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ABSTRACT: The atomic partial charge is of great importance in
many fields, such as chemistry and drug-target recognition.
However, conventional quantum-based computing of atomic
charges is relatively slow, limiting further applications of atomic
charge analysis. With the help of machine learning methods,
various kinds of models appear to speed up atomic charge
calculations. However, there are still some concerning problems.
Some models based on geometric coordinates require high-
accuracy geometry optimization as a preprocess, while other
models have a limitation on the size of input molecules that narrow
the applications of the model. Here, we propose a machine learning
atomic charge model based on a message-passing featurizer. This
preprocessing featurizer can quickly extract atomic environment information from a molecule according to the connectivity inside
the molecule. The resulting descriptor can be used with a neural network to quickly predict the atomic partial charge. The model is
able to automatically adapt to any size of molecule while remaining efficient and achieves a root-mean-square error in the Hirshfeld
charge prediction of 0.018e, with an overall time complexity of O(n2). Thus, this model could enlarge the range of applications of
atomic partial charge to more fields and cases.

■ INTRODUCTION
The atomic partial charge is a widely used concept in
computational chemistry. It is important in fields such as
molecular properties analysis and drug-target recognition.1,2

However, the direct observation of atomic partial charge is not
possible because it is not uniquely defined; hence, multiple
definitions of computed charge distribution in molecules are
widely accepted and used.3 The partial charges calculated by
high-level quantum mechanics-based methods are relatively
accurate but computationally expensive and time-consuming,
compared to conventional semiempirical algorithms which are
fast but with greater error.4 As the design of drug molecules
continues to develop, there is a great demand of highly efficient
methods to search and filter among millions of candidate
molecules for proper properties like atomic charge distribution.5

Machine learning (ML) models that can scale to these large
systems while maintaining sufficient accuracy are thus required.
We propose a possible model here.

With the development of ML, recent research has started to
focus on balancing time efficiency and accuracy in atomic partial
charge prediction using ML algorithms. For example, Bleiziffer
et al.6 proposed a random forest regression model in 2018 using
atom-centered atomic pair fingerprints on DDEC6 charge7 and
achieved a root-mean-square error (RMSE) of 0.016e on the
testing set. Another approach is taken by PhysNet,8 which uses
fully connected neural networks to predict energies, forces, and
partial charges for molecular dynamics. A third method is used

by Wang et al.1 who employ a message-passing neural network
to build a model on 12 features of molecules and predicted
DDEC6 charge with an RMSE of 0.0162e. In 2022, Gallegos
created a model2 that focuses on the charge given by the
quantum theory of atoms in molecules and is based on high-
dimensional neural networks. The RMSE depends on the atom
type, ranging from 0.0090 for H to 0.0221 for N.

Although many machine-learning-based atomic partial charge
prediction models have been developed, there are several
concerns that still need to be satisfied. Some models use the
Cartesian coordinates as part of input features which requires a
preprocess of geometry optimization. Another concern of most
current models is the restriction on the size of molecules they
can describe. In other words, once the models are trained, they
can be applied only to other molecules with a maximum number
of atoms defined by the training process.

Here, we introduce a coordinate-free and low-order scaling
[O(N2) where N is the number of atoms in the molecule] ML
model for quick atomic charge prediction for C, H, O, N, and
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potentially other elements, such as S and F. It is applicable to
multiple kinds of organic molecules of any size, such as proteins
and lead-like molecules. We propose a featurizer to aggregate
and extract the local environment of atoms based on graph
connectivity information. We use five key features for each atom
inside a molecule to describe the atom itself and its surrounding
environment. The normalized features are then passed to an
artificial neural network (ANN) for atomic charge prediction.
Our model can fit different kinds of atomic charge, such as
Mulliken,9 Hirshfeld,10 semiempirical charge generated by
AMSOL,11 CM5,12 and DDEC6.7

■ METHODS
Message-Passing Featurizer. The idea of molecular graph

convolutions started in 201613 and message-passing neural
networks (MPNN) were first proposed by Gilmer et al. in
201714 to solve quantum chemistry problems based on graph
neural networks. The original formulas of MPNN are as follows.
The message function is defined by

