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Abstract

Background: Out-of-hospital cardiac arrest (OHCA) represents a major burden for society and health care, with an average
incidence in adults of 67 to 170 cases per 100,000 person-years in Europe and in-hospital survival rates of less than 10%.
Patients and practitioners would benefit from a prognostication tool for long-term good neurological outcomes.

Objective: We aim to develop a machine learning (ML) pipeline on a local database to classify patients according to their
neurological outcomes and identify prognostic features.

Methods: We collected clinical and biological data consecutively from 595 patients who presented OHCA and were routed to
a single regional cardiac arrest centre in the south of France. We applied recursive feature elimination and ML analyses to
identify the main features associated with a good neurological outcome, defined as a Cerebral Performance Category score
less than or equal to 2 at six months post-OHCA.

Results: We identified 12 variables 24 h after admission, capable of predicting a six-month good neurological outcome. The
best model (extreme gradient boosting) achieved an AUC of 0.96 and an accuracy of 0.92 in the test cohort.

Conclusion: We demonstrated that it is possible to build accurate, locally optimised prediction and prognostication scores
using datasets of limited size and breadth. We proposed and shared a generic machine-learning pipeline which allows
external teams to replicate the approach locally.
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Introduction
Out-of-hospital cardiac arrest (OHCA) represents a major
healthcare burden and one of the leading causes of
death.1 In Europe, the incidence of OHCA with attempted
resuscitation is estimated between 67 and 170 per
100,000 person-years.2 Nowadays, thanks to communica-
tion campaigns, improved early recognition and ‘chain of
survival’, more and more patients benefit from specialised
care.3–5 Over the years, specialised care improved outcomes
thanks to intensive resuscitation and invasive organ
support, from mechanical ventilation to extracorporeal
membrane oxygenation (ECMO).6,7 However, the current
survival rate at hospital discharge is estimated at only
8.8%,8 and many survivors suffer from severe neurological
damage secondary to cerebral anoxia.5 Return to normal
cerebral function (cerebral performance category (CPC)
score = 1) or moderate cerebral disability (CPC score =
2) varies between 2.8% and 18.2%.9

Prognostication post-OHCA is central to clinical
decision-making, since it can inform family discussions,
level of care and the initiation or not of invasive therapies,
in the complex medical, ethical and economic landscape of
post-cardiac arrest care. While many intensive care unit
(ICU) prediction scores exist (OHCA, CAST, MIRACLE2,
etc.),10 their performance fluctuates and invariably degrades
when applied to populations different from those used to
derive the scores. Machine learning (ML) holds the
promise of generating new insight into a vast number of
medical topics,11–13 including for the prediction of sepsis
or renal failure.14,15 Data-driven analyses with built-in
explainability might become the new go-to approach for
building prediction scores. The purpose of this study was
to build an MLmodel to predict good neurological outcomes
after OHCA and identify key clinical predictors.

Methods

Study design

Data was collected retrospectively from patients admitted
between the 21st of January 2014 and the 22nd of
December 2021 to Toulouse University Hospital, a tertiary
centre located in the south of France. Toulouse University
Hospital provides 24/7 access to a large technical platform
including a cardiac arrest centre, and cardiovascular
surgery. We included patients older than 18 years old,
admitted for OHCA regardless of the aetiology. We
excluded patients who died before ICU admission, and
patients who did not remain comatose after return to spon-
taneous circulation (ROSC), who were directly routed to
another specialised cardiology care centre. Upon arrival,
after the patient’s assessment and initial blood tests, the
decision was made by clinicians to perform coronary angi-
ography and/or to start ECMO, based on available local
guidelines. According to the French ethics and regulatory

law (public health code), this study was registered in the
register of retrospective studies of the Toulouse
University Hospital (number RnIPH 2023-02) and
covered by reference methodology of the French National
Commission for Informatics and Liberties (CNIL). Due to
the retrospective nature of the study, passing through an
ethics committee was not mandatory.

Outcome

The primary outcome was good neurological outcome,
defined as a CPC score of 1 or 2 at six months
post-OHCA. Non-survivors were classified as CPC 5.

Data collection

Data were collected from patients’ electronic medical
records. The physiological variables, specifically arterial
pressure, heart rate, body temperature, and blood results
were collected at the time of ICU admission. Pre-hospital
data including time of no-flow and low-flow, location of
the cardiac arrest (home, street, or workplace) and
bystander CPR, were extracted from the emergency depart-
ment records. Simplified Acute Physiology Score II (SAPS
II) was collected at 24 h after ICU admission. Patient
medical history and outcomes of interest were also
extracted. In total, we included 30 features for each patient.

