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temperature monitoring using
machine learning and physics-based
methods for high-cycle thermal
fatigue monitoring

Laurence Clarkson , Yifeng Zhang and Frederic Cegla

Abstract
Failure of pipe network components in so-called mixing zones due to high-cycle thermal fatigue (HCTF) can occur
within nuclear power plants where fluids of different thermal and hydraulic properties interact. Given that the conse-
quences of such failures are potentially deadly, a method to monitor HCTF non-invasively in real-time is expected to be
of great use. This method may be realised by a technique to determine the inaccessible temperature distribution of a
component since thermal gradients drive HCTF. Previous work showed that a physics-based method called the inverse
thermal modelling (ITM) method can obtain the temperature distribution from external temperature and ultrasonic time
of flight (TOF) measurements. This study investigated whether the long-short-term memory (LSTM) machine learning
architecture could be a faster alternative to the ITM method for data inversion. On experimental data, a 25-member
ensemble of LSTM networks achieved an ensemble median root mean square error (RMSE) of 1.04�C and an ensemble
median mean error of 0.194�C (both relative to a resistance temperature device measurement). These values are similar
to the ITM method which achieved a RMSE of 1.04�C and a mean error of 0.196�C. The single LSTM network and the
ITM method achieved a computation-to-real-world time ratio of 0.008% and 14%, respectively demonstrating that both
methods can invert data in real-time. Simulation studies revealed that LSTM performance is sensitive to small differences
between the training and real-world parameters leading to unacceptable errors. However, these errors can be detected
via an ensemble of independent networks and, corrected by simply adding a correction factor to the TOF prior to being
input into the networks. The results show that LSTM has the potential to be an alternative to the ITM method; how-
ever, the authors favour ITM for temperature distribution monitoring given its interpretability.
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Introduction

Motivations

Pipe networks within nuclear power plants (NPPs) are
susceptible to high-cycle thermal fatigue (HCTF) in so-
called mixing zones where fluids of different thermal
and hydraulic properties interact.1,2 This susceptibility
is, in part, due to the high thermal expansion coefficient
and low thermal conductivity of austenitic stainless
steels (SSs)3 that are used throughout different types of
NPPs.4,5

In May 1998, a crack of a pipe elbow within the
reactor heat removal system (RHRS) caused a leak at
the French Civaux 1 pressurised water reactor after
just 1500 h of operation.6 The leak caused the release

of radioactive steam at a rate of 30 m3 h21 into the
reactor building.7 The location of the 180 mm
through-wall crack on the pipe elbow is shown in
Figure 1. Following this incident, Civaux 1 and three
other reactors of the same design were defueled, and a
failure analysis was performed.7 The analysis identified
that the failure was caused by thermal-fatigue-initiated
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cracks.8 This HCTF phenomenon had not been con-
sidered during the design of the NPPs since it was not
captured in the design standards of the time.6 Hence,
redesign, requalification and replacement of the
affected components of the RHRS in all four reactors
had to be performed. Subsequent ultrasonic inspection
in 1999 of all NPPs in France revealed that thermal
fatigue cracking was not unique to the Civaux 1 reac-
tor design (due to the limitations of the design stan-
dards6). Further research identified that mixing zone
HCTF is primarily caused by repeated exposure to
temperature fluctuations affected by differences .50�C
between hot and cold fluids.6 It was also found that
the fatigue is most severe for temperature fluctuations
with frequencies in the range from 0.1 to 1 Hz.9,10

Given the susceptibility of austenitic steels to ther-
mal fatigue,3 and that safety is paramount in the
nuclear industry, it is desirable to investigate tech-
niques that can monitor the progression of HCTF and
as a result, relax the requirements on the inspection
interval and remove operators from the hazardous
environment.

Article structure

The remainder of the article is structured as follows:
the section ‘Limitations of current HCTF monitoring
methods’ details the short-comings of current HCTF
monitoring methods, and the physical reasons for this.
A brief explanation of a physics-based ultrasonic tem-
perature inversion method is presented in the section
‘Inverse thermal modelling method’. The section ‘Long
short-term memory’ describes the machine learning
network architecture considered in this work, the
process for generating (simulated) training and testing

data and the steps for training networks. The section
‘Simulation studies’ defines an initial test case and two
additional test cases concerning data that have never
been seen before seen by the trained networks. The sec-
tion ‘Experimental studies’ introduces experimental
data used to evaluate the machine learning networks
on real-world data. The results of the machine learning
networks are shown and discussed first for the simu-
lated test data followed by the experimental test data,
with results for the physics-based inversion method
included for comparison. Finally, a summary of the
key findings are provided in the conclusions.

Limitations of current HCTF monitoring methods

A component exposed to temperature fluctuations will
develop thermal gradients that will generate thermal
stresses. If sufficiently large, these stresses will impart
damage leading to crack initiation/propagation and
eventually cause the component failure. This failure
mechanism is known as thermal fatigue.11 For a pipe
carrying a thermally varying fluid, the inaccessible inte-
rior surface will experience the largest (compressive or
tensile) stresses.

Since thermal fatigue progression is driven by ther-
mal gradients, knowing how the through-thickness
temperature profile evolves over time is vital for moni-
toring thermal fatigue.10 However, this is a difficult
task because traditional temperature measurement
equipment (e.g. thermocouples) can only measure sur-
face temperatures. Several techniques to overcome this
issue have been developed; the following two sections
will introduce and evaluate these techniques.

Embedded thermocouples. The obvious method to obtain
the temperature profile in a component is by embed-
ding sensors into a component. This method is demon-
strated in two studies12,13 by embedding thermocouples
throughout the thickness of a component via drilled
holes. However, these holes will create stress-raising
features that will accelerate thermal fatigue progres-
sion.14 Furthermore, RTDs resistance temperature
detector have been shown to lag true temperature in
the order of seconds due to thermal conduction into
the device15 causing measurement errors.