=+m M h h e( , , )v
t

w N v
t v

t
w
t

vw
( 1)

( ) (1)

while the update function is given by

=+ +h U h m( , )v
t

t v
t

v
t( 1) ( 1) (2)

and the readout function is

= { | }y R h v G( )v
T (3)

Here, m is the message, w is a neighboring node (atom) of node
v, h stands for the feature of a node (atom), e represents the
feature of an edge (bond/connection), and t declares the current
stage of the update. The quantities andG stand for the predicted
result and the molecular graph. Finally, Mt, Ut, and R are the
message function, update function, and readout function,
respectively, where the learnable parameters are defined.
Because many existing graph neural network (GNN) methods
can be adapted into MPNNs, the mathematical definition of the
message function, update function, and read-out function vary
under different circumstances. Here, we only include the version
based on “Gated GNN” (GG-NN)15 which is used by Gilmer.
Further details can be found in the Supporting Information.

Under this circumstance, it is clear that the trainable
parameters completely depend on the graph of a molecule,
which restricts the size of the input graph. If the input molecule
has a different size and shape from the training molecule, the
model has to either generate ghost atoms (usually pad zeros) or
predict results using insufficiently trained parameters. Worse
still, the message generation and passing process are performed
in every training epoch, whichmay significantly slow the training
process.

In order to obtain the advantages and avoid the disadvantages
of MPNN, we decided to move this message-passing algorithm
into the preprocessing stage. By properly designing the message
function and the update function, the number of hyper-
parameters can be significantly reduced. This so-called
message-passing featurizer (MPF) operates on the molecular
graph and, for each atom, gives out extracted features that
contain both the atomic properties and environmental
information. These features are then passed to a dense neural
network to predict the partial charge of this atom. Moreover, by
using MPF, the neural network needs to predict the charge for
only one atom each time. This allows the model to dynamically
adapt to different sizes of molecules without the need for
retraining and padding of zeros.

Graph Implementation. In the MPF-powered model, each
molecule is mapped to a graph space according to its atomic
species and molecular connectivity. Atoms in the molecule are
represented as nodes in the graph. Each atom has associated with
it one unchangeable property, namely, its Pauling electro-
negativity. It is noted that the electronegativity does not provide
any physical or chemical information but is used to specify the
atomic type. As Pauling electronegativities take a narrow range
of values, they make normalization of the descriptor easy. Nodes
can be described by a vector, named the atom vector, containing
the electronegativity of each atom in the molecule. For a
molecule with n atoms, the atom vector is defined as

= { }X , , ..., n1 2 (4)

where χi here denotes the electronegativity for atom i in the
molecule.

Figure 1. This figure summarizes the general structure of an MPF-based model. The model contains five key stages which are updates, featurization,
normalization, ML-processing, and denormalization. In stage 1, the model will update every atom inside the molecule according to its topological
information. For each atom, these updates will embed the features and properties of its nearest neighbors in the graph into a new feature. After several
rounds of the update process, the featurizer in stage 2 will process these updated features and extract five key features for each atom. In stage 3, these
extracted features will be normalized and then passed to the machine-learning model in stage 4. The output from the ML model will then be
denormalized into the final result in stage 5.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c00376
J. Chem. Inf. Model. 2024, 64, 4419−4425

4420

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c00376/suppl_file/ci4c00376_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00376?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00376?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00376?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00376?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00376?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The edges in the graph are the bonds in the molecule, which
can be written in a 2-D matrix called the topology matrix T. The
elements in T reads

=T i jBond( , )ij (5)

Here, Bond(i, j) converts the bonding type of the bond between
atom i and j into an integer and is defined by

l

m

ooooooooooooooo

n

ooooooooooooooo

=i j

i j

i j

i j

i j

i j

i j

Bond( , )

0, and are not connected

1 and form single bond

2 and form double bond

3 and form triple bond

4 and form amide bond

5 and form aromatic bond (6)

For computational convenience, the adjacency matrix A is
formed to describe the connectivity of the graph only, which is
defined as

l
m
ooo
n
ooo=

=
A

T

T

0, 0

1, 0ij
ij

ij (7)

Graph-Based Message Passing. The message-passing
process in MPF aims to aggregate information from connected
atoms and update the feature on every atom. After several
rounds of updates, the feature of atoms can be regarded as a
message and passed to further atoms and can help describe the
local environment of the selected atomwithin a cutoff defined by
the number of bonds traversed.

