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Open cavities are often an essential component in
the design of ultra-thin subwavelength metasurfaces
and a typical requirement is that cavities have
precise, often low frequency, resonances while
simultaneously being physically compact. To aid
this design challenge, we develop a methodology to
allow isospectral twinning of reference cavities with
either smaller or larger ones, enforcing their spectra
to coincide so that open resonators are identical in
terms of their complex eigenfrequencies. For open
systems, the spectrum is not purely discrete and real,
and we pay special attention to the accurate twinning
of leaky modes associated with complex-valued
eigenfrequencies with an imaginary part orders
of magnitude lower than the real part. We further
consider twinning of two-dimensional gratings,
and model these with Floquet–Bloch conditions
along one direction and perfectly matched layers
in the other one; complex eigenfrequencies of
special interest are located in the vicinity of the
positive real line and further depend upon the Bloch
wavenumber. The isospectral behaviour is illustrated,
and quantified, throughout by numerical simulation
using finite-element analysis.
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1. Introduction
Acoustic metasurfaces, which have subwavelength thickness often constructed from local
resonating structures, have found wide application to sound absorbing surfaces and surfaces that
manipulate sound in often remarkable ways [1,2]; the performance of these surfaces is due to the
resonators embedded in the surfaces and the resonance frequencies are directly connected to the
geometry and volume of the resonant cavity with low frequencies requiring large volume. Many
approaches have been taken to ensure metasurfaces remain ultra thin, even at low frequencies and
approaches such as spiral or labyrinthine resonators are popular to save space and give added
functionality [3]. An approach, explored here, is to design smaller cavities that have matching
wave frequency spectrum to larger reference cavities by designing the material properties within
the resonator accordingly. We show that one can go further than simply matching a single
resonant frequency and one can match (i.e. twin) the entire wave frequency spectrum and
hence match the entire behaviour of the cavities at all frequencies. Cavities with this perfect
matching are called isospectral cavities and in a mathematical sense are defined as cavities with
different shapes that exhibit identical eigenfrequencies, and their design presents an intriguing
challenge in the field of wave physics. The ability to design such twinned cavities opens up new
possibilities across various disciplines, including acoustics, electromagnetism, or water waves.
By achieving isospectrality, two distinct resonators can exhibit indistinguishable wave behaviour,
enabling applications such as creating rooms or auditoria with different geometries that
possess identical sound characteristics or engineering elastic components with shared vibrational
eigenfrequencies.

The history of isospectral problems can be traced back to the question famously posed
by Mark Kac regarding whether one can hear the shape of a drum [4]. The investigation of
isospectral drums, where the Laplacian operator within closed domains with Dirichlet boundary
conditions yields identical spectra for distinct regions sharing the same area, has produced
significant results for specific cases and subsets of the problem [5]. These isospectral problems
in bounded domains are closely linked to inverse problems in open space [6], forming a
rich area of research in the past. Furthermore, there has been a recent interest in the study
of isospectral or quasi-isospectral potentials inspired by supersymmetric transformations as
applied to electromagnetism [7]. We proceed to use transformation acoustics (TA), which has been
extensively applied for manipulating wave propagation in diverse physical fields sharing the
same analytical structure, like electromagnetism [8], acoustics [9], elasticity [10–12] and many
others fields [13]. Perhaps the most striking and well-studied effect enabled by TA is cloaking,
allowing perfect concealment of an arbitrary object using a singular transformation. However,
another strategy proposed in the work by Li et al. [14], the so-called carpet cloak, requires non-
singular transformations, making this route more suited for the practical implementation of the
equivalent properties. Twinning closed cavities through TA has been recently developed by Lenz
et al. in [15], where the discrete spectrum of a closed domain with Dirichlet boundary conditions is
successfully matched. Here, we consider unbounded open domains; this is not straightforward as
spectral problems for open cavities allow for the leakage of energy into the unbounded medium,
have complex eigenspectra and further complications for both theoretical and numerical aspects;
we are unaware of attempts to achieve isospectral domains in open systems in wave physics and
this opens the way to, for instance, twinning optical waveguides.

In primis, the eigenvalue problem of an unbounded open domain gives rise to complex-valued
eigenfrequencies ω, whose real part gives the resonant frequency and imaginary part describes
the radiation losses through the unbounded region. One can distinguish eigenmodes in two
categories: on the one hand, the ones linked to a localized resonance within the cavity are called
trapped modes and they are characterized by a high quality factor Q = �(ω)/2|�(ω)|. On the other
hand, the so-called leaky modes or quasi-normal modes [16] exhibit higher damping in time, which
gives rise to an exponential divergence in space, making them more challenging to compute
numerically [17]. In practice, it is not clear how sensitive the matching of such modes can be
in terms of both real and imaginary part, particularly when those are of different magnitude.
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Moreover, the eigenspectra of open cavities show both continuous and discrete branches [18,19]
and a non-singular transformation is required so that their topology is preserved [20,21].

Finally, from a numerical standpoint, the computation of resonances in open systems is
complicated by the reflection of the leaky waves at the necessarily finite-grid boundaries. To tackle
this issue, we use perfectly matched layers (PML), whose analysis and performance for spectral
problems have been extensively documented in the literature, see e.g. [22–26].