FAMOSi. The integrated FAtigue MOnitoring System
(FAMOSi) was developed by Siemens in the 1980s and
later updated by Areva (a French multinational group
with a focus on nuclear power) for thermal fatigue
monitoring following the discovery of fatigue cracks in
NPPs.16 The resulting non-invasive system, called
Integrated FAMOS (FAMOSi), comprises seven tem-
perature sensors mounted around one half of a pipe’s

Figure 1. Schematic of the Civaux 1 RHRS pipe elbow
illustrating the location of the fatigue crack location.
Source: Geometry replicated from Cipière et al.8

RHRS: reactor heat removal system.
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circumference as shown in Figure 2. The system is
based on a comparison of the outer surface
temperature-time history to a pre-compiled reference
database of ‘responses’ which are computed via a finite
element model (FEM). It is likely to be a significant
task to validate the FEM. Furthermore, the system is
incapable of detecting thermal fluctuations .1 Hz.17

Although the reason for this limitation is not explicitly
stated in the literature, it is assumed to be due to the
low thermal conductivity of austenitic steels preventing
thermal energy from diffusing to the component’s
outer surface rather than a limitation in computational
or data acquisition capabilities. This effect is demon-
strated in the next section.

Thermal conduction: a low-pass filter. This section presents
simulations to demonstrate that materials with low
thermal conductivity effectively act as low-pass filters
of temperature. This low-pass effect implies that the
previously introduced HCTF monitoring methods,
based on externally mounted temperature sensors, will
be unsuitable for resolving sub-surface temperatures
that fluctuate rapidly, especially for thick components.

An explicit 1D, finite difference heat transfer model
with convective boundary conditions was developed
based on the model used by Zhang et al.18 The model
simulated the temperature profile evolution of a section
of 304 SS pipe carrying water at constant pressure and
the outer surface exposed to air as shown in Figure 3.
The fluctuation frequency of the water temperature was
set to be a linear up-chirp: the instantaneous frequency
increases linearly with time. The properties and para-
meters of the simulation are summarised in Table 1
where T, h, k, a, L, r and Dx are temperature, convec-
tive heat transfer coefficient, thermal conductivity,
thermal diffusivity thickness, density and nodal spacing,

respectively. The material properties of 304 SS were
taken from the CES Edupack materials database
(Granta Design Limited).19 The values for thickness
and hwater match the conditions at Civaux 1 that lead to
the tee-joint failure.20 The minimum time step for stable
computation is given by Dtmin in Equation (1).

Dtmin =
Dx2

2a 1 + hin3Dx
k

� �’0:027 ð1Þ

The 500 min of simulated time yields a rate of change
of chirp frequency of ’0:17mHzs�1 which is quasi-
stationary compared with the sampling rate ’0:027 s.
Following the computation of the temperature profile,
shear wave time of flights (TOFs) were calculated using
the trapezoidal approximation18 given in Equation (2).
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Figure 2. Schematic diagram of FAMOSi.
Source: Adapted from Bergholz et al.16 and Rudolph et al.17

Figure 3. Schematic of the simulation setup. The colour bar
denotes an arbitrary temperature gradient due to the difference
in temperature between the air and water.

Table 1. Parameters and material properties used in the
simulation (304 SS).

Parameter Value Unit

Simulation time 500 min
Tair 50 �C
Mean Twater 50 �C
Chirp peak-to-peak amplitude 40 �C
Chirp frequency range 0.01–5 Hz
hair 45.2 W/m2/K
hwater 15,000 W/m2/K
k304 18.5 W m21 K21

a304 4.64 mm2 s21

L 10 mm
r304 7850 kg m23

Dx 0.625 mm

SS: stainless steel.
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In Equation (2) Dx, vi and N denote the nodal spacing,
wave velocity at the ith node, and the total number of
nodes respectively. A quadratic fit was used to describe
the velocity–temperature v Tð Þð Þ relationship. Previous
work by Gajacsi21 provided an experimentally deter-
mined fit given in Equation (3).

vSh, 304 Tð Þ = � 10�5 T2 � 0:775T + 3188:73 ð3Þ

Figure 4 shows the water temperature Twaterð Þ, the
internal Tinð Þ and external Texð Þ surface temperatures
of the steel and shear (TOFSh) TOFs computed in the
simulation. Panel (a) demonstrates the low-pass effect:
the amplitude of the fluctuations of Tex rapidly
decreases as the frequency of Twater increases and
quickly drops below the measurement repeatability
(standard deviation (SD)) of a class A RTD22 at
100�C. The reduction in amplitude of Tin is less relative
to Tex and remains above the class A RTD measure-
ment repeatability. The amplitude of the fluctuations
of the shear wave TOF also decreases over time.
However, the peak-to-peak amplitudes both remain
above the measurement repeatability (SD) of the piezo-
electric transducers used by Zhang et al.18

A spectrogram of the full 500 min of simulation for
each variable is shown Figure 5. The horizontal lines at
0.1 Hz (red dash-dot) and 1 Hz (white dashed) are
superimposed on Figure 5 to show the range of critical
fluctuation frequencies for HCTF of the tee-joint at
Civaux.9,10 The spectrograms were computed to iden-
tify the maximum resolvable fluctuation frequency for
each variable. To create a spectrogram, a given vari-
able was segmented into periods of 2048 time steps.
The Fourier transform was computed for each period
and stacked along the x-axis, that is, a visual represen-
tation of the frequency content of a signal for each
consecutive 2048 time step period. Each variable was
normalised by its absolute range before the spectro-
gram was computed, that is, Equation (4).

X � =
X

Xmax � Xminj j ð4Þ

The minimum of the colour bar X̂
� �

for each panel in
Figure 5 was set according to Equation (5) where X

denotes temperature or TOF. sX denotes the experi-
mental SD.

Figure 4. Results of the finite difference simulation for a 10 mm block of 304 SS exposed to temperature-varying water that
fluctuates according to a sine wave with linearly increasing frequency. Temperatures of the water, and at the inner and outer surface
of the component are shown in the top row. The bottom row shows the shear TOF. Panels (c) and (d) are zoomed to show the
first 5 mins of panels (a) and (b), respectively. The left column shows full 500 min of the finite difference simulation whilst the plots
in the right column show only 5 min.
SS: stainless steel; TOF: time of flight.
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X̂ = 20log10

sX

Xmax � Xminj j

� �
ð5Þ

For temperature, sX was set to be 0.35�C (class A
RTD22 at 100�C). For TOF, sX was set to 16 ps (SDs
of the piezoelectric transducers used by Zhang et al.18).