In this model, we define an update function for atom i for stage
l + 1 as

= + ++H H H Hi
l

i
l

i
l

i
l1

bond, atom, self, (8)

Here, the updated feature Hi consists of a bond contribution
term Hbond,i, an atom contribution term Hatom,i, and a self-
contribution term Hself,i. The bond contribution term reads

= ·H H Ti
l

j
j
l

ijbond,
(9)

The atomic contribution is defined as

= ·H H Ai
l

j
j
l

i j ijatom,
(10)

and the self-contribution is

=H Hi
l

i
l

self, (11)

Here, j denotes any atom inside the molecule.
In this model, the initial features for all atoms are set to 1, that

is, =H 1i
(0) , which gives the same weights for all atoms. Thus,

the following updates can generate features in an unbiased way.
The cutoff here is one of the most important hyper-parameters,
which balances the accuracy with time and data efficiency. By
increasing the cutoff value, the accuracy increases due to the
consideration of longer-range interactions, but the required
number of training data and the preprocessing time also
increases. In this paper, all of these trained models use a cutoff
parameter of 3, according to the size of the data set and the
availability of computational resources.

Atomic Featurization. Five features are used to describe
the atomic local environment for atom i. Apart from the bond
contribution H ibond,

(3) , the atom contribution H iatom,
(3) , and the self-

contribution H iatom,
(3) based on the updated graph, two additional

features, mean neighboring electronegativity HMNE,i and self-
electronegativity HSEN,i, are added. These can be written as

=
·

H
A

Ai
j j ij

j ij
MNE,

(12)

and
=H i iSEN, (13)

Statistically, these five features are regarded as labels that
describe the local atomic environment and which enable the
following ANN to classify each atom and allocate the same
partial charge to those atoms with the same labels.

Each of these five features is then normalized by its standard
deviation, where the normalized feature Hi is defined by

=H
H

i
i H

H

preset

preset (14)

Here, H
preset and H

preset denote the average value and standard
deviation of feature H over the training data set and are
computed after the updates. The final feature matrix Fi for atom i
is then

= { }H H H H HF , , , ,i i i i i ibond, atom, self, MNE, SEN, (15)

The MPF shall be now fully defined.
Neural Network Implementation. Here, we use Tensor-

Flow 2.7.416 as the framework to implement our neural network.
The general structure of our algorithm is listed in Figure 1. The
model contains a 5-node input layer, five 50-node dense layers
activated by the tanh function, and a 1-node output layer. This
model accepts feature matrix Fi as input and returns a
normalized predicted charge Q i . Then, Q i is denormalized
into the final predicted charge Qi using the following
postprocessing formula

= +Q Qi Q i Q
preset preset

(16)

where Q
preset and Q

preset are the standard deviation and average
value of the final predicted chargeQ, respectively, in the training
data set.

This neural network model is trained for 100 epochs with the
Adam optimizer17 (lr = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−7).
The loss function is the mean absolute error (MAE) and the
batch size is 16 for “Model Mulliken”, “Model Hirshfeld”,
“Model CM5” and “Model DDEC6”, and 768 for “Model SE”.
The training details can be found in the Supporting Information.

Input Data Set. We use five data sets to train and validate
our model for various charge types: “Model Mulliken”, “Model
Hirshfeld”, “Model SE”, “Model CM5”, and “Model DDEC6”.
Here, we use “Model Mulliken”, “Model Hirshfeld”, “Model
CM5”, and “Model DDEC6” to demonstrate the flexibility and
robustness of our model under multiple definitions of charge.
“Model SE” is used to validate the performance of the model in a
larger data set.