The manuscript is organized as follows: §2 briefly outlines the main TA tools and the notation
adopted. In order to highlight the main effects and underlying ideas of the twinning process in
a simple setting, we then give the closed-form solution for two one-dimensional domains. In §3,
we study the spectrum of an open cavity whose geometry allows both leaky and resonant modes.
The transformed region is then further discretized using a layered medium that approximates the
required anisotropic properties to demonstrate that conceptually one can use simpler building
blocks to achieve the desired effects. Section 4 extends the method to the periodic case: we
show that a saw-tooth grating can be matched by a flat, thinner metasurface by comparing the
dispersion diagrams for the original and transformed elementary cell. Finally, in §5, we draw
some conclusions and discuss potential extensions of the present work.

2. Twinning through transformation
We take a domain filled with an acoustic fluid supporting a pressure field, for time-harmonic
waves, that satisfies Helmholtz’s equation, where the filling fluid is characterized by a density
ρ0 and a bulk modulus κ0. The same procedure can be extended to other areas of wave physics
sharing the same analytical structure, i.e. anti-plane shear waves in elasticity and polarized waves
in electromagnetism; we choose to use the setting of pressure acoustics without loss of generality.

TA [8–10] shows how to project a subdomain Σc into a deformed subdomain σc using the
map χ : X �→ x while preserving the acoustic behaviour in the remaining subdomains, if particular
properties are chosen inside σc, and we follow this approach here. We indicate with capital letters
X, P and Ω the set of coordinates, the pressure field and the frequencies, respectively, defined on
the undeformed (or material) domain Σ ; lowercase letters x, p and ω that refer to the deformed
(or spatial) domain σ .

The generalized eigenvalue problem

− ∇X · (ρ−1
0 ∇XP) = Ω2κ−1

0 P, (2.1)

written with respect to the material domain Σc, is equivalent to

− ∇x · (ρ−1
c ∇xp) = ω2κ−1

c p, (2.2)

that describes the pressure p with respect to the spatial domain σc. Here, ρc is a tensor describing
the equivalent anisotropic density and κc is the equivalent bulk modulus after transformation.
They are defined as

ρc := ρ0JJ�

det J
and κc := κ0 det J, (2.3)

where J := ∂Xχ (X) is the Jacobian matrix associated with the transformation (a push-forward)
that describes the local deformation of the geometry. In the following, we use a non-singular
transformation to define two open cavities with different shapes but sharing the same spectrum.

(a) One-dimensional analytical example: twinning a semi-infinite pipe
We outline the implications of this approach by considering a simple, one-dimensional problem
that admits a closed-form solution.

Let us consider the one-dimensional semi-infinite spaces Σ and σ as shown in figure 1a, they
contain either one or two slabs of fluids different from the matrix. Namely, fluid i is characterized
by a density ρi ∈ R and bulk modulus κi ∈ R, and it is contained in the geometric interval Σi (or
σi), for i = {0, 1, 2}. Note that a domain with only one slab can be easily handled as the special
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Figure 1. (a) A schematic of the reference leaky resonant cavity (top) with domainΣ and the transformed (bottom) domain
σ . (b) A plot of the real part of the first four eigenmodes: (top) the reference configuration, (bottom) the transformed one.
The modes inside [−b,−δ] of the reference configuration are compressed into [−a,−δ] for the transformed domain while
they match for [−δ,+∞).

case of two slabs having the same properties. As a consequence, we can solve the eigenvalue
problem for the most general configuration with two slabs and then readily analyse the pipe
with only one slab. Note that this configuration is of interest because the slabs, having acoustic
properties different from the matrix, behave like a cavity: this similarity leads to eigenmodes that
are partially trapped inside the slab and that leak energy through the unbounded matrix.

Let us consider the domain σ in figure 1a. The eigenvalue problem describing the complex-
valued pressure p(x) : R → C on the three acoustic domains reads as:

− ∂xxpi(x) = ω2

c2
i

pi(x), x ∈ σi, i = {0, 1, 2}, (2.4)

where we introduce the sound speed ci = √
κi/ρi, and the intervals σ0 := [−a, −δ), σ1 := [−δ, 0) and

σ2 := [0, +∞), for i = {1, 2, 3}. The boundary value problem is completed by the rigid boundary
condition on the left end and the Sommerfeld condition at infinity

− ∂xp0(−a) = 0, lim
x→+∞(∂xp2(x) + jk2p2(x)) = 0, (2.5)

where we have adopted the time-harmonic convention ejωt, j being the imaginary unit, i.e. j2 = −1.
Moreover, the equilibrium and compatibility conditions hold on the interfaces at x = −δ and x = 0

p0(−δ−) = p1(−δ+),
1
ρ0

∂xp0(−δ−) = 1
ρ1

∂xp2(−δ+)

p1(0−) = p2(0+),
1
ρ1

∂xp1(0−) = 1
ρ2

∂xp2(0+).

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

By considering the dispersion relations ω = kici, i = {0, 1, 2} and choosing the ansatzs p0(x) =
A0 cos(k0x + ϕ0), p1(x) = A1 cos(k1x + ϕ1) that account for the resonances trapped in the slabs and
p2(x) = A2 e−jk2x + B2 e+jk2x for the leakage through the matrix, the eigenvalue problem is solved
if the boundary conditions are applied. We thus obtain the following equalities:

ϕ0 = k0a, A0 cos
(
k0(a − δ)

)= A1 cos (ϕ1 − k1δ) A1 cos(k1b) = A2

B2 = 0,
k0

ρ0
tan

(
k0(a − δ)

)= k1

ρ1
tan (ϕ1 − k1δ),

k1

ρ1
tan ϕ1 = −j

k2

ρ2
.