Figure 5(d) shows that a temperature sensor
mounted to the external surface of a component cannot
differentiate temperature fluctuation frequencies greater
than approximately 0.29 Hz. Furthermore, the practical
frequency limit is likely lower than 0.29 Hz due to the
lag time of typical temperature sensors15,18,23 which is
not considered in these simulations. In contrast, the
shear TOFs (Figure 5(e)) remain sensitive up to 5 Hz.
TOF should remain sensitive well beyond 5 Hz
although the theoretical upper limit of the sensitivity

was not investigated in this simulation. The upper limit
is expected to be governed by the sampling rate of the
acquisition hardware.

Inverse thermal modelling method

A feasibility study by Zhang et al.18 utilised the ther-
mal sensitivity of (shear) ultrasonic TOF (as shown in
the previous section), demonstrating internal surface
temperature estimation within 2�C. The method cou-
ples TOF and outer (accessible) surface temperature
measurements with a physics-based inversion model to
obtain temperature estimations. Of the two inversion
methods presented by Zhang et al., only the inverse
thermal modelling (ITM) method based on earlier
work by Ihara et al.24 will be considered in this article.

Figure 5. Spectrograms for the temperatures (a)–(d) and, shear TOF (e) computed by the finite difference simulation (Figure 4).
Each variable was normalised according to Equation (4) before computing the spectrogram. The horizontal red dash-dot and white
dashed lines denote 0.1 and 1, respectively. The solid white lines in panel (c) bound the zoom extents for panel (d).
TOF: time of flight.
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The ITM method is based on iterative optimisation
of an explicit finite difference formulation of the inverse
heat conduction problem enabling it to obtain the full
temperature profile. The explicit formulation requires
that the time step of the data must be sufficiently small
to ensure a stable solution. Hence, interpolation of the
data is usually necessary to ensure stability which
increases computational expense.

Long short-term memory

Machine learning is a technique that is being increas-
ingly implemented in non-destructive evaluation sce-
narios, including:

� Ultrasonic flaw classification25

� Deconvolution of ultrasonic signals26

� Artefact identification and suppression in ultraso-
nic images27

� Defect detection in guided wave signals28

� Noise quantification in ultrasonic images29

� Ultrasonic crack characterisation30

Machine learning has several beneficial characteristics
including:

� A physics-based model of an underlying system is
not required31

� The ability to implicitly create complex non-linear
relationships

One drawback is that it is difficult to explore the
explainability of the mathematical operations inside
the model leading to machine learning networks to
often be described as a ‘black box’ method.32 Very
broadly, deep learning – a subset of machine learning –
can use all the available information embedded within
the data set by simply using the raw data as the input.
In contrast, shallow learning requires hand selection of
input features but requires less training data than deep
learning.33 Within deep learning, recurrent neural net-
works (RNNs) are well suited for problems involving
time-series data; however, they can be susceptible to
gradient vanishing and gradient exploding problems.34

To overcome this issue, a novel and efficient gradient-
based method, called long short-term memory (LSTM)
was developed by Hochreiter and Schmidhuber.35 This
article explores whether machine learning networks
can replace the (single shear wave) ITM inversion
method for real-time temperature gradient monitoring
using networks trained using simulation data only.
Given the available scope of this article, it would not
be possible to explore all potential machine learning
architectures. The LSTM architecture was selected for

investigation as it seemed a prominent candidate and
showed promising results in initial evaluations. For a
detailed discussion of other types of architectures that
have been proposed for a range of non-destructive eva-
luations applications, beyond time-series data, the
review paper by Cantero-Chinchilla et al.36 is suggested
to the interested reader.

Figure 6 shows a schematic of an LSTM cell that
contains four layers. The four layers comprise three
logistic sigmoid and one hyperbolic tangent (tanh)
functions that interact to produce the output and the
state of the cell which are then passed onto the next
hidden layer. An LSTM cell has three inputs: ht�1, ct�1

and xt and two outputs: ht and ct. Subscripts t and
t � 1 denote the current and previous time steps,
respectively. h is the hidden state, c is the cell state (or
memory) and x is the input. The output of the first sig-
moid layer (forget gate ft) defines the amount of infor-
mation of the previous cell to be maintained via an
element-wise multiplication with ct�1. The tanh layer
yields a vector ~ct of the new candidate values. The
element-wise multiplication of the second sigmoid layer
(input gate, it) and ~ct determines the amount of infor-
mation to be added to the cell state. This result is then
added to the output of the forget gate multiplied with
ct�1 to produce ct. The final sigmoid layer (output gate,
ot) is multiplied in an element-wise fashion with a tanh
layer to produce the output ht of the cell. Further
details on the LSTM architecture can be found in
Hochreiter et al.35 and DiPietro and Hager.37

Train/test data generation and network training

The previously introduced finite difference heat trans-
fer code was used to generate data sets for training and

Figure 6. Graphical illustration of an LSTM cell. The weights
are omitted for clarity. s, T, � and + denote sigmoid and tanh
layers, element-wise multiplication and addition, respectively.
LSTM: Long-short-term memory.
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testing LSTM networks. However, the method for
defining the water temperature fluctuations differed.
The first method (later referred to as the sine method)
defined the fluctuations to be sinusoidal (rather than a
linear chirp) and were defined by three parameters:

1. Mean temperature (increasing, decreasing, or
constant)

2. Temperature range (increasing, decreasing, or
constant)

3. Fluctuation frequency (0:1<f <1Hz, critical fre-
quency range for HCTF at Civaux9,10)

Each of the parameters was selected for each ‘region’
in the data set using uniform random distributions; dis-
crete forms of the distribution are used for the mean
temperature and temperature range. Figure 7 shows
nine representative regions demonstrating each of the
possible mean temperature and temperature range
combinations for the sine method. The training data
set used to train all LSTM networks was generated
using the parameters given in Table 2.