The molecular structures used in “Model Mulliken”, “Model
Hirshfeld”, “Model CM5”, and “Model DDEC6” are obtained
from database GDB1318 with C, N, O, and H elements in the
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smiles format, with a total of 12,124 molecules in the training set
and 1393 molecules in the testing set. Note that the smiles
format gives the connectivity between atoms within a molecule
but not the positions of the atoms. The format conversion from
smiles to xyz (which does provide atomic positions) is done by
Open Babel.19 Here, a conformational search and optimization
method20 is used. When converting a smiles string to
coordinates, this method seeks to find the conformation that
has the lowest computational energy. We note that this means
that the model can only be used reliably for minimum energy
conformations. All of the Mulliken, Hirshfeld, and CM5 charges
are calculated byGaussian 1621 using the B3LYP functional and
a 6-31G(d) basis set. In this DFT section, we optimized all these
molecules to their lowest energy state. In “Model DDEC6”, the
charge is obtained via program Chargemol7,22 based on the
electron density provided by Gaussian 16. In “Model SE”, both
the training and testing data sets are obtained from the ZINC20
database in the mol2 format with AMSOL-calculated semi-
empirical charges.23 A total of 898,466 lead-like molecules are
selected for training and another 100,000 lead-like molecules for
testing. The selected data set and the detailed information on the
four data sets are shown in the Supporting Information.

For the testing and predicting processes, the accepted input
formats are smiles and mol2. For smiles input, the string is first
converted to mol2 format by Open Babel without generating
atomic coordinates.19

■ RESULTS AND DISCUSSION
Accuracy Analysis. We use seven key indicators to evaluate

the accuracy of these models: mean absolute error, median

absolute error, the highest absolute error from the lowest 80% of
errors [which we call the top low 80% absolute error
(TL80AE)], median absolute percentage error, the highest
absolute percentage error from the lowest 80% of errors [which
we call the top low 80% percentage error (TL80PE)], coefficient
of determination (R2), and RMSE. Table 2 shows the value of
indicators for each model and element, and Figure 2 shows the
heatmap of predicted value against the true value for the testing
set for each model. Due to the different definitions in each
chargemodel, the value of the assigned charge on an atom is on a
different scale for each model. So the general comparison below

only focuses on the median of absolute percentage error, the
absolute percentage error of 80% prediction, and R2.

By comparing these indicators and heatmaps for each model,
we discover that our algorithm can predict the various kinds of
charges with a value of R2 larger than 0.96 and a narrow
distribution on heatmaps. By using the RMSE as the primary
indicator for accuracy analysis, it can be concluded that “Model
Hirshfeld” and “Model CM5” are the two models of best
accuracy. However, it can be found that the result of the accuracy
analysis can be different when based on different indicators. One
possible reason for such an observation is the difference in the
absolute values of different types of charges and the sensitivity of
an indicator to different aspects. By comparing Figure 2a,b, the
distribution range of the absolute value of the Mulliken charge is
greater than that of the Hirshfeld charge. So in Table 2, although
“Model Hirshfeld” has a lower value of MAE and TL80AE
compared to “Model Mulliken”, it has a greater value in MAPE,
TL80PE, and R2. Thus, these indicators need to be interpreted
with a reference to the aspects to which they are sensitive to.

By comparing the results for each element, our model
manages to predict charges on C, H, O, N, F, and S atoms with
R2 greater than 0.75. More specifically, these trained models
achieve better accuracy on elements O, N, F, and S. The
accuracy of these models depends on the amount of data
available in the training set and the distribution range of the
charges. For instance, Cl and Br have worse accuracy than other
elements due to the limited data availability in the training set, as
seen in Table 1. In addition, for the training set of “Model
Hirshfeld” for example, the charge distribution of C (−0.185 to
0.237) is wider than that of H (0.007 to 0.205), and the RMSE
value of C is greater than that of H, as shown in Table 1.

Although the MPF is designed for quick filtering and the
flexibility to perform calculations for any size of molecule, the
MPF-based model still provides acceptable accuracy when
compared with other existingDDEC charge predictingmethods.
The MPF-based model for DDEC6 charge prediction
introduced has an overall RMSE of 0.045e in the GDB13-
based testing set. Bleiziffer’s models6 achieved RMSEs of 0.029e
and 0.016e in a testing set based on ZINC and ChEMBL
databases. The model DeepAtomicCharge1 has an RMSE of
0.0162e in their ZINC- and ChEMBL-based databases.