⎫⎪⎬
⎪⎭ (2.7)
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If ρ0 = ρ1 and κ0 = κ1, the two slabs merge together and the domain Σ shown in figure 1a can
be considered. In that case, equalities (2.7) simplify to

ϕ0 = ϕ1 = k1b, A0 = A1, B2 = 0, A2 = A1 cos(k1b),
k1

ρ1
tan (k1b) = −j

k2

ρ2
. (2.8)

This defines the set of eigenvalues

Ω (n) = c1

b

[
nπ + j

2
ln
(

z2 + z1

z2 − z1

)]
, n ∈ Z, (2.9)

where zi = √
κiρi is the impedance of medium i and Ω (n) = K(n)

1 c1 = K(n)
2 c2. In the field of

optics, this corresponds to Fabry–Perot resonances [27,28] at which light exhibits constructive
interference after one round trip, with the imaginary part giving the lifetime of a photon inside
the cavity τn = 2π/�Ω (n). The corresponding eigenmodes are given by

P̂(n)
1 = cos

(
K(n)

1 (X + b)
)

and P̂(n)
2 = cos (K(n)

1 b) e−jK(n)
2 X. (2.10)

Note that, since the one slab configuration is referred as the material frame, capital letters are
adopted. Figure 1b shows the shape of the first four eigenmodes, where one can remark the
exponential growth which is evidence of the leakage.

In the following, two twins of the pipe are obtained first by compressing a portion of the slab
1 and then by folding the space at the extremity of the pipe; both approaches give rise to a second
slab of fluid, referred to with the index 0. We then compute the properties of the fluid filling the
transformed domain σ such that the cavities share the same eigenvalues and eigenvectors.

Let us choose a linear map χ : Σ → σ , X �→ x such that Σc := [−b, −δ] → σc := [−a, −δ] and
Σf := (−δ, +∞) → σf := (−δ, +∞). That is

χ (X) :=

⎧⎪⎨
⎪⎩

a − δ

b − δ
X + δ

a − b
b − δ

, if X ∈ [−b; −δ]

X, if X > −δ.
(2.11)

In this case, the deformation gradient J = ∂Xx = (a − δ)/(b − δ) is a scalar, so we obtain the
following transformed properties:

ρ0 = b − δ

a − δ
ρ1, κ0 = a − δ

b − δ
κ1, c0 = a − δ

b − δ
c1, z0 = z1, (2.12)

by usage of the formulae (2.3). The resulting acoustic system is the one of a shorter pipe having
two slabs of homogeneous properties, depicted in figure 1a. Its eigenmodes are readily computed
through equalities (2.7):

p̂(n)
0 = cos

(
k(n)

0 (x + a)
)
, p̂(n)

1 = cos
(
k(n)

1 (x + b)
)
, p̂(n)

2 = cos (k(n)
1 b) e−jk(n)

2 x, (2.13)

where k(n)
0 = J−1K(n)

1 , k(n)
1 = K(n)

1 , and the eigenvalues ω(n) = Ω (n) are the same as those of the
original cavity given by equation (2.9). Note that the eigenmodes are such that p̂(n)(x) =
P̂(n)(χ−1(x)).

As just illustrated, it is possible to transform the space and obtain a shorter or a longer twin
cavity. However, as highlighted by equation (2.12), the properties change proportionally to the
geometric stretch: if ρ is increased, κ should decrease accordingly. In general, a material with such
properties is not readily attainable, so in the following, we define a slightly different strategy for
twinning a cavity relying on space folding.

It is well known that space folding transformations [29] lead to negative index materials (NIM)
[30–35], whose effective properties are the consequence of localized resonances. Hence, we can
leverage this mathematical abstraction to unlock alternative transformations and create another
route for the design of isospectral open cavities.
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Figure 2. (a) A schematic of the reference leaky resonant cavity (top) and the transformed (bottom) domain. (b) The plot of
the real part of the first four eigenmodes: (top) the reference configuration and (bottom) the transformed one. The modes
inside [−d,−b] of the transformed configuration is symmetric with respect to the point−c and, if folded into [−c,−b], they
annihilate each other; the eigenmodes are preserved in the half-space [−b,+∞).

Let us consider the schematic on top of figure 2a, the space [−c, −b) beyond the rigid extremity
of the pipe is considered as the overlap of two complementary materials [32] whose acoustic
behaviours annihilate each other. Through the transformation χ , such that

X = χ−1(x) =
{

x, x ≥ −c
−x − 2c, −d ≤ x < −c

, (2.14)

they are unfolded onto a straight line and, like the negative of a photograph, their properties
are equal but with opposite signs: ρ0 = −ρ1, κ0 = −κ1 (doubly negative acoustic parameters can
be achieved in practice with single resonance metamaterials [36], that constrains twinning to a
small portion of the spectrum). This arrangement is highlighted in figure 2 using complementary
colours. Note that we chose c = (b + d)/2 such that only unitary (positive or negative) stretches
arise, however different choices are possible.