The second method (later referred to as the square
method) used to create a test set that mimics the experi-
mental data introduced in a later section, defined the
fluctuations as square waves. In both methods, the
upper limit of Twater was set as the saturation tempera-
ture at the chosen (constant) pressure, calculated using

the properties of water and steam based on the formu-
lation coordinated by the International Association for
the Properties of Water and Steam,38 to ensure physical
sense. Finally, the generated data were down-sampled
to a 0.5 Hz sampling rate which is the Nyquist fre-
quency39 of the maximum critical frequency of HCTF
at Civaux.9,10

Figure 7. Representative example showing a region for each of the possible nine mean temperature and temperature range
combinations used when generating Twater using the sine method for training data. The fluctuation frequencies and time for each region
were chosen purely for clear visualisation. A frequency range of 0.1–1 Hz was used to generate simulated training or test data.

Table 2. Parameters and material properties used to generate
the training data.

Parameter Value Unit

Generation method Sine –
Regions 100 –
Fluctuation frequency range 0.1–1 Hz
Region time range 5–20 min
Time steps 1:013107 –
Train-validation split 85–15 %
Thickness 30 mm
Nodes 61 –
Nodal spacing 0.5 mm
Time step 7.01 ms
Material EN32B steel –
Thermal diffusivity 17.7 mm2 s21

Thermal conductivity 70.2 W m21 K
Density 7890 kg m23

Water heat transfer coefficient 1100 W/m2/K
Air heat transfer coefficient 45.2 W/m2/K
Pressure 0.10 MPa
Saturation temperature 99.6 �C
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The networks were created in Python 340 using the
Keras deep learning API.41 Each network comprised a
single LSTM layer with 180 neurons followed by a one-
unit dense layer. An 85:15 train-validation split was
used on training data sets, and separate unseen data
sets were used for testing. All training sets were gener-
ated using the sine method. The input data were assem-
bled such that for a given time step, the data passed to
the network contained two values: the value at the cur-
rent, and one previous time steps. The Adam optimi-
ser42 was used in conjunction with Equation (6) which
describes the exponentially decaying learning rate, Lr,
where n refers to the current training epoch. The root
mean squared error (RMSE) and mean error were used
as quantitative metrics to assess performance on the
test sets.

Lr n½ �= 0:01 e�0:05n ð6Þ

The mean square error was used as the loss func-
tion. Early stopping based on 25 epochs without
reduction of the validation set loss was used to prevent
the networks from over-fitting to the training data.
The networks were trained with a 12th Gen Intel core
i7 processor CPU of a desktop PC. This PC was used
throughout the work presented in this article.

A manual ‘trial and error’ approach was used over
formal optimisation strategies of the LSTM networks
for two reasons. Firstly, because this work set out to
determine whether machine learning might be a less
computationally expensive alternative to physics-based
methods rather than finding the best (highest accuracy)
machine learning method. Secondly, the first trial
implementation yielded good results (single 50-neurons
LSTM layer followed by a one-unit dense layer).
Furthermore, better performance (defined as lower
RMSE/mean error) should only be considered on
experimental data. However, this poses a limitation
due to the lag of RTDs15,18,23 – the LSTM predictions
are compared to a reference measurement rather than a
ground truth during experiments. Hence lower RMSE/
mean error on experimental data by LSTM would
mean that the inherent lag of the RTDs is being learnt,
this is not beneficial and hence a sensitivity study of
changes in performance metrics was not attempted.

Simulation studies

It was expected that if a LSTM network could predict
the temperature at a single distance from the water–
metal interface, a more complex network would be able
to predict the full temperature profile of a component.
In this work, a single distance network was investigated
to confirm whether the LSTM architecture was a suit-
able choice for data inversion. The single distance was

chosen to be 5 mm from the water–metal interface to
match the reference RTD distance in the experimental
data (introduced later). A training set that simulated
an EN32B mild steel block exposed to water on one
side and the other exposed to constant temperature air
was created using the sine method comprising 100
regions. A single shear wave was used since the changes
in TOF were due to temperature changes only (the
component thickness remained constant). The shear
wave velocity–temperature relationship of the sample is
given in Equation (7).

vSh, EN32B Tð Þ= AT + B = � 0:48894T + 3237:61 ð7Þ

LSTM networks were then trained with this data set.
Following training, the performance of the networks
was evaluated using an initial simulated test set with the
water temperature defined with the square method to
switch between hot and cold, with the magnitudes and
periods of exposure matching the experimental data set.
The simulation parameters are shown in Table 3 where
the symbols have the same definitions as in Table 1.

Deep ensemble

To observe the influence and minimise the impact of
the random initialisation of the network weights each
time a new network was trained, 100 networks (with
identical architectures) were trained using the same
training set. These networks were used to create a deep
ensemble. Deep ensembles of machine learning net-
works have been shown to increase prediction accuracy
and provide a measure of uncertainty.33 To determine a
sufficient number of networks (members) in the ensem-
ble, increasing numbers of members were included in
the ensemble and the SD of the RMSE was computed.
This process was repeated with random (unique) shuf-
fles of the order in which the networks were included in
the ensemble. However, only 20,000 shuffles were con-
sidered since for 100 networks it would be unrealistic to
consider all 1:2631030 possible combinations, as given
in Equation (8). In Equation (8), n and r are the total

Table 3. Properties used to generate the simulated training
and test data (EN32B mild steel).

Parameter Value Unit

Tair 20 �C
hair 45.2 m2 s21

hwater 1100 m2 s21

kEN32B 70.2 W m21 K21

aEN32B 17.7 mm2 s21

L 30 mm
rEN32B 7890 kg m23
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number of possible members and the current number
of members considered, respectively.

Xn

r = 1

n!

r! n� rð Þ! = 2n � 1 = 2100 � 1’1:2631030 ð8Þ

The range of the RMSE SD was compared to the
(peak-to-peak) range tolerance, at the mean tempera-
ture of the simulated data set (’36:68C, which closely
matches that of the experimental data set), of a class A
RTD22: Tol’0:458C (Equation (9)).