Data preprocessing

Two features were removed due to high missingness:
Neuron-specific enolase (NSE16) at day 3, and duration
before ECMO. Categorical variables were transformed
into binary variables using the one hot encoding method.
We split the dataset into training and test sets, with respect-
ively 80% and 20% of the cohort. Next, we used a feature
selection algorithm in the training dataset called recursive
feature elimination (RFE) to select only the relevant fea-
tures for predicting good neurological outcomes. RFE con-
sists of evaluating a model over the recursive deletion of the
least contributive input feature, in order to keep the minimal
set of features that preserve a high model performance. To
perform RFE, we follow the following steps. First, we ran-
domly split the training dataset into training and validation
sets (respectively 80% and 20% of the training data), and
we fit a model (we selected XGBoost) on the data using
grid search cross-validation. It is crucial to use grid
search cross-validation at this step because the best hyper-
parameters for the model may change depending on the
number of features.17 Then, we assess the feature’s contri-
butions using SHapeley Additive exPlanations (SHAP),
and we remove the least contributive feature from the
dataset. We repeat these two steps (fitting the model and
removing the least contributive feature) until there is no
feature left and report the model’s performances in train
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and validation each time. We repeated the whole RFE pro-
cedure 100 times to ensure the robustness of our method.

Model training and performance

Once the final set of features were selected, we trained a
model to predict good neurological outcome using the train-
ing data (80% of the entire cohort). We built and compared
four different models: random forest (RF), gradient boost-
ing model (XGBoost, XGB), logistic regression, and
neural network (multilayer perceptron). We then tested
each model on the test dataset (representing 20% of the
cohort) and reported train and test set confusion matrices,
accuracy (ratio of number of correct predictions divided
by the total number of predictions), and the area under
the receiver operating characteristic (ROC) curves. We
selected our best final model based on model accuracy.

Statistical analysis

Analyses were performed using GraphPad Prism 9.0
(GraphPad Software, Inc., San Diego, CA). Student’s
t-test or Mann–Whitney tests were used for continuous vari-
ables, while the Chi-squared test or Fisher’s exact test was
used for binary features. Variables are presented as mean
and standard derivation or percentage. A two-sided
p-value of less than .05 was considered to be statistically
significant. The code of the analysis is available for
reference.18

Explainability

We used SHAP, which is a post-hoc explainability method
where the contribution of each variable to the prediction is
estimated for each individual using game theory Shapeley
values.19,20

Results
Figure 1 presents a flowchart of the patients included in the
study. All patients admitted for OHCA included in the
study received CPR and presented ROSC upon arrival.
They were all attended to by pre-hospital specialised
medical teams which included a medical doctor (the
French ‘SAMU’). All the patients could receive advanced
medical care during transportation including intubation
and mechanical ventilation, mechanical CPR (LUCAS®

chest compression system), epinephrine, and other
advanced cardiac arrest treatment (amiodarone, lignocaine)
as indicated in recommendations at the time of the
event.21,22 Patients’ characteristics, in particular severity
index, the suspected cause of cardiac arrest, and treatments
administered are detailed in Table 1. The median age in the
cohort was 56 years old (±17), men were overrepresented
(68.2%) and the median SAPS II score was 68.9 (±19.3).

Most of the patients received bystander CPR (76.5%),
and 62.5% had a no-flow time of less than 5 min. The aeti-
ology remained unknown in 31.6% of cases, and almost a
quarter of patients presented ST-elevated myocardial
infarction (24.5%).

Variables of interest

The results of the RFE to predict good neurological
outcome is presented in Figure 2. We identified that a
minimum of 12 features were necessary before model
accuracy started to deteriorate. We showed that removing
features was not associated with any accuracy improvement
as it could have reduced background noise.

Discrimination performance was determined using ROC
curves and precision-recall curves analysis (Figure 2), while
calibration was assessed with confusion matrices
(Figure 2(b) and (c)). In the train cohort, the different
models achieved AUC between 0.91 and 0.95 and
average precision between 0.68 and 0.82. The results
were higher in the test cohort with AUC between 0.95
and 0.96 and average precision between 0.77 and 0.85.
The best F1-score (0.76) was obtained by the XGBoost
model (Table 2). The confusion matrix in the test cohort
reveals that the XGBoost model misclassified 20 patients
out of 119. Out of the misclassified patients, two were
false negatives. The false negative rate was 8% in that
model. The O:E ratio was 0.75 in the validation cohort
and 0.89 in the development cohort, showing an overesti-
mation of good neurological outcomes.