By applying once again the equalities (2.7), the closed form of the twin cavity eigenvalues is
achieved

p̂(n)
0 = cos

(
k(n)

0 (x + d)
)
, p̂(n)

1 = cos
(
k(n)

1 (x + b)
)
, p̂(n)

2 = cos (k(n)
1 b) e−jk(n)

2 x, (2.15)

where the wavenumbers k(n)
i are obtained using the dispersion relation ω

(n)
i = k(n)

i ci, and the
eigenvalues are the same as equation (2.9); thus the cavity is a twin. Note that, contrary to the
previous case, the purpose of twinning through space folding is no longer to reduce the size of
the physical cavity, but rather to enlarge it, i.e. to make a large cavity resonate like a small one.
This may allow the design of local resonators within the earned space.

These trivial one-dimensional cases share many features with several practical applications, for
instance, a duct where pressure waves propagate, or a string under tension sustaining transverse
waves, etc. One can therefore substitute a portion of the domain with a shorter/longer one with
equivalent parameters while keeping the same eigenfrequencies and alter the eigenmodes inside
the transformed region only.

3. Manipulating a Helmholtz resonator
We now consider a two-dimensional open cavity and cross-validate computations of its spectrum
against numerical simulations of an ideal anisotropic fluid and also against an effective medium
using layers [37], each having constant material properties, which illustrates an approach towards
experimental realization. Let us consider the geometry depicted in figure 3a, the cavity is assumed
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(a) (b) (c)

Σf

Σc

l

b

t

hO O

fluid perfectly matched layer transformed fluid rigid boundary

a
δ δ

Γ

PML PML PML

σf σf

σc σc

γ γ

Figure 3. (a) Virtual geometry of the reference cavity, bothΣf andΣc are filledwith a homogeneous fluid; (b) ideally twinned
cavity,σf is filledwith a homogeneous fluidwhileσc is filledwith the anisotropic fluid; (c) the anisotropic fluid is approximated
by a graded layered metamaterial. The geometry is defined by h= l = 1 m, t = 1.2l, a= 3l, b= 1.5a and δ = 0.5a.

to have sound hard boundary Γ and it communicates with the exterior medium through a small
aperture; an artificial boundary is introduced to truncate the computational domain and it is
surrounded by a PML that mimics an infinite domain, see e.g. [22]. The cavity is large compared
to the aperture such that trapped modes are encouraged to arise, while the small aperture allows
energy to leak out from the system.

The cavity is filled by a fluid of density ρ0 = 1 kg m−3 and bulk modulus κ0 = 1 Pa; the
computational domain Σ ⊂ R

2 is partitioned in two non-overlapping sets Σf and Σc such that
Σ = Σf ∪ Σc. Helmholtz’s equation is supplied with Neumann boundary conditions:

⎧⎨
⎩

−∇X · (ρ−1
0 ∇XP(X)

)= Ω2κ−1
0 P(X) in Σ

−ρ−1
0 ∇XP(X) · N = 0 on Γ

, (3.1)

where P(X) is the complex-valued pressure defined on the material domain Σ , and N the
outgoing normal of the boundary Γ . Note that the eigenvalue problem is obtained considering
time-harmonic solutions of the form P̂(X, t) = �(P(X) ejωt).

A smaller twin cavity is defined by applying TA, see §2, and defining a portion of anisotropic
fluid, similar to a carpet cloak [14]. Note that a smaller cavity simply filled with the ambient fluid
would have higher resonance frequencies.

Figure 3a,b illustrates the geometry we consider and the result of the transformation χ : Σ → σ

that maps the cavity geometry into a smaller one. In particular, the circular annulus Σc of radii
δ and b is mapped to a smaller one of radii δ and a < b, referred to as the deformed domain
σc. The transformation is the identity inside the remaining domain Σf , that is simply mapped
into σf ≡ Σf . Also, note that the boundary Γ is smoothly mapped onto γ . Figure 3c shows the
transformed medium with the anisotropic fluid replaced by an effective medium made from
layers of homogeneous material.

Since the cavity is semi-circular, it is convenient to transform the geometry adopting a polar
reference system centred in O and described by the set of coordinates (R, Θ). Then χ : (R, Θ) �→
(r, θ ) is such that

r = f −1(R) and θ = Θ , (3.2)

where the only requirement is that f (a) = b and f (δ) = δ. We emphasize here that f (r) does not
have to be monotonic, meaning situations implying space folding are encapsulated by the present
method. This would require NIM [30,31,34] whose properties can be approximated by locally
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resonant material. For the sake of clarity, the effect of such a choice is discussed at the end of this
section. The transformation gradient J := ∇Xx is

J =

⎡
⎢⎢⎣

1
f ′(r)

0

0
r

f (r)

⎤
⎥⎥⎦ and det J = r

f ′(r)f (r)
. (3.3)

Note that the mixed tensor J is expressed with respect to the canonical contravariant base (er, eθ )
and covariant base (ER, EΘ ). Note also that no rotation is implied by the transformation, hence
the deformation gradient is symmetric. This turns out to be useful if, for instance, the anisotropic
transformed fluid is attained through a pentamode material, the reader is referred to [9] for a
complete discussion.