Tol= 60:15 + 0:002336:6’60:223! 0:4468C ð9Þ

This comparison is shown in Figure 8. As expected, as
the number of ensemble members reaches the maxi-
mum number, the range of the SD of the RMSE
reduces to zero since a change in the inclusion order of
networks becomes less significant. The ensemble SD
range falls below that of the RTD after 10 members.
While 10 members could be argued to be sufficient the
authors decided to be conservative by including 25
members so that variations due to simulations would
be smaller than those that are expected in experimental
measurements. For the avoidance of any doubt, 25 of

the 100 networks were randomly selected and the same
25 networks were subsequently used throughout this
article for any and all simulation or experimental
studies.

Robustness against out-of-distribution data

Out-of-distribution data (OODD) are data that a
trained network has never been exposed to because the
training set does not capture it. The response of the
LSTM ensemble to OODD was explored to assess two
areas. Firstly, assess the magnitude of the impact of
OODD on the ensemble, that is, how badly wrong do
the predictions get on previously unseen data.
Secondly, whether the deep ensemble could detect when
the model is working outside of the predefined domain
of operation using the SD of the ensemble predictions.
The second area encompasses quantification of the
epistemic uncertainty. Epistemic uncertainty arises
from a lack of knowledge about data generation
method, resulting in uncertain network parameters.
The uncertainty can be reduced by increasing the
amount of relevant training data, provided that the
training data aligns closely with the test data. However,
it is important to note that in this work the epistemic

Figure 8. The upper panel shows the standard deviation of RMSE of the ensembles for increasing numbers of members in the LSTM
ensemble for predictions on the baseline simulation test set. The standard deviations of the RMSE are shown for 20,000 unique
random shuffles of the order in which networks are considered for inclusion in the ensemble. Values that were more than 1.5 3 the
interquartile range are shown by the circles. The lower panel shows the range of standard deviations of the RMSE (which are shown
in the upper panel). In the lower panel, the solid black line denotes the tolerance range of a class A RTD22 as defined by Equation (9).
LSTM: long-short-term memory; RMSE: root mean square error.
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uncertainty cannot be fully eliminated because simula-
tion data has been used to approximate real-world data
leading to an inherent difference between training and
test data.33

Two independent OODD scenarios that were
deemed most likely to occur in the real world were
explored. The OODD scenarios were incorrect compo-
nent thickness, and v Tð Þ coefficients, referred to as
thickness OODD and velocity OODD, respectively.
All parameters used to generate the base test set in
both OODD scenarios exactly matched those used to
generate the training data apart from the random seed.
The OODD test sets were derived from the base test
set using the variation in parameters given in Tables 4
and 5 – all other parameters remained the same across
the OODD sets (including the random seed). The
OODD test sets including the base set were generated
using the sine method.

Experimental studies

The ‘temperature fluctuations only’ experiment data
were provided by Zhang and Cegla23 for use as a test

set to evaluate the real-world performance of the 25
previously trained LSTM networks. The ITM
MATLAB43 code was also provided and then rewritten
in Python. The experiment comprised a sample of
EN32B mild steel L’30mmð Þ exposed to alternating
hot and cold water by a purpose-built setup. A refer-
ence measurement was provided by an RTD embedded
in the sample 5 mm from the water–metal interface
using thermally conductive epoxy. Data were recorded
at a sampling rate of 0.25 Hz, or one point every 4 s.
The interested reader is directed to the original paper
for in-depth details of the materials and methods.23

The shear wave velocity–temperature relationship of
the sample is given in Equation (7).

Prediction time

To investigate the computational time of the LSTM
ensemble, single LSTM network and ITM method,
their respective Python codes were run 20 times using
the experimental test set. Their respective computation
times were measured (using the perf_counter() func-
tion44) and averaged. The snippets of code that were
timed only included instructions explicitly related to
making predictions.

Results and discussion

Throughout this section, Equation (10) was used to
define the error between the true (simulated) or refer-
ence (RTD) measurement and the inversion method
(LSTM or ITM) predictions whilst Equation (11) was
used to define the error between the true (simulated) or
reference (RTD) measurement and the external surface
temperature. The subscript 5 mm refers to the distance
from the water–metal interface that the simulated or
experimental temperature measurements are taken
from as the true and reference measurement,
respectively.

EMethod
T = TSource

5mm � TMethod
5mm ð10Þ

DTSource = TSource
5mm � TSource

ex ð11Þ

Simulation studies

Figure 9 shows the results of the initial simulated test
set. The top panel of Figure 9 shows the true (simu-
lated) temperature 5 mm from the water–metal inter-
face and the mean temperature predictions of the 25
LSTM networks at the same spatial location. One SD
above and below the mean of the 25 networks is also
superimposed to demonstrate the aforementioned
impact of the random initialisation of each network.

Table 4. Values of the velocity–temperature relationship
coefficients used to generate the velocity OODD test sets. The
percentage changes are relative to the values used when
generating the base test set.

OODD
case

Velocity (V = AT + B) Deviation
(%)

A (m s21 �C21) B (m s21)

1 20.48845 3234.37 20.10
2 20.48869 3235.99 20.05
3 20.48889 3237.29 20.01
Base 20.48894 3237.61 0.00
4 20.48898 3237.93 0.01
5 20.48918 3239.23 0.05
6 20.48942 3240.85 0.10

OODD: out-of-distribution data. The base dataset is highlighted in bold.

Table 5. Values of the thicknesses used to generate the
thickness OODD test sets. The percentage changes are relative
to the values used to generate the base test set using absolute
magnitudes.

OODD
case

Thickness Deviation
(%)L (mm)

1 29.90 –0.33
2 29.95 –0.17
Base 30.00 0.00
3 30.05 0.17
4 30.10 0.33

OODD: out-of-distribution data. The base dataset is highlighted in bold.
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The bottom panel shows the error relative to the true
temperature for the mean LSTM predictions as well as
for the temperature at the steel block’s outer surface
(the air–metal interface). eLSTMT is approximately half
that of DTSim demonstrating that the LSTM machine
learning approach can outperform the most basic non-
invasive temperature sensing method. The largest val-
ues of SD occur when the water temperature switches
between hot and cold which lead to the largest tem-
perature gradients at the water–metal interface.