Explainability

Mean SHAP value extracted from the XGBoost model
identified 12 features associated with a good neurological
outcome (Figure 3 and Figure 4): emergency coronary angi-
ography, shockable initial rhythm, blood lactate, pH,
no-flow duration, SAPS II, low-flow duration, age, serum

Figure 1. Flow chart of the patient included in the study.a
aCPC: cerebral performance category score.
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Table 1. Development cohort: descriptive data of patients included in the study.

Parameters Total CPC≤ 2 CPC > 2 p

N 595 89 506 /

Age, years (SD) 56 (17) 50 (18) 57 (17) .0002

Male, N (%) 403 (68.2) 61 (68.5) 342 (68.1) .9920

Weights, KG (SD) 78.2 (17.2) 79.6 (15.1) 77.9 (17.6) .4948

Height, CM (SD) 172.1 (9.1) 173.3 (8.6) 171.8 (9.2) .2085

BMIa (SD) 26.3 (5.8) 26.4 (4.4) 26.3 (6.1) .9457

SAPS IIb (SD) 68.9 (19.3) 56.8 (19.2) 71 (18.5) <.0001

Admission temperature, °C (SD) 35.1 (1,76) 35.8 (1.1) 35 (1.9) .0002

Place of residence, N (%) 361 (64.4) 45 (53.6) 316 (66.3) .0380

Public place, N (%) 182 (32.4) 36 (42.9) 146 (30.6) .0416

Working place, N (%) 17 (3) 2 (2.4) 15 (3.1) .7187

Bystander CPRc, N (%) 446 (76.5) 78 (87.6) 368 (79.5) .0081

No-flow time, Min (SD) 4.2 (6.0) 2.1 (3.1) 4.6 (6.4) .0006

No flow time under 5 Min, N (%) 362 (62.5) 74 (85.1) 288 (58.5) <.0001

Low-flow time, Min (SD) 38.6 (29.4) 18.2 (14.5) 42.2 (29.8) <.0001

Shockable initial rhythm, N (%) 276 (46.5) 67 (75.3) 209 (41.4) <.0001

TTMd, N (%) 241 (44.5) 47 (54.7) 194 (42.5) .0398

Epinephrin administration, N (%) 391 (67.7) 23 (27.1) 368 (74.7) <.0001

Use of chest compression system, N (%) 166 (28.4) 8 (9.2) 158 (31.8) <.0001

Veno-Arterial Ecmoe AT Admission, n (%) 83 (14) 10 (11.2) 73 (14.4) .4328

Emergency coronarographyf, N (%) 200 (33.8) 64 (71.9) 136 (27.0) <.0001

PCIg, N (%) 104 (17.2) 33 (37.5) 71 (14.2) <.0001

Admission PH (SD) 7.1 (0.3) 7.2 (0.2) 7.0 (0.3) <.0001

Blood lactate, MMOL/L (SD) 10.5 (6.6) 5.4 (5.3) 11.4 (6.4) <.0001

Serum troponin T HSh, NG/L (SD) 1162.2 (3987.4) 1562.2 (3998.1) 1064.3 (3984.7) .2977

STEMIi, N (%) 146 (24.5) 37 (41.6) 109 (21.5) <.0001

Hypoxia, N (%) 122 (20.5) 15 (16.9) 107 (21.2) .3795

Unkown etiology, N (%) 188 (31.6) 14 (15.7) 174 (34.4) .0006

(continued)
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Table 1. Continued.

Parameters Total CPC≤ 2 CPC > 2 p

Intoxication, N (%) 22 (3.7) 3 (3.4) 19 (3.8) .8740

28-day death, N (%) 464 (78) / 463 (94.5) /

All values are reported as mean and standard derivation (SD) for continuous variables, and percentage for categorical variables.
aBMI: body mass index.
bSAPS II: simplified acute physiology score version II.
cCPR: cardio-pulmonary resuscitation.
dTTM: targeted temperature management.
eECMO: extracorporeal membrane oxygenation.
fCoronarography within 2 h after admission.
gPCI: percutaneous coronary intervention.
hHS: high-sensitive.
iSTEMI: ST-elevated myocardial Infarction

Figure 2. Receiver operating curves and precision-recall curves for the four models in the test cohorta,b; confusion matrix for neurological
outcome prediction in (b) training cohort and (c) test cohort for the best model (xGBoost).
XGB: xGBoost; rf: Random Forest; lr: Logistic Regression; mlp: Multilayer Perceptron. CPC: cerebral performance category.
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troponin, epinephrine administration, admission tempera-
ture, patient height. The aetiology of OHCA was not iden-
tified by the model as a significant contributing feature.