(a) Twinning via monotonic transform
For simplicity, we choose the linear function

f (r) = b − δ

a − δ
r − δ

b − a
a − δ

, (3.4)

so the bulk modulus κc and the tensor density ρc of the transformed domain σc are computed
according to formulae (2.3)

ρc = ρ0

⎡
⎢⎢⎢⎣

rf ′(r)
f (r)

0

0
f (r)

rf ′(r)

⎤
⎥⎥⎥⎦=

[
ρr(r) 0

0 ρθ (r)

]
and κc = κ0

r
f ′(r)f (r)

, (3.5)

and, because of the axisymmetric geometry, these properties depend on the radial coordinate only.
In view of a real implementation of the anisotropic fluid through a metamaterial, it is

fundamental to discuss how it affects the spectrum of the cavity. The stretch of the geometry
induces an anisotropic density whose principal components are aligned with the radial and the
tangential directions of the cavity, similarly to the invisibility cloak for axisymmetric obstacles, see
e.g. [38]. This situation lends itself to the use of a layered arrangement of two homogeneous and
isotropic fluids for achieving the effective properties we need. The following analytical relations
hold [38] for the effective properties:

ρeff =

⎡
⎢⎣

〈ρ〉 0

0
〈

1
ρ

〉−1

⎤
⎥⎦ and κeff =

〈
1
κ

〉−1
. (3.6)

For our illustration, the anisotropic fluid is discretized by 10 layers of the same thickness
δr = (a − δ)/10 each one composed of two materials A and B of thickness ε = δr/2, such that
they approximate the anisotropic medium if homogenized two by two. A schematic of such
arrangement is shown in figure 3c.

We set ri := (2i + 1)ε, i ∈ {0, . . . , 9} the discrete radii pointing in the middle of each layer
and κ i := κc(ri), ρi

r := ρr(ri), and ρi
θ := ρθ (ri) the transformed properties evaluated at ri. The two

materials A and B in the ith layer are chosen to have the same bulk modulus such that

κ i
A = κ i

B = κ i, (3.7)

while the densities are chosen as

ρi
A = ρi

r −
√

(ρi
r)2 − ρi

θ ρ
i
r and ρi

B = ρi
r +

√
(ρi

r)2 − ρi
θρ

i
r; (3.8)
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Table 1. Bulk moduli and densities of each layer composing the metamaterial inside the cavity.

i 0 1 2 3 4 5 6 7 8 9

κ i
A = κ i

B (Pa) 0.331 0.326 0.321 0.318 0.314 0.311 0.308 0.306 0.303 0.301
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ i
A (kg m

−3) 2.188 2.138 2.094 2.054 2.017 1.984 1.953 1.925 1.899 1.875
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ i
B (kg m

−3) 0.457 0.468 0.478 0.487 0.496 0.504 0.512 0.520 0.527 0.533
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

one can easily verify that

〈ρ〉 = ρi
A + ρi

B
2

= ρi
r and

〈
1
ρ

〉−1
= 2

(
1

ρi
A

+ 1

ρi
B

)−1

= ρi
θ . (3.9)

Table 1 describes the properties of each layer used in the discretized version of the twinned
cavity.

(b) Twinning via non-monotonic transform
Lastly, we briefly consider the transformation enforced by a non-monotonous function f (r) that,
as anticipated in §2, leads to space folding. To show that the spectrum is matched, let us consider
the annular region beyond the curved boundary of the cavity as an overlapped portion of space
that can be unfolded into a plane space filled with complementary materials. As suggested in [34],
the function

f (r) =
⎧⎨
⎩

r, r ≤ c
c2

r
, r > c

, (3.10)

is a natural choice for this circular geometry since it leads to an isotropic yet inhomogeneous
medium, whose properties are ρθ = ρr = −ρ0 and κc = −r4/c4. Where c = √

bd and d = 2a describe
the depth of the twin cavity equipped with a NIM layer, as for the one-dimensional arrangement
of §a.

(c) Twinning efficiency via modal assurance criterion
We now turn to a quantitative comparison of the spectrum of the reference cavity with the three
configurations just defined (ideal, layer and NIM) and these are all modelled using a finite-
element method (COMSOL Multiphysics). To ensure a fair comparison between the cases, the
mesh characteristic size is set to h < δr/4 in order to account for the spatially varying properties
in the transformed domain and pressure fluctuations, for higher-order modes in particular. In
addition, the finite-element problems share the same mesh in order to minimize the numerical
errors due to the discretization.

The accuracy of the matching between the eigenfrequencies is expected to deteriorate for
increasing frequencies, thus the 20 eigenvalues with real part larger than and closer to c0/5l =
0.2 Hz are computed in order to show this trend. Table 2 shows their values and highlights the
good agreement between the reference and the ideal cases, and a strong match with the layered
and NIM configurations. Please note that, in order to improve the numerical convergence for the
NIM cavity, a small fictitious damping has been added to the negative material properties such
that ρc → (1 + i 1 × 10−4)ρc and κc → (1 + i 1 × 10−4)κc; this inherently leads to small differences
in the solution of the eigenvalue problem for that case.