Time Complexity Analysis. The charges are computed one
atom at a time, so the time used by the neural network to predict
the charges on all of the atoms in a molecule increases linearly as
the number of atoms increases. However, the format conversion
from smiles to mol2 and data preprocessing, i.e., the updating
process on the graph and feature extraction, are more time-
consuming. Figure 3 shows the results of the time efficiency test
on 10 alkane chains containing from 1200 to 12,000 carbon
atoms. Each test was run five times, and the average time usage
was taken. The overall time test measures the time starting from
reading the smiles string, including the time used to convert it to
the mol2 format via Open Babel, mol2 file read-in, data
preprocessing, and the neural network prediction. The model
time test consists only of the time for data preprocessing and
neural network prediction. And the NNTime only measures the
time that neural network prediction used. These results indicate
the overall time complexity of the MPF algorithm is O(n2) and
that of the neural network prediction is linear (O(n)). Detailed
information on the tested points and results and the
specifications for the machine used to perform the tests is
given in the Supporting Information.

Table 1. Detailed Information for the Selected Datasets

ZINC
training

ZINC
testing

GDB13
training

GDB13
testing

charge type semiempirical Mulliken/Hirsh-
feld/CM5/DDEC6

number of
molecules

898,466 100,000 12,124 1393

largest number of
atoms

52 51 23 21

total number of
atoms

35,532,841 3,907,949 203,052 21,044

number of C atoms 10,998,813 1,228,545 61,980 6858
number of H atoms 17,828,785 1,954,366 108,043 9900
number of O atoms 2,782,219 344,935 15,576 2116
number of N atoms 3,690,163 354,572 17,453 2170
number of F atoms 74,996 11,705 N/A N/A
number of S atoms 152,431 23,033 N/A N/A
number of Cl atoms 4955 716 N/A N/A
number of Br atoms 344 77 N/A N/A
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■ CONCLUSIONS
In this paper, a new machine-learning featurizer named MPF for
atomic partial charge prediction is presented. The MPF-based
model has several advantages:

• It is totally coordinate-free: this model accepts a smiles
string as input and does not require Cartesian coordinates.

• It is molecule size independent: our model makes charge
predictions for any size of molecule without any retraining
and modification of the existing model.

• It is fast and accurate: the time complexity of the MPF-
based model is O(n2). The median absolute percentage
error of our models is in the range 5 to 12.5%, the exact
value depending on the type of partial charge.

It is important to clarify that our MPF algorithm still has some
limitations. First, in the current work, we only considered up to
the third nearest neighbor of each atom, whichmeans our model
ignores long-range interactions. Second, the bond length, bond
angle, and torsion angle are not taken into consideration in our
model. So this model may fail to predict accurate partial charges
in the situation that secondary structure matters. Third, this
model is designed for single, double, triple, amide, and aromatic
bonds only andmay fail in cases where H bonds and polarization
are important. Another limitation of this work is that it is only

reliable for the lowest energy conformations as the training set
only contained lowest energy conformations. Some of these
limitations might be overcome through the use of larger cutoffs
and broader training sets. In order to describe high energy
conformations, the input smiles string would need to be
augmented with additional information, and the training set
would need to be extended to include high energy
conformations.

■ ASSOCIATED CONTENT
Data Availability Statement
Gaussian 16 is used for DFT calculation in “Model Mulliken”,
“Model Hirshfeld”, “Model CM5”, and “Model DDEC6”.21

Open Babel is used for data format conversions, including from
smiles to mol2 and from Gaussian’s log to mol2.19 Chargemol is
the program used for DDEC6 charge calculation in “Model
DDEC6”, which can be accessed via https://github.com/
berquist/chargemol.7,22 cppgd is used for Gaussian’s log files
and mol2 files read in, which can be accessed via https://github.
com/xieqin74123/cppgd. All training and testing data sets and
Python scripts are provided in 10.5281/zenodo.10149110.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00376.