The SHAP analysis also allows us to build dependence
contribution plots for each feature, which illustrates
further the link between individual feature values and
SHAP values. We identified the thresholds which differen-
tiate between positive and negative SHAP values. Figure 4
shows that the SAPS-II score higher than 70.5 at 24 h after
admission, no-flow longer than 1.5 min, low-flow longer
than 39 min, lactate level higher than 6.35 mmol/l, age
under 54.5 years and an admission temperature under
34.7°C were associated with a worse outcome.

Discussion
We deployed ML methods on a cohort of patients following
OHCA and constructed a sparse model that accurately pre-
dicts a six-months neurological outcome. The main contri-
bution of this study is related to the establishment of a
locally tailored model development pipeline, identifying
recognised predictive variables, and capable of achieving
satisfactory performance. XGBoost-based predictive
model achieved the highest prediction score in terms of
Accuracy, AUC, F1 score and average precision (respect-
ively 0.92, 0.96, 0.76, 0.84). The aim of this study was to
demonstrate the value of modern prediction processes
with a new level of dynamism and adaptability. While
recent publications focus on utilising vast cohorts23 that

are inaccessible to many clinicians, we aimed to highlight
the significant extrapolation capabilities provided by
ML-based methods today.

The analyses highlighted 12 features that were consid-
ered critical to determine prognosis. Blood lactate was
the main predictive feature identified. A low value has the
most important impact on the prognostication as the
SHAP value might reach a maximum of 0.10. The role of
blood lactate as a mortality prognostication marker has
been known for a long time. Its metabolism in circulation
failure or ischaemia is also well known. This ML approach
emphasised its role respecting the known physiological
model concerning cardiac arrest. On the contrary, some
other features have a more unclear impact. Serum troponin
seemed to have either a positive or negative impact. The
model interpreted missing serum troponin value as an
unfavourable prognostication marker. In fact, some patients
were routed to our ICU with an unclear history of the
disease and without return on spontaneous circulation.
Resuscitation was then stopped at arrival for obvious
ethical reasons (such as excessive no-flow duration,
known palliative disease, advances directives, etc.). These
data, however, were not collected in the study dataset.
Height was the least contributive feature in the model.
There is no literature comforting its role in OHCA out-
comes prognostication. As the serum troponin, it’s the

Table 2. Predictive performance comparison of the four machine
learning models in the test cohort.

Parameters XGBa RFb LRc MLPd

Sensitivity 0.89 0.5 0.72 0.67

specificity 0.92 1 0.96 0.95

Positive predictive value (%) 66.43 100 76.20 70.44

Negative predictive value (%) 97.92 91.93 95.07 94.18

Accuracy 0.92 0.92 0.92 0.91

Precision 0.67 1 0.76 0.71

F1 score 0.76 0.67 0.74 0.68

AUC 0.96 0.96 0.95 0.96

Average precision 0.84 0.85 0.77 0.85

aXGB: XGBoost.
bRF: Random forest.
cLR: Logistic regression.
dMLP: Multilayer perceptron.

Figure 3. Mean SHAP value for the top 12 features of the XGBoost
model.
Variables are shown from top to bottom in order of importance
(average absolute SHAP values). The contribution of each feature
on each prediction is shown on the x-axis. Each dot represents one
patient in the test set, and their colour encodes the value of the
associated variable for each individual. Overlapping points are
vertically separated for clarity. Grey points represent missing
values, estimated by the model based on the values of other
features. A positive SHAP value means that the variable, for this
individual, contributes positively to the final outcome prediction.
For example, a low lactate (blue colour) is positively associated
(positive SHAP value) with good neurological outcome, whilst long
low-flow duration (red colour) is negatively associated (negative
SHAP value) with good neurological outcome.
SHAP: SHapeley Additive exPlanations.
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Figure 4. SHAP dependence contribution plots, illustrating the link between individual feature values and SHAP values for the prediction of
a good neurological outcome. For each feature, we identified the thresholds which differentiate between positive and negative SHAP values
(vertical red lines). The grey histograms represent the distribution of patients for each feature value.
(a) SHAP value for blood lactate; (b) for admission pH; (c) no-flow duration (min); (d) for SAPS II; (e) for low-flow duration (min); (f) for Age
(years); (g) for admission serum troponine; (h) for admission temperature.
SHAP: SHapeley Additive exPlanations; SAPS II: Simplified Acute Physiology Score II.
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missing values that are predictive. We think that it empha-
sises that our ML model extrapolates from data regardless
of the known prevailing physiological model and extracts
data even from less obvious features. It emphases also the
main limitation of the model prediction as it is strongly
affected by initial features selection. This limitation con-
cerns all the prognostication models with or without ML.24