As an example, some eigenmodes are displayed in figure 4 and notably we do not show the
ideal case as the eigenvalues are identical to the reference case, in so far as digits shown, and
the eigenfields are visually indistinguishable from each other. Since the precise comparison of the
fields is not straightforward, a measure of the twinning is given by applying the so-called modal
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Table 2. The first 20 computed eigenfrequencies are displayed; the first columnbeing the reference cavity, the second column is
the ideal transformation and these agree very closely. The final two columns show small discrepancies; the third because of the
layer discretization, and the fourth due to fictitious damping thatmainly affects the imaginary parts. The frequency highlighted
in red is related to a PML resonance.

mode fref (Hz) fideal (Hz) flayer (Hz) fNIM (Hz)

1 0.2269 + 8.0i × 10−15 0.2269 + 4.9i × 10−15 0.2219 + 5.8i × 10−15 0.2269 + 1.3i × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.2371 + 0.0170i 0.2371 + 0.0170i 0.2389 + 0.0179i 0.2371 + 0.0170i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.2373 + 1.5i × 10−5 0.2373 + 1.5i × 10−5 0.2377 + 1.8i × 10−5 0.2373 + 1.6i × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.2653 + 5.6i × 10−14 0.2653 + 5.4i × 10−14 0.2587 + 6.5i × 10−15 0.2653 + 1.1i × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.2798 + 0.1049i 0.2798 + 0.1049i 0.2798 + 0.1049i 0.2798 + 0.1049i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.2835 + 8.1i × 10−10 0.2835 + 8.1i × 10−10 0.2833 + 8.1i × 10−10 0.2835 + 6.2i × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.3023 + 0.0260i 0.3023 + 0.0260i 0.3017 + 0.0244i 0.3022 + 0.0260i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0.3034 + 1.7i × 10−13 0.3034 + 3.5i × 10−13 0.2949 + 1.5i × 10−14 0.3034 + 7.9i × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 0.3057 + 3.8i × 10−6 0.3057 + 3.8i × 10−6 0.3059 + 3.5i × 10−6 0.3057 + 3.9i × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 0.3283 + 3.5i × 10−8 0.3283 + 3.5i × 10−8 0.3267 + 3.2i × 10−8 0.3283 + 7.7i × 10−8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 0.3412 + 4.1i × 10−13 0.3412 + 1.2i × 10−14 0.3307 + 5.0i × 10−15 0.3412 + 3.3i × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 0.3501 + 0.1016i 0.3501 + 0.1016i 0.3498 + 0.1016i 0.3501 + 0.1017i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 0.3530 + 1.9i × 10−5 0.3530 + 1.9i × 10−5 0.3526 + 1.5i × 10−5 0.3529 + 1.8i × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 0.3721 + 3.7i × 10−12 0.3721 + 3.6i × 10−12 0.3692 + 3.1i × 10−12 0.3721 + 4.1i × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 0.3788 + 3.7i × 10−13 0.3788 + 7.3i × 10−14 0.3661 + 1.8i × 10−14 0.3788 + 1.7i × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 0.3930 + 0.0186i 0.3930 + 0.0186i 0.3958 + 0.0202i 0.3930 + 0.0186i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17 0.4013 + 2.6i × 10−8 0.4013 + 2.6i × 10−8 0.4111 + 2.5i × 10−10 0.4013 + 0.9i × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18 0.4150 + 0.9i × 10−10 0.4150 + 6.2i × 10−9 0.4010 + 4.4i × 10−12 0.4150 + 0.9i × 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19 0.4163 + 1.7i × 10−9 0.4163 + 1.4i × 10−8 0.4022 + 2.8i × 10−8 0.4163 + 6.3i × 10−7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 0.4190 + 4.0i × 10−5 0.4190 + 4.0i × 10−5 0.4225 + 4.4i × 10−5 0.4190 + 3.8i × 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

assurance criterion (MAC) [39] which allows us to compare two eigenmodes by computing the
following matrix:

MACideal
ij :=

∣∣∣∫Σf
pi,ideal p∗

j,ref

∣∣∣2
∫

Σf
pi,ideal p∗

i,ideal

∫
Σf

pj,refp
∗
j,ref

, (3.11)

where Σf ≡ σf is the portion of the geometry that does not undergo any transformation, p∗ is
the complex conjugate of p, and the subscripts ref , ideal, layer and NIM indicate, respectively, the
reference cavity, the ideally twinned cavity, and the two cavities equipped with the layered and
the NIM gratings. The indexes i and j specify the eigenmodes under comparison. Note that the
MAC matrix is real valued and it assumes unitary values if and only if the two fields under
comparison are identical inside σf , except for an arbitrary scaling factor. So one can state that the
twinning is satisfactory for all eigenmodes if the main diagonal terms of the MAC matrix are close
to the unity.