Figure 10 shows the RMSE and mean error for the
velocity OODD test sets taken over all time steps for
each network. The metrics based on the external tem-
perature are also shown as a reference. As both v Tð Þ
coefficients diverge from the values used during train-
ing (and in the base test case), the absolute magnitude
of both the RMSE and mean error increase. For the
avoidance of doubt, OODD cases 4–6 of Table 4 are
referred to as positive deviations of the v Tð Þ coeffi-
cients. Essentially, the absolute magnitude of each
coefficient in the test set is larger than the values used
during training; A becomes more negative and B

becomes less negative. In a similar fashion, OODD
cases 1–3 of Table 4 are referred to as negative devia-
tions. It was expected that for the positive deviations
of both v Tð Þ coefficients, the LSTM networks would

underpredict the true temperature and therefore the
error (according to Equation (10)) would be positive.

This can be intuitively explained by considering the
following scenario. Consider a block of thickness L

where the true v Tð Þ coefficients are Atrue and Btrue and
an LSTM network which is trained using the coeffi-
cients A+ and B+ where Atruej j\ A+j j and Btruej j\ B+j j.
Although not strictly necessary, it will be assumed that
the block is at some uniform temperature (for simpli-
city) such that the integral of Equation (2) becomes
Equation (12).

TOF=
2L

v Tð Þ =
2L

AT + B
ð12Þ

Suppose the TOF is measured at this given tempera-
ture, then the apparent temperature could be computed
by rearranging Equation (12) using A+ and B+ . The
apparent temperature would underpredict the true tem-
perature and hence this behaviour will be learnt by the
network during training. The inverse of this effect was
expected if Atruej j. A+j j and Btruej j. B+j j (OODD cases
1–3, Table 4). This behaviour is reflected in the positive
trend between the mean error and the deviation of the
v Tð Þ coefficients shown in Figure 10(b).

Figure 9. Initial simulated test set results. Top panel: simulated temperature 5 mm from the water–metal interface TSim
5 mm

� �
and the

ensemble mean predictions across the LSTM networks TLSTM
5 mm

� �
. Bottom panel: errors of the LSTM mean predictions eLSTM

T

� �
and

external simulated temperature DTSim
� �

, both relative to the true simulated temperature. One standard deviation across the LSTM
networks above and below the mean prediction is superimposed in both panels 61sð Þ.
LSTM: long-short-term memory.
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Figure 11 shows RMSE for the thickness OODD
test sets. The metrics based on the external temperature
are also shown as a reference. Similarly to the velocity

OODD cases, the absolute magnitude of both the
RMSE and mean error increase as the parameters
(thickness) of the test sets diverge from the value used

Figure 11. Performance metric boxplots for each trained network on the thickness OODD test sets. The base set (30.0, 0.0%) is
included for reference. The box plots and crosses denote the metrics for the predictions by each of the LSTM networks and the
external surface temperature, respectively. Prediction metrics for LSTM networks that were more than 1.5 3 the interquartile
range are shown by the circles. (a) RMSE, (b) mean error.
LSTM: long-short-term memory; OODD: out-of-distribution data.

Figure 10. Performance metric boxplots for each trained network on the velocity OODD test sets. The percentage deviation
refers to the v Tð Þ coefficients given in Table 4. The box plots and crosses denote the metrics for the predictions by each of the
LSTM networks and the external surface temperature, respectively. Prediction metrics for LSTM networks that were more than 1.5
3 the interquartile range are shown by the circles. (a) RMSE, (b) Mean error.
LSTM: long-short-term memory; RMSE: root mean square error; OODD: out-of-distribution data.
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during training. However, it was expected that for the
thickness OODD a positive deviation (OODD cases 4–
6, Table 5) would cause the LSTM networks to over-
predict the true temperature and therefore the error
(according to Equation (10)) would be negative. This
can again be explained by imagining a similar scenario
as that described for the velocity OODD case except
this block has true thickness Ltrue but an LSTM net-
work is trained using a thickness L� where Ltruej j. L�j j.
The same uniform temperature assumption is made to
yield Equation (12). Since the true block thickness is
less than the assumed thickness during training, the
TOF values will be smaller than expected and the
computed temperature would over-predict the true
temperature. The inverse of this effect was expected for
a scenario where Ltruej j\ L+j j (OODD cases 1 and 2,
Table 5). This behaviour is reflected in the negative
trend between the mean error and the deviation of the
thickness shown in Figure 11(b).

In both OODD scenarios, the RMSE and mean
error in temperature prediction both grow with the
increasing deviation of the training parameters. This
error manifests as a constant offset which is shown by
the mean error (Figures 10(b) and 11(b)). However, the
RMSE box plots for both scenarios (Figures 10(a) and
11(a)) demonstrate that using an ensemble of many net-
works can help to diagnose this issue since the SD

becomes larger as the deviation of parameters grows.
This behaviour has previously been exploited for uncer-
tainty quantification.33 The influence of the size of the
LSTM ensemble was not investigated, a smaller ensem-
ble may be equally as informative whilst reducing com-
putational expense. It should be noted that this issue of
over/under prediction is also expected to be suffered by
the ITM method and it is not possible to apply the
ensemble method to ITM.