The thresholds identified by the algorithm were close to
those already described in the previous study.25 Some of the
variables we identified were already used in previous prog-
nostication models for neurological outcomes post cardiac
arrest at six months, such as SALTED and MIRACLE2
score.26,27 Both these scores were built with the intent of
being as parsimonious as possible to simplify prognostica-
tion at the time of admission and included only a limited set
of features. As a consequence, they likely suffer from low
temporal (across time) and external (in new settings) valid-
ity.28 We obtained higher AUC values in the development
and validation cohort than SALTED (respectively 0.90
and 0.82), and MIRACLE2 (respectively 0.90 and 0.92).
C-GRApH and CAST scores predict neurological outcomes
at discharge and reach AUC values of respectively 0.81 and
0.86 (in validation cohorts).29,30

We created an adaptive tool allowing optimised predic-
tion in a dataset of relatively limited size (number of
patients) and breadth (number of features). As our study
shows, a 600-patient dataset with only 30 features appears
large enough to generate a locally robust and highly accur-
ate ML prognostication system. The danger of building pre-
diction models from small datasets is the risk of over-fitting,
when the model gives (highly) accurate predictions for the
training data but not for new data. We showed that this obs-
tacle could be overcome by using cross-validation, and
RFE.31 Generalisability (the ability of an ML model to
perform well across time and/or settings) has been put
into question.32 Instead, ML experts have called for
“locally optimised” models that are more likely to find clin-
ical utility at the bedside. The pipeline we propose (data
pre-processing, RFE, then model selection) could be repli-
cated by external teams in other institutions to enable them
to build local prediction models and prognostication tools.
We argue that external validation of the current model in
a different centre would be of limited value. Instead, we
call for the assessment of the performance of a new
model, built implementing our strategy (RFE, model selec-
tion and then algorithm testing) with the features and data
available at that centre.

The main limitation of our study is the absence of pro-
spective validation in the clinical setting, which represents
the next step in the assessment of its clinical utility.
However, the model’s performance showed great stability
between the test set and the development set, as well as
during cross-validation. These are positive indicators that
mitigate the risk of overfitting. Another point of discussion
is that we did not estimate how active withdrawal of care

changed the results of neurological prognostication.
Neurological outcome evaluation in OHCA patients was
based at the beginning of this study (2014), on the review
from Sandroni and al.33 This evaluation considers mainly
day-3 features (as blood NSE, EEG results and cerebral
scan results) to determine end-of-life support. More recent
studies did not bring substantial changes.33,34 We believe
that based on that strategy, the patients angled towards
end-of-life support had worse feature values and would
mainly have been classified in the poor neurological
outcome prediction group (CPC> 2).

A central concern with the use of predictive scores such
as this one is the rate of false negatives, where patients are
erroneously predicted to have a poor neurological outcome,
when in reality they evolved favourably. This could have
serious consequences, as it might lead to withdrawing
assistance from a patient who could have benefited from
it. The rate of false negatives in our study in the test
cohort was 8%, which is higher than the recommended
value of 5%.34 Modulating the hyperparameters of the
models did not allow us to achieve better performance on
this element. This limitation probably stems from deficien-
cies in the dataset.

The ability of models to extrapolate data, to account for
feature correlation, and to reduce noise enable its use in
many diverse settings. Adaptive prediction models could
help evaluate the specificity of predictive features for
example: population base, cohort’s derivation with time,
and calibration drift.35 As computational power grows
and analytical skills in healthcare institutions become
more ubiquitous, developing algorithm strategies for
outcome prognostication based on ML will become the
new standard. This study shows that the future of ICU
patient prognostication may include evolving ML models,
and should be ICU-specific (regarding the level of care
and the population recruitment).

Conclusion
ML models managed to accurately identify the predictive
factors of good neurological outcomes following OHCA
in a single centre cohort of 595 patients. We proposed
and shared a pipeline that can be replicated by external
teams in different centres to generate locally optimised pre-
diction and prognostication tools.
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