented in this paper over the optimum 
combined problem [SI. This is shown only for small prob- 
lem size and minimum latency constraint A = h,,,, as the 
ILP solution execution time scales rapidly as the latency 

::t 

Figure 4. Variation of area premium (YO) for 
our heuristic (over optimum [5]) with number 
of operations 

Table 2. Variation of execution time for 200 
graphs with A/h,,, for heuristic and ILP solu- 
tion 

2: 07.09 
4:05.21 

1.10 3.73 15:55.56 
1.1s 3.52 >30:00.00 

constraint is relaxed (see Table 2 and below). 

The variation of execution time with problem size 
for 200 graphs using the ILP model (executing on ‘LP 
Solve’ [ 151) and the heuristic algorithm is shown in Fig. 5, 
illustrating the polynomial complexity of the heuristic 
against the exponential complexity of the ILP. All execution 
times are measured on a Pentium 111 450 running Linux. 
Over the range of 1 to I O  operations, the relative increase 
in area ranges from 0% to 16% whereas the ILP solution 
takes between one and two orders of magnitude greater 
time to execute. An important point not brought out by 
these results is the scaling of execution time with,overall la- 
tency constraint. The number of variables in the ILP model 
scales with the latency constraint, making the execution 
time highly dependent on this parameter [ 5 ] .  This is illus- 
trated in Table 2 for 200 9-operation sequencing graphs. For 
the heuristic presented in this paper, execution time does not 
scale with the latency constraint. Thus the one to two orders 
of magnitude illustrated in Fig. 5 are under conditions most 
favourable to the ILP-based solution. 

795 



Figure 5. Variation of execution time with 
number of operations for heuristic and ILP 
solution 

4 Conclusion 

A heuristic has been presented for combined schedul- 
ing, resource binding and wordlength selection of multiple 
wordlength systems. This heuristic addresses the current 
lack of algorithms for high-level synthesis of operations 
with multiple precisions. We have demonstrated algorithms 
for scheduling using incomplete wordlength information, 
combined resource binding and wordlength selection, and 
refining wordlength information. These algorithms provide 
a powerful framework for datapath allocation, resulting in 
significant area savings over more traditional approaches. 

In this work, the wordlength of each operation has been 
specified a-pr ior i ,  either by hand or from output-error spec- 
ification by a further design automation tool such as Syn- 
optix [3, 61. Future work should include investigation 
of the interaction between high-level synthesis of multiple 
wordlength systems and the derivation of wordlength infor- 
mation from output-error specifications. 

Our current work on multiple-wordlength systems in- 
volves the extraction of wordlength information automati- 
cally from certain classes of nonlinear system. 
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