Table 2. Accuracy Analysis on the Testing Data Set by Elements. When Data Is Not Available, the Entry Is Marked as “N/A”

indicator model all C H O N F S Cl Br

mean absolute error (e) Mulliken 0.023 0.035 0.015 0.020 0.028 N/A N/A N/A N/A
Hirshfeld 0.011 0.011 0.008 0.014 0.017 N/A N/A N/A N/A
SE 0.014 0.018 0.011 0.011 0.014 0.010 0.032 0.022 0.045
CM5 0.012 0.014 0.008 0.016 0.020 N/A N/A N/A N/A
DDEC6 0.029 0.042 0.021 0.020 0.031 N/A N/A N/A N/A

median absolute error (e) Mulliken 0.015 0.022 0.011 0.015 0.018 N/A N/A N/A N/A
Hirshfeld 0.007 0.007 0.007 0.009 0.010 N/A N/A N/A N/A
SE 0.008 0.009 0.008 0.007 0.007 0.008 0.013 0.017 0.038
CM5 0.008 0.008 0.006 0.010 0.010 N/A N/A N/A N/A
DDEC6 0.018 0.027 0.014 0.011 0.018 N/A N/A N/A N/A

TL80AE (e) Mulliken 0.034 0.053 0.025 0.032 0.040 N/A N/A N/A N/A
Hirshfeld 0.016 0.017 0.013 0.021 0.024 N/A N/A N/A N/A
SE 0.020 0.026 0.018 0.016 0.020 0.015 0.042 0.033 0.069
CM5 0.017 0.021 0.013 0.024 0.028 N/A N/A N/A N/A
DDEC6 0.044 0.067 0.035 0.029 0.045 N/A N/A N/A N/A

median absolute percentage error Mulliken 7.039% 13.468% 6.776% 3.027% 5.011% N/A N/A N/A N/A
Hirshfeld 12.423% 18.756% 13.129% 4.516% 8.767% N/A N/A N/A N/A
SE 5.166% 6.758% 8.318% 1.436% 1.346% 4.414% 0.753% 57.640% 77.422%
CM5 5.781% 10.613% 5.252% 3.195% 2.971% N/A N/A N/A N/A
DDEC6 12.789% 22.288% 14.291% 2.932% 6.424% N/A N/A N/A N/A

TL80PE Mulliken 19.505% 44.977% 15.979% 7.336% 11.717% N/A N/A N/A N/A
Hirshfeld 30.681% 64.528% 26.100% 10.686% 29.120% N/A N/A N/A N/A
SE 18.709% 25.509% 19.661% 3.395% 4.592% 9.513% 4.096% 391.451% 293.597%
CM5 15.795% 34.391% 12.157% 8.976% 9.333% N/A N/A N/A N/A
DDEC6 43.384% 81.166% 39.288% 8.351% 21.028% N/A N/A N/A N/A

RMSE (e) Mulliken 0.040 0.058 0.021 0.026 0.051 N/A N/A N/A N/A
Hirshfeld 0.018 0.017 0.010 0.019 0.036 N/A N/A N/A N/A
SE 0.026 0.036 0.017 0.022 0.027 0.015 0.070 0.032 0.057
CM5 0.020 0.022 0.011 0.023 0.038 N/A N/A N/A N/A
DDEC6 0.045 0.061 0.030 0.033 0.052 N/A N/A N/A N/A

R2 Mulliken 0.981 0.956 0.942 0.907 0.913 N/A N/A N/A N/A
Hirshfeld 0.971 0.941 0.939 0.874 0.785 N/A N/A N/A N/A
SE 0.994 0.978 0.968 0.984 0.983 0.750 0.995 0.399 −0.366
CM5 0.990 0.968 0.984 0.937 0.892 N/A N/A N/A N/A
DDEC6 0.965 0.926 0.911 0.905 0.918 N/A N/A N/A N/A
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Training and testing data sets extracted from ZINC and
GDB13, definitions of GG-NN-based MPNN model,
training and testing detail information for “Model
Mulliken”, “Model Hirshfeld”, “Model SE”, “Model
CM5”, and “Model DDEC6”, raw data and machine
specification of time complexity test, and factorial
experiment raw data and analysis (PDF)
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