Thus the ideal, the layer, and the NIM twin cavities are compared to the reference one. Figure 5

displays the matrices 1 − MACideal
ij , 1 − MAClayer

ij and 1 − MACNIM
ij using a logarithmic colour

scale, such that good twinning is highlighted by values close to 0. Figure 5a, relative to the
ideal twin, shows a complete agreement for each and every mode, except the nineteenth. This
mode is very localized in the transformed region σc, so the agreement cannot be captured
by comparing σf only. Figure 5b proves that the layered arrangement approximates the ideal
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Figure 4. The three columns show the absolute value of the pressure for three eigenmodes of the original cavity (left),
the cavity cloaked with a layered metamaterial (centre), and the enlarged cavity equipped with a layer of NIM (right).
(a), (b) and (c) show the twinning of a mode mainly characterized by leakage; (d), (e) and (f ) show a trapped resonance
with some leakage; (g), (h) and (i) show a pure trapped mode inside the cavity. The dashed blue lines highlights
the PML, the undeformed domain, and the metamaterial layers. (a) (0.3501 + 0.1016i) Hz, (b) (0.3501 + 0.1016i) Hz,
(c) (0.3498 + 0.1016i) Hz, (d) (0.3930 + 0.0186i) Hz, (e) (0.3930 + 0.0186i) Hz, (f ) (0.3958 + 0.0202i) Hz, (g) (0.4013 +
2.6i × 10−8) Hz, (h) (0.4013 + 2.6i × 10−8) Hz, (i) (0.4111 + 2.5i × 10−10) Hz.

behaviour because most of the modes show excellent agreement with the reference ones. The
same applies for figure 5c the fictitious damping. Some of the off-diagonal terms are close to
0 even if the corresponding modes have very different frequencies. Indeed, those modes have
a similar shape inside the test region σf , but since they are far in frequency, they can be easily
disregarded.

Finally, the spectra of the four cavities are compared by computing the first 100
eigenfrequencies. Figure 6a shows that they superpose in the complex plane and the relative
errors in figure 6b are small: below 1 × 10−5 for the ideal twin, below 1 × 10−2 for the layered
twin, and below 5 × 10−2 for the NIM twin. Thus we obtain, numerically, that the spectrum is
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Figure 5. The computed eigenmodes of the original cavity are compared with (a) the ideal, (b) the layer and the (c) NIM twin
cavities.We use a logarithmic scale to allow the twinning to bemore easily seen;more accurate twinning corresponds to smaller
values.
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Figure 6. The first 100 eigenfrequencies of the four cavities are compared in (a) and the relative errors with respect to the
reference are shown in (b). On the complex plane, we can distinguish an oblique straight line collecting the resonances induced
by the PML and a cloud of points close to the real axis that contains the trapped cavity resonances.

matched for both real and imaginary parts and hence that our design methodology is validated
for open systems.

4. Flattening a blazed grating
We now illustrate our approach for twinning open cavities by considering a class of diffraction
gratings. Structured surfaces, such as the saw-tooth one depicted in figure 7, usually called
blazed or echelette gratings, are widely used in electromagnetism, for instance, in high-resolution
spectroscopy and spectrometers [40,41], for their ability to diffract incident light into a given
direction [42]. We now create a metasurface having the same behaviour as the echelette grating,
but characterized by a completely flat profile, and use the formalism of acoustics.

Each unit cell of the echelette is considered as an open cavity, and a twinned cell is defined
to enable us to build a flat metasurface thinner than the reference grating. Finally, we test the
twinning showing a complete agreement between the dispersion diagrams of the grating and the
flat metasurface. Using the periodicity along the horizontal direction the acoustic behaviour of
the metasurface, displayed in figure 7, is analysed by considering a single unit cell of width l
and imposing the Floquet–Bloch periodicity on the two vertical cell boundaries. We now focus
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Figure 7. Sketch of the metasurface and transformation. (a) The saw-tooth grating described by its depth h and period l; (b) a
portion of thedomainΣc is transformed to a rectangle calledσc using aprojectionwith respect to the rotated reference systems
XOY = xOy; ( c) flattenedmetasurface having the same acoustic behaviour as the saw-tooth grating. l = 1 m, h= l/2, t = 2l.

on the transformation applied to the geometry of each cell such that the saw-tooth metasurface is
mapped into a flat one.

As in §4, the elementary cell Σ (filled with a fluid having ρ0 = 1 kg m−3 and κ = 1 Pa) is
partitioned into two domains: Σc subjected to the transformation and Σf kept unaltered. The
transformation we use involves the entire triangular cavity and an arbitrary portion of the fluid
outside. The latter is necessary in order to avoid singularities as otherwise the volume of the
cavity would be mapped onto a line. The rigid boundary Γ is continuously mapped onto a flat
boundary; thus, for example, the point C cannot be mapped on B or D, but is mapped to a point
between them. The transformation we choose projects the point C on the line BD along the bisector
of the angle ˆBCD, as shown in figure 7.

This transformation is not unique and one can transform by stretching the domain in many
different ways, controlling the amount of stretch imposed to the geometry or even imposing a
space folding. This flexibility is potentially valuable in practical terms as according to the precice
choice, the transformed properties can scale towards values smaller or greater than those of the
fluid, and can be influenced by the availability of materials for implementation.

For the transformation, we take the orthonormal rotated reference systems XOY ≡ xOy
displayed in figure 7, where one axis is parallel to the bisector of the angle ˆBCD; this simplifies the
analytical expression of the transformation. Following [15], we define three curves Y0(X), Y1(X)
and Y2(X) that correspond to the lines ACD, ABD and AED, respectively. The transformation χ is
such that the points between Y0 and Y2 are linearly mapped to points between Y1 and Y2. That is

x = X

and y = α(X)Y + β(X),

}
(4.1)

where α(X) := (Y2(X) − Y1(X))/(Y2(X) − Y0(X)), β(X) := Y1(X) − Y0(X)α(X). The deformation
gradient is then given by

J =
[

1 0
α′Y + β ′ α

]
, (4.2)

and the transformed properties ρc and κc are computed according to equation (2.3). The tensor ρc
is related to the rotated reference system xOy, thus it has been rotated such that its components
are referred to the original Cartesian system; the plots of figure 8a show the properties obtained
on a colour scale.