Experimental studies

The top panel of Figure 12 shows the mean predicted
temperatures across the 25 LSTM networks with one
SD above and below this value superimposed. The pre-
dictions by the ITM method as well as the embedded
RTD measurements are also shown as references. The
bottom panel of Figure 12 shows the errors based on
Equations (10) and (11). To achieve the predictions
shown in Figure 12, 0:1414 ms TOFadj

� �
was added to

the TOF values before being passed to the LSTM net-
works. This correction TOFadj

� �
was needed because

the networks were trained on a training set that
assumed a thickness of Ltrain = 30mm but the true
thickness was measured to be L = 29:77mm. The use of
Ltrain = 30mm was chosen simply to (significantly)
reduce the spatial resolution necessary to generate

Figure 12. Experimental test set results. Top panel: RTD-measured temperature 5 mm from the water– metal interface TRTD
5 mm

� �
,

LSTM ensemble mean predictions TLSTM
5 mm

� �
and ITM23 predictions TITM

5 mm

� �
. Bottom panel: error of the LSTM predictions eLSTM

T

� �
,

external temperature DTRTD
� �

and ITM predictions eITM
T

� �
. One standard deviation across the LSTM networks above and below the

mean prediction is superimposed in both panels 61sð Þ.
LSTM: long-short-term memory; ITM: inverse thermal modelling.
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training data and hence reduce the computation time.
In effect, the experimental data was OODD compared
with the training data. Using Equations (7) and (13)
with the temperature during the first 5 min, for which
the block is uniformly at 24.3�C, shows that adjusting
the TOF by 0.1414 ms correctly calibrates the assumed
training set thickness Ltrain = 30mmð Þ.

TOFcorr =TOFtrain +TOFadj

=TOFtrain + 23
Lcorr � Ltrain

v Tð Þ
ð13Þ

The corrected thickness, Lcorr, matches the true experi-
mental thickness: L = 29:77 and gave the best results on
the experimental data set. Figures 13(a) and (b) show
the RMSE and mean error respectively for LSTM,
ITM and external surface temperature predictions. The
median LSTM ensemble RMSE and mean error are
both in close agreement with the ITM values, showing
good accuracy. Furthermore, both methods achieved
approximately 43 lower RMSE than if the external
surface temperature was used.

The ITM implementation used a similar method to
adjust the assumed thickness using the period in which
the block temperature is uniform and then rearranging
Equation (12) to obtain L. However, without a period
of uniform temperature, this calibration is not possible
and the ITM predictions would suffer the same offset
experienced by the LSTM networks. Therefore, in the

context of a thickness OODD scenario, the ITM
method is superior to the presented LSTM approach
because a trained LSTM network has the training
thickness ‘baked in’. The current machine learning
architecture would typically require retraining the
network(s) to change the assumed thickness; however,
the adjustment of the TOF data given in Equation (13)
can also resolve the thickness issue.

Prediction time

The percentage ratio, Rt, between the raw mean com-
putation time and real experimental time was calcu-
lated with Equation (14) where nT is the number of
data points (749) and fs is the measurement sampling
rate (0.25 Hz).

Rt =
mt

nT 3fs
3100 ð14Þ

If Rt\100% then inversion can be done in real-time
because computations are completed before the next
data measurements are made. The mean adjusted com-
putation time, C, was calculated with Equation (15)
where mt, nS , IF, EF are the average computation time,
number of spatial points, interpolation factor and the
ensemble factor, respectively.

C =
mt

nT 3nS3IF3EF
ð15Þ

Figure 13. Performance metrics for the LSTM networks, ITM and external surface temperature predictions made on the
experimental. The box plots, tri-stars and triangles denote the metrics for predictions by each of the LSTM networks, the external
surface temperature and ITM method, respectively. Prediction metrics for LSTM networks that were more than 1.53 the
interquartile range are shown by the circles. (a) RMSE, (b) Mean error.
LSTM: long-short-term memory; ITM: inverse thermal modelling.
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As in Equation (14), nT is the number of data points.
The interpolation factor accounts for the upsampling
of the data from 4 to 0.001 s required by the ITM
method. The ensemble factor accounts for the LSTM
ensemble repeating the calculations for each network.
These correction factors ensure the calculated times
report the time taken to compute the temperature
value at a single spatial location at a single time step.
The values for the variables of Equation (15) are given
in Table 6.

Table 7 shows both the raw mtð Þ and adjusted Cð Þ
mean computation times for the LSTM ensemble, a
single LSTM network and ITM method. The computa-
tion-to-real-time ratio Rtð Þ is also shown as a percent-
age. The LSTM ensemble contained 25 members, and
had a raw computation time approximately 253 that
of the single LSTM network implying that the compu-
tation time scales linearly with ensemble size.
Comparing the raw computation times suggests that
the single LSTM and ensemble are both significantly
faster than ITM. However, the adjusted values Cð Þ,
which account for differences in sampling rates and the
number of spatial nodes computed at each time step,
show that for each computation of a single temporal
and spatial point, the ITM method is approximately
292 and 338 times faster than the LSTM ensemble and
single LSTM network, respectively. A multi-output
LSTM network – one that makes temperature predici-
tons for different spatial locations – may well be faster

than ITM. However, this hypothetical multi-output
network would require a more complex architecture
and hence a larger number of computations at each
time step (due to an increase in trainable parameters).
Given the larger number of computations, this com-
plex LSTM is expected to remain slower than ITM.
However, without further work this cannot be
answered definitively. Despite this apparent large dif-
ference between the speeds of ITM and LSTM, the val-
ues of both Rt and C suggest either method would be
fast enough for real-time computations, assuming simi-
lar performance is achieved on field-deployable
hardware.

For the prediction of temperature-gradient-induced
stresses some form of spatial resolution is required.
ITM satisfies this requirement as the full (151-node)
spatial grid must be computed at each time step. In
contrast, the presented LSTM networks only computed
a single spatial point. Therefore, spatial resolution
could be achieved using multiple LSTMs for different
spatial locations (spatial ensemble). Since the raw com-
putation time scaled for LSTM (approximately) line-
arly with ensemble size, it is expected that a spatial
ensemble would follow a similar behaviour. This is not
to say that a spatial LSTM ensemble would need 151
members (to match ITM) since this discretisation is
expected to exceed the spatial resolution necessary for
predicting the thermo-mechanical stresses that cause
HCTF. Hence, the impact of increasing LSTM spatial
outputs is not expected to increase LSTM prediction
times prohibitively, that is, Rt would remain below
100%. Further work is necessary to determine suitable
spatial grid resolutions for both the ITM and LSTM
methods.

Another factor to consider is that the experimental
data sampling rate (0.25 Hz) would alias the maximum
critical HCTF frequency at Civaux (1 Hz). Therefore,
the measurement sampling frequency would have to be
increased to at least 2 Hz39 to properly capture 1 Hz
fluctuations. At 2 Hz, the ITM method prediction time
and Rt would remain (approximately) constant because
the method already interpolates the data to 1 kHz (for
numerical stability) which is capable of resolving 1 Hz.
On the other hand, at higher sampling frequencies, the
LSTM would need to perform a higher number of com-
putations (Rt would increase). However, the LSTM
method would only be required to predict on data
sampled at 2 Hz, not 1 kHz to resolve 1 Hz fluctua-
tions. Hence, the impact of increasing measurement
sampling rates is not expected to increase LSTM pre-
diction times prohibitively, that is, Rt would remain
below 100%. Ultimately the choice of ITM versus
LSTM depends on the required temporal and spatial
resolutions with ITM becoming more favourable for
significantly higher sampling rates.

Table 7. Raw mean computation time mtð Þ, associated
standard deviation stð Þ, computation-to-real-time ratio Rtð Þ,
mean computation time Cð Þ adjusted for a single point
temperature estimate at one time instance and associated
standard deviation sCð Þ for 20 repeats of the LSTM network
(full 25-network ensemble and a single network) and ITM
method codes. Values of C were calculated using Equation (15)
and Table 6.

Method mt sð Þ st sð Þ Rt %ð Þ C msð Þ sC msð Þ

LSTM ensemble 5.12 0.0534 0.17 273 2.85
LSTM single 0.237 0.00473 0.008 316 6.32
ITM 423 6.05 14 0.936 0.0134

LSTM: long-short-term memory; ITM: inverse thermal modelling.

Table 6. Value of each correction factors used in Equation (15)
to compute the adjusted mean computation times.

Method nT nS IF EF

LSTM ensemble 749 1 1 25
LSTM single 749 1 1 1
ITM 749 151 4000 1

LSTM: long-short-term memory; ITM: inverse thermal modelling.
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The adjusted computation times for each of the
methods are expected to be sufficient for real-time
monitoring considering the critical range of HCTF fre-
quencies (0.1–1 Hz) for Civaux. Nevertheless, further
investigation is required to determine whether these
speeds are achievable on lightweight, field-deployable
hardware. During the development of the LSTM and
ITM codes, speed and efficiency were not prioritised.
Therefore, the execution speed of both codes might be
improved through careful programming of the respec-
tive methods. For the LSTM ensemble such techniques
might include:

� Reduction of the number of ensemble members
� Conversion of the ensemble into a single compact

‘multi-headed’ network45

� Network simplification by pruning46,47 (also appli-
cable to a single network)

� Performing a hyperparameter search to remove net-
work complexity, for example, number of neurons
(also applicable to a single network)

It is important to highlight that the same 25-member
LSTM ensemble was used throughout the simulation
and experimental studies. The networks were all
trained using pure simulation data yet were able to
make predictions on experimental data which have
similar accuracy as the ITM method (with a correction
factor to address the difference between the assumed
training data thickness and true experimental thick-
ness). Furthermore, the LSTM networks were trained
on simulated data sampled at 0.5 Hz. When predic-
tions were made on the experimental data which were
sampled at 0.25 Hz, no interpolation was applied
meaning the LSTM networks were predicting on
sparse data.

Conclusions

HCTF in NPP mixing zones is driven by large tempera-
ture gradients, that is, large differences between the
interior and exterior wall temperatures in a pipe. It was
previously shown that using the physics-based ITM
method the inaccessible pipe wall temperature can be
estimated to within 2�C by using the information from
an external temperature measurement and the ultraso-
nic TOF. However, the ITM method was perceived to
be relatively slow requiring 423 s to invert the full data
set on a 12th Gen Intel core i7 processor CPU of a
desktop PC. For field deployment less powerful proces-
sors would most likely be available and therefore this
study investigated whether LSTM machine learning
architecture would be less computationally intensive

than the ITM method, whilst achieving comparable
accuracy.

It was found that relative to a resistance temperature
detector measurement, the 25-member LSTM ensemble
achieved an ensemble median RMSE of 1.04�C and an
ensemble median mean error of 0.194�C. This is almost
identical to the performance of the ITM method which
achieved a RMSE and mean error of 1.04�C and
0.196�C, respectively. These key metrics demonstrate
that LSTM networks can perform as well as the ITM
method if parameters such as the component thickness
and velocity–temperature relationship coefficients used
during training are in perfect agreement with the
(unseen) test set. However, differences between the
training and testing sets as small as 60:01% of the
velocity–temperature relationship coefficients or
60:17% of the thickness caused the accuracy of the
predictions to drop significantly. In both cases, these
errors cause a simple offset of the predicted tempera-
tures. Similarly to the ITMmethod, periods of constant
temperature can be used to correct the offset caused by
thickness discrepancies between the training data and
real-world data. SD of the predictions made by an
ensemble of 25 independent networks was found to be
a clear indicator of the magnitude of errors in the
predictions.

The aspects that affect computation time for a tem-
perature prediction using both the LSTM and ITM
methods were also discussed. While, for the implemen-
tations in this work, the LSTM looked considerably
faster for performing temperature estimates for a full
data set, the ITM method actually had a lower compu-
tation time per temperature estimate. However, for the
stability of the ITM method it is required that it per-
forms predictions at very small time steps, which there-
fore requires many interim computations if the
sampling rate is relatively slow, that is, 0.25 Hz. This
means that the ITM computation time will be unaf-
fected by an increase in sampling rate, unless the
increase exceeds the stable ITM time step. On the other
hand, the LSTM method would need to perform more
computations for an increased sampling rate, increas-
ing computation time. A similar argument will apply in
space; for the prediction of temperature-gradient-
induced stresses some form of spatial resolution will be
required. The ITM requires the use of a spatial grid of
N points (N = 151 in this work), whereas multiple
LSTM networks would need to be run separately to
perform another spatial prediction, increasing compu-
tation time. Finally, the behaviour of the ITM can be
fully interpreted and explained whilst that of the
LSTM is a black box. Therefore, the authors conclude
that the ITM should be favoured over the LSTM for a
high frequency field application.
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