Numerical simulations are performed to find the dispersion curves, i.e. the eigenspectra, that
relate frequency to Bloch wavenumber, k, and these use the original and transformed unit cells
in the finite-element simulations that are augmented with a cartesian PML that truncates the
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Figure 8. Transformed properties normalized with respect to the fluid properties κ0 and ρ0. The transformation changes the
material properties according to the stretch imposed. Values are displayed in colour scale, for the ideal (a) and discretized
(b) twins. Note that the transformation keeps the properties unaltered in a triangle close to the upper left vertex since the
curves Y0 and Y1 are superimposed along AB.
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Figure 9. The two dispersion diagrams of themetasurface and its ideal twin superimposed; (a) real and (b) imaginary parts of
the frequency. (c) The diagonal terms of the MAC number when an ideal cloak is applied.

semi-infinite medium. From periodicity, the dispersion diagrams only require variation of the
wavenumber k in the first Brillouin zone [0, π/l]. Figure 9 compares the dispersion diagrams of
the twinned cavities: both real and imaginary parts of the frequency show a very good agreement,
indicating the ability to twin all the dispersion properties for these periodic structures. We note
that a similar approach was implemented in [43] to quantify the cloaking efficiency of carpet
cloaks. However, dispersion diagrams were an aside in a study addressing scattering problems.
Figure 9c provides a synthetic view on the MAC applied to the eigenmodes corresponding to the
dispersion diagrams: only the diagonal elements are shown, i.e. i = j. They are all close to 1 up to
an error smaller than 0.1%.

Turning now to creating an effective medium approximation using discrete elements made
from materials with homogeneous properties. Noting that significant inhomogeneity can arise
in the transformed medium, so the layered arrangement adopted in §3 is not possible due to
the rapid spatial variations, we introduce an intermediate discretization: a graded metamaterial,
constructed from simple components, is designed by dividing the transformed domain into small
cells with homogeneous properties, such that each cell can be constructed using, e.g. a layered
medium with different orientations with anisotropic effective properties.

To evaluate this discretized approach, the transformed domain is divided into square cells
of size l/10, and the properties are considered piecewise constant such that each pixel has the
values given by ρc(x) and κc(x) evaluated in its centre. The discretized arrangement is showed
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Figure 10. (a) MAC comparing the discretized twin against the reference echelette; (b) errors of the complex-valued
eigenfrequencies for the ideal and the discrete twins.

in figure 8b. Numerical simulations enable us to evaluate the twinning and we show results
for the Floquet–Bloch ansatz with k = 0 rad m−1. The eigenmodes and the eigenfrequencies of
the twins are compared through the MAC and the errors shown in figure 10. In particular,
figure 10a highlights that eigenmodes corresponding to higher frequencies are more affected
by the discretization than the low-frequency modes; higher frequencies are associated with
shorter wavelengths that are more sensitive to a discrete arrangement with similar lengthscales.
Figure 10b shows the errors introduced on the eigenmodes by the ideal and the discrete twinning;
while the former comes from numerical approximations only, the latter mainly suffers from the
coarse discretization used.

5. Conclusion
The scheme validated through this work suggests a viable way to design the shape of twin open
cavities, i.e. those cavities intended to resonate with the same spectrum of a reference cavity, but
having a different geometry. We have chosen examples to display the versatility of the approach,
i.e. a resonant Helmholtz cavity, which is a good test of the approach having both trapped and
leaky modes to reproduce and then a case from periodic systems, which is non-resonant but now
has sharp corners. The upshot is that one could take designs from the literature that use constant
parameter acoustic fluids as the reference and then transform them to other more convenient
geometries. The resultant cavity/surface would have some region with anisotropic fluid within
it but, as demonstrated, this could be replaced by layered or discrete homogeneous media as
effective replacements.

We show that unbounded domains can be twinned by applying transformation theory: this
reveals multiple ways of resizing an open cavity, for instance, the inner wall of a small cavity is
covered with an ad hoc layered medium so that it has a spectrum identical to a larger one (or a
smaller one for a space folding transform). Both the discrete and the continuous branches of the
complex-valued spectrum are restored within very good tolerance regardless of the quality factor
of the eigenmodes.

We also chose a more challenging case consisting of flattening a blazed grating, and the method
is shown to be robust even with strong inhomogeneities. The accuracy of the twinning remains
within a good tolerance even when a coarse discretization oriented to realize the metasurface is
taken into account. Via the Floquet–Bloch theorem, the assessment is performed comparing the
dispersion diagrams of the grating and its twins.
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In the context of metasurfaces based around resonators, we anticipate that the mathematical
approach taken here will allow thinner surfaces to be designed that have low-frequency
resonators taking up less space. The twinning works almost perfectly for an ideal anisotropic
fluid and still provides isospectrality even when an effective medium, made of homogeneous
layers, is used to mimic the anisotropic fluid. Our theoretical and numerical results hold in the
context of anti-plane shear elasticity and transverse electromagnetism. This provides confidence
that such twinned cavities could be fabricated and motivates further experimental work.
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